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Abstract

Image based rendering techniques allow reconstruc-
tions of a scene from an arbitrary viewpoint, given
views of the scene. In this paper a locally planar
representation of the scene structure is presented,
where each block of pixels in the input images is
assumed to correspond to some patch of an object’s
surface. A multi-resolution particle filter method
of estimating the position and orientation of these
patches is described. This method offers fast com-
putation without sacrificing accuracy. The esti-
mated patches often include a significant amount of
redundant information. We present an algorithm for
identifying this redundancy and producing a com-
pressed data set. Finally we introduce a simple,
fast, algorithm for generating reconstructions of the
scene. Results on both synthetic and real data sets
are presented to demonstrate the effectiveness of
our techniques.

1 Introduction

Image based rendering is an increasingly important
field, and the focus of our work. The goal is to
synthesise novel views from images of a scene or
object, typically without any geometry information.
It is the lack of additional information, coupled
with the desire for artefact free reconstructions, that
makes image based rendering a challenging prob-
lem. The ease of data capture is what makes the
field so appealing. The most common approaches
derive from modelling the plenoptic function [1] via
some form of image warping [3, 12, 11] and from
geometry estimation approaches such as space carv-
ing [7, 4] and Patchlets [9].

The simplest image based rendering approaches,
such as the light field [6], often fail when the scene
geometry is fairly complex. This is the case for
most scenes of interest, so they are frequently let

down by their lack of information on the scene ge-
ometry. Geometry estimation approaches often rely
on a number of assumptions about the structure of
a scene and thus cause issues during the reconstruc-
tion phase. Space carving approaches, for exam-
ple, rely on the scene being Lambertian and objects
convex whilst image warping from depth maps suf-
fers from all of the common problems associated
with forward warping such as poor interpolation
and holes. We wish to estimate scene structure in
a context that will help alleviate many of these is-
sues.

Estimating the structure of a scene from two or
more views, separated either in space or time, is a
fundamental problem in vision. It is the estimation
of structure from many spatially separated views
which we are concerned with in image based ren-
dering, although temporal information may provide
useful information too: see section 8, Conclusions
and Future Work.

Algorithms for estimating the structure of a scene
from multiple views are invariably based on an un-
derlying model of the scene geometry and imaging
geometry. For example, block based disparity es-
timation assumes that each P x P pixel block of
one image is transformed by a simple translation
into other images of the same scene. Other tech-
niques assume that each P x P pixel block under-
goes some more general transformation into other
images. However, because these local methods do
not explicitly reflect the geometry of scene structure
and projection, they do not scale well to multiple
cameras.

In [13], optical flow constraints in each view are
related to the parameters of an icosahedron mesh.
By solving for the parameters of this mesh using
least squares, a polygon model of the object is con-
structed. This algorithm explicitly models the shape
of an object, and the projective imaging geometry
of the capturing cameras, but it makes assumptions



about the quantity and topology of the objects in the
scene under inspection.

The algorithm presented in this paper also mod-
els perspective imaging geometry, and in addition
provides a very general model for surfaces present
within a scene. It is assumed that each P x P block
of pixels in an image corresponds to some quadri-
lateral patch of a surface in the scene, which is pa-
rameterised by its position and orientation. There
are conditions under which this assumption may not
hold (for example, if the block contains a curved
surface, or two separate surfaces), but at some scale
of image, the assumption seems reasonable. This
general surface model allows for the representation
of multiple objects of arbitrary topology.

For the estimation of model parameters, multires-
olution techniques have been widely applied in im-
age processing in areas such as motion estimation
[14] and image segmentation [16]. Using a mul-
tiresolution representation of an image, coarse esti-
mates may be computed at relatively little cost from
the lowest resolution image. The results for a given
image region are then propagated to the next highest
resolution and refined.

Such multiresolution algorithms have two benefi-
cial properties for the estimation of planar patch pa-
rameters. They are computationally efficient, which
is important when searching for model parameters
in a high dimensional space, as here. In addi-
tion, lower resolution results act as a smoothness
constraint on higher resolution results. Thus, even
though for the sake of generality neighbouring pla-
nar patches are assumed to be independent (i.e. they
are not assumed to be part of a continous surface),
any multiresolution algorithm will favour smooth,
continous surfaces over discontinous ones.

Often, probabilistic methods are applied in or-
der to determine the relative weighting of lower
resolution estimates to higher resolution results,
in the final output of a multiresolution algorithm.
For example, multiresolution Markov random fields
[16] have been applied to image segmentation and
Kalman filters used across scale to estimate motion
and disparity [14].

In recent years, with increasing computing power
and memory size, the particle filter has become a
popular alternative to the Kalman filter. By approx-
imating the distributions of parameters with a set of
samples, and respective weights, the range of prob-
lems to which recursive parameter estimation can

be applied has been extended to include those sys-
tems where the relationship between the model pa-
rameters and measurements is highly non-linear.

In this paper the model and its parameterisa-
tion are outlined in section 3, followed by the de-
scription of a particle filter used to estimate the
parameters to this model in section 4. We intro-
duce a greedy algorithm for eliminating redundancy
in the resulting patch estimates in section 5 and
describe our algorithm for image based rendering
from patches in section 6. Finally, the results of ap-
plying these algorithms to to two synthetic and one
real data set are presented in section 7.

2 Input

A camera array is used to take a set of images of a
single scene. Each of the N cameras is assigned an
index n from the set of all indices N' = {1... N}.
Each camera has an image associated with it, with
the set of all images being

T={hL..In}. (1)

Each image is also decomposed as a Gaussian pyra-
mid with K levels G, = {In1 ... Ink} from low-
est to highest resolution 1... K (ie. Inx = I,).
The full set of Gaussian pyramids being

G={Gi...Gn}. )

Each camera n also has a position associated with
it, the full set of positions being

C={ci...cn}. 3)

Finally, each camera has a projection matrix associ-
ated with it, the full set of matrices being

M={M .. .My}. @)

In the case of synthetic test data sets, the positions
and orientations of each camera are known a priori,
and in the case of the real data sets, these matri-
ces are estimated using standard camera calibration
software [15].

In addition, as input to the algorithm, each cam-
era n has a set of neighbouring cameras in the array,
whose indices shall be denoted A,, C .



3 Model Parameterisation

Every Gaussian pyramid level, for every image is
partitioned into P X P blocks. Assuming all the
input images are of equal size, each camera’s pyra-
mid level k, will have the same number of blocks,
By,. The blocks are numbered in row order within
a given camera and pyramid level, with m denot-
ing this index in the general case. In summary,
each block may be indexed by its camera, level,
and row order index, n,k,m. It will be con-
venient to define the function f, and its inverse
f~! which maps a block’s row index m, to its
centre pixel (a,b)” and vice versa, (ie. m =
f((a,0)T), f~(m) = (a,b)T. Also we define
g(c,d,m) = f(m) — (P/27P/2)T+ (C,d)T,l <
¢,d < P to be the ¢, d-th pixel coordinate of block
m (e.g. for an 8 x 8 pixel block centred at (32, 16),
g(1,1, £71(32,16)) = (29, 13)).

For a given source camera n with a known pro-
jection matrix M,,, the centre of each block m at
a given scale k, specifies a directional ray 7,5m =
M. (a,b,1)T from the camera through the scene,
where (a,b)” = f~'(m). The quadrilateral patch
corresponding to this block of pixels must be cen-
tred at some point along this ray. We specify the
centroid p’s position

Prkm = Cn + Znkm i 5)
|rnkm|
by its distance z,xm along this ray.

We specify the orientation of each patch, as two
components of the normal vector (Vnkm, Wrkm, 1)
in an Euler frame which is aligned such that
the patch’s centroid is the origin, and ¢, =
@.(0,0,1),a > 0, i.e. the z-axis is aligned with
the line from the centre of the patch to the source
camera’s position. This representation serves two
purposes: first, no matter what vy, g, Wnkm 1S cho-
sen, the patch can never become oriented such that it
is perpendicular to the ray from the camera, but may
only asymptotically approach perpendicular; sec-
ondly, the relationship between vy, Wrkm, and
the region to which the patch reprojects in neigh-
bouring cameras, is approximately linear. This con-
tributes significantly to the stability of the proposed
algorithm.

The complete state vector at resolution k, con-
sists of all three parameters z, v, w, for each block,
in row order, and for every camera:

zE = ( Z1k1, V1k1l, Wikl, - - -

Z1kBj» V1kBy » W1kBy s« -

T
ZNkBysUNkBys WNEB) - 6)

The estimation of such a large state vector would
almost certainly prove intractable for any reason-
able size array. Firstly, therefore, we assume that
each camera n’s blocks are independent. This al-
lows us to run N separate particle filters, each esti-
mating the state vector:

Tnk = (anh Unkl, Wnkl, - -

)

Secondly, when updating each block within an

image using the particle filter, we assume that they

are independent of each other, and so we can simply

update the Bj, separate state vectors, with parame-
ters:

T
Tnkm = (an'nu Unkm, wnkm) . (8)

Unfortantely, whilst it may now appear possible
to implement the estimation of x; as N X By, inde-
pendent particle filters, the dependency introduced
between blocks between resolutions (i.e. the predic-
tion part of the algorithm), prevents us from imple-
menting the estimation process for a given camera
as By separate particle filters. However, it is still
possible to take advantage of their independence
within levels by performing the update step of the
particle filter algorithm separately. Thus, the esti-
mation of x; may be implemented as N lots of By,
pseudo-independent particle filters.

4 The Particle Filter

The particle filter is a recursive parameter estima-
tion algorithm. The prior distribution of param-
eters at each step is updated to the posterior dis-
tribution given some measurement which has been
made. The prior distribution at the next step is then
predicted from this posterior. The particle filter rep-
resents the prior and posterior distribution as a set of
samples (particles), {s/}7_,, and weights for each
particle {w}_;.

It has been noted that certain particle filters, such
as the sequential importance sampling (SIS) filter,
perform poorly when estimating static parameters

T
-3y ZnkBy» UnkBy» wnkBk)



(and across scale we do expect the parameters to re-
main static), as in such cases the problem of particle
degeneracy is acute [2]. So, the particle filter cho-
sen is the sequential importance resampling (SIR)
filter, which resamples the posterior distribution at
each step. Resampling is a costly stage in this al-
gorithm, and so the resampling is performed simply
by estimating a Gaussian approximation to the pos-
terior, and drawing new samples from the resulting
normal distribution. This is known as a Gaussian
particle filter [5], and dictates that we maintain not
only the mean parameter estimate for each patch,
Tynkm, but also a covariance matrix estimate P, g -

4.1 Update Stage
4.1.1 Measurement Model

We define a function h(n, n', nkm, (a,b)”) as fol-
lows: a given block parameter k., specifies a
surface patch centroid ppim as per equation (5),
and a normal vector of the surface patch. By in-
tersecting the pixel ray defined by the pixel (a,b)”
with the plane defined by this centroid and nor-
mal, we obtain a point in 3-d space. We can now
project this point into any camera n’ using the ap-
propriate projection matrix M,,/, and sample the
pixel intensity at that point. This is the value of
h(n,n', Tnim, (a,b)7).

For a particular camera n, and a particular block
m, the measurement Y, k., at each step & in the al-
gorithm is a matrix containing pixel intensity val-
ues of that block, in the source image n, with
YTEEZ], 1 < a,b < P being the grey level inten-
sity of the a, bth pixel of the block. Now it is pos-
sible to obtain a fitness measure for the parameter
Tnkm by comparing the block texture Y, x,, with
the pixel intensities of the reprojected patch inten-
sities obtained through the function h(.). For the
reprojection into a camera n’, the fitness measure e
is

e(Ynk’rrm Tnkm, Tll) - (9)

n7n/>xnkm7g(a7 b7 m)l (10)

Z v —

Assuming this fitness measure to be normally dis-
tributed, zero mean, we define the measurement
likelihood as the sum of Gaussians

Z N nkmyxnkmyn) 077'nkm)7 ()

|N|n€N

over each camera n’ which is adjacent to camera n.
Tkm 18 the expected measurement noise and is set
empirically.

4.1.2 Update Algorithm

At the start of each step (resolution) in the Gaussian
particle filter algorithm, we have an estimate of the
state vector Z,, from the previous step, as well as
a covariance matrix P,,. We present here the algo-
rithm to estimate a single camera n’s patches. Each
patch is updated independently as follows:

Function UpdatePatches( Znk, Por )
Xnk = Partition( Znk, Pnk )

Xk =0 -
For (ZTnkm, Prkm) € Xnk -
(Tnkm, Pnkm) = UpdatePatch (Znkm; Prkm)
Xr = Xk U (Znkm, Pnkm)
EndFor
Tk, Pnk = Recombine ( X,k )
EndFunction

Function UpdatePatch( Znkm, Pnkm )

Draw S samples {SE]}iszl ~ 7(Znkm, Prikm)

For i€ 1.8
wlil = PWnkm ‘q[l])N(S[i]"ink7n*Pnkm)
w(s5 i nkm s Prkm)
EndFor

Tnkm = Z plils

Progm = ZUA)[L](S; - xnknL)(ng]

=1

T
— Tnkm)
EndFunction

where @[ = w[”/z i and where 7(.) is
the importance sampling dlstrlbutlon. In practice,
this is commonly equal to the prior distribution. The
function Partition simply splits the mean vec-
tor and covariance matrix for all blocks belonging
to camera n, into a set containing all the individual
patch mean vectors and covariance matrices

Partition(xnk, Pnk) = {(a:nkl, Pk,
12)
with Recombine = Partition™' performing

the inverse operation.
4.2 Prediction Stage

4.2.1 Process Model

In moving from a lower resolution to a higher res-
olution, each source block k — 1, m, is subdivided

(InkBk ) PnkBk)}



into four blocks. Assuming that there are four map-
ping functions t[ll,t[2]7t[3],t[4], which each take
a block £ — 1,m and map it to unique row in-
dex at resolution k, and that there is a function
Split (Tn,k—1,m,J) Which calculates the correct
parameters for each of the four split patches j €
1...4,then

wkyt[j](kam) = Split(xn,kfl,m7j) 1 S] < 47
(13)

Thus, the process model is simply

P(xk-,t[j] (n,k—1,m) |Tn,k—1,m) =

N (T, 4131 (k—1,m)3 SPLLE(Tnk—1,m, J), Qnkm). (14)

If a patch is found to be at a surface disconti-
nuity, where neighbouring patches are part of two
distinct surfaces or objects in the scene, it should be
expected that once the patch is subdivided, a subset
of the children will belong to one surface, and the
remainder to the other surface. For such patches, the
process noise (with covariance Qnkm) is expected
to be relatively high.

Unfortunately, in linking the process noise to
the discontinuity of the surface, the patches are no
longer independent and cannot be updated as such.
The solution employed is to update each patch in-
dependently without the addition of process noise,
followed by the addition of the global process noise
Qnt = q(xnk), to the state covariance matrix
Pox = P, + Qni, where q(2,x) is some appro-
priate function linking the discontinuity of patches
to the process noise.

4.2.2 Prediction Algorithm

Function PredictPatches( Zp,k—1,Pn,k—1 )

Xn,k—1 = Partition(zn,k—1,Pn,k—1)
Sk

nk

For (Tm k—1,m>Pn.k—1,m) € Xn k-1

s
= _ 1 [,7]
Tk, flil(k—1,m) = § Z‘*k

4 j—
Pn,k,f[j](k—l,m,) -

S
éE(SE]] - in,k)f[j](k_lym))'
. (SLM] - in,k,f[j](k—l,nt))T
Xokm j B _
X"km u (wn,k',f[j](kfl,m,)’ Pn,k'.f[j](k'—l,'m))
EndFor
EndFunction

5 Simplification

The inherent redundancy in the image based rep-
resentation results in an oversampling of the patch
data. To improve the performance of compression
and reconstruction algorithms we wish to be able to
identify and remove redundant patches. We formu-
late the problem as identifying a subset of patches
such that the input images, Z = {I1 ...In}, may
be reconstructed to within some error bound, €. Let
Sn = 1... Bk be the set of patches for all blocks
at the finest resolution of image for camera n, and

let
N
S=J sn
n=1

We choose to reformulate our problem as finding
the smallest subset S’ of the patches S that can re-
construct the original images to within some error
bound e. That is to say we wish to find

5)

argmin }S'| (16)
S/

subject to

1
C?’L

M=
3B
uE

Il
A
£
o
m
~
3

a7

X} jom = PredictPatch( @ k—1,ms Pnk—1,mWhere C is a normalising constant equal to the

Kt = XU X
EndFor
ink,PJLk = Recombine ( X;k )
an = ‘Z(ink)
Pnk = PT,LIC + Qn,k
EndFunction

Function PredictPatch( Tn,k—1,m)Pn,k—1,m )

number of images multiplied by the number of pix-
els in each image. Unfortunately finding an optimal
solution to this problem is NP-Hard [10]. Indeed,
finding any solution is a challenging problem due
to the time and memory constraints imposed by the
volume of data. We introduce a greedy (but sub-

RO . . . . .
Draw samples {s;_;}i_y ~ N(@nk—1,m, Pn,k—1,mdptimal) algorithm for selecting patches to go into

For jel...4
For i €1...8
o9 eprie(af? 1, )
EndFor

S’
Consider each block of pixels independently and
identify the patches that can reconstruct a single

h(n', n, -Tn;(nu (a> b)) - [i(a7 b)Hz S



Figure 1: Output patches for teddy (far left), for three resolutions.

block to within the mean squared error threshold
€. Begin with S’ = (). Then, at each iteration, we
choose a patchin S — S’ to insert into S’ that recon-
structs the most blocks within the threshold € that
have not already been reconstructed by S’. Con-
tinue until all image blocks can be reconstructed by
S’. Typically we use a block size of 2 x 2 and a
threshold, €, of 0.01 (20db) since the greedy algo-
rithm will normally find a solution around an order
of magnitude better than the requested quality.

6 Reconstruction

Each patch is modelled as a Gaussian centred on the
patch centroid. The covariance is estimated using
the spread of pixels used to compute the patch and
the variance provided by the patch estimation pro-
cess. In practice we treat the estimated variance in
the depth parameter of the patch as the variance in
the normal direction and use a symmetric variance
parallel to the normal just large enough to cover the
original image block. The reconstruction algorithm
proceeds as follows

e For each pixel in the reconstruction find the
set of patches whose Gaussian model is above
some threshold parameter, 7, at the intersec-
tion between the reconstruction ray and the
plane defined by the patch.

e Find the closest patch to the reconstruction
camera, and take all those patches that are
within some fraction, zy, of the depth varia-
tion of the scene (typically between 1% and
10%).

e Perform a weighted blend between the clos-
est patches, weighting each patch (i, j) pro-
portionally to one over the angle between the
vector to the reconstruction camera and to the
source data camera. This strengthens the influ-
ence of patches observed from near the recon-
struction viewpoint.

Our implementation makes extensive use of the
graphics hardware to rapidly compute the recon-
struction. For each patch we send a quadrilateral
that bounds the patch to the graphics card together
with a centre point, normal, and the perpendicu-
lar and parallel variance estimates for the patch.
A combination of vertex and fragment shader pro-
grams then execute to threshold the patch at a pixel
level and compute the necessary blending steps.
The algorithm easily computes in real time on high
end graphics hardware.

7 Results

To evaluate the performance of the structure estima-
tion algorithm, a set of rendered images was created
of two synthetic models, Teddy and Lucy which
both have challenging aspects for any structure es-
timation algorithm. Each data set consists of an
8 x 8 array of images rendered from a square array.
Ground truth patches for each, were generated from
the models using a least squares fitting algorithm.
Four levels of pyramid were used, with an 8 x 8
block size. The mean squared error in position and
orientation compared to ground truth, for both data
sets, is shown in the table below. The estimates for
Teddy are compared with our best previous results
from [8] which uses an optimization algorithm at a
single resolution to estimate patch parameters.

Particle Filter Simulated Annealing

Model Z v w Z v w
Teddy | 0.08 | 0.04 | 0.06 162 | 034 | 0.37
Lucy 028 | 0.10 | 0.12 | N/A | N/A | N/A

The resulting patches for a single source camera are
shown for the Teddy data set in figure 1. In addi-
tion, the patch estimation algorithm was run on data
from our real camera array, with the resulting patch
centroids shown in figure 3 (c).

Figure 7 shows a plot of the reconstruction PSNR
of the images verses the fraction of patches retained.



Figure 3: (a), (b) full and simplified patches from the ‘Lucy’ data set. (c), (d) full and simplified patches

from the ‘Andy’ data set. € was set to 0.01.

Reconstruction PSNR vs. the fraction of patches retained

Lucy
—+— Andy
—e— Teddy|

0 01 02 03 04 05 06 07 08 09 1
Fraction of Patches

Figure 2: Input Image Reconstruction PSNR vs.
Fraction of Patches Retained

As one would expect retaining more patches pro-
duces better reconstructions. It is also worth noting
that the least planar data sets require more patches
to achieve a similar reconstruction quality — sim-
ply because more patches are required to adequately
represent the surface. This is most pronounced in
the ‘Andy’ data set, where the near planar back-
ground was not estimated and so the object is sig-
nificantly non-planar. The PSNR was computed as

PSNR = 101log, (18)

=)
MSE
where MSE is the mean square error of the optimum
reconstruction

MSE_éiZZ
1= x Y

Qi(z,Y,85,6) = | fiki(z,y) —

min Qi (z,y, s;,x) (19)

S5, kE /
Ii(z,y)ll5 (20)

Figure 3 shows the results of the simplification for
a specific value of e.

Figure 4 shows the results of reconstructing from
a viewpoint not found in the original data set.

8 Conclusion

It has been shown that it is possible to estimate
scene geometry, given an array of images, using a
particle filter across scale. By employing a suit-
able parameterisation, measurement model, process
model, and choice of particle filter, the resulting es-
timates are both accurate and quick to compute. The
results are shown to be more accurate than our pre-
vious estimates, when compared to ground truth.
By using the resulting estimates together with the
original image data, we have shown it is possible to
produce accurate reconstructions of the scene from
any viewpoint. As part of future work, it is hoped
to extend these techniques to video sequences, in
which patch estimates for subsequent frames will
be informed by previous frames, resulting in further
increases in both accuracy and speed.
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Figure 4: (a), (c) novel viewpoint reconstructions for the full data. (b), (d) novel viewpoint reconstructions
for the simplified data.



