THE UNIVERSITY OF

WARWICK

Original citation:

Goldberg, Paul W. (2000) When can two unsupervised learners achieve PAC
separation? University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-377

Permanent WRAP url:
http://wrap.warwick.ac.uk/61134

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61134
mailto:publications@warwick.ac.uk

When Can Two Unsupervised Learners Achieve PAC
Separation?

Paul W. Goldberg
Dept. of Computer Science,
University of Warwick,
Coventry CV4 7TAL, U.K.
pwg@dcs.warwick.ac.uk

November 1, 2000

Abstract

In this paper we introduce a new framework for studying PAC learning problems,
that has practical as well as theoretical motivations. In our framework the training
examples are divided into the two sets associated with the two possible output labels,
and each set is sent to a separate (unsupervised) learner. The two learners must
independently fit probability distributions to their examples, and afterwards these
distributions are combined to form a hypothesis by labeling test data according to
maximum likelihood. That is, the output label for any input would be the one
associated with the unsupervised learner that gave that input the higher probability.

This approach is motived by the observation that PAC learning algorithms of this
kind are extendable in a natural way to multi-class classification. It also turns out to
introduce new algorithmic challenges, even for very simple concept classes. Learning
may be viewed as a cooperative game between two players, for which we must design
a strategy that they will both use.

Within the framework, we give algorithms for learning various simple geometric
concept classes. In the boolean domain we show how to learn parity functions, and
functions for which there is a constant upper bound on the number of relevant at-
tributes. We give an algorithm for learning monomials subject to the assumption that
the input distribution is a product distribution. The main open problem is whether
monomials (or any other concept class) distinguish learnability in this framework
from standard PAC-learnability.

1 Introduction

In a standard learning problem in the Probably Approximately Correct (PAC) setting,
there is a source of data consisting of instances generated by a probability distribution D
over a domain X, labeled using an unknown function f : X — {0,1}. Thus f divides
members of X into two sets f~!'(0) and f'(1), and the learner’s objective is to find
good approximations to those sets. The main algorithmic challenge is usually to find any
classification function h that agrees with the observed data, where A must be chosen from
a class of functions whose diversity is limited. Thus learning is all about separating the
two sets.

The above scenario is a special case of supervised learning, where the learner’s task is to
learn a function. Another learning task which arises frequently in practice is unsupervised
learning, where the task is to estimate a probability distribution that generated a collection
of observations, assumed to be sampled from that distribution. There are not so many
papers on unsupervised learning in the learning theory literature; the topic was introduced
in [13], see also [5, 7, 8, 6]. This paper is motivated by the simple observation that it
may be possible to use unsupervised learning to do supervised learning, especially when
the supervised learning problem is to learn a function whose range is a small set V' =
{v1,...,uc}. The general approach is to fit probability distributions Dy, ..., Dy, to the sets
fYv1),..., ft(vg), and derive a classifier h which labels any z € X by the value v;,
where i maximizes D;(z) (i.e. maximizes the likelihood).

This approach to multi-class classification (for problems such as handwritten digit
recognition) has several advantages over the separation approach:

1. All classes are treated in the same way. We avoid having to start by choosing some
partition of the classes into two sets for the purpose of applying binary separation.
Such a partition treats class labels lying on opposite sides differently from class labels
lying on the same side.

2. For applications such as handwritten digit recognition, it is more natural to model
the data generation process in terms of 10 separate probability distributions, than as
a collection of thresholds between different digits.

3. The approach is robust to situations where class overlap occurs (as is usually the
case in practice). Class overlap refers to a situation in a classification problem where
an input may have more than one possible valid output (class label). Standard
PAC algorithms do not address this problem (although there have been extensions
such as “probabilistic concepts” [14] that do so). Moreover, if we have a model for
how members of each separate class are generated, we can easily modify the derived
classification function to deal with a variable misclassification penalty function, or
changes in the class priors. This kind of modification cannot be applied to a simple
dividing line between pairs of classes.

In practical studies such as [15] that build a multi-class classifier from a collection of
2-class classifiers, a distinction is made between separating each class from the union of
the others (1-v-r classifiers, where 1-v-r stands for one-versus-rest) and pairwise separation
(1-v-1 classifiers). Neither are entirely satisfactory — for example it may be possible to
perform linear 1-v-1 separation for all pairs of classes, but not linear 1-v-r separation,
while a problem with 1-v-1 classification (as studied in [15]) is the difficulty of combining

the collection of pairwise classifiers to get an overall classification, in a principled way, for
example ensuring that all classes are treated the same way. In [15], the first test for any
unlabeled input is to apply the separator that distinguishes 0 from 9. Thus 0 and 9 are
being treated differently from other digits (which in turn are also treated differently from
each other.) See also [9] for a review of methods for using binary classifiers to construct a
multi-class classifier.

Class overlap is the main practical reason why it is generally inappropriate, or just
simply impossible, to find a separator that isolates inputs with one class label from those
with another. If class overlap is really present but class separation is nevertheless achieved,
it usually means the model has overfitted the data. In these situations, it is wrong to try
to separate the different classes perfectly.

From a theoretical PAC learning perspective, we are addressing a natural question in
asking to what extent it hampers the learner not to have simultaneous access to examples
with different labels. The question raises novel algorithmic challenges, even for some of
the simplest PAC learning problems. Indeed, a notable feature of this framework is the
number of hard open problems that seem to arise. In contrast with all other studies
of unsupervised learning, we are interested in its usefulness in fulfilling a given supervised
learning objective, as opposed to approximating the probability distribution that generated
the data. As we will see, hypothesis distributions need not be good approximators in order
for their combination to achieve PAC learning.

The main theoretical question (which we leave open) is of course: are all PAC learnable
problems also learnable in this framework, and if not, how does the set of learnable problems
compare with other subsets of PAC learnable problems, for example Statistical Query (SQ)
learnability [12]. (In the case of SQ learning, we find that parity functions are learnable in
this framework but from [12] we know they are not learnable using SQs.)

1.1 Formalizing the Learning Framework

We use the standard convention of referring to the two classes of inputs associated with
the two class labels as the “positive examples” and the “negative examples”. Each learner
has access to a source of examples having one of the two class labels. More precisely, one
learner may (in unit time) draw a sample from D restricted to the positive examples, and
the other may draw a sample from D restricted to the negative examples. This formalism
loses any information about the class priors, i.e. the relative frequency of positive and
negative examples, but PAC learnability is equivalent to PAC learnability where the relative
frequency of positive/negative examples is concealed from the learner. (Formally, this is
the equivalence of the standard PAC framework with the “two-button” version, where the
learner has access to a “positive example oracle” and a “negative example oracle” [10].
The two-button version conceals the class priors and only gives the learner access to the
distribution as restricted to each class label.)

We assume that neither unsupervised learner knows whether it is receiving the positive
or the negative examples. For a concept class that is closed under complementation, such
information would be of no help to the learners. For a concept class that is not closed
under complementation (such as rectangles), note that it is PAC learnable if and only
if its closure under complementation is PAC learnable. This means that any learning
algorithm in our framework which required class labels to be provided to each of the two
learners, would lack a robustness property that standard PAC algorithms have. Regarding

our main open question of whether there exists a concept class that is PAC-learnable but
is not learnable in our framework, any concept class that distinguishes PAC learnability
from learnability with unsupervised learners that received labeled examples, would have a
closure under complementation that would distinguish PAC learnability from learnability
with unsupervised learners that receive unlabeled examples. Hence we assume examples
are unlabeled.

Note however that we find that for some concept classes that are not closed under
complementation (notably monomials, section 3.2) we can (without much difficulty) find
algorithms in our setting that use labeled examples, but we have so far not found any
algorithm that works with unlabeled examples.

The class label which the pair of learners assign to input x is the one associated with
the data sent to the learner that assigned = the higher likelihood. If x is given the same
likelihood by both distributions generated by the learners, the tie is broken at random.
(This kind of tie may occur when both distributions give a probability of 0 to x, a situation
where “conservative” hypotheses are appropriate).

1.2 Notation and Terminology

We refer to the two unsupervised learners as learner A and learner B, and we also assume
by convention that learner A is the one receiving the positive examples, however as we
have noted above, learner A (and likewise learner B) is not told its identity.

Theorem 1 below justifies the design of algorithms in which instead of insisting that the
outputs of the unsupervised learners define probability distributions, we allow the outputs
to be any real values. We say that each learner must construct a scoring function from
the domain X to the real numbers R. The comparison of the two scores assigned to any
x € X is used to determine the class label that the hypothesis classifier assigns to x.

We will say that learner A (respectively B) “claims” an input z if it gives x a higher
likelihood or score than learner B (respectively A). We say that a learner “rejects” an
input if it assigns a likelihood of 0, or alternatively a score of minimal value (it is convenient
to use —oo to denote such a score). Thus if a learner rejects an input, it will be claimed
by the other learner provided that the other learner does not also reject that input.

2 General Results

In this section we give some general results about the two unsupervised learners framework.
(Then in section 3 we give some algorithms for specific PAC learning problems. The results
of section 3 also serve to distinguish our learning setting from other restrictions of the PAC
setting in terms of what concept classes may be learned.) The following result makes the
problem look more like one of designing a strategy for a cooperative game between the two
learners, than a problem of approximating probability distributions. We show that if the
outputs of hypotheses may be any real numbers, then the algorithm may be modified so
that the hypotheses are probability distributions, and the separation is still PAC. There
is no particular reason to suppose that probability distributions obtained in this way will
constitute particularly good approximations to the underlying distributions generating
the instances, according to previously-studied metrics, such as variation distance or KL-
distance.

Theorem 1 Let X be a domain of inputs. If there is a PAC algorithm in which each
unsupervised learner may assign any real number to an element of X, then there is a PAC
algorithm in which the learners must choose numbers that integrate or sum to 1 over the
domain (i.e. are a probability distribution).

Proof: Let A be an algorithm that returns a scoring function. So in a problem instance,
A is applied twice, once to A’s data and once to B’s data, and we obtain functions
fa: X — R and fg: X — R. (So for example any x € X with fa(z) > fp(z) would
be labeled as positive by the overall hypothesis, under our convention that A receives the
positive examples.)

Our approach is to re-scale any function returned by the algorithm so that the outcome
of any comparison is preserved, but the new functions sum or integrate to 1. In a case where,
for example, > ,cx fa(z) =1 and ¥ cx fp(x) = 2, this initially appears problematic: fg
has to be scaled down, but then the new values of fz may become less than f4. Note
however that we can modify f4 by choosing an arbitrary z in A’s data, and adding 1 to
fa(z). This can only improve the resulting classifier (it may cause & to be put in A’s class
where previously it was put in B’s class). Now the new f4 together with fp can both be
rescaled down by a factor of 2, and comparisons are clearly preserved.

Making the above idea general, suppose that algorithm A takes a sample of data S
and returns a function f : X — R.. Modify A as follows. Define g(z) = /@ /(1 4 /@),
so the range of g is (0,1). Let P(X) be a probability distribution over X that does not
vanish anywhere. Let s = Y, .x g(z)P(x), or [,.x g(x)P(z)dz for continuous X. s is
well-defined and lies in the range (0,1). Now for a discrete domain X, the probability
distribution returned by the modified A is D'(x) = g(xz)P(x) for all x € X except for
some arbitrary & € S, where D'(&) = g(z)P(z) + 1 — s. For a continuous domain the
probability distribution is the mixture of the continuous density D'(z) = g(z)P(x) with
coefficient s and a point probability mass located at some Z € S with probability 1 —s. O

As a consequence of the above result, we continue by giving algorithms for hypotheses
that may output unrestricted real numbers.

Our other general result about the PAC learning framework we have defined provides
some further information about how it compares with other variants of PAC learning in
terms of which concept classes become learnable. First, note that the framework can be
extended to a misclassification noise situation by letting each learner have examples that
have been (correctly or incorrectly) assigned to the class label associated with that learner.

Theorem 2 Any concept class that is PAC-learnable in the presence of uniform misclas-
sification noise can be learned by two unsupervised learners in the presence of uniform
misclassification noise if the input distribution is known to both learners.

Proof: Let D be the known distribution over the input domain X. Let C be a concept
class that is PAC-learnable with uniform misclassification noise. We may assume that C is
closed under complementation (we have noted that if it is not closed under complementa-
tion we can take it closure under complementation which should still be PAC learnable).
Each learner takes a set S of N examples, where N is chosen such that a standard
PAC algorithm would have error bound €. Let DT (resp. D™) be the probability that an
example generated by D belongs to target T' (resp. X \ T'). Let v be the noise rate. With

4

probability %

probability (1_(3);’% an example received by B comes from X \ 7.

Each learner labels all its examples as positive, and then generates a set of N examples
from D, each of which is labeled positive with some probability p < %, otherwise negative.
For learner A, the union of these two sets consists of a set of examples from a new prob-
ability distribution D', labeled by the same target concept 7. It may be verified that the
examples from 7" have misclassification noise with noise rate

an example received by A belongs to target 7'; meanwhile with

(1-p)(DT(1—v)+ D v)
(1-p)(D*(1—v)+Dv)+1—v

and the examples from X \ 7" have misclassification noise with noise rate

v+p(Dt(1—v)+ D7)
v+ (Dt(1—v)+ D v) "

It may be verified from these expressions that there is a unique value of p in the range [0, %]
for which these two noise rates are equal, and for that value of p they are both strictly less

than %

Hence for some value of p we obtain data with uniform misclassification noise. An
appropriate p can be found by trying all values p = re for r = 0,...,1/2¢, and check-
ing whether the hypothesis obtained (using a standard noise-tolerant PAC algorithm) is
consistent with uniform misclassification noise.

The same reasoning applies to learner B using X \ T as the target concept.

Let H be the set of examples labeled positive by the resulting hypothesis. Each learner
assigns scores as follows. If the observed value of D'(H) is at least 1 — €, use a score of 3
for all elements of X. Otherwise use a score of 1 for elements of H and a score of 0 for
elements of X \ H.

Let D'y, and D', be the D"’s for learners A and B.

D(T) is the probability that a random example from D belongs to T. Assuming
D(T) < 1 — ¢, we can say that error O(e®) with respect to D', implies error O(e) with
respect to D. If alternatively D(T) > 1 — ¢/2, the hypothesis H found by A will have a
probability D'(H) > 1—¢ as observed on the data. A learner finding such a hypothesis then
gives all examples a score of %, allowing B’s scores to determine the overall classification.
A similar argument applies for low values of D(T) (where we expect B to assign scores of
3). O

It is probably not the case that noise-free distribution-specific learnability with two
unsupervised learners is actually equivalent to standard PAC-learnability with uniform
misclassification noise. This is because, given the Noisy Parity Assumption (that it is hard
to PAC-learn parity functions in the presence of random misclassification noise given the
uniform distribution over input vectors), distribution-specific learning with two unsuper-
vised learners is tractable (see section 3.3) in a situation where the uniform misclassification
noise situation is intractable.

3 Examples of Concrete Learning Problems

The algorithms in this section give an idea of the new technical challenges, and also dis-
tinguish the learning setting from various others. So for example, the learnability result of
section 3.3 distinguishes it from learnability with uniform misclassification noise or learn-
ability with a restricted focus of attention, and the result of section 3.4 distinguishes it
from learnability with one-sided error or learnability from positive or negative examples
only.

3.1 Boolean Functions over a Constant Number of Variables

Let the domain X be vectors of length n of binary values 0/1 (where we use 0 to represent
false and 1 to represent true). We show how to learn a function f from the class of boolean
functions having the property that only k of the variables are relevant (affect the output

value), where k is a constant. There are < (:)QQk functions in this class, so in the PAC
framework, the brute-force approach of trying each one until a consistent hypothesis is
found, is a polynomial-time algorithm.

We identify the following method for the two unsupervised learners framework. Each
unsupervised learner constructs a scoring function h : X — {0,1} using the following
rule. Let S be the sample of vectors that one of the learners has at its disposal. For any
vector v € X, put h(v) = 1 iff for all sets of k attributes in v, the values they take in v
equal the values they take in some element of S (and otherwise put h(v) = 0).

The above rule can be expressed as a polynomial-sized boolean formula, and it can
be seen moreover that the formula is satisfied by elements of S but not by any examples
that were sent to the other unsupervised learner. (That follows from the fact that a
boolean formula over & of the variables is being used to distinguish the two sets of boolean
vectors.) Let ¢4 and ¢p be the formulae constructed by learners A and B respectively.
b4 is PAC (being a consistent hypothesis of polynomial description length) and ¢p is PAC
with respect to the complement of the target concept. Hence with high probability for v
sampled using D, ¢4(v) # ¢p(v), and so a comparison of the values of ¢4(v) and ¢p(v)
will usually (in the PAC sense) indicate correctly which learner to associate v with.

3.2 Monomials

Recall that a monomial is a boolean function consisting of the conjunction of a set of literals
(where a literal is either a boolean attribute or its negation). Despite the simplicity of this
class of functions, we have not resolved its learnability in the two unsupervised learners
framework, even for monotone (i.e. negation-free) monomials. If the unsupervised learners
are told which of them has the positive and which the negative examples, then the problem
does have a simple solution (a property of any class of functions that is learnable from
either positive examples only or else negative examples only). The “negative” unsupervised
learner assigns a score of % to all boolean vectors. The “positive” unsupervised learner
uses its data to find a PAC hypothesis, and assigns a score of 1 to examples satisfying that
hypothesis, and 0 to other examples.

3.2.1 Discussion of the Distribution-independent Learning Problem

Given a monomial f, let pos(f) denote its satisfying assignments. The problem that arises
when the unsupervised learners are not told which one is receiving the positive examples, is
that the distribution over the negative examples could in fact produce boolean vectors that
satisfy some monomial m that differs from target monomial ¢, but if D(pos(m)Npos(t)) >
€ this may give excessive error. This problem can of course be handled in the special
case where the monomial is over a constant number £ of literals, and the algorithm of
section 3.1 can be used. What happens then is that the unsupervised learners become more
“conservative”, tending to assign zero score more often to an instance, and in particular
will do so for instances belonging to subsets of the domain where the subset corresponds
to satisfying assignments of some k-variable monomial, and furthermore no instance has
been observed in that subset. For monomials over only k£ literals, this approach does not
excessively cut down the set of instances that are assigned a score of 1.

3.2.2 Learnability of Monomials over Vectors of Attributes Generated by a
Product Distribution

In view of the importance of monomials as a concept class, we consider whether they
are learnable given that the input distribution D belongs to a given class of probability
distributions. This situation is intermediate between knowing D exactly (in which case by
theorem 2 the problem would be solved since monomials are learnable in the presence of
uniform misclassification noise) and the distribution-independent setting. We assume now
that the class priors are known approximately, since we no longer have the equivalence of
the one-button and two-button versions of PAC learnability. Formally, assume each learner
can sample from D, but if the example drawn belongs to the other learner’s class then the
learner is told only that the example belonged to the other class, and no other information
about it. Hence each learner has an “observed class prior”, the observed probability that
examples belong to one’s own class.

Suppose that D is known to be a product distribution. Let x1,...,z, be the boolean
attributes in examples. Let d;, ¢« = 1,...,n, be the probability that the ¢-th attribute
equals 1. For attribute x; for which one of the literals z; or Z; is in the target monomial
t (we assume that they are not both in t), let p; be the probability that the literal is
satisfied, so p; = d; for an un-negated literal, otherwise p; = 1 — dj.

We say that attribute x; is “useful” if x; or 77 is in ¢, and also p; € [¢,1—¢/n]. Note that
if p; < € then the probability that any example is positive is also < €, and if p; > 1 —¢/n
then only a very small fraction of examples can be negative due to their value of z;.

The Algorithm

We use the fact that for D a product distribution, D restricted to the positive examples
of a monomial is also a product distribution. We apply a test (step 3 of the algorithm)
to see whether the observed data appears to come from a product distribution. The test
identifies negative data when there is more than one useful attribute. Our scoring function
separately handles the cases when < 2 attributes are useful.

1. Draw a sample S of size O((n/e)*log(3)).

2. If the observed class prior of the examples is < €/2, reject all examples. Otherwise
do the following.

3. (product distribution test) For each literal [that is satisfied by at least a fraction
¢/n of elements of S, let S; denote elements of S which satisfy [, and check whether
the relative frequency with which any other literal is satisfied within S, differs from
its frequency of being satisfied in S by at least ¢/n?. If so, the test “fails” and we
assume that the negative examples are being seen, and give all examples a score of
1/2. Otherwise (the test is “passed”):

4. Let L be the set of literals satisfied by all elements of S.

(a) If an example satisfies all the literals in L and fails to satisfy all literals that are
satisfied by a fraction < €/2n of elements of S, give that example a score of 1.

(b) Otherwise, if the example still satisfies L, assign a score of 1/2.

(c) Otherwise assign a score of 0.

Note: step 3 is a test with “one-sided error” in the sense that we may reasonably
expect all product distributions to pass the test, but there exist distributions other than
product distributions that may also pass. However, we show below that when a product
distribution restricted to the negative data of a monomial passes the test, then there is at
most one useful attribute.

3.2.3 Proving That the Algorithm is PAC

There must be at least one useful attribute in order for the frequency of both positive and
negative examples to exceed €. We consider two cases: first when there is only one useful
attribute, second, when there is more than one.

Case 1: In this case, we expect the distributions over both the positive and negative
examples to be close to product distributions, so that the test of step 3 of the algorithm
will be passed in both A’s case and B’s case. Learner A gives a score of 1 to examples
which satisfy the useful literal [, with the exception of a small fraction of them due to
the additional requirement in step 4a. Meanwhile, learner B assigns a score of < % to all
examples satisfying [, since [is not satisfied by any of B’s data. Hence learner A claims
all but a fraction < ¢/2 of the positive data. By a similar argument, learner B claims all
but a fraction < €/2 of the negative data.

Case 2: When there are two useful attributes, the positive examples are still generated
by a product distribution, so A’s data pass the test of step 3. Meanwhile, with probability
> 1 — 0, B’s data fail this test, since when we choose literal [in target ¢ that happens to
be useful, and remove elements of S which satisfy [, then the conditional probability that
any other useful literal is satisfied, changes by > €/n?. (A Chernoff bound analysis assures
that the change will be detected with probability 1 — §/2.) All examples are then given
scores of 1/2, and this allows A to claim positives and leave B the negatives.

3.3 Parity Functions

A parity function has an associated subset of the variables, and an associated “target
parity” (even or odd), and evaluates to 1 provided that the parity of the number of “true”
elements of that subset agrees with the target parity, otherwise the function evaluates to 0.
This is the only concept class for which there is an “obvious” algorithm in this framework,

since parity functions have the distinction of being both learnable from positive examples
only and from negative examples only. Similar to the algorithm of [11], each unsupervised
learner finds the affine subspace of GF(2)" spanned by its examples, and assigns a score
of 1 to elements of that subspace and a score of 0 to all elements of the domain.

Clearly these affine subspaces do not intersect, and if the two subspaces do not cover
the whole domain, then the region not covered is with high probability a low-probability
region.

3.4 Unions of Intervals

Let the domain be the real numbers R, and assume that the target concept is a union
of k intervals in R. We show that this concept class is learnable by two unsupervised
learners. This result shows that learnability with two unsupervised learners is distinct
from learnability from positive examples only, or from negative examples only.

Each learner does the following. Let S be the set of real values that constitutes the
data. Define scoring function f as

f(r):—(min (s) — max (s)) ifrgs

SES,s>T sES,s<r

f(ry=1ifres.

This choice of scoring function ensures that when A’s and B’s scores are combined,
the set of all points that are claimed by A consists of a union of at most k intervals, and
this set contains A’s data but not B’s data. Hence we have a consistent hypothesis of
V-C dimension no more than the target concept, so this method is PAC (with runtime
polynomial in &k, ¢=" and 6~'). Note that the value of k needs to be prior knowledge, in
contrast with PAC learning in the standard setting, where an appropriate sample size can
be identified using the standard on-line approach of comparing the number of examples
seen so far with the complexity of the simplest consistent classifier, and continuing until
the ratio is large enough.

3.5 Rectangles in the Plane with Bounded Aspect Ratio

Let « denote the length of the target rectangle divided by the width, and our PAC-learning
algorithm is polynomial in a as well as the standard PAC parameters. This simple concept
class turns out to require a relatively complex method, and is worth studying on its own,
to indicate the problems involved. Possible extensions are discussed in the next section.
We do not have a PAC algorithm that works without the bound on the aspect ratio.

The general idea is that each learner partitions the domain into rectangles containing
equal numbers of its data points, and given a query point q, compares the coordinates of
q with other points in the partition element within which q falls. A high score is given
when there exist points in that partition element with similar coordinate values.

The Algorithm: Each learner does the following.

1. Generate a sample of size N = O(alog(d~1)/€?).

2. Build a partition P of the domain R? as follows:

a) Partition the domain into 1/€? pieces using lines normal to the y-axis, such that
g (]
each piece contains the same number of data points.!

(b) Partition each element of the above partition into 1/¢? pieces using lines normal
to the x-axis, such that each piece contains the same number of data points.

3. For query point q € R? the score assigned to q is computed as follows.

(a) Let Py € P be the rectangle in P containing q.
(b) Let S(P4) be the sample points that lie inside P,.

(c) Sort S(Py) U {q} by z-coordinate. If q is among the first (+)~" elements or

among the last (%)*1 elements, then reject q, 7.e. assign q a score of —oo and
terminate.

(d) If g was not rejected, define the z-cost of q to be the difference between the
x-coordinates of the two neighbors of q.

(e) Sort S(P4) U{q} by y-coordinate. If q is among the first ()" elements or
among the last (£)~! elements, then reject q.

(f) If g was not rejected, define the y-cost of q to be the difference between the
y-coordinates of the two neighbors of q.

(g) Finally, the score assigned to q is the negation of the sum of the z-cost and
y-cost.

3.5.1 Proving That the Algorithm is PAC

Let P4 be the partition constructed by A and let Pg be the partition constructed by
B. Let pa (respectively pg) be the measure on R? induced by the input distribution D
restricted to target T' (respectively 7", the complement of 7T') and re-normalised, so that
we have 14(R?) = up(R?) = 1. So, given region R C R?, u4(R) is the probability that
a random input x lies within R conditioned on z being an element of 7. Let 14 and
jip denote the measures p, and pup as observed by A and B respectively on the random
examples used in the algorithm. The well-known V-C theory of [2] says that for a concept
class C of V-C dimension v, given a sample of size? O(vlog(d te ')/e), we have that with
probability 1 — 6,
|2(C) — u(C)| <eforall C el

where p is a probability measure and i is the measure as observed on the sample. Noting
that axis-aligned rectangles in R? have V-C dimension 4, we deduce that if learners A and
B draw samples of size O(log(d ‘e !)/e), then with probability 1 — 4,

|fia(R) — pa(R)| < € and

\ip(R) — pp(R)| < ¢, for all rectangles R.

The following fact emerges automatically from the V-C bounds:

!Throughout we ignore rounding error in situations where for example an equal partition is impossible;
such rounding will only change quantities by a constant.
2This is weaker than the known bound — we are using a weak bound to simplify the presentation.

10

Fact 3 N is chosen such that if learners A and B use samples of size N, then with
probability 1 — O(§) we have that for all rectangles R:

lita(R) — pa(R)] < €
iip(R) — up(R)| < €.
The following fact follows from the way the algorithm constructs the partition P:

Fact 4 P4 and Pp are each of size (1/€)*, and elements of Py (respectively Pg) contain
(1/€)° of A’s (respectively B’s) data points.

From fact 4, given rectangle R € Py, jia(R) = €', and consequently |ps(R) — €*| < €
with high probability, using fact 3. Clearly all rectangles in P, intersect target rectangle T
(similarly members of Pp intersect 7"). Now consider the potential problem of rectangles
in Pp that contain positive examples. We continue by upper-bounding the number of those
rectangles, and upper-bounding the amount of damage each one can do (due to claiming
data examples that should be claimed by A).

Let P; C P4 be elements of P4 which intersect 7" (so are not proper subsets of T).
Similarly let Pj denote elements of Pp which intersect 7. We show that the number of
elements of P} and P} is substantially smaller than the cardinalities of P4 and Pp.

Fact 5 Any azis-aligned line cuts (*)? elements of Pa and similarly (£)* elements of Pg.

Corollary 6 The boundary of T intersects at most O((£)?) elements of Pa and similarly
at most O((%)?) elements of Pg.

2

In particular, it intersects at most 4(%) elements of either partition.

So partition Pg has (£)* elements each containing (£)° data points, and only O((1)?)

of them intersect T'. Now we consider how an element R € Pp could intersect 7. We
divide the kinds of overlap into

1. An edge overlap, where one edge and no vertices of T" are overlapped by R.
2. A two-edge overlap, where 2 opposite edges and no corner of T" are overlapped by R.
3. Any overlap where R contains a corner of T'.

We treat these as separate cases. Note that since there are at most 4 overlaps of
type 3 we may obtain relatively high bounds on the error they introduce, by comparison
with the edge and two-edge overlaps, of which there may be up to (%)2 in the worst case.
Throughout we use the following notation. Let x be a point in target rectangle 7" which
is being assigned scores using A’s and B’s partitions. Let x € rectangle Ry € P, and
X € Rg € Ppg, so that R, intersects T .

Case 1: (edge overlap) Rp has an edge overlap with 7. Consider steps 3¢ and 3e of
the algorithm. When x is being compared with the points in Rp it will have either an
x-coordinate or a y-coordinate which is maximal or minimal for data points observed in
Rp. One of these steps of the algorithm will cause B to reject x. But x will only have

11

a low probability (in particular O(€”)) of having a maximal or minimal coordinate value
amongst points in R4 (since R4 contains (%)5 data points and x is generated by the same
distribution that generated those data points).

Case 2: (two-edge overlap) There are at most (%)2 two-edge overlaps possible. Suppose
that in fact Rp overlaps the top and bottom edges of T (the following argument will apply
also to the other sub-case). Hence all the two-edge overlaps do in fact overlap the top and
bottom edges of T'. Let xr and yr denote the lengths of T" as measured in the z and y
directions, so we have zr/yr € [1/a, «|. Then the y-cost of Rp is at least yr. Meanwhile,
all but a fraction € of boxes in P4 will give a y-cost of < € -yp. Also, all but a fraction
€ of boxes in P, will have x-costs at most € - xr. Using our aspect ratio assumption, this
is at most eayr. Hence, for points in all but a fraction € of boxes in P4, the y-cost will
dominate, and the score assigned by B will exceed A’s score.

Case 3: (corner overlap) Suppose Rp overlaps a corner of T. We show that Rp introduces
error O(e), and since there are at most 4 such rectangles, this case is then satisfactory. For
Rp to introduce error > e, it must overlap a fraction Q(e) of rectangles in Py, hence > (1)3

rectangles in P4. In this situation, Rp contains Q((1)®) recangles in P4 in its interior. On
average, both the z and y coordinates of sample points in these interior rectangles will be
Q((%)) closer to each other than the points in Rp. This means that only an e-fraction of
points in these elements of P, will have coordinates closer to points in Rg, than to some
other point in the same element of P,. Hence all but an e-fraction of these points will be
claimed by A.

3.5.2 Discussion, possible extensions

Obviously we would like to know whether it is possible to have PAC learnability without
the restriction on the aspect ratio of the target rectangle. The restriction is arguably
benign from a practical point of view. Alternatively, various reasonable “well-behavedness”
restrictions on the input distribution would probably allow the removal of the aspect ratio
restriction, and also allow simpler algorithms.

The extension of this result to unions of k rectangles in the plane is fairly straight-
forward, assuming that the aspect ratio restriction is that both the target region and its
complement are expressible as a union of k£ rectangles all with bound « on the aspect ratio.

The general idea being used is likely to be extendable to any constant dimension, but
then the case analysis (on the different ways that a partition element may intersect the
region with the opposite class label) may need to be extended. If so it should generalize
to unions of boxes?® in fixed dimension (as studied in [4] in the setting of query learning, a
generalization is studied in [3] in PAC learning). Finally, if boxes are PAC learnable with
two unsupervised learners in time polynomial in the dimension, then this would imply
learnability of monomials, considered previously.

3A boxr means the intersection of a set of halfspaces whose bounding hyperplanes are axis-aligned, i.e.
each hyperplane is normal to one of the axes.

12

3.6 Linear Separators in the Plane

Given a set S of points in the plane, it would be valid for an unsupervised learner to
use a probability distribution whose domain is the convex hull* of S, provided that only a
“small” fraction of elements of S are actually vertices of that conver hull. For a general
PAC algorithm we have to be able to handle the case when the convex hull has most or
all of the points at its vertices, as can be expected to happen for an input distribution
whose domain is the boundary of a circle, for example. Our general approach is to start
out by computing the convex hull P and give maximal score to points inside P (which are
guaranteed to have the same class label as the observed data). Then give an intermediate
score to points in a polygon () containing P, where () has fewer edges. We argue that the
way () is chosen ensures that most points in () are indeed claimed by the learner.

3.6.1 The Algorithm

The general idea is to choose a scoring function in such a way that we can show that the
boundary between the classes is piecewise linear with O(\/N) pieces, where N is sample
size. This sublinear growth ensures a PAC guarantee, since we have an “Occam” hypothesis
— the V-C dimension of piecewise linear separators in the plane with O(\/N) pieces is

itself O(vV/N).

1. Draw a sample S of size N = O(log(d ¢ ?)/€?).
2. Let polygon P be the convex hull of S.
3. Let @ be a polygon having < 2 + /N edges such that

(a) Every edge of) contains an edge of P

(b) Adjacent edges of @ contain edges of P that are < /N apart in the adjacency
sequence of P’s edges.

4. Define scoring function h as follows.

(a) For points in P use a score of 1.

(b) For each region contained between P and 2 adjacent edges of @), give points in
that region a score of the negation of the area of that region.

(c) Reject all other points (not in Q).

Regarding step 3:) can be found in polynomial time; we allow @) to have 2 + N
edges since P may have 2 acute vertices that force pairs of adjacent edges of) to contain
adjacent edges of P.

4The convez hull of a finite set S of points is the smallest convex polygon (more generally, polytope)
that contains S. Clearly all the vertices of the convex hull of S are members of S.

13

shaded region is
clamed by A

3.6.2 Proving That the Algorithm is PAC

Figure 1 illustrates the construction. Let P4, and Pg be the convex hulls initially found
by learners A and B respectively. They define subsets of the regions claimed by A and
B respectively. Let Q4 and Qg be the polygons () constructed by A and B respectively.
Let [be a line separating P4, and Pgp. Observe that Q4 and (Qp respectively can each
only have at most two edges that cross [, and at most one vertex on the opposite side of [
from P, and Pp respectively, using the fact that each edge of (4 contains an edge of Py,
and similarly for () and Pg.

Hence only one of the regions enclosed between P4 and two adjacent edges of (Q4 can
cross line [, and potentially be used to claim part of the interior of Q. If this region
contains more than one of the similar regions in ()g, then it will not in fact claim those
regions of (Y, since the score assigned to its interior will be lower. Omitting the details,
it is not hard to show using these observations that the region claimed by A is enclosed
by a polygon with O(v/N) edges, and similarly for B. N was chosen such that the V-C
bound of section 3.5.1 ensures PAC-ness with parameters ¢ and 9.

4 Conclusion and Open Problems

The standard requirement of PAC learning that algorithms must work for any input distri-
bution D, appears to give rise to very novel algorithmic challenges, even for fairly elemen-
tary computational learning problems. At the same time however, the resulting algorithms
do not appear to be applicable to the sort of class overlap situations that motivated the
learning setting. Probably it will be necessary to model learning situations with an addi-
tional assumption that D should belong to some given class of distributions, as we did in

14

section 3.2.2. Our formalisation of this learning setting will hopefully provide insights into
what assumptions need to be made about the distribution of inputs, in order for standard
practical methods of unsupervised learning, such as kernel-based smoothing, to be applied.

The main open problem is the question of whether there is a concept class that is
PAC-learnable but is not PAC-learnable in the two unsupervised learners framework. It
would be remarkable if the two learning frameworks were equivalent, in view of the way the
PAC criterion seems to impose a discipline of class separation on algorithms. Regarding
specific concept classes, the most interesting one to get an answer for seems to be the class
of monomials, which is a special case of nearly all boolean concept classes studied in the
literature. We believe that it should be possible to extend the approach in section 3.2.2 to
the assumption that D is a mixture of two product distributions, a class of distributions
shown to be learnable in [5, 7].

Related open questions are: does there exist such a concept class for computation-
ally unbounded learners (where the only issue is sufficiency of information contained in
a polynomial-size sample). Also, can it be shown that proper PAC-learnability holds for
some concept class but not in the two unsupervised learners version. (So, we have given
algorithms for various learning problems that are known to be properly PAC-learnable,
but the hypotheses we construct do not generally belong to the concept classes.)

With regard to the main open problem, we mention an obvious idea that fails. Take any
concept class that is not PAC learnable given standard computational complexity theoretic
assumptions, e.g. boolean circuits. Augment the representations of positive and negative
examples with “random” numbers such that the number from any positive example and
the number from any negative example between them allow an encoding of the target
concept to be derived by a simple secret-sharing scheme, but the individual numbers are
of no use. It looks as if this class should be PAC learnable, but should not be learnable
in our framework. The problem is that we have to say whether examples labeled with the
“wrong” numbers (corresponding to an alternative representation) are positive or negative.
Then some probability distribution would be able to generate these examples instead of
the ones we want to use.

References

[1] M. Anthony and N. Biggs (1992). Computational Learning Theory, Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge.

(2] A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth (1989). Learnability and
the Vapnik-Chervonenkis Dimension, J.LACM 36, 929-965.

[3] N.H. Bshouty, S.A. Goldman, H.D. Mathias, S.Suri and H. Tamaki (1998). Noise-
Tolerant Distribution-Free Learning of General Geometric Concepts. Journal of the
ACM 45(5), pp. 863-890.

[4] N.H. Bshouty, P.W. Goldberg, S.A. Goldman and H.D. Mathias (1999). Exact learning
of discretized geometric concepts. STAM J. Comput. 28(2) pp. 674-699.

[5] M. Cryan, L. Goldberg and P. Goldberg (1998). Evolutionary Trees can be Learned
in Polynomial Time in the Two-State General Markov Model. Procs. of 39th FOCS
symposium, pp. 436-445.

15

(6]

7]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

S. Dasgupta (1999). Learning mixtures of Gaussians. 40th IEEE Symposium on Foun-
dations of Computer Science.

Y. Freund and Y. Mansour (1999). Estimating a mixture of two product distributions.
Procs. of 12th COLT conference, pp. 53-62.

A. Frieze, M. Jerrum and R. Kannan (1996). Learning Linear Transformations. 37th
IEEE Symposium on Foundations of Computer Science, pp. 359-368.

V. Guruswami and A. Sahai (1999). Multiclass Learning, Boosting, and Error-
Correcting Codes. Procs. of 12th COLT conference, pp. 145-155.

D. Haussler, M. Kearns, N. Littlestone and M.K. Warmuth (1991). Equivalence of
Models for Polynomial Learnability. Information and Computation, 95(2), pp. 129-
161.

D. Helmbold, R. Sloan and M.K. Warmuth (1992). Learning Integer Lattices. STAM
Journal on Computing, 21(2), pp. 240-266.

M.J. Kearns (1993). Efficient Noise-Tolerant Learning From Statistical Queries,
Procs. of the 25th Annual Symposium on the Theory of Computing, pp. 392-401.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie (1994).
On the Learnability of Discrete Distributions, Proceedings of the 26th Annual ACM
Symposium on the Theory of Computing, pp. 273-282.

M.J. Kearns and R.E. Schapire (1994). Efficient Distribution-free Learning of Proba-
bilistic Concepts, Journal of Computer and System Sciences, 48(3) 464-497. (see also
FOCS ’90)

J.C. Platt, N. Cristianini and J. Shawe-Taylor (2000). Large Margin DAGs for Multi-
class Classification, Procs. of 12th NIPS conference.

L.G. Valiant (1984). A Theory of the Learnable. Commun. ACM 27(11), pp. 1134-
1142.

L.G. Valiant (1985). Learning disjunctions of conjunctions. Procs. of 9th International
Joint Conference on Artificial Intelligence.

16

