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Abstract

An integrated approach to image segmentation is presented that combines region
and boundary information using maximuma posteriori estimation and decision the-
ory. The algorithm employs iterative, decision-directed estimation performed on a
novel multiresolution representation. The use of a multiresolution technique ensures
both robustness in noise and efficiency of computation, while the model-based esti-
mation and decision process is flexible and spatially local, thus avoiding assumptions
about global homogeneity or size and number of regions. A comparative evaluation
of the method against region-only and boundary-only methods is presented and is
shown to produce accurate segmentations at quite low signal-to-noise ratios.
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1 Introduction

Image segmentation is one of the most widely studied problems in image analysis. The
simplest techniques are based on a histogram of the data, which retains no spatial infor-
mation. As a result, the classification is invariant to permutations of the pixels, ignoring
the spatial coherence essential in segmentation [1]. The need to incorporate spatial in-
formation led to the development of methods using acontext or neighbourhood [2, 3].
Markov Random Field (MRF) theory has been used to model the underlying spatial de-
pendences [4, 5]. These models have been used in various maximuma posteriori (MAP)
methods for image restoration and segmentation [6].

In problems such as segmentation, multiresolution analysis offers two key advantages
over pixel-based methods:

1. It provides a way to trade-off class and spatial resolution; repeatedly blurring and
subsampling the image decreases the noise and improves the class certainty, but at
the expense of spatial resolution [1].

2. Solutions to optimisation problems at low resolutions tend to be close to the solution
at high resolution because most of the variation in images is at scales which are large
compared to 1 pixel. It is therefore possible to avoid local minima which lie far from
the global minimum, without having to rely on stochastic algorithms.

For example, the split-and-merge techniques introduced by Chen and Pavlidis [7],
and later developed in [8, 9, 10], use a linked pyramid and statistical decision criteria to
combine global and local region information. The quadtree method of Spann and Wil-
son [11], and also in [12, 13, 14], used clustering of a historgram at a low spatial res-
olution, followed by boundary refinement. Recently, a multiresolution stochastic image
model was used by Bouman and Shapiro in the development of a Bayesian segmenta-
tion algorithm[15]. Although region based methods have their attractions, it is quite hard
to define region models which are sufficiently robust and general to allow ‘just enough’
intra-region variation, without causing ambiguities in what constitutes a region.

Correspondingly, the importance of line and edge information in both biological and
computer vision systems has long been recognised. As in region growing, there is a
fundamental trade-off in edge detection between spatial localisation and noise immunity,
as shown by Canny [16]. The outputs from the edge detection must then be grouped
into boundary curves, to complete the segmentation. Three ways of achieving this have
been described: techniques such as the ‘active contour’ models, which rely on energy
minimisation at pixel level [17], global methods, such as the Hough transform (HT) [18],
or intermediate approaches, such as the hierarchical HT [19] and Multiresolution Fourier
Transform (MFT) based methods [20].

It is clearly attractive to combine region processing with boundary detection to over-
come their respective shortcomings. Haddon and Boyce extended relaxation techniques to
combine edge and region information, using co-occurrence matrices [21]. In MRF mod-
elling, edges are incorporated by the introduction of a binary valued line process [4, 22].
Although the results are generally better with a line process, the problem of parameter
estimation for the joint model is compounded. Also, the size of the line process neigh-
bourhood is tied to that of the gray level process, which is kept small to make the com-
putation tractable. A more relevant example of combining a region based segmentation
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with edge detection was presented by Pavlidis and Liow [23] and [24]. Recently, Zhu and
Yuille reported an algorithm which is claimed to unify a number of current techniques
[25]. Their approach, an iterative Bayesian method, alternates boundary estimation and
region estimation steps. It requires the selection of a number of seed regions for initialisa-
tion of the statistical measurements on which the region estimation is based. It would be
advantageous both to minimise dependence on such initial conditions and for the region
and boundary processing to be autonomous, so that where necessary either could be used
independently of the other.

This paper describes an algorithm combining region and boundary estimation using
maximuma posteriori (MAP) estimation, which satisfies these requirements. It is based
on co-operation between autonomous region and boundary processing; there is no depen-
dence on seeds, nor is a merging step required. The algorithm employs iterative, decision-
directed estimation performed on a multiresolution representation, which ensures both ro-
bustness in noise and efficiency. The model-based estimation process is adaptive and spa-
tially local, avoiding assumptions about homogeneity or size and number of regions which
characterise some earlier algorithms. A two stage combined region-boundary model for
segmentation is introduced in section 2. Then, the algorithm is described in detail, fol-
lowed by results on the segmentation of objects with complex shapes in a high level
of noise (0 dB SNR) and on natural images. Comparative results are presented with a
quad-tree region-only method [11], an MRF based technique Iterated Conditional Modes
(ICM) [26] and on an implementation of the popular Canny edge detector [16].

2 A Two-stage, Region-Boundary Model for Segmenta-
tion

The image model is derived from one quad-tree image model introduced in [27], forms of
which have been applied in the areas of image estimation [28], coding [29] and curve ex-
traction [30]. The image can be visualised as being built up by successive approximation
through scale, beginning with a coarse description at a low resolution and progressively
refining it through scale. To introduce multiple regions, however, a more complex scheme
is necessary: images are realised by a two-stage process. First, regionboundaries (as
connected piecewise linear curves) are defined by a randomly placed set of vertex points.
Secondly, connected regions are modelled as an MRF [31, 4], where the adjacency of the
pixels is constrained by the boundaries within the boundary process.

2.1 Boundary Process

The boundary model differs significantly from that employed in ‘snakes’ and similar
‘active shape’ or deformable models, in that it replaces smoothness constraints on the
curve by a polygonal model defined by a set of vertex points, with spatial co-ordinates������ ���
	���
 , and links between one or more points,� ��� , forming a contour. The ver-
tices may be modelled by any suitable point process in the plane [32], such as a Poisson
process, with probability � ����	���
���������
���� �"!$#&% ��' (1)
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that the contour contains exactly� vertices,
�� �$	 ������� � , distributed randomly in an

area � of the image. The parameter� defines the rate at which vertices appear in the
image. This amounts to a constraint not on thesmoothness, but thecomplexity of the
boundary curve, which is fundamental in the segmentation algorithm: the best boundary
is one with fewest boundary points, among those which approximate the data equally well.
Note that by choosing more complex models than the Poisson process, more sophisticated
and realistic boundaries are possible: (1) represents the minimala priori constraint, yet
provides acomplete boundary representation, since any plane curve of finite length can
be approximated arbitrarily well by a piecewise linear curve. These two aspects make the
model particularly appropriate for MAP estimation, since the number of vertices is the
key parameter defining both the prior probability, via (1) and the likelihood, i.e. the fit to
the data.

2.2 Region Process

A quadtree structure is used in conjunction with the boundaries to define regions, with
the spatial co-ordinates

���� �
	�
 � ��� 	�� 	�	�
 representing square regions� � �
	�
 of size ����� ���
� .
On any given level,	 , these sets are clearly disjoint, and together define a conventional
quadtree tessellation.

A coarse-to-fine refinement strategy is used to split each region block into 4 if the
block contains one or more boundary links� ��� . If there are no boundary features in a
given block, then it is classed as being interior and the quadtree is truncated at that point
(a leaf node). Correspondingly, at any level there are two classes of pixels: those that are
interior pixels and those containing a boundary segment.

Within this irregular lattice structure, the image is modelled as a Gaussian MRF with
zero mean [33, 34, 35, 36]. This requires a suitably defined set of neighbours� �

, for each
leaf of the quadtree

���� �
	 
 : two leaf vertices are linked if their corresponding image blocks
� � �
	�
 share an edge and no boundary link intersects the line joining their centres. This
allowsregion links � ������� � 	 �"! to be defined analogously to boundary links and hence a
region graph. The neighbour set� �

is just the set of regions# for which � ��� � �
.

Expressing the dependence of the value of node
���� �
	�
 on its neighbours (the 2-dimensional

Markov property [31, 26, 4])
� �%$ � �
	�
'&($ � �*) 
 	 #,+�.- 
 � � �%$ � �
	�
/&0$ � �*) 
 	 # � � � �
	 
 


1 24365 ��7 �
�"8 �
	�
 �%$ � �
	�
 7 9

:;=< ��> �@?BADC �E� �
� ��� $ � �
) 
 
GF ! (2)

where $ � �
	 
 is the gray level associated with the leaf node
���� �
	�
 , � �H� are the MRF pa-

rameters and8 �
	 
 are the conditional variances, which depend on the block size. In order
to obtain a realisation at the image plane from the quadtree region model, an interpola-
tion function is defined, which in the simplest case copies each node value$ � �
	�
 to each
pixel in the corresponding block� � �
	�
 . Boundary pixels are simply interpolated from
their neighbours. For some applications, the obvious block artefacts resulting from the
quadtree interpolation may be a problem, but in the present application, it has not proved
to be one.
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(a) after 100 iterations (b) after 1000 iterations

Figure 1: Model realisations for regions derived from ‘shapes’ image. Note the different
block tessellations between (a) and (b).

Examples of realisations of the model, based on links derived from the ‘shapes’ image
are shown in figures 1(a) and 1(b). These show the results of 100 and 1000 iterations.
Because the regions are separate, there is no leakage from one to another and so their gray
levels evolve independently. This indicates that the model does indeed capture important
properties of images.

3 The Segmentation Algorithm

Segmentation is based on the model of section 2, corrupted by additive white Gaussian
noise, giving data which are jointly normal

� ��� � $ �H��� 8 ���
(3)

The algorithm consists of two main stages: an initialisation stage which selects the nodes
of the region and boundary graphs

����� 	�� � !
, followed by an iterative stage which aims

to minimise the energy functions in each graph until convergence (Figure 2). The al-

1. Initialise 	 � ���
� 	�� � !

2. Repeat until converged

(i) Update state of region graph
�
�

(ii) Update state of boundary graph � �

Figure 2: The segmentation algorithm consists of two main stages: initialisation followed
by iterative processing and cooperative interaction between

���
and � � .

gorithm is based on the simplest multiresolution representation: the lowpass pyramid,
[37] [38] [39] [40]. From the pyramid, a set of nodes is selected as forming an estimate
of the model quadtree:	 � ����� 	�� � !

(stage 1). Links to neighbours are then defined in
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a modified form of a region adjacency graph [41] [42]. Each link has a binary state: on
or off, which determines the membership of a node to a given processing neighbourhood.
MAP tests are used in updating the link and node states (step 2(i)), and in node inser-
tion/deletion. Each node has state variables that are updated in step 2: pixel grey level
values and local variances for region nodes, and spatial position and edge strength, local
orientation and corresponding variances for boundary nodes.

The interaction between the processes follows the model described in section 2 above,
with the boundary state affecting the region state probabilities and vice versa. The overall

Grey Level Pyramid Gradient Pyramid

Region Graph

Boundary Graph

off

on

Region Energy Function

 Link
States

Boundary Energy Function

Figure 3: The region and boundary graphs interact via their energy (loglikelihood) func-
tions. Each graph is moved towards a low energy (high probability) state iteratively.

structure is illustrated in figure 3, for a simple image containing a single shape. In effect,
the algorithm changes the states of the two graphs to align both of them more closely with
the energy landscape. The energy represents the edge loglikelihood and it therefore lies
perpendicular to the region links and along the boundary links. Off links in the region
graph, indicating the presence of an edge between adjacent region blocks, contribute a
term to the boundary energy function. ‘On’ links in the boundary graph, where there is
certainty of a boundary at the current interaction, influence the region link states.

Graph refinement takes places by node insertion and deletion after node values have
been updated. Insertion of nodes into the region graph by block splitting parents into 4
children within the quadtree structure, focuses the edges. Conversely, node deletion in
the boundary graph minimises the description length and redistributes boundary nodes to
better fit the gradient energy landscape.

All parameter estimation is performed on-line: the algorithm is unsupervised and
adaptive to the data. This is important if the processing is to be kept as general as possi-
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ble. Statistics such as sample variances are gathered locally using the pyramid structure,
allowing variation in statistical properties across the image: the estimates used in a given
level of the pyramid come from the ancestor node four levels above the given node. The
advantage of such a procedure is illustrated in figure 9, in which the gray level difference
between regions varies considerably, but segmentation is still achieved.

In the following, the details of the algorithm are presented according to Figure 2.
After a description of the initialisation stage, the iterative steps are described separately
for the region and boundary processing. The section is concluded with details about the
node/insertion deletion step, and a discussion on the convergence.

1. Initialisation

Although the segmentation algorithm is iterative, the initial state of the graphs can have
a major impact on both the number of iterations to reach a steady state and, because
the algorithm is deterministic, the quality of the final result. A robust initial estimate is
therefore an important component of the algorithm.

The first step is a smoothing operation performed using a lowpass pyramid [40] which
trades off noise reduction against spatial resolution. Given an image� ��� 	 � � - 	 # ��� �
��� , and a lowpass kernel��� � 	 7�� �
	 	�� � �

, the general form of the processing is

� ��� �
	�
 �
�9

�
� � �

�9
� � � �

��� � � � F
� � � � � F

� �"�0� �
	 � � 
 (4)

where	 � � 	 ���
and � �H� � � 
 � � �H� . The kernel used in this work was designed by a least

squares approach to minimise the effects of aliasing errors in gradient estimation, which
forms a significant part of the overall algorithm [43]. The grey level pyramid is used
directly in computing the initial region graph and forms the input to a gradient estimator,
whose output is used to produce the initial boundary graph.

Region node selection:
���

To initialise the region graph, leaf nodes must be selected from the quad-tree representa-
tion of the pyramid. This process can be made independent of the boundary computation,
using the residual error obtained from prediction of level	 � �

of the pyramid from level	 (as in the Laplacian pyramid [38])
�$ ��� �
	 � � 
�� 9

��� �
��� � � �

��� F � � � �
��� F �"�0� �
	�
 (5)

with a corresponding residual variance estimate

��F��� �
	�
�� 9
��� �

��� � � � � F
� � � � � F

� �"� � �
	 � � 

7 �$ � F

� � � � � F
� �"�0� �
	 � � 
 
 F (6)

A simple and robust test statistic for the presence of edges within the block- 	 # 	�	 is the
normalised residual variance

� ��� �
	�
�� � F��� �
	�

�� F �
	�
 (7)

8



(a) ‘shapes’ 0dB (b) Node selection
��� 	�� �
	�
�� � ���

Figure 4: Initialisation of the region ajacency graph
� �

prior to iterative processing

-0.074 -0.095 0.000
-0.095 0.000 0.095
0.000 0.095 0.074

0.000 0.095 0.074
-0.095 0.000 0.095
-0.074 -0.095 0.000

� � � �
Table 1: ���	� gradient edge kernels:� � 	
� � used to derive orientation estimate� �
	�
 from
grey-level pyramid.

where
�� F �
	 
 denotes sample variance, since nodes containing edges will have a signifi-

cantly higher residual error than interior nodes. If� ��� �
	�

��� �
	�
 , the threshold on level	 ,
the node- 	 # 	B	 is marked; the lowest marked node (ie. highest	 ) in any subtree becomes
a leaf of the quadtree region representation (cf. section 2), ie a vertex

��
> of the region

graph. Figure 4(b) shows the result of this process on the noisy ‘shapes’ image using
� �
	�
�� � ��� . It can be seen that region interiors tend to contain large blocks, while smaller
blocks dominate the boundaries. This allows the regions to ‘grow’ out from the more
reliable ‘core’ of large blocks towards the edges, but avoids the well-documented prob-
lems which conventional multiresolution methods have with high curvature boundaries.
Although the neighbourhood structure for the tree is more complex than a conventional
image array, the processing overhead is more than offset by the relatively small number
of leaf nodes (typically a few hundred).

Boundary node selection: � �

The boundary process is controlled by a gradient field derived from the grey level pyramid.
The initial gradient estimate is obtained by the use of a pair of optimised� ����� 
 spatial
kernels shown in table 1 [40]. The gradient components,� > �
	�
 	

� � ) � �
, are combined

to yield an estimate of the local double-angle gradient vector� ��� �
	�
 . The magnitude of
this vector is a measure of the local edge energy and the argumenttwice the local gradient
angle. The doubling of the the angle, originally proposed by Knutsson [44], is useful in
local averaging and, more significantly, essential in representing the boundaries of vector
data, such as colour or texture features, for which no full ordering exists.

Because of the noise-sensitivity of gradient estimates, smoothing is needed to produce
usable data for the boundary detection. The principal dependences between gradient data
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level Input SNR (dB) Output SNR (dB)
4 50.8 50.8
5 38.4 39.8
6 27.5 32.6
7 13.1 28.0
8 -4.4 21.9

Table 2: Vector estimation errors of gradient enhancement results on ‘shapes’ 0dB image.
SNR of 32dB is approximately a 1 deg. error in angle.

are from two sources: the neighbours� ��� �
	�
 of the - # th pixel on the same level of the
pyramid; the ‘ancestors’ of the pixel on level	 7 �

, � ��� �
	 7 � 
 ,
� � � ��� �
	�
/& � � � � �*) 
 	 � 	 	�� 	 ) ! 
�� � � � ��� �
	 
/& � � � � �
) 
 	 ) � 	 	 � 	 	�� 
 � � ��� �
	�
��

) � 	 7 � 	 � 	 	�� 
 � � ��� �
	 7 � 
 ! 
 (8)

An efficient way to use these correlations is a combination of sequential estimation through
scale [45], followed by iterative estimation on each scale, as outlined below:

For each level	 � 	 �
,

(1) Propagate estimates � ��� �
	 7 � 
 from level 	 7 �
, using inter-

polator ��� � .
(2) Iterative estimation on level 	 , using an anisotropic fil-

ter � � � � � 
 , whose orientation is controlled by the current
estimate � ��� �
	�
 .

Details of the propagation coefficents, design of the anisotropic filter,� � � 
 and as-
sociated parameter estimation are given in [46]. As an illustration, from the magnitude
of the gradient pyramid of figure 5(a) there is clearly no reliable edge information on the
lowest level of the pyramid. Inspection of the lower spatial resolutions, however, shows
that the initial gradient estimation picks up the edges at these levels. The result of recur-
sive filtering in the pyramid is apparent in the output pyramid (figure 5(b)). The vector
estimation errors are given as a SNR of the recursive enhancement process are given in
table 2, as a function of level, from the starting level (4) to full spatial resolution (level 8).
Note that a 1 deg. error in angle corresponds to a SNR of 32dB. It can be seen that there
is a significant improvement in SNR as a result of the processing.

A set of candidate boundary nodes� � � �� � 	 �� � 	 � � � 	 �� � ! is selected, using peak
detection on the gradient pyramid. Selected nodes are refined by choosing among their
children that node having the largest inner product of gradient vectors with the parent, ie.
the quadtree node- 	 # 	�	 maximising the likelihood

� � � ��� �
	�
/& � ��� F � � F �
	 7 � 
 ��� � � ��� �
	�
 7 � ��� F ��� F �
	 7 � 
 
 (9)

where the density� � � 
 is modelled as normal in the experiments. The initial boundary
estimate,� �

, is shown in figure 5(c) for the example ‘shapes’ image.
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(a) Gradient estimation pyramid before recursive filtering

(b) Final gradient estimate (c) Initial boundary estimate� �
.

Figure 5: (a) Initialisation of boundary graph� �
after recursive smoothing of gradient

pyramid of ‘shapes’ image� � � � � � �
. Note that at 0dB SNR, prior to recursive estimation,

the gradient estimate at level 0 contains no valid edge information
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2. Iterative Processing

2(i) Updating Region States

First, the states of the links between pairs of nodes are estimated using

�
���� �

���� �
if
� �H� � � 
�� �%$ � ���� 7 $ � ���� & � 
 �� ��� � � 
 � � $ � ���� 7 $ � ���� & � 
�

otherwise
(10)

� ��� � � 
 is the prior probability that the link between the nodes
����

and
����

is ‘on’ and depends
on an estimate of the likelihood of an edge in the vicinity of node- , based on the gradient
data� . � �H� � � 
�� � � ��� � �6& � 
��

� � ��� � �$
���� � & ��� � � 
 	 (11)

and similarly � ��� � � 
�� � ����� � � & � 
��
� � ��� � � 
���� � & ��� � � 
 (12)

We can approximate the conditional densities� � � & ��� � � 
 and � � � & ��� � � 
 by assuming a
normal model distribution for the gradient magnitude:

� � � & ��� � � 
�� �� ���
	 24365�� 7/� ��� � � ��
�� 7�� 
 F % 	 F 
�� 	 (13)

(the expected mean edge magnitude for block with no edges namely 0) and

� � � & ��� � � 
�� �� ����	 	 (14)

this time taking � ��
�� to be the expected mean. The reason for using� ��
�� is that the
mean magnitude,� ����
 � , will be too small, close to the RMS gradient magnitude	 when
estimated across all the pixels in a block. The prior

� � edge
 is the probability that a link
crosses an edge ( approximated from link intersections in the initial graph configurations).
This provides a way for the boundary processing to influence the region linking. For the
test in equation 10, it is sufficient to calculate the ratio

� �H� � � 
 % � ��� � � 
 .
The conditional densities in equation 10 of the difference between the grey levels at

two neighbouring nodes�
- 	 # 
 under the two hypotheses:

(1) they belong to the same region and

(2) they don’t belong to the same region and have independent means

Both tests, as with estimation of the link prior above, assume a normal model and are
performed by considering their difference$ � 7 $ � at iteration � against the variance of
this statistic i.e. � � � $ � 7 $ � 
 F � � � F� � � F� . For test (1), if the nodes- and # belong to
the same region, their mean difference will be zero and have a variance equal to the intra-
region noise. For test (2) the nodes will have independent means whose difference can at
approximated by the values at� � �

i.e. �%$
�� 7 $ �� 
 . The normal likelihoods are explicitly

calculated from:

� �%$ �� 7 $ �� & � 
 1 2 3 5�� 7 � $ � ���� 7 $ � ���� 
 F
� � � F� � � F� 
 �

� �%$ �� 7 $ �� & � 
 1 2 3 5 � 7 � �%$ � ���� 7 $ � ���� 
 7 �%$ �� 7 $ �� 
 
 F
� � � F� � � F� 
 � (15)
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where$
��
is the estimated grey level at the node- on iteration� and � F� is an estimate of the

intra-region variance between nodes on the same level as
����
.

Having obtained the link states, the node grey levels,$ � are updated. The estimation
scheme shares some features with the Bayesian methods described in [4], but no annealing
is used, and is closer to Besag’s Iterated Conditional Modes (ICM) scheme [26] which
employs a local probability maximisation. The main differences from ICM are the irreg-
ular graph and the dynamic control of neighbourhood sets by the link states, which are
affected by the gradient data. Thus, from the link states�

��H�
, the neighbourhood of node-

is updated
�

�� � � # � �
���� � �"!

(16)

The deterministic update rule amounts to an averaging in the neighbourhood�
��
:

$ �� ��� � $ �� � 9
� ?BA��C

� � $ � ����
(17)

where � � are the model parameters, which for a piecewise constant region model are set
proportional to the area represented by the node� � � & � � �
	 
0& , corresponding to the inverse
of the noise variance at that node. The first term in (17) represents the likelihood and the
second the prior.

Since regions corresponding to quadtree nodes above image level may straddle a
boundary, each such node with a significant probability of containing an edge is tested
for splitting. Any node

����
having at least one ‘off’ link is replaced by its

�
quadtree

children if � � � split & � $ > 	�)
��� � ! 
 �

� � � split & � $ > 	�)
���6� ! 
 (18)

� �
is the set of quadtree children of

����
. The prior

� � � split
 is derived from the gradient
data in a similar fashion to that for the boundary links: it is the posterior probability that
at least one boundary line	 >B� intersects the block

����
� � � split
�� 
��(3

�E> � � �@?�
 C
� � � >B� &

� � � � � � 
 ! 
 (19)

where � � is the set of boundary vertices
�� � whose links intersect the quadtree region de-

fined by
����

and the conditional is the posterior probability that the boundary link between�� > and
�� � is ‘on’.

2(ii) Updating Boundary State

There are two sources of boundary information: the gradient estimates from the filtered
gradient data,��� � � 
 , and the region link and node states at iteration� . A simple way to
include the latter information in the boundary state is to infer a gradient estimate from the
region state. This is done by making a piecewise linear approximation of an edge for any
region link which is ‘off’ at time � , ie. �

���� � �
, using the gray level estimates$

��
. This

gives a ‘prior’ for the gradient��� , which can be optimally combined with the data to give
an estimate at iteration� by the scalar Kalman filter update equation [47]:

�
� � � �

� � �
� � � � 7 � �

� 
 (20)
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where � � � 7 � �
� 
 is the prediction error given the observation and the gain�

�
is calculated

from the (estimated) variances of the two sources:

�
� � ��� � � ���

� �
��� � � � �

� � � ��� � � � � � (21)

As the number of iterations increases, the region quadtree is refined and so the estimates
based on the region states become more reliable. The result is that more weight is given
to them, moving the boundary towards duality with the region graph.

Boundary links are set using a similar criterion to the region links, from the smoothed
gradient data at full image resolution,�

�� � from (20). If 	 ��� � � � �� � � � � 7 ��
 �� � 	 � �
� � �"!

is the line joining boundary vertices
�� � and

�� � , the vector

� ��� �
�

& 	 ��� & 9
� � � � �%?�� C <

� � � � � 
 (22)

represents the normalised gradient data along the line. Then the posterior probability for
the link � ��� � �

is
� � � ��� � � & � ��� 
 1 � � ��� �� � 7 �� � � 
 ��� � ��� 7�� ��� 
 (23)

where
� � � � 
 is the prior probability that two nodes

�
pixels apart are linked and

� ���
is a

vector of unit length in the direction of the line	 ���
. For the experiments reported below, a

normal model of the gradient data is appropriate and the prior was uniform. The variance
of the gradient data was estimated locally using quadtree smoothing, as for the other data
( [46]).

Vertices are constrained to be of degree
� � by selecting the two nodes# 	�) with

maximum link probabilities as neighbours, if more than two pass the linking test of (23).
As for region nodes, the neighbours of a boundary vertex are those to which it is linked at
time �

� � � � # 	 � ��� � �"!
(24)

The result of the link processing is a set of connected sets of vertices, each of which
represents the boundary of a distinct object (see eg. figure 7(c)). As in mostactive contour
models, links are not changed during the update cycle, as the adaptation of the model to
the data is accomplished by operations on the vertices, as explained below.

To adapt the model to the gradient data, each boundary vertex
�� �

is moved to maximise
the probability

� � �� � & � � � � � � 
 	 � 	 	��

 � 	 ��� 	 # � � � ! 
 1 � � �� � 

	� ? A C
� � � ��� 7������ 
 (25)

The prior
� � � 
 is uniform and the density� � � 
 is � 7 	 normal, as in (23) above. The only

way to implement this maximisation is via a local search.
At the same time, to take account of the prior, deletions and insertions into the list of

boundary vertices are made by comparing the probabilities
� � � � > & � � � � � � 
 ! 

�� � � � � � & � 
 � � � ��� & � � � � � � 
 ! 
 � � � � > & � � � � � � 
 ! 
 (26)
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where� is the number of vertices excluding
�� �

and
� � � � � & � 
 � � �"! # % � � � � 
 gives

a Poisson distribution for the number of vertices. Approximate collinearity of the two
links to neighbours is used to select vertices for deletion and new candidates for insertion
are selected from local maxima in the gradient magnitude.

Convergence

Convergence is deemed to have occurred when there is no significant change in the grey
level estimate between iterationsand no significant movement of boundary nodes (less
than 1 in the mean grey level, boundary vertex positional error of less than 0.5 pixel).
This can typically be achieved in 10-20 iterations, the small number reflecting both the
relatively small number of nodes in both boundary and region representations and the
reliability of the initial estimates. The convergence characteristics thus compare very
favourably with stochastic relaxation methods, e.g. simulated annealing, which often
require hundreds of iterations, and the behaviour is more consistent with that of ICM.
Figure 6 demonstrates the rapid convergence by showing the percentages region-link state
changes per iterations for processing on the figure 4(a).
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Figure 6: Percentages link changes per iteration for ‘shapes’ 0dB image compared with
site-replacements using ICM illustrating similar convergence characteristics.

4 Experimental Results

Segmentation experiments were performed on both synthetic (simple object/background)
and natural images. The images were chosen to highlight the following aspects of the new
method:

� performance on simple shapes and those with sharp features (corners) (figure 7),

� performance on complex boundary shape (figure 9(a)-(c)),

� performance at low inter-class contrast in the presence of noise (graphs 10, 11),
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(a) (b) (c)

Figure 7: Results on ‘shapes’ image� � � � � � �
: (a) Boundary result on 0dB image, (b)

Spann-Wilson result on 0dB image, (c) Boundary result on 3dB image.

� ability to locally adapt to variable signal-to-noise (figure 9(a)-(c)),

� ability to separate objects of varying size and close proximity to each other (fig-
ure 9(e)-(f)), and

� performance on natural images with within region grey level variation (figure 12).

Additionally, comparative results are presented using implementations of a quad-tree tech-
nique ( [11]), and supervised region-only (MAP estimation using ICM [26], figure 14) and
boundary-only methods (Canny edge detection [48], figure 13).

The first set of tests was carried out on the synthetic� � � � � � �
‘shapes’ image shown

in figure 4(a) (the initial processing from which the region and boundary graphs are ob-
tained was illustrated in figure 4(b) and figure 5). The luminance difference between the
objects and background is� �

, as is the standard deviation of the added white Gaussian
noise, giving an inter-region signal to noise ratio� � % � � � � �

. Figure 7(a) shows the fi-
nal segmentation result on this test image. The segmentation of the circle compares well
with the result obtained by the algorithm of Spann and Wilson [11](figure 7(b)), while
performance on the objects that have sharp corner features is superior to those reported
elsewhere. Note also that the vertices in the boundary graph do tend towards the vertices
in the polygonal shapes. Figure 7(c) show an almost perfect segmentation result on a 3dB
( � � � �

) version of the ‘shapes’. These results show the boundaries superposed on the
noisy input images. The boundary results illustrate the usefulness of a boundary model
which can accommodate global structure: no pixel model could give such good estimates
from the data. Figures 7(a) and (b) compare the boundaries defined by ‘off’ links between
regions with those from the boundary graph, (a) without and (b) with interaction between
the region and boundary processes. They show that the interaction is effective, both in
moving the two graphs towards a state of duality and in reducing errors: without inter-
action, the region error is some 23% worse and the boundary error 14% worse than with
interaction.

To test the method on more complex shapes, it was applied to the ‘widgets’ image
(figure 9(a)). This image contains 4 objects with irregular boundaries that have been gen-
erated by a random-walk process. To this noise has been added to give SNR’s of 12dB,
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(a) (b)

Figure 8: Results of iterative processing without and with region-boundary interation: (a)
Region off links (white) boundaries (black) without interaction, (b) Region off links and
boundaries with interaction.

9.5dB, 6dB and 0dB in the same image, to provide a test of the local adaptivity of the
method. The result of the region segmentation is shown in figure 9(b); white pixels indi-
cate inter-region links which are ‘off’. The corresponding boundary image (figure 9(c))
shows that, at the lowest SNR, the boundary is no longer closed, but this has not prevented
the region process from separating the figure from the background. Figure 9(f) shows the
results on the ‘blobs’ image at 0dB. This image has regions which are of varying sizes and
some have been deliberately located close together to test the separation abilities of the
segmentation. The resulting boundaries show that the segmentation method can cope well
with the varying size, but not so well with the regions being close together. The boundary
has been linked between some circles because of the unreliability of the local gradient
information. The region result of figure 9(e) does not suffer from these defects. These
results indicate that while boundary information is helpful in many cases, it is not suffi-
cient in all cases: in both of these examples, the region process, guided by the boundary
process, has been successful in identifying closed regions when the boundary estimate is
erroneous.

The quantitative performance of the method over a variety of input SNR’s is shown in
figures 10 and 11. The boundary-error graph shows the root mean square (RMS) bound-
ary displacement. Gradient estimation from the original ‘shapes’ test image was used in
the comparison. The dashed lines show the comparative results for an implementation
of the Spann and Wilson method [11] and a Canny edge-detector [48] with a hysteresis
based thresholding. The parameters of the Canny implementation were chosen separately
for each input image to produce the most pleasing qualitative results. Examples of the
Canny implementation used are presented in figure 13. These figures illustrate well the
compromise between having just enough smoothing to reduce the number of false edges
and completing the object boundaries, whilst preserving the complexities in the boundary
shape.

Figure 11 shows a comparison of the pixel-classification error calculated by counting
the number of correctly classified pixels as a percentage of the total number of image
pixels. Comparison is also made against the quad-tree method from [11], and a ‘region-
only’ MAP estimation using ICM with a simple pair-wise interaction prior [26]. An ML
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(a) (b) (c)

(d) (e) (f)

Figure 9: Results on ‘widgets’ and ‘blobs’ image: (a) ’widgets’ image
(12dB,9.5dB,6dB,0dB), (b) Region result on ‘widgets’ image, (c) Boundary result over-
layed on original, (d) ’blobs’ image (noise-free), (e) Region result on ‘blobs’ image, (f)
Boundary result. Region results have ‘off’ links highlighted.
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Figure 10: Comparative results on a set of progressively degraded images showing RMS
boundary error in pixels (— New method, – – Spann-Wilson, - - - Canny). Boundary
error is estimated as the perpendicular distance from the true object boundary in the noise
free image. Errors below -3dB from Canny estimates are unreliable because of numerous
false-edges in results.

estimate was used as the starting point for the ICM with all class means and noise vari-
ance given to the method a priori. The performance of two unsupervised multi-resolution
methods are boardly similar, but the accuracy of ICM, which is critically reliant on a
good initial estimate, rapidly deteriorates below 0dB. The reasons for poorer performance
of our algorithm at SNR� �

is because our boundary model is piece wise linear and can
only approximate curves in the test image (the circle and and crescent). Note however that
the ICM segmentation is supervised and one would expect it to perform well in relatively
noise free images. Indeed, it is likely that a less sophisticated segmentation approach
than ours would be used on noise-free images. Some example result images of ICM are
presented in 14 showing the initial ML estimate, and estimates at iterations 5 and 15.
The small wrongly classified regions within the objects in figure 14(f) suggest that the
optimisation is indeed trapped in a local minimum.

The results on two natural images are shown in figure 12(a)-(c) and figure 12(d)-
(f). The ‘table’ image was chosen because it has many regions which are essentially
flat and boundary shapes which are mostly polygonal, which conforms reasonably well
to the image model. The region result of figure 12(b) shows that the principal surfaces
have been identified and although there are a few artefacts caused by shadows in the
region segmentation, these are not present in the boundary segmentation, but the main
boundary curves have been detected (figure 12(c)). The ‘Lena’ image of figure 12(d) is
more complex than the ‘table’ image, but still gives good boundary estimates, as can be
seen from the boundary result in figure 12(f): although there are problems in textured
and high curvature regions, such as the eyes, all of the significant boundaries have been
extracted and linked. Because the region model is not adequate for the curved surfaces
in the image, its success is limited, as can be seen from figure 12(e). Note, for example,
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Figure 11: Comparative results on a set of progressively degraded images showing % pixel
classification error. (— New method, – – Spann-Wilson, - - - ICM). Error is calculated as
number classified pixels over total number of pixels. Note that ICM is supervised (means
of objects and noise are given a priori). A maximum-likelihood estimate was used as
initialisation for ICM [26].

that although the boundary around the top of the hat is closed, there are no ‘off’ links
between the two regions for part of the boundary. This is easily explained by reference
to the original image: there is no significant luminance edge at the very top of the hat
and so the boundary can only be inferred, as it has been by the boundary process. The
evidence is not strong enough to ‘persuade’ the region process, however. There are places
in this image where neither process detects boundaries, for example between the hat rim
and the forehead, again because of the lack of a luminance discontinuity, compounded by
a complex arrangement of features. As noted in the introduction, these problems are a
traditional weakness of region-based segmentation: they are a principal reason for using
an explicit boundary representation in the present work. Nonetheless, the region process
has contributed to the boundary identification, giving a result which compares favourably
with Canny edge detection (e.g. figures 13(e) and (f)) and more sophisticated methods
reported elsewhere (e.g. [20]).

5 Conclusions

A new model and algorithm for image segmentation have been described and been shown
to be effective in describing and estimating regions and their boundaries with high accu-
racy from noisy data. In applications where region shape is important, it has a number of
advantages over previously reported methods. It is computationally fast, flexible with re-
spect to region and boundary models and uses only local processing. There are a number
of features of the segmentation method presented here which differentiate it from work
reported elsewhere (eg. [23], [15], [25]). The inhomogeneous block tessellation used by
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(a) (b) (c)

(d) (e) (f)

Figure 12: Results on natural images ‘table’ and ‘Lena’ image. (a) ‘table 1’ original, (b)
Regions result, (c) Boundary result, (d) ‘Lena’ image, (e) Regions result, (c) Boundary
result. ‘Off’ links highlighted in (b) and (e).
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(a) � � � � � � 	B	�� � � � ��� 	���- ��� � � ��� � (b) � � � � � � 	�		� � � � � � 	
� - ��� � � ���

(c) � � � ��� � 	B	�� � � � ��� 	���- ��� � � ��� � (d) � � � � � � 	�		� � � � ��
 � 	���- ��� � � ���

(e) � � � ��� � 	B	�� � � � ��
 	���- ��� � � ��
 � (f) ��� � ��� � 	�		� � � � � � 	
� - ��� � � � �

Figure 13: Comparative results using Canny edge detector with non-maximal suppression
and hyteresis thresholding. Parameters used:� � SD of separable Gaussian and hystere-
sis thersholds

� 	�� � 	���- ��� ! [48]. (All parameter values selected by visual inspection).
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(a) (b) (c)

(d) (e) (f)

Figure 14: Results of running (supervised) Iterated Conditional Modes (ICM) [26] with
a simple pair-wise interaction MRF on ‘shapes’ 0dB and noisy ‘widgets’ images. (a) and
(d) are the initialisation step of ML classification, (b) and (e) after 5 iterations of ICM,
(c) and (f) after 15 iterations. The increasing inter-class noise in (f) has resulted in many
local minima in the final estimate. Compare (f) with figure 9(b).
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the region estimation process, considerably reduces the computational demands of the it-
erative estimation. More significantly, it uses the most reliable data for its starting point,
so that certainty about region membership grows out from a ‘core’ of larger interior blocks
to the smaller boundary blocks as the estimation proceeds. Because of this, it is possible
to avoid the substantial overhead of a stochastic algorithm, without sacrificing the quality
of the result. Similarly, the polygonal boundary representation is general, compact and
reliably estimated from the data. The graph representations of both regions and bound-
aries are, moreover, convenient for subsequent processing, to measure areas or perform
shape recognition, for example. All parameter estimation is performed within the pyra-
mid structure, making the method unsupervised and able to deal with arbitrary numbers
of regions. The gradient estimation process is computationally cheap and robust. The
efficiency of this estimator is partly a consequence of the use of a set of small filtering
kernels designed specifically for pyramid construction and gradient estimation [43]. Fi-
nally, local orientation estimation is used as the vehicle for co-operation, which drives the
region and boundary graphs towards duality. The experimental results have demonstrated
the utility of this approach, with examples illustrating how the two processes together do
a better job than either can alone.

There are several areas, however, in which consolidation and extension are required.
Estimation of the model coefficients for each region, which are required for the iterative
estimation (17), is a difficult problem, which has not been adequately addressed yet: the
piecewise constant model used in the experiments can cope with some variation in grey
level across regions, but is limited. One way to extend the method from grey level to other
region properties, such as colour or local variance, is to make the region estimator multi-
variate. The algorithm in its present form is unsuitable for texture segmentation. However,
as Spann and Wilson [1] show, it is not difficult to extend it to any region measurement,
including colour or texture, simply by replacing the grey level by the appropriate (vector)
of measurements, e.g. local variance, spectral properties or some other discriminator [49].
This could be easily accommodated within the overall structure, including the boundary
estimation because it uses double angles ( [44]).

Extension of the model to 3D imagery (from quad-tree to oct-tree) is also feasible, but
in this case, the boundary model becomes more complicated having to take into account
linear and planar gradient features [50]. The model for boundaries could also be extended
to allow segments between nodes to be curved, i.e. quadratic arc segments or splines,
which would result in a better fit to image curves. Moreover, in some applications, the
two-connectedness of the boundary vertices is an unreasonable model, which could be
replaced by one penalising, but not preventing, vertices of degree� � . Finally, it may
be of interest in some applications that the region and boundary representation allows the
segmentation to be taken to sub-pixel resolution. These areas are the subject of continuing
investigation.
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