THE UNIVERSITY OF

WARWICK

Miles, S., Joy, Mike and Luck, M. (2003) Towards a methodology for coordination
mechanism selection in open systems. In: Petta, P. and Tolksdorf, R. and Zambonelli, F.
and Ossowski, S., (eds.) Engineering Societies in the Agents World IlI: Third
International Workshop on Engineering Societies in the Agents World (ESAW-2002).
Lecture Notes in Computer Science, Volume 2577 . Springer Berlin Heidelberg, pp. 241-
256. ISBN 9783540140092

Permanent WRAP url:
http://wrap.warwick.ac.uk/61271

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:

“© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your research

http://wrap.warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61271
mailto:publications@warwick.ac.uk

Towards a Methodology for Coordination M echanism
Selection in Open Systems

Simon Miles!, Mike Joy?, and Michael Luck!

1 Department of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, United Kingdom,
sm@ecs. sot on. ac. uk / mm @cs. sot on. ac. uk
2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, United
Kingdom, nsj @Ics. war wi ck. ac. uk

Abstract. Agent-oriented software engineering (AOSE) is a promising approach
to developing applications for dynamic open systems. If well developed, these
applications can be opportunistic, taking advantage of services implemented by
other developers at appropriate times. However, methodologies are needed to aid
the development of systems that are both flexible enough to be opportunistic and
tightly defined by the application requirements. In this paper, we investigate how
developers can choose the coordination mechanisms of agents so that the agents
will best fulfil application requirements in an open system.

1 Introduction

Connecting together software environments (subsystems) to form dynamic open sys-
tems offers applications the potential to make use of the most up-to-date functionality
in any of those environments at any time. That functionality can then be extended by
adding more environments and adding new services to the existing environments. Now,
underpinning much of the raison d’etre for multi-agent systems is that they are a highly
appropriate technology for applications that run in dynamic open systems. By reacting
to changes in the system state and making appropriate decisions, agents can, if well
designed, be opportunistic. Opportunistic agents attempt to take advantage of the best
functionality available, regardless of whether those services have been implemented by
the developer of the agents or provided by another. In order to ensure that an appli-
cation can be judged to be opportunistic, the design should be tightly defined by the
application requirements, i.e. the design should have justification.

How well an agent can take advantage of the functionality available in the system,
and the amount of control it has over activities within the system depends on the coordi-
nation mechanisms it uses. A coordination mechanism is a software process employed
by an agent to ensure other agents behave as it would find most useful, usually making
use of communication between the agents. Different coordination mechanisms provide
different functionality but also place different demands on the system. Following the
work of others [4, 11], we suggest that the coordination model of a multi-agent system
should be tailored to application requirements. We consider that an application may
have a set of very different goals, i.e. provide a variety of functionality. Also, we con-
sider that this functionality may be best achieved at any one time by agents under the

control of the application’s designers or other accessible agents or processes within the
open system.

We have developed a methodology in which we model cooperation to achieve an ap-
plication’s goals as the result of interactions between agents, without specifying which
particular agents the interactions take place between. By raising interactions to the sta-
tus of first-class design objects, we allow many agents, including those not existing at
design time, to take on the role of participants in the interactions. The aim is that the
most suitable agents within the open system can achieve the goals to the highest quality
at any point in time.

With applications that have a set of differing goals, the agents that coordinate over
those goals may appropriately use different coordination mechanisms. Choosing a sin-
gle coordination model, such as a marketplace or a hierarchy, would not necessarily best
fit the requirements. We therefore propose analysing each goal to determine the most
suitable coordination mechanisms for use by agents cooperating to achieve the goal.
We can then design agents that ensure application goals are achieved within the open
system, based on the analysis results. Designing the multi-agent system for agent inter-
actions where the participating agents are not known in advance places further demands
on the analysis process.

In this paper, we demonstrate that our assurance analysis design process meets these
demands, with a small example. In order, we present the following.

— A case study is provided to illustrate the methods described in this paper (Section
2).

— The case study requirements are analysed to derive the application goals and pref-
erences as to how to best achieve the goals (Section 3.1).

— We discuss how a designer can choose from known agent coordination mechanisms
to make sure the application is opportunistic and its design is justified (Section 3.2).

— Details of this approach are explained and illustrated by analysing the goals of the
case study application (Section 3.3).

— After goals are matched to the coordination mechanisms which would best allow
them to be achieved, we discuss how the designer can use this information to design
the application agents. These agents will use the resources of the open system to
achieve the application goals (Section 3.4).

— To show that the design is justified as we have claimed, we show how the design
decisions made in the case study can be traced back to the requirements (Section
4).

Agent Interaction Analysis Our methodology, as a whole, is called agent interaction
analysis. Using the methodology, a designer will perform broadly the following steps
to create a multi-agent application functioning in an open system.

— Analyse the application requirements to discover the goals of the application and
the preferences (or non-functional goals) that specify and/or quantify the priorities
in achieving each goal (such as speed, accuracy of results etc.) Other information,
such as how the goals are triggered in the system, e.g. by request from the user, and
how goals can be decomposed into subgoals are also determined.

— The ideal target application design is then viewed in terms of agent interactions. The
application can be seen as the achievement of the application goals within the open
system due to cooperation between agents, each goal achieved being represented by
an agent interaction. The agents taking part in the application are not specified as
they cannot all be known about at design time ([8] also discusses designing systems
that allow interactions between dynamically created agents).

— To achieve this target design, the designer adds agents to the open system to ensure
the application goals are met.

— The designs of individual agents are tailored to match the preferences of the ap-
plication, so as to best achieve the goals. The designer chooses between different
models for each agent mechanism, where the models are described by third-party
design patterns. The approach aims to preserve flexibility in the system as far as
possible to allow full use of other agents in the open system that may more closely
match preferences in their activity than the ones that the designer has added.

In this paper, we concentrate only on choosing the coordination mechanisms for the
agents added to the system, which is a later stage of our methodology. As stated above,
the coordination mechanisms most suitable for achieving a goal are those that tailor
the interacting agents to best match the goal’s preferences. See [10] for more on our
methodology, and [13] for an overview of agent-oriented software engineering.

2 Case Study

To illustrate the design of multi-agent applications, we provide a case study that will be
used throughout this paper. We assume that the case for using an agent-based approach
for this application has already been made. In this section, we present the requirements
document for an example application.

We require a collaborative weather mapping application. Using the application, a
global weather map giving the current state is accessed and edited by various collabo-
rating organisations. Contributors can add data they have gathered locally to the map
in authorised locations. For example, one organisation may be authorised to add data
concerned with a small local area, while another can add data for any location within
a country. Authorisation is enforced to prevent accidental changes. Contributors and
other organisations can access the weather data and be provided with predictions of
weather at specified locations in the future. As with the contribution of data, different
organisations have differing access rights to predictions on different locations.

Several services offer predictions based on the data, and the number of predictors
available at any one time may vary, partly due to the load they each have on them. The
predictor services vary in speed and in accuracy. They are represented as autonomous
agents that accept prediction goals via published protocols. They must have access to
the weather data to make the prediction, either by moving onto the system on which rel-
evant data is stored or by repeated requests to the relevant sources. Prediction requests
specify location and time (in the future), and the results should aim to be as accurate
as possible. The application should be opportunistic in using open system resources, to
ensure that operations are performed quickly or accurately, but should prioritise speed

over opportunism in general. Authorisation for editing data and viewing predictions is
governed by stored access rights, which some users are authorised to edit.

Of course, requirements are unlikely to be provided completely in a single docu-
ment, and further requirements capture may require further processes. Appropriate re-
quirements capture and analysis is beyond the scope of this paper, and so we summarise
key points that have been identified by the designer in our case study.

— Users need to perform three operations using the application as a whole: contribute
some weather data, view predictions based on this data and set access rights for
other users.

— When contributing data to the map, a user wishes the data to be added as quickly
as possible, access rights to be observed and the data to be reliably integrated into
the map, especially as new data may be generated frequently.

— When viewing a prediction based on existing data, a user particularly wishes for
the quality of the prediction (the probability of its accuracy) to be high, as well
as wishing it to be quickly presented to them. Again, the access rights should be
observed, but also the user of the application wishes to ensure that it has enough
flexibility to use higher quality prediction services when they become available.

— In setting access rights, the user primarily wishes the operation to be performed
quickly and in observation of access rights.

3 Designing Coordination for an Open Application

In this section we examine how agents can be designed to fit application requirements.
In particular, we examine which coordination mechanisms would best match the pref-
erences of application goals, to allow an agent added to the system, or, indeed, already
existing in the open system, to best fulfil the application goals opportunistically. The
justification for each design decision is made explicit in sections marked Justification
of Design Decision’.

3.1 Requirements to Design

Requirements engineering is the process of understanding and refining the requirements
of an application. This may be aided by taking prospective users through usage scenar-
ios [7], for example. Agent-oriented approaches to development should not force any
change in an applications requirements. Therefore, the techniques used in requirements
engineering for agent-based systems will be the same as those elsewhere [3, 12] (see
Tropos [1] for an agent-oriented software engineering methodology based on require-
ments engineering).

A common requirements engineering technique is to describe the requirements in
terms of functional goals it is intended to achieve and priorities and restrictions which,
jointly, we call preferences. For brevity we exclude the requirements analysis of our
case study and simply present the results in Tables 1 and 2 for goals and preferences
respectively.

In Table 1, each goal identified is given a name, an end state and a list of associated
preferences. The end state describes the state of the system in which the goal has been

|Goal Name |Goal State Description |Preferences |

Contributed A user has contributed weather data|Security, Reliabil-

Weather Data to the current map. ity, Speed

Viewed Prediction |A user has requested and received a|Security, Flexibiliy,
prediction. Quality, Speed

Set Access Rights |A user has set the authorisation of|Security, Speed
another user for editing or viewing.

Table 1. Goals identified by requirements analysis

achieved. The associated preferences state those priorities and restrictions that should
be observed while attempting to achieve the goal. A goal is, in fact, a class of goal
instances; there will be many times in which a user will contribute weather data, for
example, and each of those may be the contribution of data at a different map location.
Each contribution is an instance of the Contributed Weather Data goal. In Table 2, each
preference identified is given a name and a description.

|Preference Name|Preference Description |

Security Security of information prioritised.

Reliability Reliability of achievement prioritised.

Flexibility Flexibility for opportunistic behaviour prioritised.
Quality Quality of results prioritised.

Speed Speed of achievement prioritised.

Table 2. Preferences identified by requirements analysis

Justification of Design Decision The goals and preferences are decided upon by being
directly identified from the requirements.

For a complex application, goals can be divided into subgoals. A subgoal will inherit

the applicable preferences from its parent goal. This is not discussed further here but
see [10] for more.

3.2 Coordination Mechanisms

An application that is opportunistic will use the services available in an open system
to best achieve the application goals. The designer of an open system application will
implement this by adding functionality to the system that coordinates the services to
best effect. In an agent-oriented approach, the functionality added is viewed in the form
of agents. Agents coordinate activity between themselves and other services by using

coordination mechanisms. For example, here are brief descriptions of two such mecha-
nisms.

Trust An agent using this mechanism, based broadly on the one suggested by Marsh
[9], keeps a record of the success of cooperating agents in achieving goals. Future
choices of cooperating agents are decided by whichever agents have been most suc-
cessful in the past. This allows the agent to choose between agents based on their
trustworthiness [5]. For Contributed Weather Data and Set Access Rights goals, the
successfulness of an attempt could be the speed at which the goal is achieved. For
Viewed Prediction, the success is judged by the prediction’s accuracy, which could
be checked when the actual data for the predicted time and location is contributed.
The mechanism may take longer to use than others as the agent will have to dis-
cover which potential cooperating agents are available before choosing one. There
is a wide range of research on modelling trust [5], and we do not claim that this
mechanism as described is better or worse than others.

Forced Cooperation An alternative method for an agent to find suitable cooperating
agents is for the designer to implement agents with references to pre-selected agents
that are known to be tailored to achieve a goal and are forced to accept requests for
cooperation over that goal. This mechanism, similar to standard method invocation
in object-oriented systems, prioritises speed and reliability over opportunism.

Different goals have different measures of success, as given by the preferences such
as those given in the preceding section. In order for a coordination mechanism to be
suitable for matching a preference, a mechanism must have two properties. First, it must
be useful in choosing agents or other services in the open system whose activity best
matches the preference. Second, it must match the preference itself. For example, in our
case study, contributing weather data should occur as quickly as possible. A mechanism
coordinating this goal should choose agents offering to edit the appropriate part of the
weather map and should not slow the process down unduly by the act of coordination.

In agent interaction analysis, the designer performs the following steps to decide
on which coordination mechanisms is most appropriate for each application goal.

1. The designer is supplied with a set of coordination mechanism definitions in a stan-
dard pattern language. This follows the approach of design patterns [6], in which
abstract parts of a design are made available to designers to encourage re-use of
well-founded designs. There are many agent coordination mechanisms suggested in
the literature but we use only the above two as examples in this paper (for brevity).

2. For each application goal, the designer chooses a coordination mechanism most
suitable for matching the goal’s preferences. In order to aid comparison, the de-
signer performs more detailed analysis of the mechanisms. This analysis is called
assurance analysis and is described in the next section.

3. From the choices of coordination mechanisms for each goal, the designer decides
on the coordination mechanisms for the agents that will be added to the open sys-
tem. When these agents are added the appication will be instantiated. This step is
called collation and is discussed in Section 3.4.

In the full methodology, the above steps are performed for mechanisms other than coor-
dination mechanisms, e.g. plan execution mechanisms, action scheduling mechanisms
etc. In order to aid the comparison described in the first step, the coordination mecha-
nisms are written in a pattern language. Examples for trust and forced cooperation are

shown in Tables 3 and 4. The tables describe eight aspects of each mechanism that may
be revelant to application preferences.

Part Name Coordination
Model Name Trust
Description The agent using this mechanism checks the quality of any solution pro-

vided by an agent and uses these assessments to decide which offers
to accept in the future. The checks can be either by observation of the
state achieved, if the goal attempts to achieve a particular observable
state, or by an independent production of the same information, if the
goal attempts to derive some information.

Algorithms 1. Send requests to agents; 2. Wait for a suitable duration to receive
offers; 3. If no offers received, resend requests; 4. If some (one or more)
offers are received, assess them to determine which comes from the
most trustworthy agent; 5. Accept the offer from the most trustworthy
agent.

Priorities A trust-based mechanism prioritises quality of solution and reliability
in obtaining a solution.

Resource Use The agent using the mechanism will need to possess quantitative assess-
ments of the trustworthiness of other agents, which rise and fall depend-
ing on observed quality of solution. The agent will make observations
or request extra information for each goal.

Support Required As the agent using the trust mechanism algorithm must wait a specified
duration, it requires a scheduling mechanism capable of this.

Scaling With a large number of possible collaborators for a goal, the number
of models possessed by the agent will also be large. The observational
checks will add to the time taken to process each goal by the agent.

Applicability Where the quality of the goal is able to be checked in some way and is
of more importance than speed or the low use of resources.

Problems A trust-based mechanism may add a significant amount of processing
to each goal the agent seeks cooperators for.

Table 3. A pattern for a coordination mechanism.

3.3 Assurance Analysis

The choice between mechanisms, even when design patterns are provided, may be difficult be-
cause different stages of the mechanisms’ use can have very different effects on an application’s
performance. For example, with a trust mechanism such as the one suggested above, the process
of building up a large table of trustwothiness information on agents in the open system may be
costly in terms of time and storage space. It would, however, be very useful in making coordi-
nation decisions on which agents to best cooperate with. In order to supplement the information
given in the supplied patterns, an application designer can further analyse how well mechanisms
meet the application requirements by breaking their operation into smaller parts.

Assurance analysis is a procedure in which to analyse how well a coordination mecha-
nism matches an application goal’s preferences, which therefore aids comparison of coordination

Part Name Coordination

Model Name Forced Cooperation

Description In this model, certain agents are required to cooperate over a goal on
demand and are known to the agent employing this mechanism. The
mechanism is approximately the same as message passing in (concur-
rent) objects.

Algorithms To request cooperation from a forced agent, there is only one step. 1.
Demand cooperation over the goal
Priorities The model prioritises speed, reliability that the cooperators will be ca-

pable (through explicit design) and security in knowing the cooperator
is pre-determined to be trustworthy.

Resource Use Local information regarding the forced cooperation in agents is required
by the agent employing this mechanism.

Support Required The model requires mandatory adoption of goals in some agents pro-
viding the capability for this goal.

Scaling Scales easily as it requires no communication beyond the minimum de-
mand for cooperation, but does require suitable functionality to continue
to be available within the application over time.

Applicability This model is most applicable where security or reliability are of much
greater importance than opportunism and where it is known that the
forced functionality will always be available within the application.

Problems Forced cooperation allows no flexibility in choosing cooperators so pro-
vides for no opportunism in exploiting the open system.

Table 4. A pattern for a coordination mechanism.

mechanisms for the application. It takes the viewpoint of a single agent attempting coordination
with unknown others, so as to ensure flexibility in making full use of the open system. In this
paper, we use simple tables to provide the results of the analysis for brevity.

In Tables 6, 7 and 8, we analyse and compare how well each of the two coordination mecha-
nisms matches the preferences of each goal of our case study. The analysis attempts to be detailed
to guide the designer in considering all aspects of the decision. Each cell in the tables is com-
pleted by the designer, and indicates whether a coordination mechanism is suitable for the goal
being analysed, in some respect. Clearly two different designers may give different analyses, and
so different entries into the tables, but the analysis still gives a justification for design decisions.
Any more objective measure would be difficult as the priorities (preferences) of applications will
vary widely.

Each of the tables is divided into four stages of execution. The top stage analyses the obtain-
ing of information required to coordinate. The next stage down examines the updating of stored
information on potential cooperating agents. The third stage concerns the analysis made by the
agent from the cooperating agent information. The lowest stage examines acting on the analyses
made.

In each table, a column represents analysis of a single mechanism while a row represents
analysis of a single preference. For each cell in the table, the designer asks the following question:
“Does coordination mechanism X allow preference P to be matched in stage S.” In each cell, the
designer answers ‘yes’ or ‘no’ to the question. In the lowest stage, the designer can see the overall
suitability of the mechanisms. In general, the mechanism that answers ‘yes’ to all the questions
is the best to choose though a compromise may be necessary if no mechanism matches every
preference.

For example, in Table 6, the Trust mechanism has a ‘no’ entry in the second stage for the
preference to prioritise speed. This is because, at the stage of building up information on potential
cooperating agents, the Trust mechanism could be slow and prioritises quality of solution over
speed. It can be seen that the analysis of a mechanism with regard to a preference is independent
of any goal, so the same analysis of the Speed preference is made in Tables 6 and 8, for instance. In
Table 7, the Forced Cooperation mechanism is stated not to allow the prioritisation of flexibility
or quality of solution from the point at which it gathers information for cooperation (the first
stage). This is because it does not attempt to discover any more suitable agents in the system but
instead relies on pre-selected agents.

The analyses made suggest that the Forced Cooperation mechanism is most useful for the
Contributed Weather Data and Set Access Rights goals and Trust is best for coordinating over
Viewed Prediction.

Justification of Design Decision The analysis of how well each coordination mechanism matches
the preferences of each goal justifies the choice of mechanisms.

3.4 Collation

Once designers have decided which of the coordination and other mechanisms available best
match the application preferences, they can use this information to decide on the design of agents.
The agents, when added to the open system, should instantiate the application goals while match-
ing the preferences.

In our example, we have decided that a Forced Cooperation coordination mechanism would
be best for coordinating Contributed Weather Data and Set Access goals and Trust would be most
suitable for coordinating Viewed Prediction goal. As there are no other mechanisms specified in
this brief example, the most obvious agents to introduce are to have one tailored to adopting and
coordinating over the Contributed Weather Data and Set Access goals and one for the Viewed
Prediction goal.

We give the final agent design in Table 5, which includes both the coordination mechanisms
and the goals that each of the agents will make offers to achieve if requested (the goals they will
adopt). The first agent can only adopt the Contributed Weather Data and Set Access Rights goals
because it requires pre-selected cooperating agents and will only have them for those goals. We
allow the second agent to adopt any of the goals, as there is no reason to restrict it and therefore,
for maximum opportunism of the application, we do not restrict it (though it will be restricted in
implementation). The full criteria for deciding on the complete set of agents being added to an
open system depends on the application-wide preferences given in the requirements. Techniques
for assessing whether applications meet application-wide preferences is discussed in [2].

The above application of assurance analysis is fairly simple as our case study is also simple
and contrived for the purpose of this paper. For this reason we cannot illustrate the full potential of
the analysis here. For example, both of the Forced Cooperation and Trust mechanisms concentrate
on choosing between suitable agents which leads to preferences being disallowed at the early
stages (higher tables in the analysis) or not at all.

|Agent|Coordination [Will Adopt |
1 Forced Cooperation|Contributed Weather Data, Set Access Rights
2 Trust All goals

Table 5. Agents produced by collation

Information Acquisition

|Preference |Trust [Forced Cooperation

Information Acquisition

|Preference |Trust [Forced Cooperation

Security |yes |yes Security [yes |yes
Reliability |yes |yes Flexibility [yes [no
Speed yes |yes Quality |yes |no
Updating Models Speed no yes
|Preference [Trust |Forced Cooperation Updating Models
Security |yes yes |Preference [Trust |Forced Cooperation
Reliability |yes yes Security |yes yes
Speed no yes Flexibility |yes no
Information Analysis Quality yes no
|Preference [Trust |Forced Cooperation Speed no ves
Security |yes yes Information Analysis
Reliability |yes yes |Preference [Trust |Forced Cooperation
Speed no yes Security [yes [yes
Acting on Analysis Flexibility |yes |no
|Preference [Trust |Forced Cooperation Quality |yes no
Security |yes yes Speed no yes
Reliability |yes yes Acting on Analysis
Speed no yes |Preference [Trust |Forced Cooperation
Table 6. Assurance Analysis of Contributed [Security [yes yes
Weather Data goal Flexibility |yes |no
Quality yes no
Speed no yes
Table 7. Assurance Analysis of Viewed Predic-
tion goal
Information Acquisition
|Preference [Trust |Forced Cooperation
Security |yes yes
Speed no yes
Updating Models
|Preference [Trust |Forced Cooperation
Security |yes yes
Speed no yes
Information Analysis
|Preference [Trust |Forced Cooperation
Security |yes yes
Speed no yes
Acting on Analysis
|Preference [Trust |Forced Cooperation
Security |yes yes
Speed no yes

Table 8. Assurance Analysis of Set Access

Rights goal

Justification of Design Decision The design of agents produced by collation is wholly
based on the mechanisms determined to be best for each goal.

4 Judging the Design

When creating a multi-agent application, the design is justified by the requirements
if the functionality is divided between agents in a way justified by the requirements.
The dynamic nature of open systems means that any test performed on an implemented
(opportunistic) open system application is unrepeatable and, therefore, of limited value
[14]. Also, the application may make use of any functionality in the open system but,
clearly, the only part of the application that can be tailored to the requirements is that
which is known about at design time and whose form is under the control of the de-
signer.

4.1 Tracing Backwards

The first agent in Table 5 has the functionality identified as most suitable for originators
of two goals: Contributed Weather Data and Set Access Rights. The designer has chosen
to merge the agents designed to coordinate over these goals, so that the organisation
contains one agent (in the application set) tailored to providing this functionality rather
than two. By simply identifying agents in the original requirements, the designer could,
for example, have chosen to implement two agents that separately dealt with the two
goals. To see why the decision to choose this particular organisation is justified, we
can reason (trace) backwards from the collation stage, at which the final organisation is
chosen.

1. At the start of the collation stage, the designer has decided that an agent tailored
to coordinating over the Contributed Weather Data goal would have an architecture
which used forced cooperation to coordinate. The designer has also decided that
an agent tailored to coordinating over the Set Access Rights goal would have the
same architecture. These are decisions on the most suitable architectures for agents
initiating cooperation over the goals. The decisions on the choice of most suitable
architecture for each agent is the results of analysis, such as the assurance analysis
described earlier, into how the agents can be tailored to match the requirements,
and should, therefore, inform the choice of organisation.

2. Incollation, the designer decides which agents make up the final organisation based
on the coordination mechanism design decisions for the agents. It would be likely
that at least one agent with the Forced Cooperation mechanism for coordinating
over the Contributed Weather Data goal is implemented so that when an agent, or
the user, wishes to achieve an instance of the Contributed Weather Data goal, there
will be an agent tailored to doing so in the application. The same is true for the
Set Access Rights goal. However having two agents with the same architecture is
not necessarily the best organisational division, as having two agents will use up
more resources. Separation of agents into more than one agent type (architecture)
in the organisation is not justified by the requirements if the architectures of the

agents are similar enough, as long as the architectures are themselves justified by
the requirements.

3. To see that the architectures of the agents are justified we examine the assurance
analysis. The assurance analysis for the Contributed Weather Data goal gives rea-
sons why the most suitable coordination mechanisms for the goal is Forced Coop-
eration, based on comparing preferences of that goal with the operations of each
mechanism. The Set Access Rights analysis comes to the same conclusion for that
goal. The choice of architectures for the agents was decided on the basis of the goal
and application preferences.

4. The Contributed Weather Data and Set Access Rights goals and their preferences
were extracted from the requirements in the requirements analysis stage by exam-
ining the scenarios, entities and goals mentioned in the requirements.

4.2 Opportunism

The other aspect of justification for designs is that it is restricted as little as possible in
its opportunism. The two agents in Table 5 differ greatly in their interoperability. The
first agent is heavily restricted in its operations while the second is highly interoperable.
We claim that the opportunism of each is restricted only as far as the requirements de-
mand and the design decisions are, therefore, justified. \We examine the design decisions
restricting or allowing opportunism for each agent below.

1. The first agent is heavily restricted in its activity.

(a) The preference to validate authorisation to edit the weather map and access
rights and the emphasis on reliability in contributing to the map require that
the agent uses only trusted agents in making alterations. This can either be
achieved by checking the agent’s actions to determine their reliability or by
always using standard cooperating agents chosen by the designer. Speed is
more important than interoperability so the designer chose the latter option
(the Forced Cooperation coordination mechanism).

(b) Using Forced Cooperation requires that references to cooperating agents be
known in advance. Thus, only the goals for which references are provided can
be attempted by the agent, which are Contributed Weather Data and Set Access
Rights in this case. The agent will only offer to adopt these two goals.

(c) These restrictions are derived from the requirements (goals and preferences).

2. The second agent has very little restriction on its behaviour.

(a) The preferences on getting accurate predictions in prediction viewing opera-
tions lead the designer to use interoperation to find the most suitable cooper-
ating agents at each instance. To decide between cooperating agents, the agent
uses a trust-based mechanism giving information on the previous likely accu-
racy of results.

(b) There is no reason to prevent the agent from being given the ability to coordi-
nate over other goals, and so it is given the ability to do so.

(c) The requirements encourage opportunism in this case, and the design of the
agent reflects this.

5 Conclusions

In this paper, we have shown how a designer can choose coordination mechanisms
for agents implementing an application in an open system. We have shown that these
decisions can be analysed to determine that the design does meet the requirements, and
allows for flexible use of the functionality available in the open system at any one time.

Our methodology was developed to allow designers to produce opportunistic open
systems applications whose design is fully justified by the application requirements. We
do not believe this is currently achieved by other agent-oriented software engineering
methodologies.

Future work will examine how the infrastructure supporting agents can also be de-
signed to cohere with the guiding concepts identified above. One minor problem to
be addressed with the methodology, however, as with any that attempts to analyse all
points at which an application could take advantage of available functionality, is keep-
ing the volume of the specification to a manageable level. More detailed results of the
case study, and further details of the methodology, are available from the first author.

Acknowledgements This work was carried out while supported by the myGrid project
(EPSRC reference GR/R67743/01) at University of Southampton.

References

1. J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven development methodology.
In Proceedings of the 13th International Conference on Advanced Information Systems En-
gineering (CAISE-01), Interlaken, Switzerland, 2001.

2. P. Davidsson and S. Johansson. Evaluating multi-agent system architectures: A case study
concerning dynamic resource allocation. In this volume, Madrid, Spain, 2002.

3. A. M. Davis. Software Requirements: Objects, States and Functions. Prentice Hall, 1993.

4. V. Dignum, H. Weigand, and L. Xu. Agent Societies: Toward Frameworks-Based Design. In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of the Second International
Workshop on Agent-Oriented Software Engineering (AOSE-2001), pages 25-32, Montreal,
Canada, 2001.

5. R. Falcone and B. S. Firozabadi. The challenge of trust: The Autonomous Agents "98 Work-
shop on Deception, Fraud and Trust in Agent Societies. Knowledge Engineering Review,
14(1):81-89, 1999.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction and reuse of
object oriented design. In Proceedings of ECOOP’93, Kaiserslautern, Germany, 1993.

7. P. Haumer, K. Pohl, and K. Weidenhaupt. Requirements elicitation and validation with real
world scenes. IEEE Transactions on Software Engineering, 24(12), December 1998.

8. M. N. Huhns. Interaction-oriented programming. In P. Ciancarini and M. J. Wooldridge,
editors, Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000), 2000.

9. S. P. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department of
Computing Science and Mathematics, University of Stirling, 1994.

10. S. Miles, M. Joy, and M. Luck. Designing agent-oriented systems by analysing agent in-
teractions. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of Agent-Oriented
Software Engineering 2000 (AOSE 2000), 2000.

11. A. Omicini. SODA: Societies and infastructures in the analysis and design of agent-based
systems. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of Agent-Oriented
Software Engineering 2000 (AOSE 2000), 2000.

12. A. van Lamsweerde. Requirements engineering in the year 00: A research perspective. In
Proceeding of the Twenty-Second International Conference on Software Engineering (ICSE-
00), 2000.

13. M. Wooldridge and P. Ciancarini. Agent-oriented software engineering: The state of the
art. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of Agent-Oriented Software
Engineering 2000 (AOSE 2000), 2000.

14. F. Zambonelli and H. V. D. Parunak. Signs of a revolution in computer science and software
engineering. In this volume, Madrid, Spain, 2002.

