THE UNIVERSITY OF

WARWICK

Original citation:

Jarvis, Stephen A., 1970-, Spooner, D. P., Dyson, J. R. D., Zhao, L. and Nudd, G. R.
(2003) Performance-responsive middleware for grid computing. In: All Hands Meeting
2003: Delivering e-Science, Nottingham, UK, 2-4 Sep 2003

Permanent WRAP url:
http://wrap.warwick.ac.uk/61286

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61286
mailto:publications@warwick.ac.uk

Performance-responsive Middleware for Grid Computing*

Stephen A. Jarvis, Daniel P. Spooner, Justin R.D. Dyson, Lei Zhao, Graham R. Nudd

High Performance Systems Group, University of Warwick, Coventry, UK
stephen.jarvis@warwick.ac.uk

Abstract

The development of supportive middleware to manage resources and distributed workload across multiple
administrative boundaries is of central importance to Grid computing. Active middleware services that
perform look-up, match-making, scheduling and staging are being developed that allow users to identify
and utilise appropriate resources that provide sustainable system- and user-level qualities of service.
This paper documents two performance-responsive middleware services that address the implications
of executing a particular workload on a given set of resources. These services are based on an estab-
lished performance prediction system that is employed at both the local (intra-domain) and global (multi-
domain) levels to provide dynamic workload steering. These additional facilities bring about significant
performance improvements, the details of which are presented with regard to the user-perceived quality

of service and to resource utilisation.
1 Introduction

Grid computing [13, 18] promotes user collaboration
through the flexible and co-ordinated sharing of dis-
tributed resources. This includes access to facilities
that traditionally reside outside the administrative
domain of a typical user, such as a super-computing
resource or specialist instrumentation. In order to
support this approach it is necessary to provide mid-
dleware that can manage large, highly dynamic, het-
erogeneous multi-domain environments. This mid-
dleware is likely to be composed of supportive ser-
vices such as resource management — a task which
is complicated by the need to provide sustainable,
reliable and predictable computing services, despite
variations in the available resources and the demands
of the users.

Such middleware must adapt to varying architec-
tures, system characteristics and user requirements
in real time, and implement match-making capabil-
ities that link appropriate resources to the varying
workload. While these services may operate on sys-
tem properties such as architectural, operating sys-
tem and memory compatibilities, they can also be
driven by soft-matching requirements such as task
deadlines and user priority.

This paper documents two performance-
responsive middleware services, which provide ad-
ditional match-making capabilities based on the an-
ticipated run-time characteristics of an application.
These services operate at two levels: at the intra-
domain level where predictive information is used

to tune task execution, rearrange the task queue and
maximise the utilisation of the servicing architec-
tures; and at the multi-domain level where a peer-
to-peer agent system is used to steer tasks to under-
utilised resources, thereby balancing workload and
improving resource usage.

A key feature of this research is that these per-
formance services are integrated with standard Grid
middleware. Intra-domain resource management is
implemented as an additional service that directs the
Condor scheduler [19], which provides a mechanism
for the deployment of the workload to the physical
resources. This extra layer of management uses an
iterative scheduling algorithm to select task sched-
ules that satisfy service demands, minimise resource
idle time and balance the workload over the available
intra-domain resources. A peer-to-peer agent system
is used to assist in multi-domain workload manage-
ment. At this level, the middleware uses the Globus
information services [12, 14] to support resource ad-
vertisement and discovery. This allows direct inter-
domain task migration and results in tangible perfor-
mance benefits. Compelling evidence of the benefits
of these services is documented for a 256-node Grid.

Detail of the supporting performance prediction
system are documented in section 2. The intra-
domain resource management service is described
in section 3; this is extended to multi-domain task
management in section 4. Experimental results in
section 5 provide evidence of substantial improve-
ments to user-perceived quality of service and Grid
resource utilisation.

*Sponsored in part by grants from the NASA AMES Research Center (administrated by USARDSG, contract no. N68171-01-C-
9012), the EPSRC (contract no. GR/R47424/01) and the EPSRC e-Science Core Programme (contract no. GR/S03058/01).

2 ThePACE Toolkit

The middleware is based on an established Per-
formance Analysis and Characterisation Environ-
ment (PACE) [20] developed by the High Perfor-
mance Systems Group at the University of War-
wick. PACE provides quantitative data concern-
ing the performance of applications running on high
performance parallel and distributed computing sys-
tems. Tools are used to characterise an applica-
tion using a performance modelling language that
captures the key communication/computation steps.
Resource capabilities are identified using hardware
micro-benchmarks and the resulting hardware and
application models are combined in real time to de-
rive predictive execution data — Figure 1.

The separation of hardware and software com-
ponents allows PACE to evaluate performance sce-
narios, such as the scaling effect of increasing the
number of processors or the impact of modifying
a processor mapping strategy. This feature is par-
ticularly useful in the context of heterogeneous en-
vironments where the same application model can
be applied to numerous hardware models to obtain
different runtime predictions or scaling behaviours.
A choice can then be made as to where and how an
application should be run, so as to make best use of
available resources and meet any deadline that might
have been imposed.

APPLICATION TOOLS RESOURCE TOOLS

5 Cache
Object Network Models }

CPU
Editor Profiling MPI/PVM L2

i 1 { { i

HMCL Scripts

Code

Source
Analyser

Object
Library

PSL Scripts

¥

| |l
<_‘

Application
’—‘ e Evaluation Engine

Parameters Performance-responsive
Scheduling

('ompilu }

i

Configuration

Resource
Model

Fig. 1: An outline of the PACE system.

The PACE performance evaluation and pre-
diction capabilities have been validated using
ASCI (Accelerated Strategic Computing Initiative)
demonstrator applications [17]. The toolkit pro-
vides a good level of predictive accuracy and the
evaluation process typically completes in seconds.
PACE has been used in a number of other high-
performance settings, including the performance op-
timisation of financial applications [21], real-time
performance analysis and application steering [1]
and the predictive performance and scalability mod-
elling of the application Sweep3D [8].

3 Intra-domain Management

The management of resources at the intra-domain
level is provided by the combination of a scheduler
co-ordinator Titan [23] and a standard commodity
scheduler (in this case Condor [19], operated in ded-
icated mode rather than cycle-stealing mode). Titan
employs the PACE predictions to manage the incom-
ing tasks and improve resource utilisation by cou-
pling application performance data with a genetic
algorithm (GA). The objective of the GA is to min-
imize the run-time of applications, reduce the re-
source idle time and maintain the service contracts
(deadline) of each task. This is achieved by target-
ing suitable resources and scaling the applications
using the evaluated performance models.

Titan utilises a cluster-connector that instructs
the underlying cluster management software to ex-
ecute tasks in a particular order with predetermined
resource mappings. This approach allows the pre-
dictive information obtained from PACE to drive
the task execution provided by established workload
management systems. In the case of Condor, this is
achieved by generating specific resource advertise-
ments (ClassAds [22]) that instruct Condor to run a
particular task on a designated resource (or set of re-
sources) and generating a custom submit file that de-
tails the various input, output and argument param-
eters as required. Execution commands are issued
to the cluster manager just-in-time, ensuring that the
task queue is not reordered by Condor before the
tasks are deployed to the underlying resources. Fig-
ure 2 provides an overview of the intra-domain level
middleware components.

User request / Request from foreign domain scheduler

PACE
Portal

Pre-execution —b‘ Match Maker H
Engine

Schedule ’

Queue
Cluster
‘ C Connector ’
TITAN Domain |
,,,,,,,,,, S REERITEPRITIPPITEPPRTPRIEPRIRERE AERTEPRES
[Condor Scheduler]
Intra-domain Resources]

Cluster Domain

Fig. 2: Intra-domain level middleware components.

An advantage of the scheduler co-ordinator is
that when predictive data is not available, the task
can simply pass to Condor directly. The architecture

does not therefore dictate a sea change in the choice
of platform that is required in order to benefit from
these techniques.

The cluster connector monitors the resources us-
ing Condor’s status tools and can respond to re-
source variations such as machines going off-line or
being re-introduced into the local domain. In each
case, the genetic algorithm is able to respond to the
changes in state and compensate accordingly. This
prevents the schedule queue becoming blocked by
a task that specifies more resources than are avail-
able and allows the system to utilise new resources
as they come on-line.

Tasks enter the system by means of a portal
from which the user specifies an application name,
deadline and PACE performance model. A pre-
execution script can also be specified, which allows
application-specific initialisation such as modifying
input control files based on the processor mapping
recommended by Titan, or down-loading appropri-
ate binaries for the resource type.

Titan combines the PACE application model
with the hardware model for a particular resource.
The combined model is evaluated for different pro-
cessor configurations to obtain a scaling graph for
the application on the given resource. By comparing
the application’s minimum run-time with the run-
time of the existing queued tasks, Titan is able to
predict when the application will complete and can
compare this with the user-specified deadline. If the
deadline of the task can be met, the task is submit-
ted to the local queue for processing. If the deadline
cannot be met then Titan will negotiate with other
co-schedulers to determine whether the task request
can be satisfied by neighbouring resource domains.
If it is not possible to meet the deadline, the task is
submitted to the resource that minimises the dead-
line failure.

When a task is accepted for processing it is
placed in Titan’s scheduling queue with the other
accepted tasks. The genetic algorithm works on
this queue while the jobs are waiting, exploring task
mappings that reduce the makespan (end-to-end run-
time), idle time (locked between processes) and av-
erage delay (the amount of time tasks complete be-
fore or after their deadline). The GA creates multiple
scheduling solution sets, evaluating these and then
rejecting unsuccessful schedules while maintaining
the good schedules for the next generation. As bet-
ter schedules are discovered, they replace the cur-
rent best schedule and the task queue is reordered
appropriately. When the resources are free to ac-
cept the tasks at the front of the queue, the tasks are
despatched by the cluster connector.

On task completion, Titan compares the actual
run-time of the task against the predicted run-time

generated by PACE, feeding back refinements where
possible.

Here, the capabilities of the predictive co-
scheduler are demonstrated. This is performed by
selecting 30 random tasks from a set of 5 parallel
kernels and queuing the tasks onto 16 homogeneous
hosts. Each of the parallel kernels has a correspond-
ing PACE application model and the task set is cho-
sen so that each of the tasks exhibit different parallel
scaling behaviours.

mses-01 |3 1 =]
mscs-02 pE o] 1} =]
mscs-03 e I [e—] il
mscs-04 1 =3 m | E— 1] i
mscs-05 =3 = 1 = 1.
mscs-06 |3 mEE 1 mmm -] 1
mscs-07 | @ -] 1 - -] 1
mscs-08 s - m— N — [] [m
mscs-09 . 1 - .
mscs-10 [E—— = ===
mscs-11 pEm mr— I 1} sl]
mscs-12 /=3 | [==1] 1 - | — =
mscs-13 [1Em s — s [=] [1] omm
mscs-14 [- Jul | 1 L]]]
mscs-16 | mm mEi 1 mmm] 1
mscs-17 [EEm | EENE—— [] [i |
16:14.08 16:28.08 16:42:09 16:56:10 171010

mscs-01 T] . N) S - e
mscs-02 [I

mscs-03 [I N .)) .
mscs-04 | M DN NS] B N) S . e
mMscs-05 | M]) .
mscs-06 | NN DN DN] N N) N .
mscs-07 | mm e -]
mscs-08 [N S] -) E— —
mMscs-09 M)] . D —

- O] O) . e .)

mscs-10
mscs-11 1
MSCS-12 | M) -] . D .
mscs-13| HEN HEN] HEE BN [BN O e
B) N S O . D e
- O O O S O O e e)

=i [m—]] —

10:24 .21 10:31:29 10:38:37 104545

Fig. 3: Top - run-time schedule using Condor (70.08
min); Bottom — run-time schedule using Condor and
the predictive co-scheduler Titan (35.19 min).

mscs-14
mscs-16

mscs-17
101713

The results in Figure 3 are based on run-time
measurements obtained from a cluster of 16 1.4Ghz
Pentium 4s with communication across a Fast Ether-
net network. Using a population size of 40, the Titan
co-scheduler (running on an 800Mhz Pentium I11) is
capable of performing approximately 100 GA itera-
tions per second. Each task is assigned an arbitrary
deadline, all the tasks run to completion and pre-
empting (the ability to multi-task or micro-schedule)
is not permitted.

Table 1 shows the results of these experiments.
In the first three experiments Condor is operated
without the co-scheduler Titan. The tasks submitted
to Condor in the first experiment are specified with
an arbitrary number of hosts (from 1 to 16) for each
task. This is representative of users submitting tasks
without regard to the current queue or how best the
tasks scale over the given resources. In many cases,

larger tasks block smaller tasks (see Figure 3 — top)
and this results in a large idle-time and makespan.

The second experiment illustrates a common
scenario where users specify the maximum number
of machines in the cluster on which to run their tasks.
While in most cases this reduces the single-task exe-
cution time, the improvement over fewer hosts may
in fact be marginal and blocking is still common (the
run-time view is omitted for brevity).

In the third experiment the tasks are submitted
with a pre-calculated number of hosts. As one would
expect, this significantly reduces the make-span al-
though it is a scheme that requires a good deal of
pre-execution analysis and user cooperation.

In the final experiment, the Titan co-scheduler is
used to dynamically map tasks to resources before
the tasks are deployed to the physical resources by
Condor (see Figure 3 — bottom). Significant im-
provements are made by searching for a schedule
that minimises the makespan, reduces the idle time
and minimises the average delay.

| Experiment | Time (m) | Idle (%)]
Condor
arbitrary hosts per task 70.08 61
maximum hosts per task 69.10 28
calculated hosts per task 38.05 14
Condor & co-sched. Titan 35.19 21

Tab. 1: Experimental results using Condor and us-
ing Condor with the Titan co-scheduler.

The results in Table 1 demonstrate the im-
provements obtained using this predictive co-
scheduling technique. Over the first two experi-
ments the Condor-Titan system effectively halves
the makespan (from 70 to 35 minutes). Even
when the best resource mapping and schedule is
pre-calculated by the users (the third experiment),
Condor-Titan still improves the makespan by 8%.
These results are significant, but of additional inter-
est is the ability of the predictive co-scheduling to
self-manage and adapt according to additional qual-
ity of service features (see section 5).

4 Multi-domain M anagement

To schedule across multiple Grid resources with an
agreed quality of service, the Titan architecture em-
ploys agent brokers that store and disseminate re-
source and application data. Where the resources
reside outside the administrative domain, the agents
communicate through existing Grid information and
task management services.

Each Titan scheduler is represented by an agent
that promotes the capabilities of the available re-
source. The agent receives additional service in-
formation from other local agents that is then or-

ganised in Agent Capability Tables (ACTs). The
ACTs form the basis of a performance informa-
tion service, which is implemented as a series of
Titan-specific information providers to the Moni-
toring and Discovery Service (MDS) [11] from the
Globus Toolkit [12].

The MDS consists of Grid Resource Informa-
tion Services (GRIS) and Grid Index Information
Services (GIIS) that can be configured to propa-
gate service information across Grid domains. The
GRIS uses an OpenLDAP server back-end which is
customisable using extensible modules (information
providers) as shown in Figure 4. Data that is ex-
posed to these servers is subsequently cached and
propagated to parent GIIS systems using predeter-
mined configuration rules.

GRIS

Front End Containing Schema

Agent

Broker I

Fig. 4: The interconnection of Titan and the
MDS-based performance information service.

OpenLDAP Server

GRIS Backend

TITAN Information
Provider

The resource schedulers and agents each bind to
a GRIS. This allows the inspection of current re-
source capabilities by the local scheduler and also
by other local agents. Higher-level (multi-domain)
access to this information is provided through the
GIIS. The advantage of this is that it provides a
unified solution to the distribution of data, it is de-
centralised (and therefore robust) and information
providers are located logically close to the entities
which they describe.

Agents use the information from neighbouring
agents (through advertisement) or from the informa-
tion service (through discovery) to deliver improved
scalability and adaptability. Each domain in the
current implementation is represented by a single
agent and agent-level communication is used to co-
ordinate inter-domain resource sharing. When a
request enters the system the receiving agent will
first evaluate whether the request can be met locally
(an intra-domain query); if this is not the case then
the services provided by the neighbouring resources
are queried (a multi-domain query) and the request
is dispatched to the agent which is able to provide
the best service. The network of agents is dynamic,

S0 as new resources become available (or current
resources go down) the middleware is able to recon-
figure accordingly. The implementation of the agent
system is documented in [7].

| rlreis] M #s) | @) | v(%) |
200 1| OFF 839 -1 24
200 1| ON 302 78 51
200 2 | OFF 812 -36 25
200 2 ON 245 72 50
200 5| OFF 814 -64 24
200 5| ON 218 62 49
500 1| OFF || 1784 | -112 28
500 1 ON 633 78 57
500 2 | OFF || 1752 | -205 29
500 2 ON 461 66 57
500 51| OFF || 1877 | -276 27
500 5| ON 305 32 68
1000 1| OFF || 2752 | -314 36
1000 1 ON || 1160 79 61
1000 2 | OFF || 2606 | -493 39
1000 2 ON 669 65 74
1000 5| OFF || 2756 | -681 36
1000 5 ON 467 -6 77

Tab. 2: Experimental results: r is the number of re-
quests (load); r/s is the request submission rate per
second; M represents whether the predictive mid-
dleware is active; ¢ is the makespan; ¢ is the average
delay and v is the resource utilisation.

An additional feature of this system is the in-
tegration of a performance monitor and adviser
(PMA). The PMA is capable of modelling and sim-
ulating the performance of the agent network while
the system is active. Unlike facilitators or brokers in
classical agent-based systems, the PMA is not cen-
tral to the rest of the agent system; it neither controls
the agent hierarchy or serves as a communication
centre in either the physical or symbolic sense. The
PMA monitors statistical data from the agent system
and simulates optimisation strategies in real time. If
a better solution (to resource discovery, advertise-
ment, agent communication, data management etc)
is discovered, then it can be deployed into the live
agent system (see [6] for details).

5 Case Study

The impact of employing this middleware is simu-
lated on a 256-node grid consisting of 16 separate
resource domains. At the intra-domain level, the
grid is homogeneous (containing 16 node multipro-
cessors or clusters of workstations); at the multi-
domain level, the grid is heterogeneous (consist-
ing of 6 different architecture types). Agents are
mapped to each domain and therefore represent sub-

components of the grid with varying computational
capabilities.

A number of experiments are run in which 200,
500 and 1000 requests (r) are sent to randomly se-
lected agents at intervals of 1, 2 and 5 requests per
second (r/s); representing a broad spread of work-
loads and bursts of activity. During each experiment
three system criteria are monitored:

e Throughput — the makespan or time to com-
pletion (¢) for all of the submitted tasks to ex-
ecute — this is calculated as the maximum end
time (of a task) minus the minimum start time;

e Quality of service — represented through the
average delay (), the amount of time tasks
complete before or after their deadline. The
deadlines are randomly assigned from the
range of predicted values for each of the do-
main architectures, with suitable time allowed
for staging and network latency;

e Resource utilisation — calculated as the time
over which tasks are mapped to hosts.
System-wide utilisation (v) represents the av-
erage over each of the resource domains.

The experimental results in Table 2 represent two
scenarios, when the predictive middleware (M) is
ON and when the predictive middleware is OFF. In
the case when the middleware is off and the sys-
tem load and submission rate are low (200 requests
submitted at 1 per second), the makespan is 839
seconds. As the workload increases to 500 and
1000 tasks, so the makespan increases accordingly
(to 1784 and 2752 seconds respectively). There are
small variations in the makespan as the submission
rate (r/s) increases, these are not considered signifi-
cant and will depend in part on the random selection
of tasks for each experiment.

Of particular importance is the decrease in
makespan when the predictive middleware is acti-
vated. When the system load and submission rate
are low (200 requests submitted at 1 per second), the
makespan is reduced by 62% (from 839 to 302 sec-
onds). We also find that as the submission rate in-
creases, so the improvements brought about by the
middleware also increase — the makespan is reduced
by 70% (for 200 tasks) with a submission rate of
2 tasks per second and by 73% with a submission
rate of 5 tasks per second. This highlights the ef-
fectiveness of the multi- and intra-domain perfor-
mance services. With more tasks on which to oper-
ate, each is able to explore additional task allocation
and scheduling scenarios and therefore select map-
pings that provide the best system improvements.

-
i

G e e u e e s e e o e &
*

Agent Task Disuibution
Al [
A2
a3 [
Ad
45 [
26 [
a7 [
A8
29
A10 [
AL
412 [
AL3 [
414 [
15
416 [

0.05 1378.0s

2756.05

Agent Task Distribution Task %
a1 [
22 [—
sz [N
A+ [
a5 [N
A [
g
Az I
Ao [N
aro [
ALl [
a1z [
ALz [
w14 [N
Als I
ats [T

0.0s 1288.05

B noe oo oo

MM W N s U @ w

2576.05

Fig. 5: Results of 1000 tasks submitted 5 per sec-
ond. Top — predictive middleware is inactive; bottom
— predictive middleware is active. Darker shading
indicates greater utilisation.

This feature is emphasised most clearly at the
highest workload. When the system is subject to
1000 tasks submitted 1 per second, the middleware
reduces the makespan by 58% (from 2752 to 1160
seconds). As the submission rate increases, so in-
creased improvements can be observed —a reduction
in makespan of 74% at a submission rate of 2 tasks
per second, and a reduction in makespan of 83% at
a submission rate of 5 tasks per second. Run-time
views supporting these results can be found in Fig-
ure 5. The redirection of tasks by the agent system
can be seen under the % column to the right of the
figure. When the middleware is off, each resource
domain is assigned roughly the same percentage of
tasks. When the middleware is on, tasks are di-
rected to the resources that have spare capacity (do-
mains D-00 and D-07, for example) and moved off
domains whose resources are already over-stretched
(domains D-06 and D-15, for example).

Quality of Service

There are a number of definitions of quality of ser-
vice for distributed Grid systems consisting of non-
dedicated resources. Many of these focus on the
resource, for example the network (including band-
width and latency), processor availability (including
FLOPS and CPU utilisation), or additional hardware
facilities such as disks etc [15]. Quality of service in

this research symbolises a user-side service that is
based on the deadline assigned to each task. This has
different characteristics from advance or right-now
reservation where the emphasis is on the user choos-
ing a set of resources that have been pre-selected as
being able to meet their needs. The approach used
here is also compatible with the new GRAM-2 [10]
terminology; it deals with task SLAs rather than
resource SLAs or reservation, and the mapping of
tasks to resources — the binding SLA — is performed
through the Titan genetic algorithm.

In this work we draw on web services research
where users, or groups of users, are assigned service
classes under which contractual service agreements
are guaranteed for an associated cost [2]. The QoS
emphasis here is on the service, rather than the tools
or resources needed to deliver that service; the de-
livery itself is transparent and is handled by the sup-
porting active middleware.

The Titan task mapping process differs from
other QoS-based scheduling strategies. In [16] the
QoS-guided MinMin mapping process first assigns
tasks with high QoS requirements to resources be-
fore dealing with those task requests that have a
lower priority. While this might seem like a good
strategy, it is possible to use lower priority jobs to
pack the tasks (see Figure 3), using spare resources
for low priority tasks as soon as the tasks and re-
sources become available.

The case study in section 5 provides two dif-
ferent aspects of deadline-based quality of service:
these are the time in which tasks complete before
or after their deadline, the average delay ¢, and the
number of tasks that complete before their deadline,
termed D and measured as a percentage of the total.

[Workload | r[ris| M [D %)]
Low 200 | 1| OFF 57
200 1| ON 89
improvement 32
Medium 500 | 2 | OFF 27
500 | 2| ON 83
improvement 56
High 1000 | 5 | OFF 9
1000 | 5| ON 50
improvement 41

Tab. 3: Percentage of tasks meeting their deadlines
under low, medium and high workloads.

It can be seen in Table 3 that as the workload on
the system increases, so the percentage of tasks that
meet their deadline (D) decreases. The selection of
deadlines in this case study is deliberately tight so
that under a low workload (200 requests submitted 1
per second) 57% of the tasks complete before their

assigned deadline. This decreases to 27% of tasks
under a medium workload (500 requests submitted
2 per second), and to only 9% under a high work-
load (1000 requests submitted 5 per second).

The middleware improves D by between 32 and
56%, ensuring that 89% of the tasks meet their dead-
lines when the workload is low. This figure drops as
the workload increases, to 83% at a medium work-
load and to 50% at a high workload,; this decrease is
not unexpected.

D provides detail on the percentage of tasks
which meet their deadline, but it does not give any
indication as to the degree by which this takes place.
We therefore use the average delay (¢) as an addi-
tional measure of quality of service, and in so doing
gain a greater insight in to the extra schedule capac-
ity which the activation of the predictive middleware
services can provide.

In the case when the middleware is off and the
system load and submission rate are low, the aver-
age delay ¢ is -1 second (see Table 2). As the sub-
mission rate increases, so € increases to -36 seconds
at a submission rate of 2 requests per second and to
-64 seconds at 5 requests per second; this trend is
also demonstrated at the higher workloads.

Activating the predictive middleware has a posi-
tive effect on £; when 200 requests are sent at 1 per
second, € is 78 seconds, indicating spare schedule
capacity. When the workload and submission rate
are high (1000 requests at 5 per second) the impact is
marked; rather than running 11 minutes over sched-
ule (-681 seconds), the prediction-based middleware
is able to reduce this to -6 seconds.

It can be seen that without the additional ac-
tive middleware services, the quality of the system
rapidly deteriorates, both from the point of view of
the number of tasks that meet their deadlines and
also the extra capacity which is available. With the
middleware enabled, the user-side quality of service
is maintained up to the point at which the system be-
comes fully loaded.

Resource Usage

The high-level task migration provided by the agent
system delivers basic load balancing across the re-
sources in the underlying grid. This redirection of
tasks is different from that provided by GrADS [4],
which allows the migration of running tasks in re-
sponse to system load in order to improve perfor-
mance and prevent system degradation. In the Ti-
tan system, once tasks have been staged, they run to
completion. This method essentially moves all the
decision making forward (to pre-staging) and as a
result has negligible run-time overheads as no addi-
tional checkpointing is needed; all run-time report-

ing at the co-scheduler level is done using Condor’s
status tools and as such no additional functionality
is therefore required. Although this system shares
many of the fundamental properties of the NetSolve
Environment [3, 9], its resource management also
differs in a number of ways; in particular, PACE is
non-intrusive and the predictive data which it sup-
plies does not require any link between a client li-
brary and the application itself.

Table 2 also shows the resource utilisation (v)
for the system under low, medium and high work-
loads. As can be expected, the resource utilisation
increases as the system load increases (both when
the middleware is active and inactive). What is sig-
nificant is how the middleware improves the utili-
sation, by 28% for the low workload, 31% for the
medium workload and 40% for the high workload.
Also of note is the fact that these improvements in-
crease as the workload increases.

If we analyse the resource usage at the intra-
domain level, we find that the difference in resource
utilisation (between the middleware being active and
inactive) is larger in the domains with the highest
computational capabilities (for example a 40% dif-
ference for D-00 and D-07, and a 4% difference for
domains D-06 and D-15). These results are caused
by the predictive middleware being able to identify
and make use of the larger proportion of idle time on
the higher capacity resources. This trend is found to
be uniform across the different workloads.

Of additional interest is the relationship between
the quality of service measures and resource utilisa-
tion. The results in Tables 2 and 3 allow the point
at which the middleware begins to fail the majority
of users to be identified. This can be seen in Table 2
when e switches from being positive to negative, and
in Table 3 when D drops to 50%. This system state
corresponds to the case when the resource utilisation
measures 75%.

We are able to choose some combination of these
metrics and some suitable thresholds under which
to determine when the system has reached user-side
capacity. This represents the point at which we can
predict when a task will not meet its deadline, even
before the task has been deployed or any additional
service discovery has been instantiated. Similarly,
we can predict what computing reserves are avail-
able and determine at which point new facilities will
need to be interconnected to meet the increasing de-
mands on the Grid. These provisioning and capac-
ity planning features may also link with other ser-
vices (such as those found in [5]) which are able to
determine time of use meters to reflect variations in
price-time processing, and are the subject of future
research.

6 Conclusions

Performance-responsive middleware services are set
to play an increasingly important role in the man-
agement of resources and distributed workloads in
emerging wide-area, heterogeneous distributed com-
puting environments. This paper documents two
supporting performance services for these architec-
tures, which are based on existing Condor- and
Globus-enabled Grid infrastructures.

This paper details a local (intra-domain) level
predictive co-scheduler, that uses performance pre-
diction data generated by the PACE toolkit to sup-
port intra-domain task management. This service is
extended to the global (multi-domain) level through
an information service based on the Globus MDS.
The middleware uses a peer-to-peer agent system
and high-level workload steering strategies to bal-
ance system load and improve system-wide resource
utilisation.

The improvements brought about by these
performance-responsive middleware services are
demonstrated on a 256-node Grid. This multi-
tiered approach to Grid performance-service provi-
sion is likely to prove successful, where improve-
ments brought about at a local level can be exploited
by cooperative wide-area management tools.

References

[1] A. Alkindi, D. Kerbyson, and G. Nudd. Optimisa-
tion of application execution on dynamic systems.
Future Generation Computer Systems, 17(8):941-

949, 2001.
J. Aman, C. Eilert, D. Emmes, P. Yacom, and D. Dil-

lenberger. Adaptive algorithms for managing a dis-
tributed data processing workload. IBM Systems
Journal, 36(2):242-283, 1997.

D. Arnold, and J. Dongarra. The NetSolve Envi-
ronment: Processing Towards the Seamless Grid.
29th Int. Conference on Parallel Processing (ICPP-
2000), Toronto Canada, Aug. 21-24, 2000.

F. Berman, et al. The GrADS Project: Software
Support for High-Level Grid Application Develop-
ment. Int. Journal of High Performance Computing
Applications, 15(4):327-344, 2001.

R. Buyya, D. Abramson, J. Giddy, and
H. Stockinger. Economic models for resource
management and scheduling in Grid computing.
Concurrency and Computation: Practice and

Experience, 14:1507-1542, 2002.
J. Cao, S. Jarvis, S. Saini, D. Kerbyson, and

G. Nudd. ARMS: an agent-based resource man-
agement system for grid computing. Scientific Pro-
gramming, 10(2):135-148, 2002.

J. Cao, D. Kerbyson, and G. Nudd. High per-
formance service discovery in large-scale multi-
agent and mobile-agent systems. Int. Journal of
Software Engineering and Knowledge Engineering,
11(5):621-641, 2001.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

J. Cao, et al. Performance modelling of parallel and
distributed computing using PACE. 19th IEEE Int.
Performance, Computing and Communication Con-
ference (IPCCC’00), pp. 485-492, 2000.

H. Casanova, and J. Dongarra. NetSolve: A Net-
work Server for Solving Computational Science
Problems. Int. Journal of Supercomputer Applica-
tions and High Performance Computing, 11(3):212-
223, 1997.

K. Czajkowski. GT Resource Management and
Scheduling: The Globus Perspective GlobusWorld
2003, January 13-17 2003, San Diego, CA, USA.
S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource shar-
ing. 10th Int. Symposium on High Performance Dis-
tributed Computing (HPDC-10 °01), 2001.

I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. Int. Journal of Super-
computer Applications, 11(2):115-128, 1997.

I. Foster and C. Kesselman. The GRID: Blueprint
for a New Computing Infrastructure. Morgan-
Kaufmann, 1998.

|. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
services for distributed system integration. IEEE
Computer, 35(6):37-46, 2002.

I. Foster, A. Roy, and V. Sander. A Quality of Ser-
vice Architecture that Combines Resource Reserva-
tion and Application Adaption. Proceedings of 8th
Int. Workshop on Quality of Service, pp. 181-188,
June 5-7 2000, Pittsburgh, PA, USA

X. He, X. Sun, and G. Laszewski. A QoS Guided
Scheduling Algorithm for Grid Computing. Int.
Workshop on Grid and Cooperative Computing
(GCCO02), Hainan, China, 2002

D. Kerbyson, et al. Predictive preformance and scal-
ability modelling of a large-scale application. Super-
computing *01, 2001.

W. Leinberger and V. Kumar. Information power
grid : The new frontier in parallel computing? IEEE
Concurrency, 7(4), 1999.

M. Litzkow, M. Livny, and M. Mutka. Con-
dor — a hunter of idle workstations. 8th Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS’88), pp. 104-111, 1988.

G. Nudd, et al. PACE : A toolset for the performance
prediction of parallel and distributed systems. Int.
Journal of High Performance Computing Applica-
tions, 14(3):228-251, 2000.

S. Perry, R. Grimwood, D. Kerbyson, E. Papaefs-
tathiou, and G. Nudd. Performance optimisation of
financial option calculations. Parallel Computing,
26(5):623-639, 2000.

R. Raman, M. Livny, and M. Solomon. Matchmak-
ing: Distributed Resource Management for High
Throughput Computing. 7th Int. Symposium on
High Performance Distributed Computing (HPDC-
798), 1998

D. Spooner, S. Jarvis, J. Cao, S. Saini, and G. Nudd.
Local grid scheduling techniques using perfor-
mance prediction. IEE Proc.-Comput. Digit. Tech.,
150(2):87-96, 2003.

