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When Can Two Unsupervised Learners A
hieve PACSeparation?Paul W. GoldbergDept. of Computer S
ien
e,University of Warwi
k,Coventry CV4 7AL, U.K.pwg�d
s.warwi
k.a
.ukNovember 1, 2000Abstra
tIn this paper we introdu
e a new framework for studying PAC learning problems,that has pra
ti
al as well as theoreti
al motivations. In our framework the trainingexamples are divided into the two sets asso
iated with the two possible output labels,and ea
h set is sent to a separate (unsupervised) learner. The two learners mustindependently �t probability distributions to their examples, and afterwards thesedistributions are 
ombined to form a hypothesis by labeling test data a

ording tomaximum likelihood. That is, the output label for any input would be the oneasso
iated with the unsupervised learner that gave that input the higher probability.This approa
h is motived by the observation that PAC learning algorithms of thiskind are extendable in a natural way to multi-
lass 
lassi�
ation. It also turns out tointrodu
e new algorithmi
 
hallenges, even for very simple 
on
ept 
lasses. Learningmay be viewed as a 
ooperative game between two players, for whi
h we must designa strategy that they will both use.Within the framework, we give algorithms for learning various simple geometri

on
ept 
lasses. In the boolean domain we show how to learn parity fun
tions, andfun
tions for whi
h there is a 
onstant upper bound on the number of relevant at-tributes. We give an algorithm for learning monomials subje
t to the assumption thatthe input distribution is a produ
t distribution. The main open problem is whethermonomials (or any other 
on
ept 
lass) distinguish learnability in this frameworkfrom standard PAC-learnability.
1



1 Introdu
tionIn a standard learning problem in the Probably Approximately Corre
t (PAC) setting,there is a sour
e of data 
onsisting of instan
es generated by a probability distribution Dover a domain X , labeled using an unknown fun
tion f : X �! f0; 1g. Thus f dividesmembers of X into two sets f�1(0) and f�1(1), and the learner's obje
tive is to �ndgood approximations to those sets. The main algorithmi
 
hallenge is usually to �nd any
lassi�
ation fun
tion h that agrees with the observed data, where h must be 
hosen froma 
lass of fun
tions whose diversity is limited. Thus learning is all about separating thetwo sets.The above s
enario is a spe
ial 
ase of supervised learning, where the learner's task is tolearn a fun
tion. Another learning task whi
h arises frequently in pra
ti
e is unsupervisedlearning, where the task is to estimate a probability distribution that generated a 
olle
tionof observations, assumed to be sampled from that distribution. There are not so manypapers on unsupervised learning in the learning theory literature; the topi
 was introdu
edin [13℄, see also [5, 7, 8, 6℄. This paper is motivated by the simple observation that itmay be possible to use unsupervised learning to do supervised learning, espe
ially whenthe supervised learning problem is to learn a fun
tion whose range is a small set V =fv1; : : : ; vkg. The general approa
h is to �t probability distributions D1; : : : ; Dk to the setsf�1(v1); : : : ; f�1(vk), and derive a 
lassi�er h whi
h labels any x 2 X by the value vi ,where i maximizes Di(x) (i.e. maximizes the likelihood).This approa
h to multi-
lass 
lassi�
ation (for problems su
h as handwritten digitre
ognition) has several advantages over the separation approa
h:1. All 
lasses are treated in the same way. We avoid having to start by 
hoosing somepartition of the 
lasses into two sets for the purpose of applying binary separation.Su
h a partition treats 
lass labels lying on opposite sides di�erently from 
lass labelslying on the same side.2. For appli
ations su
h as handwritten digit re
ognition, it is more natural to modelthe data generation pro
ess in terms of 10 separate probability distributions, than asa 
olle
tion of thresholds between di�erent digits.3. The approa
h is robust to situations where 
lass overlap o

urs (as is usually the
ase in pra
ti
e). Class overlap refers to a situation in a 
lassi�
ation problem wherean input may have more than one possible valid output (
lass label). StandardPAC algorithms do not address this problem (although there have been extensionssu
h as \probabilisti
 
on
epts" [14℄ that do so). Moreover, if we have a model forhow members of ea
h separate 
lass are generated, we 
an easily modify the derived
lassi�
ation fun
tion to deal with a variable mis
lassi�
ation penalty fun
tion, or
hanges in the 
lass priors. This kind of modi�
ation 
annot be applied to a simpledividing line between pairs of 
lasses.In pra
ti
al studies su
h as [15℄ that build a multi-
lass 
lassi�er from a 
olle
tion of2-
lass 
lassi�ers, a distin
tion is made between separating ea
h 
lass from the union ofthe others (1-v-r 
lassi�ers, where 1-v-r stands for one-versus-rest) and pairwise separation(1-v-1 
lassi�ers). Neither are entirely satisfa
tory { for example it may be possible toperform linear 1-v-1 separation for all pairs of 
lasses, but not linear 1-v-r separation,while a problem with 1-v-1 
lassi�
ation (as studied in [15℄) is the diÆ
ulty of 
ombining1



the 
olle
tion of pairwise 
lassi�ers to get an overall 
lassi�
ation, in a prin
ipled way, forexample ensuring that all 
lasses are treated the same way. In [15℄, the �rst test for anyunlabeled input is to apply the separator that distinguishes 0 from 9. Thus 0 and 9 arebeing treated di�erently from other digits (whi
h in turn are also treated di�erently fromea
h other.) See also [9℄ for a review of methods for using binary 
lassi�ers to 
onstru
t amulti-
lass 
lassi�er.Class overlap is the main pra
ti
al reason why it is generally inappropriate, or justsimply impossible, to �nd a separator that isolates inputs with one 
lass label from thosewith another. If 
lass overlap is really present but 
lass separation is nevertheless a
hieved,it usually means the model has over�tted the data. In these situations, it is wrong to tryto separate the di�erent 
lasses perfe
tly.From a theoreti
al PAC learning perspe
tive, we are addressing a natural question inasking to what extent it hampers the learner not to have simultaneous a

ess to exampleswith di�erent labels. The question raises novel algorithmi
 
hallenges, even for some ofthe simplest PAC learning problems. Indeed, a notable feature of this framework is thenumber of hard open problems that seem to arise. In 
ontrast with all other studiesof unsupervised learning, we are interested in its usefulness in ful�lling a given supervisedlearning obje
tive, as opposed to approximating the probability distribution that generatedthe data. As we will see, hypothesis distributions need not be good approximators in orderfor their 
ombination to a
hieve PAC learning.The main theoreti
al question (whi
h we leave open) is of 
ourse: are all PAC learnableproblems also learnable in this framework, and if not, how does the set of learnable problems
ompare with other subsets of PAC learnable problems, for example Statisti
al Query (SQ)learnability [12℄. (In the 
ase of SQ learning, we �nd that parity fun
tions are learnable inthis framework but from [12℄ we know they are not learnable using SQs.)1.1 Formalizing the Learning FrameworkWe use the standard 
onvention of referring to the two 
lasses of inputs asso
iated withthe two 
lass labels as the \positive examples" and the \negative examples". Ea
h learnerhas a

ess to a sour
e of examples having one of the two 
lass labels. More pre
isely, onelearner may (in unit time) draw a sample from D restri
ted to the positive examples, andthe other may draw a sample from D restri
ted to the negative examples. This formalismloses any information about the 
lass priors, i.e. the relative frequen
y of positive andnegative examples, but PAC learnability is equivalent to PAC learnability where the relativefrequen
y of positive/negative examples is 
on
ealed from the learner. (Formally, this isthe equivalen
e of the standard PAC framework with the \two-button" version, where thelearner has a

ess to a \positive example ora
le" and a \negative example ora
le" [10℄.The two-button version 
on
eals the 
lass priors and only gives the learner a

ess to thedistribution as restri
ted to ea
h 
lass label.)We assume that neither unsupervised learner knows whether it is re
eiving the positiveor the negative examples. For a 
on
ept 
lass that is 
losed under 
omplementation, su
hinformation would be of no help to the learners. For a 
on
ept 
lass that is not 
losedunder 
omplementation (su
h as re
tangles), note that it is PAC learnable if and onlyif its 
losure under 
omplementation is PAC learnable. This means that any learningalgorithm in our framework whi
h required 
lass labels to be provided to ea
h of the twolearners, would la
k a robustness property that standard PAC algorithms have. Regarding2



our main open question of whether there exists a 
on
ept 
lass that is PAC-learnable butis not learnable in our framework, any 
on
ept 
lass that distinguishes PAC learnabilityfrom learnability with unsupervised learners that re
eived labeled examples, would have a
losure under 
omplementation that would distinguish PAC learnability from learnabilitywith unsupervised learners that re
eive unlabeled examples. Hen
e we assume examplesare unlabeled.Note however that we �nd that for some 
on
ept 
lasses that are not 
losed under
omplementation (notably monomials, se
tion 3.2) we 
an (without mu
h diÆ
ulty) �ndalgorithms in our setting that use labeled examples, but we have so far not found anyalgorithm that works with unlabeled examples.The 
lass label whi
h the pair of learners assign to input x is the one asso
iated withthe data sent to the learner that assigned x the higher likelihood. If x is given the samelikelihood by both distributions generated by the learners, the tie is broken at random.(This kind of tie may o

ur when both distributions give a probability of 0 to x, a situationwhere \
onservative" hypotheses are appropriate).1.2 Notation and TerminologyWe refer to the two unsupervised learners as learner A and learner B , and we also assumeby 
onvention that learner A is the one re
eiving the positive examples, however as wehave noted above, learner A (and likewise learner B) is not told its identity.Theorem 1 below justi�es the design of algorithms in whi
h instead of insisting that theoutputs of the unsupervised learners de�ne probability distributions, we allow the outputsto be any real values. We say that ea
h learner must 
onstru
t a s
oring fun
tion fromthe domain X to the real numbers R. The 
omparison of the two s
ores assigned to anyx 2 X is used to determine the 
lass label that the hypothesis 
lassi�er assigns to x.We will say that learner A (respe
tively B) \
laims" an input x if it gives x a higherlikelihood or s
ore than learner B (respe
tively A). We say that a learner \reje
ts" aninput if it assigns a likelihood of 0, or alternatively a s
ore of minimal value (it is 
onvenientto use �1 to denote su
h a s
ore). Thus if a learner reje
ts an input, it will be 
laimedby the other learner provided that the other learner does not also reje
t that input.2 General ResultsIn this se
tion we give some general results about the two unsupervised learners framework.(Then in se
tion 3 we give some algorithms for spe
i�
 PAC learning problems. The resultsof se
tion 3 also serve to distinguish our learning setting from other restri
tions of the PACsetting in terms of what 
on
ept 
lasses may be learned.) The following result makes theproblem look more like one of designing a strategy for a 
ooperative game between the twolearners, than a problem of approximating probability distributions. We show that if theoutputs of hypotheses may be any real numbers, then the algorithm may be modi�ed sothat the hypotheses are probability distributions, and the separation is still PAC. Thereis no parti
ular reason to suppose that probability distributions obtained in this way will
onstitute parti
ularly good approximations to the underlying distributions generatingthe instan
es, a

ording to previously-studied metri
s, su
h as variation distan
e or KL-distan
e. 3



Theorem 1 Let X be a domain of inputs. If there is a PAC algorithm in whi
h ea
hunsupervised learner may assign any real number to an element of X , then there is a PACalgorithm in whi
h the learners must 
hoose numbers that integrate or sum to 1 over thedomain (i.e. are a probability distribution).Proof: Let A be an algorithm that returns a s
oring fun
tion. So in a problem instan
e,A is applied twi
e, on
e to A's data and on
e to B 's data, and we obtain fun
tionsfA : X �! R and fB : X �! R. (So for example any x 2 X with fA(x) > fB(x) wouldbe labeled as positive by the overall hypothesis, under our 
onvention that A re
eives thepositive examples.)Our approa
h is to re-s
ale any fun
tion returned by the algorithm so that the out
omeof any 
omparison is preserved, but the new fun
tions sum or integrate to 1. In a 
ase where,for example, Px2X fA(x) = 1 and Px2X fB(x) = 2, this initially appears problemati
: fBhas to be s
aled down, but then the new values of fB may be
ome less than fA. Notehowever that we 
an modify fA by 
hoosing an arbitrary x̂ in A's data, and adding 1 tofA(x̂). This 
an only improve the resulting 
lassi�er (it may 
ause x̂ to be put in A's 
lasswhere previously it was put in B 's 
lass). Now the new fA together with fB 
an both beres
aled down by a fa
tor of 2, and 
omparisons are 
learly preserved.Making the above idea general, suppose that algorithm A takes a sample of data Sand returns a fun
tion f : X �! R. Modify A as follows. De�ne g(x) = ef(x)=(1 + ef(x)),so the range of g is (0; 1). Let P (X) be a probability distribution over X that does notvanish anywhere. Let s = Px2X g(x)P (x), or Rx2X g(x)P (x)dx for 
ontinuous X . s iswell-de�ned and lies in the range (0; 1). Now for a dis
rete domain X , the probabilitydistribution returned by the modi�ed A is D0(x) = g(x)P (x) for all x 2 X ex
ept forsome arbitrary x̂ 2 S , where D0(x̂) = g(x)P (x) + 1 � s. For a 
ontinuous domain theprobability distribution is the mixture of the 
ontinuous density D0(x) = g(x)P (x) with
oeÆ
ient s and a point probability mass lo
ated at some x̂ 2 S with probability 1� s. 2As a 
onsequen
e of the above result, we 
ontinue by giving algorithms for hypothesesthat may output unrestri
ted real numbers.Our other general result about the PAC learning framework we have de�ned providessome further information about how it 
ompares with other variants of PAC learning interms of whi
h 
on
ept 
lasses be
ome learnable. First, note that the framework 
an beextended to a mis
lassi�
ation noise situation by letting ea
h learner have examples thathave been (
orre
tly or in
orre
tly) assigned to the 
lass label asso
iated with that learner.Theorem 2 Any 
on
ept 
lass that is PAC-learnable in the presen
e of uniform mis
las-si�
ation noise 
an be learned by two unsupervised learners in the presen
e of uniformmis
lassi�
ation noise if the input distribution is known to both learners.Proof: Let D be the known distribution over the input domain X . Let C be a 
on
ept
lass that is PAC-learnable with uniform mis
lassi�
ation noise. We may assume that C is
losed under 
omplementation (we have noted that if it is not 
losed under 
omplementa-tion we 
an take it 
losure under 
omplementation whi
h should still be PAC learnable).Ea
h learner takes a set S of N examples, where N is 
hosen su
h that a standardPAC algorithm would have error bound �2. Let D+ (resp. D�) be the probability that anexample generated by D belongs to target T (resp. X nT ). Let � be the noise rate. With4



probability (1��)D+(1��)D++�D� an example re
eived by A belongs to target T ; meanwhile withprobability (1��)D�(1��)D�+�D+ an example re
eived by B 
omes from X n T .Ea
h learner labels all its examples as positive, and then generates a set of N examplesfrom D, ea
h of whi
h is labeled positive with some probability p < 12 , otherwise negative.For learner A, the union of these two sets 
onsists of a set of examples from a new prob-ability distribution D0 , labeled by the same target 
on
ept T . It may be veri�ed that theexamples from T have mis
lassi�
ation noise with noise rate(1� p)(D+(1� �) +D��)(1� p)(D+(1� �) +D��) + 1� �and the examples from X n T have mis
lassi�
ation noise with noise rate� + p(D+(1� �) +D��)� + (D+(1� �) +D��) :It may be veri�ed from these expressions that there is a unique value of p in the range [0; 12 ℄for whi
h these two noise rates are equal, and for that value of p they are both stri
tly lessthan 12 .Hen
e for some value of p we obtain data with uniform mis
lassi�
ation noise. Anappropriate p 
an be found by trying all values p = r� for r = 0; : : : ; 1=2�, and 
he
k-ing whether the hypothesis obtained (using a standard noise-tolerant PAC algorithm) is
onsistent with uniform mis
lassi�
ation noise.The same reasoning applies to learner B using X n T as the target 
on
ept.Let H be the set of examples labeled positive by the resulting hypothesis. Ea
h learnerassigns s
ores as follows. If the observed value of D0(H) is at least 1� �, use a s
ore of 12for all elements of X . Otherwise use a s
ore of 1 for elements of H and a s
ore of 0 forelements of X nH .Let D0A and D0B be the D0's for learners A and B .D(T ) is the probability that a random example from D belongs to T . AssumingD(T ) < 1 � �, we 
an say that error O(�2) with respe
t to D0A implies error O(�) withrespe
t to D. If alternatively D(T ) � 1 � �=2, the hypothesis H found by A will have aprobability D0(H) > 1�� as observed on the data. A learner �nding su
h a hypothesis thengives all examples a s
ore of 12 , allowing B 's s
ores to determine the overall 
lassi�
ation.A similar argument applies for low values of D(T ) (where we expe
t B to assign s
ores of12 ). 2It is probably not the 
ase that noise-free distribution-spe
i�
 learnability with twounsupervised learners is a
tually equivalent to standard PAC-learnability with uniformmis
lassi�
ation noise. This is be
ause, given the Noisy Parity Assumption (that it is hardto PAC-learn parity fun
tions in the presen
e of random mis
lassi�
ation noise given theuniform distribution over input ve
tors), distribution-spe
i�
 learning with two unsuper-vised learners is tra
table (see se
tion 3.3) in a situation where the uniform mis
lassi�
ationnoise situation is intra
table. 5



3 Examples of Con
rete Learning ProblemsThe algorithms in this se
tion give an idea of the new te
hni
al 
hallenges, and also dis-tinguish the learning setting from various others. So for example, the learnability result ofse
tion 3.3 distinguishes it from learnability with uniform mis
lassi�
ation noise or learn-ability with a restri
ted fo
us of attention, and the result of se
tion 3.4 distinguishes itfrom learnability with one-sided error or learnability from positive or negative examplesonly.3.1 Boolean Fun
tions over a Constant Number of VariablesLet the domain X be ve
tors of length n of binary values 0/1 (where we use 0 to representfalse and 1 to represent true). We show how to learn a fun
tion f from the 
lass of booleanfun
tions having the property that only k of the variables are relevant (a�e
t the outputvalue), where k is a 
onstant. There are < (nk )22k fun
tions in this 
lass, so in the PACframework, the brute-for
e approa
h of trying ea
h one until a 
onsistent hypothesis isfound, is a polynomial-time algorithm.We identify the following method for the two unsupervised learners framework. Ea
hunsupervised learner 
onstru
ts a s
oring fun
tion h : X �! f0; 1g using the followingrule. Let S be the sample of ve
tors that one of the learners has at its disposal. For anyve
tor v 2 X , put h(v) = 1 i� for all sets of k attributes in v, the values they take in vequal the values they take in some element of S (and otherwise put h(v) = 0).The above rule 
an be expressed as a polynomial-sized boolean formula, and it 
anbe seen moreover that the formula is satis�ed by elements of S but not by any examplesthat were sent to the other unsupervised learner. (That follows from the fa
t that aboolean formula over k of the variables is being used to distinguish the two sets of booleanve
tors.) Let �A and �B be the formulae 
onstru
ted by learners A and B respe
tively.�A is PAC (being a 
onsistent hypothesis of polynomial des
ription length) and �B is PACwith respe
t to the 
omplement of the target 
on
ept. Hen
e with high probability for vsampled using D, �A(v) 6= �B(v), and so a 
omparison of the values of �A(v) and �B(v)will usually (in the PAC sense) indi
ate 
orre
tly whi
h learner to asso
iate v with.3.2 MonomialsRe
all that a monomial is a boolean fun
tion 
onsisting of the 
onjun
tion of a set of literals(where a literal is either a boolean attribute or its negation). Despite the simpli
ity of this
lass of fun
tions, we have not resolved its learnability in the two unsupervised learnersframework, even for monotone (i.e. negation-free) monomials. If the unsupervised learnersare told whi
h of them has the positive and whi
h the negative examples, then the problemdoes have a simple solution (a property of any 
lass of fun
tions that is learnable fromeither positive examples only or else negative examples only). The \negative" unsupervisedlearner assigns a s
ore of 12 to all boolean ve
tors. The \positive" unsupervised learneruses its data to �nd a PAC hypothesis, and assigns a s
ore of 1 to examples satisfying thathypothesis, and 0 to other examples. 6



3.2.1 Dis
ussion of the Distribution-independent Learning ProblemGiven a monomial f , let pos(f) denote its satisfying assignments. The problem that ariseswhen the unsupervised learners are not told whi
h one is re
eiving the positive examples, isthat the distribution over the negative examples 
ould in fa
t produ
e boolean ve
tors thatsatisfy some monomial m that di�ers from target monomial t, but if D(pos(m)\pos(t)) >� this may give ex
essive error. This problem 
an of 
ourse be handled in the spe
ial
ase where the monomial is over a 
onstant number k of literals, and the algorithm ofse
tion 3.1 
an be used. What happens then is that the unsupervised learners be
ome more\
onservative", tending to assign zero s
ore more often to an instan
e, and in parti
ularwill do so for instan
es belonging to subsets of the domain where the subset 
orrespondsto satisfying assignments of some k-variable monomial, and furthermore no instan
e hasbeen observed in that subset. For monomials over only k literals, this approa
h does notex
essively 
ut down the set of instan
es that are assigned a s
ore of 1.3.2.2 Learnability of Monomials over Ve
tors of Attributes Generated by aProdu
t DistributionIn view of the importan
e of monomials as a 
on
ept 
lass, we 
onsider whether theyare learnable given that the input distribution D belongs to a given 
lass of probabilitydistributions. This situation is intermediate between knowing D exa
tly (in whi
h 
ase bytheorem 2 the problem would be solved sin
e monomials are learnable in the presen
e ofuniform mis
lassi�
ation noise) and the distribution-independent setting. We assume nowthat the 
lass priors are known approximately, sin
e we no longer have the equivalen
e ofthe one-button and two-button versions of PAC learnability. Formally, assume ea
h learner
an sample from D, but if the example drawn belongs to the other learner's 
lass then thelearner is told only that the example belonged to the other 
lass, and no other informationabout it. Hen
e ea
h learner has an \observed 
lass prior", the observed probability thatexamples belong to one's own 
lass.Suppose that D is known to be a produ
t distribution. Let x1; : : : ; xn be the booleanattributes in examples. Let di, i = 1; : : : ; n, be the probability that the i-th attributeequals 1. For attribute xi for whi
h one of the literals xi or xi is in the target monomialt (we assume that they are not both in t), let pi be the probability that the literal issatis�ed, so pi = di for an un-negated literal, otherwise pi = 1� di.We say that attribute xi is \useful" if xi or xi is in t, and also pi 2 [�; 1��=n℄. Note thatif pi < � then the probability that any example is positive is also < �, and if pi > 1� �=nthen only a very small fra
tion of examples 
an be negative due to their value of xi .The AlgorithmWe use the fa
t that for D a produ
t distribution, D restri
ted to the positive examplesof a monomial is also a produ
t distribution. We apply a test (step 3 of the algorithm)to see whether the observed data appears to 
ome from a produ
t distribution. The testidenti�es negative data when there is more than one useful attribute. Our s
oring fun
tionseparately handles the 
ases when < 2 attributes are useful.1. Draw a sample S of size O((n=�)3 log(1Æ )).2. If the observed 
lass prior of the examples is � �=2, reje
t all examples. Otherwisedo the following. 7



3. (produ
t distribution test) For ea
h literal l that is satis�ed by at least a fra
tion�=n of elements of S , let Sl denote elements of S whi
h satisfy l, and 
he
k whetherthe relative frequen
y with whi
h any other literal is satis�ed within Sl , di�ers fromits frequen
y of being satis�ed in S by at least �=n2 . If so, the test \fails" and weassume that the negative examples are being seen, and give all examples a s
ore of1/2. Otherwise (the test is \passed"):4. Let L be the set of literals satis�ed by all elements of S .(a) If an example satis�es all the literals in L and fails to satisfy all literals that aresatis�ed by a fra
tion < �=2n of elements of S , give that example a s
ore of 1.(b) Otherwise, if the example still satis�es L, assign a s
ore of 1=2.(
) Otherwise assign a s
ore of 0.Note: step 3 is a test with \one-sided error" in the sense that we may reasonablyexpe
t all produ
t distributions to pass the test, but there exist distributions other thanprodu
t distributions that may also pass. However, we show below that when a produ
tdistribution restri
ted to the negative data of a monomial passes the test, then there is atmost one useful attribute.3.2.3 Proving That the Algorithm is PACThere must be at least one useful attribute in order for the frequen
y of both positive andnegative examples to ex
eed �. We 
onsider two 
ases: �rst when there is only one usefulattribute, se
ond, when there is more than one.Case 1: In this 
ase, we expe
t the distributions over both the positive and negativeexamples to be 
lose to produ
t distributions, so that the test of step 3 of the algorithmwill be passed in both A's 
ase and B 's 
ase. Learner A gives a s
ore of 1 to exampleswhi
h satisfy the useful literal l, with the ex
eption of a small fra
tion of them due tothe additional requirement in step 4a. Meanwhile, learner B assigns a s
ore of � 12 to allexamples satisfying l, sin
e l is not satis�ed by any of B 's data. Hen
e learner A 
laimsall but a fra
tion < �=2 of the positive data. By a similar argument, learner B 
laims allbut a fra
tion < �=2 of the negative data.Case 2: When there are two useful attributes, the positive examples are still generatedby a produ
t distribution, so A's data pass the test of step 3. Meanwhile, with probability> 1� Æ, B 's data fail this test, sin
e when we 
hoose literal l in target t that happens tobe useful, and remove elements of S whi
h satisfy l, then the 
onditional probability thatany other useful literal is satis�ed, 
hanges by > �=n2 . (A Cherno� bound analysis assuresthat the 
hange will be dete
ted with probability 1 � Æ=2.) All examples are then givens
ores of 1=2, and this allows A to 
laim positives and leave B the negatives.3.3 Parity Fun
tionsA parity fun
tion has an asso
iated subset of the variables, and an asso
iated \targetparity" (even or odd), and evaluates to 1 provided that the parity of the number of \true"elements of that subset agrees with the target parity, otherwise the fun
tion evaluates to 0.This is the only 
on
ept 
lass for whi
h there is an \obvious" algorithm in this framework,8



sin
e parity fun
tions have the distin
tion of being both learnable from positive examplesonly and from negative examples only. Similar to the algorithm of [11℄, ea
h unsupervisedlearner �nds the aÆne subspa
e of GF (2)n spanned by its examples, and assigns a s
oreof 1 to elements of that subspa
e and a s
ore of 0 to all elements of the domain.Clearly these aÆne subspa
es do not interse
t, and if the two subspa
es do not 
overthe whole domain, then the region not 
overed is with high probability a low-probabilityregion.3.4 Unions of IntervalsLet the domain be the real numbers R, and assume that the target 
on
ept is a unionof k intervals in R. We show that this 
on
ept 
lass is learnable by two unsupervisedlearners. This result shows that learnability with two unsupervised learners is distin
tfrom learnability from positive examples only, or from negative examples only.Ea
h learner does the following. Let S be the set of real values that 
onstitutes thedata. De�ne s
oring fun
tion f asf(r) = �� mins2S;s>r(s)� maxs2S;s<r(s)� if r 62 Sf(r) = 1 if r 2 S:This 
hoi
e of s
oring fun
tion ensures that when A's and B 's s
ores are 
ombined,the set of all points that are 
laimed by A 
onsists of a union of at most k intervals, andthis set 
ontains A's data but not B 's data. Hen
e we have a 
onsistent hypothesis ofV-C dimension no more than the target 
on
ept, so this method is PAC (with runtimepolynomial in k, ��1 and Æ�1). Note that the value of k needs to be prior knowledge, in
ontrast with PAC learning in the standard setting, where an appropriate sample size 
anbe identi�ed using the standard on-line approa
h of 
omparing the number of examplesseen so far with the 
omplexity of the simplest 
onsistent 
lassi�er, and 
ontinuing untilthe ratio is large enough.3.5 Re
tangles in the Plane with Bounded Aspe
t RatioLet � denote the length of the target re
tangle divided by the width, and our PAC-learningalgorithm is polynomial in � as well as the standard PAC parameters. This simple 
on
ept
lass turns out to require a relatively 
omplex method, and is worth studying on its own,to indi
ate the problems involved. Possible extensions are dis
ussed in the next se
tion.We do not have a PAC algorithm that works without the bound on the aspe
t ratio.The general idea is that ea
h learner partitions the domain into re
tangles 
ontainingequal numbers of its data points, and given a query point q, 
ompares the 
oordinates ofq with other points in the partition element within whi
h q falls. A high s
ore is givenwhen there exist points in that partition element with similar 
oordinate values.The Algorithm: Ea
h learner does the following.1. Generate a sample of size N = O(� log(Æ�1)=�9).2. Build a partition P of the domain R2 as follows:9



(a) Partition the domain into 1=�2 pie
es using lines normal to the y-axis, su
h thatea
h pie
e 
ontains the same number of data points.1(b) Partition ea
h element of the above partition into 1=�2 pie
es using lines normalto the x-axis, su
h that ea
h pie
e 
ontains the same number of data points.3. For query point q 2 R2 the s
ore assigned to q is 
omputed as follows.(a) Let Pq 2 P be the re
tangle in P 
ontaining q.(b) Let S(Pq) be the sample points that lie inside Pq.(
) Sort S(Pq) [ fqg by x-
oordinate. If q is among the �rst (1� )�1 elements oramong the last (1� )�1 elements, then reje
t q, i.e. assign q a s
ore of �1 andterminate.(d) If q was not reje
ted, de�ne the x-
ost of q to be the di�eren
e between thex-
oordinates of the two neighbors of q.(e) Sort S(Pq) [ fqg by y-
oordinate. If q is among the �rst (1� )�1 elements oramong the last (1� )�1 elements, then reje
t q.(f) If q was not reje
ted, de�ne the y-
ost of q to be the di�eren
e between they-
oordinates of the two neighbors of q.(g) Finally, the s
ore assigned to q is the negation of the sum of the x-
ost andy-
ost.3.5.1 Proving That the Algorithm is PACLet PA be the partition 
onstru
ted by A and let PB be the partition 
onstru
ted byB . Let �A (respe
tively �B ) be the measure on R2 indu
ed by the input distribution Drestri
ted to target T (respe
tively T 0, the 
omplement of T ) and re-normalised, so thatwe have �A(R2) = �B(R2) = 1. So, given region R � R2, �A(R) is the probability thata random input x lies within R 
onditioned on x being an element of T . Let �̂A and�̂B denote the measures �A and �B as observed by A and B respe
tively on the randomexamples used in the algorithm. The well-known V-C theory of [2℄ says that for a 
on
ept
lass C of V-C dimension v, given a sample of size2 O(v log(Æ�1��1)=�), we have that withprobability 1� Æ, j�̂(C)� �(C)j � � for all C 2 Cwhere � is a probability measure and �̂ is the measure as observed on the sample. Notingthat axis-aligned re
tangles in R2 have V-C dimension 4, we dedu
e that if learners A andB draw samples of size O(log(Æ�1��1)=�), then with probability 1� Æ,j�̂A(R)� �A(R)j � � andj�̂B(R)� �B(R)j � �; for all re
tangles R:The following fa
t emerges automati
ally from the V-C bounds:1Throughout we ignore rounding error in situations where for example an equal partition is impossible;su
h rounding will only 
hange quantities by a 
onstant.2This is weaker than the known bound | we are using a weak bound to simplify the presentation.10



Fa
t 3 N is 
hosen su
h that if learners A and B use samples of size N , then withprobability 1�O(Æ) we have that for all re
tangles R:j�̂A(R)� �A(R)j � �9j�̂B(R)� �B(R)j � �9:The following fa
t follows from the way the algorithm 
onstru
ts the partition P :Fa
t 4 PA and PB are ea
h of size (1=�)4, and elements of PA (respe
tively PB) 
ontain(1=�)5 of A's (respe
tively B 's) data points.From fa
t 4, given re
tangle R 2 PA, �̂A(R) = �4 , and 
onsequently j�A(R)� �4j � �9with high probability, using fa
t 3. Clearly all re
tangles in PA interse
t target re
tangle T(similarly members of PB interse
t T 0). Now 
onsider the potential problem of re
tanglesin PB that 
ontain positive examples. We 
ontinue by upper-bounding the number of thosere
tangles, and upper-bounding the amount of damage ea
h one 
an do (due to 
laimingdata examples that should be 
laimed by A).Let P �A � PA be elements of PA whi
h interse
t T 0 (so are not proper subsets of T ).Similarly let P �B denote elements of PB whi
h interse
t T . We show that the number ofelements of P �A and P �B is substantially smaller than the 
ardinalities of PA and PB .Fa
t 5 Any axis-aligned line 
uts (1� )2 elements of PA and similarly (1� )2 elements of PB .Corollary 6 The boundary of T interse
ts at most O((1� )2) elements of PA and similarlyat most O((1� )2) elements of PB .In parti
ular, it interse
ts at most 4:(1� )2 elements of either partition.So partition PB has (1� )4 elements ea
h 
ontaining (1� )5 data points, and only O((1� )2)of them interse
t T . Now we 
onsider how an element R 2 PB 
ould interse
t T . Wedivide the kinds of overlap into1. An edge overlap, where one edge and no verti
es of T are overlapped by R.2. A two-edge overlap, where 2 opposite edges and no 
orner of T are overlapped by R.3. Any overlap where R 
ontains a 
orner of T .We treat these as separate 
ases. Note that sin
e there are at most 4 overlaps oftype 3 we may obtain relatively high bounds on the error they introdu
e, by 
omparisonwith the edge and two-edge overlaps, of whi
h there may be up to (1� )2 in the worst 
ase.Throughout we use the following notation. Let x be a point in target re
tangle T whi
his being assigned s
ores using A's and B 's partitions. Let x 2 re
tangle RA 2 PA andx 2 RB 2 PB , so that RA interse
ts T .Case 1: (edge overlap) RB has an edge overlap with T . Consider steps 3
 and 3e ofthe algorithm. When x is being 
ompared with the points in RB it will have either anx-
oordinate or a y-
oordinate whi
h is maximal or minimal for data points observed inRB . One of these steps of the algorithm will 
ause B to reje
t x. But x will only have11



a low probability (in parti
ular O(�5)) of having a maximal or minimal 
oordinate valueamongst points in RA (sin
e RA 
ontains (1� )5 data points and x is generated by the samedistribution that generated those data points).Case 2: (two-edge overlap) There are at most (1� )2 two-edge overlaps possible. Supposethat in fa
t RB overlaps the top and bottom edges of T (the following argument will applyalso to the other sub-
ase). Hen
e all the two-edge overlaps do in fa
t overlap the top andbottom edges of T . Let xT and yT denote the lengths of T as measured in the x and ydire
tions, so we have xT =yT 2 [1=�; �℄. Then the y-
ost of RB is at least yT . Meanwhile,all but a fra
tion � of boxes in PA will give a y-
ost of � � � yT . Also, all but a fra
tion� of boxes in PA will have x-
osts at most � � xT . Using our aspe
t ratio assumption, thisis at most ��yT . Hen
e, for points in all but a fra
tion � of boxes in PA, the y-
ost willdominate, and the s
ore assigned by B will ex
eed A's s
ore.Case 3: (
orner overlap) Suppose RB overlaps a 
orner of T . We show that RB introdu
eserror O(�), and sin
e there are at most 4 su
h re
tangles, this 
ase is then satisfa
tory. ForRB to introdu
e error > �, it must overlap a fra
tion 
(�) of re
tangles in PA, hen
e > (1� )3re
tangles in PA. In this situation, RB 
ontains 
((1� )3) re
angles in PA in its interior. Onaverage, both the x and y 
oordinates of sample points in these interior re
tangles will be
((1� )) 
loser to ea
h other than the points in RB . This means that only an �-fra
tion ofpoints in these elements of PA will have 
oordinates 
loser to points in RB , than to someother point in the same element of PA. Hen
e all but an �-fra
tion of these points will be
laimed by A.3.5.2 Dis
ussion, possible extensionsObviously we would like to know whether it is possible to have PAC learnability withoutthe restri
tion on the aspe
t ratio of the target re
tangle. The restri
tion is arguablybenign from a pra
ti
al point of view. Alternatively, various reasonable \well-behavedness"restri
tions on the input distribution would probably allow the removal of the aspe
t ratiorestri
tion, and also allow simpler algorithms.The extension of this result to unions of k re
tangles in the plane is fairly straight-forward, assuming that the aspe
t ratio restri
tion is that both the target region and its
omplement are expressible as a union of k re
tangles all with bound � on the aspe
t ratio.The general idea being used is likely to be extendable to any 
onstant dimension, butthen the 
ase analysis (on the di�erent ways that a partition element may interse
t theregion with the opposite 
lass label) may need to be extended. If so it should generalizeto unions of boxes3 in �xed dimension (as studied in [4℄ in the setting of query learning, ageneralization is studied in [3℄ in PAC learning). Finally, if boxes are PAC learnable withtwo unsupervised learners in time polynomial in the dimension, then this would implylearnability of monomials, 
onsidered previously.3A box means the interse
tion of a set of halfspa
es whose bounding hyperplanes are axis-aligned, i.e.ea
h hyperplane is normal to one of the axes. 12



3.6 Linear Separators in the PlaneGiven a set S of points in the plane, it would be valid for an unsupervised learner touse a probability distribution whose domain is the 
onvex hull4 of S , provided that only a\small" fra
tion of elements of S are a
tually verti
es of that 
onvex hull. For a generalPAC algorithm we have to be able to handle the 
ase when the 
onvex hull has most orall of the points at its verti
es, as 
an be expe
ted to happen for an input distributionwhose domain is the boundary of a 
ir
le, for example. Our general approa
h is to startout by 
omputing the 
onvex hull P and give maximal s
ore to points inside P (whi
h areguaranteed to have the same 
lass label as the observed data). Then give an intermediates
ore to points in a polygon Q 
ontaining P , where Q has fewer edges. We argue that theway Q is 
hosen ensures that most points in Q are indeed 
laimed by the learner.3.6.1 The AlgorithmThe general idea is to 
hoose a s
oring fun
tion in su
h a way that we 
an show that theboundary between the 
lasses is pie
ewise linear with O(pN) pie
es, where N is samplesize. This sublinear growth ensures a PAC guarantee, sin
e we have an \O

am" hypothesis| the V-C dimension of pie
ewise linear separators in the plane with O(pN) pie
es isitself O(pN).1. Draw a sample S of size N = O(log(Æ�2��2)=�2).2. Let polygon P be the 
onvex hull of S .3. Let Q be a polygon having � 2 +pN edges su
h that(a) Every edge of Q 
ontains an edge of P(b) Adja
ent edges of Q 
ontain edges of P that are � pN apart in the adja
en
ysequen
e of P 's edges.4. De�ne s
oring fun
tion h as follows.(a) For points in P use a s
ore of 1.(b) For ea
h region 
ontained between P and 2 adja
ent edges of Q, give points inthat region a s
ore of the negation of the area of that region.(
) Reje
t all other points (not in Q).Regarding step 3: Q 
an be found in polynomial time; we allow Q to have 2 + pNedges sin
e P may have 2 a
ute verti
es that for
e pairs of adja
ent edges of Q to 
ontainadja
ent edges of P .4The 
onvex hull of a �nite set S of points is the smallest 
onvex polygon (more generally, polytope)that 
ontains S . Clearly all the verti
es of the 
onvex hull of S are members of S .13
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�gure 13.6.2 Proving That the Algorithm is PACFigure 1 illustrates the 
onstru
tion. Let PA and PB be the 
onvex hulls initially foundby learners A and B respe
tively. They de�ne subsets of the regions 
laimed by A andB respe
tively. Let QA and QB be the polygons Q 
onstru
ted by A and B respe
tively.Let l be a line separating PA and PB . Observe that QA and QB respe
tively 
an ea
honly have at most two edges that 
ross l, and at most one vertex on the opposite side of lfrom PA and PB respe
tively, using the fa
t that ea
h edge of QA 
ontains an edge of PA,and similarly for QB and PB .Hen
e only one of the regions en
losed between PA and two adja
ent edges of QA 
an
ross line l, and potentially be used to 
laim part of the interior of QB . If this region
ontains more than one of the similar regions in QB , then it will not in fa
t 
laim thoseregions of QB , sin
e the s
ore assigned to its interior will be lower. Omitting the details,it is not hard to show using these observations that the region 
laimed by A is en
losedby a polygon with O(pN) edges, and similarly for B . N was 
hosen su
h that the V-Cbound of se
tion 3.5.1 ensures PAC-ness with parameters � and Æ.4 Con
lusion and Open ProblemsThe standard requirement of PAC learning that algorithms must work for any input distri-bution D, appears to give rise to very novel algorithmi
 
hallenges, even for fairly elemen-tary 
omputational learning problems. At the same time however, the resulting algorithmsdo not appear to be appli
able to the sort of 
lass overlap situations that motivated thelearning setting. Probably it will be ne
essary to model learning situations with an addi-tional assumption that D should belong to some given 
lass of distributions, as we did in14



se
tion 3.2.2. Our formalisation of this learning setting will hopefully provide insights intowhat assumptions need to be made about the distribution of inputs, in order for standardpra
ti
al methods of unsupervised learning, su
h as kernel-based smoothing, to be applied.The main open problem is the question of whether there is a 
on
ept 
lass that isPAC-learnable but is not PAC-learnable in the two unsupervised learners framework. Itwould be remarkable if the two learning frameworks were equivalent, in view of the way thePAC 
riterion seems to impose a dis
ipline of 
lass separation on algorithms. Regardingspe
i�
 
on
ept 
lasses, the most interesting one to get an answer for seems to be the 
lassof monomials, whi
h is a spe
ial 
ase of nearly all boolean 
on
ept 
lasses studied in theliterature. We believe that it should be possible to extend the approa
h in se
tion 3.2.2 tothe assumption that D is a mixture of two produ
t distributions, a 
lass of distributionsshown to be learnable in [5, 7℄.Related open questions are: does there exist su
h a 
on
ept 
lass for 
omputation-ally unbounded learners (where the only issue is suÆ
ien
y of information 
ontained ina polynomial-size sample). Also, 
an it be shown that proper PAC-learnability holds forsome 
on
ept 
lass but not in the two unsupervised learners version. (So, we have givenalgorithms for various learning problems that are known to be properly PAC-learnable,but the hypotheses we 
onstru
t do not generally belong to the 
on
ept 
lasses.)With regard to the main open problem, we mention an obvious idea that fails. Take any
on
ept 
lass that is not PAC learnable given standard 
omputational 
omplexity theoreti
assumptions, e.g. boolean 
ir
uits. Augment the representations of positive and negativeexamples with \random" numbers su
h that the number from any positive example andthe number from any negative example between them allow an en
oding of the target
on
ept to be derived by a simple se
ret-sharing s
heme, but the individual numbers areof no use. It looks as if this 
lass should be PAC learnable, but should not be learnablein our framework. The problem is that we have to say whether examples labeled with the\wrong" numbers (
orresponding to an alternative representation) are positive or negative.Then some probability distribution would be able to generate these examples instead ofthe ones we want to use.Referen
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