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Abstract. Distributed e-business application platforms such as the web services 
framework will require sophisticated workload management infrastructures for 
the matching of client requests to the most appropriate resources. This paper 
introduces a novel dynamic predictive framework that uses both historical data 
and analytical performance modelling to extrapolate a request�s predicted 
performance under varying workloads and conditions on different systems. 
Such a framework can facilitate a workload manager in maximising the extent 
to which service level agreements can be met.  Initial results are presented 
analysing how the response times of an e-business benchmark can be predicted 
at different system loads and on different application servers. 

1   Introduction 

The web services framework [1] will facilitate the performance modelling of e-
business applications at higher levels of abstraction.  Of particular importance will be 
using performance models to enable workload management systems to predict when 
Service Level Agreements (SLAs) are likely to be broken and so take appropriate 
management actions, whilst still making efficient use of the system�s resources. 

Quality of service (QoS) based resource allocation services with the ability to adapt 
to the continuous variations in user demands and resource availability will also be of 
great importance in the emerging field of Grid computing [2]; geographically 
dispersed resource-sharing networks and disparate heterogeneous resources whose 
management, rather than being centralised, is maintained through multiple 
administrative domains. 

Traditionally, Grid computing has been focussed on �e-science� applications, 
although more recently it has been proposed that Grids also provide a supporting 
infrastructure for e-business [3].  However, the different characteristics of these 
classes of applications (e.g. large �run-once� jobs verses high-frequency request-
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driven services) necessitate specialised performance modelling and resource 
allocation methodologies for each. 

This work proposes building on existing performance model-assisted scheduling of 
scientific jobs, and the performance monitoring and modelling of e-business systems 
so as to: 

− model the potential dynamic and heterogeneous characteristics of e-business 
applications and platforms so historical performance data can be extrapolated, 
despite changes in system state (or workload being moved to new servers). 

− facilitate the incremental modelling of an e-business application, while evaluating 
the complexity of the model at each step. This allows the analysis of how the 
increased accuracy of a more complex model can be correlated with the overhead 
of the extra monitoring required. 

− apply this modelling to the QoS and priority-based self-management of e-business 
systems, so such systems can reconfigure themselves to maximise their ability to 
meet SLAs, whilst still making efficient use of underlying resources. 

The remaining sections of this paper provide: an overview of the performance 
prediction framework for e-science Grid applications and how this is being adapted to 
model e-business applications; a description of the e-business system model; a 
discussion of the experimental validation of the modelling process and a conclusion. 

2   Related Work 

The analytical performance modelling and prediction of e-business systems for the 
purposes of capacity sizing has received much attention; for example modelling Java 
2 Enterprise Edition (J2EE) applications using layered queueing models [4].  There 
has also been more recent work on QoS-oriented performance modelling, for example 
using Stochastic Activity Networks for the purposes of determining the QoS 
guarantees that can be offered [5]. However, this work is not automatically applicable 
for the kind of frequent �on-the-fly what-if� predictions that are required by a dynamic 
self-managing system.  Such predictions require modelling the current system state 
(which may be highly dynamic), and benefit from simplified models.  Although there 
has been some work in this area, for example the historical performance data and 
QoS-based workload management system described in [6], such work tends to be 
focussed on closed proprietary systems. 

The definition and monitoring of web service SLAs has also received some 
attention (i.e. [7]), however much of this work focuses on how to unambiguously and 
precisely define a SLA in terms of underlying system metrics.  There has been less 
discussion of how a heterogeneous system might dynamically reconfigure itself to 
meet SLAs using selected performance metrics and control variables, which is the 
focus of this work. 

Characterising and predicting the performance of parallel, scientific applications 
has been the main focus of the High Performance Systems Group�s work for the last 
10 years. A Performance Analysis and Characterisation Environment (PACE) [8,9] 
has been the most noted product of this research, providing a framework for 



developers to create detailed analytical performance models that can be used to 
predict the computation and communication performance of C, Fortran and 
Mathematica codes.  This environment has been verified by the UK Defence 
Electronic Research Agency (DERA) to have a predictive accuracy within 10% of 
measured values. Current work includes the extension of this environment for the 
modelling of Java-based scientific applications and the Java Virtual Machine (JVM). 

A key feature of this approach to performance is the use of a flexible layered 
framework allowing performance critical aspects of the sequential code, parallisation 
strategy and platform to be modelled separately. This inherent separation allows 
predictions of the same application using different configurations, a case of simply 
inter-changing models at the appropriate layer.  The layers used in PACE are as 
follows: 

− an application layer for defining global model parameters; 
− a transaction map layer that characterises the order and parallel execution of 

transactions and the inter-transaction communication;  
− a transaction layer for the identification and characterisation of performance 

critical transactions within an application;  
− a platform layer that describes the performance of the virtual machine and resource 

that the application is to run on. 

PACE provides considerable modelling flexibility as transactions can represent any 
unit of work and computation/communication combination.  Typically the kernel of 
Java e-science applications are modelled in detail at the method and communication 
API level.  For example transactions might include the main computations on the data 
set and the communication of sub-sets of this data between nodes, and the transaction 
map might specify the order in which these actions take place across a cluster and the 
nodes which participate in each action.  Java bytecode sequences and intra-cluster 
communications (assuming local communication time is a function only of data size; 
a common scenario in dedicated scientific clusters) are timed via benchmarks to 
provide the basis of a predicted execution time prior to execution.  The model is then 
refined as the application executes through a process of runtime monitoring, which is 
facilitated by the automatic model-based instrumentation of the application, for 
example by manipulating the Java bytecode [10]. 

Currently an in-house XML vocabulary based on the Java ARM standard [11] is 
used to define each layer of the model, although as e-science applications start to be 
structured using the Open Grid Services Infrastructure [3] it is planned to update this 
so it is based on Grid, Web Service and Enterprise Computing standards. Of particular 
interest is defining transactions in terms of the application�s WSDL [12] interfaces 
and the transaction map in terms of BPEL4WS [13] flows.  Performance data will be 
represented and managed using emerging unifying technologies such as the CIM 
Metrics Model [14] and those being developed for the Java Environment [15].  Tool 
support will continue to be provided by the PACE toolset. 

A key application of this performance modelling is the scheduling of distributed 
scientific applications over Grid architectures through the use of the TITAN 
predictive scheduler [16]. As these predictions can be calculated in real-time, TITAN 
can be continuously updated as new applications are launched and as the available 
resources change. TITAN uses iterative heuristic algorithms to improve a number of 



scheduling metrics including makespan and idle time, while aiming to meet QoS 
requirements including dead-line time. The work is also differentiated from other 
Grid scheduling research through the application of A4 [17] - an agent-based resource 
discovery and advertisement framework.  

3   Adapting the Predictive Framework for e-Business Applications 

Adapting e-science based performance modelling techniques for business to business 
(B2B) and business to consumer (B2C) applications is challenging as these classes of 
application: 

− tend to be more dynamic; the workload entering e-business systems can vary 
widely and a very high frequency of client requests is common, so systems must 
use dynamic mechanisms to divide and process workloads across different 
resources.  

− often contain a more verbose codebase than e-science kernels, but the code is more 
likely to be well structured into modules with explicit interfaces, such as web 
services. 

In such a scenario it is more appropriate to focus on predicting performance 
during, as opposed to prior to execution, based on historical performance data.  It is 
also more appropriate to take a top-down approach when modelling e-business 
systems, as opposed to detailed source code-level modelling. 

This research adapts an approach involving iteratively modelling the e-business 
application. Each iteration the modelling is made more fine-grained by breaking the 
processing required to handle a request down further into transactions, and specifying 
additional performance data to be associated with each sampled request (and how 
often that data is sampled). Data to be recorded includes: the client that initiated the 
request and the operation that was invoked at the application layer; transaction 
performance metrics (i.e. mean response time and variability) at the transaction and 
transaction map layers; and the servers that processed the request and the state they 
were in (i.e. load) at the platform layer. 

The model is then used to populate a historical performance repository as the 
application is run, from which trends are extracted as to how performance metrics are 
affected by changes of server, system state, the client originating the request and the 
operation invoked.  The overhead associated with the required monitoring is 
determined and a decision is made as to whether to make the modelling more fine-
grained to obtain additional historical data, despite the associated increase in 
overheads. The aim is to stop the iterative process as soon as the modelling is 
sufficiently detailed to use historical data for the predictions required. 

Previous work on applying PACE to e-business includes an investigation into the 
metrics that can be used for predicting response times and evaluating the accuracy of 
predictions [18,19].  This was used to enhance a workload management broker from 
the IBM Web Services Toolkit [20], based on the use of performance predictions in 
the TITAN scheduler.  This has been extended so as to incorporate metrics for scaling 
response time measurements recorded at different server loads [21]. 



4   e-Business System Model 

This section details how the framework described in section 3 is used to model a 
common architecture for e-business applications.  This architecture is derived in part 
from a case study of the IBM Websphere platform [22]; a commercial Java 
implementation of a hosting environment for applications built using web, J2EE and 
web service standards1. Applications running on the Websphere platform are typically 
divided into a client tier, a tier of application servers that host the computation-centric 
part of the application, and a data access tier of one or more database servers and 
legacy systems, which are not directly accessed by the client tier. 

The complete model, which will be used as a basis when iteratively modelling 
applications, is illustrated in Fig. 1.  The application server transaction could also be 
broken down further into the Java thread pools, database connection pool and 
associated pool queues, which are used to process requests in parallel. 

Workload is modelled as x clients who repeatedly submit requests to the system 
with 0 seconds think time between receiving a response and sending the next request.  
For simplicity it is assumed that the workload mix of the different operations being 
requested and the complexity of processing the data associated with those requests 
are, on average, constant. The main control point for the model is the number of 
clients that are directed at each application server. 

 

 
Fig. 1. The proposed 4-layer model of an e-business system.  The performance of a request is 
broken down into three transactions: the processing on one of the application servers (assuming 
a copy of all optional application-tier functionality such as a dedicated Web/HTTP Server is 
hosted on every application server); the internal communication i.e. from the application server 
to the database server; and the data access on a single database server. The transaction map 
links the transactions sequentially in the order listed with a choice as to the application server 
used.  The platform is modelled as consisting of application server, internal network and 
database server resources.  The server resources are further divided into application/database 
server software, JVM, operating system and hardware sub-layers 
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5   Experimental Analysis 

The Websphere platform includes a stock-trading application known as �Trade� with 
an underlying design representative of current e-business applications [23].  Trade is 
used as a case study to test the proposed modelling process.  It is run on a Websphere 
testbed consisting of a �fast� application server (AppServF), a �slow� application 
server (AppServS) and a database server capable of supporting the application-tier 
servers without causing any bottlenecks2.   

The aim of this initial set of experiments is to investigate the relationship between 
Trade/Websphere mean request response times and i.) the load on the system and ii.) 
the division of clients between the two application servers, when other variables 
remain constant.  The first variable represents changes in the demand for the system, 
and the second is the main control point used by the system to adapt to changes in 
demand.  These are important variables, as the proposed predictive framework will 
need to be able to predict the effect of alternative control point settings, given the 
current load on the system. This information will assist a workload manager in 
deciding how to divide the clients across the application servers so as to provide mean 
response time QoS levels. For simplicity, only one of the variables will be changed at 
a time.  Future experiments will expand on this, so as to investigate predicting a 
response time at a different system load and workload division, than has been 
encountered historically. 

Trade is accessed via HTTP requests to an application-tier interface consisting of 
10 operations including �buy�, �sell� and �quote�. Requests to the buy operation are 
selected for detailed analysis as representatives of requests which read and write to 
multiple database tables. The performance of buy requests is measured in each 
experiment as follows.  A background workload mix (defined as part of Trade as 
being representative of real e-business clients) is directed at the application-tier 
interface.  An additional instrumented workload is used to sample response times of 
buy requests on all active application servers.  This workload runs for 30 iterations, 
each iteration sending a �create new user� request and then measuring the response 
times of 10 buy requests for a total of 300 samples per graph data point3.  

New users are created every 10 requests as the result of a buy operation displays a 
user�s portfolio, so as a client performs a sequence of buy operations the amount of 
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v4.0.1 (�Fast�: Pentium4 1.8GHz 1GB RAM, �Slow�: Pentium3 450Mhz 416Mb RAM) and 1 
DB2 Server v7.2 (Athlon 1.4Ghz, 512Mb RAM). Workload generated using between 1 and 
20 homogeneous Red Hat Linux client machines (Pentium4 1.8MHz 512Mb RAM) running 
Apache JMeter 1.8.  Each machine has a 100Mbit network connection to the switch. 

3 In our initial implementation using the Java 1.3.1 HTTP library and the Websphere v4.0.1 
embedded Java HTTP server, excessive communication delays of up to 80 seconds are 
occasionally encountered. This is due to the implementation of the HTTP 1.1 keep-alive 
protocol, which was used so as to avoid having to open and close a connection for each 
request. (On a real system this would be done on a dedicated HTTP server tier.) This affected 
approximately 15% of buy request response times.  Measurements suffering from this fault 
were removed prior to calculating the mean response time from the remaining measurements, 
which were not affected by bottlenecks (or any other errors/rejected requests).  Future work 
will investigate enhancing the definition of QoS to explicitly report this kind of QoS failure. 



data to be read and transmitted increases, as does the response time.  This workload 
therefore represents a client population with an average portfolio size of 5.5. This 
illustrates the importance of associating an additional piece of data with a sampled 
request: the complexity of the data access and data processing that took place. Results 
suggest that the amount of data about the client in the database, that had to be 
processed (i.e. number of portfolio records), would be a useful metric. 

5.1   Predicting Response Times at Different System Loads 

In this section an experiment is conducted to examine if there is a simple relationship 
between response time and system load, when other variables remain constant.  This 
is examined when a single application server (AppServS) is active, although similar 
results have been obtained for AppServF. 

The first step is to create the simplest possible model of Trade so as to predict the 
response times of buy requests when there is no change of servers or system state, i.e. 
with a constant workload directed at AppServS, with the other server unused.  The 
model consists of a single transaction to measure the response times of buy requests, 
and it is confirmed that this metric is an accurate predictor of future buy requests. A 
measure of the accuracy of the prediction is calculated based on the number of recent 
measurements available and their variability, as described in [18]. 
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Fig. 2. Scalability graph for AppServS when no other application servers are active. The mean 
response time is shown, for buy requests at increasing load in terms of the number of clients. 

It is then necessary to determine which metrics can be used to scale historical 
request response time measurements, based on the difference between the historical 
and current �load� on an application server.  This technique will be used when a 
prediction is required at a load that has not been encountered in the historical 
performance data.  Possibilities for representing load include % CPU Utilisation at the 
operating system level, and requests processed per second or number of clients at the 
server software level. 

Fig. 2 shows the mean response time, for buy operations at different server loads as 
represented by the number of clients.  It can be seen that there is a consistent increase 
in mean response time as the workload, as measured by the number of clients, 



increases.  However requests processed per second and % CPU utilisation are less 
useful as representations of system load, remaining constant at 117-120 requests per 
second and 100% CPU utilisation respectively, for all points on the graph.  This is 
because these metrics do not properly capture the parallel request processing capacity 
that is available inside the servers. As a result of this, these metrics reach their 
maximum values whilst the application server still has parallel capacity available. 

It is concluded that if number of clients is used to represent system load, it is likely 
that it will be practical to predict mean response times at system loads that have not 
yet been encountered in the historical performance data. 

5.2   Predicting Response Times when the Division of Workload between 
Application Servers is Changed 

The next step involves investigating if there is a simple relationship between the 
division of clients across heterogeneous application servers and the mean response 
times experienced by clients on those servers.  (Assuming other variables remain 
constant and the application servers share the same database server.) 

Fig. 3. shows the experimental setup which is used to measure the mean response 
times of AppServS and AppServF.  This procedure is performed repeatedly, with the 
division of clients between the servers changed each repetition.  A constant workload 
of 225 clients is selected as this is the maximum number of clients each application 
server can support without having to reject any requests due to a lack of resources. 

 

 
Fig. 3. The experimental setup used to obtain each point on the graph in Fig. 4.  Initially n=75, 
so 75 background clients are directed at AppServS, whilst 150 background clients are directed 
at AppServF.  After a warm-up period of 1 minute, the response times of 300 buy requests on 
each application server are measured.  The process is then repeated, decrementing n by 25 until 
a point is found where the response times of the two servers are roughly equal. 
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Fig. 4. Effect on AppServF and AppServS mean request response times, as the value of n is 
increased. 

Fig. 4 shows the mean response times that are sampled as clients are progressively 
transferred from AppServF to AppServS. It can be seen that the QoS levels provided 
by AppServS and AppServF appear to be steadily getting worse and better, 
respectively. This suggests that it is likely that it will be practical to predict response 
times, when the division of clients between application servers is changed. 

When 25 clients are assigned to AppServS, and the remaining 200 are assigned to 
AppServF the servers deliver similar mean response times of around 165ms. This 
would be a useful division of workload if all clients are to be treated equally.  
However if this is not the case, a workload manager can use this kind of graph 
(assuming there is sufficient historical data to generate it for the current number of 
clients), to determine the differential QoS levels that can be provided by allocating 
clients to application servers in different proportions.   

The following is an example of how Fig. 4 might be used when the current load is 
225 clients.  A workload manager could give clients the option of paying for a QoS 
agreement with a guaranteed maximum mean response time, RTgoal, over some period 
of time. It is assumed that the value of RTgoal is the same for all QoS agreements and 
that RTgoal < 165ms. Each client�s QoS agreement would also specify a financial 
penalty (perhaps determined by the price paid), that the service provider must pay if it 
misses the goal.  The decision as to how to divide the clients would then be made 
based on minimising the total financial penalty to be paid. 

If most of the clients decided to pay for a QoS agreement it might be appropriate to 
aim to limit the number of clients on AppServF so as to keep the response time on this 
server below RTgoal.  A value of n could be chosen so as to give an expected mean 
response time on AppServF just under this goal.  Clients could then be assigned to 
AppServF starting with those with the highest financial penalties until AppServF�s 
capacity of (225-n) clients is reached.  The remainder would have to be �sacrificed� 
onto AppServS, and probably miss their QoS goals.  However as a result of using this 
predictive strategy, the service provider would avoid paying penalties to the more 
expensive clients on AppServF. 



6   Conclusions and Future Work 

This paper reports on how an established performance modelling and predictive 
framework for e-science Grid applications is being enhanced for e-business 
applications.  This will allow the dynamic and heterogeneous properties of e-business 
systems to be modelled; a request�s expected performance on proposed new servers 
can then be extrapolated from historical data recorded on established servers in a 
range of states. Results are presented showing how an e-business benchmark is being 
analysed so as to explore the metrics that can be used to scale response times recorded 
at different system loads. It is also shown how the analysis is being extended to 
extrapolate response times when clients are allocated to heterogeneous application 
servers in different proportions. 

Future work will investigate applying the performance analysis described in this 
paper to the dynamic SLA-based workload management of e-business requests. 
XML-based PACE modelling languages and associated tool support will also be 
extended for this new class of application. 
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