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Multiresolution Gaussian Mixture Models: Theoryand AppliationsRoland WilsonFebruary 28, 20001 IntrodutionMultiresolution image representations have been suessfully applied to many prob-lems in image analysis [26, 3, 11, 5℄ beause of their ability to trade o� spatial resolu-tion against frequeny domain resolution and their symmetry with respet to transla-tions and dilations, two of the most important soures of variation in images [4℄. Notevery multiresolution representation is equally e�etive in this regard: shemes usingdyadi deimation, suh as pyramids and orthonormal wavelets, sari�e translationinvariane to redue redundany [6, 25, 12℄. While this is desirable in image om-pression, it is not ideal for problems in omputer vision, where ompatness is lessimportant than utility in a range of problems - from segmentation to motion analysis.In those ases, it is the ombination of statistial inferene, usually from inomplete(eg. projeted) data and symmetry under motion whih are most signi�ant.Another interesting development in reent years has been the use of GaussianMixture models to ope with statistial problems for whih no simple parametrimodel exists [20, 27℄. While it is well known that algorithms suh as Expetation-Maximisation an lead to e�etive approximations in terms of a �nite number ofomponents, the general problem of mixture modelling is diÆult when the numberof omponents is unknown [13, 17℄.This paper desribes a new multiresolution representation whih takles the mix-ture modelling problem head-on. The general approah shares important featureswith the Classi�ation and Regression Trees (CART) system of [9℄ and its derivatives[17℄. It may also be seen as a generalisation of sale-spae [26℄, in that it uses Gaussianfuntions and inludes spatial o-ordinates, but unlike a onventional basis set, theyare adapted to the data and used statistially. Moreover, they are de�ned in a spaewhose dimension reets the inferene problem, not simply the image data. Thus indealing with olour images, a 5 � D spae is required (two spatial and three olourdimensions); for inferring 3�D struture from motion, typially nine dimensions arerequired (three spatial, three olour and three motion axes). Yet MGMM has nodiÆulty in priniple in moving seamlessly between these spaes. The next setion ofthe paper outlines the theory underlying MGMM as a method of approximating anarbitrary density and shows how it an deal with smooth motions of an image. The1



following setion ontains a desription of how MGMM an be implemented eÆiently.This is followed by a presentation of some simple experiments, whih illustrate how itmay be used in important `early vision' problems: segmentation and motion analysis.The paper is onluded with some remarks on the impliations and potential of thenew approah.
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2 BakgroundThree main elements ditate the form of representation alled MGMM: ability toapproximate any probability density in a spae of arbitrary dimension; losure underaÆne motions and a multiresolution struture, whih an be used to make omputa-tion eÆient.Before outlining the theory of MGMM, it may be useful to explain the need forsuh an approah. It is widely reognised that statistial methods are a key elementin vision and image analysis eg. [7, 22℄. While Gaussian models work adequatelyin many ases, more general distributions pose onsiderable diÆulties. The �rst issimply estimating the density, a problem whih has beset statistiians for may deades[23, 24℄. There are two widely used alternatives: non-parametri, or kernel estimationand parametri estimation. Kernel methods are a generalisation of histogramming,in whih, rather than use a non-overlapping set of intervals, the density is estimatedusing a smooth kernel to `iron out' the utuations whih sampling inevitably auses.In e�et, this represents a onvolution whih is the statistial analogue of anti-aliasing:it is well known that raw histograms are woefully inadequate as density estimates [23℄.The alternative, whih is learly preferable if there is suÆient prior information orknowledge about the proesses produing the data, is to use a parametri model. Inreent years, this has been extended through the use of Bayesian methods for modelseletion and the estimation of so-alled `hyper-parameters', whih haraterise themodel, eg. [19, 15℄, but while useful in partiular problems, these hardly represent ageneral approah to the inferene problem. It seems that what is needed is a methodwhih ombines the generality of kernel estimation with the power of parametrimethods. This is one of the key motivations behind the MGMM approah.To de�ne the MGMM approah in a general way, we start by observing that anyprobability density funtion an be approximated to an arbitrary preision by a setof Gaussian funtions: it is well known that the Gaussian funtions are a ompleteset on L2(Rn). However, we want to make a stronger laim - namely that an L1approximation of an arbitrary density funtion need only involve positive oeÆientsin the expansion. To this end, we state the theorem:Theorem 1: Let f(:) : Rn ! R be any nonnegative real integrable funtion on Rnwith ZRn dx f(x) = 1 (1)Then for any Æ > 0 there exists an approximation of f(:) by a stritly positive sumof Gaussian funtions of the formf̂(x) =Xi fig�i(x� �i) (2)of means �i and ovarianes �i, suh that fi > 0; 8i andÆ > ZRn dx jf(x)� f̂(x)j (3)Proof: We start in one dimension and then extend the result to Rn, primarily for no-tational simpliity. The proof is based on the approximation of a saled harateristi3



funtion �X(x), for whih �X(x) = 12� if x 2 X0 else (4)where the set X is the interval � < x � �. Consider the onvolution of �X(:) with theGaussian funtion g�(x) of variane �2g� ? �X(x) = ZX dyg�(y � x) (5)whih is easily written asg� ? �(x) = 14� [erf(�+ xp2� )� erf(�� xp2� )℄ (6)where erf(:) is the error funtion [1℄. If � = �=M , then for any Æ > 0, there exists avalue of M suh thatZ dx j�X(x)� g�=M ? �X(x)j < ZXM dx �X(x) + (7)ZX�XM dx exp[�M ℄ + ZR�X dx g�=M ? �X(x)< 2M + 2� exp[�M ℄ < Æ2where XM is the subset of R for whih jx � �j < 1M . Now the onvolution, whih issmooth, an be approximated by a sumg� ? �X(x) � Xi fig�(x� 2�ki) (8)where k is hosen suh that there is an integral absolute approximation error lessthan Æ2 Z dxjg� ? �X(x)�Xi fig�(x� 2�k)j < Æ2 (9)where fi > 0; 8i. But this is the Riemann integral theorem [8℄: one simply uses forfi the saled values of �X(2�ki) fi = 2�k�X(2�ki) (10)Then for some k, the sum, whih is absolutely onvergent, will give an error smallerthan Æ=2.We have thus proved that the funtion �X(:) an be approximated to arbitrarypreision by a �nite set of Gaussian funtions. To omplete the proof, we note thatXi fi ! 1 (11)whih follows from the uniform sampling of �X(:), the saling of �X(:), (4) and theonvergene of the sum. Thus if �X(:) represents a density funtion, then (8) is a4



Gaussian Mixture approximating it to the spei�ed tolerane. But any probabilitydensity an be approximated by a mixture of funtions of the form �X(x�yi�i ): thesesimple funtions are the means by whih the Lebesgue integral is de�ned [8℄ and anyprobability distribution is measurable.The extension to Rn is trivial: one simply replaes the 1 � d elements by theorresponding Cartesian separable, produt form and the proof goes through in thesame way. This ompletes the proof. �In order to use this result, we need an eÆient way of deiding how many om-ponents to use in modelling an arbitrary density, or more realistially, data drawnfrom an arbitrary density. To this end, onsider the following simple deision: givena set of data, is it better modelled with one Gaussian omponent or two? This isa deision whih annot be made on the basis of likelihood alone: it would alwaysgive preferene to the more omplex desription. The inrease in likelihood must bebalaned against the ost in terms of omplexity of using two omponents instead ofone.This type of problem has reeived muh attention in the literature on lassi�a-tion [9, 17, 19℄, and in system identi�ation, in whih model order has to be hosen[10℄. In both areas, widespread use has been made of Akaike's Information Criterion(AIC), whih is derived from the Kullbak-Liebler Information Divergene betweentwo densities: d(f; g) = ZRn dxf(x) ln[f(x)g(x) ℄ (12)A widely used alternative to AIC is the Minimum Desription Length (MDL) ri-terion, in whih an estimate is made of the `oding ost' of the parametri desriptionof an objet [18℄. Now, in many ases, quite what the MDL of an objet might be isunlear, sine it would appear to depend on the hoie of desription language and onthe density indued on strings from that language by the objets of interest. In thepresent ontext, muh greater preision is available, sine not only the parameters,but in priniple their prior and posterior densities an be estimated. Lastly, BayesianEvidene (BE), ie. the posterior P (M jY ) supporting a model M amongst a set ofalternatives, has also been propounded [17, 15℄ as the best way of seleting a model.In the ontext of seleting either one or two Gaussian omponents to model a set ofdata, this involves penalising the two-omponent model though the prior. It is notso lear, however, just how steep the penalty should be; at least in the AIC and inthe present ase in MDL, this question is settled by de�nition. In general, evaluationof these riteria is itself a soure of onsiderable diÆulty, with resort usually beingmade to simple approximations, eg. based on saddle-point approximations or sampleaveraging over an appropriate set of simulation epohs. In the present ase, one thedata are lassi�ed, an exat solution is possible. Classi�ation of the data is ahievedby Gibbs sampling.Beause the Bayesian paradigm is an appropriate one in many appliations, letus start by onsidering an evidential framework for the problem of `one-or-two'. Wean base the deision between H1 : one omponent and H2 : two omponents on the5



ratio RB = P (H1)P (XjH1)P (H2)P (XjH2) (13)where P (H1) = 1�P (H2) is the prior probability of a single omponent and P (XjHi)is the evidene for Hi: the integral over the parameter density of the likelihoodP (XjHi) = ZRm d� f(Xj�; Hi)f(�jHi) (14)We an use the results of the appendix to ompute the Bayes Fator for two againstone omponents. In the following, unsubsripted quantities refer to the unsplit data,while subsripts 1; 2 refer to the two omponents of the putative mixture approxima-tion. Thus the Bayes Fator an be written from (40) asBF = jA1j d2 jA2j d2 jA�j d�2jA�1j d�12 jA�2j d�22 jAj d2 nYi=1 �(d�1+1�i2 )�(d�2+1�i2 )�(d�+1�i2 )�(d+1�i2 ) (15)In (15), quantities with a � denote posterior and without it denote the orrespondingprior parameters. Thus, A is the prior ovariane parameter for a single omponent,while A�1 is the posterior ovariane parameter for the �rst of the two omponents.The sample size, N , is hidden in the parameters d� = d + N; d�i = d + Ni; i = 1; 2.A onsiderable simpli�ation of the above ours if we make the following hoies:Ai = A = dd�A�. In this ase, the log-Bayes Fator redues toLBF = d� + d2 ln jA�j � d�12 ln jA�1j � d�22 ln jA�2j+ nd2 ln d�d +nXi=1 ln �(d�1 + 1� i2 ) +Xi ln �(d�2 + 1� i2 )�Xi ln �(d� + 1� i2 )�Xi ln �(d+ 1� i2 ) (16)AIC is based on likelihoods and an be written using (38) asAIC = N2 ln jSj � N12 ln jS1j � N22 ln jS2j � n(n+ 3) (17)Comparing (16) and (17), there is an obvious similarity in the dependene on thedata, exept for the use of priors in the former. Moreover, in the LBF, the `penalty'term inreases with both the dimension of the problem and the sample size, whereasthe AIC penalty depends only on the dimension. Note that although it is possible touse Bayesian estimates in AIC or ML estimates in the BF, it makes little sense to doso. Figures 1(a)-(d) show an interesting feature of the two. All four �gures showontour plots of the AIC or LBF �gures for a test of two 2�D Gaussian omponentsagainst one, as a funtion of separation either in sale or position (horizontal axis)against population size (vertial). The exat values are used for a population made6



up of two suh Gaussian omponents, with 50% of eah in the mixture. As hasbeen noted by others, it does appear that AIC is more supportive of splitting as thepopulation inreases; on the other hand, for very small populations, it is the LBFwhih is more inlined to split, ie is positive. This tendeny of LBF to favour splittingof small populations is not a good one and shows that neither riterion dsiplays allof the features one would like, even in suh a simple ase as a two-vs-one deision.Nevertheless, the LBF has lear advantages, as long as the population size is largeenough to give meaningful results.A di�erent perspetive an be given to the BF if we rewrite it using Bayes's Rule,viz. LBF = ln P (Xj�1; �2)P (Xj�) � ln P (�1; �2jX)P (�1; �2) + ln P (�jX)P (�) (18)While the �rst term represents the gain in likelihood from using two omponentsinstead of one, the remainder represents the ost of this, in terms of the mutualinformation between parameters and data (f. Appendix I, (41)).2.1 E�ets of MotionThe other major property, a ruial one for motion analysis, is the losure of the setof n�D Gaussian funtions Gn under aÆne maps A : Rn 7! RnAx = Lx+ a (19)where L is an invertible matrix and a a translation. Again, it is obvious that theation of A on Gn is losed, sineg�(A�1(x� �)) = g�A(x� �A) (20)where �A = �� a (21)and �A = LT�L (22)But now we are in a position to prove a rather interesting result, summarised asTheorem 2: Let f(:) � 0 be an integrable funtion f : Rn ! R, as above and lett(:) : Rn ! Rn be a smooth, invertible map from Rn to itself, having bounded �rstand seond derivatives. Then for any Æ > 0, f has an approximation as a Gaussianmixture of the form of (2), with integral absolute error no greater than Æ=2 and thereexists an approximation of the transformed funtion T fT f(x) = f(t�1(x)) (23)of the same form, where eah Gaussian omponent g�i is transformed aording to aloal aÆne approximation of the ow �eld t, with error no greater than Æ.
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Proof: The proof is based on the smoothness of the mapping and the loal na-ture of the MGMM approximation. First, we observe that any smooth ow an beapproximated using t(x) = tx0 +rx(t)(x� x0) +O(kxk2) (24)via Taylor's theorem, where rx(:) is the gradient. Now, let g�(x��) be an arbitraryGaussian funtion on Rn. Then it follows from (24) that there exists a sale parameter�(Æ) > 0 suh thatZ dxjg�(Æ)�(t(x� �)� g�(Æ)�(t(�) +rx(t)(x� �))j < Æ2 (25)We an ahieve this by hoosing �(Æ) > 0 so that the error �(x) - the integrand in(25) - satis�es1. �(x) < Æ4 ; if kx � t(�)k < r. This follows beause the error in the Taylorexpansion for t is of order �2(Æ) if r =M�(Æ).2. Rkxk>r dxj�(x)j < Rkxk>r g�(Æ)�(t(x � �) + g�(Æ)�(t(�) + rx(t)(x � �)) � Æ4 .This follows from the observation that the tails of the two Gaussians an bemade of arbitrarily low weight by a similar hoie of r.Putting the two errors together, we get a total errorZ dxjg�(Æ)�(t(x� �)� g�(Æ)�(t(�) +rx(t)(x� �))j < Æ4 + Æ4 = Æ2 (26)Sine this applies to an arbitrary Gaussian, apply it to eah omponent in a mixturerepresentation of f(t(x)) f(t(x)) =Xi fig�i(x� �i) (27)for whih (i) the absolute integral error is less than Æ=2 and (ii) eah omponent hasa variane � small enough that its transformation by t introdues an error no biggerthan Æ=2. Suh a representation exists, by Theorem 1. But then the error in therepresentation of f(x) by the aÆne approximation of t is no greater than Æ. Thisompletes the proof.�
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3 MGMMThe key to applying these ideas is to use a sequential approah, whih leads to a mul-tiresolution tree struture: Multiresolution Gaussian Mixture Modelling (MGMM).We start from the natural assumption that we do not know the density of interest,but wish to estimate it from some data, suh as an image or set of images. If thesedata are denoted X i; 1 � i � n, we an ompute the sample mean and ovariane[21℄ and thene infer a single multivariate Gaussian model g�0(x��0), where �0;�0are the sample (Maximum Likelihood) estimates for the data. Now, in rare asesthis will model the data adequately. If not, then we split the data into two partsand model eah with a Gaussian. This an be done using the Markov Chain MonteCarlo (MCMC) sampling tehnique desribed in [19℄, whih treats the inferene asone ontaining hidden variables, namely the lass Zi to whih eah datum belongs andsamples from the posteriors for the population size, means and ovarianes, assumingonjugate priors, whose parameters are simply those of the population as a whole.Thus the prior for the means of the two lasses are Gaussian, while the ovarianesare drawn from an inverse Wishart density: a Normal-Inverse Wishart (NIW) den-sity. Beause the NIW is the natural onjugate prior for this problem, the posterioris also NIW and so a Gibbs sampler an be used [19, 14℄. Sampling for (i) the hiddenvariables and (ii) the orresponding sub-population densities gives the two Gaussians,based on the posterior estimates from the sampler for g�1j(x � �1j); i 2 [0; 1℄. ThisGibbs sampler is desribed fully in Appendix II. Clearly, we have the basis of a re-ursion here: we an build a tree representation, in whih eah leaf is a subset of thepopulation found by suessive binary splits from the root node, whih represents thewhole population. Beause the NIW is a onjugate prior, the same omputations anbe used at every node in the tree:1. Selet lass j and test its normal density approximation for `goodness-of-�t'. Ifthe �t is adequate, terminate, else2. Split lass j into two omponents: lass j1 and lass j2, by sampling the hiddenvariables Zji; 1 � i � Nj and thene obtaining a Bayesian estimate of thelass means and ovarianes by sampling from the posteriors, given the priorg�j(x� �j).This needs a riterion for splitting. In the previous setion, we reviewed two popularhoies: LBF and AIC, either of whih an be expressed in the present ase asC = ln f(Xj�j1; �j2)f(Xj�j) � k(Nj; n) (28)where the log-likelihood ratio is subjet to a `omplexity' penalty whih is a funtionof the size of the population at j and the dimensions of the spae. In the ontext ofthe MGMM tree, however, the LBF given in (18) does not have the right form: it isbased on the omparison of either a single omponent or two omponents as a modelof the data. Any node in the tree, other than the root, is the result of a series ofdihotomies and may itself be split: splitting a node adds omplexity to the existing9



desription, rather than ating as a de novo alternative. Moreover, the parameterestimates at node j are the obvious hyperparameters for the two resulting lasses.Indeed, if we wish to store or transmit the parameters �j1; �j2, we would need thevalues of �j also, sine these appear in the prior. Finally, in keeping with its rootsin rate-distortion theory [2℄, we add a rate ontrol parameter �, whih allows us totrade-o� the information in a given MGMM tree against its auray. If we take thisinto aount, we replae (18) by the Minimum Information Criterion (MIC):MIC(�) = ln f(Xj�j1; �j2)f(Xj�j) � � ln f(�j1; �j2jX; �j)f(�j1; �j2j�j) (29)Another way of viewing the onstant � is that it aounts for the prior P (H1) in (13).If we do not wish to take this ommuniation-oriented approah, then setting � = 1amounts to setting P (H1) = 0:5, ie using the LBF. Although the aim of MIC mightsound similar to Rissanen's MDL, two observations might be made about this: (i)the aim here is to provide a trade-o� between the information ost of the parametersand the information gained by providing a better �t to the data; (ii) in the NIW ase,these riteria have suh losely related forms that they all amount to some form ofBayes Evidene, leaving spae for one's prejudie in the de�niton of the prior.We onlude by observing that an alternative view of the MGMM desription is asa pathwork of aÆne models, eah leaf node being the result of a linear regression onthe data [9℄. For example, in the ase of a grey level image, the MGMM desriptiongives for eah lass a Gaussian model, whih is diretly related to a least-squaresapproximation of the formzi(x) = Ai(x� xi) + zi0 + �i(x) (30)where zi(:) is the grey level as a funtion of the spatial oordinate x for the ith lassand �i(:) is the residual. The matrix Ai is easily found from the ovariane matrix�i for that lass and xi; zi0 from the mean.
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4 ExperimentsThe �rst set of experiments is designed to test the sampler on data taken from a knowndensity: a pair of 2 � D normals, with varying distane between means, ovarianeand populations:1. 40 points drawn from a normal �T = (0; 0);� = I density and 40 from a normal�T = (4; 0);� = I density.2. First omponent as in �rst ase and seond shifted to �T = (2; 0).3. First omponent as above and seond shifted to �T = (0; 0), with � = 16I.4. First omponent as above and seond shifted to �T = (0; 0), with � = 4I.In addition, subsets onsisting of (40; 20), (40; 10) and (20; 20) data from the twosamples respetively were used, giving 12 ombinations in all. The data in eah asewere obtained from the same set, by simply translating and saling the seond setappropriately. This was done to ensure that the variations seen in results were ausedby the sampling algorithm. The sampler used the sample mean and ovariane of thewhole population as prior parameters for the NIW distribution, with the hyperpa-rameters set to their minimum values, ie.  = 1; d = n+2 in (31). The error rates forthe hidden variable lassi�ation taken from 10 independent runs with di�erent sim-ulation seeds are shown in Table 4. The lassi�ation used the sample mean from thelast 100 iterations of the sampler. Investigations showed that the sampler had settledinto a stationary distribution by then. Although this is a small number of steps, theseproblems are omparatively well posed, espeially in the �rst two ases. Correspond-ingly, the error rates for these two ases are small and the estimated parameters arelose to their true values in every simulation. Although high error rates are observedfor the onentri ases, it should be obvious that in suh ases, lassi�ation of theentral points in either ase is essentially arbitrary. It was noted that in virtually ev-ery ase, the sampler setttled in a state orresponding to two omponents of di�eringvariane, loated approximately onentrially. Figures 2(a)-(d) show typial resultsfrom the simulation.Note that in these examples and in those that follow, to prevent singularities andto reet the �nite preision of the image measurements, eah datum onsists of botha loation and a variane parameter. Correspondingly, the sample ovariane has tobe modi�ed to take aount of this.The method has also been tested on some more realisti appliations in imageanalysis. In all the ases desribed below, the MGMM algorithm was limited to 50iterations and typially onverged in 10 � 20. The Bayes Fator was used as theriterion for splitting a omponent. The �rst results show the segmentation of a wellknown image - Lena - using the MGMM approah. In this ase, the data are 3� d:two spatial dimensions and one for intensity. The MGMM tree for this 256 � 256pixel image, produed using the Gibbs Sampler, are shown shematially in �gure 5and are superposed on the orresponding least squares approximations in �gure 4,showing the improvement in the reonstrution as the number of leaves inreases. In11



Population Case 1 Case 2 Case 3 Case 440,40 0.0213 0.212 0.341 0.41140,20 0.050 0.138 0.273 0.39540,10 0.018 0.120 0.222 0.37820,20 0.073 0.20 0.338 0.448Table 1: Misslassi�ation rates for samples of sizes shown in leftmost olumn fromtwo normal densities as listed in text. The lassi�ation used the sample means overthe last 100 of 200 iterations of the sampler.�g. 5, the sample mean vetor, in the order (x; y; z) and the population probability areshown next to eah leaf vertex in the tree. Figures 5(a)-(d) show the representationof the image by 8 regions, eah orresponding to a leaf of the MGMM tree. Thelassi�ation 5(a) is just the MAP lassi�ation of pixels based on all 3 oordinates(spatial and intensity), while �g. 5(b) shows the MGMM tree nodes and the ellipsesorresponding to the spatial ovariane of the Gaussian omponent at eah leaf node.The lines indiate the tree struture, with thikness indiating height in the tree:the thikest lines are those from the root; the thinnest those to the lowest level inthis tree - level 4, numbering from 0 at the root. In other words, the tree is notespeially balaned, nor should it be, if it is properly adapted to the data. The tworeonstrutions use the least-squares approximation based on the estimated meanand ovariane assoiated with that lass at that pixel, as in (30). The left image,(), shows the reonstrution using only spatial information, using a `soft' deision:eah pixel is treated as a mixture, with weights given by the relative magnitudes ofthe 8 Gaussian omponents at that position. In e�et, this is making an inferenefrom 2 � D to 3 � D using the MGMM representation, sine grey level is ignoredin lassifying the pixels. The reonstrution signal-noise ratio for this ase is 15:1dB(peak-rms). Although this is a poor reonstrution visually, it represents an extremepauity of information: only 8 sets of 3�D Gaussian parameters are required, ie. 72values. On the other hand, when a full MAP lassi�ation is performed using all 3 o-ordinates, the reonstrution SNR limbs to 24:3dB and indeed the visual appearaneis surprisingly good. Figure 6(a) shows the approximation of the probablility densitybased on the MGMM and extrating the marginal density for the intensity on level3 of a gray level pyramid, whih has just 1024 pixels. This is a trivial omputationfrom the MGMM representation, whih gives a better approximation of the densitythan an be obtained by simple histogramming. For omparison, the histogram ofthe 256� 256 pixel image is shown in �gure 6(b).The seond illustration uses two frames of the `Miss Ameria' sequene in the seg-mentation, whih is based on the 5�d data onsisting of spatial o-ordinates, intensityand 2 � d motion. The raw motion estimates were obtained using a multiresolutionorrelation algorithm, again from 256 � 256 pixel images. In this example, a treedesription with 66 leaves was obtained from frame 15 of the sequene and the 2� dmotions. The aÆne motions extrated by least squares (f. (30) from the ovarianematrix for these data were then applied to the spatial o-ordinates of eah blob and12



the result used to reonstrut frame 16 of the sequene. The reonstrutions of frame15-16, �gures 7(a)-(d) show that the MGMM approah an deal easily with non-rigidmotions, the peak-rms signal-noise ratio (PSNR) being 20:0dB for this reonstrution,as it is for the original frame.As a �nal example, the two images of a breakfast table in Fig. 8(a)-(b) were usedin the same multiresolution ross-orrelation algorithm to ompute a stereosopidisparity map. This was input to the MGMM tree algorithm as 4�D data: spatial o-ordinates, grey level and horizontal disparity. The original images were also 256�256pixels, but 64 � 64 images were input to the MGMM algorithm. Reonstrution ofthe disparity also used all 4 dimensions in lassifying eah pixel, the depths of thelassi�ed pixels being estimated using the least squares approximation based on theirspatial position, as in (30). The resulting approximation is shown in �gure 8() and issuperimposed on the left image in �gure 8(d), showing a reasonable orrelation withthe expeted heights of the larger objets, suh as milk and ereal pakets. Therewere 150 leaves in the MGMM tree for this example, due to the omplexity of thesene, giving a reonstrution SNR of 18:8dB.
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5 ConlusionsIn this paper, a novel and versatile statistial image representation has been presented.The theory of MGMM as a general form of density approximation was outlined andits use in desribing images and sequenes illustrated. The key properties whihmark MGMM out as a representation are as follows: although it is a statistialmodel, it inorporates spatial relationships; it is `auto-saling', ie. it lassi�es databased on their likelihood, rather than on simple Eulidean distane; beause it ismultiresolution, it allows eÆient omputation; beause of the losure of the Gaussianfuntions under aÆne motions, it deals diretly with the problem of image motion.This ombination of properties makes MGMM a unique approah to image modelling.It should be lear that the tree struture of MGMM implies that as an approxi-mation of an arbitrary density with a �xed number of omponents, it is most likelynot optimal: tree searhes have their limitations. But this is not the real point ofMGMM: what MGMM o�ers is a way of approximating an arbitrary distribution toan arbitrary preision in a omputationally eÆient way. In this respet too it isunique.The experiments on syntheti data show that a sampling approah to estimationof the Gaussian parameters at eah stage an be omputationally e�etive, while theresults on real image data illustrate that aurate reonstrutions are possible withvery ompat MGMM representations - even in the most omplex of the above exam-ples, only 125 lasses were needed for 256�256 image data. All of the examples showthat MAP estimation ombined with MGMM is an e�etive tool in image analysisand vision.Of ourse, this report represents preliminary work, whih requires further devel-opment, both theoretial and pratial. For example, the work on motion needs tobe extended to take proper aount of temporal struture and this in turn requires aproper theoretial basis. It is lear that none of the seletion riteria is ideal in allases. Finally, the essential problem in vision of moving from a 2�D representationto a 3�D one has not been takled yet. These are all under ative investigation atthe time of this writing.AknowledgementThis work was supported by the UK EPSRC.Referenes[1℄ M. Abramowitz and I. A. Stegun. Handbook of Mathematial Funtions. Dover,New York, 1965.[2℄ T. Berger. Rate-Distortion Theory: a Mathematial Basis for Data Compression.Prentie-Hall, Englewood Cli�s, 1971.14
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Appendix I: Analysis of the Multivariate NormalDistributionIn using the MVN distribution as a universal approximator, it is possible to make useof the properties of this widely studied distribution. The development here followsthat in [14℄ and [16℄. A Bayesian analysis starts from the hoie of priors and inthe present appliation, it is obvious to use the so alled natural onjugate priordistribution: the Normal-Inverse-Wishart (NIW) distribution, for multivariate normaldata with unknown mean and ovariane. This is de�ned for n�D data asf(�;�) = k�1 jAj d2 j j�j� d+n+22 exp[� 2(�� a)T��1((�� a)� 12tr(��1A)℄ (31)or, briey f(�;�) = NIW (A; d;a; ), a funtion of the parameters d > n + 1, thedegrees of freedom, , the prior weight on the mean, a, the prior mean and A, theprior ovariane. Inreasing  and d attahes relatively more weight to the prior, fora given sample size N . The normalising onstant k is given byk = 2n(d+1)2 � n(n+1)4 nYi=1�(d+ 1� i2 ) (32)The likelihood for the data X i; 1 � i � N , is then simply a produt of normals,assuming that data are independently sampled, ie.f(Xj�;�) = (2�)�N2 j�j�N2 exp[�12 NXi=1 (X i � �)T��1(X i � �)℄ (33)and beause the NIW is the natural onjugate prior, the posterior is also NIW, withparameters a� = a+N �X+N (34)where �X = N�1Pi X i is the sample mean andA� = A+NS + N+N (a� �X)(a� �X)T (35)where S = N�1Pi(X i � �X)((X i � �X)T is the sample ovariane. It is not hard tosee that in the posterior, the salar parameters are � =  +N; d� = d+N .The lassial analysis of MVN data is based on the likelihood (33), from whih itis easy to �nd the ML estimates �̂ = �X (36)and �̂ = S (37)Evaluating the likelihood at these estimates givesmax�;� f(Xj�;�) = j2�Sj�N2 exp[�Nn2 ℄ (38)17



This may be ompared with the likelihood evaluated at the MAP estimates ~� =a�; ~� = 1d�A� f(Xj~�; ~�) = j2�A�j�N2 d�nN2 exp[�d�2 (n� trA��1A)℄ (39)The above results an be used to evaluate the Bayes evidene for one omponent inthe mixture, by integrating over the parametersf(Y ) = jAj d2� nN2 jA�j d�2 nYi=1 �(d�+1�i2 )�(d+1�i2 ) (40)The last quantity of interest is the mutual information between the data and param-eters, whih is given by the ratioi(Y ;�;�) = ln f(�;�jY )f(�;�) (41)The expetation of this quantity represents the amount of information whih, onaverage, the parameters yield about the data, or vie versa. Sine both prior andposterior are NIW, it is straightforward to evaluate (41)i(Y ;�;�) = d�2 ln jA�j � d2 ln jAj � N2 ln j�j � nN2 ln 2 +Xi ln �(d� + 1� i2 )�Xi ln �(d+ 1� i2 )�12tr[��1(�(�� a�)(�� a�)T � (�� a)(�� a)T +A� �A)℄(42)
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Appendix II: a Gibbs Sampler for NIW variateswith hidden variablesThis sampler follows exatly the model proposed by Robert [19℄. It uses NIW as theprior for the sample data and a Dirihlet prior for the population size (experiene hasshown that this is not always helpful, however). Thus, given the estimate �j;�j forthe mean and ovariane at a node j, the sampler performs the following steps:1. Sample �ji;�ji; i = 1; 2; � NIW(�j;�j; �i ; d�i ).2. Sample for the population size using the Dirihlet distribution.3. Sample the hidden variables Zk 2 [1; 2℄; 1 � k � Nj using a Gibbs sampler andthe urrent estimates of P;�ji;�ji; i = 1; 2.4. Calulate the posterior NIW parameters, based on the lassi�ed data and (34)-(35).This is repeated, starting with �i = i = 1; d�i = di = n + 2, the minimum values, tokeep the prior vague.It may be noted here that a deterministi algorithm, based on 2 � means, butusing the log-likelihood rather than simple Eulidean distane, works adequately onsome simpler problems, for example where lasses are onvex. In general, however,it is little heaper to implement 2�means and muh more likely to settle in a loalminimum.
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() (d)Figure 1: Contour plots of Akaike Information Criterion and Log-Bayes Fators fortwo vs one normal omponents: (a) AIC as a funtion of di�erene in means (hor-izontal) and population size (vertial), (b) LBF as in (a), () AIC as a funtion ofdi�erene in sale, (d) LBF as in (). In all four ases, the proportions of the twoomponents are equal and blak represents negative values, ie a preferene for a singleomponent model. 20
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8-Leaf MGMM Tree for Lena

Figure 3: Shemati of the 8 leaf MGMM representation of the 256 � 256 `Lena'image. Population probabilities and mean vetors, in the order (x; y; z), shown foreah leaf.
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(a) (b)

() (d)Figure 4: (a)-(d) First four levels of the MGMM tree for 256�256 `Lena', superposedon the orresponding least squares approximations. Line thikness indiates tree leveland the ellipses show the ovariane of the Gaussian omponent at eah node. Note,however, that all leaves appear at the same level in this representation.
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(a) (b)

() (d)Figure 5: (a) Classi�ation of Lena image from MGMM representation with 8 leaves.(b) MGMM tree orresponding to (a), as in previous �gure; () Reonstrution usingonly spatial o-ordinates. (d) Reonstrution using grey level and spatial o-ordinates.
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(a) (b)Figure 6: (a) Comparison of histogram with MGMM approximation to probabilitydensity for level 3 of a gray level pyramid.(b) Histogram from original image.
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(a) (b)

() (d)Figure 7: (a) Frame 15 of Miss Ameria sequene and (b) reonstrution fromMGMMtree using 66 lasses.() Original frame 16 and (d) reonstrution based on movedMGMM from frame 16.
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(a) (b)

() (d)Figure 8: (a) Left image of stereo pair, (b) right image. () MGMM approximationof disparity image from (a) and (b). (d) MGMM approximation superposed on leftimage.
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