THE UNIVERSITY OF

WARWICK

Original citation:

Spooner, Daniel P., Turner, J. D., Cao, J., Jarvis, Stephen A., 1970- and Nudd, G. R.
(2001) Application characterisation using a lightweight transaction model. In:
Proceedings of the 17th UK Performance Engineering Workshop (UKPEW), Leeds, UK,
18-19 Jul 2001 pp. 215-227.

Permanent WRAP url:
http://wrap.warwick.ac.uk/61172

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61172
mailto:publications@warwick.ac.uk

Application Characterisation using a
Lightweight Transaction Model

D.P. Spooner, J.D. Turner, J. Cao, S.A. Jarvis, G.R. Nudd *

June 25, 2001

Abstract

With the emergence of GRID environments and distributed systems
with dynamic resources and varying user profiles, there is an increasing
need to develop reliable tools that can effectively coordinate the require-
ments of an application with available computing resources. The ability to
predict the behaviour of complex aggregated systems under dynamically
changing workloads is particularly desirable, leading to effective resource
usage and optimisation of networked systems.

In an effort to explore these issues, the High Performance Systems
Group (HPSG) at Warwick are developing a resource management archi-
tecture that builds upon an existing set of research tools established in
the area of performance prediction. The system embodies the concept of a
transaction that encapsulates a key application component. Using appli-
cation sensors, user requirements, system policies and resource usage his-
tories, an application is rapidly characterised and scheduled appropriately.
A distributed agent-based environment is used as the system infrastruc-
ture, and scheduling optimisation is achieved by use of a genetic algorithm
whose aim it is to minimise the make-span across systems.

Keywords: Characterisation, Prediction, Scheduling, Performance, GRID.

1 Introduction

While the relationship between performance and scheduling has been explored
for a number of years [5], interest in geographically dispersed networks such as
GRIDs [10, 11] have stimulated demand for high performance resource allocation
services. In these new environments, distributed systems must become more
adaptive in order to respond to the variations in user demands and resource
availability.

*High Performance Systems Group, Dept. of Computer Science, University of Warwick,
Coventry. Email: {dps, jdt, junwei, saj, grn}@dcs.warwick.ac.uk

Research is being undertaken by the HPSG at Warwick to develop tools that
assist with issues of resource allocation. This includes the development of a
distributed resource management system that is able to predict the behaviour
of an application code prior to execution and be able to use this information
to optimise scheduling. This is achieved by combining an application with a
stub that includes a map of transactions and their communication, quality of
service requirements, system policy filters and historical data pertaining to pre-
vious invocations.

This research utilises the A4 [9] agent system, which manages the discovery
and advertisement of networked resources. The data collected by the agents is
stored persistently in tables which are accessible to local and remote processes.
This is currently achieved through an SNMP [16] agent, although it is envisaged
that an LDAP [15] infrastructure or emerging GRID standard may be utilised
at a later date. The framework also integrates a lightweight version of the
group’s Performance Analysis and Characterisation Environment (PACE) [1, 2]
to rapidly characterise application codes and assist scheduling. The ARM [14]
standard is used for response measurement, making it is possible to utilise this
tool in conjunction with commercial applications for consolidation and reporting
of management data.

1.1 Principal Aims

The framework is designed to facilitate resource discovery, application charac-
terisation and task mapping; key considerations of the research include:

o Lightweight Characterisation: The model that describes the resources
and the applications is lightweight. Applications are described as a series
of transactions that represent particular sub-tasks that are stored persis-
tently by the agents, allowing a broad class of applications to be modeled
(including Web services, SQL queries and scientific applications etc.).

e Metric-Based Scheduling: While there are existing tools to predict the
execution time for a particular sub-task, factors such as the communication
requirements, consumption of resources and level of service offered to the
user are key components in a modern strategic scheduler. To this end, the
environment utilises a general goal-orientated scheduler that can respond
to a variety of requirements.

e Rapid Evaluation Engine: FEvaluation of an application and subsequent
mapping to a resource should not incur a significant impact as to reduce
the overall efficiency. Finding the optimum solution in a large environment
is likely to be expensive and by the time the resource has been located it
may have been quicker to go with a lesser solution that was found more
rapidly.

o Dynamic Capabilities: In a distributed environment consisting of hetero-
geneous systems, load and configuration are integral factors when making
scheduling decisions. While certain parameters can be idealised, the agents
maintain system state tables so that scheduling can be prioritised under
differing workloads.

e Scalable Architecture: As an architecture of this nature can be become
potentially large, it is unreasonable that a centralised system could identify
and utilise all processing nodes from a single location. It is therefore
important that the architecture be scaled in federated hierarchical form
to encompass large and transitory infrastructures.

2 Architecture

2.1 Behaviour Prediction using Transactions

Within the framework, applications are composed as a series of transactions that
are executed asynchronously or in parallel. A transaction can be considered
as a macro-instruction that describes a discrete item of work that possesses a
set of platform-independent costs. The transaction map contained within an
application stub provides an indication of how transactions will flow, operate
and interact. Agents utilise these maps together with historical information
(previous execution timings of similar class transactions) and current system
information (load, configuration, etc) to formulate run-time strategies. The
agents endeavour to locate suitable candidate systems upon which a task can be
allocated and then schedule the task accordingly (see Figure 1).

FEach transaction is designated as a particular class of work to allow appli-
cations to be classified rapidly. This can be based on technical criterion such as
a communication activity, a computation type, or a business classification. The
agents associate the application’s current behaviour with a transaction defined
by the transaction map through use of software, operating system and network
sensors.

Applications scheduled by the environment are supplied with an instantiation
of a stub that initially contains a limited set of static performance information.
As the program is executed, the stub is populated with dynamic runtime informa-
tion, which is retained by the scheduling agents to allow subsequent applications
of the same class to be scheduled more efficiently.

2.2 Lightweight PACE

The use of transactions as macro-instructions is a direct development of the
group’s original PACE system, which is designed to predict the expected exe-
cution time for scientific applications running on multiprocessor and distributed
environments. PACE operates by constructing a theoretical time-line for a given

(System Policies)
™ (‘Submitted Application /
Application Stub
W (New Candidate Systems)

(" scheduled Environment | —> (Prediction) 4—\\

g '

: |:| |:| |:| I I (scheduer) (L Hisois)
L Resources) 4—"J

Figure 1: An application is presented to the framework with a stub which allocates the
process to the required resource based on current usage, system policies and histories.
As the code is executed, instrumentation sensors tie activity with the transaction map,
populating the stub accordingly.

application based upon the timings of particular machine code instructions and
their organisation as subtasks. The resultant model is parameterised so that
factors such as input data size, number of processors, and available memory can
be adjusted to observe the effect on execution time.

Adopting a layered approach, PACE associates each layer with a set of spec-
ified interfaces to allow objects of the same class to be exchanged without affect-
ing the overall structure of the model. The sequential tasks, the parallelisation
strategy and the hardware elements of the given application are described with
a modeling language known as CHIP’S[3]. This is subsequently compiled and
linked to form a single application object which is evaluated to obtain the ex-
pected execution time.

While the lightweight version of PACE (known as PACE Lite) can also gen-
erate parameter-based prediction models, the decision to utilise transactions, as
opposed to individual machine level instructions permits the system to charac-
terise a wider breadth of applications. As Figure 2 illustrates, the structure of
PACE Lite remains similar to that of the original PACE model.

By demarcating applications as transactions that encapsulate the key com-
ponents of an application code, and storing a transaction map that describes
how the transactions interrelate, the scheduler is able to make performance es-
timations from previous costs when an application, or parts of an application,
are presented subsequently to the system.

It is this combination of run-time histories, closed feedback and lightweight

Model Parameters User and System Policies

4 [N ([N
’ Application ‘ ’ Application ‘
’ Subtask ‘ ’ Transaction ‘
’ Parallel Template ‘ ’ Transaction Map ‘
’ Hardware ‘ ’ Distributed System ‘
N Y, N\ Y,
' '
{Predicted Execution Time} {Predicted Execution Strategy}

Figure 2: The original PACE structure (depicted on the left) describes applications
by means of a layered modeling language. Whilst maintaining the same structure, the
lightweight PACE model utilises transactions and maps to characterise applications
rapidly.

characterisation, that differentiate this work from the original PACE, and facil-
itates the characterisation and dynamic scheduling of low workload applications
such as web and database systems.

2.3 Agent Hierarchy

Scalability and adaptability are two key challenges when implementing service
systems for complex environments such as the GRID. This research utilises the
group’s A4 model, which identifies a heterogenous group of resources as a hier-
archy of homogenous agents that have the capabilities for service provision.

The distributed system component, used as the infrastructure of this re-
search, is illustrated in Figure 3. It consists of a single type of component, the
agent, which is used to compose the entire system. Each agent has the same
set of functions and capabilities, can send and receive requests, and can provide
services to users and other agents.

Each agent provides a scheduler so that applications can be presented to any
agent within the hierarchy. The agent will typically ‘explore’ its surrounding
environment in an attempt to locate a suitable resource to run the application.
The user is able to specify, by means of the stub an upper limit on the exploration.
This allows an application with a large workload more scope to locate a suitable
candidate system.

Federations

of-1o
Agents

Figure 3: The system adopts a hierarchical agent-based structure. The upper agents
act as co-ordinators for the lower agents, although their capabilities remain the same.
In this context, any agent can become an upper agent by allowing other agents to
register with it.

2.4 Agent Capabilities

The capabilities of the agents are ascribed in modular form as illustrated in Fig-
ure 4. The core element is the A4 strategy module which governs the discovery
and advertisement of other agents and system resources. The module motivates
the agent to federate with lower and upper systems in order to exchange trans-
action timings and resource information. This assists the agent in fulfilling its
high-level objectives of optimising scheduling through cooperation. Scheduling,
profiling and costing of application code are provided by various other modules,
which are included in the agent system.

A4 Strategy

Genetic Algorithm Scheduler
Transaction Costs
Monitoring System

Figure 4: Extensible capabilities of the agents.

The environment retains information regarding resource consumption and
timings for each transaction in a table which is accessible by other agents. In
the current implementation, this is achieved through the construction of an
SNMP manager. The agents have the ability (given sufficient permissions) to

read and write to other agent tables, allowing agents to request and update
transaction information. Used in conjunction with a genetic algorithm, this
allows the scheduler to improve its capabilities over time.

3 Instrumentation

An integral part of this research is the ability to generate a transaction map and
sense the transaction an application is currently executing. Two such method-
ologies (outlined in Figure 5) are provided. The first method utilises a Java
bytecode parser to instrument Java-based applications ‘on-the-fly’; the second
method monitors the Java.Net. * classes in order to tie ends of distributed work
together.

’ Java Application ‘ —

/’ Application ‘
S

Instrumentation |

R—— ’ [TT i\
,IMH B

Figure 5: The instrumentation method on the left illustrates software sensing in the
Java bytecode. The communication instrumentation, depicted on the right, outlines
the capture of transaction activity between the application and network layers.

3.1 ByteCode ARM Instrumentation

An interface has been implemented which allows the environment to instrument
Java applications. While a number of tools exist to manipulate bytecode [6, 7, §],
this system automatically identifies ‘key’ areas of an application and designates
them as transactions. The Java bytecode associated with each transaction is
then instrumented with ARM transaction method invocations.

The processing and manipulation of Java bytecode is achieved by the imple-
mentation of a bytecode parser, written to adhere to the Java Virtual Machine
Specification [4]. The parser reads class files and creates a list of objects that
describe elements implicit to every Java application. This information can be
changed as required and written back to alter the classfile’s execution pattern.

ARM (Application Resource Measurement) is an Open Group [12] standard
for measuring the performance of defined transactions. It is used to determine

whether transactions meet the performance expectations of the user. With each
transaction: a record is kept whether the transaction was a success; the re-
sponse time of the transaction; and where, when and how many times during
the application’s runtime this transaction was executed®.

To ARM an application, it has been necessary in the past for the software
developer to define transactions within their software, and to place ‘start’ and
‘stop’ calls around each of these transactions before recompiling the code. Using
the bytecode parser written as part of this research, it is possible to ARM a Java
application automatically (as shown in Figure 6) and obtain the performance
statistics of each transaction during runtime.

JAVA Application ARM Transaction

Transaction UUID

Instrumented M ethod
Status
invokeinterface ArmTransaction.start() ﬂ, Stop Time
: Response Time
1 Original Bytecode
I
. stop()
invokeinterface ArmTransaction.stop() —
invokeinterface ArmTransaction.getRestTime() getRespTime()
-—

Report Data
invokevirtual ArmReport.report() __report) | Method Information
return Performance Information

SNMP Client

. .] register
invokevirtual ArmReport.register() eg_()» Execution Histories

Figure 6: An ARM transaction is started prior to, and stopped after, the method’s
original bytecode. The response time is then retrieved from the transaction and re-
ported in a Report Data object. At the end of the application’s execution, all of the
reported transaction data is registered in an SNMP table.

The information recorded for each transaction is defined by the consumer
implementation of the ARM interface. To date, the lightweight implementation
records only execution time; however other ARM consumer implementations for
further performance statistics maybe proposed.

The ARM transaction calls allow the environment to obtain transaction per-
formance information from the application during its execution. This informa-
tion is retained persistently by the appropriate agent and can be used to schedule

!Further statistics and information can be found in the ARM (for Java) 3.0 documentation
[13].

subsequent applications that consist of similar transactions. The framework ben-
efits from the inherent reuse of objects, and hence by considering applications
as a set of transactions, the instrumentation (and subsequent cost analysis) of
one application can assist in the instrumentation and scheduling of subsequent
applications.

3.2 Communication Analysis

While computation and communication cannot be decoupled entirely, many
codes will exhibit predictable and structured messaging regardless of the data
content. A highly parallel code, such as a Monte Carlo simulation, is initiated
by a master processor that subsequently disperses individual tasks to n slave
processes and waits for the responses to fold in.

In this context, the communication behaviour of this particular task will
always follow this pattern, regardless of how many processors are available or the
data size of the simulation. Hence, there is a level of predictably regarding the
application’s execution. This behaviour is captured by means of the transaction
map, in which probabilities with regard to the quantity and locality of data
can also be attached. This enables the evaluation system to model different
combinations of machines and different network topologies in order to schedule
and configure more effectively. Additionally the stub can provide an estimation
as whether the code will interact with a particular target machine, allowing
quality of service targets to be honoured.

4 Conclusions

This paper presents an overview of a lightweight framework for characterising
and scheduling distributed applications.

The research builds upon the group’s performance and agent work to create a
strategic scheduler positioned as GRID middleware. It emcompasses the notion
of a transaction that encapsulates key areas of application code, and captures
their behaviour by means of an transaction map. Combining prediction, past
histories, quality of service requirements and agent-based resource discovery in
a stub, applications are characterised rapidly and scheduled effectively.

It is envisaged that this system will provide useful insights into building
GRID software for widely dispersed and distributed systems.

5 Acknowledgements

The authors would like to express their graitude to IBM’s T J Watson Research
Center, NY. for their contributions towards this research.

Java is a trademark or registered trademark of Sun Microsystems, Inc. in the
United States and other countries.

References

[1]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper,
D.V. Wilcox. PACE - A Toolset for the Performance Prediction of Parallel
and Distributed Systems International Journal of High Performance Com-

puting Applications, Special Issues on Performance Modelling Vol 14, No
3, pp 228-251 (2000)

J. Cao, D.J. Kerbyson, E. Papaefstathiou, G.R. Nudd. Modelling of ASCI
High Performance Applications Using PACE. Proceedings of 15th Annual
UK Performance Engineering Workshop (UKPEW ’99), Bristol, UK, July
1999, pp 413-424.

E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, T.J. Atherton. An Overview
of the CHIP3S Performance Prediction Toolset for Parallel Systems, &th
ISCA Int. Conf on Parallel and Distributed Computing Systems Florida
(1995) pp 527-533.

SUN Microsystems. Java Virtual Machine Specification.
http://java.sun.com/docs/books/vmspec/

I. Foster, C. Kesselman. The Grid : Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, pp 279-290, (1998)

H. Lee, B. Zorn. BIT : Bytecode Instrumenting Tool. University of Wash-
ington (1996). http://wuw.cs.colorado.edu/ hanlee/BIT/index.html

M. Dahm. Byte Code Engineering, Freie Univerisitat Berlin.
http://bcel.sourceforge.net/

G.A. Cohen, J.S. Chase, D.L.. Kaminsky. Automatic Program Transforma-
tion with JOIE. Technical Paper, http://www.cs.duke.edu/"gac/joie/

J. Cao, D.J. Kerbyson, G.R. Nudd. Peformance Evaluation of an Agent-
Based Resource Management Infrastructure for GRID Computing. Pro-
ceedings of 1st IEEE/ACM Int. Symposium on Cluster Computing and the
Grid (May 2001), Brisbane, Australia, pp 311-318.

R.J. Allan, J.M. Brooke, F. Costen, M. Westhead. Grid-based High Perfor-
mance Computing Technical Report of the UKHEC Collobration UKHEC
(2000). Available from http://www.ukhec.ac.uk

W. Leinberger, V. Kumar. Information Power Grid : The New Frontier in
Parallel Computing? IEEE Concurrency Volume 7, Number 4, October —
December 1999.

The Open Group. http://www.opengroup.org

[13] M.W. Johnson, J. Crowe. Measuring the Performance of ARM 3.0
for Java Technical Report from Tivoli Systems Available from
http://www.cmg.org/regions/cmgarmw/arm30.html

[14] The Open Group. Application Response Measurement (Issue 3.0 - Java
Binding). Open Group Technical Specification March 2001. Available from
http://www.opengroup.org/

[15] T. Howes, M. Smith. LDAP: Programming Directory-Enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publish-
ing (1997).

[16] J. Case, M. Fedor, M. Schpffstall, J. Davin. RFC 1157: SNMP.
http://www.fags.org/rfcs

