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Multiresolution Gaussian Mixture Models: Theoryand Appli
ationsRoland WilsonFebruary 28, 20001 Introdu
tionMultiresolution image representations have been su

essfully applied to many prob-lems in image analysis [26, 3, 11, 5℄ be
ause of their ability to trade o� spatial resolu-tion against frequen
y domain resolution and their symmetry with respe
t to transla-tions and dilations, two of the most important sour
es of variation in images [4℄. Notevery multiresolution representation is equally e�e
tive in this regard: s
hemes usingdyadi
 de
imation, su
h as pyramids and orthonormal wavelets, sa
ri�
e translationinvarian
e to redu
e redundan
y [6, 25, 12℄. While this is desirable in image 
om-pression, it is not ideal for problems in 
omputer vision, where 
ompa
tness is lessimportant than utility in a range of problems - from segmentation to motion analysis.In those 
ases, it is the 
ombination of statisti
al inferen
e, usually from in
omplete(eg. proje
ted) data and symmetry under motion whi
h are most signi�
ant.Another interesting development in re
ent years has been the use of GaussianMixture models to 
ope with statisti
al problems for whi
h no simple parametri
model exists [20, 27℄. While it is well known that algorithms su
h as Expe
tation-Maximisation 
an lead to e�e
tive approximations in terms of a �nite number of
omponents, the general problem of mixture modelling is diÆ
ult when the numberof 
omponents is unknown [13, 17℄.This paper des
ribes a new multiresolution representation whi
h ta
kles the mix-ture modelling problem head-on. The general approa
h shares important featureswith the Classi�
ation and Regression Trees (CART) system of [9℄ and its derivatives[17℄. It may also be seen as a generalisation of s
ale-spa
e [26℄, in that it uses Gaussianfun
tions and in
ludes spatial 
o-ordinates, but unlike a 
onventional basis set, theyare adapted to the data and used statisti
ally. Moreover, they are de�ned in a spa
ewhose dimension re
e
ts the inferen
e problem, not simply the image data. Thus indealing with 
olour images, a 5 � D spa
e is required (two spatial and three 
olourdimensions); for inferring 3�D stru
ture from motion, typi
ally nine dimensions arerequired (three spatial, three 
olour and three motion axes). Yet MGMM has nodiÆ
ulty in prin
iple in moving seamlessly between these spa
es. The next se
tion ofthe paper outlines the theory underlying MGMM as a method of approximating anarbitrary density and shows how it 
an deal with smooth motions of an image. The1



following se
tion 
ontains a des
ription of how MGMM 
an be implemented eÆ
iently.This is followed by a presentation of some simple experiments, whi
h illustrate how itmay be used in important `early vision' problems: segmentation and motion analysis.The paper is 
on
luded with some remarks on the impli
ations and potential of thenew approa
h.
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2 Ba
kgroundThree main elements di
tate the form of representation 
alled MGMM: ability toapproximate any probability density in a spa
e of arbitrary dimension; 
losure underaÆne motions and a multiresolution stru
ture, whi
h 
an be used to make 
omputa-tion eÆ
ient.Before outlining the theory of MGMM, it may be useful to explain the need forsu
h an approa
h. It is widely re
ognised that statisti
al methods are a key elementin vision and image analysis eg. [7, 22℄. While Gaussian models work adequatelyin many 
ases, more general distributions pose 
onsiderable diÆ
ulties. The �rst issimply estimating the density, a problem whi
h has beset statisti
ians for may de
ades[23, 24℄. There are two widely used alternatives: non-parametri
, or kernel estimationand parametri
 estimation. Kernel methods are a generalisation of histogramming,in whi
h, rather than use a non-overlapping set of intervals, the density is estimatedusing a smooth kernel to `iron out' the 
u
tuations whi
h sampling inevitably 
auses.In e�e
t, this represents a 
onvolution whi
h is the statisti
al analogue of anti-aliasing:it is well known that raw histograms are woefully inadequate as density estimates [23℄.The alternative, whi
h is 
learly preferable if there is suÆ
ient prior information orknowledge about the pro
esses produ
ing the data, is to use a parametri
 model. Inre
ent years, this has been extended through the use of Bayesian methods for modelsele
tion and the estimation of so-
alled `hyper-parameters', whi
h 
hara
terise themodel, eg. [19, 15℄, but while useful in parti
ular problems, these hardly represent ageneral approa
h to the inferen
e problem. It seems that what is needed is a methodwhi
h 
ombines the generality of kernel estimation with the power of parametri
methods. This is one of the key motivations behind the MGMM approa
h.To de�ne the MGMM approa
h in a general way, we start by observing that anyprobability density fun
tion 
an be approximated to an arbitrary pre
ision by a setof Gaussian fun
tions: it is well known that the Gaussian fun
tions are a 
ompleteset on L2(Rn). However, we want to make a stronger 
laim - namely that an L1approximation of an arbitrary density fun
tion need only involve positive 
oeÆ
ientsin the expansion. To this end, we state the theorem:Theorem 1: Let f(:) : Rn ! R be any nonnegative real integrable fun
tion on Rnwith ZRn dx f(x) = 1 (1)Then for any Æ > 0 there exists an approximation of f(:) by a stri
tly positive sumof Gaussian fun
tions of the formf̂(x) =Xi fig�i(x� �i) (2)of means �i and 
ovarian
es �i, su
h that fi > 0; 8i andÆ > ZRn dx jf(x)� f̂(x)j (3)Proof: We start in one dimension and then extend the result to Rn, primarily for no-tational simpli
ity. The proof is based on the approximation of a s
aled 
hara
teristi
3



fun
tion �X(x), for whi
h �X(x) = 12� if x 2 X0 else (4)where the set X is the interval � < x � �. Consider the 
onvolution of �X(:) with theGaussian fun
tion g�(x) of varian
e �2g� ? �X(x) = ZX dyg�(y � x) (5)whi
h is easily written asg� ? �(x) = 14� [erf(�+ xp2� )� erf(�� xp2� )℄ (6)where erf(:) is the error fun
tion [1℄. If � = �=M , then for any Æ > 0, there exists avalue of M su
h thatZ dx j�X(x)� g�=M ? �X(x)j < ZXM dx �X(x) + (7)ZX�XM dx exp[�M ℄ + ZR�X dx g�=M ? �X(x)< 2M + 2� exp[�M ℄ < Æ2where XM is the subset of R for whi
h jx � �j < 1M . Now the 
onvolution, whi
h issmooth, 
an be approximated by a sumg� ? �X(x) � Xi fig�(x� 2�ki) (8)where k is 
hosen su
h that there is an integral absolute approximation error lessthan Æ2 Z dxjg� ? �X(x)�Xi fig�(x� 2�k)j < Æ2 (9)where fi > 0; 8i. But this is the Riemann integral theorem [8℄: one simply uses forfi the s
aled values of �X(2�ki) fi = 2�k�X(2�ki) (10)Then for some k, the sum, whi
h is absolutely 
onvergent, will give an error smallerthan Æ=2.We have thus proved that the fun
tion �X(:) 
an be approximated to arbitrarypre
ision by a �nite set of Gaussian fun
tions. To 
omplete the proof, we note thatXi fi ! 1 (11)whi
h follows from the uniform sampling of �X(:), the s
aling of �X(:), (4) and the
onvergen
e of the sum. Thus if �X(:) represents a density fun
tion, then (8) is a4



Gaussian Mixture approximating it to the spe
i�ed toleran
e. But any probabilitydensity 
an be approximated by a mixture of fun
tions of the form �X(x�yi�i ): thesesimple fun
tions are the means by whi
h the Lebesgue integral is de�ned [8℄ and anyprobability distribution is measurable.The extension to Rn is trivial: one simply repla
es the 1 � d elements by the
orresponding Cartesian separable, produ
t form and the proof goes through in thesame way. This 
ompletes the proof. �In order to use this result, we need an eÆ
ient way of de
iding how many 
om-ponents to use in modelling an arbitrary density, or more realisti
ally, data drawnfrom an arbitrary density. To this end, 
onsider the following simple de
ision: givena set of data, is it better modelled with one Gaussian 
omponent or two? This isa de
ision whi
h 
annot be made on the basis of likelihood alone: it would alwaysgive preferen
e to the more 
omplex des
ription. The in
rease in likelihood must bebalan
ed against the 
ost in terms of 
omplexity of using two 
omponents instead ofone.This type of problem has re
eived mu
h attention in the literature on 
lassi�
a-tion [9, 17, 19℄, and in system identi�
ation, in whi
h model order has to be 
hosen[10℄. In both areas, widespread use has been made of Akaike's Information Criterion(AIC), whi
h is derived from the Kullba
k-Liebler Information Divergen
e betweentwo densities: d(f; g) = ZRn dxf(x) ln[f(x)g(x) ℄ (12)A widely used alternative to AIC is the Minimum Des
ription Length (MDL) 
ri-terion, in whi
h an estimate is made of the `
oding 
ost' of the parametri
 des
riptionof an obje
t [18℄. Now, in many 
ases, quite what the MDL of an obje
t might be isun
lear, sin
e it would appear to depend on the 
hoi
e of des
ription language and onthe density indu
ed on strings from that language by the obje
ts of interest. In thepresent 
ontext, mu
h greater pre
ision is available, sin
e not only the parameters,but in prin
iple their prior and posterior densities 
an be estimated. Lastly, BayesianEviden
e (BE), ie. the posterior P (M jY ) supporting a model M amongst a set ofalternatives, has also been propounded [17, 15℄ as the best way of sele
ting a model.In the 
ontext of sele
ting either one or two Gaussian 
omponents to model a set ofdata, this involves penalising the two-
omponent model though the prior. It is notso 
lear, however, just how steep the penalty should be; at least in the AIC and inthe present 
ase in MDL, this question is settled by de�nition. In general, evaluationof these 
riteria is itself a sour
e of 
onsiderable diÆ
ulty, with resort usually beingmade to simple approximations, eg. based on saddle-point approximations or sampleaveraging over an appropriate set of simulation epo
hs. In the present 
ase, on
e thedata are 
lassi�ed, an exa
t solution is possible. Classi�
ation of the data is a
hievedby Gibbs sampling.Be
ause the Bayesian paradigm is an appropriate one in many appli
ations, letus start by 
onsidering an evidential framework for the problem of `one-or-two'. We
an base the de
ision between H1 : one 
omponent and H2 : two 
omponents on the5



ratio RB = P (H1)P (XjH1)P (H2)P (XjH2) (13)where P (H1) = 1�P (H2) is the prior probability of a single 
omponent and P (XjHi)is the eviden
e for Hi: the integral over the parameter density of the likelihoodP (XjHi) = ZRm d� f(Xj�; Hi)f(�jHi) (14)We 
an use the results of the appendix to 
ompute the Bayes Fa
tor for two againstone 
omponents. In the following, unsubs
ripted quantities refer to the unsplit data,while subs
ripts 1; 2 refer to the two 
omponents of the putative mixture approxima-tion. Thus the Bayes Fa
tor 
an be written from (40) asBF = jA1j d2 jA2j d2 jA�j d�2jA�1j d�12 jA�2j d�22 jAj d2 nYi=1 �(d�1+1�i2 )�(d�2+1�i2 )�(d�+1�i2 )�(d+1�i2 ) (15)In (15), quantities with a � denote posterior and without it denote the 
orrespondingprior parameters. Thus, A is the prior 
ovarian
e parameter for a single 
omponent,while A�1 is the posterior 
ovarian
e parameter for the �rst of the two 
omponents.The sample size, N , is hidden in the parameters d� = d + N; d�i = d + Ni; i = 1; 2.A 
onsiderable simpli�
ation of the above o

urs if we make the following 
hoi
es:Ai = A = dd�A�. In this 
ase, the log-Bayes Fa
tor redu
es toLBF = d� + d2 ln jA�j � d�12 ln jA�1j � d�22 ln jA�2j+ nd2 ln d�d +nXi=1 ln �(d�1 + 1� i2 ) +Xi ln �(d�2 + 1� i2 )�Xi ln �(d� + 1� i2 )�Xi ln �(d+ 1� i2 ) (16)AIC is based on likelihoods and 
an be written using (38) asAIC = N2 ln jSj � N12 ln jS1j � N22 ln jS2j � n(n+ 3) (17)Comparing (16) and (17), there is an obvious similarity in the dependen
e on thedata, ex
ept for the use of priors in the former. Moreover, in the LBF, the `penalty'term in
reases with both the dimension of the problem and the sample size, whereasthe AIC penalty depends only on the dimension. Note that although it is possible touse Bayesian estimates in AIC or ML estimates in the BF, it makes little sense to doso. Figures 1(a)-(d) show an interesting feature of the two. All four �gures show
ontour plots of the AIC or LBF �gures for a test of two 2�D Gaussian 
omponentsagainst one, as a fun
tion of separation either in s
ale or position (horizontal axis)against population size (verti
al). The exa
t values are used for a population made6



up of two su
h Gaussian 
omponents, with 50% of ea
h in the mixture. As hasbeen noted by others, it does appear that AIC is more supportive of splitting as thepopulation in
reases; on the other hand, for very small populations, it is the LBFwhi
h is more in
lined to split, ie is positive. This tenden
y of LBF to favour splittingof small populations is not a good one and shows that neither 
riterion dsiplays allof the features one would like, even in su
h a simple 
ase as a two-vs-one de
ision.Nevertheless, the LBF has 
lear advantages, as long as the population size is largeenough to give meaningful results.A di�erent perspe
tive 
an be given to the BF if we rewrite it using Bayes's Rule,viz. LBF = ln P (Xj�1; �2)P (Xj�) � ln P (�1; �2jX)P (�1; �2) + ln P (�jX)P (�) (18)While the �rst term represents the gain in likelihood from using two 
omponentsinstead of one, the remainder represents the 
ost of this, in terms of the mutualinformation between parameters and data (
f. Appendix I, (41)).2.1 E�e
ts of MotionThe other major property, a 
ru
ial one for motion analysis, is the 
losure of the setof n�D Gaussian fun
tions Gn under aÆne maps A : Rn 7! RnAx = Lx+ a (19)where L is an invertible matrix and a a translation. Again, it is obvious that thea
tion of A on Gn is 
losed, sin
eg�(A�1(x� �)) = g�A(x� �A) (20)where �A = �� a (21)and �A = LT�L (22)But now we are in a position to prove a rather interesting result, summarised asTheorem 2: Let f(:) � 0 be an integrable fun
tion f : Rn ! R, as above and lett(:) : Rn ! Rn be a smooth, invertible map from Rn to itself, having bounded �rstand se
ond derivatives. Then for any Æ > 0, f has an approximation as a Gaussianmixture of the form of (2), with integral absolute error no greater than Æ=2 and thereexists an approximation of the transformed fun
tion T fT f(x) = f(t�1(x)) (23)of the same form, where ea
h Gaussian 
omponent g�i is transformed a

ording to alo
al aÆne approximation of the 
ow �eld t, with error no greater than Æ.
7



Proof: The proof is based on the smoothness of the mapping and the lo
al na-ture of the MGMM approximation. First, we observe that any smooth 
ow 
an beapproximated using t(x) = tx0 +rx(t)(x� x0) +O(kxk2) (24)via Taylor's theorem, where rx(:) is the gradient. Now, let g�(x��) be an arbitraryGaussian fun
tion on Rn. Then it follows from (24) that there exists a s
ale parameter�(Æ) > 0 su
h thatZ dxjg�(Æ)�(t(x� �)� g�(Æ)�(t(�) +rx(t)(x� �))j < Æ2 (25)We 
an a
hieve this by 
hoosing �(Æ) > 0 so that the error �(x) - the integrand in(25) - satis�es1. �(x) < Æ4 ; if kx � t(�)k < r. This follows be
ause the error in the Taylorexpansion for t is of order �2(Æ) if r =M�(Æ).2. Rkxk>r dxj�(x)j < Rkxk>r g�(Æ)�(t(x � �) + g�(Æ)�(t(�) + rx(t)(x � �)) � Æ4 .This follows from the observation that the tails of the two Gaussians 
an bemade of arbitrarily low weight by a similar 
hoi
e of r.Putting the two errors together, we get a total errorZ dxjg�(Æ)�(t(x� �)� g�(Æ)�(t(�) +rx(t)(x� �))j < Æ4 + Æ4 = Æ2 (26)Sin
e this applies to an arbitrary Gaussian, apply it to ea
h 
omponent in a mixturerepresentation of f(t(x)) f(t(x)) =Xi fig�i(x� �i) (27)for whi
h (i) the absolute integral error is less than Æ=2 and (ii) ea
h 
omponent hasa varian
e � small enough that its transformation by t introdu
es an error no biggerthan Æ=2. Su
h a representation exists, by Theorem 1. But then the error in therepresentation of f(x) by the aÆne approximation of t is no greater than Æ. This
ompletes the proof.�
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3 MGMMThe key to applying these ideas is to use a sequential approa
h, whi
h leads to a mul-tiresolution tree stru
ture: Multiresolution Gaussian Mixture Modelling (MGMM).We start from the natural assumption that we do not know the density of interest,but wish to estimate it from some data, su
h as an image or set of images. If thesedata are denoted X i; 1 � i � n, we 
an 
ompute the sample mean and 
ovarian
e[21℄ and then
e infer a single multivariate Gaussian model g�0(x��0), where �0;�0are the sample (Maximum Likelihood) estimates for the data. Now, in rare 
asesthis will model the data adequately. If not, then we split the data into two partsand model ea
h with a Gaussian. This 
an be done using the Markov Chain MonteCarlo (MCMC) sampling te
hnique des
ribed in [19℄, whi
h treats the inferen
e asone 
ontaining hidden variables, namely the 
lass Zi to whi
h ea
h datum belongs andsamples from the posteriors for the population size, means and 
ovarian
es, assuming
onjugate priors, whose parameters are simply those of the population as a whole.Thus the prior for the means of the two 
lasses are Gaussian, while the 
ovarian
esare drawn from an inverse Wishart density: a Normal-Inverse Wishart (NIW) den-sity. Be
ause the NIW is the natural 
onjugate prior for this problem, the posterioris also NIW and so a Gibbs sampler 
an be used [19, 14℄. Sampling for (i) the hiddenvariables and (ii) the 
orresponding sub-population densities gives the two Gaussians,based on the posterior estimates from the sampler for g�1j(x � �1j); i 2 [0; 1℄. ThisGibbs sampler is des
ribed fully in Appendix II. Clearly, we have the basis of a re-
ursion here: we 
an build a tree representation, in whi
h ea
h leaf is a subset of thepopulation found by su

essive binary splits from the root node, whi
h represents thewhole population. Be
ause the NIW is a 
onjugate prior, the same 
omputations 
anbe used at every node in the tree:1. Sele
t 
lass j and test its normal density approximation for `goodness-of-�t'. Ifthe �t is adequate, terminate, else2. Split 
lass j into two 
omponents: 
lass j1 and 
lass j2, by sampling the hiddenvariables Zji; 1 � i � Nj and then
e obtaining a Bayesian estimate of the
lass means and 
ovarian
es by sampling from the posteriors, given the priorg�j(x� �j).This needs a 
riterion for splitting. In the previous se
tion, we reviewed two popular
hoi
es: LBF and AIC, either of whi
h 
an be expressed in the present 
ase asC = ln f(Xj�j1; �j2)f(Xj�j) � k(Nj; n) (28)where the log-likelihood ratio is subje
t to a `
omplexity' penalty whi
h is a fun
tionof the size of the population at j and the dimensions of the spa
e. In the 
ontext ofthe MGMM tree, however, the LBF given in (18) does not have the right form: it isbased on the 
omparison of either a single 
omponent or two 
omponents as a modelof the data. Any node in the tree, other than the root, is the result of a series ofdi
hotomies and may itself be split: splitting a node adds 
omplexity to the existing9



des
ription, rather than a
ting as a de novo alternative. Moreover, the parameterestimates at node j are the obvious hyperparameters for the two resulting 
lasses.Indeed, if we wish to store or transmit the parameters �j1; �j2, we would need thevalues of �j also, sin
e these appear in the prior. Finally, in keeping with its rootsin rate-distortion theory [2℄, we add a rate 
ontrol parameter �, whi
h allows us totrade-o� the information in a given MGMM tree against its a

ura
y. If we take thisinto a

ount, we repla
e (18) by the Minimum Information Criterion (MIC):MIC(�) = ln f(Xj�j1; �j2)f(Xj�j) � � ln f(�j1; �j2jX; �j)f(�j1; �j2j�j) (29)Another way of viewing the 
onstant � is that it a

ounts for the prior P (H1) in (13).If we do not wish to take this 
ommuni
ation-oriented approa
h, then setting � = 1amounts to setting P (H1) = 0:5, ie using the LBF. Although the aim of MIC mightsound similar to Rissanen's MDL, two observations might be made about this: (i)the aim here is to provide a trade-o� between the information 
ost of the parametersand the information gained by providing a better �t to the data; (ii) in the NIW 
ase,these 
riteria have su
h 
losely related forms that they all amount to some form ofBayes Eviden
e, leaving spa
e for one's prejudi
e in the de�niton of the prior.We 
on
lude by observing that an alternative view of the MGMM des
ription is asa pat
hwork of aÆne models, ea
h leaf node being the result of a linear regression onthe data [9℄. For example, in the 
ase of a grey level image, the MGMM des
riptiongives for ea
h 
lass a Gaussian model, whi
h is dire
tly related to a least-squaresapproximation of the formzi(x) = Ai(x� xi) + zi0 + �i(x) (30)where zi(:) is the grey level as a fun
tion of the spatial 
oordinate x for the ith 
lassand �i(:) is the residual. The matrix Ai is easily found from the 
ovarian
e matrix�i for that 
lass and xi; zi0 from the mean.

10



4 ExperimentsThe �rst set of experiments is designed to test the sampler on data taken from a knowndensity: a pair of 2 � D normals, with varying distan
e between means, 
ovarian
eand populations:1. 40 points drawn from a normal �T = (0; 0);� = I density and 40 from a normal�T = (4; 0);� = I density.2. First 
omponent as in �rst 
ase and se
ond shifted to �T = (2; 0).3. First 
omponent as above and se
ond shifted to �T = (0; 0), with � = 16I.4. First 
omponent as above and se
ond shifted to �T = (0; 0), with � = 4I.In addition, subsets 
onsisting of (40; 20), (40; 10) and (20; 20) data from the twosamples respe
tively were used, giving 12 
ombinations in all. The data in ea
h 
asewere obtained from the same set, by simply translating and s
aling the se
ond setappropriately. This was done to ensure that the variations seen in results were 
ausedby the sampling algorithm. The sampler used the sample mean and 
ovarian
e of thewhole population as prior parameters for the NIW distribution, with the hyperpa-rameters set to their minimum values, ie. 
 = 1; d = n+2 in (31). The error rates forthe hidden variable 
lassi�
ation taken from 10 independent runs with di�erent sim-ulation seeds are shown in Table 4. The 
lassi�
ation used the sample mean from thelast 100 iterations of the sampler. Investigations showed that the sampler had settledinto a stationary distribution by then. Although this is a small number of steps, theseproblems are 
omparatively well posed, espe
ially in the �rst two 
ases. Correspond-ingly, the error rates for these two 
ases are small and the estimated parameters are
lose to their true values in every simulation. Although high error rates are observedfor the 
on
entri
 
ases, it should be obvious that in su
h 
ases, 
lassi�
ation of the
entral points in either 
ase is essentially arbitrary. It was noted that in virtually ev-ery 
ase, the sampler setttled in a state 
orresponding to two 
omponents of di�eringvarian
e, lo
ated approximately 
on
entri
ally. Figures 2(a)-(d) show typi
al resultsfrom the simulation.Note that in these examples and in those that follow, to prevent singularities andto re
e
t the �nite pre
ision of the image measurements, ea
h datum 
onsists of botha lo
ation and a varian
e parameter. Correspondingly, the sample 
ovarian
e has tobe modi�ed to take a

ount of this.The method has also been tested on some more realisti
 appli
ations in imageanalysis. In all the 
ases des
ribed below, the MGMM algorithm was limited to 50iterations and typi
ally 
onverged in 10 � 20. The Bayes Fa
tor was used as the
riterion for splitting a 
omponent. The �rst results show the segmentation of a wellknown image - Lena - using the MGMM approa
h. In this 
ase, the data are 3� d:two spatial dimensions and one for intensity. The MGMM tree for this 256 � 256pixel image, produ
ed using the Gibbs Sampler, are shown s
hemati
ally in �gure 5and are superposed on the 
orresponding least squares approximations in �gure 4,showing the improvement in the re
onstru
tion as the number of leaves in
reases. In11



Population Case 1 Case 2 Case 3 Case 440,40 0.0213 0.212 0.341 0.41140,20 0.050 0.138 0.273 0.39540,10 0.018 0.120 0.222 0.37820,20 0.073 0.20 0.338 0.448Table 1: Miss
lassi�
ation rates for samples of sizes shown in leftmost 
olumn fromtwo normal densities as listed in text. The 
lassi�
ation used the sample means overthe last 100 of 200 iterations of the sampler.�g. 5, the sample mean ve
tor, in the order (x; y; z) and the population probability areshown next to ea
h leaf vertex in the tree. Figures 5(a)-(d) show the representationof the image by 8 regions, ea
h 
orresponding to a leaf of the MGMM tree. The
lassi�
ation 5(a) is just the MAP 
lassi�
ation of pixels based on all 3 
oordinates(spatial and intensity), while �g. 5(b) shows the MGMM tree nodes and the ellipses
orresponding to the spatial 
ovarian
e of the Gaussian 
omponent at ea
h leaf node.The lines indi
ate the tree stru
ture, with thi
kness indi
ating height in the tree:the thi
kest lines are those from the root; the thinnest those to the lowest level inthis tree - level 4, numbering from 0 at the root. In other words, the tree is notespe
ially balan
ed, nor should it be, if it is properly adapted to the data. The twore
onstru
tions use the least-squares approximation based on the estimated meanand 
ovarian
e asso
iated with that 
lass at that pixel, as in (30). The left image,(
), shows the re
onstru
tion using only spatial information, using a `soft' de
ision:ea
h pixel is treated as a mixture, with weights given by the relative magnitudes ofthe 8 Gaussian 
omponents at that position. In e�e
t, this is making an inferen
efrom 2 � D to 3 � D using the MGMM representation, sin
e grey level is ignoredin 
lassifying the pixels. The re
onstru
tion signal-noise ratio for this 
ase is 15:1dB(peak-rms). Although this is a poor re
onstru
tion visually, it represents an extremepau
ity of information: only 8 sets of 3�D Gaussian parameters are required, ie. 72values. On the other hand, when a full MAP 
lassi�
ation is performed using all 3 
o-ordinates, the re
onstru
tion SNR 
limbs to 24:3dB and indeed the visual appearan
eis surprisingly good. Figure 6(a) shows the approximation of the probablility densitybased on the MGMM and extra
ting the marginal density for the intensity on level3 of a gray level pyramid, whi
h has just 1024 pixels. This is a trivial 
omputationfrom the MGMM representation, whi
h gives a better approximation of the densitythan 
an be obtained by simple histogramming. For 
omparison, the histogram ofthe 256� 256 pixel image is shown in �gure 6(b).The se
ond illustration uses two frames of the `Miss Ameri
a' sequen
e in the seg-mentation, whi
h is based on the 5�d data 
onsisting of spatial 
o-ordinates, intensityand 2 � d motion. The raw motion estimates were obtained using a multiresolution
orrelation algorithm, again from 256 � 256 pixel images. In this example, a treedes
ription with 66 leaves was obtained from frame 15 of the sequen
e and the 2� dmotions. The aÆne motions extra
ted by least squares (
f. (30) from the 
ovarian
ematrix for these data were then applied to the spatial 
o-ordinates of ea
h blob and12



the result used to re
onstru
t frame 16 of the sequen
e. The re
onstru
tions of frame15-16, �gures 7(a)-(d) show that the MGMM approa
h 
an deal easily with non-rigidmotions, the peak-rms signal-noise ratio (PSNR) being 20:0dB for this re
onstru
tion,as it is for the original frame.As a �nal example, the two images of a breakfast table in Fig. 8(a)-(b) were usedin the same multiresolution 
ross-
orrelation algorithm to 
ompute a stereos
opi
disparity map. This was input to the MGMM tree algorithm as 4�D data: spatial 
o-ordinates, grey level and horizontal disparity. The original images were also 256�256pixels, but 64 � 64 images were input to the MGMM algorithm. Re
onstru
tion ofthe disparity also used all 4 dimensions in 
lassifying ea
h pixel, the depths of the
lassi�ed pixels being estimated using the least squares approximation based on theirspatial position, as in (30). The resulting approximation is shown in �gure 8(
) and issuperimposed on the left image in �gure 8(d), showing a reasonable 
orrelation withthe expe
ted heights of the larger obje
ts, su
h as milk and 
ereal pa
kets. Therewere 150 leaves in the MGMM tree for this example, due to the 
omplexity of thes
ene, giving a re
onstru
tion SNR of 18:8dB.

13



5 Con
lusionsIn this paper, a novel and versatile statisti
al image representation has been presented.The theory of MGMM as a general form of density approximation was outlined andits use in des
ribing images and sequen
es illustrated. The key properties whi
hmark MGMM out as a representation are as follows: although it is a statisti
almodel, it in
orporates spatial relationships; it is `auto-s
aling', ie. it 
lassi�es databased on their likelihood, rather than on simple Eu
lidean distan
e; be
ause it ismultiresolution, it allows eÆ
ient 
omputation; be
ause of the 
losure of the Gaussianfun
tions under aÆne motions, it deals dire
tly with the problem of image motion.This 
ombination of properties makes MGMM a unique approa
h to image modelling.It should be 
lear that the tree stru
ture of MGMM implies that as an approxi-mation of an arbitrary density with a �xed number of 
omponents, it is most likelynot optimal: tree sear
hes have their limitations. But this is not the real point ofMGMM: what MGMM o�ers is a way of approximating an arbitrary distribution toan arbitrary pre
ision in a 
omputationally eÆ
ient way. In this respe
t too it isunique.The experiments on syntheti
 data show that a sampling approa
h to estimationof the Gaussian parameters at ea
h stage 
an be 
omputationally e�e
tive, while theresults on real image data illustrate that a

urate re
onstru
tions are possible withvery 
ompa
t MGMM representations - even in the most 
omplex of the above exam-ples, only 125 
lasses were needed for 256�256 image data. All of the examples showthat MAP estimation 
ombined with MGMM is an e�e
tive tool in image analysisand vision.Of 
ourse, this report represents preliminary work, whi
h requires further devel-opment, both theoreti
al and pra
ti
al. For example, the work on motion needs tobe extended to take proper a

ount of temporal stru
ture and this in turn requires aproper theoreti
al basis. It is 
lear that none of the sele
tion 
riteria is ideal in all
ases. Finally, the essential problem in vision of moving from a 2�D representationto a 3�D one has not been ta
kled yet. These are all under a
tive investigation atthe time of this writing.A
knowledgementThis work was supported by the UK EPSRC.Referen
es[1℄ M. Abramowitz and I. A. Stegun. Handbook of Mathemati
al Fun
tions. Dover,New York, 1965.[2℄ T. Berger. Rate-Distortion Theory: a Mathemati
al Basis for Data Compression.Prenti
e-Hall, Englewood Cli�s, 1971.14



[3℄ P. J. Burt and E. H. Adelson. The Lapla
ian Pyramid as a Compa
t ImageCode. IEEE Trans. Commun., COM(31):532{540, 1983.[4℄ I. Daube
hies. Orthogonal Bases of Compa
tly Supported Wavelets. Comm. onPure and Appl. Math., XLI:909{996, 1988.[5℄ I. Daube
hies. The Wavelet Transform, Time-Frequen
y Lo
alisation and SignalAnalysis. IEEE Trans. Information Theory, 36:961{1005, 1990.[6℄ E. H. Adelson E. P. Simon
elli, W. T. Freeman and D. J. Heeger. ShiftableMultis
ale Transforms. IEEE Trans. Information Theory, 38:587{607, 1992.[7℄ A. K. Jain. Fundamentals of Digital Image Pro
essing. Englewood Cli�s, NewJersey, 1989.[8℄ A. N. Kolmogorov and S. V. Fomin. Introdu
tory Real Analysis. Dover, 1975.[9℄ R. A. Ohlsen L. Breiman, J. H. Friedman and C. J. Stone. Classi�
ation andRegression Trees. Wadsworth, 1984.[10℄ L. J. Ljung. System Identi�
ation: Theory for the User. Englewood Cli�s,Prenti
e-Hall, 1987.[11℄ S. G. Mallat. A Theory for Multiresolution Signal De
omposition: The WaveletRepresentation. IEEE Trans. Patt. Anal. Ma
hine Intell., 11(7):674{693, July1989.[12℄ S. G. Mallat. Multifrequen
y Channel De
ompositions of Images and WaveletModels. IEEE Trans. A
ous. Spee
h Sig. Pro
., 37(12):2091{2110, De
ember1989.[13℄ G. J. M
La
hlan. Mixture Models: Inferen
e and Appli
ations to Inferen
e andClustering. New York, M. Dekker, 1988.[14℄ A. O'Hagan. Kendall's Advan
ed Theory of Statisti
s, vol. 2B. London, EdwardArnold, 1994.[15℄ J. J. K. O'Ruanaidh and W. J. Fitzgerald. Numeri
al Bayesian Methods Appliedto Signal Pro
essing. New York, Springer-Verlag, 1996.[16℄ S. J. Press. Applied Multivariate Analysis. Florida, Robert E. Krieger, 1982.[17℄ B. D. Ripley. Pattern Re
ognition and Neural Networks. Cambridge U.P., 1996.[18℄ J. Rissanen. Sto
hasti
 Complexity. Jnl. Royal Stat. So
., B, 49:223{239, 1987.[19℄ C. P. Robert. Mixtures of Distributions: Inferen
e and Estimation. In S. Ri
hard-son W. R. Gilks and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo inPra
ti
e. Chapman & Hall, 1996. 15



[20℄ I. Rezek S. J. Roberts, D. Husmeier and W. Perry. Bayesian Approa
hes to Gaus-sian Mixture Modelling. IEEE Trans. Patt. Anal. Ma
hine Intell., 20(11):1133{1141, 1998.[21℄ G. A. F. Seber. Multivariate Observations. New York, Wiley, 1984.[22℄ R. Szeliski. Bayesian Modeling of Un
ertainty in Low-level Vision. Boston,Kluwer, 1989.[23℄ R. A. Tapia and J. R. Thompson. Non-parametri
 Probability Density Estima-tion. Baltimore, Johns Hopkins Pr., 1978.[24℄ G. S. Watson and M. R. Leadbetter. On the Estimation of the ProbabilityDensity. In Ann. Math. Stat., volume 34, pages 480{491, 1962.[25℄ R. Wilson, A. Calway, and E.R.S. Pearson. A Generalized Wavelet Transform forFourier Analysis: The Multiresolution Fourier Transform and Its Appli
ation toImage and Audio Signal Analysis. IEEE Trans. Information Theory, 38(2):674{690, Mar
h 1992.[26℄ A. Witkin. S
ale-Spa
e Filtering. In Pro
. of IEEE ICASSP-84, 1984.[27℄ K. Palaniappan X. Zhuang, Y. Huang and Y. Zhao. Gaussian Mixture DensityModeling, De
omposition and Appli
ations. IEEEIP, 5:1293{1301, 1996.

16



Appendix I: Analysis of the Multivariate NormalDistributionIn using the MVN distribution as a universal approximator, it is possible to make useof the properties of this widely studied distribution. The development here followsthat in [14℄ and [16℄. A Bayesian analysis starts from the 
hoi
e of priors and inthe present appli
ation, it is obvious to use the so 
alled natural 
onjugate priordistribution: the Normal-Inverse-Wishart (NIW) distribution, for multivariate normaldata with unknown mean and 
ovarian
e. This is de�ned for n�D data asf(�;�) = k�1 jAj d2 j j�j� d+n+22 exp[� 
2(�� a)T��1((�� a)� 12tr(��1A)℄ (31)or, brie
y f(�;�) = NIW (A; d;a; 
), a fun
tion of the parameters d > n + 1, thedegrees of freedom, 
, the prior weight on the mean, a, the prior mean and A, theprior 
ovarian
e. In
reasing 
 and d atta
hes relatively more weight to the prior, fora given sample size N . The normalising 
onstant k is given byk = 2n(d+1)2 � n(n+1)4 nYi=1�(d+ 1� i2 ) (32)The likelihood for the data X i; 1 � i � N , is then simply a produ
t of normals,assuming that data are independently sampled, ie.f(Xj�;�) = (2�)�N2 j�j�N2 exp[�12 NXi=1 (X i � �)T��1(X i � �)℄ (33)and be
ause the NIW is the natural 
onjugate prior, the posterior is also NIW, withparameters a� = 
a+N �X
+N (34)where �X = N�1Pi X i is the sample mean andA� = A+NS + 
N
+N (a� �X)(a� �X)T (35)where S = N�1Pi(X i � �X)((X i � �X)T is the sample 
ovarian
e. It is not hard tosee that in the posterior, the s
alar parameters are 
� = 
 +N; d� = d+N .The 
lassi
al analysis of MVN data is based on the likelihood (33), from whi
h itis easy to �nd the ML estimates �̂ = �X (36)and �̂ = S (37)Evaluating the likelihood at these estimates givesmax�;� f(Xj�;�) = j2�Sj�N2 exp[�Nn2 ℄ (38)17



This may be 
ompared with the likelihood evaluated at the MAP estimates ~� =a�; ~� = 1d�A� f(Xj~�; ~�) = j2�A�j�N2 d�nN2 exp[�d�2 (n� trA��1A)℄ (39)The above results 
an be used to evaluate the Bayes eviden
e for one 
omponent inthe mixture, by integrating over the parametersf(Y ) = jAj d2� nN2 jA�j d�2 nYi=1 �(d�+1�i2 )�(d+1�i2 ) (40)The last quantity of interest is the mutual information between the data and param-eters, whi
h is given by the ratioi(Y ;�;�) = ln f(�;�jY )f(�;�) (41)The expe
tation of this quantity represents the amount of information whi
h, onaverage, the parameters yield about the data, or vi
e versa. Sin
e both prior andposterior are NIW, it is straightforward to evaluate (41)i(Y ;�;�) = d�2 ln jA�j � d2 ln jAj � N2 ln j�j � nN2 ln 2 +Xi ln �(d� + 1� i2 )�Xi ln �(d+ 1� i2 )�12tr[��1(
�(�� a�)(�� a�)T � 
(�� a)(�� a)T +A� �A)℄(42)
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Appendix II: a Gibbs Sampler for NIW variateswith hidden variablesThis sampler follows exa
tly the model proposed by Robert [19℄. It uses NIW as theprior for the sample data and a Diri
hlet prior for the population size (experien
e hasshown that this is not always helpful, however). Thus, given the estimate �j;�j forthe mean and 
ovarian
e at a node j, the sampler performs the following steps:1. Sample �ji;�ji; i = 1; 2; � NIW(�j;�j; 
�i ; d�i ).2. Sample for the population size using the Diri
hlet distribution.3. Sample the hidden variables Zk 2 [1; 2℄; 1 � k � Nj using a Gibbs sampler andthe 
urrent estimates of P;�ji;�ji; i = 1; 2.4. Cal
ulate the posterior NIW parameters, based on the 
lassi�ed data and (34)-(35).This is repeated, starting with 
�i = 
i = 1; d�i = di = n + 2, the minimum values, tokeep the prior vague.It may be noted here that a deterministi
 algorithm, based on 2 � means, butusing the log-likelihood rather than simple Eu
lidean distan
e, works adequately onsome simpler problems, for example where 
lasses are 
onvex. In general, however,it is little 
heaper to implement 2�means and mu
h more likely to settle in a lo
alminimum.
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(
) (d)Figure 1: Contour plots of Akaike Information Criterion and Log-Bayes Fa
tors fortwo vs one normal 
omponents: (a) AIC as a fun
tion of di�eren
e in means (hor-izontal) and population size (verti
al), (b) LBF as in (a), (
) AIC as a fun
tion ofdi�eren
e in s
ale, (d) LBF as in (
). In all four 
ases, the proportions of the two
omponents are equal and bla
k represents negative values, ie a preferen
e for a single
omponent model. 20
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(
) (d)Figure 2: Contour plot of estimated Gaussian 
omponents from a pair of 2-d normals,(a) having means �T1 = (0; 0);�T2 = (4; 0) and 
ovarian
es �i = I; i = 1; 2; (b) meansat �T1 = (0; 0);�T2 = (2; 0); (
) means at �Ti = (0; 0); i = 1; 2 and �1 = 16�2; (d)�1 = 4�2. Estimates obtained from 200 iterations of the Gibbs sampler. The datapoints - 40 from ea
h 
omponent - are superimposed on the Gaussian plots.21
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8-Leaf MGMM Tree for Lena

Figure 3: S
hemati
 of the 8 leaf MGMM representation of the 256 � 256 `Lena'image. Population probabilities and mean ve
tors, in the order (x; y; z), shown forea
h leaf.
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(a) (b)

(
) (d)Figure 4: (a)-(d) First four levels of the MGMM tree for 256�256 `Lena', superposedon the 
orresponding least squares approximations. Line thi
kness indi
ates tree leveland the ellipses show the 
ovarian
e of the Gaussian 
omponent at ea
h node. Note,however, that all leaves appear at the same level in this representation.
23



(a) (b)

(
) (d)Figure 5: (a) Classi�
ation of Lena image from MGMM representation with 8 leaves.(b) MGMM tree 
orresponding to (a), as in previous �gure; (
) Re
onstru
tion usingonly spatial 
o-ordinates. (d) Re
onstru
tion using grey level and spatial 
o-ordinates.
24
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(a) (b)Figure 6: (a) Comparison of histogram with MGMM approximation to probabilitydensity for level 3 of a gray level pyramid.(b) Histogram from original image.
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(a) (b)

(
) (d)Figure 7: (a) Frame 15 of Miss Ameri
a sequen
e and (b) re
onstru
tion fromMGMMtree using 66 
lasses.(
) Original frame 16 and (d) re
onstru
tion based on movedMGMM from frame 16.
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(a) (b)

(
) (d)Figure 8: (a) Left image of stereo pair, (b) right image. (
) MGMM approximationof disparity image from (a) and (b). (d) MGMM approximation superposed on leftimage.
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