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Detection of Nuclei by Unsupervised Manifold Learning
Muhammad Arif* and Nasir Rajpoot”

?Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
" Department of Computer Science, University of Warwick, Coventry, UK

Abstract: Shape related signatures of nuclei in a tissue section are important for diagnosis and prognosis of cancer.
Understandably, the process of demarcation of nuclei for cytometry with high degree of confidence is the most
difficult part as the tissue section is fraught with staining artifacts and frequently contains other objects such as
overlapping nuclei, nuclear debris, and extracellular structures. In this paper, we address this problem using a
novel clustering algorithm for various shapes in prostate histopathology images using an unsupervised manifold
learning paradigm. Experimental results with two-dimensional embedding of the shapes using diffusion maps
demonstrate that various shapes in the tissue section are organized in accordance to the degree of complexity of
their boundaries. This important observation can be exploited in the development of computerized techniques for
image based cytometry.
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Figure 1: (a) A typical prostate tissue specimen (b) Binary image showing potential nuclei, overlapping nuclei,
nuclear debris, and extracelluar structures (c¢) Nuclei detected (shown in green) by our detection algorithm; the
objects shown in red are the ones rejected by the algorithm.

1 Introduction

Today cancer is one of the major causes of deaths throughout the world. Mortality rate can be reduced if it is
diagnosed at an early stage. Traditionally, cancer and its level of malignancy (i.e., grading) are detected by
pathologists who study microscopic images of tissues removed from the patients. For over a decade now, there has
been a considerable amount of interest in research and development of computer-assisted systems for diagnosis and
prognosis of cancer, due to the following reasons:

1. The judgment of a pathologist is subjective and significant inter- and intra-observer variability and poor
reproducibility has been reported [1, 2]. Analyzing the tissues quantitatively using machine vision
techniques can reduce this variability.

2. In the very early stages of the malignancy, the pathologist may be unable to detect the changes in the
tissues. By introducing objectivity in the analysis, these otherwise undetectable changes can be detected [3].

3. A significant number of imaging modalities have been developed in recent years. To increase the reliability
of judgment, it would be more judicious to fuse the information extracted from the huge amount of data
generated by these imaging modalities as well as from the computer based analysis of tissue specimens.

4. The task of analyzing histopathological data by human experts is dull, tedious and laborious. Machines are
well suited for such chores with high throughput. Hence nature of the job also demands automation of the
process or at least development of ancillary systems to decrease the workload for pathologists.

One of the main areas of research into quantitative histopathology for computer-assisted diagnosis systems has been
to quantify changes at one of the two levels: tissue level and cellular level [4]. Computerized methods at both levels
extract diagnostically important features from stained tissues and employ statistical and machine learning methods to
detect any abnormality. Most of the techniques at tissue level rely on the texturedness of the tissue and on the spatial
arrangement of cells in histological sections [5, 6, 7, 8, 9, 10]. The second class of methods exploits the
morphological features of cells and nuclei [11,14,15], such as quantitative descriptors of nuclei including area,
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radius, major/minor axis, compactness, perimeter, fractal dimension and texture of the chromatin inside the nucleus,
to name a few [13].

Nuclei are particularly very important objects in the tissue to be analyzed for the development of computer-assisted
systems as they can be easily differentiated from rest of the structural components by selective staining methods. The
success of nuclear morphometry based techniques depends on how reliably the nuclei have been recognized in a
histological section fraught with overlapping nuclei, nuclear debris, cellular and extra cellular structures, staining and
image acquisition related artifacts.

Inspired by the seminal work of Coifman et al. on diffusion maps [16], we address the problem of separating various
parts of the tissue in a stained specimen by posing it as an unsupervised manifold learning problem in a low-
dimensional space and by using diffusion maps for manifold learning. Preliminary results are very encouraging and
demonstrate that various objects in the tissue section are organized in the new representation (using only 2
dimensions) in accordance with the degree of complexity of their boundaries. The proposed detection algorithm is
fast and only requires a thresholding operation, with the threshold being the same for all images that we
experimented with, after low-dimensional embedding to separate the nuclei from a given histopathological image.
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Figure 2. Block diagram of the proposed algorithm

2 Materials and Methods

We used Haematoxylin and Eosin (H&E) stained color images of prostate tissue samples for experimentation. All of
the images were captured under similar conditions. The images were converted into gray scale and filtered using
edged preserving smoothing filter to remove the noise. A typical specimen of the stained tissues is shown in the
Figure 1 (a).

2.1.1 Preprocessing and Feature Extraction

The general block diagram of the proposed algorithm is shown in Figure 2. The gray images were processed by an
edge-preserving smoothing filter, namely anisotropic diffusion, to remove the noise. In a typical H&E stained image
of a tissue section, cell nuclei are darker than the surrounding cytoplasm and extracelular matter. Exploiting this
fact, the class of potential nuclei are segmented from the specimen using k-means clustering on the intensity values.
The resultant image with expected nuclei is then converted into a binary image. Morphological operations are
performed on the dichotomized image to smooth it and to remove segmentation artifacts and objects with very small
areas. The resultant binary image is shown in Figure 1 (b).

As can be seen in Figure 1(b), the processes of segmentation and binarization do not isolate the nuclei completely
from other objects such as custers of overlapping nuclei, nuclear debris, cellular and extracellular structures and
staining artifacts. In order to learn the shape manifolds of nuclei and other objects in an unsupervised manner, we
extract the boundaries of all objects. The extracted boundary points of each object are then resampled into an equal
number of points N using cubic spline interpolation. A centroidal distance function r;, for i=7,2,...,N, is computed as
follows [12],

r=(lx,—x, P+ -v.J) (1)

where (x;);) denote the coordinates of the ith boundary point of the object. The distance vector r={r,r,,...ry} is
transformed into frequency domain using FFT. Our feature vector f for the detection algorithm is derived as follows,
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where |F}| denote the ith Fourier coefficient, with F being the DC component. In the above equation, taking the
magnitude of the coefficients yields rotation invariance and their division by |F| results in scale invariance.



2.1.2  Unsupervised Manifold Learning

To improve the performance of a classifier or a clustering algorithm, it is desirable to extract relevant features
concealed in high dimensional data. Generally, the relevant features lie on a low-dimensional sub-manifold
embedding of the high dimensional space. Many algorithms have been proposed to learn a suitable low-dimensional
embedding from the given data. The classical techniques such as PCA, ICA, MDS etc. assume that the low-
dimensional manifold is linear. In recent years, locality preserving dimensionality reduction techniques such as
Locally Linear Embeddings [17], Laplacian Eigen Maps [18], Diffusion Maps [16] and Hessian Eigen Maps [19]
have been proposed when the features are lying in a non-linear low-dimensional manifold. These methods exploit the
spectral properties (eigenvectors and eigenvalues) of some kind of similarity matrices.

In this work, we employ a diffusion map based framework for unsupervised manifold learning as it clearly defines a
robust (with respect to noise) distance metric on the data set reflecting its connectivity [20]. As a consequence, the
number of Eigenvectors in low-dimensional embedding can be determined by time parameter in Markov chain. In
other methods, it is not clear how to choose the number of eigenvectors in the embedding [20].

For a given set of feature vectors Q={f}, f5 ..., fu} corresponding to boundaries of various objects in the tissue
section, the first step of diffusion maps based framework is to consider feature vectors as nodes of a symmetric graph
and compute pairwise similarity matrix between points f; and f; using Gaussian Kernel with width &,
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The next step is to define Markov Random Walk on the graph by defining the Markov matrix P, with its (i,/)th
element p; given as follows
p.. e ————
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where d(f;) denotes the degree of node f; in the graph and is defined as

d(f) =D w(f.2). (5)
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The (i,/)th element of Pt (i.e., the rth iterate of P) represent probability of going from node f; to node f; in ¢ steps. If
{A;} 1s the sequence of eigenvalues of P such that |1)|>|4;|> ..., and {y,} are the corresponding eigen functions, then
a mapping from the data set Q to a low-dimensional Euclidean space R" ,where m is the dimensionality of the lower-
dimensional space and can be a function of 7, is given by (see [16, 19] for details),
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Spectral fall-off and the time ¢ of the random walk are the main factors contributing to dimensionality reduction.
Consequently, for large value of 7, we will be able to capture large-scale structures in the data with fewer diffusion
coordinates [21]. A natural consequence of this embedding is that it captures the intrinsic dimensionality of the high
dimensional data which could be depicted by the way the objects are organized in the new, lower dimensional space.

The two-dimensional diffusion map for (N/2-1)-dimensional feature vectors (with N = 100 boundary points) for the
tissue sample shown in Figure 1 (a) is shown in Figure 3 (a). In both figures, nuclei are shown in green and rest of
the entities in red. These figures show that the low-dimensional embeddings have successfully captured in high
dimensional data characterizing nuclei-like objects.

3 Results and Discussion

Diffusion coordinates were computed for high dimensional feature vector data corresponding to objects in the
segmented tissue of Figure 1 (a) as outlined in the previous section. Figure 3 (a) shows the low-dimensional
embedding of high dimensional original feature vectors extracted from the Figure 1 (b) in new space. To investigate
for some interesting patterns emerging from the embedding, two non-overlapping sections of the Figure 3 (a) have
been zoomed in (b) and (c) and the objects in the binarized image corresponding to Figure 1 (a) have been overlaid
approximately in their respective coordinates in the embedding.

Visual examination of these plots demonstrates that as we move roughly from left to right and from bottom to top,
the degree of complexity in the shape of objects increases. To put it another way, we may say that regular shaped
nuclei have been clustered on the bottom right of the plot while non-regular shapes such as bunches of overlapping
nuclei, possibly irregular nuclei, debris of nuclei, nuclei in different stages of mitosis, staining artifacts etc. have



distinct regions in sub-manifold. The same pattern was observed when the experiment was repeated for several
specimens.

Interestingly almost all the regular shaped nuclei can easily be isolated from rest of the objects by thresholding the
values of the first two eigen vectors at zero crossings. The threshold values of zero are chosen due to the nature of
the problem (binary clustering) using the spectral clustering theory [22]. Figure 1 (c) shows the tissue section with
potential nuclei with green color by this technique. Figure 4 (c) also shows the results of successful classification of
objects in the binary image by thresholding for another specimen shown in Figure 4 (a). Note that in Figure 3 (a) the
coordinates of potential nuclei in diffusion maps recovered by mere thresholding have been coded in green and other
objects in red.

Intuitively, these observations seem to be very promising in the field of quantitative cytometry. However, it has yet
to be established, by extensive experimentation on ground-truth, how significant these findings are for diagnosis and
prognosis of cancer.
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Figure 3. (a) Diffusion maps for the binary image of Figure 1(b). (b) & (c¢) The objects in the binary image
corresponding to the their embedded coordinates overlaid approximately on their respective coordinates in (a).
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Figure 4: Another prostate tissue specimen (b) Binary image containing potential nuclei, overlapping nuclei, nuclear
debris, and extracelluar structures (c) Potential Nuclei (shown in green) detected via shape manifold learning with
diffusion maps.



Conclusions

The problem of detecting nuclei in a tissue section for image-based cytometry has been addressed in this paper using
an unsupervised manifold learning paradigm. Preliminary results demonstrate that this technique successfully
reorganizes various objects of the tissue section in accordance with the complexity of the objects’ boundaries. The
pattern that emerges in the diffusion space can be incorporated in the development of efficient and reliable systems
for quantitative histopathology.
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