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Portable and ar
hite
ture independentparallel performan
e tuningS.A. Jarvis a J.M.D. Hill b C.J. Siniolakis 
 V.P. Vasilev baDepartment of Computer S
ien
e, University of Warwi
k, UKbSy
hron Ltd., One Cambridge Terra
e, Oxford, UK
The Ameri
an College of Gree
e, Athens 15342, Gree
eAbstra
tA 
all-graph pro�ling tool has been designed and implemented to analyse the eÆ-
ien
y of programs written in BSPlib. This tool highlights 
omputation and 
ommu-ni
ation imbalan
e in parallel programs, exposing portions of program 
ode whi
hare amenable to improvement.A unique feature of this pro�ler is that it uses the BSP 
ost model, thus pro-viding a me
hanism for portable and ar
hite
ture-independent parallel performan
etuning. In order to test the 
apabilities of the model on a real-world example, theperforman
e 
hara
teristi
s of an SQL query pro
essing appli
ation are investigatedon a number of di�erent parallel ar
hite
tures.Key words: Pro�ling, Bulk Syn
hronous Parallel, Program EÆ
ien
y.1 Introdu
tionThe role of a pro�ling tool is to asso
iate the exe
ution 
osts of a program withidenti�able segments of the underlying sour
e 
ode. How useful a pro�ling toolis depends on how easy it is for programmers to employ this information soas to alleviate 
omputational bottlene
ks in their 
ode.Three 
riteria need to be satis�ed when designing su

essful pro�ling toolsfor sequential programming languages. The �rst relates to `what' the pro�lermeasures; it is desirable for the per
entage of exe
ution time spent in ea
hpart of the program and/or the amount of memory used to be identi�ed. These
ond 
riterion 
on
erns `where' in the 
ode these 
osts should be attributed;in order to improve the program implementation, 
osts should be asso
iatedwith fun
tions or libraries within the 
ode. The third 
riterion relates to `how'Preprint submitted to Elsevier Preprint 5 September 2000



the pro�ling information 
an be used to best e�e
t; program 
ode should beoptimised in a quanti�able manner, an example of whi
h might be rewritingproblemati
 portions of 
ode using an algorithm with improved asymptoti

omplexity.Pro�ling parallel programs as opposed to sequential programs is made more
omplex by the fa
t that program 
osts are derived from a number of pro
es-sors. As a result, ea
h part of the program 
ode may be asso
iated with up to p
osts, where p is the number of pro
essors involved in the 
omputation. One ofthe major 
hallenges for developers of pro�ling tools for parallel programminglanguages is to design tools whi
h will identify and expose the relationshipsbetween the 
omputational 
osts a

rued by the pro
essors and highlight anyimbalan
es. These 
ost relationships must subsequently be expressed in termsof the three 
riteria outlined above. Unfortunately many more issues are atstake with parallel frameworks and therefore the 
riteria are far harder tode�ne and satisfy. In parti
ular:� What to 
ost: In parallel programming there are two signi�
ant 
ost met-ri
s whi
h may 
ause bottlene
ks within programs; these are 
omputationand 
ommuni
ation. It is not good pra
ti
e to de
ouple these two metri
sand pro�le them independently as it is of paramount importan
e that theintera
tion between the two is identi�ed and exposed to the user. This isbe
ause if programs are optimised with respe
t to one of these metri
s, thisshould not be at the expense of the other.� Where to 
ost: Costing 
ommuni
ation 
an be problemati
. This is be
auserelated 
ommuni
ation 
osts on di�erent pro
essors may be the result ofup to p di�erent (and intera
ting) parts of a program. In message-passingsystems, for example, there exist p distin
t and independently intera
ting`
ostable' parts of 
ode. Without attention to design, pro�ling tools de-veloped for su
h systems may overload the user with results. Too mu
hpro�ling information 
an be diÆ
ult to interpret; the upshot system [6℄ hasbeen 
riti
ised for this very reason.� How to use: When pro�ling information is used to optimise parallel pro-grams, 
are has to be taken to ensure that these optimisations are notspe
i�
ally tailored to a parti
ular ma
hine or ar
hite
ture. An optimisa-tion is more likely to be portable if program improvements are made at thelevel of the underlying algorithms. Portable and ar
hite
ture-independentoptimisations to parallel programs are more likely to be a
hieved if the pro-gramming model on whi
h the algorithm is built possesses a supporting,pragmati
 
ost model.These three 
riteria form the basis for the development of a pro�ling tool forparallel programs whose 
ode is based on the BSP model [18,14,16℄. When us-ing this pro�ling tool the programmer will use the balan
e of 
omputation and
ommuni
ation as the metri
 with respe
t to whi
h their parallel programs are2



optimised. It is shown that by minimising this imbalan
e, signi�
ant improve-ments to the 
omplexity of parallel algorithms are often a
hieved. This is thekey to portable and ar
hite
ture-independent optimisations.The BSP model, its implementation (BSPlib) and 
ost 
al
ulus are introdu
edin se
tion 2. In se
tion 3 attributes of BSPlib whi
h fa
ilitate parallel pro�lingare des
ribed and the 
all-graph pro�ling tool is introdu
ed with the analysisof two broad
ast algorithms. The pro�ler is used to optimise of a real-worlddistributed database query pro
essing appli
ation and the results are des
ribedin se
tion 4. The ar
hite
ture-independent properties of this framework areexplored in se
tion 5.2 The BSP modelThe exploration of parallel 
omputation within theoreti
al 
omputer s
ien
ehas been led by the study of time, pro
essor and spa
e 
omplexities of `ideal'parallel ma
hines whi
h 
ommuni
ate via a shared memory; this is known asthe Parallel Random A

ess Ma
hine (PRAM) Model [2℄. The PRAM modelassumes that an unbounded set of pro
essors shares a global memory. In asingle step, a pro
essor 
an either read or write one data word from the globalmemory into its lo
al address spa
e, or perform some basi
 
omputational op-eration. The simpli
ity of the model has, over the past two de
ades, en
ouragedthe development of a large 
olle
tion of PRAM algorithms and te
hniques [10℄.Conversely, the model's simpli
ity also means that it does not re
e
t a numberof important aspe
ts of parallel 
omputation whi
h are observed in pra
ti
e;these in
lude 
ommuni
ation laten
y, bandwidth of inter
onne
tion networks,memory management and pro
essor syn
hronisation, amongst others.The Bulk Syn
hronous Parallel (BSP) model { a high-level abstra
tion ofhardware { provides a general-purpose framework for the design and analysisof s
alable programs, whi
h may then be run eÆ
iently on existing diversehardware platforms. In addressing many of the previous limitations, BSP iswidely regarded as a bridging model for parallel 
omputing [18,17℄. In theBSP model no assumptions are made about the underlying te
hnology or thedegree of parallelism. The BSP model thus aims to provide a general-purposeparallel 
omputing platform [12,13,17,18℄. A Bulk Syn
hronous Parallel Ma-
hine (BSPM) provides an abstra
tion of any real parallel ma
hine; a BSPMhas three 
onstituent parts:(1) A number of pro
essor/memory 
omponents (pro
essors);(2) An inter
onne
tion network whi
h delivers messages in a point-to-pointmanner between the pro
essors;(3) A fa
ility for globally syn
hronising the pro
essors by means of a barrier.3



In the BSP model a program 
onsists of a sequen
e of supersteps. During a su-perstep, ea
h pro
essor 
an perform 
omputations on values held lo
ally at thestart of the superstep, or it 
an initiate 
ommuni
ation with other pro
essors.The model in
orporates the prin
iple of bulk syn
hrony ; that is, pro
essors arebarrier syn
hronised at regular intervals, ea
h interval suÆ
ient in length forthe messages to be transmitted to their destinations [18℄. The model does notpres
ribe any parti
ular style of 
ommuni
ation, but it does require that atthe end of a superstep any pending 
ommuni
ations be 
ompleted.2.1 The BSP 
ost modelThe 
ost of a BSP program 
an be 
al
ulated by summing the 
osts of ea
h su-perstep exe
uted by the program. In turn, the 
ost of an individual superstep
an be broken down into: (i) lo
al 
omputation; (ii) global ex
hange of dataand (iii) barrier syn
hronisation. The maximum number of messages (words)
ommuni
ated to or from any pro
essor during a superstep is denoted by h,and the 
omplete set of messages is 
aptured in the notion of an h-relation.To ensure that 
ost analysis 
an be performed in an ar
hite
ture-independentmanner, 
ost formula are based on the following ar
hite
ture-dependent pa-rameters:p { the number of pro
essors;l { the minimum time between su

essive syn
hronisation operations, mea-sured in terms of basi
 
omputational operations;g { the ratio of the total throughput of the system in terms of basi
 
ompu-tational operations, to the throughput of the router in terms of words ofinformation delivered; alternatively stated, g is the single-word delivery 
ostunder 
ontinuous message traÆ
.Intuitively, g measures the permeability of the network to 
ontinuous messagetraÆ
. A small value for g, therefore, suggests that an ar
hite
ture provideseÆ
ient delivery of message permutations. Similarly, l 
aptures the 
ost ofbarrier syn
hronisation.Using the de�nition of a superstep and the two ar
hite
tural parameters gand l, it is possible to 
ompute the 
ost of exe
uting a program on a givenar
hite
ture. In parti
ular, the 
ost Ck of a superstep Sk is 
aptured by theformulae [4,18℄,Ck = wk + hk � g + lwherewk = maxf wki j 0 � i < p ghk = maxf max(hki -in; hki -out) j 0 � i < p g (1)
4



where k ranges over the supersteps; i ranges over pro
essors; wki is an ar
hite
ture-independent 
ost representing the maximum number of basi
 
omputationswhi
h 
an be exe
uted by pro
essor i in the lo
al 
omputation phase of su-perstep Sk; hki -in (respe
tively, hki -out) is the largest a

umulated size of allmessages entering (respe
tively, leaving) pro
essor i within superstep Sk.In the BSP model, the total 
omputation 
ost of a program is the sum of allthe 
osts of the supersteps, Pk Ck.3 Pro�ling the imbalan
e in parallel programsThe BSP model stipulates that all pro
essors perform lo
k-step phases of
omputation followed by 
ommuni
ation. This en
ourages a dis
iplined ap-proa
h in the utilisation of 
omputation and 
ommuni
ation resour
es. BSPprograms may be written using existing 
ommuni
ation libraries whi
h sup-port non-blo
king 
ommuni
ations. However, these general-purpose librariesare rarely optimised for the subset of operations whi
h are required for theBSP programming paradigm [9,16℄. In order to address this problem, the BSPresear
h 
ommunity has proposed a standard library { BSPlib { whi
h 
an beused for parallel programming within the BSP framework [8,5℄.BSPlib is a small 
ommuni
ation library 
onsisting of twenty operations forSPMD (Single Program Multiple Data) programming. The main features ofBSPlib are two modes of 
ommuni
ation, the �rst 
apturing a BSP-orientedmessage-passing approa
h and the se
ond re
e
ting a one-sided dire
t remotememory a

ess (DRMA) model.The appli
ations des
ribed in this paper have predominately been writtenusing the DRMA style of 
ommuni
ation. They utilise the one-sided BSPlibfun
tion bsp put. This fun
tion transfers data from 
ontiguous memory lo
a-tions on the pro
essor whi
h initiates 
ommuni
ation into 
ontiguous memorylo
ations on a remote pro
essor, without the a
tive parti
ipation of the re-mote pro
essor. The fun
tion bsp syn
 identi�es the end of a superstep, atwhi
h time all pro
essors barrier syn
hronise. It is at this point that any mes-sage transmissions issued by pro
essors during the superstep are guaranteedto have arrived at their destination.In 
ontrast to programs written in a general message-passing style, BSPlibfa
ilitates pro�ling in a number of ways:(1) The 
ost model highlights the use of both 
omputation and 
ommuni
a-tion as pro�ling 
ost metri
s.(2) The 
ost of 
ommuni
ation within a superstep 
an be 
onsidered en5



masse. This greatly simpli�es the presentation of pro�led results. In par-ti
ular, 
ommuni
ation within a superstep 
an be attributed to the bar-rier syn
hronisation whi
h marks the end of a superstep and not to indi-vidual 
ommuni
ation a
tions [7℄.(3) BSP 
ost analysis is modular and 
onvex ; that is, improvement to theperforman
e of algorithms as a whole 
annot be a
hieved by making onepart slower. This is important when pro�ling, as portions of 
ode may beelided to simplify the presentation of results. In this model this 
an bedone safely; the removed parts of the 
ode will have no adverse e�e
t onthe 
ost of the remaining supersteps.(4) The treatment of 
omputation and 
ommuni
ation engineered by the BSPmodel (and 
onsequently BSPlib) foster a programming style in whi
hpro
esses pass through the same textual bsp syn
 for ea
h superstep 1 .Consequently, the line number and �le name of the 
ode whi
h 
ontainsthe bsp syn
 statement provide a 
onvenient referen
e point in the sour
e
ode to whi
h pro�ling 
osts 
an be attributed.3.1 Criteria for good BSP designIn this se
tion, two broad
ast algorithms are analysed and the 
all-graph pro-�ler for BSPlib programs is introdu
ed.A post-mortem 
all-graph pro�ling tool has been developed to analyse tra
einformation generated during the exe
ution of BSPlib programs. The unitsof 
ode to whi
h pro�ling information is assigned are termed 
ost 
entres.For simpli
ity, ea
h 
ost 
entre in the program 
orresponds to a bsp syn

all. Ea
h 
ost 
entre re
ords the following information: (i) the a

umulated
omputation time; (ii) the a

umulated 
ommuni
ation time; (iii) the a

u-mulated idle (or waiting) time; and (iv) the a

umulated h-relation size. Thetiming result re
orded at a 
ost 
entre is simply the sum of the maximum
ommuni
ation and 
omputation times re
orded sin
e the last bsp syn
 
all.The aim of the pro�ling tool is to expose imbalan
es in either 
omputationor 
ommuni
ation, and to highlight those parts of the program whi
h areamenable to improvement. The hypothesis that balan
e is the key to goodBSP design is supported by the BSP 
ost formulae:� Within a superstep the 
omputation should be balan
ed between pro
esses.This is based on the premise that the maximum value of wi (for 0 � i < p,see equation 1) will determine the overall 
ost of lo
al exe
ution time;� Within a superstep the 
ommuni
ation should be balan
ed between pro-
esses. This is based on the premise that the maximum value of hi (for1 This imposes tighter restri
tions than the BSPlib program semanti
s.6
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Idle Time

Synchronization
Barrier

Idle Time

Computation
Time

Time

Fig. 1. Superstep stru
ture.0 � i < p, see equation 1) will determine the overall 
ost of the fan-in andfan-out of messages;� Finally, the total number of supersteps should be minimised. Ea
h 
on-tributes an l term to the total exe
ution time (see equation 1).Figure 1 shows a s
hemati
 diagram of a BSP superstep and its asso
iated
osts. The �gure shows that idle time 
an arise in either lo
al 
omputationor 
ommuni
ation. In lo
al 
omputation, idle time will arise when pro
essesare for
ed to wait at a barrier syn
hronisation for the pro
ess with the largestamount of 
omputation to be 
ompleted. Idle time will o

ur during the 
om-muni
ation phase of a superstep if pro
esses are for
ed to wait until inter-pro
ess 
ommuni
ation has been 
ompleted 2 .At ea
h 
ost 
entre, p 
osts { 
orresponding to one 
ost per pro
ess { arere
orded. This data is presented to the user in one of two ways:Summarised data: The 
ost within a single 
ost 
entre 
an be summarisedin terms of maximum (the standard BSP interpretation of 
ost), average andminimum a

umulated 
osts over ea
h of the p pro
esses. More formally, giventhat a program may pass through a parti
ular 
ost 
entre k times, generatinga sequen
e of 
osts hC1; : : : ; Cki, the a

umulated 
omputation 
ost for thegiven 
ost 
entre is given by the formulae:2 It is noted that idle time during 
ommuni
ation depends upon the type of ar
hi-te
ture on whi
h BSPlib is implemented. For example, on the DRMA and sharedmemory ar
hite
tures (e.g. Cray T3D/E and SGI Power Challenge), 
ommuni
a-tion idle time arises as shown in Figure 1. However, with ar
hite
tures whi
h onlysupport message passing (e.g. IBM SP2), 
ommuni
ation idle time is 
oales
ed withthe 
omputation idle time of the following superstep; see [9℄ for details.7



maximum 
ost =Xk max f wki j 0 � i < p g (2)average 
ost =Xk 1p 0� X0�i<pwki1A (3)minimum 
ost =Xk min f wki j 0 � i < p g (4)Similar formulae exist for 
ommuni
ation time, idle time and h-relation size.All data: The 
osts asso
iated with ea
h of the p pro
esses are presented tothe user in the form of a pie 
hart. The results must be interpreted with some
are as the 
osts are 
al
ulated using formulae whi
h di�er from the standardBSP 
ost formulae. This is ne
essary as a user of this pie 
hart is typi
allylooking to identify the largest (maximum) segment in the 
hart. The size ofthis maximum segment is:max f Xk wki j 0 � i < p g (5)Equation 5 abstra
ts the maximum outside the summation, produ
ing a resultwhi
h may be smaller than that obtained from equation 2. Although this in-terpretation is not stri
tly in line with BSP 
ost analysis, it is a useful methodfor identifying the pro
ess whi
h may be 
ausing an eÆ
ien
y bottlene
k.3.2 Example: broad
asting n values to p pro
essesIn this example a 
ommon broad
ast problem is 
onsidered; this is the 
om-muni
ation of a data stru
ture of size n (where n � p) from one pro
ess to allp pro
essors in a parallel 
omputing system.A naive algorithm for this task 
an be implemented in a single superstep if p�1distin
t bsp puts are performed by the broad
asting pro
ess. This requires thetransmission of p� 1 messages, ea
h of size n; the superstep therefore realisesan n(p� 1)-relation with approximate 
ost (substituting p for p� 1):
ost of one�stage broad
ast = npg + l (6)where l is the 
ost of performing a single superstep.This algorithm, 
aptured in equation 6, is not s
alable as its 
ost linearlyin
reases with p. 8



Destination

Source

Superstep
One

Superstep
TwoFig. 2. Two-stage broad
ast using total ex
hange.An alternative s
alable BSP broad
asting algorithm [1,11℄, with 
ost 2ng +2l, is shown in Figure 2. The algorithm 
onsists of two supersteps: in the�rst superstep, the data is distributed evenly amongst the p pro
esses; in these
ond superstep, all pro
esses then broad
ast their lo
al data. This results inbalan
ed (system) 
ommuni
ation.The 
ost of the distribution phase is (n=p)(p� 1)g + l, as a single message ofsize (n=p) is sent to ea
h of the p� 1 pro
esses. In the se
ond superstep, ea
hpro
ess sends and re
eives p�1 messages of size (n=p) from ea
h other pro
ess.The 
ost of this superstep 3 is also (n=p)(p� 1)g+ l. The approximate 
ost ofthe entire algorithm is determined by summing the 
ost of the two supersteps(on
e again, assuming the substitution of p for p� 1):
ost of two�stage broad
ast =  nppg + l!+  nppg + l! = 2ng + 2l (7)Using equations 6 and 7 it is possible to determine the size of data for whi
hthe two-stage algorithm is superior to the one-stage algorithm:n > lpg � 2g (8)For example, when l is large and both n and p are small, the 
ost of theextra superstep outweighs the 
ost of 
ommuni
ating a small number of shortmessages. Conversely, for a large n or p, the 
ommuni
ation 
ost outweighsthe overhead of the extra superstep.3 Note that BSP 
ost analysis en
ourages balan
ed 
ommuni
ation.9



3.3 Interpreting 
all-graph information
   bcast.c line 16
     [500 syncs]
        Max   Avg Min
Comp  19.48s 100%100%
Comm  19.55s   7%  0%
Wait  19.49s  94%  0%
Hrel 1.5e+09  12%  7%

    bcast_onestage
     [500 syncs]
        Max   Avg Min
Comp  19.48s 100%100%
Comm  19.55s   7%  0%
Wait  19.49s  94%  0%
Hrel 1.5e+09  12%  7%

         foo
     [250 syncs]
        Max   Avg Min
Comp   9.77s 100%100%
Comm   9.80s   7%  0%
Wait   9.78s  94%  0%
Hrel 7.5e+08  12%  7%

   bcast.c line 41
     [500 syncs]
        Max   Avg Min
Comp   1.35s  99% 99%
Comm   3.33s  85% 67%
Wait   1.11s  46%  1%
Hrel 9.4e+07 100%100%

   bcast.c line 34
     [500 syncs]
        Max   Avg Min
Comp   3.38s  99% 99%
Comm   1.34s  11%  5%
Wait   1.29s  94%  0%
Hrel 9.4e+07  12%  7%

    bcast_twostage
     [1000 syncs]
        Max   Avg Min
Comp   4.73s  99% 99%
Comm   4.67s  64% 49%
Wait   2.39s  72%  1%
Hrel 1.9e+08  56% 53%

         bar
     [1250 syncs]
        Max   Avg Min
Comp  14.44s 100%100%
Comm  14.41s  25% 16%
Wait  12.11s  89%  0%
Hrel 9.4e+08  21% 16%

         main
     [1500 syncs]
        Max   Avg Min
Comp  24.20s 100%100%
Comm  24.21s  18% 10%
Wait  21.88s  91%  0%
Hrel 1.7e+09  17% 12%

Fig. 3. Sample 
all-graph pro�le on a 16 pro
essor Cray T3E.Figure 3 shows an example 
all-graph pro�le for the two broad
ast algorithmsrunning on a 16 pro
essor Cray T3E. The 
all-graph 
ontains a series of in-terior and leaf nodes. The interior nodes represent pro
edures entered duringprogram exe
ution, whereas the leaf nodes represent the textual position ofsupersteps, i.e. the lines of 
ode 
ontaining a bsp syn
. The path from a leaf tothe root of the graph identi�es the sequen
e of 
ost 
entres passed through torea
h the part of the 
ode that is a
tive when the bsp syn
 is exe
uted. Thispath is termed a 
all sta
k and a 
olle
tion of 
all sta
ks therefore 
omprisea 
all-graph pro�le. One signi�
ant advantage of 
all-graph pro�ling is that a
omplete set of unambiguous program 
osts 
an be 
olle
ted at run-time andpost-pro
essed. This is a great help when identifying program bottlene
ks.Furthermore, the 
osts of shared pro
edures 
an be a

urately apportioned totheir parents via a s
heme known as 
ost inheritan
e. This allows the program-mer to resolve any ambiguities whi
h may arise from the pro�ling of sharedfun
tions[15℄.The 
all-graph in Figure 3 shows the pro�le results for a program whi
h per-forms 500 iterations of the one-stage broad
ast and 500 iterations of the two-stage broad
ast. In order to highlight the features of the 
all-graph pro�le,the pro
edures foo and bar 
ontain pro
edure 
alls to the two broad
astingalgorithms. The order of program exe
ution is as follows: in pro
edure foothe one-stage broad
ast algorithm is 
alled 250 times; the pro
edure bar then
alls the one-stage broad
ast algorithm 250 times and makes a further 500
alls to the two-stage broad
ast algorithm.The graph illustrates how the program 
osts are inherited from the leaves ofthe graph towards the root. The top-level node main displays the a

umulated
omputation, 
ommuni
ation and idle 
osts for ea
h of the supersteps withinthe program. At the interior nodes in the 
all-graph, information is displayed10



whi
h relates to supersteps exe
uted during the lifetime of the pro
edure iden-ti�ed at that node.At the leaf nodes the pro�le re
ords: (i) the textual position of the bsp syn

all within the program; (ii) the number of times the superstep is exe
uted;(iii) summaries of the 
omputation, 
ommuni
ation and idle times and (iv)the 
ost of the h-relation. Ea
h of these summaries 
onsists of the maximum,average and minimum 
ost over the p pro
essors; the average and minimum
osts are given as per
entages of the maximum.Interior nodes store similar information to leaf nodes. The interior nodes arealso labelled with pro
edure names and the results displayed at the nodes arethe inherited 
osts from the supersteps exe
uted during 
alls to that pro
edure.In the pro�ling results of Figure 3, the maximum 
omputation and 
ommuni
a-tion times for the interior node labelled b
ast onestage are both 19 se
onds.The total exe
ution time for the 
alls to the one-stage broad
ast is therefore38 se
onds (total 
omputation + 
ommuni
ation). The interior node also dis-plays the maximum idle time (also 19 se
onds) whi
h is the delay 
aused by thebroad
asting pro
ess transmitting the data to the remaining p� 1 pro
esses.3.4 Identifying 
riti
al pathsThe s
ope of the pro�ling tool is not limited to simply visualising the 
ompu-tation and 
ommuni
ation patterns at ea
h 
ost 
entre. The tool also allows
riti
al 
ost paths to be identi�ed within parallel programs. Ea
h node in thegraph is displayed in a 
olour ranging from white to red. A red node identi�esan eÆ
ien
y bottlene
k (or program `hot spot') 4 . A sequen
e of dark-
olourednodes identi�es a 
riti
al path in the program. There are seventeen di�erenttypes of program 
riti
al path whi
h 
an be identi�ed by the pro�ler. The sim-plest of these is the syn
hronisation 
riti
al path whi
h identi�es nodes in thegraph whi
h 
ontain the greatest number of supersteps. In addition, four dif-ferent 
riti
al paths 
an be identi�ed for ea
h of 
omputation, 
ommuni
ation,idle time and h-relation:� Absolute { identi�es the nodes with the greatest maximum 
ost ;� Absolute imbalan
e { identi�es the nodes with the greatest di�eren
e be-tween the maximum and average 
ost ;� Relative imbalan
e { identi�es the nodes with the greatest per
entage devi-ation between maximum and average 
ost ;4 In this paper 
olours have been repla
ed by greys
ales ranging from white to darkgrey. 11



� Weighted { identi�es the nodes with both the greatest di�eren
e between themaximum and average 
ost and the greatest per
entage deviation betweenthe maximum and average 
ost, a 
ombination of the previous two 
riti
alpaths.The absolute 
riti
al path identi�es those nodes to whi
h the greater part ofthe program 
osts are attributed. The absolute imbalan
e 
riti
al path high-lights those nodes whi
h are amenable to further improvement, as it identi�esthe underlying imbalan
e between the maximum and average 
ost. However,
are must be taken when this metri
 is used, as nodes with large 
ost valuesand small deviations may be identi�ed as being `more 
riti
al' than nodeswith smaller 
ost values but larger deviations. The latter are most re
eptiveto signi�
ant improvement; the relative imbalan
e 
riti
al path is thereforemore useful when determining node imbalan
e, irrespe
tive of the 
ost size.Finally, the weighted 
riti
al path 
ombines the advantages of the previous twoapproa
hes.The 
riti
al paths identi�ed in Figure 3 highlight the absolute imbalan
e inh-relation in the program. The pro�ling tool shows that when the one-stagebroad
ast algorithm is used, there is a signi�
ant 
ommuni
ation imbalan
e;this imbalan
e is quanti�ed in the h-relation in the form (12% j 7%) | theaverage 
ost is 12% of the maximum, whereas the minimum 
ost is 7%. Resultsshowing su
h small per
entages for the average and minimum 
osts point tolarge imbalan
es in the underlying algorithm. The pro�ling tool also highlightsa similar imbalan
e in the �rst superstep (b
ast.
 line 34) of the two-stagealgorithm (the initial distribution of data), an imbalan
e whi
h is unavoidableusing this approa
h. It is interesting that the pro�ling tool does not rank thisimbalan
e as highly as the imbalan
e underlying the one-stage algorithm; thisis be
ause it is 
aused by a smaller h-relation, i.e. an (n=p)(p � 1)-relationrather than an n(p�1)-relation. Finally, it 
an be seen that the last superstepof the two-stage broad
ast (b
ast.
 line 41) has no h-relation imbalan
ei.e. it is (100% j 100%).4 Pro�ling an SQL database appli
ationThe optimisation of an SQL database query evaluation program provides apersuasive real-world 
ase study to illustrate the e�e
tiveness of the 
all-graphpro�ling tool on larger appli
ations.The SQL database query evaluation program 
ontains a number of relationalqueries whi
h are implemented in BSP. The program 
onsists of standard SQLdatabase queries whi
h have been trans
ribed into C fun
tion 
alls and thenlinked with a BSPlib library of SQL-like primitives. The program takes a12



Fig. 4. S
reen view of the 
all-graph pro�ling toolsequen
e of relations, in the form of tables, as its input. It pro
esses the tablesand yields, as output, a sequen
e of intermediate relations.The program works by distributing input relations among the pro
essors usinga simple blo
k-
y
li
 distribution. Three input relations ITEM, QNT and TRANare de�ned. Here the program evaluates six queries whi
h in turn 
reate thefollowing intermediary relations: (1) TEMP1, an aggregate sum and a `group-by' rearrangement of the relation TRAN; (2) TEMP2, an equality-join of TEMP1and ITEM; (3) TEMP3, an aggregate sum and group-by of TEMP2; (4) TEMP4, anequality-join of relations TEMP3 and QNT; (5) TEMP5, a less-than-join of relationsTEMP4 and ITEM; and (6) a �lter (IN `low 1%') of the relation TEMP5.The program was exe
uted on a sixteen pro
essor Cray T3E and the s
reenview of the pro�le results is shown in Figure 4. On the basis of these results,a series of optimisations { do
umented below { is performed with the aimof a
hieving a balan
ed program i.e. one whose 
ost terms are of the form(100% j 100%).4.1 Optimisation: stage 1The results found in Figure 5 are a se
tion of the 
all-graph pro�le for theoriginal SQL query pro
essing program (version 1 of the program).13



      elim_dup0
      [25 syncs]
        Max   Avg Min
Comp   1.47s  62% 33%
Comm   0.02s  70% 46%
Wait   1.01s  56%  0%
Hrel 9.5e+05  51% 20%

 ex_query.c line 301
      [1 syncs]
        Max   Avg Min
Comp   0.01s  97% 96%
Comm   0.00s  98% 94%
Wait   0.00s  75% 51%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
                 [26 syncs]
        Max   Avg Min
Comp   1.48s  63% 33%
Comm   0.02s  70% 46%
Wait   1.01s  56%  0%
Hrel 9.5e+05  51% 20%

        apply0
      [7 syncs]
        Max   Avg Min
Comp   0.00s  88% 86%
Comm   0.00s  89% 83%
Wait   0.00s  48% 32%
Hrel 5.5e+02  64%  7%

 ex_query.c line 659
      [1 syncs]
        Max   Avg Min
Comp   0.00s  48% 44%
Comm   0.00s  98% 95%
Wait   0.00s  96% 67%
Hrel 0.0e+00   0%  0%

 ex_query.c line 627
      [1 syncs]
        Max   Avg Min
Comp   0.03s  45% 14%
Comm   0.06s 100%100%
Wait   0.03s  89% 71%
Hrel 7.8e+04  55% 22%

 ex_query.c line 614
      [1 syncs]
        Max   Avg Min
Comp   0.00s 100%100%
Comm   0.00s  99% 99%
Wait   0.00s   8%  1%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
               [35 syncs]
        Max   Avg Min
Comp   0.24s  73% 55%
Comm   0.07s  98% 96%
Wait   0.11s  64% 18%
Hrel 2.0e+05  54% 20%

 ex_query.c line 538
      [1 syncs]
        Max   Avg Min
Comp   0.01s  99% 98%
Comm   0.01s  49% 14%
Wait   0.01s  61%  3%
Hrel 0.0e+00   0%  0%

 ex_query.c line 528
      [1 syncs]
        Max   Avg Min
Comp   0.05s  79% 64%
Comm   0.01s  64% 28%
Wait   0.03s  62%  0%
Hrel 1.5e+04  70% 23%

 ex_query.c line 505
      [1 syncs]
        Max   Avg Min
Comp   0.02s  52% 12%
Comm   0.03s 100%100%
Wait   0.02s  75% 43%
Hrel 2.6e+04  62% 36%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
                    [22 syncs]
        Max   Avg Min
Comp   0.18s  72% 51%
Comm   0.05s  82% 72%
Wait   0.09s  61%  9%
Hrel 8.2e+04  60% 33%

     SQL_Process
     [176 syncs]
        Max   Avg Min
Comp   2.50s  66% 40%
Comm   0.23s  92% 86%
Wait   1.55s  57%  3%
Hrel 1.5e+06  54% 21%

Fig. 5. Detail of the 
omplete 
all-graph pro�le found in Figure 4.The initial results show an uneven distribution of the three input relationsamongst the pro
essors. This gives rise to a 
onsiderable imbalan
e in 
om-putation and 
ommuni
ation when database operations are performed usingthese data stru
tures. Figure 5 shows a (54%j 21%) imbalan
e in h-relationsize.As a potential remedy, load balan
ing fun
tions were introdu
ed into the 
odeto ensure that ea
h pro
essor 
ontained an approximately equal partition ofthe input relation. The results of load balan
ing these input relations redu
esthe 
ommuni
ation and 
omputation imbalan
e by 26%.4.2 Optimisation: stage 2Further pro�les of the SQL query pro
essing appli
ation reveal that the imbal-an
e has not been eradi
ated. It appears that the SQL primitives had inherent
ommuni
ation imbalan
e, even when perfe
tly balan
ed input data was used.The pro�ling results whi
h support this observation 
an be seen in Figure 6.
      elim_dup0
      [25 syncs]
        Max   Avg Min
Comp   0.98s  90% 84%
Comm   0.02s  83% 69%
Wait   0.16s  61%  2%
Hrel 5.7e+05  71% 56%

 ex_query.c line 301
      [1 syncs]
        Max   Avg Min
Comp   0.01s  97% 96%
Comm   0.00s  99% 98%
Wait   0.00s  69% 56%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
                 [26 syncs]
        Max   Avg Min
Comp   0.99s  90% 84%
Comm   0.02s  83% 69%
Wait   0.17s  61%  2%
Hrel 5.7e+05  71% 56%

        apply0
      [7 syncs]
        Max   Avg Min
Comp   0.00s  88% 86%
Comm   0.00s  91% 86%
Wait   0.00s  47% 31%
Hrel 5.2e+02  65%  7%

 ex_query.c line 659
      [1 syncs]
        Max   Avg Min
Comp   0.00s  47% 43%
Comm   0.00s  96% 93%
Wait   0.00s  95% 68%
Hrel 0.0e+00   0%  0%

 ex_query.c line 627
      [1 syncs]
        Max   Avg Min
Comp   0.03s  52% 14%
Comm   0.05s  99% 99%
Wait   0.02s  85% 68%
Hrel 6.7e+04  59% 52%

 ex_query.c line 614
      [1 syncs]
        Max   Avg Min
Comp   0.00s 100% 99%
Comm   0.00s  99% 98%
Wait   0.00s   8%  0%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
               [35 syncs]
        Max   Avg Min
Comp   0.19s  88% 76%
Comm   0.06s  98% 97%
Wait   0.05s  64% 36%
Hrel 1.6e+05  58% 47%

 ex_query.c line 538
      [1 syncs]
        Max   Avg Min
Comp   0.01s  99% 99%
Comm   0.01s  39%  6%
Wait   0.01s  66%  3%
Hrel 0.0e+00   0%  0%

 ex_query.c line 528
      [1 syncs]
        Max   Avg Min
Comp   0.08s  69% 49%
Comm   0.01s  41%  6%
Wait   0.05s  61%  0%
Hrel 2.5e+04  49% 40%

 ex_query.c line 505
      [1 syncs]
        Max   Avg Min
Comp   0.02s  48%  8%
Comm   0.04s 100%100%
Wait   0.02s  80% 50%
Hrel 3.6e+04  51% 32%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
                    [22 syncs]
        Max   Avg Min
Comp   0.22s  69% 51%
Comm   0.06s  79% 68%
Wait   0.13s  66% 10%
Hrel 1.3e+05  50% 33%

     SQL_Process
     [158 syncs]
        Max   Avg Min
Comp   1.97s  85% 74%
Comm   0.23s  92% 86%
Wait   0.55s  62% 12%
Hrel 1.2e+06  67% 47%

Fig. 6. SQL query evaluation after load balan
e.Using the 
riti
al paths whi
h the 
all-graph pro�ling tool identi�es, it is pos-sible to follow the path of exe
ution through the SELECT FROM fun
tion tothe graph node labelled elim dup0. This highlights a major 
ause of 
ommu-ni
ation imbalan
e { (69%j 54%) { whi
h 
an be attributed to the fun
tionbspsort at line 175 in the program. This is shown in Figure 4.14



Repeating this pro
edure using the 
omputation 
riti
al paths highlights thatthe same fun
tion, bspsort, is responsible for similar 
omputation imbalan
e.The pro�le results in Figure 4 identify the primary sour
e of this 
omputa-tion imbalan
e (51%j 17%) as line 188. The pie 
hart in Figure 4 presents abreakdown of the a

umulated 
omputation time for ea
h of the pro
esses atthe superstep found at line 188.In order to illustrate the 
lass of 
omputation whi
h may be the 
ause ofthis type of problem, the underlying algorithm of the bspsort fun
tion isdes
ribed.The bspsort fun
tion implements a re�ned variant of the optimal randomisedBSP sorting algorithm of [3℄. The algorithm 
onsists of seven stages: (1) ea
hpro
essor lo
ally sorts the elements in its possession; (2) ea
h pro
essor sele
tsa random sample of s� p elements (where s is the oversampling fa
tor) whi
hare 
olle
ted at pro
ess zero; (3) the samples are sorted and p regular pivots arepi
ked from the s� p2 samples; (4) the pivots are broad
ast to all pro
essors;(5) ea
h pro
essor partitions the elements in its possession into the p blo
ksas indu
ed by the pivots; (6) ea
h pro
essor sends partition i to pro
essor iand (7) a lo
al multi-way merge results in the intended global sort.If stages (6) and (7) are not balan
ed, this 
an only be attributed to a poorsele
tion of splitters in stage (2). The random number generator whi
h se-le
ted the sample had been extensively tested prior to use; therefore the prob-able 
ause for the disappointing performan
e of the algorithm was thoughtto be the 
hoi
e of the oversampling fa
tor s. The algorithm had howeverbeen previously tested and the oversampling fa
tor �ne tuned on the basisof experiments using simple timing fun
tions. The experimental results hadsuggested that the oversampling fa
tor established during theoreti
al analysisof the algorithm had been a gross overestimate and, as a result, when it wasimplemented, a mu
h redu
ed fa
tor was used.4.3 Optimisation: improving the parallel sortThe oversampling fa
tor for the sorting algorithm was further tested in anumber of pro�ling experiments. Se
tions of the 
all-graph for the optimalexperimental and theoreti
al parameters are presented in Figures 7 and 8respe
tively. The original experimental results were 
on�rmed by the pro�le:the performan
e of the algorithm utilising the theoreti
al oversampling fa
tor(Figure 8) was approximately 50% inferior to that of the algorithm utilising theexperimental oversampling fa
tor (Figure 7). This 
an be seen by 
omparingthe 
omputation imbalan
e of (49%j 15%) in stage (7) of the �rst sort - foundat line 188 in Figure 7 - with the 
omputation imbalan
e of (7%j 0%) in15



   scan.c line 100
      [11 syncs]
        Max   Avg Min
Comp   0.00s  55% 51%
Comm   0.00s  78% 76%
Wait   0.00s  93% 15%
Hrel 3.3e+02  12%  7%

  bspbroadcast_multi
      [11 syncs]
        Max   Avg Min
Comp   0.00s  55% 51%
Comm   0.00s  78% 76%
Wait   0.00s  93% 15%
Hrel 3.3e+02  12%  7%

   scan.c line 146
      [2 syncs]
        Max   Avg Min
Comp   0.00s  58% 41%
Comm   0.00s  91% 72%
Wait   0.00s  67% 42%
Hrel 6.0e+01  77% 53%

   scan.c line 133
      [2 syncs]
        Max   Avg Min
Comp   0.04s 100%100%
Comm   0.00s  93% 92%
Wait   0.00s   8%  1%
Hrel 0.0e+00   0%  0%

   bspreduce_multi
      [6 syncs]
        Max   Avg Min
Comp   0.04s  99% 99%
Comm   0.00s  85% 78%
Wait   0.00s  64% 29%
Hrel 1.2e+02  44% 30%

   scan.c line 230
      [2 syncs]
        Max   Avg Min
Comp   0.00s  71% 68%
Comm   0.00s  97% 96%
Wait   0.00s  96% 90%
Hrel 6.0e+01 100%100%

   scan.c line 199
      [2 syncs]
        Max   Avg Min
Comp   0.00s  66% 63%
Comm   0.00s  99% 97%
Wait   0.00s  96% 86%
Hrel 6.0e+01 100%100%

  bspprefix_multi_p
      [4 syncs]
        Max   Avg Min
Comp   0.00s  69% 66%
Comm   0.00s  98% 96%
Wait   0.00s  96% 88%
Hrel 1.2e+02 100%100%

   scan.c line 287
      [2 syncs]
        Max   Avg Min
Comp   0.00s  73% 71%
Comm   0.00s  91% 89%
Wait   0.00s  97% 84%
Hrel 6.0e+01 100%100%

   scan.c line 271
      [2 syncs]
        Max   Avg Min
Comp   0.00s  42% 38%
Comm   0.00s  79% 77%
Wait   0.00s  94% 29%
Hrel 6.0e+01  12%  7%

   scan.c line 261
      [2 syncs]
        Max   Avg Min
Comp   0.00s 100%100%
Comm   0.00s  99% 98%
Wait   0.00s   8%  1%
Hrel 0.0e+00   0%  0%

 bspbroadcast_multi_p
       [6 syncs]
        Max   Avg Min
Comp   0.00s  74% 72%
Comm   0.00s  88% 86%
Wait   0.00s  71% 34%
Hrel 1.2e+02  56% 53%

   sort.c line 188
      [2 syncs]
        Max   Avg Min
Comp   0.39s  49% 15%
Comm   0.00s  98% 96%
Wait   0.34s  60%  0%
Hrel 0.0e+00   0%  0%

   sort.c line 175
      [2 syncs]
        Max   Avg Min
Comp   0.01s  92% 86%
Comm   0.01s  88% 69%
Wait   0.00s  45%  4%
Hrel 3.1e+05  60% 48%

   sort.c line 162
      [2 syncs]
        Max   Avg Min
Comp   0.00s  71% 69%
Comm   0.00s  98% 97%
Wait   0.00s  96% 85%
Hrel 6.0e+01 100%100%

   sort.c line 135
      [2 syncs]
        Max   Avg Min
Comp   0.00s  41% 37%
Comm   0.00s  99% 97%
Wait   0.00s  95% 35%
Hrel 0.0e+00   0%  0%

   sort.c line 125
      [2 syncs]
        Max   Avg Min
Comp   0.82s 100%100%
Comm   0.00s  98% 90%
Wait   0.00s  56%  5%
Hrel 1.2e+02  12%  7%

       bspsort
      [26 syncs]
        Max   Avg Min
Comp   1.27s  84% 73%
Comm   0.01s  90% 75%
Wait   0.35s  60%  0%
Hrel 3.1e+05  60% 48%

          sp
      [35 syncs]
        Max   Avg Min
Comp   1.27s  84% 73%
Comm   0.01s  88% 76%
Wait   0.35s  60%  0%
Hrel 3.1e+05  60% 48%

         main
      [35 syncs]
        Max   Avg Min
Comp   1.27s  84% 73%
Comm   0.01s  88% 76%
Wait   0.35s  60%  0%
Hrel 3.1e+05  60% 48%

Fig. 7. Parallel sort using experimental oversampling fa
tor.

   scan.c line 100
      [11 syncs]
        Max   Avg Min
Comp   0.00s  55% 51%
Comm   0.00s  79% 77%
Wait   0.00s  94% 15%
Hrel 3.3e+02  12%  7%

  bspbroadcast_multi
      [11 syncs]
        Max   Avg Min
Comp   0.00s  55% 51%
Comm   0.00s  79% 77%
Wait   0.00s  94% 15%
Hrel 3.3e+02  12%  7%

   scan.c line 146
      [2 syncs]
        Max   Avg Min
Comp   0.00s  58% 41%
Comm   0.00s  91% 72%
Wait   0.00s  68% 42%
Hrel 6.0e+01  77% 53%

   scan.c line 133
      [2 syncs]
        Max   Avg Min
Comp   0.04s 100%100%
Comm   0.00s  93% 91%
Wait   0.00s   8%  1%
Hrel 0.0e+00   0%  0%

   bspreduce_multi
      [6 syncs]
        Max   Avg Min
Comp   0.04s  99% 99%
Comm   0.00s  85% 78%
Wait   0.00s  64% 28%
Hrel 1.2e+02  44% 30%

   scan.c line 230
      [2 syncs]
        Max   Avg Min
Comp   0.00s  72% 69%
Comm   0.00s  98% 98%
Wait   0.00s  97% 95%
Hrel 6.0e+01 100%100%

   scan.c line 199
      [2 syncs]
        Max   Avg Min
Comp   0.00s  67% 64%
Comm   0.00s  99% 98%
Wait   0.00s  97% 86%
Hrel 6.0e+01 100%100%

  bspprefix_multi_p
      [4 syncs]
        Max   Avg Min
Comp   0.00s  69% 67%
Comm   0.00s  99% 98%
Wait   0.00s  97% 90%
Hrel 1.2e+02 100%100%

   scan.c line 287
      [2 syncs]
        Max   Avg Min
Comp   0.00s  72% 69%
Comm   0.00s  92% 89%
Wait   0.00s  95% 84%
Hrel 6.0e+01 100%100%

   scan.c line 271
      [2 syncs]
        Max   Avg Min
Comp   0.00s  40% 35%
Comm   0.00s  79% 77%
Wait   0.00s  95% 29%
Hrel 6.0e+01  12%  7%

   scan.c line 261
      [2 syncs]
        Max   Avg Min
Comp   0.00s  99% 98%
Comm   0.00s  99% 98%
Wait   0.00s   8%  1%
Hrel 0.0e+00   0%  0%

 bspbroadcast_multi_p
       [6 syncs]
        Max   Avg Min
Comp   0.00s  75% 72%
Comm   0.00s  88% 86%
Wait   0.00s  72% 35%
Hrel 1.2e+02  56% 53%

   sort.c line 188
      [2 syncs]
        Max   Avg Min
Comp   0.20s  95% 89%
Comm   0.00s  97% 96%
Wait   0.02s  46%  0%
Hrel 0.0e+00   0%  0%

   sort.c line 175
      [2 syncs]
        Max   Avg Min
Comp   0.01s  91% 85%
Comm   0.01s  90% 73%
Wait   0.00s  50% 15%
Hrel 1.5e+05  98% 97%

   sort.c line 162
      [2 syncs]
        Max   Avg Min
Comp   0.00s  71% 69%
Comm   0.00s  98% 97%
Wait   0.00s  96% 86%
Hrel 6.0e+01 100%100%

   sort.c line 135
      [2 syncs]
        Max   Avg Min
Comp   0.82s   7%  0%
Comm   0.00s  96% 93%
Wait   0.82s  94%  0%
Hrel 0.0e+00   0%  0%

   sort.c line 125
      [2 syncs]
        Max   Avg Min
Comp   0.83s 100%100%
Comm   0.00s  80% 19%
Wait   0.00s  55% 10%
Hrel 1.5e+05  12%  7%

       bspsort
      [26 syncs]
        Max   Avg Min
Comp   1.91s  59% 55%
Comm   0.01s  88% 65%
Wait   0.85s  92%  0%
Hrel 3.1e+05  56% 52%

          sp
      [35 syncs]
        Max   Avg Min
Comp   1.91s  59% 55%
Comm   0.01s  87% 66%
Wait   0.85s  92%  0%
Hrel 3.1e+05  56% 52%

         main
      [35 syncs]
        Max   Avg Min
Comp   1.91s  59% 55%
Comm   0.01s  87% 66%
Wait   0.85s  92%  0%
Hrel 3.1e+05  56% 52%

Fig. 8. Sorting version 2: theoreti
al oversampling fa
tor.stage (2) of the se
ond sort - found at line 135 of Figure 8. Similarly, the
ommuni
ation imbalan
e of (60%j 48%) present at stage (6) of the �rst sort16



(found at line 175) 
ontrasts with the imbalan
e of (12%j 7%) present at stage(3) of the se
ond sort (found at line 125).The 
ommuni
ation and 
omputation requirements of stages (6) and (7) inthe se
ond sort (Figure 8) were balan
ed, showing fa
tors of (98%j 97%) and(95%j 89%) respe
tively. This showed that the theoreti
al analysis had in-deed a

urately predi
ted the oversampling fa
tor required to a
hieve loadbalan
e. Unfortunately, the sustained improvement to the underlying sortingalgorithm gained by balan
ing 
ommuni
ation at stage (6) { and 
onsequently,the improved 
ommuni
ation requirements of the entire algorithm { had beenlargely overwhelmed by the 
ost of 
ommuni
ating and sorting larger samplesin stages (2) and (3).As a solution to this problem the work by Gerbessiotis and Siniolakis [3℄was applied. The unbalan
ed 
ommuni
ation and 
omputation algorithms ofstages (2) and (3), whi
h 
olle
ted and sorted a sample on a single pro
ess,were repla
ed by an alternative parallel sorting algorithm. This simple andeÆ
ient solution to the problem involves the sample set being sorted amongall the pro
esses. An appropriate implementation is an eÆ
ient variant of thebitoni
-sort network.The introdu
tion of the bitoni
 sorter brought a marked improvement to theresults. These showed an 8:5% improvement to the overall wall-
lo
k runningtime of the sorting algorithm; the results also demonstrated 
orrespondingprogram balan
e: 
omputation (99%j 98%), 
ommuni
ation (83%j 70%), andh-relation (99%j 98%).
      elim_dup0
      [32 syncs]
        Max   Avg Min
Comp   0.96s  98% 94%
Comm   0.02s  85% 78%
Wait   0.07s  39%  4%
Hrel 5.2e+05 100%100%

 ex_query.c line 301
      [1 syncs]
        Max   Avg Min
Comp   0.01s  97% 97%
Comm   0.00s  99% 96%
Wait   0.00s  92% 82%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
                 [33 syncs]
        Max   Avg Min
Comp   0.97s  98% 94%
Comm   0.02s  85% 78%
Wait   0.07s  40%  4%
Hrel 5.2e+05 100%100%

        apply0
      [7 syncs]
        Max   Avg Min
Comp   0.00s  87% 85%
Comm   0.00s  90% 84%
Wait   0.00s  47% 31%
Hrel 5.2e+02  51%  7%

 ex_query.c line 659
      [1 syncs]
        Max   Avg Min
Comp   0.00s  48% 44%
Comm   0.00s  97% 94%
Wait   0.00s  94% 68%
Hrel 0.0e+00   0%  0%

 ex_query.c line 627
      [1 syncs]
        Max   Avg Min
Comp   0.01s  99% 98%
Comm   0.04s 100%100%
Wait   0.00s  54% 10%
Hrel 3.5e+04 100%100%

 ex_query.c line 614
      [1 syncs]
        Max   Avg Min
Comp   0.00s 100%100%
Comm   0.00s  99% 97%
Wait   0.00s   8%  0%
Hrel 0.0e+00   0%  0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
               [42 syncs]
        Max   Avg Min
Comp   0.19s  96% 92%
Comm   0.05s  97% 95%
Wait   0.02s  52% 16%
Hrel 2.2e+05 100%100%

 ex_query.c line 538
      [1 syncs]
        Max   Avg Min
Comp   0.01s  98% 98%
Comm   0.00s  67% 62%
Wait   0.00s  88% 10%
Hrel 0.0e+00   0%  0%

 ex_query.c line 528
      [1 syncs]
        Max   Avg Min
Comp   0.04s  88% 82%
Comm   0.01s  68% 64%
Wait   0.01s  74%  0%
Hrel 1.5e+04  70% 68%

 ex_query.c line 505
      [1 syncs]
        Max   Avg Min
Comp   0.01s  88% 65%
Comm   0.02s 100%100%
Wait   0.01s  31%  4%
Hrel 1.5e+04  79% 69%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
                    [29 syncs]
        Max   Avg Min
Comp   0.19s  92% 84%
Comm   0.04s  87% 84%
Wait   0.04s  53%  7%
Hrel 2.0e+05  93% 91%

     SQL_Process
     [186 syncs]
        Max   Avg Min
Comp   1.84s  96% 90%
Comm   0.16s  92% 89%
Wait   0.21s  44%  7%
Hrel 1.2e+06  98% 97%

Fig. 9. Final version of the SQL query evaluation.4.4 Optimisation: stage 3The sorting algorithm is 
entral to the implementation of most of the queriesin the SQL database query evaluation appli
ation. Therefore, a minor im-provement in the sorting algorithm results in a marked improvement in theperforman
e of the query evaluation program as a whole. This is 
on�rmed by17



the la
k of any shading in Figure 9. In 
ontrast to Figure 5, the h-relations ofthe SQL queries are almost perfe
tly balan
ed.The overall improvement in performan
e of the SQL query evaluation programis dis
ussed in the next se
tion.
5 Ar
hite
ture-independent 
ode optimisationIn the introdu
tion it was stated that 
are should be taken when optimis-ing parallel programs based on pro�le information. In parti
ular, using thewall-
lo
k time as a 
ost metri
 is not a good basis for s
alable and portableprogram improvements. An important feature of BSP is that the size of anh-relation dire
tly in
uen
es the 
ost of 
ommuni
ation. Therefore, instead ofusing a
tual 
ommuni
ation time as a 
ost metri
, whi
h may be subje
t toquanti�
ation error, the predi
ted 
ost of 
ommuni
ation (hg+ l) is used. Thismethod is error-free as the value of h, whi
h is not a�e
ted by the 
hoi
e of theunderlying ma
hine or ar
hite
ture, is a

urately re
orded at runtime. Thisforms the basis for the hypothesis that imbalan
e in maximum and averageh-relations 
an be used as the metri
 by whi
h BSP programs are optimisedand optimal ar
hite
ture-independent parallel algorithms are developed. Thishypothesis is supported by both the BSP 
ost analysis formulae and experi-mental results.Analysis of the two broad
ast algorithms also provides support for this hy-pothesis. In Figure 3 the a

umulated values for 
omputation, 
ommuni
ationand idle time displayed at the nodes labelled one stage b
ast and two stagebroad
ast show that the two-stage broad
ast is superior to the one-stagebroad
ast. The performan
e of the two-stage broad
ast algorithm on a 16pro
essor Cray T3E shows an improvement over the one-stage algorithm of afa
tor of: 19:5 + 19:64:7 + 4:7 = 4:165.1 Ar
hite
ture-independent optimisation of the query pro
essing appli
ationTable 1 shows the wall-
lo
k times for the original and optimised SQL querypro
essing appli
ations running on a variety of parallel ma
hines. The smallsize of the input relation was deliberate as this would prevent the 
omputationtime in the algorithms from dominating. This allows the improvements in
ommuni
ation 
ost to be highlighted.18



Unoptimised OptimisedMa
hine p time speed-up time speed-up gainCray T3E 1 6.44 1.00 5.37 1.00 17%2 4.30 1.50 3.38 1.59 21%4 2.48 2.60 1.85 2.90 25%8 1.23 5.23 1.04 5.17 15%16 0.68 9.43 0.67 8.02 1%Cray T3D 1 27.18 1.00 22.41 1.00 18%2 13.18 2.06 10.88 2.06 17%4 6.89 3.94 5.70 3.93 17%8 3.29 8.25 3.07 7.30 7%16 1.66 16.34 1.89 11.88 -14%SGI Origin 2000 1 2.99 1.00 2.42 1.00 19%2 1.65 1.81 1.27 1.91 23%4 1.26 2.37 1.11 2.16 12%8 0.88 3.39 0.77 3.15 13%Intel Cluster 5 1 19.68 1.00 13.01 1.00 51%2 9.70 2.02 6.63 1.96 46%4 5.75 3.42 4.02 3.24 43%Athlon Cluster 6 1 11.94 1.00 7.85 1.0 52%2 6.06 1.97 4.08 1.92 49%4 3.58 3.34 3.07 2.56 17%Table 1Wall-
lo
k time (se
s.) for input relations 
ontaining 12,000 re
ordsThe results show that for up to eight pro
essors, the optimised version ofthe program yields an improvement of between 7% and 52% over the originalprogram. The relatively small input relation means that the experiment is nots
alable beyond this point. Detailed analysis of the results in Table 1 supportsthis observation. The parallel eÆ
ien
y of both the T3E and Origin 2000 islimited: in
reasing the number of pro
essors on the Origin 2000 from 4 to6 A 400Mbps 
lustered network of 450Mhz Intel Pentium II pro
essors, running theSy
hron VPS software.6 A 300Mbps 
lustered network of 700Mhz AMD Athlon pro
essors, running theSy
hron VPS software. 19



8, for example, does not double the speed of exe
ution. It is thought thatthis is due to the 
ommuni
ation-intensive nature of the query pro
essingappli
ation, together with the small quantity of data whi
h is held on ea
hpro
ess (750 re
ords per pro
ess at p = 16). By 
ontrast, a 
ombination of theslow pro
essors, fast 
ommuni
ation and poor 
a
he organisation on the T3Dgives super-linear speed-up, even for this small data set.The absolute timing results for the appli
ation running on the Intel and Athlon
lusters are within the same approximate range as on more traditional super-
omputers su
h as the Cray T3E and Origin 2000. It is interesting to notethat the gains seen using the optimised version of the program on these 
lus-ters ex
eed those a
hieved on other ma
hines. It is thought that this is dueto the relatively small se
ondary 
a
he size of the Intel pro
essors 
omparedwith both the Alpha and Mips R10000 used on the Cray and Origin. A largeimbalan
e in the data set used in the unoptimised version of the programmeans that one pro
essor 
ontains more data than the others; this pro
essorwill therefore have a larger 
a
he over
ow. The size of the data set utilised inthis experiment is similar to the size of the 
a
he itself. The absolute size ofthe 
a
he will therefore have an e�e
t on the performan
e of this ben
hmark;this is 
on�rmed by the seemingly poor timing results for the Intel and Athlonpro
essors.
6 Con
lusionsThe 
all-graph pro�ling tool, used in the eÆ
ien
y analysis of BSPlib pro-grams, provides the basis for portable and ar
hite
ture-independent parallelperforman
e optimisation. This hypothesis is tested by pro�ling an SQL querypro
essing appli
ation, a real-world test-
ase written in BSPlib.Program optimisations made to this appli
ation hold on a number of di�er-ent parallel ar
hite
tures in
luding Intel and Athlon 
lusters, shared memorymultipro
essors and tightly 
oupled distributed memory parallel ma
hines.A major bene�t of the BSP 
all-graph pro�ling tool is the 
on
ise way in whi
hprogram-
ost information is displayed. Visualising the 
osts for a parallel pro-gram is no more 
omplex than for a sequential program. Program ineÆ
ien
iesare qui
kly identi�ed with the use of 
riti
al 
ost paths. A s
heme of 
ost inher-itan
e also ensures that a

urate pro�le 
osts are displayed even when sharedfun
tions form a large part of the program.20
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