
http://wrap.warwick.ac.uk/

Original citation:
Bacigalupo, D. A., Turner, J. D., Jarvis, Stephen A., 1970- and Nudd, G. R. (2003)
Modelling dynamic e-business applications using historical performance data. In:
Proceedings of the 19th Annual UK Performance Engineering Workshop
(UKPEW'2003), University of Warwick, Coventry, UK, 9-10 Jul 2003 pp. 352-362.

Permanent WRAP url:
http://wrap.warwick.ac.uk/61292

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61292
mailto:publications@warwick.ac.uk

Modelling Dynamic e-Business Applications Using
Historical Performance Data*

David A. Bacigalupo, James D. Turner, Stephen A. Jarvis and Graham R. Nudd

High Performance Systems Group, Department of Computer Science,
University of Warwick, Coventry, UK
daveb@dcs.warwick.ac.uk

Abstract. Distributed e-business application platforms such as the web services
framework will require sophisticated workload management infrastructures for
the matching of client requests to the most appropriate resources. This paper
introduces a novel dynamic predictive framework that uses both historical data
and analytical performance modelling to extrapolate a request�s predicted
performance under varying workloads and conditions on different systems.
Such a framework can facilitate a workload manager in maximising the extent
to which service level agreements can be met. Initial results are presented
analysing how the response times of an e-business benchmark can be predicted
at different system loads and on different application servers.

1 Introduction

The web services framework [1] will facilitate the performance modelling of e-
business applications at higher levels of abstraction. Of particular importance will be
using performance models to enable workload management systems to predict when
Service Level Agreements (SLAs) are likely to be broken and so take appropriate
management actions, whilst still making efficient use of the system�s resources.

Quality of service (QoS) based resource allocation services with the ability to adapt
to the continuous variations in user demands and resource availability will also be of
great importance in the emerging field of Grid computing [2]; geographically
dispersed resource-sharing networks and disparate heterogeneous resources whose
management, rather than being centralised, is maintained through multiple
administrative domains.

Traditionally, Grid computing has been focussed on �e-science� applications,
although more recently it has been proposed that Grids also provide a supporting
infrastructure for e-business [3]. However, the different characteristics of these
classes of applications (e.g. large �run-once� jobs verses high-frequency request-

* The work is sponsored in part by the EPSRC e-Science Core Programme (contract no.

GR/S03058/01), the NASA AMES Research Center administered by USARDSG (contract
no. N68171-01-C-9012), the ESPRC (contract no. GR/R47424/01) and IBM UK Ltd.

driven services) necessitate specialised performance modelling and resource
allocation methodologies for each.

This work proposes building on existing performance model-assisted scheduling of
scientific jobs, and the performance monitoring and modelling of e-business systems
so as to:

− model the potential dynamic and heterogeneous characteristics of e-business
applications and platforms so historical performance data can be extrapolated,
despite changes in system state (or workload being moved to new servers).

− facilitate the incremental modelling of an e-business application, while evaluating
the complexity of the model at each step. This allows the analysis of how the
increased accuracy of a more complex model can be correlated with the overhead
of the extra monitoring required.

− apply this modelling to the QoS and priority-based self-management of e-business
systems, so such systems can reconfigure themselves to maximise their ability to
meet SLAs, whilst still making efficient use of underlying resources.

The remaining sections of this paper provide: an overview of the performance
prediction framework for e-science Grid applications and how this is being adapted to
model e-business applications; a description of the e-business system model; a
discussion of the experimental validation of the modelling process and a conclusion.

2 Related Work

The analytical performance modelling and prediction of e-business systems for the
purposes of capacity sizing has received much attention; for example modelling Java
2 Enterprise Edition (J2EE) applications using layered queueing models [4]. There
has also been more recent work on QoS-oriented performance modelling, for example
using Stochastic Activity Networks for the purposes of determining the QoS
guarantees that can be offered [5]. However, this work is not automatically applicable
for the kind of frequent �on-the-fly what-if� predictions that are required by a dynamic
self-managing system. Such predictions require modelling the current system state
(which may be highly dynamic), and benefit from simplified models. Although there
has been some work in this area, for example the historical performance data and
QoS-based workload management system described in [6], such work tends to be
focussed on closed proprietary systems.

The definition and monitoring of web service SLAs has also received some
attention (i.e. [7]), however much of this work focuses on how to unambiguously and
precisely define a SLA in terms of underlying system metrics. There has been less
discussion of how a heterogeneous system might dynamically reconfigure itself to
meet SLAs using selected performance metrics and control variables, which is the
focus of this work.

Characterising and predicting the performance of parallel, scientific applications
has been the main focus of the High Performance Systems Group�s work for the last
10 years. A Performance Analysis and Characterisation Environment (PACE) [8,9]
has been the most noted product of this research, providing a framework for

developers to create detailed analytical performance models that can be used to
predict the computation and communication performance of C, Fortran and
Mathematica codes. This environment has been verified by the UK Defence
Electronic Research Agency (DERA) to have a predictive accuracy within 10% of
measured values. Current work includes the extension of this environment for the
modelling of Java-based scientific applications and the Java Virtual Machine (JVM).

A key feature of this approach to performance is the use of a flexible layered
framework allowing performance critical aspects of the sequential code, parallisation
strategy and platform to be modelled separately. This inherent separation allows
predictions of the same application using different configurations, a case of simply
inter-changing models at the appropriate layer. The layers used in PACE are as
follows:

− an application layer for defining global model parameters;
− a transaction map layer that characterises the order and parallel execution of

transactions and the inter-transaction communication;
− a transaction layer for the identification and characterisation of performance

critical transactions within an application;
− a platform layer that describes the performance of the virtual machine and resource

that the application is to run on.

PACE provides considerable modelling flexibility as transactions can represent any
unit of work and computation/communication combination. Typically the kernel of
Java e-science applications are modelled in detail at the method and communication
API level. For example transactions might include the main computations on the data
set and the communication of sub-sets of this data between nodes, and the transaction
map might specify the order in which these actions take place across a cluster and the
nodes which participate in each action. Java bytecode sequences and intra-cluster
communications (assuming local communication time is a function only of data size;
a common scenario in dedicated scientific clusters) are timed via benchmarks to
provide the basis of a predicted execution time prior to execution. The model is then
refined as the application executes through a process of runtime monitoring, which is
facilitated by the automatic model-based instrumentation of the application, for
example by manipulating the Java bytecode [10].

Currently an in-house XML vocabulary based on the Java ARM standard [11] is
used to define each layer of the model, although as e-science applications start to be
structured using the Open Grid Services Infrastructure [3] it is planned to update this
so it is based on Grid, Web Service and Enterprise Computing standards. Of particular
interest is defining transactions in terms of the application�s WSDL [12] interfaces
and the transaction map in terms of BPEL4WS [13] flows. Performance data will be
represented and managed using emerging unifying technologies such as the CIM
Metrics Model [14] and those being developed for the Java Environment [15]. Tool
support will continue to be provided by the PACE toolset.

A key application of this performance modelling is the scheduling of distributed
scientific applications over Grid architectures through the use of the TITAN
predictive scheduler [16]. As these predictions can be calculated in real-time, TITAN
can be continuously updated as new applications are launched and as the available
resources change. TITAN uses iterative heuristic algorithms to improve a number of

scheduling metrics including makespan and idle time, while aiming to meet QoS
requirements including dead-line time. The work is also differentiated from other
Grid scheduling research through the application of A4 [17] - an agent-based resource
discovery and advertisement framework.

3 Adapting the Predictive Framework for e-Business Applications

Adapting e-science based performance modelling techniques for business to business
(B2B) and business to consumer (B2C) applications is challenging as these classes of
application:

− tend to be more dynamic; the workload entering e-business systems can vary
widely and a very high frequency of client requests is common, so systems must
use dynamic mechanisms to divide and process workloads across different
resources.

− often contain a more verbose codebase than e-science kernels, but the code is more
likely to be well structured into modules with explicit interfaces, such as web
services.

In such a scenario it is more appropriate to focus on predicting performance
during, as opposed to prior to execution, based on historical performance data. It is
also more appropriate to take a top-down approach when modelling e-business
systems, as opposed to detailed source code-level modelling.

This research adapts an approach involving iteratively modelling the e-business
application. Each iteration the modelling is made more fine-grained by breaking the
processing required to handle a request down further into transactions, and specifying
additional performance data to be associated with each sampled request (and how
often that data is sampled). Data to be recorded includes: the client that initiated the
request and the operation that was invoked at the application layer; transaction
performance metrics (i.e. mean response time and variability) at the transaction and
transaction map layers; and the servers that processed the request and the state they
were in (i.e. load) at the platform layer.

The model is then used to populate a historical performance repository as the
application is run, from which trends are extracted as to how performance metrics are
affected by changes of server, system state, the client originating the request and the
operation invoked. The overhead associated with the required monitoring is
determined and a decision is made as to whether to make the modelling more fine-
grained to obtain additional historical data, despite the associated increase in
overheads. The aim is to stop the iterative process as soon as the modelling is
sufficiently detailed to use historical data for the predictions required.

Previous work on applying PACE to e-business includes an investigation into the
metrics that can be used for predicting response times and evaluating the accuracy of
predictions [18,19]. This was used to enhance a workload management broker from
the IBM Web Services Toolkit [20], based on the use of performance predictions in
the TITAN scheduler. This has been extended so as to incorporate metrics for scaling
response time measurements recorded at different server loads [21].

4 e-Business System Model

This section details how the framework described in section 3 is used to model a
common architecture for e-business applications. This architecture is derived in part
from a case study of the IBM Websphere platform [22]; a commercial Java
implementation of a hosting environment for applications built using web, J2EE and
web service standards1. Applications running on the Websphere platform are typically
divided into a client tier, a tier of application servers that host the computation-centric
part of the application, and a data access tier of one or more database servers and
legacy systems, which are not directly accessed by the client tier.

The complete model, which will be used as a basis when iteratively modelling
applications, is illustrated in Fig. 1. The application server transaction could also be
broken down further into the Java thread pools, database connection pool and
associated pool queues, which are used to process requests in parallel.

Workload is modelled as x clients who repeatedly submit requests to the system
with 0 seconds think time between receiving a response and sending the next request.
For simplicity it is assumed that the workload mix of the different operations being
requested and the complexity of processing the data associated with those requests
are, on average, constant. The main control point for the model is the number of
clients that are directed at each application server.

Fig. 1. The proposed 4-layer model of an e-business system. The performance of a request is
broken down into three transactions: the processing on one of the application servers (assuming
a copy of all optional application-tier functionality such as a dedicated Web/HTTP Server is
hosted on every application server); the internal communication i.e. from the application server
to the database server; and the data access on a single database server. The transaction map
links the transactions sequentially in the order listed with a choice as to the application server
used. The platform is modelled as consisting of application server, internal network and
database server resources. The server resources are further divided into application/database
server software, JVM, operating system and hardware sub-layers

1 Although the current focus is on Java, the framework should be appropriate for other e-

business and web service platforms, such as .NET.

5 Experimental Analysis

The Websphere platform includes a stock-trading application known as �Trade� with
an underlying design representative of current e-business applications [23]. Trade is
used as a case study to test the proposed modelling process. It is run on a Websphere
testbed consisting of a �fast� application server (AppServF), a �slow� application
server (AppServS) and a database server capable of supporting the application-tier
servers without causing any bottlenecks2.

The aim of this initial set of experiments is to investigate the relationship between
Trade/Websphere mean request response times and i.) the load on the system and ii.)
the division of clients between the two application servers, when other variables
remain constant. The first variable represents changes in the demand for the system,
and the second is the main control point used by the system to adapt to changes in
demand. These are important variables, as the proposed predictive framework will
need to be able to predict the effect of alternative control point settings, given the
current load on the system. This information will assist a workload manager in
deciding how to divide the clients across the application servers so as to provide mean
response time QoS levels. For simplicity, only one of the variables will be changed at
a time. Future experiments will expand on this, so as to investigate predicting a
response time at a different system load and workload division, than has been
encountered historically.

Trade is accessed via HTTP requests to an application-tier interface consisting of
10 operations including �buy�, �sell� and �quote�. Requests to the buy operation are
selected for detailed analysis as representatives of requests which read and write to
multiple database tables. The performance of buy requests is measured in each
experiment as follows. A background workload mix (defined as part of Trade as
being representative of real e-business clients) is directed at the application-tier
interface. An additional instrumented workload is used to sample response times of
buy requests on all active application servers. This workload runs for 30 iterations,
each iteration sending a �create new user� request and then measuring the response
times of 10 buy requests for a total of 300 samples per graph data point3.

New users are created every 10 requests as the result of a buy operation displays a
user�s portfolio, so as a client performs a sequence of buy operations the amount of

2 Testbed setup: Trade v2 running on Win2000 Adv. Servers: 2 Websphere Application Servers

v4.0.1 (�Fast�: Pentium4 1.8GHz 1GB RAM, �Slow�: Pentium3 450Mhz 416Mb RAM) and 1
DB2 Server v7.2 (Athlon 1.4Ghz, 512Mb RAM). Workload generated using between 1 and
20 homogeneous Red Hat Linux client machines (Pentium4 1.8MHz 512Mb RAM) running
Apache JMeter 1.8. Each machine has a 100Mbit network connection to the switch.

3 In our initial implementation using the Java 1.3.1 HTTP library and the Websphere v4.0.1
embedded Java HTTP server, excessive communication delays of up to 80 seconds are
occasionally encountered. This is due to the implementation of the HTTP 1.1 keep-alive
protocol, which was used so as to avoid having to open and close a connection for each
request. (On a real system this would be done on a dedicated HTTP server tier.) This affected
approximately 15% of buy request response times. Measurements suffering from this fault
were removed prior to calculating the mean response time from the remaining measurements,
which were not affected by bottlenecks (or any other errors/rejected requests). Future work
will investigate enhancing the definition of QoS to explicitly report this kind of QoS failure.

data to be read and transmitted increases, as does the response time. This workload
therefore represents a client population with an average portfolio size of 5.5. This
illustrates the importance of associating an additional piece of data with a sampled
request: the complexity of the data access and data processing that took place. Results
suggest that the amount of data about the client in the database, that had to be
processed (i.e. number of portfolio records), would be a useful metric.

5.1 Predicting Response Times at Different System Loads

In this section an experiment is conducted to examine if there is a simple relationship
between response time and system load, when other variables remain constant. This
is examined when a single application server (AppServS) is active, although similar
results have been obtained for AppServF.

The first step is to create the simplest possible model of Trade so as to predict the
response times of buy requests when there is no change of servers or system state, i.e.
with a constant workload directed at AppServS, with the other server unused. The
model consists of a single transaction to measure the response times of buy requests,
and it is confirmed that this metric is an accurate predictor of future buy requests. A
measure of the accuracy of the prediction is calculated based on the number of recent
measurements available and their variability, as described in [18].

13 0

14 0

150

16 0

170

18 0

19 0

2 0 0

0 10 0 2 00
Numb er o f Backgro und Clients

Me a n Re sponse Time (ms)

Fig. 2. Scalability graph for AppServS when no other application servers are active. The mean
response time is shown, for buy requests at increasing load in terms of the number of clients.

It is then necessary to determine which metrics can be used to scale historical
request response time measurements, based on the difference between the historical
and current �load� on an application server. This technique will be used when a
prediction is required at a load that has not been encountered in the historical
performance data. Possibilities for representing load include % CPU Utilisation at the
operating system level, and requests processed per second or number of clients at the
server software level.

Fig. 2 shows the mean response time, for buy operations at different server loads as
represented by the number of clients. It can be seen that there is a consistent increase
in mean response time as the workload, as measured by the number of clients,

increases. However requests processed per second and % CPU utilisation are less
useful as representations of system load, remaining constant at 117-120 requests per
second and 100% CPU utilisation respectively, for all points on the graph. This is
because these metrics do not properly capture the parallel request processing capacity
that is available inside the servers. As a result of this, these metrics reach their
maximum values whilst the application server still has parallel capacity available.

It is concluded that if number of clients is used to represent system load, it is likely
that it will be practical to predict mean response times at system loads that have not
yet been encountered in the historical performance data.

5.2 Predicting Response Times when the Division of Workload between
Application Servers is Changed

The next step involves investigating if there is a simple relationship between the
division of clients across heterogeneous application servers and the mean response
times experienced by clients on those servers. (Assuming other variables remain
constant and the application servers share the same database server.)

Fig. 3. shows the experimental setup which is used to measure the mean response
times of AppServS and AppServF. This procedure is performed repeatedly, with the
division of clients between the servers changed each repetition. A constant workload
of 225 clients is selected as this is the maximum number of clients each application
server can support without having to reject any requests due to a lack of resources.

Fig. 3. The experimental setup used to obtain each point on the graph in Fig. 4. Initially n=75,
so 75 background clients are directed at AppServS, whilst 150 background clients are directed
at AppServF. After a warm-up period of 1 minute, the response times of 300 buy requests on
each application server are measured. The process is then repeated, decrementing n by 25 until
a point is found where the response times of the two servers are roughly equal.

130

140

150

160

170

180

190

2 00

0 25 50

n : Number o f Backg round Clients on Ap pServS

(No . o f Backg ro und Clients on Ap pServF)

75

AppS e rv(S) Me a n R.T. (ms)
AppS e rv(F) Me a n R.T. (ms)

(200) (175) (150)(225)

Fig. 4. Effect on AppServF and AppServS mean request response times, as the value of n is
increased.

Fig. 4 shows the mean response times that are sampled as clients are progressively
transferred from AppServF to AppServS. It can be seen that the QoS levels provided
by AppServS and AppServF appear to be steadily getting worse and better,
respectively. This suggests that it is likely that it will be practical to predict response
times, when the division of clients between application servers is changed.

When 25 clients are assigned to AppServS, and the remaining 200 are assigned to
AppServF the servers deliver similar mean response times of around 165ms. This
would be a useful division of workload if all clients are to be treated equally.
However if this is not the case, a workload manager can use this kind of graph
(assuming there is sufficient historical data to generate it for the current number of
clients), to determine the differential QoS levels that can be provided by allocating
clients to application servers in different proportions.

The following is an example of how Fig. 4 might be used when the current load is
225 clients. A workload manager could give clients the option of paying for a QoS
agreement with a guaranteed maximum mean response time, RTgoal, over some period
of time. It is assumed that the value of RTgoal is the same for all QoS agreements and
that RTgoal < 165ms. Each client�s QoS agreement would also specify a financial
penalty (perhaps determined by the price paid), that the service provider must pay if it
misses the goal. The decision as to how to divide the clients would then be made
based on minimising the total financial penalty to be paid.

If most of the clients decided to pay for a QoS agreement it might be appropriate to
aim to limit the number of clients on AppServF so as to keep the response time on this
server below RTgoal. A value of n could be chosen so as to give an expected mean
response time on AppServF just under this goal. Clients could then be assigned to
AppServF starting with those with the highest financial penalties until AppServF�s
capacity of (225-n) clients is reached. The remainder would have to be �sacrificed�
onto AppServS, and probably miss their QoS goals. However as a result of using this
predictive strategy, the service provider would avoid paying penalties to the more
expensive clients on AppServF.

6 Conclusions and Future Work

This paper reports on how an established performance modelling and predictive
framework for e-science Grid applications is being enhanced for e-business
applications. This will allow the dynamic and heterogeneous properties of e-business
systems to be modelled; a request�s expected performance on proposed new servers
can then be extrapolated from historical data recorded on established servers in a
range of states. Results are presented showing how an e-business benchmark is being
analysed so as to explore the metrics that can be used to scale response times recorded
at different system loads. It is also shown how the analysis is being extended to
extrapolate response times when clients are allocated to heterogeneous application
servers in different proportions.

Future work will investigate applying the performance analysis described in this
paper to the dynamic SLA-based workload management of e-business requests.
XML-based PACE modelling languages and associated tool support will also be
extended for this new class of application.

Acknowledgments

The authors would like to express their gratitude to IBM's T. J. Watson Research
Center and Hursley Laboratory for their contributions towards this research, and in
particular to Robert Berry, Donna Dillenberger and Beth Hutchison.

References

1. F. Curbera, W. Nagy and S. Weerawarana, �Web Services: Why and How'', OOPSLA 2001
Workshop on Object-Oriented Web Services, Florida USA, 2001

2. I. Foster and C. Kesselman, The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Pub., 1998, pp. 279-290

3. I. Foster, C. Kesselman, J. Nick, S. Tuecke, �Grid Services for Distributed Systems
Integration'', IEEE Computer, Vol 35, No. 6, 2002, pp. 37-46.

4. T. Liu, S. Kumaran, Z. Luo, �Layered Queueing Models for Enterprise JavaBean
Applications�, 5th IEEE International Enterprise Distributed Object Conference, Seattle
Washington, 2001, pp. 174-178

5. D. Daly, G. Kar, W.H. Sanders, �Modeling of Service-Level Agreements for Composed
Services�, 13th IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM 2002), Montreal Canada, 2002

6. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger, �Adaptive algorithms for
managing a distributed data processing workload�, IBM Systems Journal, Vol. 36, No. 2,
1997, pp. 242-283.

7. A. Keller, H. Ludwig, �The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services�, IBM Research Report, May 2002, Available at:
http://www.research.ibm.com/

8. J. Cao, D.J. Kerbyson, E. Papaefstathiou and G.R. Nudd, �Modelling of ASCI High
Performance Applications using PACE'', 19th IEEE International Performance, Computing
and Communication Conference, Phoenix USA, 2000, pp. 485-492

9. G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper and D.V. Wilcox,
�PACE - A Toolset for the Performance Prediction of Parallel and Distributed Systems'',
International Journal of High Performance Computing Applications, Special Issues on
Performance Modelling. Vol 14, No. 3, 2000, pp. 228-251

10. J.D. Turner, D.P. Spooner, J. Cao, S.A. Jarvis, D.N. Dillenberger and G.R. Nudd, �A
Transaction Definition Language for Application Response Measurement'', International
Journal of Computer Resource Measurement, Vol. 105, 2001, pp. 55-65

11. The Open Group, �Application Response Measurement (Issue 3.0 - Java Binding)'', Open
Group Technical Specification, October 2001. Available at
http://www.opengroup.org/tech/management/arm/

12. E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, �Web Services Description
Language (WSDL) 1.1'', W3C Note, March 2001, Available at http://www.w3.org/TR/wsdl

13. S. Thatte, �Business Process Execution Language for Web Services version 1.0�, July 2002,
Available at: http://www.ibm.com/developerworks/webservices/library/ws-bpel/

14. A. Keller, A. Koppel, K. Schopmeyer, �Measuring Application Response Times with the
CIM Metrics Model�, 13th IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management (DSOM 2002), Montreal Canada, 2002

15. W.P.Alexander, R.F.Berry, F.E.Levine, and R.J.Urquhart, �A Unifying Approach to
Performance Analysis in the Java Environment�, IBM Systems Journal, Vol 39, No.1, 2000,
pp.118-134

16. D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini and G.R. Nudd, �Local Grid Scheduling
Techniques using Performance Prediction'', IEE Proceedings � Computers and Digital
Techniques, 2003

17. J. Cao, S.A. Jarvis, S. Saini,, D.J. Kerbyson and G.R. Nudd, �ARMS: an Agent-based
Resource Management System for Grid Computing'', Scientific Programming, Special Issue
on Grid Computing, Vol 10, No. 2, 2002, pp 135-148

18. J.D. Turner, D.A. Bacigalupo, S.A. Jarvis, D.N. Dillenberger and G.R. Nudd, �Application
Response Measurement of Distributed Web Services�, International Journal of Computer
Resource Measurement, Vol 108, 2002, pp. 45-55

19. J.D. Turner, D.A. Bacigalupo, S.A. Jarvis, and G.R. Nudd, �Using a Transaction Definition
Language for the Automated ARMing of Web Services�', UK CMG Conference on
Technology and Performance Evaluation of Enterprise-Wide Information Systems, Reading
UK, 2002

20. IBM Web Services Toolkit. Available at
http://www.alphaworks.ibm.com/tech/webservicestoolkit

21. D.A. Bacigalupo, J.D. Turner, S.A. Jarvis, and G.R. Nudd, �A Dynamic Performance
Prediction Framework for e-business Applications�, Invited Paper at SCI2003 7th World
Multiconference on Systemics, Cybernetics and Informatics, Florida USA, 2003

22. M. Endrel, IBM WebSphere V4.0 Advanced Edition Handbook, IBM International
Technical Support Organisation Pub., 2002. Available at: http://www.redbooks.ibm.com/

23. IBM Websphere Performance Sample: Trade2. Available at
 http://www.ibm.com/software/webservers/appserv/wpbs_download.html

	1 Introduction
	2 Related Work
	3 Adapting the Predictive Framework for e-Business Applications
	4 e-Business System Model
	5 Experimental Analysis
	5.1 Predicting Response Times at Different System Loads
	5.2 Predicting Response Times when the Division of Workload between Application Servers is Changed

	6 Conclusions and Future Work
	Acknowledgments
	References

