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Abstract 
 

The intimate association between mathematics and music can be traced to the Greek culture.  It is well-represented 

in the prevailing Western musical culture of the 18th and 19th centuries, where the traditional cycle of fifths provides 

a mathematical model for classical harmony that originated with the well-tempered, and later the equal-tempered, 

keyboard. Equal-temperament gives equivalent status to all twelve tonal centres in the chromatic scale, leading to a 

high degree of symmetry and an underlying group structure. This connection seems to endorse the Pythagorean 

concept of music as exemplifying an ideal mathematical harmony. This paper examines the relationship between 

abstract mathematics and music more critically, challenging the idealized view of music as rooted in pure 

mathematical relations and instead highlighting the significance of music as an association between form and 

meaning that is negotiated and pragmatic in nature. In passing, it illustrates how the complex and subtle relationship 

between mathematics and music can be investigated effectively using principles and techniques for interactive 

computer-based modelling [17] that in themselves may be seen as relating mathematics to the art of computing – a 

theme that is developed in a companion paper [2]. 

 

 

1.  Mathematics and Music in Harmony 

 
1.1.  The Music of the Spheres.  The notion of an intimate relationship between mathematics and music 

has a long history. The correlation between vibrating strings of different lengths and musical pitch 

established a strong connection between numerical and aural relationships, and supplied the basic 

intervals upon which the Western musical tradition is based. The vibration of a string could be identified 

as made up of many concurrent basic vibrations, comprising the fundamental note and many harmonics. 

The qualities of notes as played by different instruments could be analysed with respect to the harmonics 

they generated. The harmonic constituents of sounds acquired such fundamental importance in thinking 

about music that they later became the point of departure for many music theorists. Schenker (1868-1935)  

[11], for instance, set out to demonstrate that the tonal system had its roots in nature, and – building on 

this basis – even went so far as to attribute a primary, distinguished status to musical traditions based on 

tonality, and to their underlying aesthetics.  In this view, the correspondence between the findings of 

natural science, mathematical models and human psychology gave a special significance to the classical 

music culture of the West. 

 

1.2.  The Cycle of Fifths.  The advent and development of keyboard instruments led to a rationalization 

that had enormous ramifications for music. Once the range of a keyboard was sufficient to allow a single 

interval to be spanned both by a sequence of octaves and “perfect fifths”, the need for some compromise 

in tuning each octave span of the instrument became apparent. This led to a mode of tuning known as 

“well-temperament”, first widely used in the Baroque period, that had the liberating side-effect of 

allowing any note on the keyboard to be the tonal centre of a musical composition – a development 

celebrated to great effect by J S Bach in his 48 Preludes and Fugues for the Well-Tempered Clavier. The 

influence of composers such as Bach on musical composition was profound. It opened the way to a full 

exploration of tonal possibilities associated with all twelve notes of the chromatic scale. Where a 



mathematical perspective on music is concerned, there is a subtle but significant distinction between well 

temperament and equal temperament, as practiced from the middle of the nineteenth century. To quote 

Loy’s account of tempering [8]: with well-temperament: “None of the scales or chords sounded bad. In 

fact every major and minor key sounded different. C sounded placid and fairly uninteresting. The more 

distant keys sounded more interesting. You might call some keys harsh, or agitated, or tense. And so, 

music could be written to suit the mood (or color) of each key”. With equal temperament, in contrast: “No 

key sounds bad. No key sounds pure. All keys are somewhat interesting. But, they are all the same”. 

 

In effect, the emancipation of all twelve major and minor keys made it possible to conceive key 

relationships in an abstract mathematical fashion. The most widely cited form of this structure is that 

based on the cycle of fifths, as depicted in the model shown at the left in Figure 1. [The figures in this 

paper have been extracted from a poster for which a full colour image can be accessed and downloaded 

from http://empublic.dcs.warwick.ac.uk/projects/kaleidoscopeBeynon2005/posters/erlkonigPoster.pdf] In 

the cycle of fifths, adjacency of keys is associated with similarity of key signature. This connects keys 

whose tonic notes differ by a perfect fifth (cf. the red edges making up the two circuits in Figure 1) and 

connects a major key with its “relative minor” key with which it shares the same key signature (cf. the bi-

directed green edges that define the spokes).  As in Figure 1, capitalized and lower case letters will be 

used to refer to major and minor keys respectively.  

 

 
 

Figure 1:  The cycle of keys and an associated discrete colour wheel 

 

1.3.  Modelling the Cycle of Keys. Figure 1 depicts an interactive computer model of the cycle of keys 

that has been constructed by the author using modelling principles and tools that have been described in 

detail elsewhere [2,17]. The model comprises two connected visual components to represent two different 

ways in which the notion of current key is perceived in the mainstream tradition of tonal music. The 

diagram on the left (a “group graph”) is the kind of model that underlies the basic music theory that is 

required to learn skills such as playing scales on an instrument. It is also used for harmonic analysis in 

music, as it might be applied to the works (e.g.) of Bach, Handel, Haydn, Mozart, Beethoven, Schubert, to 

traditional hymn tunes and to certain idioms of popular music. It is a framework that is harder to apply 

directly to music from the so-called 'romantic' tradition of the nineteenth century, as represented in the 

music of (e.g.) Chopin, Wagner, Liszt and – to a lesser extent – Schumann or Brahms, because of the 



greater complexity of their harmonies, and is a framework that does not apply to music of earlier 

traditions (such as that of Monteverdi or Palestrina) or to 20th century music that is atonal or polytonal. 

 

At the heart of the harmonic system is the cycle of keys depicted in the group graph on the LHS of 

Figure 1. There are twelve such keys, corresponding to the 12 essentially distinct notes C, C
#
, D, D

#
, E, F, 

F
#
, G, G

#
, A, A

#
, B on a piano keyboard. In the group graph, each node on the inner cycle represents the 

tonic note in a specific major key, and this is connected by a green bi-directed edge to the submediant – 

the tonic note of its relative minor, by a red edge to the dominant, and by a blue edge to the subdominant. 

In this context, the submediant, dominant and subdominant respectively refer to the notes that lie at 

intervals of a minor third below, a fifth above and a fourth above the tonic note respectively. In Figure 1, 

the current tonic note is indicated by a small black square, and corresponds to the key of C, with relative 

minor a, dominant G and subdominant F. The current key is also indicated in the display on the RHS of 

Figure 1, in which the keys are disposed on the spokes of a rotating wheel and coloured so as to suggest 

the different ways in which a musician experiences keys. As a mathematical model, the group graph in 

Figure 1 is associated with a particular Abelian product of cyclic groups, namely C2 * C12. The symmetry 

of the group graph reflects the sense in which an experienced musician maintains a sense of the global 

tonal framework whatever the current key. 

 

 
 

Figure 2. The continuous colourwheel from which key colours are extracted, together with its functional definition 
 

 

1.4. Modelling Keys by Colours. The component on the right-hand side of the model (the discrete 

colourwheel) reflects a complementary aspect of musical experience: the sense that each key has its own 

distinct character and 'colour'. Notwithstanding the symmetry of the cycle of keys, it would (for example) 

be regarded as a significant act in musical terms to rewrite Beethoven's Choral Symphony (written in D 

minor) in C minor. One aspect of this is that the choice of key influences the absolute pitch and impacts 

on the technical difficulty, auditory quality, and even feasibility of the instrumental parts. Over and above 

this, the associations of different keys are deeply embedded in the classical musical tradition, and appear 

to exercise an important influence over the kind of music that a particular composer writes. 
 

The model depicted in Figure 1 exploits definitions similar to those underlying the cells of a 

spreadsheet to maintain dependencies between the values of observables.  As an example of such a 

func colourwheel { 
 para angle; 
 auto r0, g0, b0; 
 if ((4*PI/3<=angle)&&(angle<2*PI)) { 
  angle = angle - 4*PI/3; 
  r0 = int(255*sin(2.0*angle/3.0));  
  g0 = 0; 
  b0 = int(255*cos(2.0*angle/3.0));  
 } 
 else if ((2*PI/3<=angle) && (angle<4*PI/3)) { 
  angle = angle - 2*PI/3; 
  r0 = 0; 
  g0 = int(255*cos(2.0*angle/3.0)); 
  b0 = int(255*sin(2.0*angle/3.0)); 
 } 
 else { 
  r0 = int(255*cos(2.0*angle/3.0)); 
  g0 = int(255*sin(2.0*angle/3.0));   
  b0 = 0; 
 } 
 return rgb2colour(r0,g0,b0); 
} 



dependency, the colours associated with keys on the RHS of Figure 1 are drawn from the continuous 

colourwheel in Figure 2, where the association between the colour of a ray and its orientation is defined 

by the piecewise function – based on interpolating between the red, green and blue colour constituents – 

that is encoded on the right of Figure 2. Another dependency is used to link the abstract change of key in 

the group graph (as typically recorded cerebrally by the musician in the role of musical analyst) to the 

associated experiential change in tonal colour (as typically registered as a 'felt experience' by the 

performer). In this way, changes of key – and to some extent ambiguity about current key – may be 

represented by rotation of the discrete colour wheel, where each direction corresponds to a distinct colour. 

 

2.  Some Hints of Discord 

 
2.1. The Status of Mathematical Models of Music. Mathematical models of musical phenomena may 

appear to endorse the absolute, transcendental nature of the relation between mathematics and music. It is 

perhaps fitting that some of best illustrations of modulation conforming closely to the cycle of keys are to 

be found in the hymnals of the 19
th
 century. But, whilst the cycle of keys and the colourwheel can be 

interpreted as concretizations of precise abstract mathematical concept in the spirit of Turkle and Papert 

[15], the notion that they embody an absolute mathematical theory of music is suspect. From a detached 

musical standpoint, the colourwheel and group graph of Figure 1 may be seen as contrived mathematical 

abstractions within a concrete world of fuzzy experience. 

 

This is most clearly evident in respect of the colourwheel. There is no accepted rationale to justify the 

choice of a particular key-colour association (whether or not a musician consciously associates keys with 

colours – as in instances of synaesthesia, to which composers such as Scriabin may have been subject 

[5]). In an extended discussion of this issue, Tovey [14:8,9] observes that "Beethoven ... when setting 

Scottish melodies, wrote to his English publisher, Thomson, that the key of A flat did not fit a certain tune 

that was sent him, inasmuch as that tune was marked amoroso, whereas the key of A flat should be called 

barbaresco", but goes on to deride the notion that "transposition would be equivalent to altering all the 

colours of a picture" as "a favourable example of the kind of fantasy which many learned musicians still 

fail to confine to its proper place among psychological obscurities".  

 

Similar reservations apply to the group graph. In the first place, in aural terms, the cycle of keys is 

associated with the accidental approximation in pitch that underlies the notion of equal-temperament. 

Specifically, the ‘cycle’ is based on the false premise that 12 intervals of a perfect fifth (such as one might 

trace on a piano keyboard) generates exactly the same difference in pitch as a sequence of seven octaves. 

In reality, moving up a perfect fifth raises the frequency of a note by a factor of 1.5, whilst moving up an 

octave raises its frequency by a factor of 2, and (1.5)
12

 = 129.746337890625 merely approximates 2
7
. On 

this basis, the formal model is an inexact abstraction from experience, in contrast to (say) the Platonic 

lines and points of Euclidean geometry. (Compare the rhythmic device used by Schumann in the second 

of the Drei Stücklein of his Bunte Blätter op. 99, where the 4
rd

 and 6
th
 notes in a bar comprising 8 demi-

semiquavers carry a melody to be played in triplet time – a mathematical impossibility, but plausible in 

the specified Sehr Rasch tempo since 8/3 and 16/3 approximate 3 and 5 respectively.) 

 

Secondly, the correspondence between the abstract harmonic framework depicted in Figure 1 and 

music within a particular tradition cannot be formalized. The closest correspondence is typically to be 

found in the least sophisticated music of Haydn or Mozart, where the harmonic structure is traced beat-

by-beat through the chords of an accompaniment, and the changes of key such as are represented in the 

group graph predominate. In contrast, though Bach’s music (and the 48 Preludes and Fugues for the Well-

Tempered Clavier in particular) is conceived within the framework, the characteristic texture of his music 

does not for the most part lend itself to a simple association between simultaneously sounding notes and 

tonal harmonies. And whilst most of the music of Beethoven and Schubert relies upon clear harmonic 

textures, it exploits tonal juxtapositions quite unlike those represented by the edges of the group graph in 



Figure 1. The problematic aspects of the model of key relationships in Figure 1 are exemplified in the 

distant relationship it establishes between tonic major and minor, of which Tovey [14:11] writes: "First, 

let us be quite clear about the contrast between tonic minor and tonic major. Remember that the contrast 

is not a 'modulation' or change of key at all: it is a change of outlook while we stay at home." 

 

2.2. Alternative Models of Tonality. In his analysis of tonality in Beethoven [14], Tovey advocates an 

alternative model of tonality. The principle behind his analysis is that the keys that are most closely 

related harmonically to a major key are those whose triads can be found in its major scale. For example, 

applying this criterion, the key of C is directly related to d, e, F, G and a. A similar criterion can be 

applied to minor keys: for instance, the key of c is directly related to Eb, f, g, Ab and Bb. This supplies an 

alternative to the algebraic model of tonal relationships in the cycle of keys – a looser concept of 

neighbourliness of keys that can be expressed geometrically by laying out all 24 major and minor keys on 

the surface of a torus. Such a geometric framework was devised by Schoenberg [12, 10], and set out as a 

chart of harmonic regions as depicted in Figure 3.  
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Figure 3. The chart of the regions, from Arnold Schoenberg: Structural Functions of Harmony 
 

As explained in detail in [14], Tovey’s treatment of tonality has a quite different focus from the cycle 

of keys model in Figure 1.  Where the edges of the group graph purport to specify the particular 

modulations that normally arise in classical harmonic sequences, the emphasis in Tovey’s analysis is 

rather on a more topological notion of neighbourliness of keys. For instance, whereas the group graph 

distinguishes modulations to the local relative major/minor, dominant and sub-dominant, Tovey maintains 

that these keys are no more closely related to the tonic than the rest of the five related keys. This accords 

with Tovey’s central thesis about Beethoven’s music – that it is not so much distinguished by novel local 

harmonic progressions, but by its contribution to “the long-range power of handling tonality [that] is in its 

earlier stages downright incompatible with concentration upon new chords and new progressions". 

 

Further analysis of the music of the later classical period suggests other ways of elaborating on 

standard models of tonality. In addition to modulation to neighbouring keys in Figure 3, Tovey [14] also 

identifies Neapolitan transitions as characteristic of Beethoven’s harmonic idiom – as exemplified in the 

initial bars of the Appassionata Piano Sonata op. 57, where the opening phrase is immediately repeated a 



semitone higher.  The music of Schubert is also recognized as exhibiting novel harmonic effects, 

characterized, especially in the context of his finest songs, by unexpected dramatic progressions. The 

brief discussion that follows is elaborated in [2]. 

 

At one level, Schubert’s music is characterized by very strongly defined local harmonic progressions, 

more in keeping with an algebraic than a topological model of structure. The simple ballad Der König in 

Thule is an excellent example of a musical composition that exemplifies structure within the traditional 

cycle of fifths framework. It not only exhibits direct modulations between closely related keys, but has the 

remarkable feature of being based solely on chords that are in first position – that is, that have their tonic 

note in the bass. Of Schubert, Tovey writes [14:30]: “He came only gradually under Beethoven's spell 

after his sense of tonality had developed quite independently; but his tonality is exactly Beethoven's in its 

fullest range, and is intensified by concentration in lyric forms to which Beethoven contributed little". 

Schubert’s “independent sense of tonality” arguably put more primary emphasis on the traditionally most 

commonplace modulations (to the dominant, subdominant and relative minor), and in lyric forms focused 

on harmonic tension and argument rather than on loose and exploratory juxtaposition of keys. Through 

reinforcement of conventional expectation, such an idiom gives greater scope for immediate local 

harmonic surprise. To some listeners, it also conveys an unwelcome impression of naivety – witness 

George Bernard Shaw’s scathing critique of the Great C Major Symphony: ‘a more exasperatingly 

brainless composition was never set on paper’ [13:99]. 

 
Because of the underlying orientation of Schubert’s harmonic idiom, the restricted model of tonality 

afforded by the group graph in Figure 1 is a promising basis for the analysis of his music, but something 

further is required. Attempting to apply the simple techniques that apply to the Der König in Thule to 

more sophisticated compositions poses problems. One of Schubert’s trademark harmonic innovations is 

found in his treatment of tonic major and minor. Much more is involved here than Tovey’s “change of 

outlook whilst we stay at home”. In the extended ballad Erlkönig, one of Schubert’s most ambitious 

songs, it is not simply that the music visits tonic major and minor keys in quick succession, but that tonic 

major and minor are conflated in passages in such a way that the whole tonality of the music is called into 

question. Figure 4 depicts two experimental models, each constructed by modifying the group graph in 

Figure 1, that offer alternative ways of expressing Schubert’s use of tonic major-minor. 

 

 
 

Figure 4. Two experiments in modelling Schubert’s conflation of tonic major and minor 

 

In Experiment 1, a new generator is introduced to represent tonic major-minor modulation. For this 

generator to be its own inverse, it is necessary to reappraise the structure of the group. This entails 

reversing the directed edges on the outer circuit. As is explored by Waller [16], this identifies the 



resulting group graph with the automorphism group of the toroidal space of keys depicted in Figure 3. In 

Experiment 2, the group graph in Figure 1 undergoes a different transformation, corresponding to being 

mapped on a homomorphic image in which tonic major and minor tonalities become conflated. This 

better reflects the character of Schubert’s harmonic innovation. 

 

3. Resolution through Model Making 

 
3.1. Making Mathematical Models of Music. The above discussion illustrates something of the range 

and diversity of issues that are involved in making models to assist musical analysis. It highlights the 

contrast between alternative ways of interpreting group graphs – as encoding distinguished transitions (as 

in the classical cycle of keys), or as defining a set of transformations in a space of tonality. These 

alternative views relate to algebraic and topological perspectives on tonal relationships. Waller's model 

[16], a variant of the group graph on the left of Figure 4 in which the group generators are the three 

involutions exemplified by C↔a, C↔c, C↔e, illustrates a further nuance: these three generators are 

implausible as distinguished modulations in a standard musical idiom, and have no special significance as 

generators of the automorphism group of the space of keys, but are informative in relation to symmetries 

and musical chords such as augmented triads and diminished sevenths. Equally important is the nature of 

the interpretation of mathematical diagrams involved. The virtue of Experiment 2 as a representation is 

that it accommodates the harmonic excursions of Erlkönig without dispensing with the cycle of fifths 

model of tonal relationships. In using this model in context (as when tracking the harmonic progressions 

as the song is played [2]), it is not appropriate to make sudden transitions between the full group graph 

and its homomorphic image. The gradual transformation of one group graph into the other suggested by 

the black arrow in Figure 4 is more convincing, and could be appropriately synchronised with the music 

so as to suggest the presentiment of encroaching harmonic disintegration that an appreciative and familiar 

listener experiences. Significantly, such an interpretation exploits a serendipitous informal extension of 

the semantics of the diagram in Figure 4 whereby the locality of the nodes of the abstract graph is taken 

into account. Taken together, such model-making exercises suggest quite different priorities from those 

normally associated with mathematical modelling. A strict and formal mode of interpretation may suit a 

Pythagorean or Schenkerian view of music, but does not give the scope for ambiguity that is required in 

creative musical analysis. It is not only helpful to be able to make mathematical models of many different 

varieties, but also to explore the semantic relationships between them, and to study them in relation to the 

discourse surrounding them and the processes that mediate their evolution. 

 

3.2. Model-Making from a Musical Perspective. Though the term "model-making" is not prominently 

used in musicology, it can be seen as an essential aspect of musical theory and analysis. The range of 

modelling activities involved is broad, and encompasses far less formal and mathematical approaches 

than are represented in this paper, but the semantic challenges are similar. The trend in musicological 

practice has been from an idealized to a pragmatic interpretation of music theory: witness how Caplin [3] 

restricts his theory of formal functions to instrumental music of specific composers between 1780 and 

1810 [6], and the systematic but informal nature of Cooke's attempt to describe the semantics of the 

language of music [4]. The focus has also shifted to exploratory and culturally mediated activities shaping 

musical meaning. As Kofi Agawu [1] observes: “… when foundations [of Music] are enshrined in Theory 

and deployed in something called Theory-based analysis, they do nothing but reproduce themselves. It 

would be wise, then, in seeking to escape the circularity of theory-based analysis, to return to an issue that 

exercised several minds as far back as the 1960s, and to consider detaching theory from analysis. Theory 

is closed, analysis open. A theory-based analysis does not push at frontiers in the way that a non-theory-

based one does. Theory is foundational, analysis non-foundational. But analysis is also performance, and 

its claims are to a different order of knowledge than, say, historical or archival knowledge.” 

Agawu’s agenda calls for model-making that is eclectic, open-ended and embraces informal and 

experientially mediated semantics. The flexibility of the observational and computational framework 



required for this purpose is illustrated by Huron’s Humdrum Kit [7].  As explained in [2], the models 

devised for this paper take the form of linked construals [17], rather than discrete programs, and give 

support to match McCarty’s dictum [9:27]: "computational models, however finely perfected, are better 

understood as temporary states in a process of coming to know rather than fixed structures of knowledge". 

 
3.3. Morals for the Musical Analyst and Model-Builder. The idealized concept of music, inherited 

from the ancient Greeks, suggests a relationship between mathematics and music that has a transcendent 

quality. Modern computing technology may, through its apparent emphasis on formal musical syntax and 

the digitization of sound, promote an abstract view of music as comprehensively captured by a 

mathematical specification. In reality, mathematical representations of music illustrate a relationship 

between form and content that has great complexity and subtlety. Computing technology is most 

significant because it enables us to model this rich and ever evolving relationship interactively – so more 

vividly and dynamically than was possible in the past. In our enthusiasm for interpreting music in 

mathematical terms, we should not lose sight of the pragmatic considerations that allow us to match 

musical compositions to abstract structures (such as the coincident approximate equality of 3/2 to the 

power 12 and 2 to the power 7, and the need to discount the creative impulses that inspire composers to 

deviate from conventional relationships).  Nor should we be misled into supposing that model-building 

with computers commits us to imposing formal mathematical models on music. Mathematics, music and 

modelling are all activities that derive their creative essence from relationships between formal patterns 

and experiences that are always fluid and open to negotiation. This flexibility and openness should be 

reflected in the educational and technological support that is provided for them. 
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