
http://wrap.warwick.ac.uk/

Original citation:
Yang, Shanshan, (Researcher in computer science) and Joy, Mike (2006) Approaches
for teaching prolog to beginners. In: 7th Annual Conference of the HEA Network for
Information and Computer Sciences, Dublin, Eire, 29-31 August 2006 pp. 106-110.

Permanent WRAP url:
http://wrap.warwick.ac.uk/61585

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61585
mailto:publications@warwick.ac.uk

 106

APPROACHES FOR TEACHING PROLOG TO BEGINNERS

Shanshan Yang
Department of Computer Science

University of Warwick
Coventry, CV4 7AL

UK
 Shanshan.Yang@warwick.ac.uk

Mike Joy
Department of Computer Science

University of Warwick
Coventry, CV4 7AL

UK
 M.S. Joy@warwick.ac.uk

ABSTRACT
Prolog is a very different language compared with
procedural or object-oriented languages, and
developing a Prolog programming mindset is a
challenge for many novices. In this paper, we
consider a number of teaching approaches which
instructors use to deliver basic ideas about Prolog
to novices. We classify these approaches into three
categories – “logic based”, “declarative features
based” and “programs based”. Using this
classification as a framework, we describe the
prerequisite knowledge required for students to
learn Prolog effectively. Finally, we describe how
the choice of approach has changed over the past
25 years.

Keywords
Prolog, teaching methods, Logic, declarative
programming

1. INTRODUCTION
Prolog is a declarative language, and as such is
unlike procedural and object-oriented languages. It
superficially appears easy to learn because it has
simple program constructs and syntax [1]. However,
developing a suitable programming mindset is a
challenge for many novices, especially for those
already schooled in the procedural or object-
oriented paradigms [2,3,4]. It is important for a
teacher to be aware of the factors [5,6,7,8] affecting
students who are learning Prolog, and to be
sensitive to the difficulties [9] students may
encounter.

There is an old adage ‘Well begun is half done’,
which reminds us the importance of the starting
point in a learning process. In the context of
learning Prolog, there are a number of approaches
which are used for teaching novices during the

initial learning phase. We are interested in
establishing what sorts of Prolog teaching
approaches are currently in use, what prerequisites
are required for those approaches, and how they
have been used in the past. In order to pursue this
goal, we analysed a comprehensive selection of the
Prolog textbooks currently available.

2. METHOD
The teaching approaches we have identified are
based on the contents of 14 introductory Prolog
textbooks. These textbooks are all available within
the UK, either through bookshops, or through our
University library. Based on publicity material (such
as cover sleeves) and module web sites most of
them have been highly recommended by Prolog
instructors in UK universities, and we have
confidence that the approaches taken by the
authors are therefore valid. The books span 25
years, since the first publication of a Prolog textbook
in the early 1980’s by Clocksin and Mellish [10] to
the latest written by Bramer in 2005 [11].

For each textbook, we scrutinized the first few
chapters in order to identify the teaching approach
used, and also (where appropriate) material from
the editors’ prefaces and from published reviews.

A qualitative analysis of these data was then
applied to classify the teaching into a number of
distinct approaches. We present the categories, and
discuss how the classification is related to the
teaching content, and how it may help to build the
Prolog mindset. We then discuss how the choice of
approach has changed over time.

3. PROLOG TEACHING OVERVIEW
Before we start to discuss the teaching approaches,
we should consider at what learning stage the
approaches are applied, and what content is
covered.

We claim that learning Prolog can be divided into a
number of distinct phases. The first phase links
novices from different backgrounds into the Prolog
community. The following phase extends students’
knowledge to cover most or all of the language. A
third phase involves developing programming

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
© 2006 Higher Education Academy
Subject Centre for Information and Computer Sciences

 107

techniques appropriate to the paradigms used by
the language. There may also be an additional
phase, containing material related to the application
of Prolog programming skills to distinct application
domains, such as AI or databases.

The first phase naturally happens at the start of
Prolog learning process, the second and third
phases may take place either consecutively or
simultaneously as the leaning process moves
forward, and the fourth phase usually follows the
second.

There are three entities involved in Prolog
programming – the human programmer or user, the
Prolog program, and the Prolog system – and there
are roles for each of them. The programmer
develops a program, which consists of a series of
facts and rules which is stored in the system’s
internal database. The programmer can query the
database and wait for system to respond to the
query. The system tries to satisfy each query by
trying to deduce a response from the known rules
and facts and return one or more answers.

There are some features in these processes which
are specific to Prolog. The programs only specify
the data items and the relationships between rules
and facts – the program contains no algorithm to
solve the problem. A Prolog program is declarative.
The Prolog system determines the algorithm at run
time to solve the problem by making deduction from
the existing facts and rules [12].

Figure 1: Relations between entities

Figure 1 illustrates the three entities and the
relationships between them. The rectangles in the
figure represent the three entities, text in italics
describes the roles performed by the entities, and
the arrows and lines show the relationships
between them.

4. APPROACHES CLASSIFICATION
Prolog is a declarative logic language, and a
number of different approaches to the delivery of
basic Prolog ideas can be used, which can help
learners build a Prolog mindset at the beginning of
learning process. We have identified three
categories of approach: logic based, declarative
features and programs based. They are
summarised as follows.

4.1 Logic based approaches
Logic based approaches are characterised by
initially introducing concepts of mathematic logic
and/or logic programming. Prolog is the best known
logic programming language, which has first-order
predicate logic as its theoretical foundation [13,14],
and such an approach ensures consistency with its
theoretical roots.

Methods which focus on mathematical logic cover
first-order predicate logic, and map it to the Prolog
language [13]. Authors who use a logic
programming based method describe Prolog as a
type of logic programming, and initially demonstrate
the features that might be common to all logic
programming (such as program constructs) followed
by Prolog-specific features (both syntactic and
semantic) [15,16]. Maier and Warren [17] use a
method targeted at experienced learners which
introduces the fundamentals of logic programming
through viewing two interpreters – Proplog and
Dataplog. These are used to focus on the formal
semantics of logic programming, based on the ideas
of zero-order logic and first-order logic, as the later
one forms the foundation of Prolog. Lucas’ method
[12] is to combine a logic based approach with a
program-based approach, and covers not only
logical deduction and logical statements but also
describes how to build up hands-on experience of
interacting with the Prolog interpreter and handling
programs.

4.2 Declarative features approaches
The second approach involves introducing the basic
ideas of Prolog by viewing a number of its
declarative features. A declarative language is a
high level language [18] because instead of
supplying instructions to the computer, the
programmer supplies a formal specification of the
problem to be solved and leaves the computer to
decide how to solve it. Prolog as a declarative
language includes a combination of declarative
features [13], including knowledge specification and
descriptive style programming, and contains both
declarative and procedural semantics. These
features can be covered in different ways while
teaching. Some authors using models to describe
Prolog such as specification tools [18, 19], database
containers [13,15,20,21] and problem solving
machines [22]. Some authors describe the
relationships between Prolog programs and the
Prolog system [12], whereas others present
Prolog’s declarative nature by describing problems
using objects and relationships between them
[23,24].

4.2.1 Specification tool based
This sub-approach involves viewing Prolog in its
role as a specification tool, used to write
specifications of problems and solve them. The

Human as:

Programmer or User

Prolog Programs:

Store data, relations

Prolog System:

Search Answers

Design, Code Query

Answer

Based

 108

methods normally first cover how to write a problem
specification using Prolog, followed by materials
about how to execute such a specification [18,19].

4.2.2 Database based
This sub-approach uses Prolog to set up and query
a database. Initially using a database of facts, the
approach then describes how the database can be
augmented by more complex relation rules. The
Prolog execution model is introduced while viewing
the database queries [13, 15, 20, 21].

4.2.3 Problem solving based
Prolog is a problem solving machine, which can
represent and solve problems. This sub-approach
covers how a problem is described as a Prolog
program, and how the Prolog system applies the
knowledge related to this problem, to find the
solution to the problem automatically [22].

4.2.4 System based
In this sub-approach, an overview of the Prolog
system is used to introduce the key Prolog features.
This first provides the relationships between Prolog
programs and the Prolog system, and then shows
how to interact with the Prolog system using
different programs. Some logic concepts are also
covered [12].

4.2.5 Known facts and relations based
This approach normally describes how to identify
objects and relations from real world problems, and
identifies basic elements of Prolog that can be used
to describe and manipulate those objects and
relations [23, 24].

4.3 Program based approaches
These approaches introduce the basic ideas of
Prolog by showing the student sample programs.
This serves two purposes: firstly, the student sees
the program constructs contained in the programs,
and secondly, is able to view the interactions
between the programmer, the program and the
Prolog interpreter. By viewing programs, learners
can quickly get a feel of what Prolog programs look
like, the components and structure of programs, and
the syntax and technical vocabulary used to
represent these components. By viewing
interactions between that program and the Prolog
system, learners can quickly get a feel of what role
a Prolog program plays within the programming
environment and how it is different from other
languages’ programs they have met before.
Some authors combine the two purposes [11, 25].
For example, Merritt [25] first provides an example
of an adventure game with a natural language

interface. Without describing its code in detail, he
presents a sample run of this game with the
interactions of the user and the Prolog interpreter.
Then he presents and explains simple examples
(commencing with a short two-line program), which
are later linked back into the original motivational
adventure game. Bramer [11] uses a short simple
program to illustrate the terminologies that are
commonly used in Prolog, both for the program
framework and for data structures. Lucas [12]
combines this approach with the logic based
approach which has been mentioned before. He
covers logical deduction and logical statements
before describing how to build up hands-on
experience of handling programs.

4.4 Approaches Evaluation
 Entities

Categories

Prolog

Program

Prolog

System

Human

Logic
Based

Logic
statements

Performing
logic

deduction
None

Declarative
Feature
Based

Database,
specification

Problem
solving

machine

Describe
problem,

query

Program
Based

Source files
with data and

relations

Prolog
interpreter

Develop,
handle

program

Figure 2: Relations between classification and entities

Figure 2 above illustrates how each of the three
teaching approaches describes or views the three
entities which are involved in developing and using
Prolog software. The relationships between the
approaches and the entities also suggest which pre-
requisites are required for each of the approaches,
such as abstract theory and related academic
knowledge of computer science. For understanding
the roles relative to logic based approaches in the
second row of the table, knowledge of first order
predicate logic would be required. For
understanding the roles in the declarative feature
based approach, a student would require
knowledge of databases or program specification,
which are topics which would normally be delivered
elsewhere in a Computer Science course.
Understanding the roles in the program based
approach just requires basic familiarity with using
computer systems.

 109

5. DEVELOPMENT OF APPROACHES
After discussing the approaches which are currently
available in textbooks, in this section we discuss the
development of the choice of teaching approach
over time.

We studied 14 textbooks, which contained 18
instances of the approaches we summarised here
(since some textbooks have used more than one
approach).

Using logic based approaches requires related
abstract theory, and the Prolog mindset is
developed abstractly. Using program based
approaches requires practical experience, and the
mindset is developed concretely. Approaches which
are based on declarative features require both
theoretical and practical knowledge – for instance,
understanding databases cannot be done without
related database theory and practical experience.

Table 3 illustrates the approaches taken by the
textbooks and the years of publication. This shows
that the logic based approaches were widely used
during the 1980s and early 1990s, whereas
declarative based approaches have been popular
throughout the 25 years under consideration. The
early use of specification tools is perhaps a
relatively abstract type of declarative approach, in
contrast to the concreteness of the more recent
application of known facts and relations. The
program based approach was not used before
1990, but continues to be an approach favoured by
recent authors.

So we see a trend in which the approach used to
introduce students to Prolog has become more
practical and concrete, and hence less theoretical
and abstract.

6. CONCLUSION
We have presented a classification of the
approaches which textbook authors have adopted
for introducing Prolog to novice students – logic
based, declarative features based and program
based. We have identified the prerequisites required
for those approaches, and we have discussed the
how the approach taken has become more concrete
during the 25 years through which Prolog textbooks
have been published.

7. REFERENCES
[1] Hong J. Guided programming and automated

error analysis in an intelligent Prolog tutor, Int.
J. Human-Computer Studies. 61, 505-534
(2004).

[2] Kumar A. N., Prolog for imperative
programmers, The Journal of Computing in
Small Colleges. 17, 167-181 (2002).

[3] Antonio M. L. Jr., Supporting declarative
programming through analogy, The Journal of
Computing in Small Colleges. 53-65 (2001).

[4] Bieliková M. and Návrat P., Learning
programming in Prolog using schemata, ACM
SIGPLAN Notices. 33, 41-47 (1998).

[5] Bergin S. and Reilly R., Programming: factors
that influence success, ACM SIGCSE Bulletin.
37(1), 411-415 (2005).

[6] Rountree N., Rountree J., Robins A. and
Hannah R., Interacting factors that predict
success and failure in a CS1 course, ACM
SIGCSE Bulletin 36(4), 101-104 (2004).

[7] Lewis T.L., Chase J.D, Pérez-Quiñones M.A.,
and Rosson M.B. The effects of individual
differences on CS2 course performance across
universities, ACM SIGCSE Bulletin 37(1), 426-
430 (2005).

 Years

Approaches

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

Logic Based

Specification Tool
Based

Database Based

Problem Solving
Based

System Based

Declarative
features

Known Facts and
Relations Based

Programs Based

Figure 3: Textbooks, teaching approaches and years of publication

 110

[8] Lahtinen E., Ala-Mutka K. and Järvinen H.-M., A
study of the difficulties of novice programmers,
ACM SIGCSE Bulletin 37(1), 14-18 (2005).

[9] Newmarch J., A plan-based approach to Prolog
recursion, ACM SIGCSE Bulletin 25(2), 12-18
(1993).

[10] Clocksin W.F. and Mellish C.S., Programming in
Prolog: Using the ISO Standard. Springer-
Verlag (1981).

[11] Bramer M., Logic programming with Prolog.
Springer-Verlag (2005).

[12] Lucas B. Mastering Prolog. UCL Press (1996).

[13] Malpas J, Prolog: a relational language and its
applications. Prentice-Hall International (1987).

[14] Horváth T., Sloan, R.H. and Turán G., Learning
logic programs by using the product
homomorphism method, Proc. 10th Annual
Conference on Computational Learning Theory,
10-20 (1997).

[15] Clark K.L. and McCabe F.G., Micro-PROLOG:
programming in logic. Prentice-Hall (1984).

[16] Sterling L. (2nd), The art of Prolog: advanced
programming techniques. Cambridge
University Press (1994).

[17] Maier D. and Warren D.S., Computing with
logic: logic programming with Prolog. The
Benjamin and Cummings (1988).

[18] Dodd T., Prolog: a logical approach. Oxford
University Press (1990).

[19] Rogers J.B., A Prolog primer. Addison Wesley
(1986).

[20] Marcus C., Prolog programming: applications
for database systems, expert systems, and
natural language systems. Addison Wesley
(1986).

[21] Bowen K. Prolog and expert systems. Mc
Graw-Hall International (1991).

[22] Konigsberger, H.K. and Frank W. G. M., Prolog
from the beginning. McGraw-Hill (1990).

[23] Bratko I. (3rd), Prolog programming for artificial
intelligence. Addison Wesley (2001).

[24] Clocksin W.F. and Mellish C.S., Programming in
Prolog: Using the ISO Standard (5th edition).
Springer-Verlag (2003).

[25] Merritt D., Adventure in Prolog. Springer-Verlag
(1990).

