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Learning Fixed-dimension Linear Thresholds FromFragmented Data�Paul W. GoldbergDept. of Computer Siene,University of Warwik,Coventry CV4 7AL, U.K.pwg�ds.warwik.a.ukSeptember 10, 1999AbstratWe investigate PAC-learning in a situation in whih examples (onsisting of aninput vetor and 0/1 label) have some of the omponents of the input vetor onealedfrom the learner. This is a speial ase of Restrited Fous of Attention (RFA)learning. Our interest here is in 1-RFA learning, where only a single omponent of aninput vetor is given, for eah example. We argue that 1-RFA learning merits speialonsideration within the wider �eld of RFA learning. It is the most restritive formof RFA learning (so that positive results apply in general), and it models a typial\data fusion" senario, where we have sets of observations from a number of separatesensors, but these sensors are unorrelated soures.Within this setting we study the well-known lass of linear threshold funtions,the harateristi funtions of Eulidean half-spaes. The sample omplexity (i.e.sample-size requirement as a funtion of the parameters) of this learning problem isa�eted by the input distribution. We show that the sample omplexity is always�nite, for any given input distribution, but we also exhibit methods for de�ning \bad"input distributions for whih the sample omplexity an grow arbitrarily fast. Weidentify fairly general suÆient onditions for an input distribution to give rise tosample omplexity that is polynomial in the PAC parameters ��1 and Æ�1 . We givean algorithm (using an empirial �-over) whose sample omplexity is polynomial inthese parameters and the dimension (number of inputs), for input distributions thatsatisfy our onditions. The runtime is polynomial in ��1 and Æ�1 provided that thedimension is any onstant. We show how to adapt the algorithm to handle uniformmislassi�ation noise.�A preliminary version of this paper appeared in the proeedings of the 1999 COLT onferene.1



1 IntrodutionThe aim of supervised learning is to �nd out as muh as possible about some unknownfuntion (alled the target funtion) using observations of its input/output behavior. Inthis paper we fous on linear threshold funtions. These map vetors of inputs to binaryoutputs aording to the rule that the output should equal 1 provided that some linearombination of the inputs exeeds some threshold value, otherwise the output equals 0.Thus a linear threshold funtion an be desribed by a vetor of real oeÆients, one foreah input, and a real-valued threshold.Probably Approximately Corret (PAC) learning is a well-known framework for study-ing supervised learning problems in whih outputs of the funtions under onsiderationmay take one of two values (suh as 0 and 1), so that any funtion partitions the inputdomain into two sets. We give the basi de�nitions of PAC learning below in setion 1.2;see textbooks suh as [2, 30℄ for a detailed introdution to the theory.The problem of learning linear threshold funtions in the PAC framework has reeiveda lot of attention in the literature, some of whih is desribed below. In this paper weonsider a natural variant of the problem in whih the algorithm has aess to examplesof the target funtion in whih only a single input omponent (together with the outputvalue, 0 or 1) are given. It is assumed that for eah example of input/output behavior, thehoie of whih input has its value given, is made uniformly at random.The paper is organized as follows. In this setion we give bakground, motivation forstudying this variant in detail, a formal statement of the learning situation, and somepreliminary results. In setion 2 we show how the joint distribution of the inputs maya�et the number of examples needed to distinguish the target funtion from a singlealternative linear threshold funtion, having some given error. In setion 3 we use a generalmethod identi�ed in setion 2 to PAC-learn linear threshold funtions, for any onstantnumber of inputs. In setion 4 we onsider the speial ase where inputs are binary-valued.In setion 5 we disuss the signi�ane of the results presented here, and mention openproblems of partiular interest.1.1 Bakground and MotivationThe topi of missing data, where some of the omponents of an observation are onealedfrom the learner, has reeived a lot of attention in the statistis literature. Within PAClearning theory the situation is alled Restrited Fous of Attention (RFA) learning, intro-dued in [5, 6, 8℄, see [20℄ for an extensive survey. For query-based learning the assoiatedframework is the Unspei�ed Attribute Values learning of [23℄. A good example of a dataset that motivates the work here is a medial prognosis problem analysed in Titterington etal. [37℄ and Lowe and Webb [33℄. The data set represents 1000 head-injured oma patients,and ontains (for eah patient) a subset of a set of 6 diagnosti indiators measured onadmission to hospital, and a measure of extent of reovery. The aim is to use the datato learn to predit reovery given new sets of measurements. In the data set, fewer thanhalf of the patients had all 6 measurements taken, so there is a problem of how to use the2



inomplete vetors of observations e�etively.Most methods for learning from inomplete data use imputation, in whih the missingvalues in the data set are assigned values aording to some rule (for example [33℄ usemean imputation, where an unknown omponent value is given the average of the knownvalues for that omponent). In general, imputation biases the data slightly, whih is atodds with the PAC riterion for suessful learning, being used here. Linear thresholdfuntions are an oversimpli�ed model for the data, sine there is lass overlap (indeed thedata set ontains idential pairs of input vetors with distint reovery levels). Howeverour algorithm is extendable to a more realisti \mislassi�ation noise" model.Our simplifying assumption that eah example has only a single input attribute valuegiven has the following motivations:1. It eliminates the strategy of disarding inomplete examples, whih is wasteful inpratie. The strategy of disarding inomplete examples may also bias the data ifthe missing data mehanism is more likely to oneal some values than others (i.e.anything other than what Little and Rubin [32℄ all missing ompletely at random).2. The restrition to a onstant number of values per example is equivalent to a simplestohasti missing-data mehanism, as well as being a speial ase of RFA learning.The statistial missing data literature usually assumes that there is a stohastimissing data mehanism, as opposed to RFA learning where unonealed values areseleted by the learner.k-RFA learning refers to a setting where k omponents of any example are known tothe learner; thus we fous on 1-RFA learning. The equivalene noted above an beseen by observing that in our setting a learner may gather polynomial-sized olletionsof samples for eah set of k attributes, as easily as it may gather a polynomial-sizedsample, and hene e�etively query any given set of k attributes. We prefer the term\fragmented data" over \missing data" in this situation, to emphasise that only asmall proportion of any data vetor is given.3. The 1-RFA setting is the most stringent or restritive situation, in that positive resultsfor 1-RFA learning apply in other settings. It also models the \data fusion" problem,in whih olletions of examples are generated by a set of independent soures, andthe aim is to ombine (or \fuse") the information derived from the separate soures.Linear threshold funtions are an obvious hoie of funtion lass in the ontext intro-dued here, beause the output value generally depends on all the input values; it is notgenerally suÆient to know just a subset of them. But information is still onveyed by anexample in whih all but one input value is onealed.We next motivate the study of distribution-spei� learning in this missing-data setting.This is justi�ed mainly by the results, whih show that the learning problem is impossiblein a ompletely distribution-free setting (fat 1 below) and that the sample omplexitydepends on the input distribution (setion 2). There has been relevant work on distribution-spei� PAC learning in the standard omplete data setting, see setion 1.3. Work in RFA3



learning generally assumes that the input distribution belongs to some known lass, suhas produt distributions. It is known from this work that it is neessary to already havea lot of knowledge of the input distribution, in order to learn the funtion. We mightreasonably expet to have a parametri model for the input distribution, and then use theEM algorithm [19℄ or subsequent related methods that have been devised for learning adistribution in the presene of missing data.In setion 2 we fous on the question of whih distributions are helpful or unhelpfulfor 1-RFA learning. The sensitivity of the sample omplexity to the nature of the inputdistribution (partiularly when we do not restrit to produt distributions) is a distintivenovel feature of this omputational learning problem, with a lot of theoretial interest.(By sample omplexity we mean the number of examples needed for PAC learning bya omputationally unbounded learner.) Experimental work in the data fusion literaturesuh as [12, 18℄ has shown the strong e�et that varying assumptions about the inputdistribution may have on preditive performane. We aim to provide some theoretialexplanation by identifying features of an input distribution that make it \helpful" and giveassoiated sample-size bounds.We mention relationships with other learning frameworks. The RFA setting is morebenign than the \random attribute noise" [24, 36℄ senario. A data set with missingomponents an be onverted to one with random attribute noise by inserting randomvalues for the missing omponents (although note that for k-RFA data, with small k, theassoiated noise rate would be quite high).Finally, observe that there is a similarity to the probabilisti onepts framework of [29℄in that, given a stohasti missing data mehanism, we have observations of a mappingfrom an input domain onsisting of partially observed vetors to outputs whose values areonditional distributions over f0; 1g onditioned on the observed inputs. The di�ereneis that we do not just want to model the onditional distribution of outputs given anyinput, we also want an underlying deterministi funtion to be well-approximated by our(deterministi) hypothesis. In this paper we make use of the quadrati loss funtion of anobservation and hypothesis, as de�ned in [29℄.1.2 Formalization of the Learning ProblemWe are interested in algorithms for probably approximately orret (PAC) learning asintrodued by Valiant in [38, 39℄. Here we give the basi de�nitions and introdue somenotation. An algorithm has aess to a soure of observations of a target funtion t :X ! f0; 1g, in whih inputs are hosen aording to some �xed probability distributionD over the domain X , and the orret 0=1 output is given for eah input. It is given twoparameters, a target auray � and an unertainty bound Æ. The goal is to output (intime polynomial in ��1 and Æ�1), with probability at least 1� Æ, a funtion h : X ! f0; 1gwith the property that for random input hosen aording to D, the probability that theoutput of h disagrees with the output of t, is at most �. The input distribution D isusually assumed to be unknown, but the target funtion is known to belong to some givenlass C of funtions. 4



Unlike most work on PAC learning, we assume that D is known ompletely (as studiedin [7℄). The RFA literature gives examples that show that some knowledge of D is neessaryfor most learning problems, and it is often assumed that D is a produt distribution (eahattribute hosen independently). In this paper we do not address the topi of partialknowledge of D. In the next setion we show that some knowledge is neessary for learninglinear threshold funtions (the funtion lass of interest here).Within the PAC framework, we are studying spei�ally 1-RFA learnability where foreah example the learner an see one of the input values and the binary output value.Thus, for domain X = Rd, an example is a member of R � f1; : : : ; dg � f0; 1g, sineit ontains a real value, the identity of the oordinate taking that value, and the outputlabel. As noted, the assumption that the oordinate's identity is hosen by the learner isequivalent (for PAC learning) to the assumption that it is hosen at random. This is morestringent than \missing ompletely at random" sine we have imposed an arti�ial limit(of 1) on the number of observed input values. We have observed that this arti�ial limitis important to disallow disarding some training examples and using others. ObviouslyPAC-learnability of 1-RFA data implies PAC-learnability of k-RFA data for any larger k.Our aim is to use fragmented data to learn linear threshold funtions, that is funtionsmapping members of some unknown halfspae of Rd to the output 0, and its omplementto 1. These are funtions of the form f((x1; : : : ; xd)) = 1 i� Pi aixi > � where ai areunknown oeÆients and � is a \threshold" value. Throughout, we use the unit ostmodel of real number representation.Our algorithm is (for a large lass of input distributions) polynomial in the PAC pa-rameters ��1 and Æ�1 , provided that d is onstant. In investigating the behavior of thealgorithm as a funtion of dimension d, we need to onsider it with respet to a paramater-ized lass Dd of input distributions, where Dd is a probability distribution over Rd. (Thisis due to the dependene we have noted of sample omplexity on input distribution.) Thealgorithm's runtime is typially exponential in d, but for two lasses Dd of interest, thesample omplexity an be shown to be polynomial.1.3 Related Work on Linear Thresholds and Noise-tolerant Learn-ingThe domain Rd (for onstant d) is a widely onsidered domain in the learning theory lit-erature. Examples of learning problems over this domain inlude PAC-learning of booleanombinations of halfspaes [15℄, query-based learning of unions of boxes [16℄, and unionsof halfspaes [9, 4, 13℄. A tehnique of [9℄ generalized by [15℄ involves generating a set offuntions that realise all linear partitions of a sample of input vetors. If m is the samplesize then the set of partitions has size O(md). Our algorithm uses this tehnique, whihrequires d to be onstant. Extending the above learning results to general (non onstant)d would solve the well-known open problem of learning disjuntion normal form booleanformulae, introdued in [39℄. We explain below why it is likely to be diÆult to generalizethe results here to non-onstant d. 5



Linear threshold funtions have been studied extensively in the mahine learning liter-ature. We will not review the algorithms here, but see Blum et al. [11℄ for a good aountof the PAC learning results. It is well-known that in the basi PAC framework, linearthreshold funtions are learnable. Finding a onsistent hypothesis (a hyperplane that sep-arates the given inputs with output 1 from those with output 0) an be solved by linearprogramming in polynomial time. The well-known results of Blumer et al. [9℄ show thatany onsistent hypothesis ahieves PAC-ness, given a sample whose size is proportional to��1 , log(Æ�1), and d. (This uses the fat that the Vapnik-Chervonenkis (V-C) dimensionof halfspaes of Rd is d+ 1, see [9℄ for details.)As mentioned in the previous subsetion, we assume unit ost for representation andarithmeti operations on real values. The algorithm of [11℄ PAC-learns linear thresholdfuntions in the presene of random mislassi�ation noise, and requires the logarithmiost model for real value representation. So also does the basi PAC algorithm of [9℄, sineknown algorithms for linear programming that are polynomial in d assume logarithmiost. (For unit ost real arithmeti, urrently it is known how to do linear programming inpolynomial time for logarithmi d, see G�artner and Welzl [25℄.) These observations raisethe question of whether we an �nd an algorithm that is polynomial in d as well as thePAC parameters, for logarithmi ost real arithmeti. In setion 4 where we disuss inmore detail the ase where inputs ome from the disrete boolean domain, we explain whythis open problem is still likely to be hard.In this paper we show how to onvert our algorithm into a statistial query (SQ) al-gorithm (as introdued by Kearns [28℄), whih implies that it an be made noise-tolerant.(Over the boolean domain f0; 1gd a more general result of this kind already exists, namelythat learnability in the k-RFA implies SQ-learnability and hene learnability in the pres-ene of random lassi�ation noise, for k logarithmi in d [6℄.) An extension to RFAlearnability of linear thresholds (in time polynomial in d) would then be a strengtheningof the result of [11℄.Note that if we had a method for determining a good approximation of the error ofa hypothesis (using the fragmented data) then we ould PAC-learn, using a result of [7℄,whih says that PAC-learnability with a known distribution D in the standard settingis equivalent to PAC-learnability with a known distribution when instead of examples,the learning algorithm has a means of measuring the error of any hypothesis it hooses.However, we have not found any general way of approximately measuring mislassi�ationrate of a hypothesis using RFA data, even for the kinds of input distributions that weidentify as implying polynomial sample omplexity.1.4 Tehnial PreliminariesWe establish some simple fats about the learning situation under onsideration. These areto justify our assumption that the input distribution is not ompletely unknown. Note thatlearning may still be possible if the input distribution is not known ompletely, but knownto belong to a lass of distributions. In previous work on RFA learning, it is assumed thatthe input distribution D is an unknown produt distribution. This is a strong assumption6



whih allows RFA data to onvey a lot of information about D. It is already known from [5℄that without some information about the input distribution it is often possible to de�nepairs of senarios (a senario is the ombination of an input distribution and lassi�er)whih are substantially di�erent but are indistinguishable to a RFA learner. We use thesame method for linear threshold funtions.Given a binary-valued funtion C , de�ne pos(C) to be the positive examples of C , i.e.fx : C(x) = 1g and neg(C) to be the negative examples, i.e. fx : C(x) = 0g.Fat 1 It is impossible to learn linear thresholds over R2 for a ompletely unknown inputdistribution D, even for a omputationally unbounded learner.
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�gure 1Di�erent but indistinguishable senarios desribedin proof of fat 1:Proof: De�ne linear threshold funtions C , C 0 over the (x; y)-plane as follows.pos(C) = f(x; y) : y < 1 + x=2gpos(C 0) = f(x; y) : y < 4� x=2gDe�ne input distributions D, D0 over the (x; y)-plane as follows. D is uniform over the 4unit squares whose lower-left orners are at (0; 0), (4; 2), (1; 2) and (5; 4). D0 is uniformover the 4 unit squares with lower-left orners at (0; 2), (4; 0), (1; 4) and (5; 2). (These arethe shaded regions in �gure 1.)Consider 1-RFA data generated by either C in ombination with D, or C 0 in ombi-nation with D0. The marginal distributions (that is, the distributions of the separate xand y oordinates) are the same in both ases, as are the onditional distributions of theoutput label given the input (so for example, Pr(label = 1 j x 2 [0; 1℄) = 1 in both ases,or Pr(label = 1 j y 2 [2; 3℄) = 1=2 in both ases). But the two underlying funtions arevery di�erent. 27



Sine the disrete boolean domain X = f0; 1gd is of speial interest, we give a similaronstrution in setion 4 for that speial ase, thus showing that some knowledge of D isstill required. (That onstrution uses 4 input dimensions, rather than just 2.)The above onstrution gives indistinguishable senarios for pairs of input distributionsthat di�er from eah other. We show later that for any known input distribution, there areno indistinguishable pairs of linear threshold funtions (in ontrast with funtion lassesontaining, for example, exlusive-or and its negation, [5℄). But the following exampleshows how a known input distribution may a�et sample omplexity. Observe �rst thatfor pairwise omparison, the optimal strategy is to maximize the likelihood of the outputlabels given the input oordinate values. For an individual example in whih the inputoordinate xi takes the value r 2 R and the output label is l 2 f0; 1g, this likelihood isthe probability that points generated by D onditioned on xi = r give output value l. Fora olletion of suh examples the likelihood is the produt of the individual likelihoods.Example 2 Suppose that D is uniform over two line segments in the (x; y)-plane, having(for some small positive �) endpoints ((�; 0); (1; 1��)) and ((0; �); (1��; 1)). Let C(x; y) =1 i� y < x and let C 0(x; y) = 1 i� y > x.
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�gure 2C and C 0 as de�ned in example 2; whih disagree onall inputs (x; y): D is uniform over the two heavy linesegments in the square:If the target funtion is C (respetively, C 0), then a PAC algorithm should have aprobability � Æ of outputting C 0 (respetively, C), for any error bound � < 1. Butif either C or C 0 is the target funtion, then in order to have any evidene in favor ofone over the other, it is neessary to see an example in whih the value assigned to thegiven input oordinate lies in the range [0; �℄ [ [1 � �; 1℄. Examples of this kind ourwith probability 2� , and all other points are uninformative (having equal likelihood forC and C 0). So the sample size needed for PAC-learning is proportional to 1=� , for this8



partiular kind of input distribution. Note however that if we put � = 0 (and the domainbeomes the line segment with endpoints at (0; 0) and (1; 1)), the assoiated sample-sizerequirements do not beome in�nite; instead the learning problem redues to a similar onein one dimension fewer.2 E�et of Joint Distribution of Inputs on SampleComplexity of Pairwise ComparisonsIn this setion we give results about the way the joint distribution over input omponentsmay a�et the sample-size requirements for a restrition of the learning problem. Weassume that only two andidate funtions C , C 0 are given, whih disagree with probability�. One of them is the target funtion, and the aim is to determine whih one is thetarget funtion, with probability 1� Æ of orretness. Example 2 showed a lass of inputdistributions whose members ould make arbitrarily large the expeted number of examplesneeded to distinguish a partiular pair of funtions. Note, however, that1. No input distribution gave the requirement that any pair of positive values (�; Æ) oftarget auray and on�dene required in�nite data.2. The asymptoti behaviour of sample-size requirements is still polynomial. In parti-ular, we laim that given any pair of linear threshold funtions that disagree withprobability �, we need �(max(��1; ��1)) examples in order to distinguish them withsome given probability of suess. This is still polynomial in �, for any given � > 0.Regarding point 1 above, we show in setion 2.1 (theorem 4) that there is no input distribu-tion whose marginal distributions have well-de�ned means and varianes that allows somepair of distint linear threshold funtions that di�er by some � > 0 to be indistinguishablein the limit of in�nite 1-RFA data. Moreover in orollary 5 we show that a �nite upperbound on sample size an be derived from D, � and Æ only, and not on the partiular hoieof C and C 0 whih di�er by �. Regarding point 2, in setion 2.2 we give fairly generalsuÆient onditions on an input distribution, for sample omplexity to be polynomial. Wedo however in setion 2.3 identify ertain \pathologial" distributions where the sampleomplexity is not neessarily polynomial in ��1 and Æ�1.2.1 Finiteness Results for Sample-size RequirementsIn what follows, we assume that all probability distributions have well-de�ned expetationsand varianes for omponents of input vetors. Regarding point 1 above, we show thatfor these probability distributions there is never an in�nite sample-size requirement onea distribution is given, despite the fat that distributions may be arbitrarily bad.Lemma 3 Let D, D0 be probability distributions with domains R and R0 respetively, bothsubsets of Rd. Suppose moreover that R and R0 are onvex and do not interset. Then for9



random variables x and x0 generated by D and D0 respetively, the expeted values E(x)and E(x0) are distint.Proof: Sine the expeted value is a onvex ombination, we just note that E(x) 2 Rand E(x0) 2 R0 , and sine R \ R0 = ;, the expeted values are indeed distint. 2C and C 0 as de�ned in the statement of the following theorem are slightly more generalthan linear threshold funtions | we use the additional generality in the proof of orol-lary 5. For a funtion f : X �! f0; 1g, let pos(f) denote fx 2 X : f(x) = 1g and letneg(f) denote fx 2 X : f(x) = 0g.Theorem 4 Let D be any probability distribution over Rd whose marginal distributionshave well-de�ned means and varianes. Let C and C 0 be any pair of funtions from Rd tof0; 1g suh that1. pos(C), neg(C), pos(C 0), neg(C 0) are all onvex.2. with probability 1, a point generated by D lies in pos(C) [ neg(C).3. with probability 1, a point generated by D lies in pos(C 0) [ neg(C 0).4. with probability �, a point generated by D is given di�erent labels by C and C 0 .Then C and C 0 are distinguishable (using 1-RFA data) with probability 1� Æ (for �; Æ > 0)for some suÆiently large �nite sample size (dependent on D; �; Æ; C; C 0).Proof: C and C 0 divide the domain Rd into 4 onvex regions de�ned as follows.R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)Let D(Rij) be the probability that a point generated by D lies in region Rij . The regionof disagreement of C and C 0 is R01[R10 { by assumption 4, D(R01[R10) = �. Let �(Rij)denote the expetation of points generated by D, restrited to the region Rij | as long asD(Rij) > 0, �(Rij) is well-de�ned by our assumption that omponents of points generatedby D have well-de�ned expetations and varianes.The points �(R00); �(R01); �(R10); �(R11) are all distint from eah other (observingthat the Rij are onvex and disjoint, so we an use lemma 3). Next note that the expetedvalue of negative examples of C is a weighted average of �(R00) and �(R01) (weightedby probabilities D(R00) and D(R01)). Similarly the expeted value of negative examplesof C 0 is a weighted average of �(R00) and �(R10) (weighted by probabilities D(R00) andD(R10)).We use the fat D(R01) +D(R10) = � > 0 to dedue that the negative examples of Cand C 0 have di�erent expetations. If the (distint) points �(R00), �(R01), �(R10) do notlie on a one-dimensional line, this follows. If they lie on a line, the point �(R01) annot bein the middle, sine that would ontradit onvexity of neg(C 0). Similarly �(R10) annot10



lie in the middle. If �(R00) lies between the other two, then observe that sine the weightsof the averages are positive, the means �(neg(C)) and �(neg(C 0)) must lie on oppositesides of �(R00) on the line.So we an hoose a omponent on whih means of negative examples di�er, and use theobserved mean of 0-labeled observations of that omponent to estimate the true expetedvalue. Given our assumption that the variane is well-de�ned (�nite), there will be asuÆiently large sample size suh that we an with high probability predit whih of C orC 0 is labeling the data. 2Corollary 5 Given any input distribution D over Rd and any target values �; Æ > 0 ofPAC parameters, there exists a suÆiently large �nite sample size for whih any pair C;C 0of linear threshold funtions an be distinguished with probability 1� Æ.Proof: Suppose otherwise. Then for some D, �, Æ there would exist a sequene ofpairs (Ci; C 0i), i 2 N where Ci di�ers from C 0i by �, and as i inreases, the sample-sizerequired to distinguish Ci from C 0i inreases monotonially without limit. We prove byontradition that suh a sequene annot exist.The general strategy is as follows. From the sequene (Ci; C 0i) extrat a subsequene(Ci; C 0i) whih \onverges" in the sense that as i inreases, the probability of disagreementbetween Ci and Cj , for any j > i, tends to zero, and likewise for C 0i and C 0j . The sequenesCi and C 0i then onverge pointwise to binary lassi�ers C1 and C 01 suh that pos(C1),pos(C 01), neg(C1) and neg(C 01) are onvex.1 Theorem 4 says that C1 and C 01 shouldbe distinguishable with any PAC parameters �; Æ > 0, for �nite sample-size depending on�, Æ. But this will be ontradited by the onvergene property of (Ci; C 0i).De�ne the C -di�erene between (Ci; C 0i) and (Cj; C 0j) (denote d((Ci; C 0i); (Cj; C 0j))) tobe the probability Pr(Ci(x) 6= Cj(x)) for x generated by D. We will onstrut an in�nitesubsequene (Ci; C 0i) suh that for j > i,d((Ci; C 0i); (Cj; C 0j)) < 21�i:From a result of Pollard [35℄ (see also Haussler [26℄), for any � > 0, there is a �nite � -overfor any olletion of sets having �nite V-C dimension (whih as we have noted in setion 1.3is d + 1 in this ase). (A � -over of a metri spae is a set S of points suh that for allpoints x in the metri spae there is a member of S within distane � of x.)Construt Ci as follows. Let C1 = C1. Now onstrut Ci+1 from Ci maintaining theinvariant that there are in�nitely many elements of the sequene (Cj; C 0j) whih have C -di�erene � 21�i with (Ci; C 0i). Let Si be a �nite 2�i�1-over of the lass of linear thresholdfuntions, with respet to input distribution D. Let C�i be the (in�nitely many) elementsof (Cj) that are � 21�i from Ci. Si must have an element whose 2�i�1-neighborhoodontains in�nitely many elements of C�i . Let Ci+1 be one of those elements, and then1These regions are not neessarily open or losed halfspaes even if pos(C1) [ neg(C1) is all of Rd ;suh a region ould for example be f(x; y) : x > 0 _ (x = 0 ^ y > 0)g.11



Ci+1 is within 2�i of in�nitely many elements of C�i . Remove all other elements from thesequene (Cj) and ontinue.De�ne the C 0-di�erene between (Ci; C 0i) and (Cj; C 0j) (denote d0((Ci; C 0i); (Cj; C 0j)))to be the probability Pr(C 0i(x) 6= C 0j(x)) for x generated by D. We may use a similarargument to extrat from (Ci; C 0i) an in�nite subsequene (Ci; C 0i), for whih we also havethat for j > i, d0((Ci; C 0i); (Cj; C 0j)) < 21�i(as well as d((Ci; C 0i); (Cj; C 0j)) < 21�i).Consider the pointwise limit of this sequene, de�ned as follows. A point x 2 Rdgenerated by D, with probability 1 has the property that for suÆiently large N , Ci(x) =Cj(x) for all i; j > N and also C 0i(x) = C 0j(x) for all i; j > N . Let C1(x) (resp. C 01(x))denote the label assigned to x by Ci (resp. C 0i) for all suÆiently large i. Let pos(C1)and neg(C1) denote the points whih get asymptoti labels 1 and 0 by Ci, with similarde�nitions for C 0i . Then pos(C1), neg(C1), pos(C 01), neg(C 01) are all onvex (that iseasily proved by noting that from the onstrution of say pos(C1), given any pair ofpoints in pos(C1), any onvex ombination of those points must also be in pos(C1)).Moreover, with probability 1, a point generated by D lies in one of these sets. So theysatisfy the onditions of theorem 4.Let M <1 denote a sample size suÆient to distinguish C1 from C 01 with probability1� Æ=2. Choose N suÆiently large suh that for random x generated by D,Pr(C1(x) = Ci(x)) > 1� Æ=4M;Pr(C 01(x) = C 0i(x)) > 1� Æ=4M;for all i � N . Then with probability > 1� Æ=2, given M samples, Ci agrees with C1 andC 0i agrees with C 01 on those samples, for all i � N .Then any method that ould distinguish C1 from C 01 with unertainty Æ=2 using Msamples an be onverted diretly to a method to distinguish Ci from C 0i (for all i � N )with unertainty at most Æ. (In partiular replae output of C1 with Ci and replaeoutput of C 01 with C 0i.) This ontradits the assumption of monotoni unlimited inreasein sample omplexity for terms of the sequene (Ci; C 0i). 22.2 Identifying Polynomial Asymptoti Behavior of Sample Com-plexityRegarding point 2 noted at the start of this setion, we ontinue by giving some suÆientonditions on an input distribution to ensure that the asymptoti behavior of sample-sizerequirements (for pairwise omparisons) is polynomial. Our suÆient onditions for givingpolynomial sample omplexity use two measures of D de�ned below, whih we denote V (D)and M(D). When these are �nite (as they are for many natural ontinuous distributions)12



this will imply a lower bound on the di�erene between means of positive (or negative)examples of pairs of funtions that di�er by �, and the observed mean an then be used todistinguish the funtions, using poly(��1) examples.De�nition 6 Given input distribution D, let V (D) denote the largest variane of individ-ual omponents of vetors generated by D (a quantity whih is �nite given our assumptionof well-de�ned means and varianes for the marginal distributions of D).Now let S(D) be the smallest aÆne linear subspae suh that with probability 1, pointsgenerated by D lie in that subspae. For a 1-dimensional aÆne line l in S(D), we anprojet points generated by D onto l by mapping them to their nearest point on l. Nowif points on l are mapped isometrially onto R by �xing an origin on l and a diretionof inrease, we have a density pl over R. Let M(D) denote the maximum (over lines lin S(D) and points in R) of the density pl. Note that M(D) is in�nite if D assigns anon-zero probability to any proper subspae of S(D) (by hoosing a line l � S(D) normalto that subspae).The measures M(D) and V (D) are motivated by theorem 10 and examples below ofdistributions for whih we give upper bounds on M and V . The following fat is usefullater:Observation 7 Given any real-valued ontinuous random variable with an upper boundM on its density, its variane is minimized by making it uniform over an interval of length1=M , and the variane is 1=12M2. From this we obtain V (D) � 1=12pdM2 .Example 8 Suppose Dd is uniform over an axis-aligned unit ube in Rd. Then by ob-servation 7, V (Dd) = 1=12. To obtain an upper bound on M(Dd), suppose l is a linethrough the origin, and then points generated by Dd projeted onto l an be generated assums of random variables uniform over [0; li℄ where li is the salar produt of a unit ve-tor on l with a unit vetor on the i-th axis. The largest of the li is � 1=pd hene thedensity is � pd, so M(Dd) � pd. More generally, other distributions D for whih themeasures M(D) and V (D) are well-de�ned inlude for example, the uniform distributionover any polytope, inluding ones of dimension less than d (for whih S(D) would be aproper subspae of Rd).Example 9 If Dd is a normal distribution whose ovariane matrix is the identity matrix,then V (Dd) = 1 and M(Dd) = (2�)�1=2. More generally, any multivariate normal distribu-tion D also has well-de�ned M(D) and V (D), even if its ovariane matrix does not havefull rank. (See for example Von. Mises [34℄ for standard results about multivariate normaldistributions.) For multivariate normal distributions D, S(D) is the spae generated bytaking the mean of D and adding linear ombinations of the eigenvetors of the ovarianematrix. M(D) is equal to (�(2�)1=2)�1 where �2 is the smallest non-zero eigenvalue of theovariane matrix. 13



Theorem 10 Given any D for whih M(D) and V (D) are de�ned, the sample size re-quired to distinguish any pair C;C 0 of linear threshold funtions that di�er by � (withprobability 1� Æ) is polynomial in ��1 and Æ�1, (ie the polynomial depends just on D, noton hoie of C;C 0.) In partiular, the sample size is O(log Æ:M(D)V (D)d3=2=�2).Proof: We use the notation introdued in theorem 4:R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)The region of disagreement is R01 [ R10 , and we are assuming thatD(R01) +D(R10) = �:We may assume that in addition we haveD(R01) � �=4; D(R10) � �=4sine otherwise for C and C 0 there is a di�erene of at least �=2 that a random example ispositive, and C and C 0 ould be distinguished with poly(��1) examples using that property.As before let �(R01) and �(R10) denote the expetations of points lying in these regions.The marginal varianes of points generated by D are upper-bounded by V (D), so given asuÆient distane between the means of R01 and R10 , we should be able to use the observedmeans of the positive (or negative) examples to distinguish C from C 0 with high on�dene.We laim that there is a lower bound on the Eulidean distane j�(R01) � �(R10)j whihdepends on M(D) and V (D), but not C or C 0, and is polynomial in ��1 .Suppose for a ontradition thatj�(R01)� �(R10)j < �=16M(D):Let l be a 1-dimensional line that is normal to the hyperplane de�ning C .For R � Rd let l(R) denote the set of points on l that are losest to some point in R(the projetion of R onto l). Then l(R01) \ l(R10) = ;, butjl(f�(R01)g)� l(f�(R10)g)j < �=16M(D):By Markov's inequality, for random x 2 R01 (x generated by D restrited to R01),Pr�jl(fxg)� l(f�(R01)g)j < �=16M(D)� > 1=2(and similarly for points in R10 .) Hene the probability of points in the range [l(f�(R01)g)��=16M(D); l(f�(R01)g)+�=16M(D)℄ is at least 12 : �4 i.e. the density is at least 12 : �4=(�=8M(D))> M(D), a ontradition.So we onlude that the Eulidean distane between the means of R01 and R10 isat least �=16M(D). Hene in some omponent, the distane between these means is at14



least �=16M(D)pd. So the distane between the overall means of say the negative ex-amples of C and of C 0 is � �2=2pd16M(D) = �2=pd32M(D). The marginal varianesare all upper-bounded by V (D), so the number of observations of that omponent's valueneeded to identify whih of the two alternative means is orret with probability 1� Æ, isO(log Æ:V (D)M(D)pd=�2). Given that eah omponent is equally likely to be observed,the overall sample omplexity beomes O(log Æ:V (D)M(D)d3=2=�2). 2M(D) and V (D) are rude measures in that for distributions D for whih they arelarge, the atual sample size needed may not be orrespondingly large. We onsider thequestion of when a similar result should exist for probability distributions D whih do notsatisfy the ondition of theorem 10. For example, �nite unions of point probability massesare of interest, but automatially do not have �nite M(D).Corollary 11 Suppose D is1. a �nite union of point probability masses, or, more generally,2. a mixture of a �nite union of point probability masses and a distribution D0 for whihM(D0) and V (D0) are �nitethen the sample size needed to distinguish C and C 0 (de�ned in the same way as in theo-rem 10) is polynomial in the PAC parameters, and independent of C , C 0.Proof: It is straightforward to prove the �rst part of this result, it is in fat a slightgeneralization of the argument of Chow [17℄. Let � > 0 be the smallest weight assigned toany of the point probability masses. Clearly if C 6= C 0 then they must have probability atleast � of disagreement.Sine there are only �nitely many points in the domain of D, there are only �nitelymany pairs of distint linear threshold funtions. Hene there is a non-zero lower boundon the di�erene between the means of positive examples of C , and of C 0. This providesa sample omplexity that is polynomial in ��1 and Æ�1 , and independent of any otherfeatures of C and C 0.For an extension to the seond part of this result, again let � be the smallest weightof any of the point probability masses, and then for C and C 0 whih di�er by � < �,their behavior on points generated by D0 will distinguish them (sine they annot disagreeon any of the point probability masses). Sine M(D0) and V (D0) are �nite, the sampleomplexity is polynomial, by theorem 10.For any � > �, put Æ = 1=4 and by orollary 5 there exists a �nite positive sam-ple size m(�;D) suÆient to distinguish any pair C , C 0 whih di�er by �. Let M =max�2[�;1℄m(�;D), whih must be �nite, sine otherwise we would have a positive � forwhih the sample omplexity is in�nite. Use a sample size of M for � > �. For smallervalues of Æ we an obtain sample omplexity logarithmi in Æ�1 by taking the majorityvote of a logarithmi (in Æ�1) number of hypotheses whih have on�dene parameter 1=4.2 We suspet the set of \good" distributions should be generalizable further; see setion 5.15



2.3 Input distributions whih lead to super-polynomial SampleComplexityInformed by the suÆient onditions identi�ed for polynomial behaviour, we next de�nea distribution whih does not give rise to polynomial behaviour. That is, for any funtionf , we an onstrut rather arti�ial input distributions that ause at least f(��1) 1-RFAexamples to be needed to distinguish ertain pairs of linear threshold funtions that di�erby �, for all � > 0.Theorem 12 Let f be some arbitrary inreasing funtion. There exists a bounded inputdistribution D(f) on R3 suh that for all � there exist linear threshold funtions C0 and C1whih di�er by � and require at least f(��1) samples to be distinguishable with on�dene1� Æ, for Æ < 1=2.Proof: The domain of D is restrited to a sequene of pairs of line segments (li; l0i)de�ned as follows. All the line segments are parallel to the line given by x = y = z , are ofunit length, and have endpoints in the planes given by x+ y + z = 0 and x+ y + z = p3.We de�ne their exat loations with referene to a set of planes de�ned as follows.De�ne P to be a plane ontaining the line x = y = z , and let C be a linear thresholdfuntion with threshold P . Let Pi, i 2 N, denote a sequene of planes ontaining x = y =z , suh that their angles with P onverge to 0 monotonially. (see �gure 3. The point ofintersetion of the lines in �gure 3 represents the line x = y = z .) The sequene Pi de�nesa sequene of linear threshold funtions Ci suh that the symmetri di�erene of pos(Ci)and pos(C) stritly ontains the symmetri di�erene of pos(Cj) and pos(C), for all j > i.The loations of line segments li, l0i are spei�ed as follows.l0 lies in neg(C) \ neg(C0):For i � 1; li lies in (neg(C) \ neg(Ci)) n neg(Ci�1):l00 lies in pos(C) \ pos(C0):For i � 1; li lies in (pos(C) \ pos(Ci)) n pos(Ci�1):Finally, the distanes from li and l0i from the line x = y = z are onstrained to be 1=2f(2i),where f is as de�ned in the statement of this theorem.We omplete our de�nition of D by assigning probability 21�i to li [ l0i , and thatprobability is uniformly distributed over those two line segments.Given this de�nition of D, we now laim that for target error �, we need to observef(��1) random 1-RFA examples from D in order to distinguish C from an alternativehypothesis Ci hosen suh that i is as large as possible subjet to the onstraint that Cdisagrees with Ci with probability at least �.The region of disagreement of C with Ci is the union [1j=i+1(lj [ l0j), so examples fromthis set of line segments need to be used in order to distinguish C from Ci. But we nowobserve that (by analogy with the onstrution of example 2) with high probability, anyexample generated from this region has the same onditional likelihood for C as for Ci.In partiular, for any point on lj (j > i) that is > 1=f(��1) from an endpoint of lj , for16



any value observed for one of its 3 oordinates, there exists a orresponding point on l0jwhih has equal likelihood of generating the same single-oordinate observation. Howeverpoints on lj and l0j should reeive opposite labels from C and from Ci, for j > i. So withprobability at least 1� 1=f(��1) D fails to generate a point that distinguishes C from Ci.2
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�gure 3onstrution of theorem 12 shown in ross � setionusing plane given by x+ y + z = 0The \bad" input distribution de�ned above has marginal distributions on the inputomponents x, y and z whih have well-de�ned means and varianes (this is obvious fromthe fat that the distribution is de�ned on a bounded region of the domain R3). If wedispense with the requirement of well-de�ned means and varianes, then we an de�nesimilar \bad" distributions in two dimensions, as follows.The domain of D is restrited to the two lines y = x and y = x+1, for positive valuesof x and y. As in the statement of theorem 12, let f be an arbitrary inreasing funtion,and we de�ne a bad distribution D assoiated with f as follows. For i 2 N, let D beloally uniform over pairs of line segments whose x-oordinates lie in the rangeRi = [ iXr=1 f(2i); i+1Xr=1 f(2i+1)℄We let the probability that a random example lies in Ri be given by D(Ri) = 2�i�1.Now we an de�ne two linear threshold funtions C and C 0 (see �gure 4) whih disagreeon the intervals whose x-oordinates lie in Ri and agree elsewhere. We an now argue ina similar way to before that single-oordinate observations from these regions (the oneswhih should allow us to distinguish C from C 0) have (with probability at least 1�1=f(�))equal likelihood for both funtions, where i is hosen to minimize 2�i subjet to � � 2�i.17
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i+1�gure 4The domain is restrited to the two heavy lines: C and C 0 disagreeon points ourring between the two vertial dotted lines: This regionof disagreement has probability 2�i:3 A PAC AlgorithmIn this setion we give a PAC learning algorithm whose runtime is polynomial in ��1 andÆ�1 provided D has �nite measures M(D) and V (D), or satis�es orollary 11. Moreover ifwe have a lass of distributions Dd over Rd, d = 1; 2; 3; : : :, for whih M(Dd) and V (Dd)are polynomial in d (for example the sequenes of distributions in examples 8 and 9) thenthe algorithm has sample omplexity polynomial in ��1 , Æ�1 and d, but the runtime isexponential in d. We start by desribing the algorithm, then give results to justify thesteps. The algorithm is initially presented in the standard PAC setting. In setion 3.3 weshow how to express it as a \statistial query" algorithm, as introdued by Kearns [28℄,who showed that suh algorithms are noise-tolerant. First we need the following de�nition.De�nition 13 The quadrati loss [29℄ of an example (x; l) (with respet to a lassi�er C)where x is the input and l is a binary valued label, is the quantity (l�Pr(label = 1 j x;C))2,i.e. the square of the di�erene between l and the probability that C would assign label 1to input x. 18



In our ase x onsists of a real value that has been assigned to a single (known, randomly-hosen) omponent of a vetor x in the domain Rd, where x was generated by D.3.1 The Algorithm1. Generate a set S of �(d log Æ=�3) (unlabeled) points in Rd from the input distributionD.2. Generate a set H of andidate hypotheses using the standard method of [9℄ (seebelow), suh that for eah binary labeling of S onsistent with a linear thresholdfuntion, H ontains exatly one linear threshold funtion that indues that labeling.3. Generate a set of labeled 1-RFA data and for eah member H 2 H, use that dataset to estimate the expeted quadrati loss of 1-RFA data w.r.t. H (the average overall examples of their quadrati losses). We show that a suÆient sample omplexityfor this step is O(d7 log ÆM(D)12V (D)6=�24):4. Output the member of H with the smallest quadrati loss as observed on the 1-RFAdata.The method of [9℄ works as follows. Let S = fx1; : : : ; xmg. The set of all sequenesof labels onsistent with the �rst i elements of S is onstruted indutively from the setonsistent with the �rst i�1 elements as follows. For eah sequene of labels onsistent withfx1; : : : ; xi�1g, hek whether eah of the two possible extensions of that label sequene toa sequene of i labels, is onsistent with fx1; : : : ; xig. If so, add that label sequene to theolletion that is onsistent with the �rst i elements. This method just requires that it bepossible to eÆiently test whether a funtion in the lass of interest is onsistent with apartiular set of labeled data, whih is of ourse possible for linear threshold funtions in�xed dimension. Finally, for eah label sequene for the entire set S , return a onsistentfuntion (in our ase, a linear threshold funtion).Regarding step 3, in the standard PAC framework we an use the empirial estimate forthe quadrati loss, and in setion 3.2 we prove that the sample size used above is suÆient.In setion 3.3 we show how step 3 an be done using statistial queries, whih shows thatthe algorithm an be made robust to a uniform mislassi�ation noise proess.3.2 Justi�ation of the AlgorithmUsing results of Bartlett et al. [3℄ we an say that H is an empirial �-over of the set oflinear threshold funtions. An empirial �-over of a lass C of funtions is a subset of Construted from a suÆiently large sample S of unlabeled points; for eah binary labelingof S onsistent with some element of C , we need to inlude a member of C whih induesthat labeling. It is shown in [3℄, that with high probability the resulting set H ontains,for any C 2 C , a member whih di�ers from C by at most �. In partiular, it is shown19



that if a sample of size m is randomly generated, then the probability that two funtionsexist whose observed disagreement on the sample di�ers from their true disagreement bymore than �=2, is upper-bounded by16�16:64� �12d log2(32:64em=(d�))e��2m=(128:4):It an be veri�ed that this an be upper-bounded by Æ if m = �(d log Æ=�3). (Note that inthe bounds of [3℄, d is the value of the fat-shattering funtion with parameter �, whih forbinary lassi�ers is equal to the V-C dimension, for any �.)The next part of the algorithm �nds the hypothesis with the smallest quadrati loss.Sine our set of andidate hypotheses is of polynomial size, we ould just �nd an optimalone using pairwise omparisons. Our reasons for preferring to use quadrati loss are �rstlythat we have the problem that the set H of andidate funtions does not generally ontainthe target funtion; so far our results for pairwise omparison have assumed that one of thefuntions being ompared is the target. The seond reason is that minimizing the quadratiloss seems potentially more amenable to heuristis for optimization over an exponentiallylarge set of andidate hypotheses (eg. when d is not onstant).We an use results of [29℄ to laim that minimizing quadrati loss is a good strategy.For our purposes quadrati loss is a good loss funtion for the following two reasons.1. Like the negative log likelihood loss funtion, the expeted quadrati loss of a hypoth-esis is minimized when hypothesis onditional probabilities equal the true onditionalprobabilities.2. Unlike the negative log likelihood, quadrati loss is bounded (takes values in [0; 1℄),so automatially we have a guarantee that (with high probability) observed expetedquadrati loss onverges quikly to true expeted quadrati loss.(The disadvantage of quadrati loss by omparison with negative log likelihood is that itmay only be used for 2-lass lassi�ation, whih is what we have here.)Notation: For a lassi�er C let QL(C) denote its expeted quadrati loss (on randomexamples assumed to be labeled by some target funtion) and let Q̂L(C) denote observedexpeted quadrati loss for some sample of labeled points. We have noted that Q̂L(C)onverges reasonably quikly to QL(C), sine quadrati loss is bounded (lies in [0; 1℄). Wealso need to be able to laim that if C is any target funtion we have:1. If C and C 0 di�er by �, then QL(C 0)�QL(C) is upper bounded by some polynomialin �2. If C and C 0 di�er by �, then QL(C 0) � QL(C) is lower bounded by some otherpolynomial in �These two properties will validate the approah of �nding minimal quadrati loss overmembers of an �-over. Regarding the �rst, it is easy to see that QL(C 0) � QL(C) � �.20



Theorem 18 will prove the seond. Finally, theorem 20 uses these properties and also showsthat although we do not have the exat values of quadrati loss for members of the �-over,we an still estimate them well enough for our purposes in polynomial time.De�nition 14 The variation distane between two probability distributions D, D0 over Ris de�ned to be var(D;D0) = Zr2R jD(r)�D0(r)jdrOur strategy to prove theorem 18 is to relate error of a hypothesis C 0 (for target C) tothe variation distane between the marginal distributions on some input omponent x ofits positive (respetively, negative) examples, and the marginal distributions on x of thepositive (respetively, negative) examples of C (lemma 15). Then the variation distaneis related to expeted quadrati loss using lemma 16 in onjuntion with lemma 17. Weassume throughout that ontinuous densities D(r) and D0(r) are Lebesgue integrable, sothat it follows that jD(r)�D0(r)j and maxf0; D0(r)�D(r)g are also Lebesgue integrable(and integrate to var(D;D0) and 12var(D;D0) respetively over R).Lemma 15 Let D and D0 be two probability distributions over R, suh that the di�erenebetween their means is � and their varianes are both upper-bounded by �2. Then theirvariation distane var(D;D0) is at least minf1; (�=�)2=8g.Proof: We may assume that the mean of D is 0 and the mean of D0 is � � 0. Weobtain an upper bound on � in terms of var(D;D0) and �2, and onvert that result intoa lower bound on var(D;D0) in terms of � and �2.De�ne distribution D00 as follows:D00(r) = 2var(D;D0) maxf0; D0(r)�D(r)g:The oeÆient 2var(D;D0) normalizes D00 | we are assuming of ourse that var(D;D0) > 0.If var(D;D0) = 0 then � = 0 and the result holds. The following proedure samples fromD0:1. sample r 2 R from D2. if D(r) > D0(r), aept r with probability D0(r)=D(r), else rejet r.3. If r was rejeted above, sample from D00.Observe that the probability that r is rejeted in step 2 is 12var(D;D0). Let s be theexpeted value of rejeted points. The upper-bound on variane of D gives an upperbound on the (absolute value of the) expeted value of rejeted points as follows:�2 � s2:12var(D;D0)21



Rearranging to get an upper bound on jsj:jsj � �q2=var(D;D0):Now � is equal to the rejetion probability 12var(D;D0), multiplied by the expeted valueof points sampled from D00 minus the expeted value of rejeted points, i.e.� = 12var(D;D0)�E(D00)� s�:Again using the upper bound on variane, this time variane of D0:E(D00)� � � �q2=var(D;D0):Combining the two expressions above we have� � 12var(D;D0)��q2=var(D;D0) + �� s�Using our upper bound for jsj (in partiular �s � �q2=var(D;D0)) and rearranging,�(2� var(D;D0)) � var(D;D0)2�q2=var(D;D0):Rearranging the above, � � 23=2�[var(D;D0)℄1=22� var(D;D0)Provided that var(D;D0) � 1 we have� � 23=2�[var(D;D0)℄1=2Hene var(D;D0) � (�=�)2=8 or var(D;D0) > 1 2Lemma 16 Let C be the target linear threshold funtion and C 0 some other linear thresh-old funtion. Let D(pos(C))jx, D(neg(C))jx, D(pos(C 0))jx, D(neg(C 0))jx, be the distribu-tions of the x omponent of positive and negative examples of C and C 0. Suppose that wehave var(D(pos(C))jx; D(pos(C 0))jx) > �var(D(neg(C))jx; D(neg(C 0))jx) > �:Then for 1-RFA data for whih x is the observed omponent, we have a lower bound of �=8on the expeted di�erene between the onditional probabilities of output label 1 for C andC 0, for random values of x. 22



Proof: We prove this by ontradition. Suppose for a ontradition that for r 2 Rdistributed aording to Djx, the marginal distribution of D on x, thatE����Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���� < �=8:Let D(pos(C)) denote the probability that a random vetor lies in the region pos(C). Thenwe have ���D(pos(C))�D(pos(C 0))��� < �=8:Assume that D(pos(C)) > 1=4 and D(pos(C 0)) > 1=4. (If not we would have D(neg(C)) >1=4 and D(neg(C 0)) > 1=4, and that ase would be handled similarly to what follows.)We have assumed for ontradition thatZr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���Djx(r)dr < �=8(where Djx is the marginal distribution of D on x.)Observe that D(pos(C))jx(r) = Pr(label=1 j x=r;C)D(pos(C)) and similarly for C 0. Hene the vari-ation distane var(D(pos(C))jx; D(pos(C 0)jx)) is equal toZr2R����Pr(label = 1 j x = r;C)D(pos(C)) � Pr(label = 1 j x = r;C 0)D(pos(C 0)) ����dr� 4:�=8 + 4 Zr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���dr< 4�=8 + 4�=8 = �;whih ontradits one of the assumptions made in the lemma.We have established the lower bound of �=8. 2Lemma 17 Let C be the target funtion and C 0 some other funtion and suppose that �is the expeted di�erene between the onditional probabilities of output 1 for C and C 0,over random inputs from input distribution D. ThenQL(C 0)�QL(C) � �2:Proof: Let x be an input omponent, and suppose that for some 1-RFA input x = r,we have Pr(label = 1 j x = r;C) = p;Pr(label = 1 j x = r;C 0) = p+ �:Then the expeted quadrati loss of C for input x = r isQL(C j x = r) = p(1� p)2 + (1� p)p223



For C 0 we have QL(C 0 j x = r) = p(1� p� �)2 + (1� p)(p+ �)2= p(1� p)2 + (1� p)p2 + �2= QL(C j x = r) + �2By onvexity, the expeted quadrati loss of C 0 averaged over random input values isminimized by assuming that for all r 2 R, the di�erene in onditional probabilities isuniform, so that for any input x = r,���Pr(label = 1 j x = r;C 0)� Pr(label = 1 j x = r;C 0)��� = �:So for inputs onsisting of observations of x, the di�erene between expeted quadratilosses of C 0 and C is at least �2 . 2We now use all these lemmas in the followingTheorem 18 For the lass of linear threshold funtions over Rd, suppose that the inputdistribution D has �nite values M(D) and V (D) as de�ned in de�nition 6, and that thetarget funtion has quadrati loss Q� . Then any funtion with error � has quadrati lossat least Q� + p(�) for polynomial p wherep(�) = �8226d2:M(D)4V (D)2 :Proof: We onsider two ases:1. for random x 2 Rd, jPr(C(x) = 1)� Pr(C 0(x) = 1)j > �=22. for random x 2 Rd, jPr(C(x) = 1)� Pr(C 0(x) = 1)j � �=2Case 1: for any input omponent x,Zr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���:Djx(r)dr > �=2:Hene by lemma 17, QL(C 0)�QL(C) > �2=4:Case 2: we use the notation introdued in theorem 4:R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)The region of disagreement is R01 [ R10 , and by the assumption of the theorem,D(R01) +D(R10) = �:24



In addition, from the assumption of ase 2:D(R01) � �=4; D(R10) � �=4:We ontinue by lower-bounding j�(R01)��(R10)j, upper-bounding the marginal varianesof points from R01 and R10 , thene getting a lower bound for var(D(R01)jx; D(R10)jx) forsome omponent x, then use lemmas 16 and 17 to get the lower bound on quadrati loss.From the proof of theorem 10 we havej�(R01)� �(R10)j � �=16M(D):Let �(R)jx and �2(R)jx denote the expetation and variane of x-oordinates of pointsgenerated by D that lie in R � Rd. For some omponent x we have����(R01)jx � �(R10)jx��� � �=16pdM(D):We also have �2(R01)jx � V (D)= �4 and �2(R10)jx � V (D)= �4using the assumed upper bound on the marginal varianes of D and the probabilities ofpoints lying in R01 and R10 . Hene using lemma 15 we have that the variation distanebetween the x-value of points lying in R01 and points lying in R10 is at leastminn1; �2=256d:M(D)28V (D)=(�=4) o= minn1; �3213d:M(D)2V (D)o = �3213d:M(D)2V (D)using observation 7 and the fat that � � 1. The variation distanes between 0-labeledexamples of C and C 0 , and between 1-labeled examples of C and C 0 are at least � timesthis amount, ie. = �4213d:M(D)2V (D) :Hene the expeted di�erene between onditional probabilities of output 1 for C and C 0is by lemma 16, at least �4216d:M(D)2V (D) :Finally, we use lemma 17 to obtainQL(C 0)�QL(C) � �8232d2:M(D)4V (D)2 :The lower bound of ase 2 an be seen to be stritly weaker than the lower bound forase 1, so the ombination is just the lower bound for ase 2. 2We omit the proof of the following result.25



Theorem 19 For the lass of linear threshold funtions over Rd, suppose that the in-put distribution D satis�es the riteria of orollary 11, and that the target funtion hasquadrati loss Q� . Then any funtion with error � has quadrati loss at least Q�+ p(�) forsome positive inreasing polynomial p.This extension to the weaker onstraints of theorem 11 just involves bounding the meansof the regions of disagreement away from eah other (as done in the proofs of theorem 10and orollary 11) and then proeeding as in the above proof.We have now shown how the expeted quadrati loss of a hypothesis is polynomiallyrelated to its disagreement with the target funtion. The following result uses this rela-tionship to justify the strategy of �nding a hypothesis of minimal quadrati loss (over a� -over K that may not neessarily ontain the target funtion), as well as showing thatthe observed quadrati losses of elements of K are suÆiently good estimates of the truequadrati losses.Theorem 20 Let C be a set of binary lassi�ers with V-C dimension d, and let QL bethe quadrati loss funtion as de�ned earlier. Suppose that there are positive inreasingpolynomials p, p0 suh that if any C 2 C has error �, we haveQ� + p(�) � QL(C) � Q� + p0(�)(where Q� is the quadrati loss of the target funtion.) Then the strategy of minimizing theobserved quadrati loss over an empirial � -over ahieves PAC-ness, for � = p0�1(12p(�))and sample size O(d log Æ=�3).Comment: The result would hold for any loss funtion that had the assoiated polynomialsp and p0. We have shown in theorem 18 that a suitable p exists for the quadrati lossfuntion, and observed earlier that for quadrati loss we an put p0(�) = �.Proof: Let � = p0�1(12p(�)), so ��1 is polynomial in ��1 . Let K be the � -over. Wehave jKj = O((d log Æ=�3)d), and we used O(d log Æ=�3) unlabeled examples to generate it.Let C 2 K have error � � . ThenQL(C) � Q� + p0(�) = Q� + 12p(�)Let C 0 2 K have error > �. Then QL(C 0) � Q� + p(�)Now hoose a suÆiently large sample suh that with probability 1 � Æ, the observedexpeted quadrati loss of eah element of K is within �=4 of its true expeted quadratiloss. (This ensures that the hoie of smallest observed quadrati loss is not a hypothesiswith error > �.) We will identify a sample size that ensures this will hold for all membersof K . 26



Let  = Æ=jKj. We want a sample size large enough suh that with probability 1� any given element of K has observed expeted quadrati loss within �=4 of true. Given msamples, the probability that some member of K has observed loss di�ering from true lossis (by Hoe�ding's inequality) upper bounded by exp(�2m(�=4)2) = exp(�m�2=8):(Hoe�ding's inequality [27℄ is as follows: Let Xj , 1 � j � m be independent randomvariables suh that a � Xj � b, 1 � j � m for some �1 � a � b � 1. ThenPr� 1m mXi=1[Xi � E(Xi)℄ � �� � exp� �2m�2(b� a)2 �where we have a = 0, b = 1.)So we need exp(�m�2=8) � Æ=jKj, i.e.exp(�m�2=8) � Æ=O((d log Æ=�3)d)�m�2=8 � O�log Æ + d log(�3)� d log(d log Æ)�The seond term dominates, so putm = O� d�2 log( 1�3 )�The overall sample size is O�d log Æ=�3 + d�2 log( 1�3 )�where the �rst term is the samples used to obtain the � -over and the seond term is thesamples used to measure the expeted quadrati losses of members of the � -over. � < �so the �rst term dominates. 2Comment: The runtime is polynomial for onstant d. The omputational bottlenek isthe generation of a potentially large � -over K and the measurement of all its elementsindividually. Under some onditions there may be potential for heuristi elimination fromonsideration of some elements of K .Putting it all together, we apply theorem 20 in onjution with theorem 18. We havep0(�) = �; p(�) = �8232d2M(D)4V (D)2Hene � = 12p(�) = �8=233d2M(D)4V (D)2. The sample omplexity is thusO�d7 log ÆM(D)12V (D)6�24 �:This is polynomial in Æ�1 and ��1 , and also is polynomial in d for the lasses of input dis-tributions identi�ed in examples 8 and 9 (the uniform distribution over the unit hyperube,or normal distributions with unit ovariane matrix).27



3.3 Conversion to Statistial QueriesThe study of PAC-learning in the presene of uniformmislassi�ation noise was introduedin Angluin and Laird [1℄. The assumption is that with some �xed probability � < 12 , anyexample presented to the learner has had its lass label reversed. This is a more realistimodel for the data set that motivated this work, in view of the known lass overlap.However the algorithm we have presented so far has assumed that the data are noise-free(so that the 1-RFA data ame from vetors that are linearly separable). In the preseneof noise, the algorithm is not generally guaranteed to onverge to the target funtion. Itis shown in [6℄ how to onvert k-RFA learning algorithms to SQ learning algorithms overthe boolean domain f0; 1gd, for k logarithmi in the dimension. Over the real domainnot all learning algorithms are amenable to that onversion. We show how to onvert ouralgorithm for linear threshold funtions.The statistial query (SQ) learning framework of Kearns [28℄ is a restrition of the PACframework in whih the learner has aess to unlabeled data, and may make queries of thefollowing form: Any query spei�es a prediate � whih takes as input a labeled example(� should be evaluatable in polynomial time), and an error tolerane �. The response tothe query is an estimate of the probability that a random labeled example satis�es � |the estimate is aurate to within additive error �. The �'s used in the queries should bepolynomial in the target auray �.Queries of the above form an be answered using a labeled data set in the standardPAC setting. Kearns shows in [28℄ that they an moreover be answered using a data setwith uniform mislassi�ation noise as de�ned above. If �b is a given upper bound on anunknown noise rate � , then an SQ algorithm would be polynomial in 1=(12 � �b), as well asother parameters of interest (whih is how the de�nition of PAC learning extends to thede�nition of noise-tolerant PAC learning).We show how step 3 an be re-ast in the SQ framework. That is, for a given linearthreshold funtion H , estimate its expeted quadrati loss with small additive error �.Let �0 = �=4jKj, where K is the � -over onstruted by the algorithm. All members Hof K have their expeted quadrati losses estimated to within additive error �0 . For eahinterval � [0; 1℄ of the form [k�0; (k + 1)�0℄ where k is an integer, we make the statistialquery: � is the property that an example has quadrati loss (w.r.t. H ) in the range[k�0; (k + 1)�0℄, and � = �02 . Then the answers to these queries provide a histogramapproximation to the true distribution of quadrati loss of labeled examples w.r.t. H .This histogram approximates a orresponding histogram of the true distribution to withinvariation distane �0 , so the omputed mean is within �0 of the true mean.4 The Disrete Boolean DomainAn important speial ase of the problem is when the input distribution has its domainof support restrited to the boolean domain f0; 1gd. This restrition a�ets the learningproblem by making it rather trivial for onstant d, but apparently still hard if d is not28



onstant. In more detail:1. The sample omplexity is polynomial in the PAC parameters for any �xed d, sine thedistribution satis�es the onditions of orollary 11. (That result is known from [17℄.)It is unknown whether the sample omplexity is also polynomial in d.2. There are only 4d di�erent observations possible (an observation being the identityof one of the d oordinates together with two possible input values and two possibleoutput values, 0 or 1), so the probability of all of them may be learned with additiveerror, in time polynomial in d and the reiproal of the error, by a standard Cherno�bound analysis.3. For �xed d, there is a �xed number of distint linear threshold funtions, so there isno need for disretization, e.g. via an empirial �-over.We show that some knowledge of the input distribution D is still required in thisrestrited setting. Here we need 4 dimensions to allow a pair of indistinguishable senariosto be onstruted.Fat 21 It is impossible to learn linear thresholds over the disrete boolean domain f0; 1gd(for d � 4), if the input distribution is unknown.Proof: Put d = 4, it is simple to extend to higher values of d. Let X be the domainf0; 1g4. For i = 0; 1; 2; 3; 4, let Xi � X be the set of binary vetors ontaining i ones.De�ne pos(C) = X2 [X3 [X4pos(C 0) = X3 [X4Alternatively, we ould say that for input (x1; x2; x3; x4) 2 X , C and C 0 respetivelyhave output value 1 i� P4i=1 xi > 1:5 or respetively P4i=1 xi > 2:5. These are two linearthreshold (in fat boolean threshold) funtions, whih we laim are indistinguishable, forappropriate hoies of input distribution.De�ne distributions D and D0 (input distributions over X ) as follows. D assignsprobability 1=5 to eah Xi, with the restrition to Xi being uniform. D0 assigns probability0 to X4 and X1, 3=5 to X3 , 1=10 to X2 , and 3=10 to X0 , and is also uniform over eahXi.Given these de�nitions, it an be veri�ed that D and D0 have the same marginaldistributions over eah input omponent xi (in both ases, Pr(xi = 1) = Pr(xi = 0) =0:5). We also laim that the onditional probabilities Pr(l j xi = j;C;D) and Pr(l j xi =j;C 0; D0) where l is an binary output label, are also the same. In partiular, a alulationshows that for i = 1; 2; 3; 4, Pr(l = 1 j xi = 0) = 3=10;P r(l = 1 j xi = 1) = 9=10: 229



For a given input distribution, the problem is fairly trivial for onstant dimensionalityd, and in the remainder of this setion we onsider the problem for general d.It is unknown how to eÆiently learn pereptrons (linear threshold funtions whereinputs ome from f0; 1gd) under the uniform input distribution. This is an open problemwhih predates learning theory, and is in fat the question of how to approximately reovera pereptron from approximations to its Chow parameters [17℄. (A pereptron is a linearthreshold funtion over the boolean domain.) The Chow parameters (whih are the �rst-order Fourier oeÆients, see [20℄) are the set of onditional probabilities that we see in our1-RFA setting, with D uniform over the boolean domain. It is known from [14, 17℄ thatthese parameters do determine the threshold funtion. As the sample size inreases, the2n onditional probabilities will onverge to their true values, and it should be possible toreonstrut the oeÆients of a suitable linear threshold funtion given these true values,although even then we do not know how to do so in polynomial time. In any ase, it does notfollow that it an be done if the observed probabilities have small additive perturbations,as would happen with a �nite-sized sample. Indeed it is apparently an open question [21℄whether a omputationally unbounded learner an be sure to have enough information ina polynomial-sized sample.Indeed, some hypothesis testing problems are hard in this setting. Suppose we onsiderthe uniform distribution over the unit hyperube f0; 1gn. If we have exat data, then itis #P -hard to test whether a hypothesis is onsistent with it [22℄. (It is in fat openwhether one an approximate the number of positive examples on one side of a hyperplaneexpressed in terms of oeÆients and threshold, with small relative error, see [22℄. Theproblem we have is in fat the 0/1 knapsak problem.) We an however test additivelyapproximate onsisteny, by random sampling. Note also that our main problem here is�nding a (approximate) onsistent hypothesis as opposed to testing one.Regarding the question of what sublasses of pereptrons are 1-RFA learnable, it isknown that boolean threshold funtions are 1-RFA learnable, for the uniform input distri-bution. A boolean threshold funtion is de�ned by a set of literals and a threshold � , andevaluates to 1 provided that at least � of the literals are satis�ed. This fat is a speialase of the fat from [20℄ that k-TOP is k-RFA learnable. k-TOP is a lass of booleanfuntions in whih instead of monomials we have parity funtions over k of the inputs (andthen the outputs are input to a threshold gate as in the de�nition of boolean thresholdfuntions).5 Conlusion and Open ProblemsThis paper is the �rst investigation of restrited fous of attention learning given a knownbut unrestrited joint distribution of inputs. We have disovered some interesting e�etsthat the joint distribution may have on the number of training examples required for ahypothesis to reah a presribed level of auray. This sensitivity of the sample omplexityto the input distribution is evidene of the novelty of the learning situation that we haveinvestigated. 30



Fundamentally, our algorithm relies on a brute-fore approah, whih gives the limi-tation to �xed input dimension d in order to have polynomial runtime. Despite this, itseemed to require fairly sophistiated tehniques to obtain the polynomial behavior (interms of ��1 and Æ�1). At this stage any improvement in eÆieny, allowing the dimen-sionality to be (for example) logarithmi in the PAC parameters, would be partiularlyinteresting. We have seen that if the dimensionality were allowed to be linear in ��1 , thenthis would solve the \Chow parameters" problem above (even if we work in the logarithmiost model for real value representation). Sine the sample omplexity is still polynomial ind for ertain lasses of input distributions, there may well be possibilities for heuristis tooverome the omputational bottlenek. One possibility is elimination of ertain membersof the unlabeled sample that seem to be nowhere near the threshold.We suspet that the suÆient onditions for D to give rise to polynomial sample om-plexity may be extendable muh further. So far we have found only very arti�ial distri-butions of setion 2.3 whih prevent polynomial sample omplexity. We onjeture that�nite mixtures of distributions that satisfy theorem 10 should be good, even if the domainsof di�erent distributions in the mixture have di�erent minimal aÆne subspaes ontainingthem.Other open problems inlude how muh knowledge of the input distribution is needed.We know (from fat 21) that even in the boolean domain we do need some knowledgeof the input distribution in 4 or more dimensions. If the input distribution D is partly-known, we would like to know to what extent it helps to learn D in the style of [31℄ ifone also has input/output behaviour in some given model. One speial ase of partiularinterest in when D is known to be a general Gaussian distribution. Then 1-RFA data willnot onvey information about the ovarianes, but 1-RFA data labeled by an unspei�edlinear threshold funtion might be usable to �nd ovarianes. Another question of interestis whether linear threshold funtions over the ontinuous domain an be learned if D isknown to be a produt distribution, and whether some produt distributions make theproblem harder than others.Note that for well-behaved input distributions we would expet to have most diÆultyprediting lass labels of points near the threshold. We may ask under what irumstanesit may be possible to learn in the sense of [10℄ for learning in situations where points nearthe boundary may be mislabeled.For pratial purposes we would like to extend these results to deal with the presene ofother models of lass overlap besides just uniform mislassi�ation noise. The experimentalwork of [12, 18℄ assumes members of di�erent lasses are generated by separate Gaussiansoures, and seeks the best linear threshold (minimum mislassi�ation rate). There arealso many possible extensions to other stohasti missing-data mehanisms, whih may beof pratial importane while invalidating the general approah presented here. Given thewidespread use of imputation as a pratial statistial method to deal with missing data,it would be interesting to know whether the PAC riterion for suessful learning an everbe ahieved by an imputation-based algorithm.31
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