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Counting unlabelled subtrees of a treeis #P-
omplete�Leslie Ann Goldbergy Mark JerrumzNovember 26, 1999Abstra
tThe problem of 
ounting unlabelled subtrees of a tree (i.e., subtrees thatare distin
t up to isomorphism) is #P-
omplete, and hen
e equivalent in
omputational diÆ
ulty to evaluating the permanent of a 0,1-matrix.
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1 Introdu
tionValiant's 
omplexity 
lass #P [10℄ stands in relation to 
ounting problems asNP does to de
ision problems. A fun
tion f : �� ! N is in #P if there is anondeterministi
 polynomial-time Turing ma
hine M su
h that the number ofa

epting 
omputations of M on input x is f(x), for all x 2 ��. A 
ountingproblem, i.e., a fun
tion f : �� ! N , is said to be #P-hard if every fun
tion in#P is polynomial-time Turing redu
ible to f ; it is 
omplete for #P if, in addition,f 2 #P. A #P-
omplete problem is equivalent in 
omputational diÆ
ulty to su
hproblems as 
ounting the number of satisfying assignments to a Boolean formula,or evaluating the permanent of a 0,1-matrix, whi
h are widely believed to beintra
table. For ba
kground information on #P and its 
ompleteness 
lass, referto one of the standard texts, e.g., [3, 8℄.The main result of the paper|advertised in the abstra
t, and stated moreformally below|is interesting on two 
ounts. First, it provides a rare example ofa natural question about trees whi
h is unlikely to be polynomial-time solvable.(Two other examples are determining a vertex ordering of minimum bandwidth [1,4℄, or determining the \harmonious 
hromati
 number" [2℄.) Se
ond, it is, as far aswe are aware, the �rst intra
tability result 
on
erning the 
ounting of unlabelledstru
tures.Some de�nitions. By rooted tree (T; r) we simply mean a tree T with adistinguished vertex r, the root. An embedding of a tree T 0 in a tree T is a inje
tivemap � from the vertex set of T 0 to the vertex set of T su
h that (�(u); �(v)) is anedge of T whenever (u; v) is a edge of T 0. Sometimes T 0 and T will be rooted, inwhi
h 
ase we may insist that � maps the root r0 of T 0 to the root r = �(r0) of T .We now de�ne a sequen
e of problems leading to one of interest; we do not 
laimthat both the intermediate problems are parti
ularly natural.Name. #BipartiteMat
hings.Instan
e. A bipartite graph G.Output. The number of mat
hings of all sizes in G.Name. #CommonRootedSubtrees.Instan
e. Two rooted trees, (T1; r1) and (T2; r2).Output. The number of distin
t (up to isomorphism) rooted trees (T; r) su
hthat (T; r) embeds in (T1; r1) and (T2; r2) with r mapped to r1 and r2,respe
tively.Name. #RootedSubtrees.Instan
e. A rooted tree, (T; r).Output. The number of distin
t (up to isomorphism) rooted trees (T 0; r0) su
hthat (T 0; r0) embeds in (T; r) with r0 mapped to r.1



Name. #Subtrees.Instan
e. A tree T .Output. The number of distin
t (up to isomorphism) subtrees of T .We will use ea
h of the problem names in an obvious way to denote a fun
tionfrom instan
es to outputs: thus #RootedSubtrees(T; r) denotes the numberof distin
t rooted subtrees of the rooted tree (T; r). Our main result is thefollowing.Theorem 1 #Subtrees is #P-
omplete.Proof. #BipartiteMat
hings is the sixth problem on Valiant's original listof #P-
omplete problems [10℄. So #P-hardness of #Subtrees follows fromLemmas 2{4 and from the transitivity of polynomial-time Turing redu
ibility.We will now show that #Subtrees is in #P. Suppose that T is a tree withvertex set Vn = fv0; : : : ; vn�1g. We will order the verti
es in Vn so that vi < vji� i < j. For every (labelled) subtree T 0 of T , let V (T 0) denote the vertex setof T 0. We will say that subtree T 00 is larger than subtree T 0 if and only if thereis a vertex vi 2 Vn su
h that vi 2 V (T 00), vi 62 V (T 0) andV (T 0) \ fvi+1; : : : ; vng = V (T 00) \ fvi+1; : : : ; vng:Let T 00 be a subtree of T . Either T 00 is the smallest subtree of T in its isomorphism
lass or there is a vertex v` 2 V (T 00) su
h that the sub-forest F` of T indu
ed byvertex set fvi 2 Vn j vi < v`g [ fvi 2 V (T 00) j vi > v`g
ontains a tree isomorphi
 to T 00. Thus, one 
an determine whether T 00 is thesmallest subtree of T in its isomorphism 
lass by solving subgraph isomorphismwith inputs F` and T 00 for all v` 2 V (T 00). Sin
e F` is a forest and T 00 is a tree, this
an be done in polynomial time [3℄ using the method of Edmonds and Matula.It is now simple to des
ribe the #P 
omputation: With input T , ea
h bran
hpi
ks a subtree T 00 of T and reje
ts unless T 00 is the smallest subtree of T in itsisomorphism 
lass.2 The redu
tionsDenote by �T the relation \is polynomial-time Turing redu
ible to."Lemma 2#BipartiteMat
hings �T #CommonRootedSubtrees:2
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Figure 1: The skeleton of trees T1 and T2, illustrating the presen
e of edge (ui; vj)in G.Proof. LetG be an instan
e of#BipartiteMat
hingswith vertex sets fu0; : : : ;un�1g and fv0; : : : ; vn�1g. From G, we 
onstru
t two rooted trees, (T1; r1) and(T2; r2), ea
h based on a �xed skeleton. The skeleton of T1 has vertex setfxi;j : 0 � i � n� 1 and 0 � j � n2 + i+ 1g [ fr1g;and edge setf(xi;j; xi;j+1) : 0 � i � n� 1 and 0 � j � n2 + ig [ f(r1; xi;0) : 0 � i � n� 1g:Informally, the skeleton of T1 
onsists of n paths of di�erent lengths emanatingfrom the root r1, as illustrated in Figure 1. These n paths 
orrespond to then verti
es fuig of G. 3



The skeleton of T2 is similar to the skeleton of T1, ex
ept the paths now haveequal length. It has vertex setfyi;j : 0 � i � n� 1 and 0 � j � n2 + ng [ fr2g;and edge setf(yij; yi;j+1) : 0 � i � n� 1 and 0 � j � n2 +n� 1g[ f(r2; yi;0) : 0 � i � n� 1g:The n paths emanating from r2 
orrespond to the to the n verti
es fvig of G.The trees T1 and T2 themselves are built by adding to the respe
tive skeletons
ertain edges en
oding the graph G. Spe
i�
ally, for ea
h edge (ui; vj) of G, weadd an edge from a new vertex to vertex xi;in+j of T1 and add an edge from anew vertex to vertex yj;in+j of T2.Let T � denote the set of all �nite (unlabelled) rooted trees (T; r) that haveleaves at all distan
es in the range [n2 + 2; n2 + n + 1℄ from the root r. For anyrooted tree (T; r), let T (T; r) denote the set of all (unlabelled) rooted subtrees of(T; r). Thus, the quantity #RootedSubtrees(T; r) is just the size of T (T; r).We �rst observe that there is a bije
tion between the set of mat
hings (of allsizes) in G and the set T (T1; r1) \ T (T2; r2) \ T �, and then 
on
lude the proofby showing how to 
ompute the size of T (T1; r1)\ T (T2; r2)\ T � using an ora
lefor #CommonRootedSubtrees.Consider some tree (T; r) 2 T (T1; r1) \ T (T2; r2) \ T �. From the de�nitionof T � we see that T must 
ontain the entire skeleton of T1. In addition, Tmay 
ontain up to n additional pendant edges. Any pendant edge must beatta
hed to the skeleton at a vertex at distan
e in+ j +1 from the root r, where(ui; vj) 2 E(G). Furthermore, if there are pendant edges at distan
es in + j + 1and i0n+ j 0+1 from the root then i 6= i0 and j 6= j 0. Thus, every su
h rooted tree(T; r) may be interpreted as a mat
hing inG, and vi
e versa. This is the sought forbije
tion between the set of mat
hings in G and the set T (T1; r1)\T (T2; r2)\T �.To 
on
lude, we just need to show how 
ompute the size of the latter set usingan ora
le for #CommonRootedSubtrees.Let L be the set of all leaves in (T1; r1) whose distan
es from the root r1 arein the range [n2+2; n2+ n+1℄. Let U be the set of all verti
es in (T2; r2) whosedistan
es from r2 are in the range [n2+2; n2+n+1℄. For ea
h j 2 f0; : : : ; ng, letT j1 be the tree formed from (T1; r1) by adorning every vertex in L with a tuft ofn+ j edges and let T j2 be the tree formed from (T2; r2) by adorning every vertexin U with a tuft of n+ j edges. By the phrase \adorning a vertex v with a tuft oft edges" we mean the following: 
reate t new verti
es and add an edge from ea
hof these new verti
es to v." For k 2 f0; : : : ; ng, let ak be the number of rootedtrees in T (T 01 ; r1) \ T (T 02 ; r2) that have k verti
es of degree n + 1. Clearly,an = j T (T1; r1) \ T (T2; r2) \ T � j:4



So we want to show how to 
ompute an using an ora
le for #CommonRoot-edSubtrees.We 
laim (and shall justify presently) thatjT (T j1 ; r1) \ T (T j2 ; r2)j = nXk=0 ak(j + 1)k: (1)Thus, we 
an use an ora
le for #CommonRootedSubtrees to evaluate theleft-hand side of 1 at j = 0; : : : n; then we 
an 
ompute an by Lagrange interpo-lation.1It remains to prove equation (1). We de�ne a proje
tion fun
tion� : T (T j1 ; r1) \ T (T j2 ; r2)! T (T 01 ; r1) \ T (T 02 ; r2)as follows. For any rooted tree (T; r) in the domain, (T 0; r) = �(T; r) is themaximum r-rooted subtree of (T; r) that has no vertex of degree greater thann + 1. To see that T 0 is uniquely de�ned, 
onsider an embedding of (T; r) into(T j1 ; r1). The only verti
es of degree greater than n+1 are those whi
h are mappedto tufts. Thus, (T 0; r) is obtained from (T; r) by pruning tufts with more thann pendant edges down to exa
tly n pendant edges. Note also that the resultingtree (T 0; r) 
an be embedded in both (T 01 ; r1) and (T 02 ; r2), so � is indeed wellde�ned.How large is ��1(T 0; r)? To every tuft with exa
tly n pendant edges we mayadd any number of pendant edges, from 0 to j. All the tufts are distinguishable,be
ause they are all at distin
t distan
es from the root r. Thus all these possibleaugmentations lead to distin
t trees, and ��1(T 0; r) = (j + 1)k, where k is thenumber of verti
es in (T 0; r) of degree n + 1. Thus, ea
h of the ak rooted treesin T (T 01 ; r1) \ T (T 02 ; r2) with k verti
es of degree n + 1 are mapped by ��1 to(j + 1)k trees in T (T j1 ; r1) \ T (T j2 ; r2). The lemma follows.Lemma 3#CommonRootedSubtrees �T #RootedSubtrees:Proof. Suppose that (T1; r1) and (T2; r2) 
onstitute an instan
e of #Common-RootedSubtrees. Let (T; r) be the rooted tree formed by taking T1 and T2 andadding a new root, r, and edges (r; r1) and (r; r2). For notational 
onvenien
e,introdu
e the following quantities:N1 = #RootedSubtrees(T1; r1);N2 = #RootedSubtrees(T2; r2);N = #RootedSubtrees(T; r); and1See Valiant [10℄ for details of this pro
ess, parti
ularly the 
laim that interpolation is apolynomial-time operation. 5



C = #CommonRootedSubtrees((T1; r1); (T2; r2)):We start by observing thatN = 1 +N1 +N2 � C +N1N2 � �C2�:To see this, note that (T; r) has� one distin
t subtree in whi
h the degree of r is 0, and� N1 +N2 � C distin
t subtrees in whi
h the degree of r is 1, and� N1N2 � �C2� distin
t subtrees in whi
h the degree of r is 2.Thus, C(C + 1) = 2Z, where Z denotes1 +N1 +N2 +N1N2 �N:To 
ompute C, �rst 
al
ulate Z using an ora
le for #RootedSubtrees. Then,observe that C2 < 2Z < (C + 1)2;so C is the integer square root of 2Z, whi
h 
an be 
omputed in �(logZ) time.Note that logZ is polynomial in the size of the input, sin
e, for example,N1 � 2n1,where n1 is the number of verti
es in T1.Lemma 4 #RootedSubtrees �T #Subtrees:Proof. For any i, an \i-star" is a tree 
onsisting of one (
entre) vertex withdegree i and i (outer) verti
es, ea
h of whi
h has degree 1.Suppose that (T; r) is an instan
e of #RootedSubtrees. Let � denote themaximum degree of a vertex in T . Let T 0 be the tree formed from T by takinga new (� + 3)-star, and identifying one of the outer verti
es with r. Let T 00be the tree formed from T by taking a new (� + 2)-star, and identifying oneof the outer verti
es with r. Let N 0 denote #Subtrees(T 0) and let N 00 denote#Subtrees(T 00). Then #RootedSubtrees(T; r) is equal to N 0 � N 00, so it
an be 
omputed using an ora
le for #Subtrees.3 Some 
onsequen
esFollowing Valiant [10℄, we say that a fun
tion f : �� ! N is in FP if it 
an be
omputed by a deterministi
 polynomial-time Turing ma
hine. We say that it isin FPg for a problem g if it 
an be 
omputed by a deterministi
 polynomial-timeTuring ma
hine whi
h is equipped with an ora
le for g. Finally, we say that it isin FPA for a 
omplexity 
lass A if there is some g 2 A su
h that f 2 FPg.Let #Conne
tedSubgraphs be the problem of 
ounting unlabelled 
on-ne
ted subgraphs of a graph. Formally, let it be de�ned as follows.6



Name. #Conne
tedSubgraphsInstan
e. A graph G.Output. The number of distin
t (up to isomorphism) 
onne
ted subgraphs of G.Corollary 5 #Conne
tedSubgraphs is 
omplete for FP#P.Proof. #Conne
tedSubgraphs is FP#P-hard by Theorem 1. We will showthat #Conne
tedSubgraphs is in the 
lass FPspan-P, whi
h will be de�nedshortly. The result will then follow by Toda's theorem [9℄.We start by de�ning the relevant 
omplexity 
lasses. A fun
tion f : �� ! Nis in the 
lass span-P [7℄ if there is a polynomial-time nondeterministi
 Turingma
hine M (with an output devi
e) su
h that the number of di�erent a

eptingoutputs of M on input x is f(x), for all x 2 ��.A fun
tion f : �� ! N is in #NP if there is a polynomial-time nondeter-ministi
 Turing ma
hine M and an an ora
le A 2 NP su
h that the number ofa

epting 
omputations of MA on input x is f(x), for all x 2 ��.The 
lasses #P, span-P, and #NP are related [7℄ by#P � span-P � #NP:Thus, FP#P � FPspan-P � FP#NP:As Welsh notes [11, eq. (1.8.6)℄, the identityFP#P = FP#NP: (2)follows from Toda's theorem [9℄. Thus,FP#P = FPspan-P:(To verify (2) independently, start with Toda's Theorem 4.10, 
on
erning the
omplexity 
lasses PH and PP. Then the required in
lusion FP#NP � FP#Pfollows via a little manipulation involving the elementary relationships NP � PHand FPPP = FP#P.)We now 
omplete the proof by showing that #Conne
tedSubgraphs isin FPspan-P. Let N(G; k) denote k! times the number of distin
t (up to isomor-phism) 
onne
ted size-k subgraphs of G. Sin
e#Conne
tedSubgraphs(G) = nXk=1 1k!N(G; k);where n is the number of verti
es of G, it suÆ
es to show that 
omputing N(G; k)is in span-P. Ea
h bran
h of the 
omputation tree for N(G; k) 
hooses7



� a size-k 
onne
ted subgraph H of G,� a bije
tion � from the verti
es of H to the set fv1; : : : ; vkg, and� a permutation � of v1; : : : ; vk.Let H 0 be the graph formed from H by relabelling ea
h vertex v of H with thelabel �(v). If � is an automorphism of H 0 then (H 0; �) is output. Otherwise, thebran
h reje
ts. The result now follows from Burnside's Lemma, whi
h impliesthat for any given isomorphism 
lass of k-vertex graphs, the number of graphsin the isomorphism 
lass times the number of automorphisms of any member ofthe 
lass is equal to k!. (For example, see [5℄.)Let #GraphSubtrees be the problem of 
ounting unlabelled subtrees of agraph. Formally, let it be de�ned as follows.Name. #GraphSubtreesInstan
e. A graph G.Output. The number of distin
t (up to isomorphism) subtrees of G.Corollary 6 #GraphSubtrees is 
omplete for FP#P.Proof. This is the same as the proof of Corollary 5, ex
ept that the span-P
omputation reje
ts any subgraph H whi
h is not a tree. A more dire
t proof
ould be obtained by using a polynomial-time 
anoni
al labelling algorithm fortrees su
h as the one by Hop
roft and Tarjan [6℄.Referen
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s 57 (1995), 133{144.[3℄ M. R. Garey and D. S. Johnson, Computers and Intra
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is
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