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Abstract

A call-graph profiling tool has been designed and implemented to analyse the effi-
ciency of programs written in BSPIib. This tool highlights computation and commu-
nication imbalance in parallel programs, exposing portions of program code which
are amenable to improvement.

A unique feature of this profiler is that it uses the BSP cost model, thus pro-
viding a mechanism for portable and architecture-independent parallel performance
tuning. In order to test the capabilities of the model on a real-world example, the
performance characteristics of an SQL query processing application are investigated
on a number of different parallel architectures.

Key words: Profiling, Bulk Synchronous Parallel, Program Efficiency.

1 Introduction

The role of a profiling tool is to associate the execution costs of a program with
identifiable segments of the underlying source code. How useful a profiling tool
is depends on how easy it is for programmers to employ this information so
as to alleviate computational bottlenecks in their code.

Three criteria need to be satisfied when designing successful profiling tools
for sequential programming languages. The first relates to ‘what’ the profiler
measures; it is desirable for the percentage of execution time spent in each
part of the program and/or the amount of memory used to be identified. The
second criterion concerns ‘where’ in the code these costs should be attributed;
in order to improve the program implementation, costs should be associated
with functions or libraries within the code. The third criterion relates to ‘how’
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the profiling information can be used to best effect; program code should be
optimised in a quantifiable manner, an example of which might be rewriting
problematic portions of code using an algorithm with improved asymptotic
complexity.

Profiling parallel programs as opposed to sequential programs is made more
complex by the fact that program costs are derived from a number of proces-
sors. As a result, each part of the program code may be associated with up to p
costs, where p is the number of processors involved in the computation. One of
the major challenges for developers of profiling tools for parallel programming
languages is to design tools which will identify and expose the relationships
between the computational costs accrued by the processors and highlight any
imbalances. These cost relationships must subsequently be expressed in terms
of the three criteria outlined above. Unfortunately many more issues are at
stake with parallel frameworks and therefore the criteria are far harder to
define and satisfy. In particular:

e What to cost: In parallel programming there are two significant cost met-
rics which may cause bottlenecks within programs; these are computation
and communication. It is not good practice to decouple these two metrics
and profile them independently as it is of paramount importance that the
interaction between the two is identified and exposed to the user. This is
because if programs are optimised with respect to one of these metrics, this
should not be at the expense of the other.

e Where to cost: Costing communication can be problematic. This is because
related communication costs on different processors may be the result of
up to p different (and interacting) parts of a program. In message-passing
systems, for example, there exist p distinct and independently interacting
‘costable’ parts of code. Without attention to design, profiling tools de-
veloped for such systems may overload the user with results. Too much
profiling information can be difficult to interpret; the upshot system [6] has
been criticised for this very reason.

e How to use: When profiling information is used to optimise parallel pro-
grams, care has to be taken to ensure that these optimisations are not
specifically tailored to a particular machine or architecture. An optimisa-
tion is more likely to be portable if program improvements are made at the
level of the underlying algorithms. Portable and architecture-independent
optimisations to parallel programs are more likely to be achieved if the pro-
gramming model on which the algorithm is built possesses a supporting,
pragmatic cost model.

These three criteria form the basis for the development of a profiling tool for
parallel programs whose code is based on the BSP model [18,14,16]. When us-
ing this profiling tool the programmer will use the balance of computation and
communication as the metric with respect to which their parallel programs are



optimised. It is shown that by minimising this imbalance, significant improve-
ments to the complexity of parallel algorithms are often achieved. This is the
key to portable and architecture-independent optimisations.

The BSP model, its implementation (BSPIlib) and cost calculus are introduced
in section 2. In section 3 attributes of BSPIib which facilitate parallel profiling
are described and the call-graph profiling tool is introduced with the analysis
of two broadcast algorithms. The profiler is used to optimise of a real-world
distributed database query processing application and the results are described
in section 4. The architecture-independent properties of this framework are
explored in section 5.

2 The BSP model

The exploration of parallel computation within theoretical computer science
has been led by the study of time, processor and space complexities of ‘ideal’
parallel machines which communicate via a shared memory; this is known as
the Parallel Random Access Machine (PRAM) Model [2]. The PRAM model
assumes that an unbounded set of processors shares a global memory. In a
single step, a processor can either read or write one data word from the global
memory into its local address space, or perform some basic computational op-
eration. The simplicity of the model has, over the past two decades, encouraged
the development of a large collection of PRAM algorithms and techniques [10].
Conversely, the model’s simplicity also means that it does not reflect a number
of important aspects of parallel computation which are observed in practice;
these include communication latency, bandwidth of interconnection networks,
memory management and processor synchronisation, amongst others.

The Bulk Synchronous Parallel (BSP) model — a high-level abstraction of
hardware — provides a general-purpose framework for the design and analysis
of scalable programs, which may then be run efficiently on existing diverse
hardware platforms. In addressing many of the previous limitations, BSP is
widely regarded as a bridging model for parallel computing [18,17]. In the
BSP model no assumptions are made about the underlying technology or the
degree of parallelism. The BSP model thus aims to provide a general-purpose
parallel computing platform [12,13,17,18]. A Bulk Synchronous Parallel Ma-
chine (BSPM) provides an abstraction of any real parallel machine; a BSPM
has three constituent parts:

(1) A number of processor/memory components (processors);

(2) An interconnection network which delivers messages in a point-to-point
manner between the processors;

(3) A facility for globally synchronising the processors by means of a barrier.



In the BSP model a program consists of a sequence of supersteps. During a su-
perstep, each processor can perform computations on values held locally at the
start of the superstep, or it can initiate communication with other processors.
The model incorporates the principle of bulk synchrony; that is, processors are
barrier synchronised at regular intervals, each interval sufficient in length for
the messages to be transmitted to their destinations [18]. The model does not
prescribe any particular style of communication, but it does require that at
the end of a superstep any pending communications be completed.

2.1 The BSP cost model

The cost of a BSP program can be calculated by summing the costs of each su-
perstep executed by the program. In turn, the cost of an individual superstep
can be broken down into: (i) local computation; (ii) global exchange of data
and (iii) barrier synchronisation. The maximum number of messages (words)
communicated to or from any processor during a superstep is denoted by h,
and the complete set of messages is captured in the notion of an h-relation.
To ensure that cost analysis can be performed in an architecture-independent
manner, cost formula are based on the following architecture-dependent pa-
rameters:

p — the number of processors;

[ — the minimum time between successive synchronisation operations, mea-
sured in terms of basic computational operations;

g — the ratio of the total throughput of the system in terms of basic compu-
tational operations, to the throughput of the router in terms of words of
information delivered; alternatively stated, g is the single-word delivery cost
under continuous message traffic.

Intuitively, g measures the permeability of the network to continuous message
traffic. A small value for g, therefore, suggests that an architecture provides
efficient delivery of message permutations. Similarly, [ captures the cost of
barrier synchronisation.

Using the definition of a superstep and the two architectural parameters g
and [, it is possible to compute the cost of executing a program on a given
architecture. In particular, the cost C* of a superstep S* is captured by the
formulae [4,18],

Ck=wk+nk.g+1

¥ = max{ wk |0<i<p} (1)

where w ;

h* = max{ max(h¥-in, h¥-out) |0 <i<p}



where k ranges over the supersteps; i ranges over processors; w¥ is an architecture-

independent cost representing the maximum number of basic computations
which can be executed by processor i in the local computation phase of su-
perstep S¥; h¥-in (respectively, h¥-out) is the largest accumulated size of all
messages entering (respectively, leaving) processor i within superstep S*.

In the BSP model, the total computation cost of a program is the sum of all
the costs of the supersteps, 3 C*.

3 Profiling the imbalance in parallel programs

The BSP model stipulates that all processors perform lock-step phases of
computation followed by communication. This encourages a disciplined ap-
proach in the utilisation of computation and communication resources. BSP
programs may be written using existing communication libraries which sup-
port non-blocking communications. However, these general-purpose libraries
are rarely optimised for the subset of operations which are required for the
BSP programming paradigm [9,16]. In order to address this problem, the BSP
research community has proposed a standard library — BSPIlib — which can be
used for parallel programming within the BSP framework [8,5].

BSPIib is a small communication library consisting of twenty operations for
SPMD (Single Program Multiple Data) programming. The main features of
BSPIib are two modes of communication, the first capturing a BSP-oriented
message-passing approach and the second reflecting a one-sided direct remote
memory access (DRMA) model.

The applications described in this paper have predominately been written
using the DRMA style of communication. They utilise the one-sided BSPIib
function bsp_put. This function transfers data from contiguous memory loca-
tions on the processor which initiates communication into contiguous memory
locations on a remote processor, without the active participation of the re-
mote processor. The function bsp_sync identifies the end of a superstep, at
which time all processors barrier synchronise. It is at this point that any mes-
sage transmissions issued by processors during the superstep are guaranteed
to have arrived at their destination.

In contrast to programs written in a general message-passing style, BSPIlib
facilitates profiling in a number of ways:

(1) The cost model highlights the use of both computation and communica-
tion as profiling cost metrics.
(2) The cost of communication within a superstep can be considered en



masse. This greatly simplifies the presentation of profiled results. In par-
ticular, communication within a superstep can be attributed to the bar-
rier synchronisation which marks the end of a superstep and not to indi-
vidual communication actions [7].

(3) BSP cost analysis is modular and conver; that is, improvement to the
performance of algorithms as a whole cannot be achieved by making one
part slower. This is important when profiling, as portions of code may be
elided to simplify the presentation of results. In this model this can be
done safely; the removed parts of the code will have no adverse effect on
the cost of the remaining supersteps.

(4) The treatment of computation and communication engineered by the BSP
model (and consequently BSPIib) foster a programming style in which
processes pass through the same textual bsp_sync for each superstep!.
Consequently, the line number and file name of the code which contains
the bsp_sync statement provide a convenient reference point in the source
code to which profiling costs can be attributed.

3.1 Criteria for good BSP design

In this section, two broadcast algorithms are analysed and the call-graph pro-
filer for BSPIib programs is introduced.

A post-mortem call-graph profiling tool has been developed to analyse trace
information generated during the execution of BSPIlib programs. The units
of code to which profiling information is assigned are termed cost centres.
For simplicity, each cost centre in the program corresponds to a bsp_sync
call. Each cost centre records the following information: (i) the accumulated
computation time; (ii) the accumulated communication time; (iii) the accu-
mulated idle (or waiting) time; and (iv) the accumulated h-relation size. The
timing result recorded at a cost centre is simply the sum of the maximum
communication and computation times recorded since the last bsp_sync call.

The aim of the profiling tool is to expose imbalances in either computation
or communication, and to highlight those parts of the program which are
amenable to improvement. The hypothesis that balance is the key to good
BSP design is supported by the BSP cost formulae:

e Within a superstep the computation should be balanced between processes.
This is based on the premise that the maximum value of w; (for 0 <i < p,
see equation 1) will determine the overall cost of local execution time;

e Within a superstep the communication should be balanced between pro-
cesses. This is based on the premise that the maximum value of h; (for

! This imposes tighter restrictions than the BSPIib program semantics.
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Fig. 1. Superstep structure.

0 < i < p, see equation 1) will determine the overall cost of the fan-in and
fan-out of messages;

e Finally, the total number of supersteps should be minimised. Each con-
tributes an [ term to the total execution time (see equation 1).

Figure 1 shows a schematic diagram of a BSP superstep and its associated
costs. The figure shows that idle time can arise in either local computation
or communication. In local computation, idle time will arise when processes
are forced to wait at a barrier synchronisation for the process with the largest
amount of computation to be completed. Idle time will occur during the com-
munication phase of a superstep if processes are forced to wait until inter-
process communication has been completed ?.

At each cost centre, p costs — corresponding to one cost per process — are
recorded. This data is presented to the user in one of two ways:

Summarised data: The cost within a single cost centre can be summarised
in terms of maximum (the standard BSP interpretation of cost), average and
minimum accumulated costs over each of the p processes. More formally, given
that a program may pass through a particular cost centre k£ times, generating
a sequence of costs (C1,...,C*), the accumulated computation cost for the
given cost centre is given by the formulae:

2 Tt is noted that idle time during communication depends upon the type of archi-
tecture on which BSPIib is implemented. For example, on the DRMA and shared
memory architectures (e.g. Cray T3D/E and SGI Power Challenge), communica-~
tion idle time arises as shown in Figure 1. However, with architectures which only
support message passing (e.g. IBM SP2), communication idle time is coalesced with
the computation idle time of the following superstep; see [9] for details.



mazimum cost=Y max { w} |0<i<p} (2)

k
1 k
average cost=> — | > w} (3)
r P \o<i<p
minimum cost=> min { wf |0 <i<p} (4)
k

Similar formulae exist for communication time, idle time and h-relation size.

All data: The costs associated with each of the p processes are presented to
the user in the form of a pie chart. The results must be interpreted with some
care as the costs are calculated using formulae which differ from the standard
BSP cost formulae. This is necessary as a user of this pie chart is typically
looking to identify the largest (maximum) segment in the chart. The size of
this maximum segment is:

max{zkjw§|ogi<p} (5)

Equation 5 abstracts the maximum outside the summation, producing a result
which may be smaller than that obtained from equation 2. Although this in-
terpretation is not strictly in line with BSP cost analysis, it is a useful method
for identifying the process which may be causing an efficiency bottleneck.

3.2 Ezample: broadcasting n values to p processes

In this example a common broadcast problem is considered; this is the com-
munication of a data structure of size n (where n > p) from one process to all
p processors in a parallel computing system.

A naive algorithm for this task can be implemented in a single superstep if p—1
distinct bsp_puts are performed by the broadcasting process. This requires the
transmission of p — 1 messages, each of size n; the superstep therefore realises
an n(p — 1)-relation with approximate cost (substituting p for p — 1):

cost of one— stage broadcast = npg + 1 (6)

where [ is the cost of performing a single superstep.

This algorithm, captured in equation 6, is not scalable as its cost linearly
increases with p.
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An alternative scalable BSP broadcasting algorithm [1,11], with cost 2ng +
2[, is shown in Figure 2. The algorithm consists of two supersteps: in the
first superstep, the data is distributed evenly amongst the p processes; in the
second superstep, all processes then broadcast their local data. This results in
balanced (system) communication.

The cost of the distribution phase is (n/p)(p — 1)g + [, as a single message of
size (n/p) is sent to each of the p — 1 processes. In the second superstep, each
process sends and receives p— 1 messages of size (n/p) from each other process.
The cost of this superstep? is also (n/p)(p — 1)g +[. The approximate cost of
the entire algorithm is determined by summing the cost of the two supersteps
(once again, assuming the substitution of p for p — 1):

cost of two— stage broadcast = (ﬁpg + l) + (ﬁpg + l) = 2ng + 21 (7)
p p

Using equations 6 and 7 it is possible to determine the size of data for which
the two-stage algorithm is superior to the one-stage algorithm:

l
Pg — 29

(8)

n >

For example, when [ is large and both n and p are small, the cost of the
extra superstep outweighs the cost of communicating a small number of short
messages. Conversely, for a large n or p, the communication cost outweighs
the overhead of the extra superstep.

3 Note that BSP cost analysis encourages balanced communication.



3.8 Interpreting call-graph information

foo
[250 syncs]
Max  Avg Mn
Conp  9.77s 10094.00%
Comm 9.80s 7% 0%
Wit  9.78s 94% 0%
Hel 7.5e+08 12% 7%

bcast.c line 41
[500 syncs]
= Max  Avg Mn

Conp  1.35s 99% 99%

[1250 syncs] Conm  3.33s 85% 67%

Max  Avg Mn Wit 1.11s 46% 1%

Conp  14. 44s 100%.00% Hel 9.4e+07 1009400%
Comm 14.41s 25% 16%
Wit 12.11s 89% 0%

Hel 9.4e+08 21% 16%
bcast _t wost age bcast.c line 34

[1000 syncs] [500 syncs]
Max  Avg Mn Max  Avg Mn
Conp  4.73s  99% 99% Conp  3.38s 99% 99%
Comm  4.67s 64% 49% Conm 1.34s 11% 5%
Vi t 2.39s 72% 1% Vi t 1.29s 94% 0%
Hel 1.9e+08 56% 53% Hel 9.4e+07 12% 7%

Fig. 3. Sample call-graph profile on a 16 processor Cray T3E.

Figure 3 shows an example call-graph profile for the two broadcast algorithms
running on a 16 processor Cray T3E. The call-graph contains a series of in-
terior and leaf nodes. The interior nodes represent procedures entered during
program execution, whereas the leaf nodes represent the textual position of
supersteps, i.e. the lines of code containing a bsp_sync. The path from a leaf to
the root of the graph identifies the sequence of cost centres passed through to
reach the part of the code that is active when the bsp_sync is executed. This
path is termed a call stack and a collection of call stacks therefore comprise
a call-graph profile. One significant advantage of call-graph profiling is that a
complete set of unambiguous program costs can be collected at run-time and
post-processed. This is a great help when identifying program bottlenecks.
Furthermore, the costs of shared procedures can be accurately apportioned to
their parents via a scheme known as cost inheritance. This allows the program-
mer to resolve any ambiguities which may arise from the profiling of shared
functions[15].

The call-graph in Figure 3 shows the profile results for a program which per-
forms 500 iterations of the one-stage broadcast and 500 iterations of the two-
stage broadcast. In order to highlight the features of the call-graph profile,
the procedures foo and bar contain procedure calls to the two broadcasting
algorithms. The order of program execution is as follows: in procedure foo
the one-stage broadcast algorithm is called 250 times; the procedure bar then
calls the one-stage broadcast algorithm 250 times and makes a further 500
calls to the two-stage broadcast algorithm.

The graph illustrates how the program costs are inherited from the leaves of
the graph towards the root. The top-level node main displays the accumulated
computation, communication and idle costs for each of the supersteps within
the program. At the interior nodes in the call-graph, information is displayed
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which relates to supersteps executed during the lifetime of the procedure iden-
tified at that node.

At the leaf nodes the profile records: (i) the textual position of the bsp_sync
call within the program; (ii) the number of times the superstep is executed;
(iii) summaries of the computation, communication and idle times and (iv)
the cost of the h-relation. Each of these summaries consists of the maximum,
average and minimum cost over the p processors; the average and minimum
costs are given as percentages of the maximum.

Interior nodes store similar information to leaf nodes. The interior nodes are
also labelled with procedure names and the results displayed at the nodes are
the inherited costs from the supersteps executed during calls to that procedure.

In the profiling results of Figure 3, the maximum computation and communica-
tion times for the interior node labelled bcast_onestage are both 19 seconds.
The total execution time for the calls to the one-stage broadcast is therefore
38 seconds (total computation + communication). The interior node also dis-
plays the maximum idle time (also 19 seconds) which is the delay caused by the
broadcasting process transmitting the data to the remaining p — 1 processes.

3.4 Identifying critical paths

The scope of the profiling tool is not limited to simply visualising the compu-
tation and communication patterns at each cost centre. The tool also allows
critical cost paths to be identified within parallel programs. Each node in the
graph is displayed in a colour ranging from white to red. A red node identifies
an efficiency bottleneck (or program ‘hot spot’) *. A sequence of dark-coloured
nodes identifies a critical path in the program. There are seventeen different
types of program critical path which can be identified by the profiler. The sim-
plest of these is the synchronisation critical path which identifies nodes in the
graph which contain the greatest number of supersteps. In addition, four dif-
ferent critical paths can be identified for each of computation, communication,
idle time and h-relation:

e Absolute — identifies the nodes with the greatest mazimum cost;

e Absolute imbalance — identifies the nodes with the greatest difference be-
tween the mazimum and average cost;

e Relative imbalance — identifies the nodes with the greatest percentage devi-
ation between maximum and average cost;

4 In this paper colours have been replaced by greyscales ranging from white to dark
grey.
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e Weighted — identifies the nodes with both the greatest difference between the
mazrimum and average cost and the greatest percentage deviation between
the maximum and average cost, a combination of the previous two critical
paths.

The absolute critical path identifies those nodes to which the greater part of
the program costs are attributed. The absolute imbalance critical path high-
lights those nodes which are amenable to further improvement, as it identifies
the underlying imbalance between the maximum and average cost. However,
care must be taken when this metric is used, as nodes with large cost values
and small deviations may be identified as being ‘more critical’ than nodes
with smaller cost values but larger deviations. The latter are most receptive
to significant improvement; the relative imbalance critical path is therefore
more useful when determining node imbalance, irrespective of the cost size.
Finally, the weighted critical path combines the advantages of the previous two
approaches.

The critical paths identified in Figure 3 highlight the absolute imbalance in
h-relation in the program. The profiling tool shows that when the one-stage
broadcast algorithm is used, there is a significant communication imbalance;
this imbalance is quantified in the h-relation in the form (12% | 7%) — the
average cost is 12% of the maximum, whereas the minimum cost is 7%. Results
showing such small percentages for the average and minimum costs point to
large imbalances in the underlying algorithm. The profiling tool also highlights
a similar imbalance in the first superstep (bcast.c line 34) of the two-stage
algorithm (the initial distribution of data), an imbalance which is unavoidable
using this approach. It is interesting that the profiling tool does not rank this
imbalance as highly as the imbalance underlying the one-stage algorithm; this
is because it is caused by a smaller h-relation, i.e. an (n/p)(p — 1)-relation
rather than an n(p— 1)-relation. Finally, it can be seen that the last superstep
of the two-stage broadcast (bcast.c line 41) has no h-relation imbalance
i.e. it is (100% | 100%).

4 Profiling an SQL database application

The optimisation of an SQL database query evaluation program provides a
persuasive real-world case study to illustrate the effectiveness of the call-graph
profiling tool on larger applications.

The SQL database query evaluation program contains a number of relational
queries which are implemented in BSP. The program consists of standard SQL
database queries which have been transcribed into C function calls and then
linked with a BSPIib library of SQL-like primitives. The program takes a

12
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Fig. 4. Screen view of the call-graph profiling tool

sequence of relations, in the form of tables, as its input. It processes the tables
and yields, as output, a sequence of intermediate relations.

The program works by distributing input relations among the processors using
a simple block-cyclic distribution. Three input relations ITEM, QNT and TRAN
are defined. Here the program evaluates six queries which in turn create the
following intermediary relations: (1) TEMP1, an aggregate sum and a ‘group-
by’ rearrangement of the relation TRAN; (2) TEMP2, an equality-join of TEMP1
and ITEM; (3) TEMP3, an aggregate sum and group-by of TEMP2; (4) TEMP4, an
equality-join of relations TEMP3 and QNT; (5) TEMP5, a less-than-join of relations
TEMP4 and ITEM; and (6) a filter (IN ‘low 1%’) of the relation TEMPS.

The program was executed on a sixteen processor Cray T3E and the screen
view of the profile results is shown in Figure 4. On the basis of these results,
a series of optimisations — documented below — is performed with the aim
of achieving a balanced program i.e. one whose cost terms are of the form
(100% | 100%).

4.1  Optimisation: stage 1

The results found in Figure 5 are a section of the call-graph profile for the
original SQL query processing program (version 1 of the program).

13
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Fig. 5. Detail of the complete call-graph profile found in Figure 4.

The initial results show an uneven distribution of the three input relations
amongst the processors. This gives rise to a considerable imbalance in com-
putation and communication when database operations are performed using
these data structures. Figure 5 shows a (54%| 21%) imbalance in h-relation
size.

As a potential remedy, load balancing functions were introduced into the code
to ensure that each processor contained an approximately equal partition of
the input relation. The results of load balancing these input relations reduces
the communication and computation imbalance by 26%.

4.2 Optimisation: stage 2

Further profiles of the SQL query processing application reveal that the imbal-
ance has not been eradicated. It appears that the SQL primitives had inherent
communication imbalance, even when perfectly balanced input data was used.
The profiling results which support this observation can be seen in Figure 6.
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Fig. 6. SQL query evaluation after load balance.

Using the critical paths which the call-graph profiling tool identifies, it is pos-
sible to follow the path of execution through the SELECT_FROM function to
the graph node labelled elim dup0. This highlights a major cause of commu-
nication imbalance — (69%]| 54%) — which can be attributed to the function
bspsort at line 175 in the program. This is shown in Figure 4.
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Repeating this procedure using the computation critical paths highlights that
the same function, bspsort, is responsible for similar computation imbalance.
The profile results in Figure 4 identify the primary source of this computa-
tion imbalance (51%| 17%) as line 188. The pie chart in Figure 4 presents a
breakdown of the accumulated computation time for each of the processes at
the superstep found at line 188.

In order to illustrate the class of computation which may be the cause of
this type of problem, the underlying algorithm of the bspsort function is
described.

The bspsort function implements a refined variant of the optimal randomised
BSP sorting algorithm of [3]. The algorithm consists of seven stages: (1) each
processor locally sorts the elements in its possession; (2) each processor selects
a random sample of s X p elements (where s is the oversampling factor) which
are collected at process zero; (3) the samples are sorted and p regular pivots are
picked from the s x p® samples; (4) the pivots are broadcast to all processors;
(5) each processor partitions the elements in its possession into the p blocks
as induced by the pivots; (6) each processor sends partition i to processor i
and (7) a local multi-way merge results in the intended global sort.

If stages (6) and (7) are not balanced, this can only be attributed to a poor
selection of splitters in stage (2). The random number generator which se-
lected the sample had been extensively tested prior to use; therefore the prob-
able cause for the disappointing performance of the algorithm was thought
to be the choice of the oversampling factor s. The algorithm had however
been previously tested and the oversampling factor fine tuned on the basis
of experiments using simple timing functions. The experimental results had
suggested that the oversampling factor established during theoretical analysis
of the algorithm had been a gross overestimate and, as a result, when it was
implemented, a much reduced factor was used.

4.3 Optimisation: improving the parallel sort

The oversampling factor for the sorting algorithm was further tested in a
number of profiling experiments. Sections of the call-graph for the optimal
experimental and theoretical parameters are presented in Figures 7 and 8
respectively. The original experimental results were confirmed by the profile:
the performance of the algorithm utilising the theoretical oversampling factor
(Figure 8) was approximately 50% inferior to that of the algorithm utilising the
experimental oversampling factor (Figure 7). This can be seen by comparing
the computation imbalance of (49%| 15%) in stage (7) of the first sort - found
at line 188 in Figure 7 - with the computation imbalance of (7%| 0%) in
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Fig. 8. Sorting version 2: theoretical oversampling factor.

stage (2) of the second sort - found at line 135 of Figure 8. Similarly, the
communication imbalance of (60%| 48%) present at stage (6) of the first sort
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(found at line 175) contrasts with the imbalance of (12%]| 7%) present at stage
(3) of the second sort (found at line 125).

The communication and computation requirements of stages (6) and (7) in
the second sort (Figure 8) were balanced, showing factors of (98%| 97%) and
(95%| 89%) respectively. This showed that the theoretical analysis had in-
deed accurately predicted the oversampling factor required to achieve load
balance. Unfortunately, the sustained improvement to the underlying sorting
algorithm gained by balancing communication at stage (6) — and consequently,
the improved communication requirements of the entire algorithm — had been
largely overwhelmed by the cost of communicating and sorting larger samples
in stages (2) and (3).

As a solution to this problem the work by Gerbessiotis and Siniolakis [3]
was applied. The unbalanced communication and computation algorithms of
stages (2) and (3), which collected and sorted a sample on a single process,
were replaced by an alternative parallel sorting algorithm. This simple and
efficient solution to the problem involves the sample set being sorted among
all the processes. An appropriate implementation is an efficient variant of the
bitonic-sort network.

The introduction of the bitonic sorter brought a marked improvement to the
results. These showed an 8.5% improvement to the overall wall-clock running
time of the sorting algorithm; the results also demonstrated corresponding
program balance: computation (99%| 98%), communication (83%| 70%), and
h-relation (99%]| 98%).
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Fig. 9. Final version of the SQL query evaluation.

4.4 Optimisation: stage 3

The sorting algorithm is central to the implementation of most of the queries
in the SQL database query evaluation application. Therefore, a minor im-
provement in the sorting algorithm results in a marked improvement in the
performance of the query evaluation program as a whole. This is confirmed by
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the lack of any shading in Figure 9. In contrast to Figure 5, the h-relations of
the SQL queries are almost perfectly balanced.

The overall improvement in performance of the SQL query evaluation program
is discussed in the next section.

5 Architecture-independent code optimisation

In the introduction it was stated that care should be taken when optimis-
ing parallel programs based on profile information. In particular, using the
wall-clock time as a cost metric is not a good basis for scalable and portable
program improvements. An important feature of BSP is that the size of an
h-relation directly influences the cost of communication. Therefore, instead of
using actual communication time as a cost metric, which may be subject to
quantification error, the predicted cost of communication (hg+1) is used. This
method is error-free as the value of h, which is not affected by the choice of the
underlying machine or architecture, is accurately recorded at runtime. This
forms the basis for the hypothesis that imbalance in maximum and average
h-relations can be used as the metric by which BSP programs are optimised
and optimal architecture-independent parallel algorithms are developed. This
hypothesis is supported by both the BSP cost analysis formulae and experi-
mental results.

Analysis of the two broadcast algorithms also provides support for this hy-
pothesis. In Figure 3 the accumulated values for computation, communication
and idle time displayed at the nodes labelled one_stage_bcast and two_stage
_broadcast show that the two-stage broadcast is superior to the one-stage
broadcast. The performance of the two-stage broadcast algorithm on a 16
processor Cray T3E shows an improvement over the one-stage algorithm of a
factor of:

19.5+19.6

=4.16
4.7+4.7

5.1 Architecture-independent optimisation of the query processing application

Table 1 shows the wall-clock times for the original and optimised SQL query
processing applications running on a variety of parallel machines. The small
size of the input relation was deliberate as this would prevent the computation
time in the algorithms from dominating. This allows the improvements in
communication cost to be highlighted.
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Unoptimised Optimised
Machine p | time | speed-up || time | speed-up || gain
Cray T3E 1| 6.44 1.00 || 5.37 1.00 || 17%
2] 4.30 1.50 || 3.38 1.59 || 21%
41 248 2.60 || 1.85 2.90 | 25%
8| 1.23 5.23 1.04 5.17 || 15%
16 | 0.68 9.43 | 0.67 8.02 1%
Cray T3D 1|27.18 1.00 || 22.41 1.00 || 18%
2] 13.18 2.06 || 10.88 2.06 | 17%
41 6.89 3.94 || 5.70 3.93 || 17%
8 3.29 8.25 | 3.07 7.30 ™%
16 | 1.66 16.34 | 1.89 11.88 || -14%
SGI Origin 2000 1] 299 1.00 || 2.42 1.00 || 19%
2| 1.65 1.81 1.27 1.91 || 23%
41 1.26 237 || 1.11 2.16 | 12%
8| 0.88 3.39 | 0.77 3.15 || 13%
Intel Cluster ° 1|19.68 1.00 || 13.01 1.00 || 51%
21 9.70 202 | 6.63 1.96 || 46%
41 5.75 3.42 || 4.02 3.24 || 43%
Athlon Cluster © 1]11.94 1.00 || 7.85 1.0 || 52%
2| 6.06 1.97 || 4.08 1.92 || 49%
41 3.58 3.34 || 3.07 2.56 || 17%

Table 1

Wall-clock time (secs.) for input relations containing 12,000 records

The results show that for up to eight processors, the optimised version of
the program yields an improvement of between 7% and 52% over the original
program. The relatively small input relation means that the experiment is not
scalable beyond this point. Detailed analysis of the results in Table 1 supports
this observation. The parallel efficiency of both the T3E and Origin 2000 is
limited: increasing the number of processors on the Origin 2000 from 4 to

6 A 400Mbps clustered network of 450Mhz Intel Pentium II processors, running the

Sychron VPS software.

6 A 300Mbps clustered network of 700Mhz AMD Athlon processors, running the

Sychron VPS software.
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8, for example, does not double the speed of execution. It is thought that
this is due to the communication-intensive nature of the query processing
application, together with the small quantity of data which is held on each
process (750 records per process at p = 16). By contrast, a combination of the
slow processors, fast communication and poor cache organisation on the T3D
gives super-linear speed-up, even for this small data set.

The absolute timing results for the application running on the Intel and Athlon
clusters are within the same approximate range as on more traditional super-
computers such as the Cray T3E and Origin 2000. It is interesting to note
that the gains seen using the optimised version of the program on these clus-
ters exceed those achieved on other machines. It is thought that this is due
to the relatively small secondary cache size of the Intel processors compared
with both the Alpha and Mips R10000 used on the Cray and Origin. A large
imbalance in the data set used in the unoptimised version of the program
means that one processor contains more data than the others; this processor
will therefore have a larger cache overflow. The size of the data set utilised in
this experiment is similar to the size of the cache itself. The absolute size of
the cache will therefore have an effect on the performance of this benchmark;
this is confirmed by the seemingly poor timing results for the Intel and Athlon
Processors.

6 Conclusions

The call-graph profiling tool, used in the efficiency analysis of BSPlib pro-
grams, provides the basis for portable and architecture-independent parallel
performance optimisation. This hypothesis is tested by profiling an SQL query
processing application, a real-world test-case written in BSPIib.

Program optimisations made to this application hold on a number of differ-
ent parallel architectures including Intel and Athlon clusters, shared memory
multiprocessors and tightly coupled distributed memory parallel machines.

A major benefit of the BSP call-graph profiling tool is the concise way in which
program-cost information is displayed. Visualising the costs for a parallel pro-
gram is no more complex than for a sequential program. Program inefficiencies
are quickly identified with the use of critical cost paths. A scheme of cost inher-
itance also ensures that accurate profile costs are displayed even when shared
functions form a large part of the program.
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