
http://wrap.warwick.ac.uk/

Original citation:
Lazic, Ranko, Newcomb, T. and Roscoe, A. W. (2004) On model checking data-
independent systems with arrays with whole-array operations. University of Warwick.
Department of Computer Science. (Department of Computer Science Research Report).
CS-RR-395

Permanent WRAP url:
http://wrap.warwick.ac.uk/61312

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61312
mailto:publications@warwick.ac.uk

On model heking data-independent systemswith arrays with whole-array operations?Ranko Lazi�1??, Tom Newomb2, and Bill Rosoe21 Department of Computer Siene, University of Warwik, UK2 Computing Laboratory, University of Oxford, UKAbstrat. We onsider programs whih are data independent with re-spet to two type variables X and Y , and an in addition use arraysindexed by X and storing values from Y . We are interested in whethera program satis�es its ontrol-state unreahability spei�ation for allnon-empty �nite instanes of X and Y . The deidability of this problemwithout whole-array operations is a orollary to earlier results.We address the possible addition of two whole-array operations: an arrayreset instrution, whih sets every element of an array to a partiularvalue, and an array assignment or opy instrution. For programs withreset, we obtain deidability if there is only one array or if Y is �xedto be the boolean type, and we obtain undeidability otherwise. Forprograms with array assignment, we show that they are more expressivethan programs with reset, whih yields undeidability if there are at leastthree arrays. We also obtain undeidability for two arrays diretly.Keywords: model heking, in�nite-state systems, data independene,arrays1 IntrodutionA system is data independent (DI) [1, 2℄ with respet to a type if it an onlyinput, output, move values of that type around within its store, and test whetherpairs of suh values are equal. This has been exploited for the veri�ation ofommuniation networks [3℄, proessors [4℄, and seurity protools [5℄.We onsider programs DI with respet to two distint types X and Y , whihan in addition use arrays (or memories), indexed by X and storing values fromY . We have already shown that a partiular lass of programs that do not usewhole-array operations (i.e. ones that an only read and write to individualloations in the array) are amenable to model heking [6℄. In this paper, westudy what happens to these deidability results on the addition of whole-arrayoperations.? We aknowledge support from the EPSRC Standard Researh Grant `ExploitingData Independene', GR/M32900. The �rst author was also supported by a researhgrant from the Intel Corporation, the seond author by QinetiQ Malvern, and thethird author by the US ONR.?? Also aÆliated to the Mathematial Institute, Serbian Aademy of Sienes and Arts,Belgrade.

One motivation for onsidering DI programs with arrays is ahe and ahe-oherene protools [7℄. Suh protools are DI with respet to the types of mem-ory addresses and data values. Another appliation area is parameterised veri�-ation of network protools by indution, where eah node of the network is DIwith respet to the type of node identities [3℄. Arrays arise when eah node isDI with respet to another type, and it stores values of that type.The tehniques whih we used to establish deidability of parameterisedmodel heking for DI programs with arrays annot be used when whole-arrayoperations are introdued. The partial-funtions semantis used there relied onthe fat that there ould always be parts of the array that were `untouhed' bythe program, and an therefore be assumed to hold any required value.In order to investigate data independene with arrays, we introdue a pro-gramming framework inspired by UNITY [8℄, where programs have state andexeute in disrete steps depending only on the urrent state. Although dataindependene has been haraterised in many other languages, e.g. [1, 9, 10℄, ourlanguage is designed to be a simple framework for the study of data independenewithout the lutter of distrating language features.Given a DI program with arrays and a spei�ation for the program, themain question of interest is whether the program satis�es the spei�ation forall non-empty �nite instanes of X and Y . The lass of spei�ations we willbe onsidering here is ontrol-state unreahability, whih an express any safetyproperty. For suh spei�ations, we observe that the answer to the above pa-rameterised model-heking problem for �nite instanes redues to a single hekwith X and Y instantiated to in�nite sets.We onsider the reset (or initialiser) instrution, whih sets every loation inan array to a given value. This is useful for modelling distributed databases andprotools with broadasts. We prove that suh systems with exatly one array arewell-strutured [11℄, showing that unreahability model heking is deidable forthem. However, we also show that for programs with just two arrays with reset,unreahability is not deidable: this result is aquired using an emulation by suhsystems of universal register mahines3. We further show that unreahability isdeidable for programs with arbitrarily many arrays with reset when Y is not atype variable, but is �xed to be the boolean type. In suh programs, any booleanoperation an be used, sine it an be expressed in terms of equality tests.The study of ahe protools motivates an array assignment (or array opy)instrution, for moving bloks of data between memory and ahe or settingup the initial ondition that the ontents of the ahe aurately reets theontents of the memory. For programs with array assignment, we show thatthey are more expressive than programs with reset, whih yields undeidabilityif there are at least three arrays. We also obtain undeidability for two arraysby diret emulation of universal register mahines.Programs with arrays with reset are omparable to broadast protools [12℄.The arrays an be used to map proess identi�ers to ontrol states or data values,3 By universal, we mean a register mahine that an ompute anything that is om-putable.

and the broadasting of a message, whih may put all proesses into a partiularstate, might be mimiked by a reset instrution. In [12℄, it is shown that themodel heking of safety properties is deidable for broadast protools. Thisresult has tehnial similarities to the deidability results in this paper. However,arrays an ontain data whose type is a parameter (i.e. an unboundedly largeset), whereas the set of states of a proess in a broadast protool is �xed.Our deidability results are also related to deidability results for Petri Nets.The result for arrays storing booleans is related to the deidability of the Cover-ing Problem for Petri Nets with transfer ars [11℄: the di�erenes in formalisms,espeially that we have state variables whih an index the arrays, make our re-sult interesting. Programs with an array storing data whose type is a parameterare related to Nested Petri Nets [13℄ with transfer ars: in addition to formal-ism di�erenes, deidability of the Covering Problem for Nested Petri Nets withtransfer ars has not been studied.Another related tehnique is symboli indexing [14℄, whih is appliable toiruit designs with large memories. However, the proedure relies on a ase splitwhih must be spei�ed manually, and only �xed (although large) sizes of arraysan be onsidered.Some of the results in this paper were announed by the authors at the VCL2001 workshop, whose proeedings were not formally published. This paper anbe onsidered an abridged version of Chapters 3, 8 and 9 of [15℄, and readers areadvised to onsult this referene for further details and full proofs.2 PreliminariesA well-quasi-ordering � is a reexive and transitive relation whih has the prop-erty that for any in�nite sequene of states s0; s1; : : :, there exist i < j suh thatsi � sj .A transition system is a struture (Q;Q0;!; P; p�q) where:{ Q is the state spae,{ Q0 � Q is the set of initial states,{ ! � Q�Q is the suessor relation, relating states with their possible nextstates,{ P is a �nite set of observables,{ p�q : P ! 2Q is the extensions funtion, suh that Sfppq j p 2 Pg = Q (i.e.every state has at least one observable). Thus ppq is the set of states in Qthat have some observable property p.Given two transition systems S1 = (Q1; Q01;!1; P; p�q1) and S2 = (Q2; Q02;!2; P; p�q2) over the same observables P , a relation � � Q1 �Q2 is a bisimulationbetween S1 and S2 when the following �ve onditions hold:1. If s � t, then for every p 2 P , we have that s 2 ppq1 i� t 2 ppq2.2. For all s 2 Q01, there exists t 2 Q02 suh that s � t.3. If s � t and s!1 s0 then there exists t0 2 Q2 suh that s0 � t0 and t!2 t0.

4. For all t 2 Q02, there exists s 2 Q01 suh that s � t.5. If s � t and t!2 t0 then there exists s0 2 Q1 suh that s0 � t0 and s!1 s0.In this ase, we an say that the transition systems S1 and S2 are bisimilar.A state s is reahable in a transition system S = (Q;Q0;!; P; p�q) if thereexists a sequene of states s0 ! s1 ! � � � ! sn suh that s0 2 Q0 and sn = s.3 LanguageA type is one of the following: the booleans Bool, the natural numbers Nat,either of the type variables X or Y , and the array types T2[T1℄ where T1 and T2are non-array types.A type ontext is a mapping from variables (whih are just mathematialsymbols) to types. For a type ontext � we will write � ` x : T if � maps thevariable x to the type T , and say that x has type or is of type T in � . We mayomit � in these notations if the type ontext we are referring to is obvious orunambiguous.A type instane for a type ontext � (or for a program with type ontext �)gives two ountable non-empty sets as instanes for X and Y . We may also talkof (in)�nite type instanes, whih map only to (in)�nite sets.A state s of a type ontext � (or of a program with type ontext �) togetherwith a type instane I for � is a funtion mapping eah variable used in � to aonrete value in its type. The set of all states of a type ontext (or of a program)is alled the state spae. We may write s(a[x℄) as a shorthand for s(a)(s(x)).The instrutions assoiated with a type ontext � are as displayed in Table1, where T1 and T2 range over the non-array types.Instrution Type onstraints on �Boolean ?b; b; b b : BoolData ?x; x = x0; x 6= x0 x; x0 : X or YArray ?a[x℄; a[x℄ = yreset(a; y); a[℄ := a0[℄ a; a0 : T2[T1℄;x : T1; y : T2Counter in(r);de(r); isZero(r) r : NatTable 1. InstrutionsThe ? operator represents the seletion (or input) of a value into a variableor loation. There are also guarding (or bloking) instrutions suh as equalitytesting x = x0, that do not update the state but whih an only proeed if true.The instrutions b and b an proeed only if b is respetively true or false.The instrution reset(a; y) will implement an array reset or initialiser oper-ation, setting every loation in an array a to a partiular value y. There is alsoan array opy or assignment operation a[℄ := a0[℄.

Variables of type Nat an be inreased by one, dereased if not zero, andompared to zero.The operations of a type ontext � are generated by the grammar:Op ::= Op;Op j Op +Op j Op� j Iwhere I is any � -permitted instrution. The operator ombinators are sequentialomposition (;), hoie or seletion (+), and �nite repetition (�).We may use syntati abbreviations suh as x := x0 for ?x;x = x0 orwhile Op1 do Op2 od for (Op1;Op2)�;:Op1. We may use brakets (� � �) orindentations in programs to show preedene.A program with type ontext � is syntax of the form init OpI repeat OpT ;where the initial operation OpI and the transitional operation OpT are both� -operations.Given a program P = init OpI repeat OpT and a type instane I forthe program, the semantis of the program under I is the transition systemhhPiiI = (Q;Q0;!; P; p�q); where{ Q (states) is the state spae of the program P with the type instane I,{ Q0 (initial states) is the set of all states that an result from the exeutionof OpI from any state in Q (i.e. the variables and all loations in the arraysan be onsidered arbitrarily initialised before the exeution of OpI),{ ! is the relation indued by the operation OpT ,{ P (observables) is the set of boolean variables used in P .{ p�q is a mapping from P to sets in Q suh that pbq = fs j s(b) = trueg.P an be thought of as exeuting OpI one from any state to form the setof initial states of the transition system. From these, repeating the transitionaloperation OpT forever (or for as long as it yields next states) generates sues-sive sets of next states. Note that eah iteration of the transitional operationgenerates any number of transitions (eah of length one) in the �nal transitionsystem.Note 1. A UNITY program over a set of variables onsists of an initial ondition,followed by a set of guarded multiple assignments [8℄. A UNITY program an beexpressed in our language quite naturally, although extra temporary variablesmay be needed to reprodue multiple simultaneous assignment. Conversely, anyprogram in our language an be onverted to a UNITY program whih wouldhave equivalent observational behaviour whenever a boolean signal is true.Further disussion of motivation and appliation of the language, and exam-ple programs, an be found in [15℄. ut4 Model-heking problemsThe ontrol-state unreahability problem CU for a lass of programs C is: `Givenany program P from the lass C, any boolean b from the program P , and anypartiular type instane I for P , are all states whih map b to true unreahable

in hhPiiI?' We will write FinCU and InfCU to restrit the problem to just�nite and in�nite type instanes respetively.The parameterised ontrol-state unreahability problem PCU for a lass ofprograms C is: `Given any program P from the lass C and any boolean b fromthe program P , are all states whih map b to true unreahable in hhPiiI for allpossible type instanes I for P?' We will write FinPCU to restrit the problemto just �nite type instanes.The data independene of the data types means that systems with equinu-merous type instanes are isomorphi. Therefore, InfPCU is in fat the sameproblem as PCU.We an use the following theorem to dedue results about the parameterisedmodel-heking problem for all �nite types from heks using just one partiularin�nite type instane.Theorem 1. Suppose we have a program P without variables of type Nat, aboolean variable b of P, and an in�nite type instane I� for P. Then,b reahable in hhPii?I� () 9I � b reahable in hhPiiI :where 9I existentially quanti�es only over �nite type instanes for P. utCorollary 1. For a partiular lass of programs, InfCU is deidable if and onlyif FinPCU is deidable. utA DI system with arrays with reset is a program with no variables of typeNat whih may not use array assignment, and of the forminit (;a?y; reset(a; y));OpIrepeat OpT ;where y is any variable with type Y . It is sensible to assume that the program hassuh a variable, otherwise it would be unable to read from or write to its arrays.The notation (;a � � �) means repetition of syntax, replaing a with a di�erentarray eah time, in any order.In the above de�nition of DI systems with arrays with reset, the pre�x ofinstrutions ensures that all arrays are initialised (i.e. reset) to arbitrary values.This simpli�es proofs a little.A universal register mahine (URM) is a program that may only use variablesof type Bool or Nat. The program must be of the forminit (;risZero(r));OpIrepeat OpT :where the operation before OpI repeats isZero(r); for some omplete enumera-tion of the variables of type Nat.

5 Reset5.1 One array storing data from a variable typeIn this setion we will prove that parameterised model heking of ontrol-stateunreahability properties for systems with one array of type Y [X ℄ with reset isdeidable. We begin with the following ruial observation.Note 2. Arrays are initialised at the beginning of the program, and at any statethere is only ever a �nite number of instrutions sine the last reset on a partiu-lar array. Therefore every possible reahable state will have only a �nite numberof loations in eah array that are di�erent from the last reset value. utLet P be a DI program with only one (resettable) array, and let I� be anin�nite type instane for P . Let hhPiiI� = (Q;Q0;!; P; p�q). To aid the followingproof, we restrit Q (and Q0 also) to ontain only states that onform to theobservation made in Note 2 | that there are only �nitely many di�erent valuesin the array at any time and only one of them ours in�nitely often | as otherstates an never be reahable. This simpli�es the presentation, although it wouldbe possible not to restrit Q and to just mention this at the required plaes inthe proof.We de�ne some notation before giving the well-quasi-ordering on the states.De�nition 1. For a state s, a subset V of I�(X), and a value w 2 I�(Y), wewill denote the number of ourrenes of w in loations V in the array s(a) asCs(V;w), whih an be formally de�ned as follows:Cs(V;w) = jfv 2 V j s(a)(v) = wgj:Note that the answer will be 1 if V is an in�nite set and w is the value of thelast reset, else it will be a natural number. utWe write y :: Y to mean y is a term of type Y | that is, y is either a variabley : Y or y is syntax of the form a[x℄ where x : X . We will also use:s(: X) = fs(x) j x : Xg and s(:: Y) = fs(y) j y :: Y g:For ease of presentation, we may also write X and Y to mean I�(X) and I�(Y)when it is lear that a set is required rather than a type symbol.De�nition 2. The relation � � Q�Q is de�ned as s � t i� there exist bije-tions: � : s(:X) =�! t(:X) and � : s(::Y) =�! t(::Y)suh that all of the following:1. s(b) = t(b) for all b : Bool.2. �(s(x)) = t(x) for all x : X.3. �(s(y)) = t(y) for all y :: Y .

4. For all w 2 s(:: Y), there are at least the same number of �(w)'s in thearray t(a) as there are w's in s(a), exluding loations whih are the terms.Formally: Cs(X n s(:X); w) � Ct(X n t(:X); �(w)):5. There exists an injetion : Y n s(:: Y) ��! Y n t(:: Y) suh that all othervalues from the type Y not dealt with above an be mathed up from s(a) tot(a) in the manner of Condition 4 above, but with the injetion instead ofthe bijetion �. Formally: for all w 2 Y n s(::Y),Cs(X n s(:X); w) � Ct(X n t(:X); (w)): utExample 1. We illustrate the de�nition of � on an example pair of states s andt. The �rst three onditions say that boolean variables must be equal and theterms must have the same equality relationship on them. We will fous of the�nal two onditions, whih are used to ompare the parts of the array that arenot referened by the urrent values of X-variables (i.e. loations that are notimmediately aessible in the urrent state before doing a ?x instrution).Condition 4 says that, for eah term y :: Y , there must be at least as manyt(y)'s in the rest of the array t(a) (i.e. loations not referened by X-variables)than there are s(y)'s in the rest of the array s(a).Suppose s has no other loation in the array holding a value equal to thevalue of term y0; similarly, suppose there are four, one, and three other loationsontaining the values s(y1); s(y2) and s(y3) respetively. This is represented pi-torially as a histogram: see Figure 1 (a). Condition 4 of s �0 t holds for any twhose orresponding histogram `overs' the histogram of s.
0

1

2

3

4

y y y0 1 2 3y

(a) (b)

0

1

2

3

4

5

Fig. 1. Histogram representation of array with resetCondition 5 says that the same relationship holds for all the other Y -values(i.e. values not held in terms), exept that we are allowed to arrange the olumnsof the histogram in any way we wish. In this example we use the fat that it

is suÆient to onsider the arrangement where they are sorted in reverse order,instead of having to onsider every possible permutation.Suppose the state s was last reset to a value v0 whih is not equal to avalue held in any term: the array will therefore hold an in�nite number of thesevalues. The array may also hold a �nite number of other values: suppose s(a)also holds distint values v1; : : : ; v5 (whih are di�erent from v0 and the valuesof any terms) in ardinalities �ve, four, four, two, and one respetively. This anbe represented as a histogram: see Figure 1 (b). Condition 5 requires that t'sorresponding histogram overs that of s. utThe following two propositions tell us that hhPiiI� is a well-strutured tran-sition system [11℄.Proposition 1. The relation � is a well-quasi-ordering on the state set Q. utProposition 2. The relation � is strongly upward ompatible with !, i.e. forall s � t and s! s0 there exists t0 2 Q suh that t! t0 and s0 � t0. utAny state s an be represented �nitely by a tuple with the following ompo-nents:{ the values of the boolean variables;{ the equivalene relations on the variables of type X and on terms of type Yindued by the equality of values stored in them;{ for eah y :: Y , the value Cs(X n s(:X); s(y));{ a bag (i.e. multiset) onsisting of, for eah w 2 Y n s(::Y), the valueCs(X n s(:X); w)if it is non-zero.4This representation yields a quotient \hhPiiI� of the transition system hhPiiI� ,whih is a well-strutured transition system with respet to the quotient �̂ ofthe quasi ordering �. Moreover, for any state representation ŝ, a �nite set ofstate representations whose upward losure is " Pred(" ŝ) is omputable, and�̂ is deidable. Therefore, ontrol-state unreahability an be deided by thebakward set-saturation algorithm in [11℄.Theorem 2. The problems InfCU and FinPCU are deidable for the lass ofDI programs with reset with just one array of type Y [X ℄. ut5.2 Multiple arrays storing boolean dataHere we onsider DI programs that use multiple arrays all indexed by a type vari-able X and storing boolean values. Deidability of parameterised model hekingof ontrol-state unreahability properties for these systems follows similarly asfor systems in Setion 5.1.The following are the main di�erenes in de�ning the quasi ordering:4 There are only �nitely many w's for whih this value is non-zero | see Note 2.

{ As the type Y used there is now the booleans, the program is no longer DIwith respet to it. Therefore, the funtion � must be removed (i.e. replaedwith the identity relation) from De�nition 2.{ In De�nition 1, rede�ne the Cs operator to take a vetor of boolean valuesw = (w1; : : : ; wn) rather than a single value:Cs(V; (w1; : : : ; wn)) = jfv 2 V j 8i � s(ai)(v) = wigj:The �nite representation of states is now as follows:{ the values of the boolean variables;{ the equivalene relation on the variables of type X indued by the equalityof values stored in them;{ for eah w 2 Bn , the value Cs(X n s(:X);w).Theorem 3. The problems InfCU and FinPCU are deidable for the lass ofDI programs with arbitrarily many arrays only of type Bool[X ℄ with reset. ut5.3 Multiple arrays storing data from a variable typeWe now show that unreahability model heking is undeidable with more thanone array of type Y [X ℄. We demonstrate that for any URM P there is a DIprogram P℄ with just two type variables X and Y and only two arrays withreset whih has the same observable behaviour as P . We an enode the valuesof the variables r : Nat as the length of a linked list in the arrays in P℄.De�nition 3. The type ontext � ℄ of P℄ is de�ned as follows, where P has typeontext � . � ℄ has the same variables of type Bool as � and has two arrays� ℄ ` S; I : Y [X ℄ to hold the linked lists. It also has variables � ℄ ` hr : X for theheads of the linked lists representing eah � ` r : Nat, and a variable � ℄ ` e : Xwhih marks the end of all the lists. A variable � ℄ ` y0 : Y is used to holda speial value whih marks a loation in I as being unused. The program alsomakes use of temporary variables � ℄ ` x : X and � ℄ ` y; n : Y . utExample 2. Figure 2 shows an example state of the arrays S and I , representinga state in the URM where its ounter variables are set as follows: r0 = 0, r1 = 2and r2 = 3.The array I is used to give unique identi�ers in Y to all of the �nitely manyloations in X that are urrently being used to model the linked lists. It is set toy0 (whih happens to be the value 0 in this example) at all the unused loations.Where I is non-zero, the array S gives the identi�er of that loation's suessor.Cheking a register r is zero beomes a simple matter of heking whetherhr = e. We an derease a register r by updating hr to the value x, where I [x℄is equal to S[hr℄, remembering to mark the old loation as being now unused bydoing I [hr℄ := y0.To inrease r by one, we must �nd a brand new identi�er as well as anunused loation for hr and make it link to the old loation. To ensure that a

0 4 4 5 2793

003800405

8

1h
0

hh
2

36

000

S

I

9 7 5 5

019

e

Fig. 2. Building a linked list using arrays with resethosen identi�er is new we must go through all the lists and hek that it is notbeing used already. We an hek whether a loation is being used by testing ifit is zero in I .Notie that there are important invariants our emulator must maintain inaddition to the requirement that the linked lists must have length equal to theappropriate URM register.{ The identi�ers should be unique so that eah head has exatly one list fromit.{ Aside from the end marker e, the loations in any pair of lists are disjoint.{ I must have unused loations set to y0, of whih there must always be in-�nitely many. utDe�nition 4. An instrution translator ℄ from instrutions used in P to in-strutions used in P℄ is shown in Table 2. The syntax (;r0 � � �) means the repe-tition of syntax, replaing r0 with a di�erent variable of type Nat eah time, allonjoined with the ; operator. utDe�nition 5. Given a URM P = init oI repeat oT , the orresponding DIprogram with arrays isP℄ = init reset(I; y0); y 6= y0; I [e℄ := y; o℄Irepeat o℄T :utLet hhPii = (Q;Q0;!; P; p�q) and hhP℄ii = (Q℄; Q0℄;!℄; P; p�q℄): We willshow there exists a bisimulation between hhPii and hhP℄iiI� for any in�nite typeinstane I� for P℄.First, some shorthands. Given a state t, we will say that the inverse funtiont(I)�1 : I�(Y) ! I�(X) is de�ned at a value w 2 I�(Y) and is equal to thevalue v when there is exatly one value v in I�(X) suh that t(I)(v) = w. Wewill use notation to ompose arrays as follows: t(I)�1(t(S)(v)) may be writtent(I�1 Æ S)(v).We now de�ne our orrespondene relationship between the two transitionsystems.

I I℄isZero(r) hr = ede(r) hr 6= e; I[hr℄ := y0; y := S[hr℄;?hr; I[hr℄ = yin(r) ?n; n 6= y0;n 6= I[e℄;(;r0 x := hr0 ;while x 6= e don 6= I[x℄; y := S[x℄;?x; I[x℄ = yod);?x; I[x℄ = y0;I[x℄ := n; y := I[hr℄;S[x℄ := y;hr := xother no hangeTable 2. Translating URM instrutions to instrutions on arrays with resetDe�nition 6. De�ne a relation � � Q�Q℄ as s � t i�{ s(b) = t(b) for b : Bool.{ For every r : Nat there exists a �nite sequene vr0 � � � vrs(r) suh that:� For eah r : Nat:� vrs(r) = t(hr),� vri�1 = t(I�1 Æ S)(vri) for i = 1; : : : ; s(r),� vr0 = t(e).� The values of eah t(I)(vri) for r : Nat and i = 1; : : : ; s(r) together witht(e) are pairwise unequal. (`Uniqueness Invariant.')� For all v 2 I�(X), we have that vri 6= v for every r : Nat and i =0; : : : ; s(r) if and only if t(I)(v) = t(y0). (`Unused Invariant.') utProposition 3. There relation � is a bisimulation between hhPii and hhP℄iiI�for any in�nite type instane I� for P℄. utThe following an be dedued from the undeidability of the Halting Problemfor URM's and Corollary 1.Theorem 4. The problems InfCU and FinPCU for the lass of DI programswith two arrays of type Y [X ℄ with reset are undeidable. ut6 Array assignment6.1 Simulation of arrays with resetWe show that for any program P using arrays with reset, there exists a programP℄ using arrays with assignment whih has bisimilar semantis. This shows that,in some sense, array assignment is at least as expressive as array reset.

De�nition 7. The type ontext � ℄ of the program P℄ is de�ned as follows. If weassume the arrays used in P are r0; : : : ; rn�1, we have arrays � ℄ ` a0; : : : ; an�1 :Y [X ℄ in P℄. We also have another array � ℄ ` A : Y [X ℄ whih we will use tohek whether loations have hanged sine the last reset of that array. The typeontext � ℄ has all the same non-array variables as � exept that it also has extravariables � ℄ ` Y0; : : : ; Yn�1 : Y to store the last reset value to the orrespondingarray. There are also temporary variables � ℄ ` ya; yA; n : Y . utExample 3. Here is an example state of a system using arrays with reset, togetherwith an emulating state from the system using array assignment.
with assignment

1Y0Y

A1aa
0

05

6

5

9

0

11

6

5

3

Simulation by arraysArrays with
reset

1r0r

0

0

0

3

5

0

0

9

4

5

5

5

5

1

9

7

0

0

4

9

0

Fig. 3. Emulating array reset with array assignmentOn the left of the �gure, the arrays r0 and r1 from the system with the resetoperation available are shown. It an be seen that r0 was last reset to 5 and r1was last reset to 0. The loations where these arrays have been hanged sinetheir last update are emphasised with vertial bars.On the right, the arrays a0 and a1 from the system with array assignment areshown to be idential to r0 and r1 respetively at these loations that have beenhanged (also shown within vertial bars). Plaes whih have not been hangedsine the last reset of the array are instead equal to whatever is in the array Aat those loations | the variables Y0 and Y1 an be used to �nd the value ofthe last resets. Now the instrutions translate as follows:{ When we wish to read a loation ri[x℄ in the abstrat program P , we returnai[x℄ when ai[x℄ 6= A[x℄, and Yi when ai[x℄ = A[x℄.{ Resetting an array an be emulated by the array assignment ai[℄ := A[℄,while setting Yi to the value of the reset.{ When writing to an abstrat loation ri[x℄, we write instead to ai[x℄. Fur-thermore we should make sure that A[x℄ is not equal to ai[x℄; if it is not,we must hange A[x℄ and any other aj [x℄ whih is marked as unhanged bybeing equal to A[x℄. ut

De�nition 8. An instrution translator ℄ from instrutions used in P to in-strutions used in P℄ is shown in Table 3. The notation (;j 6=i � � �) means repeti-tion of syntax for every j from 0 to n � 1 exept i, all onjoined with ; in anyorder. utI I℄y = ri[x℄ yA := A[x℄; ya := ai[x℄;if yA = yathen y = Yielse y = ya�reset(ri; y) ai[℄ := A[℄; Yi := y?ri[x℄ ?ai[x℄; yA := A[x℄; ?n; ai[x℄ 6= n;(;j 6=i ya := aj [x℄;if ya 6= yAthen ya 6= nelse aj [x℄ := n�);A[x℄ := nother no hangeTable 3. Translating instrutions for arrays with reset to instrutions for arrays withassignment
De�nition 9. Given a DI program with arrays with reset P = init oI repeat oT ,we an form a orresponding DI program with arrays with assignment P℄ =init o℄I repeat o℄T as desribed above. utTheorem 5. Given a DI program P with n arrays of type Y [X ℄ with reset anda type instane I for P, there exists a DI program P℄ with n + 1 arrays oftype Y [X ℄ with assignment suh that there is a bisimulation between hhPiiI andhhP℄iiI . ut6.2 Simulation of universal register mahinesBy Theorem 5, any program with two arrays with reset is bisimilar to a pro-gram with three arrays with assignment. Theorem 4 states that unreahabilityis undeidable for the former lass, and so it also is for the latter.It turns out that a stronger negative result is possible. We adapt the resultsfrom Setion 5.3 about array reset to work instead with array assignment. Weshow that, for any universal register mahine P , there exists a DI programP℄ with only two arrays with array assignment whih has the same observablebehaviour as P . The proof runs very similarly, so we present only the di�erenes.

{ The variable � ℄ ` y0 : Y from De�nition 3 is unneessary.{ Figure 2 ould be replaed by Figure 4.
S

I 23384084559

7936 9

e
0

h
2 1hh

2354408557

7196

Fig. 4. Building a linked list using arrays with assignment{ The orresponding explanation from Example 2 would be altered as follows:Instead of I [x℄ being set to y0 at unused loations x, we have I [x℄ = S[x℄ tomark a loation as unused. Conversely, a loation x must have I [x℄ 6= S[x℄ ifit is in use to prevent it being overwritten. This had to be the ase anywayotherwise the suessor of that loation would be itself, and hene would bean in�nite list | exept at e, whose suessor is never used, so we must besure to have I [e℄ 6= S[e℄.{ Table 2 is updated as follows:� Remove the instrution n 6= y0 in (in(r))℄. The role of y0 has beenreplaed.� Replae I [hr℄ := y0 with I [hr℄ := S[hr℄ in (de(r))℄. This is the new wayof marking a loation as unused.� Replae ?hr with ?hr; I [hr℄ 6= S[hr℄ in (de(r))℄, and replae the �rstourrene of ?x (i.e. within the while-loop) with ?x; I [x℄ 6= S[x℄ in(in(r))℄. This is the new hek for a used loation.� Replae I [x℄ = y0 with I [x℄ = S[x℄ in (in(r))℄. This tests for an unusedloation.{ In De�nition 5, the piee of ode reset(I; y0); ?y; y 6= y0; I [e℄ := y is used tomark every loation as unused, and to pik a non-y0 value as the identi�erfor loation e so it is marked as being used. This should be replaed byI [℄ := S[℄; ?y; y 6= S[e℄; I [e℄ := y to mark every loation as unused (beauseI [x℄ = S[x℄ at every loation x), and then to make I [e℄ 6= S[e℄ so this loationis marked as being used.{ We require a modi�ation to the inverse funtion implied by an array asused in Setion 5.3. We now say that t(I)�1 is de�ned at a value w andis equal to v when there is exatly one v suh that both t(I)(v) = w andt(I)(v) 6= t(S)(v).{ In the de�nition of � (De�nition 6), the last ondition should be that t(I)(v)is equal to t(S)(v) instead of t(y0).

We an now state the following theorems.Theorem 6. Given a universal register mahine P there exists a DI programP℄, and two arrays of type Y [X ℄ with array assignment, suh that there is abisimulation between hhPii and hhP℄iiI� for any in�nite type instanes I�. utTheorem 7. The problems InfCU and FinPCU for the lass of DI programswith just two arrays of type Y [X ℄ with array assignment is undeidable. utNote that a program with only one array with array assignment is unable tomake any use of the array assignment instrution: it an therefore be onsiderednot to have this instrution.7 ConlusionsThis paper has extended previous work on DI systems with arrays without whole-array operations [16, 4, 6℄ by onsidering array reset and array assignment.For programs with array reset, we showed that parameterised model hekingof ontrol-state unreahability properties is deidable when there is only one ar-ray, but undeidable if two arrays are allowed. If the arrays store booleans ratherthan values whose type is a parameter, we showed deidability for programs withany number of arrays. The deidability results are based on the theory of well-strutured transition systems [11℄, whereas undeidability followed by reduingthe Halting Problem for universal register mahines.Programs with array assignment were shown to be at least as expressive asprograms with array reset. However, this yields a weaker undeidability resultthan for programs with reset, but undeidability for two arrays was obtainablediretly.Future work inludes onsidering programs with array assignment in whihthe arrays store booleans. More generally, programs with more than two data-type parameters, multi-dimensional arrays, and array operations other than resetand assignment should be onsidered, as well as lasses of orretness propertiesother than ontrol-state unreahability.We would like to thank Zhe Dang, Alain Finkel, and Kedar Namjoshi foruseful disussions.Referenes1. Wolper, P.: Expressing interesting properties of programs in propositional temporallogi. In: Proeedings of the 13th ACM Symposium on Priniples of ProgrammingLanguages. (1986) 184{1932. Lazi�, R.S., Nowak, D.: A unifying approah to data independene. In: Proeed-ings of the 11th International Conferene on Conurreny Theory. Volume 1877 ofLeture Notes in Computer Siene., Springer-Verlag (2000) 581{5953. Creese, S.J., Rosoe, A.W.: Data independent indution over strutured networks.In: International Conferene on Parallel and Distributed Proessing Tehniquesand Appliations, CSREA Press (2000)

4. MMillan, K.L.: Veri�ation of in�nite state systems by ompositional modelheking. In: Conferene on Corret Hardware Design and Veri�ation Methods.(1999) 219{2345. Broadfoot, P.J., Lowe, G., Rosoe, A.W.: Automating data independene. In:Proeedings of the 6th European Symposium on Researh on Computer Seurity.(2000) 75{1906. Lazi�, R.S., Newomb, T.C., Rosoe, A.W.: On model heking data-independentsystems with arrays without reset. Theory and Pratie of Logi Programming:Speial Issue on Veri�ation and Computational Logi (2003) To appear. Draftavailable as researh report RR-02-02 from Oxford University Computing Labora-tory.7. Adve, S., Gharahorloo, K.: Shared memory onsisteny models: a tutorial. Com-puter 29 (1996) 66{768. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison WesleyPublishing Company, In., Reading, Massahusetts (1988)9. Hojati, R., Brayton, R.K.: Automati datapath abstration in hardware systems.In: Proeedings of the 7th International Conferene on Computer Aided Veri�a-tion. Volume 939 of Leture Notes in Computer Siene., Springer-Verlag (1995)98{11310. Lazi�, R.S.: A Semanti Study of Data Independene with Appliations to ModelCheking. PhD thesis, Oxford University Computing Laboratory (1999)11. Finkel, A., Shnoebelen, P.: Well-strutured transition systems everywhere! The-oretial Computer Siene 256 (2001) 63{9212. Esparza, J., Finkel, A., Mayr, R.: On the veri�ation of broadast protools. In:Proeedings of the 14th IEEE Symposium on Logi in Computer Siene, IEEEComp. So. Press (1999) 352{35913. Lomazova, I.A.: Nested petri nets: Multi-level and reursive systems. FundamentaInformatiae 47 (2001) 283{29414. Melham, T., Jones, R.: Abstration by symboli indexing transformations. In: Pro-eedings of the Fourth International Conferene on Formal Methods in Computer-Aided Design. Volume 2517 of Leture Notes in Computer Siene., Springer-Verlag(2002)15. Newomb, T.C.: Model Cheking Data-Independent Systems With Arrays. PhDthesis, Oxford University Computing Laboratory (2003) To appear. Draft availableat the Conurreny Group web pages.16. Hojati, R., Isles, A.J., Brayton, R.K.: Automati state redution tehniques forhardware systems modelled using uninterpreted funtions and in�nite memory.In: Proeedings of the IEEE International High Level Design Validation and TestWorkshop. (1997)

