
http://wrap.warwick.ac.uk/

Original citation:
Boyatt, Russell and Sinclair, Jane (2007) Investigating post-completion errors with the
alloy analyzer. Coventry, UK: Department of Computer Science, University of Warwick.
CS-RR-433

Permanent WRAP url:
http://wrap.warwick.ac.uk/61599

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61599
mailto:publications@warwick.ac.uk

Investigating post-completion errors with the

Alloy Analyzer
Technical Report CS-RR-433

Russell Boyatt and Jane Sinclair

University of Warwick

United Kingdom

Abstract

Post-completion errors are a particular kind of error found in interact-
ive systems. This type of error occurs through the incorrect sequencing
of goals and sub-goals, when the primary goal is achieved before all of the
prequisite sub-goals have been satisfied. This paper shows how we can
check for this property in a formal model of an interactive system. Spe-
cifically, we suggest that lightweight formal methods, such as the Alloy
structural modelling language, are particulary well suited for this task.
As a case study we develop two example interactive systems. The first is
the ubiquitous chocolate machine, where both the chocolate and change
must be delivered to the customer. The second model is of a typical cash
machine and explores the problems of returning the cash and the cash
card in the correct order. Both of these models are developed in the Alloy
language.

Also available from http://www.dcs.warwick.ac.uk.

1

2

Contents

1 Introduction 4

1.1 Post-completion errors . 4
1.2 Alloy language and the Alloy Anaylzer 4

2 Example: Chocolate Machine 5

2.1 Dissecting the chocolate machine model 6
2.2 Checking for post-completion errors 8
2.3 Extending the chocolate machine 9

2.3.1 Allowing different types of coins 10
2.3.2 Allowing different types of chocolate 10
2.3.3 Purchasing more than one chocolate 11
2.3.4 Inserting more than one coin 12

3 Example: Cash Machine 12

3.1 Initial cash machine model . 13
3.2 Checking for post-completion errors 15
3.3 Revised cash machine model . 16
3.4 Further revisions of the cash machine model 19

A Simple Chocolate Machine 22

B Chocolate machine - different coins 24

C Chocolate machine - different chocolates 27

D Chocolate machine - multiple chocolates 30

E Chocolate machine - multiple coins 33

F CashMachine.als 36

G CashMachine2.als 40

H CashMachine3.als 45

I CashMachine4.als 50

3

1 Introduction

1.1 Post-completion errors

A common error with interactive system is a specific type of behaviour famil-
iar to those who have left their cash card in an ATM after withdrawing cash.
Retrieving the duplicate copies from a photocopier but forgetting to collect the
original documents is another example of the same problem. These types of
errors are known as a “post-completion” errors. The key characteristic of these
errors is that the primary goal is realised before all of the sub-goals have been
satisfied. In order words, we achieve our main objective but, perhaps due to the
sequencing of events, forget to do the items that were before it on the list. Post-
completion errors do not always occur, in that we cannot assume that if they can
occur they will do – most of the time you remember the original documents on
the photocopier plate. However we aim to prevent even the possiblity of these
errors occuring. In general, post-completion errors can be avoided by looking at
sequences of sub-tasks and ensuring they must all occur before the main task at
the end of the sequence. Although it can be trivial to identify some instances of
this error we can make no guarantees without a rigorous formalised approach.
If we can correctly formulate the problem we can use existing formal methods
tools to check for the various interactive errors. The approach we describe in
this paper focuses on the use of a lightweight formal method, namely Alloy. Al-
though we could perform the analysis with a traditional formal method, we are
interested in the lower barrier to entry afforded by lightweight formal methods.
Jackson and Wing [JW96] emphasise the differences between lightweight meth-
ods and a more traditional approach. They characterise the respects in which
a lightweight method will be limited in its scope as: partiality in language; par-
tiality in modelling, partiality in analysis and partiality in composition. The
trade-off here is that a formal basis can be used to provide automatic feedback
in a more focused way in order to direct an ongoing development. Tools can
be used by developers who are not necessarily formal methods experts and may
provide a more “programmer-friendly” interface. Such approaches are likely to
be used much earlier in the development process to explore requirements and to
validate aspects of an evolving specification. We focus here on post-completion
errors as an example property but is chosen only to serve as an example and
our models are not designed solely for any particular property. The models
are general and able to be used to investigate many other properties (e.g. user
interface forgiveness).

1.2 Alloy language and the Alloy Anaylzer

Alloy [Jac06] is a structural modelling language inspired by the state-based
Z notation [Spi89]. It allows the user to express complex structures and con-
straints using a relational logic, combining first-order logic with relational calcu-
lus. However, the syntax of the language is specifically designed to be accessible
and understandable, thus facilitating the development of formal models in a
notation more recognisable to non-specialists.

Basic structures in the model are described using signatures. Relations
within these signatures are called fields, which describe the relationship between
the signatures. Logical expressions constrain further the possible instances of

4

a model. These predicates are also used to define operations by describing the
state change associated with the operation. This allows the specifier to cap-
ture and operational view of the model’s dynamic behaviour and traces can be
defined and explored in the system.

One of the main criticisms of formal methods is the overemphasis on full
formalisation – that it is unnecessarily expensive and restrictive. The approach
of lightweight formal methods attempts to counter these criticisms by allowing
for a focused and partial specification of a system. By aiming to reduce the
complexity of the specification process we allow for a greater flexibility and
degree of experimentation that would be difficult and expensive to achieve with
a full formalisation process. Alloy is one example of the lightweight approach to
formal methods. It retains many of the benefits of formalisation and also offers
a greater agility and capacity for exploration not otherwise possible.

The Alloy Analyzer1 is a tool developed by MIT to support the Alloy lan-
guage. Alloy uses the SAT-based model finder Kodkod and offers a fully-
automatic means to analyse models that is in contrast to theorem proving
or model checking approaches. The model-finding is performed within user-
specified restricted scopes, limiting the size of instances of each model. This
does limit the results as it would not be able to identify counterexamples greater
than the biggest scope we analyse. Jackson ([Jac06], p. 141) justifies this in
terms of the small scope hypothesis, that is far more effective than traditional
testing and that “most bugs have small counterexamples”. Unlike traditional
testing, Alloy supports exhaustive checking for such counterexamples within a
small scope.

Using the tool, models written in the Alloy notation can be interactively
interrogated and user-specified properties can be checked. The capacity for
incremental analysis and development allows the feedback received to be in-
terpreted and then incorporated into the model. An example of the output
provided by the Alloy Analyzer when in operation is shown in Figure 1.

2 Example: Chocolate Machine

Our first example is a very simple chocolate machine. In the first version of
our chocolate machine we follow an example similar to the one given by Curzon
and Blandford [Bla00]. The chocolate machine accepts two pence coins, and is
capable of returning one pence coins. It dispenses only one type of chocolate,
which costs one pence each. When a coin is inserted, the customer must push a
button to receive the chocolate and must then push another button to receive
their change. We make some simplifying assumptions: the machine always has
sufficient chocolate and change, and that when a user pushes the button for a
chocolate they actually collect the chocolate from the dispenser (and similarly
for change). We could consider the errors that occur when these tasks are
interrupted and problems occur but these tasks are not the post-completion
errors we are to consider.

Through our interaction with the chocolate machine, our primary goal to
retrieve the chocolate and our secondary goal, or sub-goal, is to retrieve the
change. In this situation we would regard a post-completion error as occuring
when the user retrieves their purchased chocolate but neglects to collect their

1Available from http://alloy.mit.edu

5

Figure 1: Example output from the Alloy Analyzer

change money. Our first Alloy-based model of the chocolate machine is as
described above and is shown in appendix A. This model has an obvious post-
completion error as the change is always returned after the chocolate - allowing
the user to retrieve the chocolate before retrieving the change. We can discover
this error both through our own examination of the situation and also by using
the Alloy Analyzer to help us examine a model of the scenario.

2.1 Dissecting the chocolate machine model

We construct a model that is representative of the chocolate machine described.
Initially, we must decide the possible states of the chocolate machine. The
machine can be either: waiting for money to be inserted (we label this the
‘Reset’ state); having accepted money and waiting for the chocolate button to be
pushed (the ‘Coin’ state); after a chocolate has been dispensed (the ‘Chocolate’
state); or, having returned change to the customer (the ‘Change’ state). We use
a signature declaration as follows:

abstract sig ChocState {}

one sig Reset, Coin, Chocolate, Change extends ChocState {}

The state of the chocolate machine consists of its current state as defined above,
the amount of money that has been entered by the customer and the type of
chocolate, if any, in the dispenser. We declare a signature, Choc, to hold the
state of the chocolate machine at one instant in time.

sig Choc {

balance: one Int,

state: one ChocState,

op: OP,

dispenser: lone ChocType

}

6

There is one additional field in the Choc signature we have not yet mentioned -
the field labelled ‘op’. So far, we have considered the model from the perspective
of the chocolate machine and not with regard to the customer and their inter-
action with the machine. If we consider the interactions the customer will have
with the machine, we can identify several actions the customer may perform:
entering a coin, choosing a chocolate and requesting change. To help illustrate
the evolving scenario we declare an additional signature to record what the cus-
tomer is doing to initiate changes in the state of the chocolate machine. At
each stage in the trace, we will be able to observe the actions of the customer.
This information is purely for illustrative purposes and aids our understanding
of examples produced by the analyser.

abstract sig OP {}

one sig ENTERCOIN, PUSHCHOC, PUSHCHANGE, RESET extends OP {}

To represent the evolving state of the chocolate machine we must constrain the
possible states of our model. Predicates are used to represent operations on
the state of the chocolate machine and describe the relationship between two
instances of the Choc signature. We can think of these as the ‘before’ (c) and
‘after’ (c’) states. We present the predicate that presents the customer, who
has just inserted a coin, selecting the chocolate to purchase:

pred buychoc[c, c’: Choc] {

c.state = Coin &&

INT/gte[c.balance,int(1)] &&

c’.balance = INT/sub[c.balance, int(1)] &&

no c.dispenser &&

c’.dispenser = Choc1

c’.state = Chocolate

}

This predicate, although it represents an operation, is a constraint. It con-
strains the state before selecting the chocolate (c) and constrains the state
after selecting the chocolate (c’). For example, “c.state = Coin” ensures
that the chocolate machine is in the ‘Coin’ state initially and then “c’.state
= Chocolate” ensures that it is in the ‘Chocolate’ state afterwards. This is
a familiar and expressive approach in state-based specifications facilitating the
use of Alloy. As we are considering the amount of money that has been entered
into the machine, we use the integer operations in the util/integer package
using them with the prefix ‘INT’. We must have sufficient funds available to
purchase the chocolate and we must subtract the cost of the chocolate from
the available balance. We also represent the chocolate being dropped into the
(empty) dispenser. Similarly, other operations on the state of the chocolate
machine, such as entering coins and returning change, are described using this
approach to predicates.

We aim to examine the dynamic behaviour of the chocolate machine and
must therefore introduce a mechanism to capture the evolving state of the
chocolate machine but still allow for the model to be statically checked. Al-
loy already has this mechanism in the form of traces. The predicate describing
the valid traces in the system is:

7

Figure 2: Example traces output for the chocolate machine.

pred traces {

init[CO/first[]] &&

all c:Choc-CO/last[] | let c’ = CO/next[c] |

((entercoin[c,c’] && c’.op = ENTERCOIN)

or

(buychoc[c,c’] && c’.op = PUSHCHOC)

or

(askchange[c,c’] && c’.op = PUSHCHANGE)

or

(reset[c,c’] && c’.op = RESET))

}

This says that the initial condition holds for the initial time step, and then
for all subsequent times the machine must change in accordance with one of
the four predicates: entercoin, buychoc, askchange, and reset. Additionally,
the actions of the customer are defined here to help annotate any examples
returned. The four actions by the customer are: entering a coin (ENTER-
COIN), pushing the chocolate button (PUSHCHOC), pushing the change but-
ton (PUSHCHANGE) and removing their change from the machine (RESET).
An example of the traces output from the Alloy Analyzer is shown in figure 2.
The ordering library module we use here is generic, usable with any signature
type and not specific to this example.

2.2 Checking for post-completion errors

To be able to check for post-completion errors we must define the sequences
of events that represent a single interaction of the customer with the chocolate
machine. For the purposes of our model, we will refer to a single interaction as
a ‘transaction’, consisting of a trace that begins with the initial state (awaiting
coins) and finishes with the machine resetting for the one and only time in that

8

transaction.

pred transaction {

traces &&

(CO/last[]).op = RESET &&

RESET !in (Choc - CO/last[]).op

}

one sig Goal {goals : set ChocState} {goals = Chocolate}

one sig Subgoals {subgoals : set ChocState}{subgoals = Change}

assert goalsmet {

transaction => let m = CO/max[state.(Goal.goals)] |

some m => all sg: Subgoals.subgoals | state.sg in CO/prevs[m]

}

check goalsmet for 5

Also shown above is the mechanism for representing the goal and sub-goals,
the order in which they are satisfied being of great importance to the post-
completion errors we are considering. We define the main goal to be the dis-
pensing of the chocolate, and the sub-goal to be the dispensing of the change.
For a post-completion error to occur in our model, the chocolate would be dis-
pensed before the change is dispensed. In the goalsmet assertion, we state that
for valid transactions all subgoals (sg) must occur in states before the state
in which the goal occurs (m). Assertions are something we believe to be true
about our model and the check command asks Alloy to provide us with the
counterexamples, demonstrating that it is possible for the primary goal to be
achieved prior to all of the sub-goals being satisfied.

Now we have constructed the model and introduced the appropriate mechan-
isms to represent and check for post-completion errors, we can begin to explore
the properties of the model using the tool itself. Checking the goalsmet as-
sertion quickly provides a counterexample that should, in this case, already be
easily identifiable and simple to confirm by a visual inspection of the model. The
current version of the model is constructed in a way that prevents the machine
from engaging in behaviour where the change is dispensed before the chocol-
ate. Addressing this post-completion error suggests modifications to the actual
chocolate machine. Of course, any chocolate machine that requires a button re-
questing change after the chocolate dispensed will have a post-completion error.
Perhaps a solution is to, after the chocolate has been selected, noisly return the
change to the customer just before the chocolate itself is dispensed.

2.3 Extending the chocolate machine

We will now consider several possible extensions and revisions to our chocol-
ate machine model. With each revision we can check the properties we have
already defined, specifically those regarding post-completion errors. Each of
these extended models shows how we can through experimentation and inter-
action with our model develop them beyond their initial design whilst retaining
the properties and valuable checks we have developed.

9

2.3.1 Allowing different types of coins

Suppose we expand this model to allow the chocolate machine to accept both
one and two pence coins. We now have two initial steps, one that represents
the insertion of a 1p coin and the second for the insertion of a 2p coin:

pred enter2pcoin[c, c’: Choc] {

c.state = Reset &&

c’.balance = INT/add[c.balance, int(2)] &&

c’.dispenser = c.dispenser &&

c’.state = Coin

}

pred enter1pcoin[c, c’: Choc] {

c.state = Reset &&

c’.balance = INT/add[c.balance, int(1)] &&

c’.dispenser = c.dispenser &&

c’.state = Coin

}

We must also account for two different reset conditions. We are allowed to
insert 2p coins into the machine for chocolates that only cost 1p and must
therefore return change of 1p. However, should a 1p coin be inserted into the
machine, it is not necessary to give change so we can reset immediately under
these conditions. We have two reset possibilities:

pred reset[c,c’ : Choc] {

c.state = Change &&

c’.balance = c.balance &&

c’.dispenser = c.dispenser &&

c’.state = Reset

}

pred reset2[c,c’ : Choc] {

c.state = Chocolate &&

c.balance = 0 &&

c’.balance = c.balance &&

c’.dispenser = c.dispenser &&

c’.state = Reset

}

The first allows the machine to return to the reset state after the change has
been dispensed and the second allows the machine to be reset immediately after
the chocolate is dispensed if and only if there is no chance to dispense.

This model is listed in appendix B.

2.3.2 Allowing different types of chocolate

Our chocolate currently only allows for the selection of one type of chocol-
ate. Clearly, real-life chocolate machines allow for the selection of a wide vari-
ety of products. In accordance with Hoare’s famous chocolate machine ex-
amples [Hoa86] we allow for the purchase of both a small chocolate, costing one

10

pence, and a large chocolate, costing two pence. Whereas before we had a single
operation, buychoc, to represent the purchase of a chocolate we now introduce
an operation for each of the different types of chocolate.

pred buysmallchoc[c, c’: Choc] {

c.state = Coin &&

INT/gte[c.balance,int(1)] &&

c’.balance = INT/sub[c.balance, int(1)] &&

no c.dispenser &&

c’.dispenser = SmallChoc

c’.state = Chocolate

}

pred buylargechoc[c, c’: Choc] {

c.state = Coin &&

INT/gte[c.balance,int(2)] &&

c’.balance = INT/sub[c.balance, int(2)] &&

no c.dispenser &&

c’.dispenser = LargeChoc

c’.state = Chocolate

}

Additionally, we now consider the actual retrieval of the chocolate from the dis-
penser. Until now, we have not considered the customer retrieving the chocolate
after the machine has dispensed it. We introduce a new state, GotChocolate, to
represent the state of the machine after the chocolate has been retrieved. (The
machine may, for instance, detect this with a sensor on the dispenser door.)
For all of these modifications we are introducing the actions of the customer
in the form of the OP signature declarations and the traces model is adapted
accordingly.

pred getchoc[c,c’:Choc] {

c.state = Chocolate &&

c’.state = GotChocolate &&

some c.dispenser &&

no c’.dispenser &&

c’.balance = c.balance

}

This model is listed in appendix C.

2.3.3 Purchasing more than one chocolate

Suppose the customer inserts a two pence coin but then only purchases a chocol-
ate costing one pence. We would like to allow for multiple chocolates to be se-
lected from the machine. A simple extension to the existing getchoc predicate
allows there to be a valid transition from the Chocolate state back to the Coin

state if a non-zero balance remains. If the customer had acted as described,
entering a two pence and selecting a one pence chocolate, it would allow the
machine to return to the state as if the customer had simply entered a one
pence coin. This demonstrates that the state of the model can depend quite
specifically on the state of the machine before the operation.

11

pred getchoc[c,c’:Choc] {

c.state = Chocolate &&

some c.dispenser &&

no c’.dispenser &&

c’.balance = c.balance &&

((INT/gte[c.balance,int(0)] => c’.state = Coin)

or c’.state = GotChocolate)

}

This model is listed in appendix D.

2.3.4 Inserting more than one coin

In our final example, we allow the customer to insert more than one coin into the
chocolate machine. This modification simply requires us to allow the machine
to return to the state where it accepts coins but without resetting the stored
balance.

pred enter2pcoin[c, c’: Choc] {

c.state = Reset &&

c’.balance = INT/add[c.balance, int(2)] &&

c’.dispenser = c.dispenser &&

(c’.state = Coin or c’.state = Reset)

}

pred enter1pcoin[c, c’: Choc] {

c.state = Reset &&

c’.balance = INT/add[c.balance, int(1)] &&

c’.dispenser = c.dispenser &&

(c’.state = Coin or c’.state = Reset)

}

This model is listed in appendix E.
We now find ourselves with a reasonably complicated chocolate machine. We
began with a chocolate machine that could accept one single coin and dispense
one type of chocolate. Now we have a model of a chocolate machine that can
accept multiple coins of different values, provides a selection of different chocol-
ate types and allow for the purchase of multiple chocolates. Thoroughout these
modifications we have retained the ability to look for post-completion errors.
The trace of the sequences of operations that results in a post-completion error
has lengthened due to the extra complexity of the model.

3 Example: Cash Machine

The second example we present considers the interaction of a bank customer
with a cash machine. Although a cash machine may serve many purposes, the
core functionality is to dispense cash to correctly authenticated users. This pro-
cess of authentication requires that the user give their cash card to the machine
and correctly enter their PIN. An amount of cash is then entered followed by
their card and the correct amount of cash being returned to them. A common

12

post-completion error with a cash machine is to collect the cash (the primary
goal) but then neglect to retrieve the cash card (a sub-goal).

The following series of examples serves to illustrate how an Alloy model can
develop and evolve in response to interaction and experimentation. As problems
are exposed and new factors considered, the model itself can be revised and
updated. It is not our intention to present a sanitised history of the models
and connect them in an idealised form. We acknowledge the many dead-ends,
faulty assumptions and incorrect reasoning we have made in the development
of these models. We do not believe this belittles the formal development, but
rather the opposite: it is unreasonable to assume we would be able to develop
the Alloy models perfectly at the first attempt. Any good formal model is the
result of sustained investigation into the problem domain and the equivalent
effort synthesising this into a precise formal description.

3.1 Initial cash machine model

As our example we consider a simple cash machine, or automatic teller machine
(ATM), whose primary function is to automatically dispense cash to customers
but may provide additional functionality such as balance enquiry. Performing
any financial transaction is dependent upon a customer’s ability to successfully
authenticate themselves to the ATM. We will model an ATM that allows a
customer to both query their account balance and to withdraw cash from their
account. We must model the process of authenticating a customer, by means of
inserting their bank card and entering their PIN. Our model must be capable
of examining the behavioural properties of the ATM to capture the interaction
between customer and the user interface.

The ATM example initially declares the signature ATMState which will be
used to represent the state of the ATM machine. Next, several other signatures
are declared, all of which extend ATMState. Note that the ATMState signature
is declared with the abstract keyword to ensure that any ATMState is one of
AwaitCard, AwaitPin, AwaitInst, RemCash or RemCard.

abstract sig ATMstate {}

one sig AwaitCard, AwaitPin, AwaitInst,

RemCash, RemCard extends ATMstate {}

sig ATM {

card : lone Identifier,

pin : lone Identifier,

state : one ATMstate,

balance:Identifier -> one Int,

op:OP

}

The body of the signature ATM consists of several fields used to represent the
current state of the ATM machine. For example, the first field in the ATM
signature defines a relation labelled card which connects ATMs to an Identi-

fier. The field balance is a relation connecting ATMs to Identifier to Integers.
Note the presence of the multiplicity prefixes, such as lone and one, in relation
declarations and used to introduce constraints onto the relations. For example,
the state relation means that each ATM has exactly one ATMstate.

13

Figure 3: Example of Alloy’s visualisation output for the cash machine model.

As with the chocolate machine, we use predicates to represent operations
and use them to connect two possible states of the ATM machine: the before
(a) and the after (a’). The predicate does not describe how to operationally
transform one state into another but describes how the two are related. The
model contains several operations, for example, the entercard predicate defines
the relationship between two states: firstly when the ATM is waiting for a bank
card to be inserted and then second after a bank card has been inserted and
the ATM is waiting for the PIN to be entered. We define the state beforehand
(AwaitCard) and afterwards (AwaitPin). The entercard predicate is as follows:

pred entercard [a,a’:ATM, c:Identifier] {

a.state = AwaitCard &&

a’.card = c &&

a’.pin = a.pin &&

a’.balance = a.balance &&

a’.state = AwaitPin

}

The structure of the signatures and the use of relations to describe relationships
such as balance demonstrate the way that Alloy can model complex structures
and general system state. In this respect, it is closer to a state-based method
such as Z rather than a finite-state model-checking approach. Specifications
can be written with reference to sets of infinite cardinality such as, in this case,
integers.

Even at this early stage the user can ask Alloy to show some example states
by executing a run command. This asks Alloy to generate an instance that
satisfies a given constraint. For example, the following commands direct Alloy
to find, if possible, an instance of the entercard operation. The visualisation
output produced is shown in figure 3:

pred showec [a,a’:ATM, c:Identifier] {

14

entercard[a,a’,c]

}

run showec for 2

The model can be further expanded to include operations such as entering a
pin number, requesting cash, taking cash, viewing the balance and returning
the card. These can be defined in a similar manner to entercard. Clearly,
a customer’s interaction with the ATM will consist of a sequence of the avail-
able operations, and this leads to the consideration of valid traces of operations
from a defined initial state. We used Alloy’s several library modules for the
chocolate machine example and we take a similar approach here by including
the util/ordering module, used to define a trace of operations by declaring the
initial state (with the init predicate and first function), the next state (with
the next function) and the final state (with the last function). This allows the
dynamic behaviour of the ATM machine to be modelled by considering inter-
actions through a series of operations. Our first attempt at the cash machine
model is listed in appendix F.

3.2 Checking for post-completion errors

We consider a specific type of omission error called a post-completion error.
Post-completion errors occur when a user achieves their main goal but neglects
a sub-goal. In the context of our ATM example, the user may achieve the stated
goal of withdrawing cash but then forget to retrieve their card, resulting in a
completion error.

To capture the completion and non-completion of the goals and sub-goals,
we must first introduce the idea of a transaction. We define a transaction to be
a portion of a trace that begins with a user entering their card into the machine
and ending with the removal of the card. Transactions are defined as follows:

pred transaction {

traces &&

(AO/last[]).op = OUTCARD &&

OUTCARD !in (ATM - AO/last[]).op

}

OUTCARD represents the operation of the user removing their card from the
machine, so we define this to be the last operation in the trace and prevent it
from appearing any earlier in the transaction. We also declare signatures to
represent our goal (retrieving the cash) and subgoal (retrieving the card). We
want to ensure that all subgoals are met by the time the last primary goal is
satisfied. Both the Goal and Subgoals signature are declared with appended
facts, which are used to state something that must be true about the model.

one sig Goal {goals : set ATMstate} {goals = RemCash}

one sig Subgoals {subgoals : set ATMstate}{subgoals = RemCard}

The appended facts state that the primary goal is reaching the state RemCash

and the sub-goal is reaching the state RemCard. We could, for example, include
multiple sub-goals that might include the printing of a receipt. Checking for
the post-completion property in the model uses the assert command, used to

15

state something we expect to be true as a result of our model. Examining these
assertions with the check command directs Alloy to find a counterexample.
Exhaustive search is possible for a finite state only, so the check command
allows the user to specify the size of signatures to be examined. The assertion
regarding goals and subgoals is as follows:

assert goalsmet {

transaction => let m = AO/max[state.(Goal.goals)] |

some m => all sg: Subgoals.subgoals | state.sg in AO/prevs[m]

}

This assertion states that within a transaction, all subgoals must have been
achieved in states previous to that in which the primary goal is satisfied. Using
the check command on the first version of the ATM model we are able to find
the counterexample shown in figure 4. By examining the trace we can detect
a problem with the dynamic behaviour of the model. The user has been able
to achieve the primary goal (removing cash) before the completion of a subgoal
(removing card). The automatic check reveals that a counterexample to the
assertion exists within the limited scope checked. If no such counterexample
had been found it is still possible that one could exist in a larger scope. The
partial nature of the lightweight approach means that proof of correctness for
the general case is not possible. We now explore the model further to identify
the problem.

3.3 Revised cash machine model

Using Alloy to examine the first version of the model identifies a specific counter-
example (as shown in figure 4). The counterexample is presented as a trace, a
sequence of states that shows the primary goal is achieved before the subgoal
has been satisfied. Although the Alloy Analyzer guarantees to find a counter-
example if one exists, it does not guarantee to find the smallest one or the same
one each time. The user is able (with practice!) to interpret the counterexample
with respect to the model and identify the cause. The post-completion present
in our chocolate machine example was fairly trivial but the cash machine error
is slightly more complicated and not necessarily so obvious. Alloy advocates
and allows for an exploratory approach towards modelling, encouraging small
experiments on models to further understand and develop them. There are sev-
eral strategies we can adopt to further understand the model and the counter-
example. We can ask the Alloy Analyzer to find the ‘next’ counterexample (if
one exists) which presents us with further evidence as to the problem. We may
execute additional complementary checks to aid our understanding and these
may take the form of more specific directed checks to narrow down on the root
of the problem. The immediacy of feedback allows us to explore a possible
solution in a manner difficult to achieve with full formalisation approaches.

One of the problem with interpreting the output from a traces based model
is being able to visualise the progression of states. For example, the original
output from the Alloy Analyzer showing the cash machine’s post-completion
error is shown in figure 5. This screenshot of the output shows only part of the
output as it will not easily fit onto one screen. Clearly, there will be problem
interpreting this output and we wish to minimise the scope for introducing

16

Figure 4: Counterexample trace identifying a post-completion error in the Cash-
Machine model. 17

Figure 5: Unprojected trace identifying a post-completion error in the cash
machine model.

additional errors. By using Alloy’s projection function we can examine the
state of the cash machine at each time slot. Projection over the ATM signature
allows us to examine the sequential steps that lead from the starting state of
the cash machine (shown in figure 4 as ATM0) through to the final state (shown
as ATM5).

By examining the counterexample generated for the first version of the model
we can see that a trace has been found where the user is allowed to remove
their cash before they have removed their card. This trace is a clear violation
of the stated ordering of subgoals and goals. By examining the trace we can
observe that in ATM2 the current state is AwaitInst (indicated by the ‘(state)’
label in the diagram). At ATM3 the state is now RemCash and at ATM4,
RemCard, showing that the model incorrectly allows a valid transition (via a
cash request operation) from awaiting an instruction to allowing the user to
remove cash, and thence to a state in which removal of the card is expected.
To rectify this, an additional relation, pending, is introduced into the state
of the ATM to represent the money that the user has yet to remove from the
dispenser. Modifying the behaviour of the requestcash predicate ensures that
the RemCard state is entered into before the RemCash state. After introducing
these changes we can immediately execute the original check to see if Alloy
can now find a counterexample. After introducing these additional elements,
successful execution of the previous checks indicates that the modified model
has no post-completion error within the scope of the analysis. This version
of the cash machine model, where the post-completion error has been fixed, is
listed in appendix G.

18

3.4 Further revisions of the cash machine model

Two further extensions of the original model of the cash machine were developed.
These extended versions of the model are listed in appendices H and I. The first
extension removes the requirement for the card to be entered before the PIN,
allowing either to be entered first. This is a relatively simple extension to the
possible dynamic behaviour of the model with, for example, the entercard

predicate modified as follows:

pred entercard [a,a’:ATM, c:Identifier] {

(a.state = AwaitCard or a.state = StartTrans) &&

a’.card = c &&

a’.pin = a.pin &&

nocashchange[a,a’] &&

(a.state = AwaitCard =>

((a.pin = c && a’.state = AwaitInst) or

(a.pin != c && a’.state = RemCard))) &&

(a.state = StartTrans => a’.state = AwaitPin)

}

Whereas the original predicate only allowed the initial state to be AwaitCard,
we now admit an additional valid initial state, StartTrans, which represents a
transaction that will begin with the user entering their PIN rather than their
card. The constraints on valid next states must also be modified. Depending
on whether the user has entered their card or their pin first, the predicate to
constrain possible next states is altered to allow AwaitInst or RemCard, and
AwaitPin respectively. After these modifications, we can now re-execute the
original post-completion check, to ensure we have not accidentally reintroduced
the error. If were checking for many different types of interaction error, we
can build up incrementally an array of checks to be performed on a model.
These checks can then be run automatically at any time, allowing the model’s
developer to perform either small experiments or introduce larger developments
whilst always retaining the ability to check their model quickly and easily. This
is similar to the unit testing approach found in software development. In unit
testing, when have found there a bug or believe there is the possiblity of a
bug, we write a small test to check for that problem. These tests can then be
executed repeatedly against our piece of software to ensure that old and often
long forgotten bugs are not accidentally reintroduced by some later revision of
the software.

Our fourth and final version of the ATM model is another evolutionary step
in the development of the model. Good user interface practice dictates that
the user should always be forgiven and allowed to reserve their actions. We
therefore introduce the ability for the user to cancel their transaction at any
time. This functionality requires the addition of a new predicate, cancel, used
to represent a transaction being cancelled. This predicate allows the ATM to
return to its initial state provided that we are not already waiting for the user
to remove their cash from the dispenser and that the card is not present. If
there is cash pending in the dispenser, the customer is required to remove their
cash first. Similarly, if the customer’s card remains in the slot they are required
to remove their card from the machine. This predicate is as follows:

19

pred cancel [aa,aa’:ATM] {

noidchange[aa,aa’] && nocashchange[aa,aa’] &&

((some aa.pending && aa’.state = RemCash) or

(no aa.pending && some aa.card && aa’.state = RemCard) or

(no aa.pending && no aa.card && init[aa’])

)

}

To account for the new predicate and new CANCEL state we must incorporate
changes into the traces model. Our traces model has expanded to include the
many different operations possible and includes the corresponding user opera-
tions, used to illustrate the examples generated by the tool.

Again, we are always able to refer back to the original post-completion er-
ror checks to ensure we have not reintroduced a problem. The immediacy of
feedback with this approach to modelling allows us quickly to explore avenues
of development for a model and also to understand the consequences of our
changes. The process of analysing the model is not a protracted one and can be
performed at any stage making it ideal for models which will undergo repeated
enhancement.

20

References

[Bla00] P. Curzon & A. Blandford. Using a verification system to reason about
post-completion errors. In P. Palanque & F. Patern‘o, editor, Parti-
cipants Proc. of DSV-IS 2000: 7th Int.Workshop on Design, Specifica-
tion and Verification of Interactive Systems, at the 22nd Int. Conf. on
Software Engineerings, pages 292–308, 2000.

[Hoa86] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1986.

[Jac06] D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT
Press, 2006.

[JW96] D. Jackson and J. M. Wing. Lightweight formal methods. IEEE Com-
puter, April 1996.

[Spi89] J. M. Spivey. The Z notation : a reference manual. Prentice-Hall, 2nd
edition, 1989.

21

Appendices

A Simple Chocolate Machine

module SimpleChocMachine

open u t i l / order ing [Choc] as CO
open u t i l / i n t e g e r as INT

abstract s ig ChocState {}
one sig Reset , Coin , Chocolate , Change extends ChocState {}

abstract s ig OP {}
one sig ENTERCOIN, PUSHCHOC, PUSHCHANGE, RESET extends OP {}

abstract s ig ChocType {}
one sig Choc1 extends ChocType {}

s ig Choc {
balance : one Int ,
s t a t e : one ChocState ,
op : OP,
d i sp en s e r : lone ChocType

}

// Give us a qu i ck example
pred show1 [c : Choc] {}
run show1

pred en t e r c o in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (2)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred buychoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (1)] &&
c ’ . balance = INT/sub [c . balance , i n t (1)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = Choc1
c ’ . s t a t e = Chocolate

}

pred askchange [c , c ’ : Choc] {
c . s t a t e = Chocolate
INT/gt [c . balance , 0] &&
INT/ zero [c ’ . ba lance] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Change

}

22

pred r e s e t [c , c ’ : Choc] {
c . s t a t e = Change &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred i n i t [c : Choc] {
c . balance = 0 &&
c . s t a t e = Reset &&
c . d i sp en s e r = none

}

pred t r a c e s {
i n i t [CO/ f i r s t []] &&
a l l c : Choc−CO/ l a s t [] | l e t c ’ = CO/next [c] |

((en t e r c o in [c , c ’] && c ’ . op = ENTERCOIN)
or
(buychoc [c , c ’] && c ’ . op = PUSHCHOC)
or
(askchange [c , c ’] && c ’ . op = PUSHCHANGE)
or
(r e s e t [c , c ’] && c ’ . op = RESET))

}

pred t r an sa c t i on {
t r a c e s &&
(CO/ l a s t []) . op = RESET &&

RESET ! in (Choc − CO/ l a s t []) . op
}

one sig Goal { goa l s : s e t ChocState} { goa l s = Chocolate }
one sig Subgoals { subgoa l s : s e t ChocState }{ subgoa l s = Change}

assert goalsmet {
t r an sa c t i on => l e t m = CO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in CO/prevs [m]
}

// This genera te s a counterexample wi th 5
check goalsmet for 5

23

B Chocolate machine - different coins

module SimpleChocMachine

open u t i l / order ing [Choc] as CO
open u t i l / i n t e g e r as INT

abstract s ig ChocState {}
one sig Reset , Coin , Chocolate , Change extends ChocState {}

abstract s ig OP {}
one sig ENTER1PCOIN, ENTER2PCOIN, PUSHCHOC, PUSHCHANGE, RESET extends OP {}

abstract s ig ChocType {}
one sig Choc1 extends ChocType {}

s ig Choc {
balance : one Int ,
s t a t e : one ChocState ,
op : OP,
d i sp en s e r : lone ChocType

}

// Give us a qu i ck example
pred show1 [c : Choc] {}
run show1

pred en te r2pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (2)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred en te r1pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (1)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred buychoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (1)] &&
c ’ . balance = INT/sub [c . balance , i n t (1)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = Choc1
c ’ . s t a t e = Chocolate

}

pred askchange [c , c ’ : Choc] {
c . s t a t e = Chocolate
INT/gt [c . balance , 0] &&
INT/ zero [c ’ . ba lance] &&

24

c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Change

}

pred r e s e t [c , c ’ : Choc] {
c . s t a t e = Change &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred r e s e t 2 [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
c . balance = 0 &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred i n i t [c : Choc] {
c . balance = 0 &&
c . s t a t e = Reset &&
c . d i sp en s e r = none

}

pred t r a c e s {
i n i t [CO/ f i r s t []] &&
a l l c : Choc−CO/ l a s t [] | l e t c ’ = CO/next [c] |

((en te r1pco in [c , c ’] && c ’ . op = ENTER1PCOIN)
or
(en te r2pco in [c , c ’] && c ’ . op = ENTER2PCOIN)
or
(buychoc [c , c ’] && c ’ . op = PUSHCHOC)
or
(askchange [c , c ’] && c ’ . op = PUSHCHANGE)
or
(r e s e t 2 [c , c ’] && c ’ . op = RESET)
or
(r e s e t [c , c ’] && c ’ . op = RESET))

}

pred t r an sa c t i on {
t r a c e s &&
(CO/ l a s t []) . op = RESET &&

RESET ! in (Choc − CO/ l a s t []) . op
}

one sig Goal { goa l s : s e t ChocState} { goa l s = Chocolate }
one sig Subgoals { subgoa l s : s e t ChocState }{ subgoa l s = Change}

assert goalsmet {
t r an sa c t i on => l e t m = CO/max [s t a t e . (Goal . g oa l s)] |

25

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in CO/prevs [m]
}

// This genera te s a counterexample wi th 5
check goalsmet for 5

26

C Chocolate machine - different chocolates

module SimpleChocMachine

open u t i l / order ing [Choc] as CO
open u t i l / i n t e g e r as INT

abstract s ig ChocState {}
one sig Reset , Coin , Chocolate , GotChocolate , Change extends ChocState {}

abstract s ig OP {}
one sig ENTER1PCOIN, ENTER2PCOIN, PUSHSMALLCHOC, PUSHLARGECHOC,

GETCHOC, PUSHCHANGE, RESET extends OP {}

abstract s ig ChocType {}
one sig SmallChoc , LargeChoc extends ChocType {}

s ig Choc {
balance : one Int ,
s t a t e : one ChocState ,
op : OP,
d i sp en s e r : lone ChocType

}

// Give us a qu i ck example
pred show1 [c : Choc] {}
run show1

pred en te r2pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (2)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred en te r1pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (1)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred buysmallchoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (1)] &&
c ’ . balance = INT/sub [c . balance , i n t (1)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = SmallChoc
c ’ . s t a t e = Chocolate

}

pred buy largechoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (2)] &&

27

c ’ . ba lance = INT/sub [c . balance , i n t (2)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = LargeChoc
c ’ . s t a t e = Chocolate

}

pred getchoc [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
c ’ . s t a t e = GotChocolate &&
some c . d i sp en s e r &&
no c ’ . d i sp en s e r &&
c ’ . balance = c . balance

}

pred askchange [c , c ’ : Choc] {
c . s t a t e = GotChocolate
INT/gt [c . balance , 0] &&
INT/ zero [c ’ . ba lance] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Change

}

pred r e s e t [c , c ’ : Choc] {
c . s t a t e = Change &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred r e s e t 2 [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
c . balance = 0 &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred i n i t [c : Choc] {
c . balance = 0 &&
c . s t a t e = Reset &&
c . d i sp en s e r = none

}

pred t r a c e s {
i n i t [CO/ f i r s t []] &&
a l l c : Choc−CO/ l a s t [] | l e t c ’ = CO/next [c] |

((en te r1pco in [c , c ’] && c ’ . op = ENTER1PCOIN)
or
(en te r2pco in [c , c ’] && c ’ . op = ENTER2PCOIN)
or
(buysmallchoc [c , c ’] && c ’ . op = PUSHSMALLCHOC)
or
(buy largechoc [c , c ’] && c ’ . op = PUSHLARGECHOC)

28

or
(getchoc [c , c ’] && c ’ . op = GETCHOC)
or
(askchange [c , c ’] && c ’ . op = PUSHCHANGE)
or
(r e s e t 2 [c , c ’] && c ’ . op = RESET)
or
(r e s e t [c , c ’] && c ’ . op = RESET))

}

pred t r an sa c t i on {
t r a c e s &&
(CO/ l a s t []) . op = RESET &&

RESET ! in (Choc − CO/ l a s t []) . op
}

one sig Goal { goa l s : s e t ChocState} { goa l s = Chocolate }
one sig Subgoals { subgoa l s : s e t ChocState }{ subgoa l s = Change}

assert goalsmet {
t r an sa c t i on => l e t m = CO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in CO/prevs [m]
}

// This genera te s a counterexample wi th 6
check goalsmet for 6

29

D Chocolate machine - multiple chocolates

module SimpleChocMachine

open u t i l / order ing [Choc] as CO
open u t i l / i n t e g e r as INT

abstract s ig ChocState {}
one sig Reset , Coin , Chocolate , GotChocolate , Change extends ChocState {}

abstract s ig OP {}
one sig ENTER1PCOIN, ENTER2PCOIN, PUSHSMALLCHOC, PUSHLARGECHOC,

GETCHOC, PUSHCHANGE, RESET extends OP {}

abstract s ig ChocType {}
one sig SmallChoc , LargeChoc extends ChocType {}

s ig Choc {
balance : one Int ,
s t a t e : one ChocState ,
op : OP,
d i sp en s e r : lone ChocType

}

// Give us a qu i ck example
pred show1 [c : Choc] {}
run show1

pred en te r2pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (2)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred en te r1pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (1)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Coin

}

pred buysmallchoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (1)] &&
c ’ . balance = INT/sub [c . balance , i n t (1)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = SmallChoc
c ’ . s t a t e = Chocolate

}

pred buy largechoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (2)] &&

30

c ’ . ba lance = INT/sub [c . balance , i n t (2)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = LargeChoc
c ’ . s t a t e = Chocolate

}

pred getchoc [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
some c . d i sp en s e r &&
no c ’ . d i sp en s e r &&
c ’ . balance = c . balance &&
((INT/ gte [c . balance , i n t (0)] => c ’ . s t a t e = Coin) or c ’ . s t a t e = GotChocolate)

}

pred askchange [c , c ’ : Choc] {
c . s t a t e = GotChocolate
INT/gt [c . balance , 0] &&
INT/ zero [c ’ . ba lance] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Change

}

pred r e s e t [c , c ’ : Choc] {
c . s t a t e = Change &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred r e s e t 2 [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
c . balance = 0 &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred i n i t [c : Choc] {
c . balance = 0 &&
c . s t a t e = Reset &&
c . d i sp en s e r = none

}

pred t r a c e s {
i n i t [CO/ f i r s t []] &&
a l l c : Choc−CO/ l a s t [] | l e t c ’ = CO/next [c] |

((en te r1pco in [c , c ’] && c ’ . op = ENTER1PCOIN)
or
(en te r2pco in [c , c ’] && c ’ . op = ENTER2PCOIN)
or
(buysmallchoc [c , c ’] && c ’ . op = PUSHSMALLCHOC)
or
(buy largechoc [c , c ’] && c ’ . op = PUSHLARGECHOC)

31

or
(getchoc [c , c ’] && c ’ . op = GETCHOC)
or
(askchange [c , c ’] && c ’ . op = PUSHCHANGE)
or
(r e s e t 2 [c , c ’] && c ’ . op = RESET)
or
(r e s e t [c , c ’] && c ’ . op = RESET))

}

pred t r an sa c t i on {
t r a c e s &&
(CO/ l a s t []) . op = RESET &&

RESET ! in (Choc − CO/ l a s t []) . op
}

one sig Goal { goa l s : s e t ChocState} { goa l s = Chocolate }
one sig Subgoals { subgoa l s : s e t ChocState }{ subgoa l s = Change}

assert goalsmet {
t r an sa c t i on => l e t m = CO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in CO/prevs [m]
}

// This genera te s a counterexample wi th 6
check goalsmet for 6

32

E Chocolate machine - multiple coins

module SimpleChocMachine

open u t i l / order ing [Choc] as CO
open u t i l / i n t e g e r as INT

abstract s ig ChocState {}
one sig Reset , Coin , Chocolate , GotChocolate , Change extends ChocState {}

abstract s ig OP {}
one sig ENTER1PCOIN, ENTER2PCOIN, PUSHSMALLCHOC, PUSHLARGECHOC,

GETCHOC, PUSHCHANGE, RESET extends OP {}

abstract s ig ChocType {}
one sig SmallChoc , LargeChoc extends ChocType {}

s ig Choc {
balance : one Int ,
s t a t e : one ChocState ,
op : OP,
d i sp en s e r : lone ChocType

}

// Give us a qu i ck example
pred show1 [c : Choc] {}
run show1

pred en te r2pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (2)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
(c ’ . s t a t e = Coin or c ’ . s t a t e = Reset)

}

pred en te r1pco in [c , c ’ : Choc] {
c . s t a t e = Reset &&
c ’ . balance = INT/add [c . balance , i n t (1)] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
(c ’ . s t a t e = Coin or c ’ . s t a t e = Reset)

}

pred buysmallchoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (1)] &&
c ’ . balance = INT/sub [c . balance , i n t (1)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = SmallChoc
c ’ . s t a t e = Chocolate

}

pred buy largechoc [c , c ’ : Choc] {
c . s t a t e = Coin &&
INT/ gte [c . balance , i n t (2)] &&

33

c ’ . ba lance = INT/sub [c . balance , i n t (2)] &&
no c . d i sp en s e r &&
c ’ . d i sp en s e r = LargeChoc
c ’ . s t a t e = Chocolate

}

pred getchoc [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
some c . d i sp en s e r &&
no c ’ . d i sp en s e r &&
c ’ . balance = c . balance &&
((INT/ gte [c . balance , i n t (0)] => c ’ . s t a t e = Coin) or c ’ . s t a t e = GotChocolate)

}

pred askchange [c , c ’ : Choc] {
c . s t a t e = GotChocolate
INT/gt [c . balance , 0] &&
INT/ zero [c ’ . ba lance] &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Change

}

pred r e s e t [c , c ’ : Choc] {
c . s t a t e = Change &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred r e s e t 2 [c , c ’ : Choc] {
c . s t a t e = Chocolate &&
c . balance = 0 &&
c ’ . balance = c . balance &&
c ’ . d i sp en s e r = c . d i sp en s e r &&
c ’ . s t a t e = Reset

}

pred i n i t [c : Choc] {
c . balance = 0 &&
c . s t a t e = Reset &&
c . d i sp en s e r = none

}

pred t r a c e s {
i n i t [CO/ f i r s t []] &&
a l l c : Choc−CO/ l a s t [] | l e t c ’ = CO/next [c] |

((en te r1pco in [c , c ’] && c ’ . op = ENTER1PCOIN)
or
(en te r2pco in [c , c ’] && c ’ . op = ENTER2PCOIN)
or
(buysmallchoc [c , c ’] && c ’ . op = PUSHSMALLCHOC)
or
(buy largechoc [c , c ’] && c ’ . op = PUSHLARGECHOC)

34

or
(getchoc [c , c ’] && c ’ . op = GETCHOC)
or
(askchange [c , c ’] && c ’ . op = PUSHCHANGE)
or
(r e s e t 2 [c , c ’] && c ’ . op = RESET)
or
(r e s e t [c , c ’] && c ’ . op = RESET))

}

pred t r an sa c t i on {
t r a c e s &&
(CO/ l a s t []) . op = RESET &&

RESET ! in (Choc − CO/ l a s t []) . op
}

one sig Goal { goa l s : s e t ChocState} { goa l s = Chocolate }
one sig Subgoals { subgoa l s : s e t ChocState }{ subgoa l s = Change}

assert goalsmet {
t r an sa c t i on => l e t m = CO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in CO/prevs [m]
}

// This genera te s a counterexample wi th 6
check goalsmet for 7

35

F CashMachine.als

module CashMachine

open u t i l / order ing [ATM] as AO
open u t i l / i n t e g e r as INT

s ig I d e n t i f i e r {}

abstract s ig ATMstate {}

one sig AwaitCard , AwaitPin , AwaitInst , RemCash , RemCard extends ATMstate {}

// The f o l l ow i n g d e f i n i t i o n , a long wi th the op f i e l d o f ATM, are inc l uded
// simply in order to annotate the t r a c e s when i n v e s t i g a t i n g system p r o p e r t i e s .

abstract s ig OP {}
one sig ENTERCARD, ENTERPIN,OUTCARD, REQC, REQB, CASH extends OP {}

s ig ATM { card : lone I d e n t i f i e r ,
p in : lone I d e n t i f i e r ,
s t a t e : one ATMstate ,
balance : I d e n t i f i e r −> one Int ,
op :OP

}

// pred show1 [a :ATM] {some a . card}
// pred show2 [a :ATM] {some a . card && some a . pin && a . card != a . pin}
//run show2

/∗ Even at t h i s ea r l y s t a g e we can qu i c k l y g e t A l l oy to show some example
∗ s t a t e s . This informs the des i gn as we go a long . Adding con s t ra i n t s a l l ow s
∗ us to see p a r t i c u l a r i n s t ance s (eg wi th the 2nd vers i on o f pred) .
∗/

pred en te r card [a , a ’ :ATM, c : I d e n t i f i e r] {
a . s t a t e = AwaitCard &&
a ’ . card = c &&
a ’ . pin = a . pin &&
a ’ . balance = a . balance &&
a ’ . s t a t e = AwaitPin

}

pred showec [a , a ’ :ATM, c : I d e n t i f i e r] {
en te r card [a , a ’ , c]

}
run showec for 2

/∗ Can cons i der the e f f e c t o f each opera t i on as we go a long . ∗/

pred en te rp in [a , a ’ :ATM, p : I d e n t i f i e r] {
a . s t a t e = AwaitPin &&
a ’ . pin = p &&
a ’ . card = a . card &&

36

a ’ . balance = a . balance &&
((a . card = p && a ’ . s t a t e = AwaitInst)
or (a . card != p && a ’ . s t a t e = RemCard))

}

pred showep [a , a ’ :ATM, c : I d e n t i f i e r] {
en te rp in [a , a ’ , c]

}
//run showep

pred outcard [a , a ’ :ATM, c ’ : I d e n t i f i e r] {
a . s t a t e = RemCard &&
c ’ = a . card &&
a ’ . card = none &&
a ’ . pin = none &&
a ’ . balance = a . balance &&
a ’ . s t a t e = AwaitCard

}

/∗ Can be used in ops where the card/ pin numbers s tay the same ∗/
pred noidchange [a , a ’ :ATM] {

a ’ . card = a . card &&
a ’ . pin = a . pin

}

/∗ This vers i on only does one ta s k and then throws out the card ∗/

pred r eques t cash [a , a ’ :ATM, amount : Int] {
a . s t a t e = AwaitInst &&
INT/ gte [i n t (amount) , 0] &&
noidchange [a , a ’] &&
(INT/ gte [i n t ((a . pin) . (a . balance)) , i n t (amount)]

=> (a ’ . ba lance = a . balance ++ a . pin −>

INT/sub [i n t ((a . pin) . (a . balance)) , i n t (amount)] &&
a ’ . s t a t e = RemCash)

e l s e (a ’ . ba lance = a . balance &&
a ’ . s t a t e = RemCard)

)
}

pred takecash [a , a ’ :ATM] {
a . s t a t e = RemCash &&
noidchange [a , a ’] &&
a ’ . balance = a . balance &&
a ’ . s t a t e = RemCard

}

pred s eeba lance [a , a ’ :ATM, b : Int] {
a . s t a t e = AwaitInst &&
b=(a . pin) . (a . balance) &&
noidchange [a , a ’] &&
a ’ . balance = a . balance &&
a ’ . s t a t e = RemCard

}

37

pred i n i t [a :ATM] {
a . card = none && a . pin = none && a . s t a t e = AwaitCard

}

pred t r a c e s {
i n i t [AO/ f i r s t []] &&
a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

some i : I d e n t i f i e r |
((en te r card [a , a ’ , i] && a ’ . op = ENTERCARD)
or
(en te rp in [a , a ’ , i] && a ’ . op = ENTERPIN)
or
(outcard [a , a ’ , i] && a ’ . op = OUTCARD)
or
(some amt : Int | r eques t cash [a , a ’ , amt] && a ’ . op = REQC)
or

(takecash [a , a ’] && a ’ . op = CASH)
or
(some amt : Int | s eeba lance [a , a ’ , amt] && a ’ . op = REQB)

)
}

// Can check out the t r a c e s //
pred mult iu se r {

t r a c e s [] &&
(some d i s j i1 , i 2 : I d e n t i f i e r | i 1 in ATM. card && i2 in ATM. card) &&
some a :ATM | some a . card && a . card != a . pin

}
//run mul t i u ser f o r 7 but 2 I d e n t i f i e r

//Case o f money be ing d i spensed
pred t race2 {

t r a c e s && (AO/ l a s t []) . s t a t e = RemCash }

// Can j u s t run to see a trace , but again , can add some cons t r a i n t s to see a
// v a r i e t y o f s i t u a t i o n s . The above y i e l d e d a trace where the user en t e r s a
// d i f f e r e n t PIN to the one on the card . I then added the check f o r pin=card .
// The f i n a l l i n e o f the pred l oo k s f o r a t race where a r e que s t s t a g e i s
// reached at l e a s t once .
// The check below ensures t ha t the ba lance can only change v i a a r e que s t
// from the appropr i a te person .

assert samebal {
t r a c e s => (a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

a l l i : I d e n t i f i e r |
i . (a . balance) != i . (a ’ . ba lance) => (a . pin = i && a ’ . op = REQC))

}
// check samebal f o r 6

// Def ine a t ran sac t i on − a por t i on o f a t race s t a r t i n g wi th a user en t e r i n g

38

// a card and ending when tha t card i s next e j e c t e d .
pred t r an sa c t i on {

t r a c e s &&
(AO/ l a s t []) . op = OUTCARD &&
OUTCARD ! in (ATM − AO/ l a s t []) . op
}

// One drawback wi th the approach i s t ha t i t on ly checks t r a c e s o f e x a c t l y the
// s t a t ed l eng th . To see p o s s i b l e t races , can check wi th d i f f e r e n t s i z e d
// s t a t e spaces .
// Pos s i b l e l en g t h t r a c e s are found to be 1 , 4 , 5 and 6

pred cangetcash [x : s e t ATMstate] {
t r a c e s && x= ATM. s t a t e && RemCash in x}

//run t ran sac t i on f o r 7
//run cangetcash f o r 6

// Now check f o r p o s s i b l e ” complet ion e r ro r s ” by de s i gna t i n g goa l and subgoa l s
// f o r a p a r t i c u l a r t a s k . For example , suppose the user ’ s goa l i s to g e t money .
// A subgoa l i s to g e t t h e i r card back . I s i t p o s s i b l e to ach i eve the f i r s t
// b e f o r e the second?

one sig Goal { goa l s : s e t ATMstate} { goa l s = RemCash}
one sig Subgoals { subgoa l s : s e t ATMstate}{ subgoa l s = RemCard}

// Ei ther , no goa l s have been met or a l l s u b goa l s have been met by the time
// the l a s t goa l
// i s s a t i s f i e d .

assert goalsmet {
t r an sa c t i on => l e t m = AO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in AO/prevs [m]
}

// This genera te s a counterexample wi th 6
check goalsmet for 6 but exactly 2 I d e n t i f i e r

// Pos s i b l y check o ther c h a r a c t e r i s t i c s o f goa l s − eg , i f there i s a c e r t a i n
// goa l which shou l d be ach i eved by every p o s s i b l e t r an sac t i on trace . Here , i t
// doesn ’ t seem p a r t i c u l a r l y r e l e van t . User won ’ t always g e t cash . They might
// not even ge t the card back (eg in a vers i on where the card i s r e t a i n ed due
// to some anomaly) ,

// In order to co r r e c t the ” complet ion error ” the card needs to be e j e c t e d
// be f o r e the cash i s g i ven . In t h i s s i t u a t i o n there w i l l be ” cash pending ” −
// money wai t i ng to be d e l i v e r e d . To model t h i s , I ’ ve added another component
// to the s t a t e r ep r e s en ta t i on .
// In order not to g e t confused , I ’ l l make a new model f o r the next vers i on −
// see CashMachine2

39

G CashMachine2.als

module CashMachine2

// This vers i on o f the CashMachine co r r e c t s the complet ion error by e j e c t i n g
// the card be f o r e the money i s g i ven . The money pending i s recorded in
// the s t a t e .

open u t i l / order ing [ATM] as AO
open u t i l / i n t e g e r as INT

s ig I d e n t i f i e r {}

abstract s ig ATMstate {}

one sig AwaitCard , AwaitPin , AwaitInst , RemCash , RemCard extends ATMstate {}

// The f o l l ow i n g d e f i n i t i o n , a long wi th the op f i e l d o f ATM, are inc l uded
// simply in order to annotate the t r a c e s when i n v e s t i g a t i n g system p r o p e r t i e s .

abstract s ig OP {}
one sig ENTERCARD, ENTERPIN,OUTCARD, REQC, REQB, CASH extends OP {}

s ig ATM { card : lone I d e n t i f i e r ,
p in : lone I d e n t i f i e r ,
s t a t e : one ATMstate ,
balance : I d e n t i f i e r −> one Int ,
pending : lone Int ,
op : lone OP

}

// pred show1 [a :ATM] {some a . card}
// pred show2 [a :ATM] {some a . card && some a . pin && a . card != a . pin}
//run show2

/∗ Even at t h i s ea r l y s t a g e we can qu i c k l y g e t A l l oy to show some example
∗ s t a t e s . This informs the des i gn as we go a long . Adding con s t ra i n t s a l l ow s
∗ us to see p a r t i c u l a r i n s t ance s (eg wi th the 2nd vers i on o f pred) .
∗/

/∗ Can be used in ops where the card/ pin numbers s tay the same ∗/
pred noidchange [a , a ’ :ATM] {

a ’ . card = a . card &&
a ’ . pin = a . pin

}

/∗ Can be used in ops where money d e t a i l s s tay the same ∗/
pred nocashchange [a , a ’ :ATM] {

a ’ . balance = a . balance &&
a ’ . pending = a . pending

}

pred en te r card [a , a ’ :ATM, c : I d e n t i f i e r] {
a . s t a t e = AwaitCard &&

40

a ’ . card = c &&
a ’ . pin = a . pin &&
nocashchange [a , a ’] &&
a ’ . s t a t e = AwaitPin

}

// pred showec [a , a ’ :ATM, c : I d e n t i f i e r] {
// en tercard [a , a ’ , c]
// }
//run showec

pred en te rp in [a , a ’ :ATM, p : I d e n t i f i e r] {
a . s t a t e = AwaitPin &&
a ’ . pin = p &&
a ’ . card = a . card &&
nocashchange [a , a ’] &&
((a . card = p && a ’ . s t a t e = AwaitInst) or
(a . card != p && a ’ . s t a t e = RemCard))

}

pred showep [a , a ’ :ATM, c : I d e n t i f i e r] {
en te rp in [a , a ’ , c]

}
//run showep

pred outcard [a , a ’ :ATM, c ’ : I d e n t i f i e r] {
a . s t a t e = RemCard &&
c ’ = a . card &&
a ’ . card = none &&
a ’ . pin = none &&
nocashchange [a , a ’] &&
((no a . pending && a ’ . s t a t e = AwaitCard) or
(some a . pending && a ’ . s t a t e = RemCash))

}

/∗ This vers i on only does one ta s k and then throws out the card ∗/

pred r eques t cash [a , a ’ :ATM, amount : Int] { // need to cons i der ba l ances e t c ?
a . s t a t e = AwaitInst &&
INT/gt [i n t (amount) , 0] &&
noidchange [a , a ’] &&
(INT/ gte [i n t ((a . pin) . (a . balance)) , i n t (amount)]

=> (a ’ . ba lance = a . balance ++ a . pin −>

INT/sub [i n t ((a . pin) . (a . balance)) , i n t (amount)] &&
a ’ . pending = amount &&
a ’ . s t a t e = RemCard)

e l s e (nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard)

)
}

pred takecash [a , a ’ :ATM, c ’ : Int] {
a . s t a t e = RemCash &&
c ’=a . pending &&

41

a ’ . pending = none &&
noidchange [a , a ’] &&
a ’ . balance = a . balance &&
a ’ . s t a t e = AwaitCard

}

pred s eeba lance [a , a ’ :ATM, b : Int] {
a . s t a t e = AwaitInst &&
b=(a . pin) . (a . balance) &&
noidchange [a , a ’] &&
nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard

}

pred i n i t [a :ATM] {
a . card = none && a . pin = none && a . s t a t e = AwaitCard &&
a . pending = none && a . op = none

}

pred t r a c e s {
i n i t [AO/ f i r s t []] &&
a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

some i : I d e n t i f i e r |
((en te r card [a , a ’ , i] && a ’ . op = ENTERCARD)
or
(en te rp in [a , a ’ , i] && a ’ . op = ENTERPIN)
or
(outcard [a , a ’ , i] && a ’ . op = OUTCARD)
or
(some amt : Int | r eques t cash [a , a ’ , amt] && a ’ . op = REQC)
or

(some amt : Int | takecash [a , a ’ , amt] && a ’ . op = CASH)
or
(some amt : Int | s eeba lance [a , a ’ , amt] && a ’ . op = REQB)

)
}

// Can check out the t r a c e s //
pred mult iu se r {

t r a c e s [] &&
(some d i s j i1 , i 2 : I d e n t i f i e r | i 1 in ATM. card && i2 in ATM. card) &&
some a :ATM | some a . card && a . card != a . pin && RemCash

in ATM. s t a t e
}

//run mul t i u ser f o r 7 but 2 I d e n t i f i e r

//Case o f money be ing d i spensed
pred t race2 {

t r a c e s && (AO/ l a s t []) . s t a t e = RemCash }

//run trace2 f o r 4

// a s s e r t co r r e c t p i n {
// t ra c e s => a l l a :ATM | a . s t a t e = Awai tInst => a . pin = a . card && some a . pin

42

// }
// check co r r e c t p i n f o r 6

// Can j u s t run to see a trace , but again , can add some cons t r a i n t s to see
// a v a r i e t y o f s i t u a t i o n s . The above y i e l d e d a trace where the user en t e r s a
// d i f f e r e n t PIN to the one on the card . I then added the check f o r pin=card .
// The f i n a l l i n e o f the pred l oo k s f o r a t race where a r e que s t s t a g e i s
// reached at l e a s t once . The check below ensures t ha t the ba lance can only
// change v i a a r e que s t from the appropr i a te person .

assert samebal {
t r a c e s => (a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

a l l i : I d e n t i f i e r |
i . (a . balance) != i . (a ’ . ba lance) =>

(a . pin = i && a ’ . op = REQC))
}

// check samebal f o r 6

// Al ter the d e f i n i t i o n o f t r an sac t i on − a por t i on o f a t race s t a r t i n g wi th
// a user en t e r i n g a and ending when the machine i s again ready to take a
// card .
pred t r an sa c t i on {

t r a c e s &&
(AO/ l a s t []) . s t a t e = AwaitCard &&
AwaitCard ! in (ATM − (AO/ l a s t [] + AO/ f i r s t [])) . s t a t e
}

// One drawback wi th the approach i s t ha t i t on ly checks t r a c e s o f e x a c t l y
// the s t a t ed l eng th . To see p o s s i b l e t races , can check wi th d i f f e r e n t s i z e d
// s t a t e spaces . Po s s i b l e l en g t h t r a c e s are found to be 1 , 4 , 5 and 6

pred cangetcash [x : s e t ATMstate] {
t r an sa c t i on && x= ATM. s t a t e && RemCash in x &&
no (I d e n t i f i e r . ((AO/ l a s t []) . ba lance) & 0)}

//run t ran sac t i on f o r 6
//run cangetcash f o r 6

// Now check f o r p o s s i b l e ” complet ion e r ro r s ” by de s i gna t i n g goa l and subgoa l s
// f o r a p a r t i c u l a r t a s k . For example , suppose the user ’ s goa l i s to g e t money .
// A subgoa l i s to g e t t h e i r card back . I s i t p o s s i b l e to ach i eve the f i r s t
// b e f o r e the second?

one sig Goal { goa l s : s e t ATMstate} { goa l s = RemCash}
one sig Subgoals { subgoa l s : s e t ATMstate}{ subgoa l s = RemCard}

// Ei ther , no goa l s have been met or a l l s u b goa l s have been met by the time
// the l a s t goa l i s s a t i s f i e d .

assert goalsmet {
t r an sa c t i on => l e t m = AO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in AO/prevs [m]
}

43

// Now no counterexample i s found
check goalsmet for 6

// The complet ion error i s now avoided .

// Another p o s s i b l e scenar i o (e i t h e r order o f en t e r i n g pin or card) in
// CashMachine3

44

H CashMachine3.als

module CashMachine2

// This vers i on o f the CashMachine a l l ow s users to en ter e i t h e r pin or
// card f i r s t .

open u t i l / order ing [ATM] as AO
open u t i l / i n t e g e r as INT

s ig I d e n t i f i e r {}

abstract s ig ATMstate {}

one sig StartTrans , AwaitCard , AwaitPin , AwaitInst ,
RemCash , RemCard extends ATMstate {}

// The f o l l ow i n g d e f i n i t i o n , a long wi th the op f i e l d o f ATM, are inc l uded
// simply in order to annotate the t r a c e s when i n v e s t i g a t i n g system
// p r o p e r t i e s .

abstract s ig OP {}
one sig ENTERCARD, ENTERPIN,OUTCARD, REQC, REQB, CASH extends OP {}

s ig ATM { card : lone I d e n t i f i e r ,
p in : lone I d e n t i f i e r ,
s t a t e : one ATMstate ,
balance : I d e n t i f i e r −> one Int ,
pending : lone Int ,
op : lone OP

}

// pred show1 [a :ATM] {some a . card}
// pred show2 [a :ATM] {some a . card && some a . pin && a . card != a . pin}
//run show2

/∗ Even at t h i s ea r l y s t a g e we can qu i c k l y g e t A l l oy to show some example
∗ s t a t e s . This informs the des i gn as we go a long . Adding con s t ra i n t s a l l ow s
∗ us to see p a r t i c u l a r i n s t ance s (eg wi th the 2nd vers i on o f pred) .
∗/

/∗ Can be used in ops where the card/ pin numbers s tay the same ∗/
pred noidchange [a , a ’ :ATM] {

a ’ . card = a . card &&
a ’ . pin = a . pin

}

/∗ Can be used in ops where money d e t a i l s s tay the same ∗/
pred nocashchange [a , a ’ :ATM] {

a ’ . balance = a . balance &&
a ’ . pending = a . pending

}

pred en te r card [a , a ’ :ATM, c : I d e n t i f i e r] {

45

(a . s t a t e = AwaitCard or a . s t a t e = StartTrans) &&
a ’ . card = c &&
a ’ . pin = a . pin &&
nocashchange [a , a ’] &&
(a . s t a t e = AwaitCard =>

((a . pin = c && a ’ . s t a t e = AwaitInst) or
(a . pin != c && a ’ . s t a t e = RemCard))) &&

(a . s t a t e = StartTrans => a ’ . s t a t e = AwaitPin)
}

// pred showec [a , a ’ :ATM, c : I d e n t i f i e r] {
// en tercard [a , a ’ , c]
// }
//run showec

pred en te rp in [a , a ’ :ATM, p : I d e n t i f i e r] {
(a . s t a t e = AwaitPin or a . s t a t e = StartTrans) &&
a ’ . pin = p &&
a ’ . card = a . card &&
nocashchange [a , a ’] &&
(a . s t a t e = AwaitPin =>

((a . card = p && a ’ . s t a t e = AwaitInst) or
(a . card != p && a ’ . s t a t e = RemCard))) &&

(a . s t a t e = StartTrans => a ’ . s t a t e = AwaitCard)
}

pred showep [a , a ’ :ATM, c : I d e n t i f i e r] {
en te rp in [a , a ’ , c]

}
//run showep

pred outcard [a , a ’ :ATM, c ’ : I d e n t i f i e r] {
a . s t a t e = RemCard &&
c ’ = a . card &&
a ’ . card = none &&
a ’ . pin = none &&
nocashchange [a , a ’] &&
((no a . pending && a ’ . s t a t e = AwaitCard) or
(some a . pending && a ’ . s t a t e = RemCash))

}

/∗ This vers i on only does one ta s k and then throws out the card ∗/

pred r eques t cash [a , a ’ :ATM, amount : Int] { // need to cons i der ba l ances e t c ?
a . s t a t e = AwaitInst &&
INT/gt [i n t (amount) , 0] &&
noidchange [a , a ’] &&
(INT/ gte [i n t ((a . pin) . (a . balance)) , i n t (amount)]

=> (a ’ . ba lance = a . balance ++ a . pin −>

INT/sub [i n t ((a . pin) . (a . balance)) , i n t (amount)] &&
a ’ . pending = amount &&
a ’ . s t a t e = RemCard)

e l s e (nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard)

46

)
}

pred takecash [a , a ’ :ATM, c ’ : Int] {
a . s t a t e = RemCash &&
c ’=a . pending &&
a ’ . pending = none &&
noidchange [a , a ’] &&
a ’ . balance = a . balance &&
a ’ . s t a t e = StartTrans

}

pred s eeba lance [a , a ’ :ATM, b : Int] {
a . s t a t e = AwaitInst &&
b=(a . pin) . (a . balance) &&
noidchange [a , a ’] &&
nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard

}

pred i n i t [a :ATM] {
a . card = none && a . pin = none && a . s t a t e = StartTrans &&
a . pending = none && a . op = none

}

pred t r a c e s {
i n i t [AO/ f i r s t []] &&
a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

some i : I d e n t i f i e r |
((en te r card [a , a ’ , i] && a ’ . op = ENTERCARD)
or
(en te rp in [a , a ’ , i] && a ’ . op = ENTERPIN)
or
(outcard [a , a ’ , i] && a ’ . op = OUTCARD)
or
(some amt : Int | r eques t cash [a , a ’ , amt] && a ’ . op = REQC)
or

(some amt : Int | takecash [a , a ’ , amt] && a ’ . op = CASH)
or
(some amt : Int | s eeba lance [a , a ’ , amt] && a ’ . op = REQB)

)
}

// Can check out the t r a c e s //
pred mult iu se r {

t r a c e s [] &&
(some d i s j i1 , i 2 : I d e n t i f i e r | i 1 in ATM. card && i2 in ATM. card) &&
some a :ATM |

some a . card && a . card != a . pin && RemCash in ATM. s t a t e
}

//run mul t i u ser f o r 7 but 2 I d e n t i f i e r

//Case o f money be ing d i spensed
pred t race2 {

47

t r a c e s && (AO/ l a s t []) . s t a t e = RemCash }

//run trace2 f o r 4

// a s s e r t co r r e c t p i n {
// t ra c e s => a l l a :ATM | a . s t a t e = Awai tInst => a . pin = a . card && some a . pin
// }
// check co r r e c t p i n f o r 6

// Can j u s t run to see a trace , but again , can add some cons t r a i n t s to see
// a v a r i e t y o f s i t u a t i o n s . The above y i e l d e d a trace where the user en t e r s
// a d i f f e r e n t PIN to the one on the card . I then added the check f o r pin=card .
// The f i n a l l i n e o f the pred l oo k s f o r a t race where a r e que s t s t a g e i s
// reached at l e a s t once . The check below ensures t ha t the ba lance can only
// change v i a a r e que s t from the appropr i a te person .

assert samebal {
t r a c e s => (a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

a l l i : I d e n t i f i e r | i . (a . balance) != i . (a ’ . ba lance) =>

(a . pin = i && a ’ . op = REQC))
}

// check samebal f o r 6

// Al ter the d e f i n i t i o n o f t r an sac t i on − a por t i on o f a t race s t a r t i n g wi th
// a user en t e r i n g a and ending when the machine i s again ready to take a card .
pred t r an sa c t i on {

t r a c e s &&
(AO/ l a s t []) . s t a t e = StartTrans &&
StartTrans ! in (ATM − (AO/ l a s t [] + AO/ f i r s t [])) . s t a t e
}

// One drawback wi th the approach i s t ha t i t on ly checks t r a c e s o f e x a c t l y
// the s t a t ed l eng th . To see p o s s i b l e t races , can check wi th d i f f e r e n t s i z e d
// s t a t e spaces . Po s s i b l e l en g t h t r a c e s are found to be 1 , 4 , 5 and 6

pred cangetcash [x : s e t ATMstate] {
t r an sa c t i on && x= ATM. s t a t e && RemCash in x &&
no (I d e n t i f i e r . ((AO/ l a s t []) . ba lance) & 0)}

//run t ran sac t i on f o r 6
//run cangetcash f o r 6

// Now check f o r p o s s i b l e ” complet ion e r ro r s ” by de s i gna t i n g goa l and subgoa l s
// f o r a p a r t i c u l a r t a s k . For example , suppose the user ’ s goa l i s to g e t money .
// A subgoa l i s to g e t t h e i r card back . I s i t p o s s i b l e to ach i eve the f i r s t
// b e f o r e the second?

one sig Goal { goa l s : s e t ATMstate} { goa l s = RemCash}
one sig Subgoals { subgoa l s : s e t ATMstate}{ subgoa l s = RemCard}

// Ei ther , no goa l s have been met or a l l s u b goa l s have been met by the
// time the l a s t goa l i s s a t i s f i e d .

assert goalsmet {

48

t r an sa c t i on => l e t m = AO/max [s t a t e . (Goal . g oa l s)] |
some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in AO/prevs [m]

}

// This s t i l l s a t i s f i e s the complet ion proper ty .
check goalsmet for 6

// The complet ion error i s now avoided .

// Another p o s s i b l e scenar i o (e i t h e r order o f en t e r i n g pin or card) in
// CashMachine3

49

I CashMachine4.als

module CashMachine2

// What happens i f the user i s a l l owed to cance l the t r an sac t i on at any s t a g e ?

open u t i l / order ing [ATM] as AO
open u t i l / i n t e g e r as INT

s ig I d e n t i f i e r {}

abstract s ig ATMstate {}

one sig StartTrans , AwaitCard , AwaitPin , AwaitInst ,
RemCash , RemCard extends ATMstate {}

// The f o l l ow i n g d e f i n i t i o n , a long wi th the op f i e l d o f ATM, are inc l uded
// simply in order to annotate the t r a c e s when i n v e s t i g a t i n g system p r o p e r t i e s .

abstract s ig OP {}
one sig ENTERCARD, ENTERPIN,OUTCARD, REQC, REQB, CASH, CANCEL extends OP {}

s ig ATM { card : lone I d e n t i f i e r ,
p in : lone I d e n t i f i e r ,
s t a t e : one ATMstate ,
balance : I d e n t i f i e r −> one Int ,
pending : lone Int ,
op : lone OP

}

// pred show1 [a :ATM] {some a . card}
// pred show2 [a :ATM] {some a . card && some a . pin && a . card != a . pin}
//run show2

/∗ Even at t h i s ea r l y s t a g e we can qu i c k l y g e t A l l oy to show some example s t a t e s .
∗ This informs the des i gn as we go a long . Adding con s t r a i n t s a l l ow s us to see
∗ p a r t i c u l a r i n s t ance s (eg wi th the 2nd vers i on o f pred) .
∗/

/∗ Can be used in ops where the card/ pin numbers s tay the same ∗/
pred noidchange [a , a ’ :ATM] {

a ’ . card = a . card &&
a ’ . pin = a . pin

}

/∗ Can be used in ops where money d e t a i l s s tay the same ∗/
pred nocashchange [a , a ’ :ATM] {

a ’ . balance = a . balance &&
a ’ . pending = a . pending

}

pred en te r card [a , a ’ :ATM, c : I d e n t i f i e r] {
(a . s t a t e = AwaitCard or a . s t a t e = StartTrans) &&
a ’ . card = c &&

50

a ’ . p in = a . pin &&
nocashchange [a , a ’] &&
(a . s t a t e = AwaitCard =>

((a . pin = c && a ’ . s t a t e = AwaitInst) or
(a . pin != c && a ’ . s t a t e = RemCard))) &&

(a . s t a t e = StartTrans => a ’ . s t a t e = AwaitPin)
}

// pred showec [a , a ’ :ATM, c : I d e n t i f i e r] {
// en tercard [a , a ’ , c]
// }
//run showec

pred en te rp in [a , a ’ :ATM, p : I d e n t i f i e r] {
(a . s t a t e = AwaitPin or a . s t a t e = StartTrans) &&
a ’ . pin = p &&
a ’ . card = a . card &&
nocashchange [a , a ’] &&
(a . s t a t e = AwaitPin =>

((a . card = p && a ’ . s t a t e = AwaitInst) or
(a . card != p && a ’ . s t a t e = RemCard))) &&

(a . s t a t e = StartTrans => a ’ . s t a t e = AwaitCard)
}

pred showep [a , a ’ :ATM, c : I d e n t i f i e r] {
en te rp in [a , a ’ , c]

}
//run showep

pred outcard [a , a ’ :ATM, c ’ : I d e n t i f i e r] {
a . s t a t e = RemCard &&
c ’ = a . card &&
a ’ . card = none &&
a ’ . pin = none &&
nocashchange [a , a ’] &&
((no a . pending && a ’ . s t a t e = AwaitCard) or
(some a . pending && a ’ . s t a t e = RemCash))

}

/∗ This vers i on only does one ta s k and then throws out the card ∗/

pred r eques t cash [a , a ’ :ATM, amount : Int] { // need to cons i der ba l ances e t c ?
a . s t a t e = AwaitInst &&
INT/gt [i n t (amount) , 0] &&
noidchange [a , a ’] &&
(INT/ gte [i n t ((a . pin) . (a . balance)) , i n t (amount)]

=> (a ’ . ba lance = a . balance ++ a . pin −>

INT/sub [i n t ((a . pin) . (a . balance)) , i n t (amount)] &&
a ’ . pending = amount &&
a ’ . s t a t e = RemCard)

e l s e (nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard)

)
}

51

pred takecash [a , a ’ :ATM, c ’ : Int] {
a . s t a t e = RemCash &&
c ’=a . pending &&
a ’ . pending = none &&
noidchange [a , a ’] &&
a ’ . balance = a . balance &&
a ’ . s t a t e = StartTrans

}

pred s eeba lance [a , a ’ :ATM, b : Int] {
a . s t a t e = AwaitInst &&
b=(a . pin) . (a . balance) &&
noidchange [a , a ’] &&
nocashchange [a , a ’] &&
a ’ . s t a t e = RemCard

}

// I f there i s some money pending , t h i s shou l d be d e l i v e r e d . I f the card i s
// there , re turn i t . Otherwise , s t a r t again
pred cance l [aa , aa ’ :ATM] {

noidchange [aa , aa ’] && nocashchange [aa , aa ’] &&
((some aa . pending && aa ’ . s t a t e = RemCash) or

(no aa . pending && some aa . card && aa ’ . s t a t e = RemCard) or
(no aa . pending && no aa . card && i n i t [aa ’])

)
}

// pred cance l ok [a , a ’ :ATM] {
// cance l [a , a ’] && a . pending != a ’ . pending
// }

//run cance l ok f o r 8

pred i n i t [a :ATM] {
a . card = none && a . pin = none &&
a . s t a t e = StartTrans &&
a . pending = none

}

pred ch e ck in i t [a :ATM] {
a . card = none //&& a . pin = none &&
a . s t a t e = StartTrans &&
a . pending = none

}

pred t r a c e s {
i n i t [AO/ f i r s t []] && no (AO/ f i r s t []) . op
a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

some i : I d e n t i f i e r |
((en te r card [a , a ’ , i] && a ’ . op = ENTERCARD)
or
(en te rp in [a , a ’ , i] && a ’ . op = ENTERPIN)
or

52

(outcard [a , a ’ , i] && a ’ . op = OUTCARD)
or
(some amt : Int | r eques t cash [a , a ’ , amt] && a ’ . op = REQC)
or

(some amt : Int | takecash [a , a ’ , amt] && a ’ . op = CASH)
or
(some amt : Int | s eeba lance [a , a ’ , amt] && a ’ . op = REQB)
or
(cance l [a , a ’] && a ’ . op = CANCEL)

)
}

// Can check out the t r a c e s //
pred mult iu se r {

t r a c e s [] &&
(some d i s j i1 , i 2 : I d e n t i f i e r | i 1 in ATM. card && i2 in ATM. card) &&
some a :ATM |

some a . card && a . card != a . pin && RemCash in ATM. s t a t e
}

//run mul t i u ser f o r 7 but 2 I d e n t i f i e r

//Case o f money be ing d i spensed
pred t race2 {

t r a c e s && (AO/ l a s t []) . s t a t e = RemCash }

//run trace2 f o r 4

pred t race3 {
t r a c e s and (AO/next [AO/ f i r s t []]) . op = ENTERPIN and
(AO/ l a s t []) . op = CANCEL
}

//run trace3

// a s s e r t co r r e c t p i n {
// t ra c e s => a l l a :ATM | a . s t a t e = Awai tInst => a . pin = a . card && some a . pin
// }
// check co r r e c t p i n f o r 6

// Can j u s t run to see a trace , but again , can add some cons t r a i n t s to see
// a v a r i e t y o f s i t u a t i o n s . The above y i e l d e d a trace where the user en t e r s a
// d i f f e r e n t PIN to the one on the card . I then added the check f o r pin=card .
// The f i n a l l i n e o f the pred l oo k s f o r a t race where a r e que s t s t a g e i s
// reached at l e a s t once . The check below ensures t ha t the ba lance can only
// change v i a a r e que s t from the appropr i a te person .

assert samebal {
t r a c e s => (a l l a :ATM−AO/ l a s t [] | l e t a ’ = AO/next [a] |

a l l i : I d e n t i f i e r | i . (a . balance) != i . (a ’ . ba lance) =>

(a . pin = i && a ’ . op = REQC))
}

// check samebal f o r 6

53

// Al ter the d e f i n i t i o n o f t r an sac t i on − a por t i on o f a t race s t a r t i n g
// wi th a user en t e r i n g a and ending when the machine i s again ready to
// take a card .
pred t r an sa c t i on {

t r a c e s &&
(AO/ l a s t []) . s t a t e = StartTrans &&
StartTrans ! in (ATM − (AO/ l a s t [] + AO/ f i r s t [])) . s t a t e
}

// Pos s i b l e t race l e n g t h s change . A user cou ld keep c an c e l l i n g over and
// over again . Of course , t h i s i s u n l i k e l y behaviour excep t perhaps i f
// the user doesn ’ t know what ’ s happening or t h i n k s the machine ’ s gone wrong
// and i s d e sp e ra t e l y t r y i n g to s top the t r an sac t i on .

pred cangetcash [x : s e t ATMstate] {
t r an sa c t i on && x= ATM. s t a t e && RemCash in x &&
no (I d e n t i f i e r . ((AO/ l a s t []) . ba lance) & 0)}

pred t ran s1 {
t r an sa c t i on && (AO/next [AO/ f i r s t []]) . op = ENTERPIN

}

//run t ran sac t i on f o r 8
//run cangetcash f o r 6

// Now check f o r p o s s i b l e ” complet ion e r ro r s ” by de s i gna t i n g goa l and subgoa l s
// f o r a p a r t i c u l a r t a s k . For example , suppose the user ’ s goa l i s to g e t money .
// A subgoa l i s to g e t t h e i r card back . I s i t p o s s i b l e to ach i eve the f i r s t
// b e f o r e the second?

one sig Goal { goa l s : s e t ATMstate} { goa l s = RemCash}
one sig Subgoals { subgoa l s : s e t ATMstate}{ subgoa l s = RemCard}

// Ei ther , no goa l s have been met or a l l s u b goa l s have been met by the time
// the l a s t goa l i s s a t i s f i e d .

assert goalsmet {
t r an sa c t i on => l e t m = AO/max [s t a t e . (Goal . g oa l s)] |

some m => a l l sg : Subgoals . subgoa l s | s t a t e . sg in AO/prevs [m]
}

// This s t i l l s a t i s f i e s the complet ion proper ty .
check goalsmet for 6

54

