
http://wrap.warwick.ac.uk/

Original citation:
Jarvis, Stephen A., 1970-, Hill, J. M. D., Siniolakis, C. J. and Vasilev, V. P. (2001)
Portable and architecture independent parallel performance tuning. University of
Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-378

Permanent WRAP url:
http://wrap.warwick.ac.uk/61186

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61186
mailto:publications@warwick.ac.uk

Portable and ar
hite
ture independentparallel performan
e tuningS.A. Jarvis a J.M.D. Hill b C.J. Siniolakis
 V.P. Vasilev baDepartment of Computer S
ien
e, University of Warwi
k, UKbSy
hron Ltd., One Cambridge Terra
e, Oxford, UK
The Ameri
an College of Gree
e, Athens 15342, Gree
eAbstra
tA
all-graph pro�ling tool has been designed and implemented to analyse the eÆ-
ien
y of programs written in BSPlib. This tool highlights
omputation and
ommu-ni
ation imbalan
e in parallel programs, exposing portions of program
ode whi
hare amenable to improvement.A unique feature of this pro�ler is that it uses the BSP
ost model, thus pro-viding a me
hanism for portable and ar
hite
ture-independent parallel performan
etuning. In order to test the
apabilities of the model on a real-world example, theperforman
e
hara
teristi
s of an SQL query pro
essing appli
ation are investigatedon a number of di�erent parallel ar
hite
tures.Key words: Pro�ling, Bulk Syn
hronous Parallel, Program EÆ
ien
y.1 Introdu
tionThe role of a pro�ling tool is to asso
iate the exe
ution
osts of a program withidenti�able segments of the underlying sour
e
ode. How useful a pro�ling toolis depends on how easy it is for programmers to employ this information soas to alleviate
omputational bottlene
ks in their
ode.Three
riteria need to be satis�ed when designing su

essful pro�ling toolsfor sequential programming languages. The �rst relates to `what' the pro�lermeasures; it is desirable for the per
entage of exe
ution time spent in ea
hpart of the program and/or the amount of memory used to be identi�ed. These
ond
riterion
on
erns `where' in the
ode these
osts should be attributed;in order to improve the program implementation,
osts should be asso
iatedwith fun
tions or libraries within the
ode. The third
riterion relates to `how'Preprint submitted to Elsevier Preprint 5 September 2000

the pro�ling information
an be used to best e�e
t; program
ode should beoptimised in a quanti�able manner, an example of whi
h might be rewritingproblemati
 portions of
ode using an algorithm with improved asymptoti

omplexity.Pro�ling parallel programs as opposed to sequential programs is made more
omplex by the fa
t that program
osts are derived from a number of pro
es-sors. As a result, ea
h part of the program
ode may be asso
iated with up to p
osts, where p is the number of pro
essors involved in the
omputation. One ofthe major
hallenges for developers of pro�ling tools for parallel programminglanguages is to design tools whi
h will identify and expose the relationshipsbetween the
omputational
osts a

rued by the pro
essors and highlight anyimbalan
es. These
ost relationships must subsequently be expressed in termsof the three
riteria outlined above. Unfortunately many more issues are atstake with parallel frameworks and therefore the
riteria are far harder tode�ne and satisfy. In parti
ular:� What to
ost: In parallel programming there are two signi�
ant
ost met-ri
s whi
h may
ause bottlene
ks within programs; these are
omputationand
ommuni
ation. It is not good pra
ti
e to de
ouple these two metri
sand pro�le them independently as it is of paramount importan
e that theintera
tion between the two is identi�ed and exposed to the user. This isbe
ause if programs are optimised with respe
t to one of these metri
s, thisshould not be at the expense of the other.� Where to
ost: Costing
ommuni
ation
an be problemati
. This is be
auserelated
ommuni
ation
osts on di�erent pro
essors may be the result ofup to p di�erent (and intera
ting) parts of a program. In message-passingsystems, for example, there exist p distin
t and independently intera
ting`
ostable' parts of
ode. Without attention to design, pro�ling tools de-veloped for su
h systems may overload the user with results. Too mu
hpro�ling information
an be diÆ
ult to interpret; the upshot system [6℄ hasbeen
riti
ised for this very reason.� How to use: When pro�ling information is used to optimise parallel pro-grams,
are has to be taken to ensure that these optimisations are notspe
i�
ally tailored to a parti
ular ma
hine or ar
hite
ture. An optimisa-tion is more likely to be portable if program improvements are made at thelevel of the underlying algorithms. Portable and ar
hite
ture-independentoptimisations to parallel programs are more likely to be a
hieved if the pro-gramming model on whi
h the algorithm is built possesses a supporting,pragmati

ost model.These three
riteria form the basis for the development of a pro�ling tool forparallel programs whose
ode is based on the BSP model [18,14,16℄. When us-ing this pro�ling tool the programmer will use the balan
e of
omputation and
ommuni
ation as the metri
 with respe
t to whi
h their parallel programs are2

optimised. It is shown that by minimising this imbalan
e, signi�
ant improve-ments to the
omplexity of parallel algorithms are often a
hieved. This is thekey to portable and ar
hite
ture-independent optimisations.The BSP model, its implementation (BSPlib) and
ost
al
ulus are introdu
edin se
tion 2. In se
tion 3 attributes of BSPlib whi
h fa
ilitate parallel pro�lingare des
ribed and the
all-graph pro�ling tool is introdu
ed with the analysisof two broad
ast algorithms. The pro�ler is used to optimise of a real-worlddistributed database query pro
essing appli
ation and the results are des
ribedin se
tion 4. The ar
hite
ture-independent properties of this framework areexplored in se
tion 5.2 The BSP modelThe exploration of parallel
omputation within theoreti
al
omputer s
ien
ehas been led by the study of time, pro
essor and spa
e
omplexities of `ideal'parallel ma
hines whi
h
ommuni
ate via a shared memory; this is known asthe Parallel Random A

ess Ma
hine (PRAM) Model [2℄. The PRAM modelassumes that an unbounded set of pro
essors shares a global memory. In asingle step, a pro
essor
an either read or write one data word from the globalmemory into its lo
al address spa
e, or perform some basi

omputational op-eration. The simpli
ity of the model has, over the past two de
ades, en
ouragedthe development of a large
olle
tion of PRAM algorithms and te
hniques [10℄.Conversely, the model's simpli
ity also means that it does not re
e
t a numberof important aspe
ts of parallel
omputation whi
h are observed in pra
ti
e;these in
lude
ommuni
ation laten
y, bandwidth of inter
onne
tion networks,memory management and pro
essor syn
hronisation, amongst others.The Bulk Syn
hronous Parallel (BSP) model { a high-level abstra
tion ofhardware { provides a general-purpose framework for the design and analysisof s
alable programs, whi
h may then be run eÆ
iently on existing diversehardware platforms. In addressing many of the previous limitations, BSP iswidely regarded as a bridging model for parallel
omputing [18,17℄. In theBSP model no assumptions are made about the underlying te
hnology or thedegree of parallelism. The BSP model thus aims to provide a general-purposeparallel
omputing platform [12,13,17,18℄. A Bulk Syn
hronous Parallel Ma-
hine (BSPM) provides an abstra
tion of any real parallel ma
hine; a BSPMhas three
onstituent parts:(1) A number of pro
essor/memory
omponents (pro
essors);(2) An inter
onne
tion network whi
h delivers messages in a point-to-pointmanner between the pro
essors;(3) A fa
ility for globally syn
hronising the pro
essors by means of a barrier.3

In the BSP model a program
onsists of a sequen
e of supersteps. During a su-perstep, ea
h pro
essor
an perform
omputations on values held lo
ally at thestart of the superstep, or it
an initiate
ommuni
ation with other pro
essors.The model in
orporates the prin
iple of bulk syn
hrony ; that is, pro
essors arebarrier syn
hronised at regular intervals, ea
h interval suÆ
ient in length forthe messages to be transmitted to their destinations [18℄. The model does notpres
ribe any parti
ular style of
ommuni
ation, but it does require that atthe end of a superstep any pending
ommuni
ations be
ompleted.2.1 The BSP
ost modelThe
ost of a BSP program
an be
al
ulated by summing the
osts of ea
h su-perstep exe
uted by the program. In turn, the
ost of an individual superstep
an be broken down into: (i) lo
al
omputation; (ii) global ex
hange of dataand (iii) barrier syn
hronisation. The maximum number of messages (words)
ommuni
ated to or from any pro
essor during a superstep is denoted by h,and the
omplete set of messages is
aptured in the notion of an h-relation.To ensure that
ost analysis
an be performed in an ar
hite
ture-independentmanner,
ost formula are based on the following ar
hite
ture-dependent pa-rameters:p { the number of pro
essors;l { the minimum time between su

essive syn
hronisation operations, mea-sured in terms of basi

omputational operations;g { the ratio of the total throughput of the system in terms of basi

ompu-tational operations, to the throughput of the router in terms of words ofinformation delivered; alternatively stated, g is the single-word delivery
ostunder
ontinuous message traÆ
.Intuitively, g measures the permeability of the network to
ontinuous messagetraÆ
. A small value for g, therefore, suggests that an ar
hite
ture provideseÆ
ient delivery of message permutations. Similarly, l
aptures the
ost ofbarrier syn
hronisation.Using the de�nition of a superstep and the two ar
hite
tural parameters gand l, it is possible to
ompute the
ost of exe
uting a program on a givenar
hite
ture. In parti
ular, the
ost Ck of a superstep Sk is
aptured by theformulae [4,18℄,Ck = wk + hk � g + lwherewk = maxf wki j 0 � i < p ghk = maxf max(hki -in; hki -out) j 0 � i < p g (1)
4

where k ranges over the supersteps; i ranges over pro
essors; wki is an ar
hite
ture-independent
ost representing the maximum number of basi

omputationswhi
h
an be exe
uted by pro
essor i in the lo
al
omputation phase of su-perstep Sk; hki -in (respe
tively, hki -out) is the largest a

umulated size of allmessages entering (respe
tively, leaving) pro
essor i within superstep Sk.In the BSP model, the total
omputation
ost of a program is the sum of allthe
osts of the supersteps, Pk Ck.3 Pro�ling the imbalan
e in parallel programsThe BSP model stipulates that all pro
essors perform lo
k-step phases of
omputation followed by
ommuni
ation. This en
ourages a dis
iplined ap-proa
h in the utilisation of
omputation and
ommuni
ation resour
es. BSPprograms may be written using existing
ommuni
ation libraries whi
h sup-port non-blo
king
ommuni
ations. However, these general-purpose librariesare rarely optimised for the subset of operations whi
h are required for theBSP programming paradigm [9,16℄. In order to address this problem, the BSPresear
h
ommunity has proposed a standard library { BSPlib { whi
h
an beused for parallel programming within the BSP framework [8,5℄.BSPlib is a small
ommuni
ation library
onsisting of twenty operations forSPMD (Single Program Multiple Data) programming. The main features ofBSPlib are two modes of
ommuni
ation, the �rst
apturing a BSP-orientedmessage-passing approa
h and the se
ond re
e
ting a one-sided dire
t remotememory a

ess (DRMA) model.The appli
ations des
ribed in this paper have predominately been writtenusing the DRMA style of
ommuni
ation. They utilise the one-sided BSPlibfun
tion bsp put. This fun
tion transfers data from
ontiguous memory lo
a-tions on the pro
essor whi
h initiates
ommuni
ation into
ontiguous memorylo
ations on a remote pro
essor, without the a
tive parti
ipation of the re-mote pro
essor. The fun
tion bsp syn
 identi�es the end of a superstep, atwhi
h time all pro
essors barrier syn
hronise. It is at this point that any mes-sage transmissions issued by pro
essors during the superstep are guaranteedto have arrived at their destination.In
ontrast to programs written in a general message-passing style, BSPlibfa
ilitates pro�ling in a number of ways:(1) The
ost model highlights the use of both
omputation and
ommuni
a-tion as pro�ling
ost metri
s.(2) The
ost of
ommuni
ation within a superstep
an be
onsidered en5

masse. This greatly simpli�es the presentation of pro�led results. In par-ti
ular,
ommuni
ation within a superstep
an be attributed to the bar-rier syn
hronisation whi
h marks the end of a superstep and not to indi-vidual
ommuni
ation a
tions [7℄.(3) BSP
ost analysis is modular and
onvex ; that is, improvement to theperforman
e of algorithms as a whole
annot be a
hieved by making onepart slower. This is important when pro�ling, as portions of
ode may beelided to simplify the presentation of results. In this model this
an bedone safely; the removed parts of the
ode will have no adverse e�e
t onthe
ost of the remaining supersteps.(4) The treatment of
omputation and
ommuni
ation engineered by the BSPmodel (and
onsequently BSPlib) foster a programming style in whi
hpro
esses pass through the same textual bsp syn
 for ea
h superstep 1 .Consequently, the line number and �le name of the
ode whi
h
ontainsthe bsp syn
 statement provide a
onvenient referen
e point in the sour
e
ode to whi
h pro�ling
osts
an be attributed.3.1 Criteria for good BSP designIn this se
tion, two broad
ast algorithms are analysed and the
all-graph pro-�ler for BSPlib programs is introdu
ed.A post-mortem
all-graph pro�ling tool has been developed to analyse tra
einformation generated during the exe
ution of BSPlib programs. The unitsof
ode to whi
h pro�ling information is assigned are termed
ost
entres.For simpli
ity, ea
h
ost
entre in the program
orresponds to a bsp syn

all. Ea
h
ost
entre re
ords the following information: (i) the a

umulated
omputation time; (ii) the a

umulated
ommuni
ation time; (iii) the a

u-mulated idle (or waiting) time; and (iv) the a

umulated h-relation size. Thetiming result re
orded at a
ost
entre is simply the sum of the maximum
ommuni
ation and
omputation times re
orded sin
e the last bsp syn

all.The aim of the pro�ling tool is to expose imbalan
es in either
omputationor
ommuni
ation, and to highlight those parts of the program whi
h areamenable to improvement. The hypothesis that balan
e is the key to goodBSP design is supported by the BSP
ost formulae:� Within a superstep the
omputation should be balan
ed between pro
esses.This is based on the premise that the maximum value of wi (for 0 � i < p,see equation 1) will determine the overall
ost of lo
al exe
ution time;� Within a superstep the
ommuni
ation should be balan
ed between pro-
esses. This is based on the premise that the maximum value of hi (for1 This imposes tighter restri
tions than the BSPlib program semanti
s.6

Communication

Idle Time

Synchronization
Barrier

Idle Time

Computation
Time

Time

Fig. 1. Superstep stru
ture.0 � i < p, see equation 1) will determine the overall
ost of the fan-in andfan-out of messages;� Finally, the total number of supersteps should be minimised. Ea
h
on-tributes an l term to the total exe
ution time (see equation 1).Figure 1 shows a s
hemati
 diagram of a BSP superstep and its asso
iated
osts. The �gure shows that idle time
an arise in either lo
al
omputationor
ommuni
ation. In lo
al
omputation, idle time will arise when pro
essesare for
ed to wait at a barrier syn
hronisation for the pro
ess with the largestamount of
omputation to be
ompleted. Idle time will o

ur during the
om-muni
ation phase of a superstep if pro
esses are for
ed to wait until inter-pro
ess
ommuni
ation has been
ompleted 2 .At ea
h
ost
entre, p
osts {
orresponding to one
ost per pro
ess { arere
orded. This data is presented to the user in one of two ways:Summarised data: The
ost within a single
ost
entre
an be summarisedin terms of maximum (the standard BSP interpretation of
ost), average andminimum a

umulated
osts over ea
h of the p pro
esses. More formally, giventhat a program may pass through a parti
ular
ost
entre k times, generatinga sequen
e of
osts hC1; : : : ; Cki, the a

umulated
omputation
ost for thegiven
ost
entre is given by the formulae:2 It is noted that idle time during
ommuni
ation depends upon the type of ar
hi-te
ture on whi
h BSPlib is implemented. For example, on the DRMA and sharedmemory ar
hite
tures (e.g. Cray T3D/E and SGI Power Challenge),
ommuni
a-tion idle time arises as shown in Figure 1. However, with ar
hite
tures whi
h onlysupport message passing (e.g. IBM SP2),
ommuni
ation idle time is
oales
ed withthe
omputation idle time of the following superstep; see [9℄ for details.7

maximum
ost =Xk max f wki j 0 � i < p g (2)average
ost =Xk 1p 0� X0�i<pwki1A (3)minimum
ost =Xk min f wki j 0 � i < p g (4)Similar formulae exist for
ommuni
ation time, idle time and h-relation size.All data: The
osts asso
iated with ea
h of the p pro
esses are presented tothe user in the form of a pie
hart. The results must be interpreted with some
are as the
osts are
al
ulated using formulae whi
h di�er from the standardBSP
ost formulae. This is ne
essary as a user of this pie
hart is typi
allylooking to identify the largest (maximum) segment in the
hart. The size ofthis maximum segment is:max f Xk wki j 0 � i < p g (5)Equation 5 abstra
ts the maximum outside the summation, produ
ing a resultwhi
h may be smaller than that obtained from equation 2. Although this in-terpretation is not stri
tly in line with BSP
ost analysis, it is a useful methodfor identifying the pro
ess whi
h may be
ausing an eÆ
ien
y bottlene
k.3.2 Example: broad
asting n values to p pro
essesIn this example a
ommon broad
ast problem is
onsidered; this is the
om-muni
ation of a data stru
ture of size n (where n � p) from one pro
ess to allp pro
essors in a parallel
omputing system.A naive algorithm for this task
an be implemented in a single superstep if p�1distin
t bsp puts are performed by the broad
asting pro
ess. This requires thetransmission of p� 1 messages, ea
h of size n; the superstep therefore realisesan n(p� 1)-relation with approximate
ost (substituting p for p� 1):
ost of one�stage broad
ast = npg + l (6)where l is the
ost of performing a single superstep.This algorithm,
aptured in equation 6, is not s
alable as its
ost linearlyin
reases with p. 8

Destination

Source

Superstep
One

Superstep
TwoFig. 2. Two-stage broad
ast using total ex
hange.An alternative s
alable BSP broad
asting algorithm [1,11℄, with
ost 2ng +2l, is shown in Figure 2. The algorithm
onsists of two supersteps: in the�rst superstep, the data is distributed evenly amongst the p pro
esses; in these
ond superstep, all pro
esses then broad
ast their lo
al data. This results inbalan
ed (system)
ommuni
ation.The
ost of the distribution phase is (n=p)(p� 1)g + l, as a single message ofsize (n=p) is sent to ea
h of the p� 1 pro
esses. In the se
ond superstep, ea
hpro
ess sends and re
eives p�1 messages of size (n=p) from ea
h other pro
ess.The
ost of this superstep 3 is also (n=p)(p� 1)g+ l. The approximate
ost ofthe entire algorithm is determined by summing the
ost of the two supersteps(on
e again, assuming the substitution of p for p� 1):
ost of two�stage broad
ast = nppg + l!+ nppg + l! = 2ng + 2l (7)Using equations 6 and 7 it is possible to determine the size of data for whi
hthe two-stage algorithm is superior to the one-stage algorithm:n > lpg � 2g (8)For example, when l is large and both n and p are small, the
ost of theextra superstep outweighs the
ost of
ommuni
ating a small number of shortmessages. Conversely, for a large n or p, the
ommuni
ation
ost outweighsthe overhead of the extra superstep.3 Note that BSP
ost analysis en
ourages balan
ed
ommuni
ation.9

3.3 Interpreting
all-graph information
 bcast.c line 16
 [500 syncs]
 Max Avg Min
Comp 19.48s 100%100%
Comm 19.55s 7% 0%
Wait 19.49s 94% 0%
Hrel 1.5e+09 12% 7%

 bcast_onestage
 [500 syncs]
 Max Avg Min
Comp 19.48s 100%100%
Comm 19.55s 7% 0%
Wait 19.49s 94% 0%
Hrel 1.5e+09 12% 7%

 foo
 [250 syncs]
 Max Avg Min
Comp 9.77s 100%100%
Comm 9.80s 7% 0%
Wait 9.78s 94% 0%
Hrel 7.5e+08 12% 7%

 bcast.c line 41
 [500 syncs]
 Max Avg Min
Comp 1.35s 99% 99%
Comm 3.33s 85% 67%
Wait 1.11s 46% 1%
Hrel 9.4e+07 100%100%

 bcast.c line 34
 [500 syncs]
 Max Avg Min
Comp 3.38s 99% 99%
Comm 1.34s 11% 5%
Wait 1.29s 94% 0%
Hrel 9.4e+07 12% 7%

 bcast_twostage
 [1000 syncs]
 Max Avg Min
Comp 4.73s 99% 99%
Comm 4.67s 64% 49%
Wait 2.39s 72% 1%
Hrel 1.9e+08 56% 53%

 bar
 [1250 syncs]
 Max Avg Min
Comp 14.44s 100%100%
Comm 14.41s 25% 16%
Wait 12.11s 89% 0%
Hrel 9.4e+08 21% 16%

 main
 [1500 syncs]
 Max Avg Min
Comp 24.20s 100%100%
Comm 24.21s 18% 10%
Wait 21.88s 91% 0%
Hrel 1.7e+09 17% 12%

Fig. 3. Sample
all-graph pro�le on a 16 pro
essor Cray T3E.Figure 3 shows an example
all-graph pro�le for the two broad
ast algorithmsrunning on a 16 pro
essor Cray T3E. The
all-graph
ontains a series of in-terior and leaf nodes. The interior nodes represent pro
edures entered duringprogram exe
ution, whereas the leaf nodes represent the textual position ofsupersteps, i.e. the lines of
ode
ontaining a bsp syn
. The path from a leaf tothe root of the graph identi�es the sequen
e of
ost
entres passed through torea
h the part of the
ode that is a
tive when the bsp syn
 is exe
uted. Thispath is termed a
all sta
k and a
olle
tion of
all sta
ks therefore
omprisea
all-graph pro�le. One signi�
ant advantage of
all-graph pro�ling is that a
omplete set of unambiguous program
osts
an be
olle
ted at run-time andpost-pro
essed. This is a great help when identifying program bottlene
ks.Furthermore, the
osts of shared pro
edures
an be a

urately apportioned totheir parents via a s
heme known as
ost inheritan
e. This allows the program-mer to resolve any ambiguities whi
h may arise from the pro�ling of sharedfun
tions[15℄.The
all-graph in Figure 3 shows the pro�le results for a program whi
h per-forms 500 iterations of the one-stage broad
ast and 500 iterations of the two-stage broad
ast. In order to highlight the features of the
all-graph pro�le,the pro
edures foo and bar
ontain pro
edure
alls to the two broad
astingalgorithms. The order of program exe
ution is as follows: in pro
edure foothe one-stage broad
ast algorithm is
alled 250 times; the pro
edure bar then
alls the one-stage broad
ast algorithm 250 times and makes a further 500
alls to the two-stage broad
ast algorithm.The graph illustrates how the program
osts are inherited from the leaves ofthe graph towards the root. The top-level node main displays the a

umulated
omputation,
ommuni
ation and idle
osts for ea
h of the supersteps withinthe program. At the interior nodes in the
all-graph, information is displayed10

whi
h relates to supersteps exe
uted during the lifetime of the pro
edure iden-ti�ed at that node.At the leaf nodes the pro�le re
ords: (i) the textual position of the bsp syn

all within the program; (ii) the number of times the superstep is exe
uted;(iii) summaries of the
omputation,
ommuni
ation and idle times and (iv)the
ost of the h-relation. Ea
h of these summaries
onsists of the maximum,average and minimum
ost over the p pro
essors; the average and minimum
osts are given as per
entages of the maximum.Interior nodes store similar information to leaf nodes. The interior nodes arealso labelled with pro
edure names and the results displayed at the nodes arethe inherited
osts from the supersteps exe
uted during
alls to that pro
edure.In the pro�ling results of Figure 3, the maximum
omputation and
ommuni
a-tion times for the interior node labelled b
ast onestage are both 19 se
onds.The total exe
ution time for the
alls to the one-stage broad
ast is therefore38 se
onds (total
omputation +
ommuni
ation). The interior node also dis-plays the maximum idle time (also 19 se
onds) whi
h is the delay
aused by thebroad
asting pro
ess transmitting the data to the remaining p� 1 pro
esses.3.4 Identifying
riti
al pathsThe s
ope of the pro�ling tool is not limited to simply visualising the
ompu-tation and
ommuni
ation patterns at ea
h
ost
entre. The tool also allows
riti
al
ost paths to be identi�ed within parallel programs. Ea
h node in thegraph is displayed in a
olour ranging from white to red. A red node identi�esan eÆ
ien
y bottlene
k (or program `hot spot') 4 . A sequen
e of dark-
olourednodes identi�es a
riti
al path in the program. There are seventeen di�erenttypes of program
riti
al path whi
h
an be identi�ed by the pro�ler. The sim-plest of these is the syn
hronisation
riti
al path whi
h identi�es nodes in thegraph whi
h
ontain the greatest number of supersteps. In addition, four dif-ferent
riti
al paths
an be identi�ed for ea
h of
omputation,
ommuni
ation,idle time and h-relation:� Absolute { identi�es the nodes with the greatest maximum
ost ;� Absolute imbalan
e { identi�es the nodes with the greatest di�eren
e be-tween the maximum and average
ost ;� Relative imbalan
e { identi�es the nodes with the greatest per
entage devi-ation between maximum and average
ost ;4 In this paper
olours have been repla
ed by greys
ales ranging from white to darkgrey. 11

� Weighted { identi�es the nodes with both the greatest di�eren
e between themaximum and average
ost and the greatest per
entage deviation betweenthe maximum and average
ost, a
ombination of the previous two
riti
alpaths.The absolute
riti
al path identi�es those nodes to whi
h the greater part ofthe program
osts are attributed. The absolute imbalan
e
riti
al path high-lights those nodes whi
h are amenable to further improvement, as it identi�esthe underlying imbalan
e between the maximum and average
ost. However,
are must be taken when this metri
 is used, as nodes with large
ost valuesand small deviations may be identi�ed as being `more
riti
al' than nodeswith smaller
ost values but larger deviations. The latter are most re
eptiveto signi�
ant improvement; the relative imbalan
e
riti
al path is thereforemore useful when determining node imbalan
e, irrespe
tive of the
ost size.Finally, the weighted
riti
al path
ombines the advantages of the previous twoapproa
hes.The
riti
al paths identi�ed in Figure 3 highlight the absolute imbalan
e inh-relation in the program. The pro�ling tool shows that when the one-stagebroad
ast algorithm is used, there is a signi�
ant
ommuni
ation imbalan
e;this imbalan
e is quanti�ed in the h-relation in the form (12% j 7%) | theaverage
ost is 12% of the maximum, whereas the minimum
ost is 7%. Resultsshowing su
h small per
entages for the average and minimum
osts point tolarge imbalan
es in the underlying algorithm. The pro�ling tool also highlightsa similar imbalan
e in the �rst superstep (b
ast.
 line 34) of the two-stagealgorithm (the initial distribution of data), an imbalan
e whi
h is unavoidableusing this approa
h. It is interesting that the pro�ling tool does not rank thisimbalan
e as highly as the imbalan
e underlying the one-stage algorithm; thisis be
ause it is
aused by a smaller h-relation, i.e. an (n=p)(p � 1)-relationrather than an n(p�1)-relation. Finally, it
an be seen that the last superstepof the two-stage broad
ast (b
ast.
 line 41) has no h-relation imbalan
ei.e. it is (100% j 100%).4 Pro�ling an SQL database appli
ationThe optimisation of an SQL database query evaluation program provides apersuasive real-world
ase study to illustrate the e�e
tiveness of the
all-graphpro�ling tool on larger appli
ations.The SQL database query evaluation program
ontains a number of relationalqueries whi
h are implemented in BSP. The program
onsists of standard SQLdatabase queries whi
h have been trans
ribed into C fun
tion
alls and thenlinked with a BSPlib library of SQL-like primitives. The program takes a12

Fig. 4. S
reen view of the
all-graph pro�ling toolsequen
e of relations, in the form of tables, as its input. It pro
esses the tablesand yields, as output, a sequen
e of intermediate relations.The program works by distributing input relations among the pro
essors usinga simple blo
k-
y
li
 distribution. Three input relations ITEM, QNT and TRANare de�ned. Here the program evaluates six queries whi
h in turn
reate thefollowing intermediary relations: (1) TEMP1, an aggregate sum and a `group-by' rearrangement of the relation TRAN; (2) TEMP2, an equality-join of TEMP1and ITEM; (3) TEMP3, an aggregate sum and group-by of TEMP2; (4) TEMP4, anequality-join of relations TEMP3 and QNT; (5) TEMP5, a less-than-join of relationsTEMP4 and ITEM; and (6) a �lter (IN `low 1%') of the relation TEMP5.The program was exe
uted on a sixteen pro
essor Cray T3E and the s
reenview of the pro�le results is shown in Figure 4. On the basis of these results,a series of optimisations { do
umented below { is performed with the aimof a
hieving a balan
ed program i.e. one whose
ost terms are of the form(100% j 100%).4.1 Optimisation: stage 1The results found in Figure 5 are a se
tion of the
all-graph pro�le for theoriginal SQL query pro
essing program (version 1 of the program).13

 elim_dup0
 [25 syncs]
 Max Avg Min
Comp 1.47s 62% 33%
Comm 0.02s 70% 46%
Wait 1.01s 56% 0%
Hrel 9.5e+05 51% 20%

 ex_query.c line 301
 [1 syncs]
 Max Avg Min
Comp 0.01s 97% 96%
Comm 0.00s 98% 94%
Wait 0.00s 75% 51%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
 [26 syncs]
 Max Avg Min
Comp 1.48s 63% 33%
Comm 0.02s 70% 46%
Wait 1.01s 56% 0%
Hrel 9.5e+05 51% 20%

 apply0
 [7 syncs]
 Max Avg Min
Comp 0.00s 88% 86%
Comm 0.00s 89% 83%
Wait 0.00s 48% 32%
Hrel 5.5e+02 64% 7%

 ex_query.c line 659
 [1 syncs]
 Max Avg Min
Comp 0.00s 48% 44%
Comm 0.00s 98% 95%
Wait 0.00s 96% 67%
Hrel 0.0e+00 0% 0%

 ex_query.c line 627
 [1 syncs]
 Max Avg Min
Comp 0.03s 45% 14%
Comm 0.06s 100%100%
Wait 0.03s 89% 71%
Hrel 7.8e+04 55% 22%

 ex_query.c line 614
 [1 syncs]
 Max Avg Min
Comp 0.00s 100%100%
Comm 0.00s 99% 99%
Wait 0.00s 8% 1%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
 [35 syncs]
 Max Avg Min
Comp 0.24s 73% 55%
Comm 0.07s 98% 96%
Wait 0.11s 64% 18%
Hrel 2.0e+05 54% 20%

 ex_query.c line 538
 [1 syncs]
 Max Avg Min
Comp 0.01s 99% 98%
Comm 0.01s 49% 14%
Wait 0.01s 61% 3%
Hrel 0.0e+00 0% 0%

 ex_query.c line 528
 [1 syncs]
 Max Avg Min
Comp 0.05s 79% 64%
Comm 0.01s 64% 28%
Wait 0.03s 62% 0%
Hrel 1.5e+04 70% 23%

 ex_query.c line 505
 [1 syncs]
 Max Avg Min
Comp 0.02s 52% 12%
Comm 0.03s 100%100%
Wait 0.02s 75% 43%
Hrel 2.6e+04 62% 36%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
 [22 syncs]
 Max Avg Min
Comp 0.18s 72% 51%
Comm 0.05s 82% 72%
Wait 0.09s 61% 9%
Hrel 8.2e+04 60% 33%

 SQL_Process
 [176 syncs]
 Max Avg Min
Comp 2.50s 66% 40%
Comm 0.23s 92% 86%
Wait 1.55s 57% 3%
Hrel 1.5e+06 54% 21%

Fig. 5. Detail of the
omplete
all-graph pro�le found in Figure 4.The initial results show an uneven distribution of the three input relationsamongst the pro
essors. This gives rise to a
onsiderable imbalan
e in
om-putation and
ommuni
ation when database operations are performed usingthese data stru
tures. Figure 5 shows a (54%j 21%) imbalan
e in h-relationsize.As a potential remedy, load balan
ing fun
tions were introdu
ed into the
odeto ensure that ea
h pro
essor
ontained an approximately equal partition ofthe input relation. The results of load balan
ing these input relations redu
esthe
ommuni
ation and
omputation imbalan
e by 26%.4.2 Optimisation: stage 2Further pro�les of the SQL query pro
essing appli
ation reveal that the imbal-an
e has not been eradi
ated. It appears that the SQL primitives had inherent
ommuni
ation imbalan
e, even when perfe
tly balan
ed input data was used.The pro�ling results whi
h support this observation
an be seen in Figure 6.
 elim_dup0
 [25 syncs]
 Max Avg Min
Comp 0.98s 90% 84%
Comm 0.02s 83% 69%
Wait 0.16s 61% 2%
Hrel 5.7e+05 71% 56%

 ex_query.c line 301
 [1 syncs]
 Max Avg Min
Comp 0.01s 97% 96%
Comm 0.00s 99% 98%
Wait 0.00s 69% 56%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
 [26 syncs]
 Max Avg Min
Comp 0.99s 90% 84%
Comm 0.02s 83% 69%
Wait 0.17s 61% 2%
Hrel 5.7e+05 71% 56%

 apply0
 [7 syncs]
 Max Avg Min
Comp 0.00s 88% 86%
Comm 0.00s 91% 86%
Wait 0.00s 47% 31%
Hrel 5.2e+02 65% 7%

 ex_query.c line 659
 [1 syncs]
 Max Avg Min
Comp 0.00s 47% 43%
Comm 0.00s 96% 93%
Wait 0.00s 95% 68%
Hrel 0.0e+00 0% 0%

 ex_query.c line 627
 [1 syncs]
 Max Avg Min
Comp 0.03s 52% 14%
Comm 0.05s 99% 99%
Wait 0.02s 85% 68%
Hrel 6.7e+04 59% 52%

 ex_query.c line 614
 [1 syncs]
 Max Avg Min
Comp 0.00s 100% 99%
Comm 0.00s 99% 98%
Wait 0.00s 8% 0%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
 [35 syncs]
 Max Avg Min
Comp 0.19s 88% 76%
Comm 0.06s 98% 97%
Wait 0.05s 64% 36%
Hrel 1.6e+05 58% 47%

 ex_query.c line 538
 [1 syncs]
 Max Avg Min
Comp 0.01s 99% 99%
Comm 0.01s 39% 6%
Wait 0.01s 66% 3%
Hrel 0.0e+00 0% 0%

 ex_query.c line 528
 [1 syncs]
 Max Avg Min
Comp 0.08s 69% 49%
Comm 0.01s 41% 6%
Wait 0.05s 61% 0%
Hrel 2.5e+04 49% 40%

 ex_query.c line 505
 [1 syncs]
 Max Avg Min
Comp 0.02s 48% 8%
Comm 0.04s 100%100%
Wait 0.02s 80% 50%
Hrel 3.6e+04 51% 32%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
 [22 syncs]
 Max Avg Min
Comp 0.22s 69% 51%
Comm 0.06s 79% 68%
Wait 0.13s 66% 10%
Hrel 1.3e+05 50% 33%

 SQL_Process
 [158 syncs]
 Max Avg Min
Comp 1.97s 85% 74%
Comm 0.23s 92% 86%
Wait 0.55s 62% 12%
Hrel 1.2e+06 67% 47%

Fig. 6. SQL query evaluation after load balan
e.Using the
riti
al paths whi
h the
all-graph pro�ling tool identi�es, it is pos-sible to follow the path of exe
ution through the SELECT FROM fun
tion tothe graph node labelled elim dup0. This highlights a major
ause of
ommu-ni
ation imbalan
e { (69%j 54%) { whi
h
an be attributed to the fun
tionbspsort at line 175 in the program. This is shown in Figure 4.14

Repeating this pro
edure using the
omputation
riti
al paths highlights thatthe same fun
tion, bspsort, is responsible for similar
omputation imbalan
e.The pro�le results in Figure 4 identify the primary sour
e of this
omputa-tion imbalan
e (51%j 17%) as line 188. The pie
hart in Figure 4 presents abreakdown of the a

umulated
omputation time for ea
h of the pro
esses atthe superstep found at line 188.In order to illustrate the
lass of
omputation whi
h may be the
ause ofthis type of problem, the underlying algorithm of the bspsort fun
tion isdes
ribed.The bspsort fun
tion implements a re�ned variant of the optimal randomisedBSP sorting algorithm of [3℄. The algorithm
onsists of seven stages: (1) ea
hpro
essor lo
ally sorts the elements in its possession; (2) ea
h pro
essor sele
tsa random sample of s� p elements (where s is the oversampling fa
tor) whi
hare
olle
ted at pro
ess zero; (3) the samples are sorted and p regular pivots arepi
ked from the s� p2 samples; (4) the pivots are broad
ast to all pro
essors;(5) ea
h pro
essor partitions the elements in its possession into the p blo
ksas indu
ed by the pivots; (6) ea
h pro
essor sends partition i to pro
essor iand (7) a lo
al multi-way merge results in the intended global sort.If stages (6) and (7) are not balan
ed, this
an only be attributed to a poorsele
tion of splitters in stage (2). The random number generator whi
h se-le
ted the sample had been extensively tested prior to use; therefore the prob-able
ause for the disappointing performan
e of the algorithm was thoughtto be the
hoi
e of the oversampling fa
tor s. The algorithm had howeverbeen previously tested and the oversampling fa
tor �ne tuned on the basisof experiments using simple timing fun
tions. The experimental results hadsuggested that the oversampling fa
tor established during theoreti
al analysisof the algorithm had been a gross overestimate and, as a result, when it wasimplemented, a mu
h redu
ed fa
tor was used.4.3 Optimisation: improving the parallel sortThe oversampling fa
tor for the sorting algorithm was further tested in anumber of pro�ling experiments. Se
tions of the
all-graph for the optimalexperimental and theoreti
al parameters are presented in Figures 7 and 8respe
tively. The original experimental results were
on�rmed by the pro�le:the performan
e of the algorithm utilising the theoreti
al oversampling fa
tor(Figure 8) was approximately 50% inferior to that of the algorithm utilising theexperimental oversampling fa
tor (Figure 7). This
an be seen by
omparingthe
omputation imbalan
e of (49%j 15%) in stage (7) of the �rst sort - foundat line 188 in Figure 7 - with the
omputation imbalan
e of (7%j 0%) in15

 scan.c line 100
 [11 syncs]
 Max Avg Min
Comp 0.00s 55% 51%
Comm 0.00s 78% 76%
Wait 0.00s 93% 15%
Hrel 3.3e+02 12% 7%

 bspbroadcast_multi
 [11 syncs]
 Max Avg Min
Comp 0.00s 55% 51%
Comm 0.00s 78% 76%
Wait 0.00s 93% 15%
Hrel 3.3e+02 12% 7%

 scan.c line 146
 [2 syncs]
 Max Avg Min
Comp 0.00s 58% 41%
Comm 0.00s 91% 72%
Wait 0.00s 67% 42%
Hrel 6.0e+01 77% 53%

 scan.c line 133
 [2 syncs]
 Max Avg Min
Comp 0.04s 100%100%
Comm 0.00s 93% 92%
Wait 0.00s 8% 1%
Hrel 0.0e+00 0% 0%

 bspreduce_multi
 [6 syncs]
 Max Avg Min
Comp 0.04s 99% 99%
Comm 0.00s 85% 78%
Wait 0.00s 64% 29%
Hrel 1.2e+02 44% 30%

 scan.c line 230
 [2 syncs]
 Max Avg Min
Comp 0.00s 71% 68%
Comm 0.00s 97% 96%
Wait 0.00s 96% 90%
Hrel 6.0e+01 100%100%

 scan.c line 199
 [2 syncs]
 Max Avg Min
Comp 0.00s 66% 63%
Comm 0.00s 99% 97%
Wait 0.00s 96% 86%
Hrel 6.0e+01 100%100%

 bspprefix_multi_p
 [4 syncs]
 Max Avg Min
Comp 0.00s 69% 66%
Comm 0.00s 98% 96%
Wait 0.00s 96% 88%
Hrel 1.2e+02 100%100%

 scan.c line 287
 [2 syncs]
 Max Avg Min
Comp 0.00s 73% 71%
Comm 0.00s 91% 89%
Wait 0.00s 97% 84%
Hrel 6.0e+01 100%100%

 scan.c line 271
 [2 syncs]
 Max Avg Min
Comp 0.00s 42% 38%
Comm 0.00s 79% 77%
Wait 0.00s 94% 29%
Hrel 6.0e+01 12% 7%

 scan.c line 261
 [2 syncs]
 Max Avg Min
Comp 0.00s 100%100%
Comm 0.00s 99% 98%
Wait 0.00s 8% 1%
Hrel 0.0e+00 0% 0%

 bspbroadcast_multi_p
 [6 syncs]
 Max Avg Min
Comp 0.00s 74% 72%
Comm 0.00s 88% 86%
Wait 0.00s 71% 34%
Hrel 1.2e+02 56% 53%

 sort.c line 188
 [2 syncs]
 Max Avg Min
Comp 0.39s 49% 15%
Comm 0.00s 98% 96%
Wait 0.34s 60% 0%
Hrel 0.0e+00 0% 0%

 sort.c line 175
 [2 syncs]
 Max Avg Min
Comp 0.01s 92% 86%
Comm 0.01s 88% 69%
Wait 0.00s 45% 4%
Hrel 3.1e+05 60% 48%

 sort.c line 162
 [2 syncs]
 Max Avg Min
Comp 0.00s 71% 69%
Comm 0.00s 98% 97%
Wait 0.00s 96% 85%
Hrel 6.0e+01 100%100%

 sort.c line 135
 [2 syncs]
 Max Avg Min
Comp 0.00s 41% 37%
Comm 0.00s 99% 97%
Wait 0.00s 95% 35%
Hrel 0.0e+00 0% 0%

 sort.c line 125
 [2 syncs]
 Max Avg Min
Comp 0.82s 100%100%
Comm 0.00s 98% 90%
Wait 0.00s 56% 5%
Hrel 1.2e+02 12% 7%

 bspsort
 [26 syncs]
 Max Avg Min
Comp 1.27s 84% 73%
Comm 0.01s 90% 75%
Wait 0.35s 60% 0%
Hrel 3.1e+05 60% 48%

 sp
 [35 syncs]
 Max Avg Min
Comp 1.27s 84% 73%
Comm 0.01s 88% 76%
Wait 0.35s 60% 0%
Hrel 3.1e+05 60% 48%

 main
 [35 syncs]
 Max Avg Min
Comp 1.27s 84% 73%
Comm 0.01s 88% 76%
Wait 0.35s 60% 0%
Hrel 3.1e+05 60% 48%

Fig. 7. Parallel sort using experimental oversampling fa
tor.

 scan.c line 100
 [11 syncs]
 Max Avg Min
Comp 0.00s 55% 51%
Comm 0.00s 79% 77%
Wait 0.00s 94% 15%
Hrel 3.3e+02 12% 7%

 bspbroadcast_multi
 [11 syncs]
 Max Avg Min
Comp 0.00s 55% 51%
Comm 0.00s 79% 77%
Wait 0.00s 94% 15%
Hrel 3.3e+02 12% 7%

 scan.c line 146
 [2 syncs]
 Max Avg Min
Comp 0.00s 58% 41%
Comm 0.00s 91% 72%
Wait 0.00s 68% 42%
Hrel 6.0e+01 77% 53%

 scan.c line 133
 [2 syncs]
 Max Avg Min
Comp 0.04s 100%100%
Comm 0.00s 93% 91%
Wait 0.00s 8% 1%
Hrel 0.0e+00 0% 0%

 bspreduce_multi
 [6 syncs]
 Max Avg Min
Comp 0.04s 99% 99%
Comm 0.00s 85% 78%
Wait 0.00s 64% 28%
Hrel 1.2e+02 44% 30%

 scan.c line 230
 [2 syncs]
 Max Avg Min
Comp 0.00s 72% 69%
Comm 0.00s 98% 98%
Wait 0.00s 97% 95%
Hrel 6.0e+01 100%100%

 scan.c line 199
 [2 syncs]
 Max Avg Min
Comp 0.00s 67% 64%
Comm 0.00s 99% 98%
Wait 0.00s 97% 86%
Hrel 6.0e+01 100%100%

 bspprefix_multi_p
 [4 syncs]
 Max Avg Min
Comp 0.00s 69% 67%
Comm 0.00s 99% 98%
Wait 0.00s 97% 90%
Hrel 1.2e+02 100%100%

 scan.c line 287
 [2 syncs]
 Max Avg Min
Comp 0.00s 72% 69%
Comm 0.00s 92% 89%
Wait 0.00s 95% 84%
Hrel 6.0e+01 100%100%

 scan.c line 271
 [2 syncs]
 Max Avg Min
Comp 0.00s 40% 35%
Comm 0.00s 79% 77%
Wait 0.00s 95% 29%
Hrel 6.0e+01 12% 7%

 scan.c line 261
 [2 syncs]
 Max Avg Min
Comp 0.00s 99% 98%
Comm 0.00s 99% 98%
Wait 0.00s 8% 1%
Hrel 0.0e+00 0% 0%

 bspbroadcast_multi_p
 [6 syncs]
 Max Avg Min
Comp 0.00s 75% 72%
Comm 0.00s 88% 86%
Wait 0.00s 72% 35%
Hrel 1.2e+02 56% 53%

 sort.c line 188
 [2 syncs]
 Max Avg Min
Comp 0.20s 95% 89%
Comm 0.00s 97% 96%
Wait 0.02s 46% 0%
Hrel 0.0e+00 0% 0%

 sort.c line 175
 [2 syncs]
 Max Avg Min
Comp 0.01s 91% 85%
Comm 0.01s 90% 73%
Wait 0.00s 50% 15%
Hrel 1.5e+05 98% 97%

 sort.c line 162
 [2 syncs]
 Max Avg Min
Comp 0.00s 71% 69%
Comm 0.00s 98% 97%
Wait 0.00s 96% 86%
Hrel 6.0e+01 100%100%

 sort.c line 135
 [2 syncs]
 Max Avg Min
Comp 0.82s 7% 0%
Comm 0.00s 96% 93%
Wait 0.82s 94% 0%
Hrel 0.0e+00 0% 0%

 sort.c line 125
 [2 syncs]
 Max Avg Min
Comp 0.83s 100%100%
Comm 0.00s 80% 19%
Wait 0.00s 55% 10%
Hrel 1.5e+05 12% 7%

 bspsort
 [26 syncs]
 Max Avg Min
Comp 1.91s 59% 55%
Comm 0.01s 88% 65%
Wait 0.85s 92% 0%
Hrel 3.1e+05 56% 52%

 sp
 [35 syncs]
 Max Avg Min
Comp 1.91s 59% 55%
Comm 0.01s 87% 66%
Wait 0.85s 92% 0%
Hrel 3.1e+05 56% 52%

 main
 [35 syncs]
 Max Avg Min
Comp 1.91s 59% 55%
Comm 0.01s 87% 66%
Wait 0.85s 92% 0%
Hrel 3.1e+05 56% 52%

Fig. 8. Sorting version 2: theoreti
al oversampling fa
tor.stage (2) of the se
ond sort - found at line 135 of Figure 8. Similarly, the
ommuni
ation imbalan
e of (60%j 48%) present at stage (6) of the �rst sort16

(found at line 175)
ontrasts with the imbalan
e of (12%j 7%) present at stage(3) of the se
ond sort (found at line 125).The
ommuni
ation and
omputation requirements of stages (6) and (7) inthe se
ond sort (Figure 8) were balan
ed, showing fa
tors of (98%j 97%) and(95%j 89%) respe
tively. This showed that the theoreti
al analysis had in-deed a

urately predi
ted the oversampling fa
tor required to a
hieve loadbalan
e. Unfortunately, the sustained improvement to the underlying sortingalgorithm gained by balan
ing
ommuni
ation at stage (6) { and
onsequently,the improved
ommuni
ation requirements of the entire algorithm { had beenlargely overwhelmed by the
ost of
ommuni
ating and sorting larger samplesin stages (2) and (3).As a solution to this problem the work by Gerbessiotis and Siniolakis [3℄was applied. The unbalan
ed
ommuni
ation and
omputation algorithms ofstages (2) and (3), whi
h
olle
ted and sorted a sample on a single pro
ess,were repla
ed by an alternative parallel sorting algorithm. This simple andeÆ
ient solution to the problem involves the sample set being sorted amongall the pro
esses. An appropriate implementation is an eÆ
ient variant of thebitoni
-sort network.The introdu
tion of the bitoni
 sorter brought a marked improvement to theresults. These showed an 8:5% improvement to the overall wall-
lo
k runningtime of the sorting algorithm; the results also demonstrated
orrespondingprogram balan
e:
omputation (99%j 98%),
ommuni
ation (83%j 70%), andh-relation (99%j 98%).
 elim_dup0
 [32 syncs]
 Max Avg Min
Comp 0.96s 98% 94%
Comm 0.02s 85% 78%
Wait 0.07s 39% 4%
Hrel 5.2e+05 100%100%

 ex_query.c line 301
 [1 syncs]
 Max Avg Min
Comp 0.01s 97% 97%
Comm 0.00s 99% 96%
Wait 0.00s 92% 82%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_tran__SUM_qnt__GROUPBY_cd_dpt
 [33 syncs]
 Max Avg Min
Comp 0.97s 98% 94%
Comm 0.02s 85% 78%
Wait 0.07s 40% 4%
Hrel 5.2e+05 100%100%

 apply0
 [7 syncs]
 Max Avg Min
Comp 0.00s 87% 85%
Comm 0.00s 90% 84%
Wait 0.00s 47% 31%
Hrel 5.2e+02 51% 7%

 ex_query.c line 659
 [1 syncs]
 Max Avg Min
Comp 0.00s 48% 44%
Comm 0.00s 97% 94%
Wait 0.00s 94% 68%
Hrel 0.0e+00 0% 0%

 ex_query.c line 627
 [1 syncs]
 Max Avg Min
Comp 0.01s 99% 98%
Comm 0.04s 100%100%
Wait 0.00s 54% 10%
Hrel 3.5e+04 100%100%

 ex_query.c line 614
 [1 syncs]
 Max Avg Min
Comp 0.00s 100%100%
Comm 0.00s 99% 97%
Wait 0.00s 8% 0%
Hrel 0.0e+00 0% 0%

 SELECT__FROM_t4_item__WHERE_qnt_LT_lim
 [42 syncs]
 Max Avg Min
Comp 0.19s 96% 92%
Comm 0.05s 97% 95%
Wait 0.02s 52% 16%
Hrel 2.2e+05 100%100%

 ex_query.c line 538
 [1 syncs]
 Max Avg Min
Comp 0.01s 98% 98%
Comm 0.00s 67% 62%
Wait 0.00s 88% 10%
Hrel 0.0e+00 0% 0%

 ex_query.c line 528
 [1 syncs]
 Max Avg Min
Comp 0.04s 88% 82%
Comm 0.01s 68% 64%
Wait 0.01s 74% 0%
Hrel 1.5e+04 70% 68%

 ex_query.c line 505
 [1 syncs]
 Max Avg Min
Comp 0.01s 88% 65%
Comm 0.02s 100%100%
Wait 0.01s 31% 4%
Hrel 1.5e+04 79% 69%

 SELECT__FROM_t3_qnt__ADD_qnt_qnt__WHERE_cd_EQ_cd
 [29 syncs]
 Max Avg Min
Comp 0.19s 92% 84%
Comm 0.04s 87% 84%
Wait 0.04s 53% 7%
Hrel 2.0e+05 93% 91%

 SQL_Process
 [186 syncs]
 Max Avg Min
Comp 1.84s 96% 90%
Comm 0.16s 92% 89%
Wait 0.21s 44% 7%
Hrel 1.2e+06 98% 97%

Fig. 9. Final version of the SQL query evaluation.4.4 Optimisation: stage 3The sorting algorithm is
entral to the implementation of most of the queriesin the SQL database query evaluation appli
ation. Therefore, a minor im-provement in the sorting algorithm results in a marked improvement in theperforman
e of the query evaluation program as a whole. This is
on�rmed by17

the la
k of any shading in Figure 9. In
ontrast to Figure 5, the h-relations ofthe SQL queries are almost perfe
tly balan
ed.The overall improvement in performan
e of the SQL query evaluation programis dis
ussed in the next se
tion.
5 Ar
hite
ture-independent
ode optimisationIn the introdu
tion it was stated that
are should be taken when optimis-ing parallel programs based on pro�le information. In parti
ular, using thewall-
lo
k time as a
ost metri
 is not a good basis for s
alable and portableprogram improvements. An important feature of BSP is that the size of anh-relation dire
tly in
uen
es the
ost of
ommuni
ation. Therefore, instead ofusing a
tual
ommuni
ation time as a
ost metri
, whi
h may be subje
t toquanti�
ation error, the predi
ted
ost of
ommuni
ation (hg+ l) is used. Thismethod is error-free as the value of h, whi
h is not a�e
ted by the
hoi
e of theunderlying ma
hine or ar
hite
ture, is a

urately re
orded at runtime. Thisforms the basis for the hypothesis that imbalan
e in maximum and averageh-relations
an be used as the metri
 by whi
h BSP programs are optimisedand optimal ar
hite
ture-independent parallel algorithms are developed. Thishypothesis is supported by both the BSP
ost analysis formulae and experi-mental results.Analysis of the two broad
ast algorithms also provides support for this hy-pothesis. In Figure 3 the a

umulated values for
omputation,
ommuni
ationand idle time displayed at the nodes labelled one stage b
ast and two stagebroad
ast show that the two-stage broad
ast is superior to the one-stagebroad
ast. The performan
e of the two-stage broad
ast algorithm on a 16pro
essor Cray T3E shows an improvement over the one-stage algorithm of afa
tor of: 19:5 + 19:64:7 + 4:7 = 4:165.1 Ar
hite
ture-independent optimisation of the query pro
essing appli
ationTable 1 shows the wall-
lo
k times for the original and optimised SQL querypro
essing appli
ations running on a variety of parallel ma
hines. The smallsize of the input relation was deliberate as this would prevent the
omputationtime in the algorithms from dominating. This allows the improvements in
ommuni
ation
ost to be highlighted.18

Unoptimised OptimisedMa
hine p time speed-up time speed-up gainCray T3E 1 6.44 1.00 5.37 1.00 17%2 4.30 1.50 3.38 1.59 21%4 2.48 2.60 1.85 2.90 25%8 1.23 5.23 1.04 5.17 15%16 0.68 9.43 0.67 8.02 1%Cray T3D 1 27.18 1.00 22.41 1.00 18%2 13.18 2.06 10.88 2.06 17%4 6.89 3.94 5.70 3.93 17%8 3.29 8.25 3.07 7.30 7%16 1.66 16.34 1.89 11.88 -14%SGI Origin 2000 1 2.99 1.00 2.42 1.00 19%2 1.65 1.81 1.27 1.91 23%4 1.26 2.37 1.11 2.16 12%8 0.88 3.39 0.77 3.15 13%Intel Cluster 5 1 19.68 1.00 13.01 1.00 51%2 9.70 2.02 6.63 1.96 46%4 5.75 3.42 4.02 3.24 43%Athlon Cluster 6 1 11.94 1.00 7.85 1.0 52%2 6.06 1.97 4.08 1.92 49%4 3.58 3.34 3.07 2.56 17%Table 1Wall-
lo
k time (se
s.) for input relations
ontaining 12,000 re
ordsThe results show that for up to eight pro
essors, the optimised version ofthe program yields an improvement of between 7% and 52% over the originalprogram. The relatively small input relation means that the experiment is nots
alable beyond this point. Detailed analysis of the results in Table 1 supportsthis observation. The parallel eÆ
ien
y of both the T3E and Origin 2000 islimited: in
reasing the number of pro
essors on the Origin 2000 from 4 to6 A 400Mbps
lustered network of 450Mhz Intel Pentium II pro
essors, running theSy
hron VPS software.6 A 300Mbps
lustered network of 700Mhz AMD Athlon pro
essors, running theSy
hron VPS software. 19

8, for example, does not double the speed of exe
ution. It is thought thatthis is due to the
ommuni
ation-intensive nature of the query pro
essingappli
ation, together with the small quantity of data whi
h is held on ea
hpro
ess (750 re
ords per pro
ess at p = 16). By
ontrast, a
ombination of theslow pro
essors, fast
ommuni
ation and poor
a
he organisation on the T3Dgives super-linear speed-up, even for this small data set.The absolute timing results for the appli
ation running on the Intel and Athlon
lusters are within the same approximate range as on more traditional super-
omputers su
h as the Cray T3E and Origin 2000. It is interesting to notethat the gains seen using the optimised version of the program on these
lus-ters ex
eed those a
hieved on other ma
hines. It is thought that this is dueto the relatively small se
ondary
a
he size of the Intel pro
essors
omparedwith both the Alpha and Mips R10000 used on the Cray and Origin. A largeimbalan
e in the data set used in the unoptimised version of the programmeans that one pro
essor
ontains more data than the others; this pro
essorwill therefore have a larger
a
he over
ow. The size of the data set utilised inthis experiment is similar to the size of the
a
he itself. The absolute size ofthe
a
he will therefore have an e�e
t on the performan
e of this ben
hmark;this is
on�rmed by the seemingly poor timing results for the Intel and Athlonpro
essors.
6 Con
lusionsThe
all-graph pro�ling tool, used in the eÆ
ien
y analysis of BSPlib pro-grams, provides the basis for portable and ar
hite
ture-independent parallelperforman
e optimisation. This hypothesis is tested by pro�ling an SQL querypro
essing appli
ation, a real-world test-
ase written in BSPlib.Program optimisations made to this appli
ation hold on a number of di�er-ent parallel ar
hite
tures in
luding Intel and Athlon
lusters, shared memorymultipro
essors and tightly
oupled distributed memory parallel ma
hines.A major bene�t of the BSP
all-graph pro�ling tool is the
on
ise way in whi
hprogram-
ost information is displayed. Visualising the
osts for a parallel pro-gram is no more
omplex than for a sequential program. Program ineÆ
ien
iesare qui
kly identi�ed with the use of
riti
al
ost paths. A s
heme of
ost inher-itan
e also ensures that a

urate pro�le
osts are displayed even when sharedfun
tions form a large part of the program.20

Referen
es[1℄ M. Barnett, D. Payne, R. van de Geijn and J. Watts, Broad
asting on mesheswith wormhole routing, Journal of Parallel and Distributed Computing 35(1996) 111{122.[2℄ S. Fortune and J. Wyllie, Parallelism in random a

ess ma
hines, in: Pro
eedingsof the 10-th Annual ACM Symposium on Theory of Computing (1978) 114{118.[3℄ A. V. Gerbessiotis and C. J. Siniolakis, Deterministi
 sorting and randomizedmedian �nding on the BSP model, in: Pro
eedings of the 8th ACM Symposiumon Parallel Algorithms and Ar
hi
tures (ACM Press, 1996).[4℄ A. V. Gerbessiotis and L. G. Valiant, Dire
t bulk-syn
hronous parallelalgorithms, Journal of Parallel and Distributed Computing 22 (1994) 251{267.[5℄ M. W. Goudreau, J. M. D. Hill, K. Lang, W. F. M
Coll, S. B. Rao, D. C.Stefanes
u, T. Suel and T. Tsantilas, A proposal for the BSP Worldwidestandard library (preliminary version), Te
hni
al report, Oxford UniversityComputing Laboratory, April 1996. see www.bsp-worldwide.org for moredetails.[6℄ V. Heearte and E. Lusk, Studying parallel program behaviour with upshot,Te
hni
al Report ANL91/15, Argonne National Lab, Argonne, Il. 60439, 1991.[7℄ J. M. D. Hill, P. I. Crumpton and D. A. Burgess, Theory, pra
ti
e, and a toolfor BSP performan
e predi
tion, in: EuroPar'96, Le
ture Notes in ComputerS
ien
e 1124 (Springer-Verlag 1996) 697{705.[8℄ J. M. D. Hill, W. F. M
Coll, D. C. Stefanes
u, M. W. Goudreau, K. Lang, S. B.Rao, T. Suel, T. Tsantilas and R. Bisseling, BSPlib: The BSP ProgrammingLibrary, Parallel Computing 24 (1998) 1947{1980.[9℄ J. M. D. Hill and D. Skilli
orn, Lessons learned from implementing BSP,Journal of Future Generation Computer Systems 13 (1998) 327{335.[10℄ J. J�aJ�a, An Introdu
tion to Parallel Algorithms. (Addison-Wesley, 1992).[11℄ B. H. H. Juurlink and H. A. G. Wijsho�, Communi
ation primitives for BSP
omputers, Information Pro
essing Letters 58 (1996) 303{310.[12℄ W. F. M
Coll, General purpose parallel
omputing, in: A. M. Gibbons andP. Spirakis, eds., Le
tures on Parallel Computation, Cambridge InternationalSeries on Parallel Computation 337{391 (Cambridge University Press, 1993).[13℄ W. F. M
Coll, S
alable parallel
omputing: A grand uni�ed theory and itspra
ti
al development, in: Pro
eedings of IFIP World Congress 1 (1994) 539{546.[14℄ W. F. M
Coll, S
alable
omputing, in: J van Leeuwen, ed., Computer S
ien
eToday: Re
ent Trends and Developments, Le
ture Notes in Computer S
ien
e1000 (Springer-Verlag, 1995) 46{61.21

[15℄ R. G. Morgan and S. A. Jarvis, Pro�ling large-s
ale lazy fun
tional programs,Journal of Fun
tional Programming 8 (1998) 370-398.[16℄ D. Skilli
orn, J. M. D. Hill and W. F. M
Coll, Questions and answers aboutBSP, S
ienti�
 Programming 6 (1997) 249{274.[17℄ L. G. Valiant. General purpose parallel ar
hite
tures, in: J. van Leeuwen, ed.,Handbook of Theoreti
al Computer S
ien
e (North Holland, 1990).[18℄ L. G. Valiant. A bridging model for parallel
omputation, Communi
ations ofthe ACM 33 (1990) 103{111.

22

