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1 Introduction

Multiresolution image representations have been successfully applied to many prob-
lems in image analysis [26, 3, 11, 5] because of their ability to trade off spatial resolu-
tion against frequency domain resolution and their symmetry with respect to transla-
tions and dilations, two of the most important sources of variation in images [4]. Not
every multiresolution representation is equally effective in this regard: schemes using
dyadic decimation, such as pyramids and orthonormal wavelets, sacrifice translation
invariance to reduce redundancy [6, 25, 12]. While this is desirable in image com-
pression, it is not ideal for problems in computer vision, where compactness is less
important than utility in a range of problems - from segmentation to motion analysis.
In those cases, it is the combination of statistical inference, usually from incomplete
(eg. projected) data and symmetry under motion which are most significant.

Another interesting development in recent years has been the use of Gaussian
Mixture models to cope with statistical problems for which no simple parametric
model exists [20, 27]. While it is well known that algorithms such as Expectation-
Maximisation can lead to effective approximations in terms of a finite number of
components, the general problem of mixture modelling is difficult when the number
of components is unknown [13, 17].

This paper describes a new multiresolution representation which tackles the mix-
ture modelling problem head-on. The general approach shares important features
with the Classification and Regression Trees (CART) system of [9] and its derivatives
[17]. It may also be seen as a generalisation of scale-space [26], in that it uses Gaussian
functions and includes spatial co-ordinates, but unlike a conventional basis set, they
are adapted to the data and used statistically. Moreover, they are defined in a space
whose dimension reflects the inference problem, not simply the image data. Thus in
dealing with colour images, a 5 — D space is required (two spatial and three colour
dimensions); for inferring 3 — D structure from motion, typically nine dimensions are
required (three spatial, three colour and three motion axes). Yet MGMM has no
difficulty in principle in moving seamlessly between these spaces. The next section of
the paper outlines the theory underlying MGMM as a method of approximating an
arbitrary density and shows how it can deal with smooth motions of an image. The



following section contains a description of how MGMM can be implemented efficiently.
This is followed by a presentation of some simple experiments, which illustrate how it
may be used in important ‘early vision’ problems: segmentation and motion analysis.
The paper is concluded with some remarks on the implications and potential of the
new approach.



2 Background

Three main elements dictate the form of representation called MGMM: ability to
approximate any probability density in a space of arbitrary dimension; closure under
affine motions and a multiresolution structure, which can be used to make computa-
tion efficient.

Before outlining the theory of MGMM, it may be useful to explain the need for
such an approach. It is widely recognised that statistical methods are a key element
in vision and image analysis eg. [7, 22]. While Gaussian models work adequately
in many cases, more general distributions pose considerable difficulties. The first is
simply estimating the density, a problem which has beset statisticians for may decades
[23, 24]. There are two widely used alternatives: non-parametric, or kernel estimation
and parametric estimation. Kernel methods are a generalisation of histogramming,
in which, rather than use a non-overlapping set of intervals, the density is estimated
using a smooth kernel to ‘iron out’ the fluctuations which sampling inevitably causes.
In effect, this represents a convolution which is the statistical analogue of anti-aliasing:
it is well known that raw histograms are woefully inadequate as density estimates [23].
The alternative, which is clearly preferable if there is sufficient prior information or
knowledge about the processes producing the data, is to use a parametric model. In
recent, years, this has been extended through the use of Bayesian methods for model
selection and the estimation of so-called ‘hyper-parameters’, which characterise the
model, eg. [19, 15], but while useful in particular problems, these hardly represent a
general approach to the inference problem. It seems that what is needed is a method
which combines the generality of kernel estimation with the power of parametric
methods. This is one of the key motivations behind the MGMM approach.

To define the MGMM approach in a general way, we start by observing that any
probability density function can be approximated to an arbitrary precision by a set
of Gaussian functions: it is well known that the Gaussian functions are a complete
set on L?(R™). However, we want to make a stronger claim - namely that an L'
approximation of an arbitrary density function need only involve positive coefficients
in the expansion. To this end, we state the theorem:

Theorem 1: Let f(.) : R" — R be any nonnegative real integrable function on R"
with
de f(z) =1 (1)

Rn
Then for any § > 0 there exists an approximation of f(.) by a strictly positive sum
of Gaussian functions of the form

fl@) =3 figs. (e —m) (2)
of means p, and covariances X;, such that f; > 0,V: and
6> [ do|f(@) - f@) (3)

Proof: We start in one dimension and then extend the result to R™, primarily for no-
tational simplicity. The proof is based on the approximation of a scaled characteristic



function y x (), for which

xx(z) = ¢ ifzeX
0 else

(4)

where the set X is the interval € < < e. Consider the convolution of yx(.) with the
Gaussian function g,(x) of variance o>

Jo * XX / dyga - 3? (5)
which is easily written as
1 €+ €E— T
= —|erf — erfi
g x(@) = lenf( ) —enf(C ) ()

where erf(.) is the error function [1]. If 0 = ¢/M, then for any ¢ > 0, there exists a
value of M such that

/dl‘ |XX( )_ge/M*XX / dx XX (7)
/ dx exp[—M] + / dx ge/nr * xx ()
X—xM R-X

2 )
< i + 2eexp[—M] < 3

where X is the subset of R for which |z + €| < 5;. Now the convolution, which is
smooth, can be approximated by a sum

gJ*XX Z fzgax_Q ) (8)

where k is chosen such that there is an integral absolute approximation error less
than ¢
2

)
[ dalgs x0x@) = 5 fugolo =271 < 3 )

where f; > 0,Vi. But this is the Riemann integral theorem [8]: one simply uses for
fi the scaled values of yx(27%1)

fi =2 xx(27%) (10)

Then for some k, the sum, which is absolutely convergent, will give an error smaller
than §/2.

We have thus proved that the function xx(.) can be approximated to arbitrary
precision by a finite set of Gaussian functions. To complete the proof, we note that

> fi—1 (11)

which follows from the uniform sampling of xx(.), the scaling of xx(.), (4) and the
convergence of the sum. Thus if yx(.) represents a density function, then (8) is a
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Gaussian Mixture approximating it to the specified tolerance. But any probability
density can be approximated by a mixture of functions of the form XX(”;—;”): these
simple functions are the means by which the Lebesgue integral is defined [8] and any
probability distribution is measurable.

The extension to R™ is trivial: one simply replaces the 1 — d elements by the
corresponding Cartesian separable, product form and the proof goes through in the
same way. This completes the proof. e

In order to use this result, we need an efficient way of deciding how many com-
ponents to use in modelling an arbitrary density, or more realistically, data drawn
from an arbitrary density. To this end, consider the following simple decision: given
a set of data, is it better modelled with one Gaussian component or two? This is
a decision which cannot be made on the basis of likelihood alone: it would always
give preference to the more complex description. The increase in likelihood must be
balanced against the cost in terms of complexity of using two components instead of
one.

This type of problem has received much attention in the literature on classifica-
tion [9, 17, 19], and in system identification, in which model order has to be chosen
[10]. In both areas, widespread use has been made of Akaike’s Information Criterion
(AIC), which is derived from the Kullback-Liebler Information Divergence between
two densities:

(@)

(f.9)= [, def@) il (12)

A widely used alternative to AIC is the Minimum Description Length (MDL) cri-
terion, in which an estimate is made of the ‘coding cost’ of the parametric description
of an object [18]. Now, in many cases, quite what the MDL of an object might be is
unclear, since it would appear to depend on the choice of description language and on
the density induced on strings from that language by the objects of interest. In the
present, context, much greater precision is available, since not only the parameters,
but in principle their prior and posterior densities can be estimated. Lastly, Bayesian
Evidence (BE), ie. the posterior P(M|Y') supporting a model M amongst a set of
alternatives, has also been propounded [17, 15] as the best way of selecting a model.
In the context of selecting either one or two (Gaussian components to model a set of
data, this involves penalising the two-component model though the prior. It is not
so clear, however, just how steep the penalty should be; at least in the AIC and in
the present case in MDL, this question is settled by definition. In general, evaluation
of these criteria is itself a source of considerable difficulty, with resort usually being
made to simple approximations, eg. based on saddle-point approximations or sample
averaging over an appropriate set of simulation epochs. In the present case, once the
data are classified, an exact solution is possible. Classification of the data is achieved
by Gibbs sampling.

Because the Bayesian paradigm is an appropriate one in many applications, let
us start by considering an evidential framework for the problem of ‘one-or-two’. We
can base the decision between H; : one component and H; : two components on the




ratio

P(H,)P(X|H,)
P(H,)P(X|H,)
where P(H;) = 1— P(Hy) is the prior probability of a single component and P (X |H;)
is the evidence for H;: the integral over the parameter density of the likelihood

P(X|H) = [ d0 f(X|0,H)f(6|H)) (14)

We can use the results of the appendix to compute the Bayes Factor for two against
one components. In the following, unsubscripted quantities refer to the unsplit data,
while subscripts 1, 2 refer to the two components of the putative mixture approxima-
tion. Thus the Bayes Factor can be written from (40) as

A 2 |A2| IA*I_ o D(H0 ()

2 2
A1 F Az F|A)f = DD

BF =

(15)

In (15), quantities with a * denote posterior and without it denote the corresponding
prior parameters. Thus, A is the prior covariance parameter for a single component,
while A7 is the posterior covariance parameter for the first of the two components.
The sample size, N, is hidden in the parameters d* = d + N,d; = d + N;,i = 1,2.
A considerable simplification of the above occurs if we make the following choices:
A, =A= d%A*. In this case, the log-Bayes Factor reduces to

pr = T4y, |A*|—ﬁ1 |A|—d21 |A|+”dlnd—+
2 2 d
n di+1— d* 1—
> r(t 21 2t Grl-iy
=1
d*+1 d+1—z

ZlnF T (16)

AIC is based on likelihoods and can be written using (38) as

M 1n|sl|—&1n|52|—n(n+3) (17)

AIC = N In|S| —
2

Comparing (16) and (17), there is an obvious similarity in the dependence on the
data, except for the use of priors in the former. Moreover, in the LBF, the ‘penalty’
term increases with both the dimension of the problem and the sample size, whereas
the AIC penalty depends only on the dimension. Note that although it is possible to
use Bayesian estimates in AIC or ML estimates in the BF, it makes little sense to do
SO.

Figures 1(a)-(d) show an interesting feature of the two. All four figures show
contour plots of the AIC or LBF figures for a test of two 2 — D Gaussian components
against one, as a function of separation either in scale or position (horizontal axis)
against population size (vertical). The exact values are used for a population made



up of two such Gaussian components, with 50% of each in the mixture. As has
been noted by others, it does appear that AIC is more supportive of splitting as the
population increases; on the other hand, for very small populations, it is the LBF
which is more inclined to split, ie is positive. This tendency of LBF to favour splitting
of small populations is not a good one and shows that neither criterion dsiplays all
of the features one would like, even in such a simple case as a two-vs-one decision.
Nevertheless, the LBF has clear advantages, as long as the population size is large
enough to give meaningful results.

A different perspective can be given to the BF if we rewrite it using Bayes’s Rule,
viz.

LBF = 1n DWX101,62) | P6:,6:1X) | POIX) (18)
P(X10) P(61,05) P(0)

While the first term represents the gain in likelihood from using two components
instead of one, the remainder represents the cost of this, in terms of the mutual
information between parameters and data (cf. Appendix I, (41)).

2.1 Effects of Motion

The other major property, a crucial one for motion analysis, is the closure of the set
of n — D Gaussian functions G™ under affine maps A : R” — R"

Az =Lz +a (19)

where L is an invertible matrix and a a translation. Again, it is obvious that the
action of A on G" is closed, since

92(A7 (@ — p) = gz, (x — pa) (20)
where
pi=p—a (21)
and
2, =L"ZL (22)

But now we are in a position to prove a rather interesting result, summarised as
Theorem 2: Let f(.) > 0 be an integrable function f : R* — R, as above and let
t(.) : R — R"™ be a smooth, invertible map from R™ to itself, having bounded first
and second derivatives. Then for any § > 0, f has an approximation as a Gaussian
mixture of the form of (2), with integral absolute error no greater than §/2 and there
exists an approximation of the transformed function T f

Tf(z)=f(t(z)) (23)

of the same form, where each Gaussian component gy, is transformed according to a
local affine approximation of the flow field ¢, with error no greater than .



Proof: The proof is based on the smoothness of the mapping and the local na-
ture of the MGMM approximation. First, we observe that any smooth flow can be
approximated using

t(x) = txo + V. (t)(z — zo) + O(||z]|?) (24)

via Taylor’s theorem, where V,(.) is the gradient. Now, let gs(x — @) be an arbitrary
Gaussian function on R™. Then it follows from (24) that there exists a scale parameter
o(d) > 0 such that

)
[ dlgsos(te — 1) = 4o (Em) + Valt) @ — w)| < 3 (25)
We can achieve this by choosing o(d) > 0 so that the error ¢(x) - the integrand in
(25) - satisfies

1. e(z) < 3if ||z — t(p)|| < r. This follows because the error in the Taylor
expansion for ¢ is of order o2(4) if r = Mo(4).

2. Jizsr dzle(@)] < fiz)sr 9o@n (@ — 1) + g (E(p) + Vi(t)(z — p)) < o

This follows from the observation that the tails of the two Gaussians can be
made of arbitrarily low weight by a similar choice of r.

Putting the two errors together, we get a total error

)
— 2
2 (26)

/ dz 9oz (@ — 1) = goy=(t(p) + Va(t) (@ — )| <+ =
Since this applies to an arbitrary Gaussian, apply it to each component in a mixture

representation of f(¢(x))
f(t(x)) = figs.(x — my) (27)

for which (i) the absolute integral error is less than §/2 and (ii) each component has
a variance Y small enough that its transformation by ¢ introduces an error no bigger
than §/2. Such a representation exists, by Theorem 1. But then the error in the
representation of f(x) by the affine approximation of ¢ is no greater than 6. This
completes the proof.e



3 MGMM

The key to applying these ideas is to use a sequential approach, which leads to a mul-
tiresolution tree structure: Multiresolution Gaussian Mixture Modelling (MGMM).
We start from the natural assumption that we do not know the density of interest,
but wish to estimate it from some data, such as an image or set of images. If these
data are denoted X;,1 < i < n, we can compute the sample mean and covariance
[21] and thence infer a single multivariate Gaussian model gs (x — py), where pg, ¥
are the sample (Maximum Likelihood) estimates for the data. Now, in rare cases
this will model the data adequately. If not, then we split the data into two parts
and model each with a Gaussian. This can be done using the Markov Chain Monte
Carlo (MCMC) sampling technique described in [19], which treats the inference as
one containing hidden variables, namely the class Z; to which each datum belongs and
samples from the posteriors for the population size, means and covariances, assuming
conjugate priors, whose parameters are simply those of the population as a whole.
Thus the prior for the means of the two classes are Gaussian, while the covariances
are drawn from an inverse Wishart density: a Normal-Inverse Wishart (NIW) den-
sity. Because the NIW is the natural conjugate prior for this problem, the posterior
is also NIW and so a Gibbs sampler can be used [19, 14]. Sampling for (i) the hidden
variables and (ii) the corresponding sub-population densities gives the two Gaussians,
based on the posterior estimates from the sampler for g5, (x — py;),7 € [0,1]. This
Gibbs sampler is described fully in Appendix II. Clearly, we have the basis of a re-
cursion here: we can build a tree representation, in which each leaf is a subset of the
population found by successive binary splits from the root node, which represents the
whole population. Because the NIW is a conjugate prior, the same computations can
be used at every node in the tree:

1. Select class j and test its normal density approximation for ‘goodness-of-fit’. If
the fit is adequate, terminate, else

2. Split class 7 into two components: class j1 and class j2, by sampling the hidden
variables Z;;,1 < ¢ < N; and thence obtaining a Bayesian estimate of the
class means and covariances by sampling from the posteriors, given the prior

gs; (m - l‘l’g)

This needs a criterion for splitting. In the previous section, we reviewed two popular
choices: LBF and AIC, either of which can be expressed in the present case as

f(X10;1,6,2)
f(X16;)

where the log-likelihood ratio is subject to a ‘complexity’ penalty which is a function
of the size of the population at ;7 and the dimensions of the space. In the context of
the MGMM tree, however, the LBF given in (18) does not have the right form: it is
based on the comparison of either a single component or two components as a model
of the data. Any node in the tree, other than the root, is the result of a series of
dichotomies and may itself be split: splitting a node adds complexity to the existing

C=In — k(Nj,n) (28)



description, rather than acting as a de nowvo alternative. Moreover, the parameter
estimates at node j are the obvious hyperparameters for the two resulting classes.
Indeed, if we wish to store or transmit the parameters 8, 8;,, we would need the
values of 8; also, since these appear in the prior. Finally, in keeping with its roots
in rate-distortion theory [2], we add a rate control parameter A, which allows us to
trade-off the information in a given MGMM tree against its accuracy. If we take this
into account, we replace (18) by the Minimum Information Criterion (MIC):

f(X10,1,052) | f(0;1,0]X,6;)
f(X16;) f(851,05,/0;)

Another way of viewing the constant A is that it accounts for the prior P(H;) in (13).
If we do not wish to take this communication-oriented approach, then setting A = 1
amounts to setting P(H;) = 0.5, ie using the LBF. Although the aim of MIC might
sound similar to Rissanen’s MDL, two observations might be made about this: (i)
the aim here is to provide a trade-off between the information cost of the parameters
and the information gained by providing a better fit to the data; (ii) in the NIW case,
these criteria have such closely related forms that they all amount to some form of
Bayes Evidence, leaving space for one’s prejudice in the definiton of the prior.

We conclude by observing that an alternative view of the MGMM description is as
a patchwork of affine models, each leaf node being the result of a linear regression on
the data [9]. For example, in the case of a grey level image, the MGMM description
gives for each class a Gaussian model, which is directly related to a least-squares
approximation of the form

MIC()\) =1In (20)

where z;(.) is the grey level as a function of the spatial coordinate x for the ith class
and v;(.) is the residual. The matrix A; is easily found from the covariance matrix
Y); for that class and @x;, z;p from the mean.
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4 Experiments

The first set of experiments is designed to test the sampler on data taken from a known
density: a pair of 2 — D normals, with varying distance between means, covariance
and populations:

1. 40 points drawn from a normal " = (0,0), ¥ = I density and 40 from a normal
p? = (4,0), 2 = I density.

2. First component as in first case and second shifted to u” = (2,0).
3. First component as above and second shifted to u” = (0,0), with ¥ = 161.
4. First component as above and second shifted to u” = (0,0), with 3 = 41.

In addition, subsets consisting of (40,20), (40,10) and (20,20) data from the two
samples respectively were used, giving 12 combinations in all. The data in each case
were obtained from the same set, by simply translating and scaling the second set
appropriately. This was done to ensure that the variations seen in results were caused
by the sampling algorithm. The sampler used the sample mean and covariance of the
whole population as prior parameters for the NIW distribution, with the hyperpa-
rameters set to their minimum values, ie. ¢ =1,d =n+2 in (31). The error rates for
the hidden variable classification taken from 10 independent runs with different sim-
ulation seeds are shown in Table 4. The classification used the sample mean from the
last 100 iterations of the sampler. Investigations showed that the sampler had settled
into a stationary distribution by then. Although this is a small number of steps, these
problems are comparatively well posed, especially in the first two cases. Correspond-
ingly, the error rates for these two cases are small and the estimated parameters are
close to their true values in every simulation. Although high error rates are observed
for the concentric cases, it should be obvious that in such cases, classification of the
central points in either case is essentially arbitrary. It was noted that in virtually ev-
ery case, the sampler setttled in a state corresponding to two components of differing
variance, located approximately concentrically. Figures 2(a)-(d) show typical results
from the simulation.

Note that in these examples and in those that follow, to prevent singularities and
to reflect the finite precision of the image measurements, each datum consists of both
a location and a variance parameter. Correspondingly, the sample covariance has to
be modified to take account of this.

The method has also been tested on some more realistic applications in image
analysis. In all the cases described below, the MGMM algorithm was limited to 50
iterations and typically converged in 10 — 20. The Bayes Factor was used as the
criterion for splitting a component. The first results show the segmentation of a well
known image - Lena - using the MGMM approach. In this case, the data are 3 — d:
two spatial dimensions and one for intensity. The MGMM tree for this 256 x 256
pixel image, produced using the Gibbs Sampler, are shown schematically in figure 5
and are superposed on the corresponding least squares approximations in figure 4,
showing the improvement in the reconstruction as the number of leaves increases. In
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Population | Case 1 | Case 2 | Case 3 | Case 4
40,40 0.0213 | 0.212 | 0.341 | 0.411
40,20 0.050 | 0.138 | 0.273 | 0.395
40,10 0.018 | 0.120 | 0.222 | 0.378
20,20 0.073 0.20 0.338 | 0.448

Table 1: Missclassification rates for samples of sizes shown in leftmost column from
two normal densities as listed in text. The classification used the sample means over
the last 100 of 200 iterations of the sampler.

fig. 5, the sample mean vector, in the order (x,y, z) and the population probability are
shown next to each leaf vertex in the tree. Figures 5(a)-(d) show the representation
of the image by 8 regions, each corresponding to a leaf of the MGMM tree. The
classification 5(a) is just the MAP classification of pixels based on all 3 coordinates
(spatial and intensity), while fig. 5(b) shows the MGMM tree nodes and the ellipses
corresponding to the spatial covariance of the Gaussian component at each leaf node.
The lines indicate the tree structure, with thickness indicating height in the tree:
the thickest lines are those from the root; the thinnest those to the lowest level in
this tree - level 4, numbering from 0 at the root. In other words, the tree is not
especially balanced, nor should it be, if it is properly adapted to the data. The two
reconstructions use the least-squares approximation based on the estimated mean
and covariance associated with that class at that pixel, as in (30). The left image,
(c), shows the reconstruction using only spatial information, using a ‘soft’ decision:
each pixel is treated as a mixture, with weights given by the relative magnitudes of
the 8 Gaussian components at that position. In effect, this is making an inference
from 2 — D to 3 — D using the MGMM representation, since grey level is ignored
in classifying the pixels. The reconstruction signal-noise ratio for this case is 15.1d B
(peak-rms). Although this is a poor reconstruction visually, it represents an extreme
paucity of information: only 8 sets of 3 — D Gaussian parameters are required, ie. 72
values. On the other hand, when a full MAP classification is performed using all 3 co-
ordinates, the reconstruction SNR climbs to 24.3d B and indeed the visual appearance
is surprisingly good. Figure 6(a) shows the approximation of the probablility density
based on the MGMM and extracting the marginal density for the intensity on level
3 of a gray level pyramid, which has just 1024 pixels. This is a trivial computation
from the MGMM representation, which gives a better approximation of the density
than can be obtained by simple histogramming. For comparison, the histogram of
the 256 x 256 pixel image is shown in figure 6(b).

The second illustration uses two frames of the ‘Miss America’ sequence in the seg-
mentation, which is based on the 5—d data consisting of spatial co-ordinates, intensity
and 2 — d motion. The raw motion estimates were obtained using a multiresolution
correlation algorithm, again from 256 x 256 pixel images. In this example, a tree
description with 66 leaves was obtained from frame 15 of the sequence and the 2 — d
motions. The affine motions extracted by least squares (cf. (30) from the covariance
matrix for these data were then applied to the spatial co-ordinates of each blob and
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the result used to reconstruct frame 16 of the sequence. The reconstructions of frame
15-16, figures 7(a)-(d) show that the MGMM approach can deal easily with non-rigid
motions, the peak-rms signal-noise ratio (PSNR) being 20.0d B for this reconstruction,
as it is for the original frame.

As a final example, the two images of a breakfast table in Fig. 8(a)-(b) were used
in the same multiresolution cross-correlation algorithm to compute a stereoscopic
disparity map. This was input to the MGMM tree algorithm as 4— D data: spatial co-
ordinates, grey level and horizontal disparity. The original images were also 256 x 256
pixels, but 64 x 64 images were input to the MGMM algorithm. Reconstruction of
the disparity also used all 4 dimensions in classifying each pixel, the depths of the
classified pixels being estimated using the least squares approximation based on their
spatial position, as in (30). The resulting approximation is shown in figure 8(¢) and is
superimposed on the left image in figure 8(d), showing a reasonable correlation with
the expected heights of the larger objects, such as milk and cereal packets. There
were 150 leaves in the MGMM tree for this example, due to the complexity of the
scene, giving a reconstruction SNR of 18.8dB.
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5 Conclusions

In this paper, a novel and versatile statistical image representation has been presented.
The theory of MGMM as a general form of density approximation was outlined and
its use in describing images and sequences illustrated. The key properties which
mark MGMM out as a representation are as follows: although it is a statistical
model, it incorporates spatial relationships; it is ‘auto-scaling’, ie. it classifies data
based on their likelihood, rather than on simple Euclidean distance; because it is
multiresolution, it allows efficient computation; because of the closure of the Gaussian
functions under affine motions, it deals directly with the problem of image motion.
This combination of properties makes MGMM a unique approach to image modelling.

It should be clear that the tree structure of MGMM implies that as an approxi-
mation of an arbitrary density with a fized number of components, it is most likely
not optimal: tree searches have their limitations. But this is not the real point of
MGMM: what MGMM offers is a way of approximating an arbitrary distribution to
an arbitrary precision in a computationally efficient way. In this respect too it is
unique.

The experiments on synthetic data show that a sampling approach to estimation
of the Gaussian parameters at each stage can be computationally effective, while the
results on real image data illustrate that accurate reconstructions are possible with
very compact MGMM representations - even in the most complex of the above exam-
ples, only 125 classes were needed for 256 x 256 image data. All of the examples show
that MAP estimation combined with MGMM is an effective tool in image analysis
and vision.

Of course, this report represents preliminary work, which requires further devel-
opment, both theoretical and practical. For example, the work on motion needs to
be extended to take proper account of temporal structure and this in turn requires a
proper theoretical basis. It is clear that none of the selection criteria is ideal in all
cases. Finally, the essential problem in vision of moving from a 2 — D representation
to a 3 — D one has not been tackled yet. These are all under active investigation at
the time of this writing.
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Appendix I: Analysis of the Multivariate Normal
Distribution

In using the MVN distribution as a universal approximator, it is possible to make use
of the properties of this widely studied distribution. The development here follows
that in [14] and [16]. A Bayesian analysis starts from the choice of priors and in
the present application, it is obvious to use the so called natural conjugate prior
distribution: the Normal-Inverse-Wishart (NIW) distribution, for multivariate normal
data with unknown mean and covariance. This is defined for n — D data as

d+n+2

Pl D) = K LA (215 expl S (i @)D (i — @) — Sr(S 4] (31)

or, briefly f(u,X) = NIW(A,d,a,c), a function of the parameters d > n + 1, the
degrees of freedom, c, the prior weight on the mean, a, the prior mean and A, the
prior covariance. Increasing ¢ and d attaches relatively more weight to the prior, for
a given sample size N. The normalising constant £ is given by

d+1—1

k _ 2n(d2+1)7rn(n4+1) ﬁ 1—‘( 2

i=1

) (32)

The likelihood for the data X;,1 < ¢ < N, is then simply a product of normals,
assuming that data are independently sampled, ie.

N o 1 _
F(X |, 2) = (2m) 7 377 exp[—5 > (X — ) 271X — )] (33)
i=1
and because the NIW is the natural conjugate prior, the posterior is also NIW, with

parameters -
ca+ NX

L, 34
a N (34)
where X = N=!'Y, X is the sample mean and
A =a+NS+-N (a- X)a-x)" (35)
B c+ N

where § = N7 ¥,(X; — X)((X; — X)T is the sample covariance. It is not hard to
see that in the posterior, the scalar parameters are ¢* =c+ N,d* =d + N.

The classical analysis of MVN data is based on the likelihood (33), from which it
is easy to find the ML estimates

p=X (36)
and R
=5 (37)
Evaluating the likelihood at these estimates gives
N
max f(X |1, ) = [278|~% exp[- ] (38)
78> 2
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This may be compared with the likelihood evaluated at the MAP estimates 1 =
a*, X = LA
’ d*

%

exp[—%(n —trA*'A)] (39)

nN
2

f(X |, 3) = |2r A%~ d*

The above results can be used to evaluate the Bayes evidence for one component in
the mixture, by integrating over the parameters

|A|% n F(d*+17i)
f Y = nN * 2—i
( ) 7rT|A*|d7 z:l—[l 1"(d+_1)

2

(40)

The last quantity of interest is the mutual information between the data and param-
eters, which is given by the ratio

: _ [ EY)
i3 =1 [, %)

The expectation of this quantity represents the amount of information which, on
average, the parameters yield about the data, or vice versa. Since both prior and
posterior are NIW, it is straightforward to evaluate (41)

(41)

d' d N N
iV, = 51n|A*|—§1n|A|—§1n|2|—”71n2+
d +1—i d+1—i

Zln F(f) — Z In F(T) —

SIS (i a') (p— a)T — ol — @) (u— a)T + A” — A)]
(12)
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Appendix II: a Gibbs Sampler for NIW variates
with hidden variables

This sampler follows exactly the model proposed by Robert [19]. Tt uses NIW as the
prior for the sample data and a Dirichlet prior for the population size (experience has
shown that this is not always helpful, however). Thus, given the estimate K, X for
the mean and covariance at a node j, the sampler performs the following steps:

1. Sample p;, Xy, 0 = 1,2, ~ NIW(u;, 25, ¢, df).

70 e

2. Sample for the population size using the Dirichlet distribution.

3. Sample the hidden variables Z; € [1,2],1 < k < N; using a Gibbs sampler and
the current estimates of P, p;, 3j;,1 = 1, 2.

4. Calculate the posterior NIW parameters, based on the classified data and (34)-
(35).

This is repeated, starting with ¢ = ¢; = 1,d; = d; = n + 2, the minimum values, to
keep the prior vague.

It may be noted here that a deterministic algorithm, based on 2 — means, but
using the log-likelihood rather than simple Euclidean distance, works adequately on
some simpler problems, for example where classes are convex. In general, however,
it is little cheaper to implement 2 — means and much more likely to settle in a local
minimum.
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Figure 1: Contour plots of Akaike Information Criterion and Log-Bayes Factors for
two vs one normal components: (a) AIC as a function of difference in means (hor-
izontal) and population size (vertical), (b) LBF as in (a), (¢) AIC as a function of
difference in scale, (d) LBF as in (c). In all four cases, the proportions of the two
components are equal and black represents negative values, ie a preference for a single
component model.
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Figure 2: Contour plot of estimated Gaussian components from a pair of 2-d normals,
(a) having means p] = (0,0), u3 = (4,0) and covariances X; = I,i = 1,2; (b) means
at wl = (0,0), ur = (2,0); (c) means at ] = (0,0),i = 1,2 and £, = 163,; (d)
3, = 43,. Estimates obtained from 200 iterations of the Gibbs sampler. The data
points - 40 from each component - are superimposed on the Gaussian plots.
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8-Leaf MGMM Treefor Lena

/ \

P=0.180
(18,16,128) (28,17,123)
.128
(16,25,198) (14 14,220)
P=0.202 0.080 38 0 069

(12,6,187) (13,21,183) (18,21,221) (11,20,218)

Figure 3: Schematic of the 8 leaf MGMM representation of the 256 x 256 ‘Lena’
image. Population probabilities and mean vectors, in the order (z,y,z), shown for
each leaf.



(d)

Figure 4: (a)-(d) First four levels of the MGMM tree for 256 x 256 ‘Lena’, superposed
on the corresponding least squares approximations. Line thickness indicates tree level
and the ellipses show the covariance of the Gaussian component at each node. Note,
however, that all leaves appear at the same level in this representation.
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(c)

Figure 5: (a) Classification of Lena image from MGMM representation with 8 leaves.
(b) MGMM tree corresponding to (a), as in previous figure; (¢) Reconstruction using
only spatial co-ordinates. (d) Reconstruction using grey level and spatial co-ordinates.
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Figure 6: (a) Comparison of histogram with MGMM approximation to probability
density for level 3 of a gray level pyramid.(b) Histogram from original image.
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(c)

Figure 7: (a) Frame 15 of Miss America sequence and (b) reconstruction from MGMM
tree using 66 classes.(c) Original frame 16 and (d) reconstruction based on moved
MGMM from frame 16.
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(c)

Figure 8: (a) Left image of stereo pair, (b) right image. (¢) MGMM approximation
of disparity image from (a) and (b). (d) MGMM approximation superposed on left
image.
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