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both surface virtual sites (AUI) and bulk gold atoms (AUB). Note

the Au–H interaction is for hydroxyl, amide and thiol H only. . . . . 214

D.6 GolP-CHARMM LJ parameters for the Au(100)(5×1) surface. Inter-

action strengths ǫ (kJmol−1) and distances σ (Å) are given for both
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Abstract

The aqueous interface between biomolecules and inorganic substrates is of inter-
est to many cross-disciplinary areas of science, ranging from fundamental biological
research into biomineralisation processes, to the more application-driven fields of
nanotechnology and biomimetic materials synthesis. In particular, by harnessing
the selectivity observed in Nature, proteins and peptides make ideal candidates for
directing the assembly of nanoparticles into nanostructured, multifunctional mate-
rials with pre-defined physical properties. The rational design of peptide sequences
with tunable affinities either for a substrate of a specific composition, or for a specific
crystallographic plane of a given material, would mark an important step towards
realising these goals. Before this is possible, however, the fundamental mechanisms
involved in peptide-substrate binding under aqueous conditions must be understood.

Molecular simulation, used throughout this thesis, is well suited for study-
ing biointerfacial systems at the level of detail needed to advance research. The
work presented herein is primarily focused on answering the question of whether
facet-selective peptide adsorption is indeed possible at the aqueous quartz and gold
interfaces. A range of different simulation techniques, all based on atomistic molec-
ular dynamics, are employed. As part of the study, two of the ‘grand challenges’
currently facing biointerfacial simulation–the deviation of force-fields suitable for
the interfacial environment, and enhancing conformational sampling of an adsorbed
biomolecule–are addressed.

Potential of Mean constraint Force free energy of adsorption calculations
show that, out of the amino-acid analogues tested, all display energetic and/or
spatial selectivity between the (100), (001) and (011) surfaces, on adsorption to
Quartz. Facet specificity in binding, for the building blocks from which peptides
are comprised, is highly suggestive of the biomolecules themselves displaying similar
characteristics. The general trend in small molecule adsorption strength–non-polar
aromatic > negatively-charged > non-polar aliphatic > positively-charged–is com-
mon to all three aqueous Quartz interfaces. The propensity for negatively-charged
ethanoate to bind more strongly to the aqueous, fully hydroxylated (100) α-Quartz
surface than positively-charged ammonium is confirmed by first-principles simula-
tions.

Selectivity between the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces is
also observed when the gold-binding peptide AuBP-1 [Hnilova et al. [2008]] adsorbs

xxv



to gold under aqueous conditions. Metadynamics, in combination with the advanced
sampling technique Replica Exchange with Solute Tempering, is used to study this
system. The impact of Au(100) reconstruction on peptide binding is considered
here for the first time. This aspect of gold binding was made possible by a suite of
force-fields derived within this work, GolP-CHARMM, for modelling the interactions
between proteins and peptides and gold.

xxvi



Abbreviations

AFM Atomic Force Microscopy

AuNP Gold Nanoparticle

BOMD Born Oppenheimer Molecular Dynamics

COM Centre of Mass

CPMD Car Parrinello Molecular Dynamics

DFT Density Functional Theory

FF Force-field

GGA Generalised Gradient Approximation

H-REMD Hamiltonian Replica Exchange Molecular Dynamics

LDA Localised Density Approximation

LJ Lennard-Jones

MD Molecular Dynamics

metaD Metadynamics

NMR Nuclear Magnetic Resonance

NP Nanoparticle

NPT Isothermal-Isobaric ensemble (constant number, pressure and temperature)

xxvii



NVE Microcanconical Ensemble (constant number, volume and energy)

NVT Canconical Ensemble (constant number, volume and temperature)

PEL Potential Energy Landscape

PME Particle Mesh Ewald

PMF Potential of Mean Force

PW-DFT Plane Wave Density Functional Theory

QCM Quartz Crystal Microbalance

RDF Radial Distribution Function

REMD Replica Exchange Molecular Dynamics

REST Replica Exchange with Solute Tempering

RMSD Root Mean Squared Deviation

SFG Sum Frequency Generation Spectroscopy

SPR Surface Plasmon Resonance

T-REMD Temperature Replica Exchange Molecular Dynamics

xxviii



Chapter 1

Introduction

Fundamental understanding of the aqueous interface between biological molecules

and inorganic substrates is of interest to many cross-disciplinary fields of science,

ranging from biology and medicine to biomimetic material synthesis and nanotech-

nology. In this work I have used molecular simulation to investigate the mechanisms

governing peptide adsorption at an oxide–quartz–and a metallic–gold–interface. Specif-

ically this report focuses on the potential of a peptide preferentially to adsorb to

one material, or one crystallographic surface of a given material, over another.

The future applications which motivate this research are outlined in Section

1.1 before a brief review of the current methods used to select or design material

binding peptides, Section 1.2. The current challenges to gaining greater insight into

peptide-surface adsorption at the aqueous quartz and gold interfaces are introduced

in Sections 1.3 and 1.4, respectively.

1.1 The Potential of material and facet selective Pep-

tides

In Nature, biomolecules perform a key role in the formation, structure and function

of biological hard minerals (e.g. hydroxyapatite [Capriotti et al. [2007]], nacre [Fu

et al. [2005]; Collino and Evans [2008]; Metzler et al. [2010]; Amos et al. [2011]] and

silica [Kroger et al. [1999, 2001, 2002]; Sumper and Brunner [2008]]), while interfaces

between biomolecules and non-biological inorganic substrates are increasingly preva-

lent in the modern world (e.g. joint replacements). In recent years, protein-surface

interactions, in particular, have been the subject of much research [Latour [2008];

Tamerler et al. [2010]; Seker and Demir [2011]; di Felice and Corni [2011]]. Since

the structure of a protein is integral to its function, understanding the mechanisms
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driving surface adsorption–including binding affinity, structure and aggregation–is

valuable for many reasons. For example, in the realm of medicine, this informa-

tion could be used to improve the compatibility of medical implants [Walczyk et al.

[2010]], predict the toxicity of nanoparticles (NPs) [Shemetov et al. [2012]; Vec-

chio et al. [2012b,a]] and aid the design of NP-based therapeutics [Colombo et al.

[2012]; Kumar et al. [2012]; Liao et al. [2012]; Black et al. [2013]] or diagnostics

[Chakraborty et al. [2011]; Mahmood et al. [2012]]. Alternatively, if harnessed, the

selectivity of biomolecule-substrate binding observed in Nature makes proteins and

peptides (short chains of up to ∼50 residues) ideal candidates for controlling the

synthesis and subsequent organization of NPs into pre-defined nanostructures. Not

only does this biomimetic approach to material synthesis [Tamerler and Sarikaya

[2009]; Tamerler et al. [2010]; Hnilova et al. [2012c,a,b]; Schoen et al. [2011]; Cop-

page et al. [2011]; Briggs and Knecht [2012]] offer the potential for designing new

smart materials, but it can also be carried out under ambient temperature and

pressure; significantly less energy-intensive conditions than many of the procedures

currently used in manufacturing.

Fusion proteins comprising of peptide sequences with selective affinity to

different materials are one way in which to direct the assembly of NPs into nano-

materials of mixed composition. For example, by exploiting substrate-selectivity,

the surface of one material could be patterned in a controlled manner by NPs of an

alternative composition using a protein that features both material-binding domains

[Hnilova et al. [2012b]] (Figure 1.1a). Alternatively, heterogeneous surfaces could

be decorated by NPs using two or more sets of fusion proteins, each presenting a

different material-binding sequence (Figure 1.1b). In recent years the quartz–gold

system has been used several times as an exemplar test case of these biomimetic

synthetic strategies [Hnilova et al. [2012c,a,b]; Tamerler et al. [2010]]. Interest in

these interfaces in particular was not just a scientific exercise: the potential to ex-

ploit the unique physical properties of noble metal NPs to their full potential in a

new material, whilst retaining economic feasibility, is key to the practical realiza-

tion of many nanotechnological applications. Silica–an abundant raw resource–and

gold–an expensive commodity–are therefore an optimal combination.

While thus far identification of material-selective peptides has been the pri-

mary focus of research, interest in finding sequences able to discriminate between

different crystallographic planes of the same substance is growing [Heinz et al. [2009];

Yu et al. [2010, 2012]; Feng et al. [2012]; Chiu et al. [2011]; Coppage et al. [2012];

Ruan et al. [2013]]. Facet-selective peptides offer the potential to regulate NP syn-

thesis such that only NPs of a given shape are produced. NP growth is widely
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c)

b)

a)

Figure 1.1: Scheme to depict how material- and facet-selective peptide sequences
can be used to direct the fabrication of a) a regular array of NPs above a uniform
surface, b) an array of NPs of mixed composition on a patterned surface and c) a
matrix of NP orientationally aligned.
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thought to be a kinetically-driven process, with low energy surfaces growing faster

and thus featuring more prominently on the final particle, than high energy ones. On

adsorption of a capping ligand, the surface energy of the facet in question is modified.

Therefore, by selectively controlling which crystallographic planes are passivated by

peptide binding potentially allows us to control the overall morphology of a NP.

Furthermore, facet-selective peptide sequences could help regulate NP assembly in

an orientational manner so that nanostructures of anisotropically ordered NP are

produced (Figure 1.1c). While advantageous for NPs of any composition, the great-

est promise of facet-selective peptides comes in the case of noble metals where the

unique optical and chemical properties of NPs depends critically on size, shape and

assembly. For instance, the plasmonic adsorption frequency of a nanosensor could

be finely tuned if composed only of NPs of a specific size and shape, systematically

assembled. Similarly, it has recently been shown that the selectivity and efficiency of

NP-based catalysts can be improved by the rational design of the NPs incorporated

[Shuai et al. [2013]].

To date, synthetic strategies for size and shape selective production of NPs

reported in the literature can be broadly grouped into two classes: seed mediated

growth (e.g. the synthesis of five-fold stellar AuNPs featuring 110 facets [Jiang et al.

[2013]]); and those aided by the addition of additives–ions [Peng et al. [2013]], sur-

factants [De and Mandal [2013]; Danger et al. [2012]] and peptides [Kim et al. [2010];

Coppage et al. [2012]; Gkikas et al. [2013]; Chiu et al. [2011]; Ruan et al. [2013]; Chiu

et al. [2012]]. While ‘additive-mediated’ synthetic strategies to anisotropic AuNPs

with rod-like dimensions exist–for example Au nanorods and nanopods produced

in the presence of 4-dimethylaminopyridine (DMAP) [Danger et al. [2012]]–, unlike

platinum [Chiu et al. [2011]; Ruan et al. [2013]] and palladium [Peng et al. [2013]],

those to exert fine control over the morphology and facet composition of spherical

AuNPs are lacking. Recent progress in this regard was made by Kim et al. however,

who reported that the size and shape of AuNPs precipitated in the presence of the

gold binding peptide ‘Midas-11’ (sequence 9 Table 1.2) and its variants could be

regulated in a controlled manner by systematically varying the experimental con-

ditions [Kim et al. [2010]]. For example, the mutant G11Y produced mainly large

(1-2µm) trigonal, truncated trigonal or hexagonal platelets while the mutant G11H

gave rise to platelets of mixed size and shape (both at pH3 and 37◦C).
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1.2 Selection of Material Binding Peptides

Since the pioneering work of Brown, who reported the first genetically engineered

material-binding peptides [Brown [1997]], numerous sequences which selectively ad-

sorb to a range of other non-biological substrates (e.g. metals, polymers, semi-

conductors and oxides) have been identified (see a recent review by Seker and Demir

for references [Seker and Demir [2011]]; silica and gold binding peptides are discussed

in detail in Sections 1.3 and 1.4,respectively). At present, the most commonly used

selection processes involve screening large peptide libraries by biocombinatorial tech-

niques. In what follows, the principles behind, and the problems associated with,

these processes are outlined, before the challenges which must be met before peptide

sequences with tunable affinity for a given substrate can be rationally designed are

discussed.

1.2.1 Biocombinatorial Peptide Selection

To date two biocombinatorial methods, originally designed to probe biological protein-

ligand interactions, have been used to identify material-binding peptides: phage

[Brown [1997]] and cell surface [Wittrup [2001]] display. The principles behind both

are the same. First, random sequences of DNA are inserted into the virus or cell

genome. The insertion point is chosen to be a site within the genetic informa-

tion corresponding to a protein expressed on the surface of the phage or cell. The

phages/cells are then exposed to the inorganic substrate of interest. Those with

coat proteins featuring peptides with high surface-affinity adsorb to the interface,

whilst those with little or no affinity are removed by washing. Bound phages/cells

are eluted and amplified. In the case of phage display, amplification is achieved by

bacterial infection. The biopanning process described is repeated–each round using

only peptide sequences expressed by those phages/cells which were eluted from the

interface at the end of the previous iteration–until a consensus is reached. Finally,

by sequencing the genome of the phage/cell which adsorbs the most strongly to the

substrate, high affinity material-binding peptides can be identified.

There are a number of problems associated with only using biocombinato-

rial techniques to identify peptide sequences. Common to both procedures, the

display peptide libraries that can be screened only contain ∼0.1% of the residue

combinations possible for a peptide of a given length. The shortfall arises from

either rejection of the inserted DNA or the inability of the phage/cell to express

the modified coat protein. In addition, many amino-acids can be represented by

more than one DNA codon (a triplet of DNA bases). However, the number of DNA
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codons encoding an amino-acid varies–for example, arginine, leucine and serine are

each represented by 6 different codons, while methionine and tryptophan are asso-

ciated with only one codon each. Therefore, even if all the possible combinations

of DNA bases for a given length of peptide were expressed by a phage/cell display

library, some peptide sequences would be represented more often than others. In

the case of cell surface display, a third layer of bias is introduced at the translation

stage–tRNA complimentary to each amino-acid are not uniformly available. On

the other hand, the peptide sequence genetically inserted into the coat protein of a

virus may influence the rate at which it can infect host cells used in the amplifica-

tion stage. Peptides which mediate strong surface adsorption but hinder bacterial

infection are hence less likely to be identified at the end of the procedure. Each of

these issues can be used to account for the disparity between the primary sequences

of material-binding peptides identified using different peptide libraries (see Tables

1.1 and 1.2 silica and gold binding sequences, respectively). Moreover, the most

common method used to elute bound phages/cells favours selection of charged or

polar peptides over hydrophobic ones, independent of the peptide library screened

[Puddu and Perry [2012]]. Differences in conformation, between a peptide expressed

as part of a phage/cell surface coat protein and fully solvated, are also not accounted

for by these identification processes [Hnilova et al. [2008]].

Although a third biocombinational technique, ribosome display [Hanes and

Pluückthun [1997]; He and Taussig [1997]]–yet to be applied to interfacial systems–

can support larger peptide libraries and is neither biased by tRNA availability nor

the rate of bacterial infection, it is more difficult to implement and does not overcome

all of the problems associated with phage and cell surface display mentioned above.

1.2.2 Towards the Rational Design of Peptide Sequences

The ability rationally to design material-binding peptide sequences would mark a

significant breakthrough in the realm of biomimetic research, by-passing the lengthy,

costly, and sometimes inconsistent, experimental peptide selection process (Section

1.2.1). Two approaches are possible: one in which sequences are constructed from

knowledge of the fundamental mechanisms governing peptide adsorption to an in-

terface; and the other in which algorithms are used to predict strong-binding se-

quences based on the statistical occurrence of residues and motifs to feature in

the high-affinity peptides identified by biocombinatorial experiments. The latter,

bioinformatics, has already been successfully implemented at the aqueous silica in-

terface [Oren et al. [2007]]. Using data from phage display selection experiments

at the (100) α quartz interface [Tamerler et al. [2007]], the peptide, QBP-1 (PPP-

6



WLPYMPPWS) [Oren et al. [2007]], was designed. In this case the bioinformatics

approach was validated by subsequent surface plasmon resonance (SPR) measure-

ments which confirmed the high affinity of QBP-1 for silica. However there is a

potential for biases in the experimental data-set employed in a bioinformatics study

[Puddu and Perry [2012]] to be extrapolated by this method. The first approach,

rationally constructing sequences using our knowledge of the physics and chemistry

of the system, is, on the other hand, more robust.

Both the affinity of individual residues for a substrate and the conformation

of a peptide as a whole are critical to surface adsorption. In an attempt to probe

the first of these effects–the direct contribution of each residue to binding–in iso-

lation from the second–peptide conformation–two approaches have been adopted:

amino-acid [Alaeddine and Nygren [1996]; Zimmerman et al. [2004]; Churchill et al.

[2004]; Vlasova and Golovkova [2004]; Gao et al. [2008]; Kitadai et al. [2009]; Lopes

et al. [2009]; Holinga et al. [2011]] and host-guest peptide [Cohavi et al. [2011];

Wei and Latour [2010]; Thyparambil et al. [2012]; Willet et al. [2005]; Peelle et al.

[2005]] adsorption experiments. The results from both methods must be interpreted

with care. For instance, the adsorption of an amino-acid may be predominantly

mediated by its amino- or carbonyl-termini. These moieties, however, are sterically

hindered from interacting with a substrate when part of a peptide backbone. Whilst

this is not an issue for host-guest systems–protein or peptide sequences where one

or more residues are systematically replaced–disentangling the effect of amino-acid

substitution on the conformation of the host-guest system itself from the affinity

of the residue in question for the interface is difficult [Skelton et al. [2009]]. The

influence of the ‘host’ must also be considered–a fact highlighted when interpreting

the work of Willet et al. [Willet et al. [2005]]. In this study, surface adsorption of

homopeptides was quantified by the fluorescence of an attached marker [Willet et al.

[2005]]. Unwanted interactions between the fluorophore and either the surface or

the homopeptide gave rise to anomalies in their results (e.g. the negligible affinity

of cysteine for gold).

1.2.3 Biointerfacial Experimental Techniques

Experimental characterization of bio-interfacial systems, such as determining the

free energy of adsorption or adsorbate-surface geometry, presents a significant chal-

lenge in itself. At present, surface plasmon resonance (SPR) and quartz crystal

microbalance (QCM) are the methods most commonly used to monitor the kinetics

of, and infer thermodynamic data about, biomolecule adsorption. In the first, SPR,

photons of light are passed through a glass prism, exciting surface electrons in the
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conduction band of a thin sheet of metal attached. The resonance frequency for

surface plasmon adsorption is dependent on the refractive index of the media in

contact with the metal film. Therefore the rate of biomolecule-surface adsorption

and desorption can be determined by monitoring SPR signal intensity. Fundamen-

tal to SPR is the use of a metal which supports surface plasmons (e.g. Ag or Au)

although techniques to extend this method to alternative inorganic substrates have

been pioneered. For example, Sarikaya and co-workers have quantified peptide-silica

adsorption by applying a thin layer of SixO to the gold surface of an SPR chip [Oren

et al. [2007, 2010]], while Cohavi et al. immobilized AuNPs onto a NeutrAvidin-

coated surface to monitor protein-NP binding. However, the range of non-metallic

interfaces to which SPR can be applied is limited to those which are topologically

flat and thinner than the penetration depth of the incident light source.

A QCM device is composed of a piezoelectric quartz wafer placed between

two gold plates. The resonance frequency of the quartz, in the presence of an AC

electric field, is dependent on the mass of adsorbate adhered to the surface. Like

SPR, with QCM, the range of substrates, alternative to quartz, is limited to those

which can form a uniform coating of nanoscale dimensions.

Wei and Latour recently devised a protocol for using Atomic Force Mi-

croscopy (AFM) to measure the binding affinity of peptides to substrates which

cannot be studied by SPR or QCM [Wei and Latour [2010]]. Previously there were

two fundamental obstacles to relating the desorption force measured in an AFM

experiment to the free energy of adsorption: determining the number of peptides

attached to an AFM probe tip that actually interact with a surface; and removing

the contribution from the tip alone to surface adhesion. The latter can be overcome

by using long flexible tethers between AFM tip and peptide of interest. To tackle

the former hurdle, host-guest TGTG-X-GTCT peptides were used to calibrate AFM

data against SPR measurements [Wei and Latour [2010]]. The aqueous alkanethiol

self-assembled monolayers (SAMs) interface, suitable for SPR experiments as well as

AFM, was used in this calibration stage. This enabled the free energy of adsorption

of the same host-guest peptides to a range of other surfaces, including (100) quartz

and fused silica glass, to be estimated from AFM experiment alone [Thyparambil

et al. [2012]].

A full description of both the internal conformation of a biomolecule and

its geometry in relation to a substrate, at the level of detail required for designing

material-binding peptide sequences, remains elusive to obtain experimentally in all

but a small number of cases. Many of the techniques commonly used to deter-

mine peptide conformation in solution can not be extrapolated to the bound state.
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Circular Dichroism (CD) spectroscopy is one such example. Using this technique,

adsorption in the far UV region of the electromagnetic spectrum is monitored. The

ensemble- and sequence-averaged likelihood that a peptide has a particular sec-

ondary structural characteristic is found using reference databases containing the

CD spectra of proteins of known conformation. However, the method relies on light

passing all the way through a sample, making it intrinsically unsuitable for interfa-

cial systems. However, promising recent advances have been made in two alternative

fields–Sum Frequency Generation (SFG) Spectroscopy and Nuclear Magnetic Reso-

nance (NMR).

Two photons of light are projected at an interface–one in the infra red (IR)

and the other in the visible region–to obtain a SFG spectrum. Vibrational transi-

tions arise from resonance in the second order susceptibility, χ, of the system. In-

terfacial media can be selectively studied over bulk since χ=0 for all entities which

include a point of inversion. By assigning adsorption bands to different X-H bonds

(X=C, O, N), the average orientation of a biomolecule with respect to an interface

can be determined. For example, Somorjai and co-workers used SFG to contrast

the adsorption of amino acids [Holinga et al. [2011]] and homopeptides [York et al.

[2009]] to a hydrophobic (polystyrene) and a hydrophilic (fused silica) surfaces under

aqueous conditions. The absence of C-H stretching bands in a SFG spectrum can

mean one of two things: no adsorbate is present; or that the adsorbate is randomly

oriented. One of the major drawbacks of SFG therefore, is that it cannot be used

to elucidate information on a single molecule level.

Out of all the experimental methods discussed, NMR perhaps holds the most

promise for future experimental characterization of biointerfacial systems, with the

possibility of obtaining both spatial and orientational data. Unlike SPR, however,

it can not intrinsically discriminate between interfacial and bulk phases. This at

present therefore limits its use to substrates with high surface areas (e.g. porous

materials) and consequently necessitates with use of solid-state magic angle spinning

(MAG) NMR, for which the resolution is much lower. Overcoming these difficulties,

Ben Shir et al. studied the adsorption of alanine [Ben Shir et al. [2010]] and glycine

[Ben Shir et al. [2012]] to amorphous silica in dry and microsolvated conditions

using 13C and 15N labelled amino-acids. Adsorbate-silica geometry was determined

in each case from inter- and intra-molecular distances.

Nuclear Overhauser Effect NMR spectroscopy (NOSEY), a technique com-

monly used to investigate the native state of proteins in solution, was in 2011 suc-

cessfully used by Mirau et al. to elucidate the adsorbed conformation of a peptide for

the first time [Mirau et al. [2011]]; saturation-transfer difference (STD) NMR was
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used in the same study to determine peptide-substrate orientation. The TBP-12

[Sano et al. [2005]] peptide adsorbed to either silica or titania NPs under condi-

tions of rapid exchange was investigated. In this cutting-edge study, the sign and

magnitude of the NOE signal–dependent on the rate of molecular reorientation in

solution–was used to discriminate between bound and free states of the adsorbate.

Cross peaks in a NOSEY spectrum identify residues in close spatial proximity to

each other, while protons bound to a surface can be recognized from the difference

between the standard NMR spectrum and one in which the signal from the hydroxyl

groups and water is saturated. In a similar vein to STD, Calzolai et al. had previ-

ously employed chemical shift perturbation (CSP) NMR to identify patches on the

surface of an isotopically labelled protein (ubiquitin) through which AuNP-binding

was mediated [Calzolai et al. [2010]].

1.2.4 Biointerfacial Simulation

While at present many of the difficulties discussed above in Section 1.2.3 still hin-

der experimental determination of peptide conformation and/or aggregation upon

adsorption, such information is, in principle, readily attainable from molecular simu-

lation. Numerous studies modeling a range of different substrates have been carried

out in recent years–see Sections 1.3 and 1.4 for a review of recent quartz and gold

biointerfacial simulations. However, the ‘success’ of each–determined by the accu-

racy with which the essential physics and chemistry of the system are reproduced–

depends critically on the model and simulation protocol adopted [Latour [2008]].

First-principles, quantum mechanical methods can be used to study a system

at the most fundamental level with no (or in the case of Density Functional Theory

, DFT, minimal) empirically fitted parameters (Section 2.1.1). These calculations

can be highly accurate but are as a consequence, intrinsically very computation-

ally demanding. This therefore limits their use to static calculations or simulations

on the order of ps (Section 2.2.4), for systems of small dimension (≪1000 atoms)

only. Both the small size and short duration of a first-principles simulation impose

implementation and interpretation difficulties–namely, the potential to introduce

unphysical artifacts due to cell periodicity; and the ability adequately to equilibrate

and sample different conformational states of a system, respectively. In addition

many biointerfacial electronic structure theory (EST) calculations in the past have

been performed in vacuo or implicit solvent. However, it is widely thought that

the structure of water at an interface, neglected by both approximations, can play a

critical role in peptide binding [Jena and Hore [2010]; Skelton et al. [2009]; Schneider

and Ciacchi [2012]]. In the case of DFT, the performance of the exchange-correlation
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functional used must also be considered: without corrective terms, dispersion inter-

actions (such as those between an amino-acid with a hydrophobic side-chain and a

surface) are poorly described. Despite these caveats, first-principles simulation is the

only method in which electrons are explicitly accounted. As a consequence of all the

possible levels of theory, they give the most faithful representation of atomic polar-

ization and charge transfer, both of which are especially important when modeling

metallic interfaces or chemisorption events.

Atomistic models employing empirical force-fields (FFs) to describe the inter-

actions between ‘atoms’ (entities of point mass and charge) are more computation-

ally accessible, enabling scientists to study larger systems (on the order of millions

of atoms) over longer time-scales (up to 1µs). Although over recent years this type

of simulation has become the method of choice for many in the field, a number of

challenges remain.

Many well-established FFs exist for solid inorganic materials (for example,

see Ref [Herzbach et al. [2005]] for a review of silica potentials), while those parame-

terised to be compatible with existing biomolecular FFs are fewer in number. In the

latter, the description of the bulk phase of the solid substrate is often compromised

in favour of compatibility and accurate representation of the surface itself [Lopes

et al. [2006]]. To overcome this issue, some either employ methods such as those

outlined by Schroder et al. [Schroder et al. [1992]] to fit cross-terms between organic

and inorganic phases [Freeman et al. [2007]] or derive parameters for a biointerfacial

FF in which the co-ordinates of the substrate are held fixed in space [Iori et al. [2009];

Iori and Corni [2008]; Wright et al. [2013b,c]]. The latter approach may introduce

artifacts into the model [Phan et al. [2012]; Wright et al. [2013a]], however.

Like in solution, the choice of biomolecular FF employed to model the or-

ganic component of the system and with which the interfacial FF is designed to be

compatible, is also critical, especially for peptide conformational studies. Although

refinement of bio-organic FFs is a rapidly advancing area of research, a number of re-

ports have shown that the most recent version of CHARMM (CHARMM22* [Piana

et al. [2011]]) performs well for predicting the structure of proteins and peptides in

solution [Piana et al. [2011]; Collier et al. [2012]; Lindorff-Larson et al. [2012]; Cino

et al. [2012]]. Either CHARMM27 [MacKerell et al. [1998, 2004]] or CHARMM22*

[Piana et al. [2011]] were used in all the simulations reported here. Questions remain,

however, over the transferability of standard biomolecular FF parameters (derived

for solution-based studies) to bio-interfacial simulations [Vellore et al. [2010]; Collier

et al. [2012]]. To tackle this issue, Latour and co-workers very recently proposed a

dual parameter protocol in which a refined set of intra-peptide interaction terms are
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used when the peptide is within the interfacial region, while standard CHARMM

parameters are adopted in solution [Snyder et al. [2012]].

The ability adequately to sample all the relevant conformational states of

a system during a molecular simulation poses one of the biggest challenges for the

future of both bio-interfacial and solution-based studies. The need explicitly to

account for water in the former case intrinsically makes the systems both large and

complex. Thus, in many cases, unless advanced sampling techniques are employed, it

is not possible to explore all of the important low energy states of the system within

the time-scale of a simulation. As a worst case scenario, the system may remain

trapped in a single deep well in its potential energy landscape throughout an entire

simulation. Unless these difficulties are overcome the use of computational modeling

to probe both the hypothesis of peptide-substrate binding induced peptide-folding

[Evans et al. [2008]; Capriotti et al. [2007]; Collino and Evans [2008]; Rimola et al.

[2012]]–thoroughly, and calculate peptide binding affinities accurately, is hindered.
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1.3 Aqueous Quartz Interface

Due to the ubiquitous prevalence of silica in the natural environment, the aqueous

biomolecule-silica interface is of particular interest. Taking inspiration from marine

organisms such as diatoms, which can form intricate silica nanostructures, silica

is an environmentally friendly and economically advantageous resource from which

new biomimetic materials could potentially be made. In this work, the affinity of

amino-acid analogs for Quartz, the lowest energy crystalline polymorph of silica

under ambient conditions, (Chapters 3 and 4) and the conformation of a quartz-

binding peptide (QBP-1 [Oren et al. [2007]]) upon adsorption (Chapters 5 and 7)

have been studied using three different simulation techniques: potential of mean

force (PMF) MD, Car Parrinello MD (CPMD) and replica exchange MD (REMD),

respectively.

First, in this section reviews of both experimental and computational work

carried out to date at the peptide-silica interface (Section 1.3.1 and 1.3.2, respec-

tively) are presented, before the specific crystallographic planes of quartz modeled

herein are described (Section 1.3.3).

1.3.1 Experiment

Biomineralisation of silica in diatoms occurs by a class of homologically-conserved

proteins, silaffins, that have been extensively studied [Kroger et al. [1999, 2001,

2002]; Sumper and Brunner [2008]]. Silaffin mimics, the most studied of which is

the R5 peptide [Kroger et al. [1999]], have been widely used by several groups to

control the synthesis of silica nanostructures [Brott et al. [2001]; Patwardhan and

Clarson [2002]; Lutz et al. [2005]; Soto-Cantu et al. [2010]; Xia and Li [2011]; Pat-

wardhan [2011]]. In addition, peptides capable of binding to silica nanoparticles

(either those synthesized biomimetically [Naik et al. [2002a]] or using standard pro-

cedures [Patwardhan et al. [2012]; Puddu and Perry [2012]]), the (100) α-quartz

surface [Tamerler et al. [2007]] and thermally grown silica films [Eteshola et al.

[2005]] have been identified using biocombinatorial techniques (Table 1.1).

Positively charged residues are prevalent in many of the silica binding pep-

tide sequences reported [Brott et al. [2001]; Patwardhan and Clarson [2002]; Naik

et al. [2002a]; Eteshola et al. [2005]; Sano and Shiba [2003]; Xia and Li [2011];

Patwardhan et al. [2012]; Puddu and Perry [2012]]. For example, silaffins are en-

riched in lysine residues [Kroger et al. [1999, 2001]]. However, in silaffins lysines

are post-translationally alkylated, and so their interactions with silica could be hy-

drophobic in character rather than mediated by the terminal ammonium group.
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In addition, it has been postulated that the zwitterionic nature of silaffins, with

positively-charged ammonium groups and negatively-charged phosphorylated ser-

ines, aids silaffin aggregation, rather than the charged groups necessarily having a

direct influence on silica precipitation [Kroger et al. [2002]; Sumper and Brunner

[2008]]. Early experimental evidence to support this hypothesis was the observation

that silaffins formed aggregates of approximately 700 molecules at low ionic strength

[Kroger et al. [2002]]. Later studies have shown that phosphate or sulfate ions can

induce aggregation of synthetic polyamines in a concentration and pH dependent

manner [Brunner et al. [2004]; Lutz et al. [2005]]. The amount and size of the silica

nanoparticles precipitated from silicic acid solution by these polyamines correlated

with polyamine aggregate size. Hence the prevalence of positively charged residues

in silica precipitating peptides reported in the literature [Brott et al. [2001]; Pat-

wardhan and Clarson [2002]; Sano et al. [2005]; Hayashi et al. [2009]; Xia and Li

[2011]] is not necessarily an indication that they interact directly with silica surfaces

because in each case a phosphate-containing buffer was used.

Moreover, in the case of biocombinatorally selected silica-binding peptides,

the nature of the positively charged residue enriched differs depending on the se-

lection conditions. Hayashi et al. used AFM to measure adsorption forces between

ferritin-fused mutated versions of the N-terminal hexapeptide of TBP-1 (RKLPDA)

and silica surfaces [Hayashi et al. [2009]]. In otherwise identical conditions, the R1K

mutant (the TBP-1 hexapeptide in which the first residue, arginine, was replaced

by lysine) adsorbed less strongly to silica than the wild-type. In the pioneering

work by Mirau et al. however, peaks in the STD NMR spectrum of TBP-1, the

full 12 residue peptide, indicate that hydrogens at the charged ends of both the R1

and K2 side-chains, as well as those belonging to the methyl groups of L3 and A6,

were in close proximity to the surface of a silica nanoparticle when adsorbed [Mirau

et al. [2011]]. Histidine, rather than lysine or arginine, was enriched in peptides

identified by phage display experiments carried out by Eteshola et al. [Eteshola

et al. [2005]]. Under the selection conditions employed in the latter study, pH 7.4,

histidine is predominantly present in solution in its neutral, rather than protonated,

form. These findings, taken together with the prevalence of hydrophobic residues

in some sequences, especially those that bind strongly to quartz (16-20 Table 1.1),

suggest that at least two different peptide-silica binding mechanisms could exist–

one mediated by electrostatics and the other by hydrophobic shielding; a hypothesis

supported by the recent work of Puddu and Perry [Puddu and Perry [2012]].

To probe the intrinsic affinity of individual residues within a peptide for

silica, independently of peptide conformational effects, experiments to study amino-
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sequence substrate

1 R5 SSKKSGSYSGSKGSKRRIL1 PD: silafin derivative
2 MSPHPHPRHHHT2 PD: silica ppt. by R5
3 RGRRRRLSCRLL2 PD: silica ppt. by R5
4 HPPMNASHPHMH3 PD: thermally grown SiO2

5 HTKHSHTSPPPL3 PD: thermally grown SiO2

7 TBP-1 RKLPDAPGMHTW4 PD: NP (surface area 0.4m2kg−3)
8 HKKPSKS5 PD: SiO2 and TiO2 NPs (∼50 nm)
9 TKRNNKR5 PD: SiO2 and TiO2 NPs (∼50 nm)
10 YITPYAHLRGGN6 PD: NP (15.0± 0.4 nm)
11 KSLSRHDHIHHH6 PD: NP (82.1± 3.6 nm)
12 LDHSLHS6,7 PD: NP (82.1± 3.6 nm)
13 MHRSDLMSAAVR6 PD: NP (450± 22 nm)
14 KLPGWSG7 PD: NP (82± 4 nm)
15 AFILPTG7 PD: NP (82± 4 nm)
16 RLNPPSQMDPPF8 PD: (100) quartz
17 QTWPPPLWFSTS8 PD: (100) quartz
18 QBP-1 PPPWLPYMPPWS9 Designed: Quartz
19 LPDWWPPPQLYH9 Designed: Quartz
20 SPPRLLPWLRMP9 Designed: Quartz

Table 1.1: Silica-binding peptide sequences along with either the substrate against-
or method by which they were selected (‘PD’ denotes phage display and ‘NP’ denotes
nanoparticle). Positively charged residues have been highlighted in red, negatively
charged ones in blue and polar in green. Aromatic residues have been underlined. 1

Reference Kroger et al. [1999], 2 Reference Naik et al. [2002a], 3 Reference Eteshola
et al. [2005], 4 Reference Sano et al. [2005], 5 Reference Chen et al. [2006], 6 Reference
Patwardhan et al. [2012], 7 Reference Puddu and Perry [2012], 8 Reference Tamerler
et al. [2007], 9 Reference Oren et al. [2007].
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acid adsorption onto various silica surfaces have been conducted by several groups

[Zimmerman et al. [2004]; Churchill et al. [2004]; Vlasova and Golovkova [2004];

Alaeddine and Nygren [1996]; Kitadai et al. [2009]; Lopes et al. [2009]]. Churchill et

al. found that lysine bound to quartz more strongly than the other amino-acids they

studied (tyrosine, alanine, glycine, glutamate and aspartate, within the pH range

2–11) [Churchill et al. [2004]], whilst Vlasova and Golovkova found that arginine

bound most strongly to highly dispersed silica surfaces out of the positively charged

residues, lysine, ornithine, arginine and histidine (within the pH range 2–8) [Vlasova

and Golovkova [2004]]. Contrary to Churchill et al. and Vlasova and Golovkova,

however, Zimmerman et al. reported that neither lysine nor dilysine adsorbed onto

mesoporous and nonporous silica, unlike the hydrophobic amino-acid tryptophan;

this was found to interact strongly with both surfaces (at pH 5.7) [Zimmerman

et al. [2004]]. The former result corroborates the work of Alaeddine et al. who

measured the free energy of adsorption of the amino-acids leucine and serine onto

both hydrophilic and hydrophobic quartz surfaces. They found that the binding

affinity was greater for the former, non-polar amino-acid at both interfaces (at pH

7.2) [Alaeddine and Nygren [1996]]. In a more recent attenuated total reflectance IR

spectroscopy study, 81± 5% of the L-lysine molecules adsorbed to an amorphous sil-

ica surface were in the cationic state, with the remaining 19± 5% in the zwitterionic

state (pH 7.1 - 9.8) [Kitadai et al. [2009]]. Although Kitadai et al. concluded that

primarily the electrostatic attraction between lysine and the silica drives adsorption,

the fact that at pH below 8.5 a higher proportion of adsorbed lysine is in the zwitte-

rionic state than lysine free in solution suggests that hydrophobic interactions may

also be important. Overall, the above results highlight that the exact nature of the

silica surface investigated–e.g. amorphous v.s. crystalline, silanol density, silanol

type (vicinal, geminal or isolated) and charge state–can have a profound effect on

adsorbate affinity. In addition, it must be noted that comparison between studies

at a specific silica interface (e.g. quartz) is hindered due to the impact of sample

preparation on surface properties [Kosmulski [2002]].

As well as surface binding affinities, the orientation and geometry of selected

amino-acids adsorbed onto silica has also been experimentally investigated. Employ-

ing SFG, the adsorption of 8 amino-acids (phenylalanine, leucine, glycine, lysine,

arginine, cysteine and alanine) onto a model hydrophilic SiO2 surface was probed

[Holinga et al. [2011]]. For all adsorbates, C–H vibrational modes were absent from

the SFG spectra. Since QCM measurements confirmed the presence of the amino-

acids at the interface, this observation suggests a lack in the net orientation and

ordering of the adsorbed molecules. In dry conditions, on the other hand, alanine
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and glycine were found to bind to amorphous silica in a specific geometry: the am-

monium terminus was co-ordinated to 3 or 4 surface Si sites in each case, while the

carboxylate terminus pointed away from the interface and exhibited slightly more

orientational freedom [Ben Shir et al. [2010, 2012]]. However, under conditions more

comparable to those used in the SFG experiments performed by Holinga et al. (i.e.

ambient temperature and in the presence of water) the results of both SFG and

NMR experiments were consistent; the NMR spectra of alanine and glycine suggest

that surface desorption is likely to occur and that the adsorbates are orientationally

disordered at the interface.

Experimental [Hayashi et al. [2009]] and bioinformatics [Oren et al. [2007]]

studies have shown that peptides with identical amino-acid content but different

sequences have different surface binding characteristics, underlining the role of pep-

tide conformation on adsorption. This is exemplified by recent MD simulations in

which the calculated gold-binding affinity of several peptides for gold were not sim-

ple sums of their constituent amino-acids binding energies [Verde et al. [2011]; Feng

et al. [2012]]. Proline, known to restrict the conformational freedom of a peptide

backbone due to its ring structure, features widely in both predominantly positively

charged and charge neutral silica-binding peptides (Table 1.1). Its presence could

indicate peptide stiffness is a pre-requisite to strong silica binding–the opposite of

that hypothesized to be the case at the gold interface [Hnilova et al. [2008]; So et al.

[2009]; Verde et al. [2011]].

1.3.2 Simulation

Like their experimental counterparts, the results of computational studies of the

biomolecule-silica interface are highly dependent on the nature of the surface mod-

eled and the conditions used–in vacuo or aqueous. Several groups have used DFT

to calculate the binding affinities of amino-acids and their analogs to various silica

surfaces in vacuo [Han et al. [2008]; Han and Sholl [2009, 2010]; Rimola et al. [2008,

2009]]. Although these studies are interesting, their findings cannot easily be ex-

trapolated to shed light on the mechanisms governing peptide adsorption onto silica

under aqueous conditions. As mentioned in Sections 1.2.3 and 1.2.4, the reasons

for this are two-fold: first the absence of liquid water–thought to play an important

role in biomolecule adsorption [Skelton et al. [2009]; Jena and Hore [2010]; Schneider

and Ciacchi [2012]]; and second the potential for an amino-acid to adopt a binding

geometry not possible for a residue part of a longer peptide chain. Only the first

of these issues has previously been addressed at the first-principles level of theory

[Costa et al. [2008]; Nonella and Seeger [2008]; Zhao et al. [2011]]. In Chapter 4 the
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results of first-principles simulations of ammonium and ethanoate adsorbed at the

aqueous (100) α-quartz interface are presented. This work was carried out in an

attempt to address both of the problems commonly associated with interfacial DFT

simulations and applied to the aqueous quartz (the specific form of silica studied

herein) interface for the first time. By simulating the adsorption of small molecules

featuring the same functional groups present in peptides, rather than the whole

amino-acid, it was possible to model residue side-chain adsorption specifically.

Force-field (FF) based (rather than first-principles) simulations have been

used in the majority of the work carried out in this thesis. Several interfacial FFs

exist for silica [Brodka and Zerda [1996]; Lopes et al. [2006]; Cygan et al. [2004];

Lorenz et al. [2008]; Hassanali and Singer [2007]; Hassanali et al. [2010]; Patwardhan

et al. [2012]], although only a small proportion of these have been specifically pa-

rameterized to be biomolecule compatible [Lopes et al. [2006]; Lorenz et al. [2008];

Butenuth et al. [2012]; Patwardhan et al. [2012]]. Out of the second subset, the silica

FF derived by Lopes et al. was specifically parameterized for charge-neutral hydrox-

ylated quartz interfaces [Lopes et al. [2006]], while those developed by Butenuth et

al. and Patwardhan et al. were designed for modeling amorphous silica [Butenuth

et al. [2012]] and β-cristoballite [Patwardhan et al. [2012]] surfaces, respectively,

both of which feature deprotonated silanol groups. Since the simulations reported

in this thesis were performed at the aqueous quartz interface, it was appropriate to

use the first FF [Lopes et al. [2006]], herein denoted ‘LFF’. LFF was comprehen-

sively parameterised following the CHARMM methodology [MacKerell et al. [1998]]

and contains terms which reasonably reproduce the structure of the bulk substrate,

as well as the surface, thus permitting fully flexible-solid simulations.

Due to its important role in biomolecule adsorption, interfacial water struc-

turing can be used to benchmark a FF. Recently, the performance of three interfa-

cial silica FFs–LFF [Lopes et al. [2006]], CLAYFF [Cygan et al. [2004]] and CWCA

[Lorenz et al. [2008]]–relative to both first-principles simulation (AIMD) and exper-

iment was assessed at the aqueous (101) [Skelton et al. [2011a]] and (100) [Skelton

et al. [2011b]] α-quartz surfaces. Both studies found that CLAYFF [Cygan et al.

[2004]] was better able than LFF to reproduce the degree to which water was struc-

tured at the silica interface observed in AIMD simulation. On the other hand, LFF

was more apt for accurately modeling the structure of the quartz interface itself.

In light of these findings, the ability of LFF and CLAYFF to model the charac-

teristics of the two functional groups present in all peptides–NH+
3 and -COO−– on

binding was assessed in Reference Wright and Walsh [2012b]. The FF results were

benchmarked against CPMD simulations at the aqueous (100) α-quartz interface.
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(It must be noted however, that the specific combination of LJ mixing rules and

water model used in the parameterisation of CLAYFF is not also employed by any

existing biomolecular FF calling into question its use in biointerfacial simulations.)

Taken together with the results from previous MD simulations of the aqueous quartz

interface using LFF [Lopes et al. [2006]; Notman and Walsh [2009]], all these find-

ings suggest that LFF is at present the best FF with which to model peptide-quartz

adsorption. Work by Latour and co-workers to extend their interfacial, dual param-

eter set FF [Snyder et al. [2012]] to the aqueous quartz interface may lead to a more

accurate description of the system in the future.

Unlike other aqueous bio-interfaces, relatively few reports of silica adsorption

FF-based simulations exist in the literature. The most recent modeled the adsorp-

tion of the N-terminus hexapeptide of TBP-1 [Schneider and Ciacchi [2012]], and

sequences 11 (wild-type and mutated) and 13 [Patwardhan et al. [2012]] in Table 1.1

to an oxidized silicon and cristoballite surfaces, respectively. In both cases the in-

terface featured unprotonated silanols, and hence carried an overall negative charge.

As a consequence, the predominantly positively-charged peptides studied were ob-

served to bind to the surface by electrostatics. In contrast, Oren et al. found that

the hydrophobic residues of QBP-1 and sequence 19 in Table 1.1 bound strongly to

the charge-neutral hydroxylated (100) α-quartz surface when they performed simu-

lations at this interface [Oren et al. [2010]]. The latter results are consistent with

the calculated free energies of adsorption of both amino-acid analogs [Notman and

Walsh [2009]; Wright and Walsh [2012a]] (see Chapter 3).

In this thesis, two aspects of the aqueous peptide-quartz interface have been

addressed by MD simulation for the first time: the potential for individual residues

to energetically or spatially discriminate between different crystallographic planes

of quartz on adsorption (Chapter 3); and the selectivity of QBP-1 to bind to quartz

over gold (Chapter 7).

1.3.3 Crystallographic Surfaces

Since experimental evidence suggests that the degree of surface deprotonation is

minimal at pH 7 [Eggleston and Jordan [1998]], fully hydroxylated, charge-neutral

quartz surfaces have been modeled throughout this work. Snapshots of the three

crystallographic planes studied–(100), (011) and (001)–are shown in Figure 1.2. The

(001) hydroxylated surface has the highest silanol density (0.765×10−3OH nm−2) of

the three surfaces investigated and can be considered to be essentially topologically

flat. In contrast, the (100) surface has larger interstitial sites into which water

penetration has been observed in previous MD simulations [Lopes et al. [2006];
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Notman and Walsh [2009]]. Both the (001) and (100) (α termination) surfaces

feature geminal silanols. The third surface, (011), is topologically stepped with

surface silicon atoms being present at two distinct heights. It possesses vicinal

silanols and features the lowest silanol density of the three (0.471×10−3OH nm−2).

Adsorption at all three aqueous α-quartz interfaces–(100), (011) and (001)–

has been investigated in Chapter 3, while the (100) surface only was modeled in

Chapters 4, 5, 7.

[001] [011]

[120]

[110]

[001]

[120]

[210]

[100]

Figure 1.2: Plan and side-on views of the (100), (001) and (011) α-Quartz surfaces.
Silicon atoms shown in yellow, oxygen atoms in red and hydrogen atoms in white.
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1.4 Aqueous Gold Interface

The full potential of NP in future nanotechnological applications can only be reached

if their synthesis and subsequent organization is carefully controlled. The promise

of AuNPs in particular, due to their unique chemical and physical properties, was

sufficiently great that some of the first biocombinatorial peptides to be identified

were selected against gold surfaces [Brown [1997]]. Since then a number of other

gold-binding sequences have been found (Table 1.2) and the aqueous biomolecule-

gold interface is one of the most studied by computational modeling [Heinz et al.

[2009, 2010]; Feng et al. [2011]; Verde et al. [2009, 2011]; Yu et al. [2010, 2012];

Feng et al. [2012]; Hoefling et al. [2010a,b, 2011]; di Felice and Corni [2011]; Rosa

et al. [2012]; Brancolini et al. [2012]; Causa et al. [2013]] out of all bio-interfacial

systems. In this thesis, a new FF, specifically parameterized for peptide adsorption

at the aqueous Au(111) and Au(100) (native and reconstructed) interfaces [Wright

et al. [2013b,c]] is described in Chapter 6, while the material selectivity of QBP-1-

and the facet selectivity of AuBP-1- [Hnilova et al. [2008]] adsorption onto gold are

investigated in Chapters 7 and 8, respectively.

Within this section a review of significant previous experimental (Section

1.4.1) and computational (Section 1.4.2) work is given, before the crystallographic

planes of gold investigated herein are discussed (Section 1.4.3).

1.4.1 Experiment

Unlike at the aqueous quartz interface, both physi- and chemi-sorption of peptides on

gold is possible; the latter mediated by the thiol functional group present in the side-

chain of the amino-acid cysteine. Thus, gold-binding peptides fall into two groups:

those which contain cysteine and those which do not. In this thesis it is the mech-

anisms governing the adsorption of peptides in the second group–those which only

phyisorb onto gold–which has been studied. This subset of peptides offer a number

of advantages in the realms of biomimetic material synthesis and nanomedicine over

those which chemisorb: chiefly, the potential for selectivity (either between different

crystallographic planes of gold or between noble metal substrates) and reversible

binding.

Not only do all of the sequences listed in Table 1.2 have high affinity for

gold, but many of them are also able to reduce HAuCl4 to form biomimetically

synthesized AuNPs [Brown [1997]; Slocik et al. [2005b]; Huang et al. [2005]; Kim

et al. [2010]]. However, like quartz-binders there is little overall consensus in the

primary sequences of gold binding peptides. Some general trends can be observed,
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though. Specifically, hydroxyl containing residues, serine, threonine and tyrosine,

feature in most sequences, while a smaller subset of peptides contain motifs of two or

more consecutive positively charged residues. The latter observation, together with

the relative prevalence of glycine and proline, disorder promoting residues [Dyson

and Wright [2005]; Uversky and Dunker [2010]], is consistent with the hypothesis

that, in general, material-binding peptides belong to the intrinsically disordered

class of proteins (IDPs) [Evans et al. [2008]]. In fact, AuBP-1, AuBP-2 and GBP-1

have all been shown experimentally to adopt labile structures in solution [Hnilova

et al. [2008]; Kulp et al. [2004]], supporting this conjecture by Evans et al..

sequence substrate

1 GBP-1 MHGKTQATSGTIQS1 PD: Au not specified
2 A3 AYSSGAPPMPPF2 PD: acid-etched Ag particles
3 KHKHWHW3 designed
4 RMRMKMK3 designed
5 VSGSSPDS4 PD: thin gold films
6 LKAHLPPSRLPS5 PD:5 nm colloidal gold suspension
7 AuBP-1 WAGAKRLVLRRE6 PD: polycrystalline Au films
8 AuBP-2 WALRRSIRRQSY6 PD: polycrystalline Au films
9 TGTSVLIATPYV7 PD: metallic Au powder

Table 1.2: Gold-binding peptide sequences along with either the substrate against-
or method by which they were selected (‘PD’ denotes phage display). Positively
charged residues have been highlighted in red, negatively charged ones in blue and
polar in green. Aromatic residues have been underlined. 1 Reference Brown [1997],
2 Reference Naik et al. [2002b], 3 Reference Peelle et al. [2005], 4 Reference Huang
et al. [2005], 5 Reference Nam et al. [2006], 6 Reference Hnilova et al. [2008], 7

Reference Kim et al. [2010].

In contrast to silica, to date, only one experimental report of the binding

propensity of individual amino-acids at the aqueous gold interface exists [Li et al.

[2001]]. In this study Lipkowski and co-workers investigated the characteristics of

phenylalanine adsorbed to a Au(111) electrode using electrochemical measurements

and Fourier Transform IR spectroscopy. Host-guest peptide systems have, how-

ever, been used twice to predict the intrinsic contribution of each residue within a

gold-binding peptide to its overall surface affinity. In the first study, cell surface-

coverage assays of yeast cells displaying the interdigitated XHXHXHX heptapeptide

suggested that the positively charged and aromatic residues His, Trp, Lys and Arg

all promoted strong binding, while The, Pro and Glu have the weakest affinities

[Peelle et al. [2005]]. These results are qualitatively in agreement with Cohavi et

al. who used SPR to determine the amount of BLIP-fused (TEM1-β-lactamase in-
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hibitor protein) and free XXX homotripeptides adsorbed at the aqueous interface

of both AuNP and gold films [Cohavi et al. [2011]]. Their results again indicate

that positively-charged and aromatic amino-acids–His, Trp, Lys and Tyr–are strong

binding residues, while small or negatively-charged amino-acids–Glu, Asp, Ser and

Ala–directly contribute negligibly to gold adsorption. (The homotripeptides PPP

was not investigated.) In both studies, the amino-acid methionine–which features a

methyl sulfide functional group and thus has the potential to chemisorb to gold–was

found to promote strong gold adsorption. As mentioned previously however, the

results of any host-guest peptide binding assay must be interpreted with care since

each guest residue may influence the conformation of the entire host-guest peptide

by a different amount.

Bioinformatics provides an alternative way to predict which residues are

important–either in terms of their intrinsic surface affinity or conformational influence–

for a peptide to adsorb strongly to a surface. Hnilova et al. quantified residues

enriched in the strong and weak gold-binding sequences identified in their phage

display experiments [Hnilova et al. [2008]]. Broadly consistent with host-guest stud-

ies, Arg, Trp and Tyr were all over-expressed in peptides with high gold affinity

(relative to the peptide library from which they were selected) while Lys, Pro and

The were under-expressed. (Arg was also over-expressed in weak binding peptides

however.) Taken together with the fact that tyrosine has been shown to mediate

peptide-Au(111) reduction [Slocik et al. [2005a], the experimental evidence suggests

that: 1) the positively charged and aromatic residues in the gold binding peptides

in Table 1.2 directly interact with the gold surface; while 2) serine and threonine

perhaps play an important conformational role in these sequences.

1.4.2 Simulation

Great experimental interest in biomolecule-gold interfacial systems is mirrored by

a large number of computational studies. In this thesis the aqueous peptide-gold

interface, specifically, has been studied using FF-based simulations. At present two

FFs are widely used in the literature for such simulations: CHARMM-METAL [Feng

et al. [2011]] (also compatible with CVFF (CVFF-METAL [Pandey et al. [2009]])

and a number of other biomolecular FFs) [Heinz et al. [2008]], parameterized to

reproduce bulk metal density and surface tension; and GolP [Iori et al. [2009]; Iori

and Corni [2008]] (compatible with OPLS-AA [Jorgensen et al. [1996]]), specifically

targeted to protein-surface interactions. The latter also includes terms to describe

the dynamic polarization of gold atoms induced by biomolecule adsorption. Covalent

interactions with gold, such as the chemisorption of thiols, are not within the scope
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of most atomistic MD approaches (see Chapter 2) and are not modeled by either

FF.

The adsorption of all 20 amino-acids onto the Au(111) surface under aque-

ous conditions has been studied using both CHARMM-METAL and GolP [Hoefling

et al. [2010a]; Feng et al. [2011]], providing a metric against which the two po-

tentials can be assessed. However, the predicted binding trends are in qualitative

agreement: the free energy of adsorption for capped amino-acids were found to be

aromatic < sulphur < positively-charged < negatively-charged < aliphatic [Hoefling

et al. [2010a]] when modeled by GolP, while amino-acids (uncapped, with zwitte-

rionic termini) with large planar side-chains (Arg, Trp, Gln, Met, Tyr) adsorbed

more strongly than aliphatic ones (Leu, Asp, Thr, Gly, Ala), when modeled by

CHARMM-METAL [Feng et al. [2011]]. Although the relative tendencies of each

amino-acid to adsorb are also in qualitative agreement with experiment in both

instances, GolP possibly provides a better prediction of absolute binding strength,

than CHARMM-METAL. This is at least the case for Phe where the free energy

of adsorption calculated using GolP (∆G= −43.6 kJmol−1) lies just outside of the

experimental range (−18<∆G<−37 kJmol−1) while CHARMM-METAL overesti-

mates surface attraction by approximately 35%.

As with the aqueous quartz interface, the properties of water adsorbed onto

gold can be used as a second criterion for evaluating the performance of the two

FFs. Recent first-principles simulations carried out at the aqueous Au(111) inter-

face [Cicero et al. [2011]; Nadler and Sanz [2012]] provide good benchmarks for this

purpose. However, the same weakness in their description of this interface exists

for both FFs, namely that neither can reproduce the increased tendency of water

molecules very close to the gold surface to act as hydrogen bond donors, relative

to those in bulk solution [Cicero et al. [2011]]. In the case of GolP, a modification

to the FF proposed by Cicero et al. [Cicero et al. [2011]] can be used to correct

this deficiency; no such correction is available for CVFF/CHARMM-METAL. More-

over, for the latter FF, CVFF/CHARMM-METAL, water density is preferentially

located above surface hollow sites, in sharp contrast to first-principles simulation,

where atop gold atom adsorption is favoured [Cicero et al. [2011]; Nadler and Sanz

[2012]]. In addition, CVFF/CHARMM-METAL has two further shortcomings in

its description of the interactions between biomolecules and gold: first, it was not

specifically parameterized to capture individual molecule-gold interactions and thus

does not include terms to account for the weak chemisorption of the sulfur- and

nitrogen-containing functional groups present in peptides; and second, the dynamic

polarization of metal atoms is neglected. Recent calculations carried out a posteri-
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ori on MD simulations employing CVFF-METAL [Heinz et al. [2010]] revealed that

on surfaces such as Au(100), where the epitaxial match between a biomolecule and

underlying gold atoms is poor, the energy associated with the image-charge effect

could be significant, thus suggesting that it cannot be disregarded. For all of the

reasons mentioned, it was therefore decided that the CVFF/CHARMM-METAL FF

would not be used in any of the simulations presented herein.

Whilst several groups have contrasted the adsorption of peptides onto gold

surfaces of different geometries–Au(111) and Au(100) planes [Heinz et al. [2009,

2010]; Yu et al. [2010, 2012]], AuNP of different dimensions (composed of Au(111)

and Au(100) planes) [Feng et al. [2012]; Yu et al. [2010, 2012]] and stepped [Feng

et al. [2012]] interfaces–by means of MD simulation, the CVFF/CHARMM-METAL

FF was used in each case. Adsorption onto Au(100) was found to be weaker than

that to Au(111), with discrimination between the two surfaces thought to be me-

diated by molecular epitaxy. This argument was based on the adsorption of het-

eroatoms within residue side-chains to hollow sites on the Au(111), but not the

Au(100), surface in a complementary fashion due to the underlying geometry of the

gold atoms. However, as mentioned previously in the case of water, the hollow-site

binding predicted using CVFF/CHARMM-METAL is in contrast to first-principles

calculations [Hong et al. [2009]; Wright et al. [2013b,c]; Rosa et al. [2012]], weak-

ening this argument. Taken together with the fact that reconstructed status of the

Au(100) surface has not been considered and the other fore-mentioned shortcom-

ings of the FF, the potential for peptides to discriminate between different aqueous

gold interfaces warrants further study. A biocompatible interfacial gold FF suitable

for such work was, however, lacking since GolP parameters are restricted to the

Au(111) surface only. As a consequence, a new FF, GolP-CHARMM FF [Wright

et al. [2013b,c]] was derived (see Chapter 6 for more details).

As well as using the newly-derived FF to model the adsorption of the AuBP-

1 peptide at the aqueous Au(111) and Au(100) (both native and reconstructed

forms) interfaces (Chapter 8), the hypothesis that peptide flexibility is important

for strong gold-binding [Hnilova et al. [2008]; So et al. [2009]; Verde et al. [2011]]

has been tested by the simulation of a conformationally stiff peptide–QBP-1 [Oren

et al. [2007]]–at the aqueous Au(111) interface (Chapter 7).

1.4.3 Crystallographic Surfaces

The Au(111) surface is the lowest energy crystallographic plane of gold, while spher-

ical AuNPs are mainly composed of {111} and {100} faces [Marks [1994]]. It is well

established that the planar Au(100) surface is present in its reconstructed form
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(Au(100)-hex [Gibbs et al. [1990]; Mochrie et al. [1990]; Ocko et al. [1991]]) under

the conditions relevant to biomolecule adsorption [Kolb [1996]] (aqueous environ-

ment, 300K, pH 7). Unlike the Au(111) surface, also present in its reconstructed

form, Au(111)(22×
√
3) [Harten et al. [1985]], under these conditions, there are sig-

nificant structural differences between the Au(100)(1×1) and Au(100)-hex surfaces.

Namely, the reconstructed interface features an hexagonal array of atoms, while

atoms in the plane of the native surface have only four-fold in-plane symmetry. As

a consequence, the density of atoms in the surface layer increases by 25% in the tran-

sition from Au(100)(1×1) to Au(100)-hex. In addition, the reconstructed surface

features atomic-scale undulations [Ocko et al. [1991]; Jacob [2007]; Shi and Stampfl

[2008]; Havu et al. [2010]], whilst the native interface is atomically flat.

c)a) b)

[011]

[011][110]

[101]

[111] [100] [100]

[011]

[011]

Figure 1.3: Plan and side-on views of the a) Au(111), b) Au(100)(1×1) and c)
Au(100)(5×1) surfaces.

Experimentally, it has been shown that the adsorption of some small molecules,

containing functional groups that are also present in biomolecules, onto Au(100) can

promote [Skoluda [2004]] the Au(100)-hex reconstruction of planar surfaces [Gibbs

et al. [1990]; Mochrie et al. [1990]; Ocko et al. [1991]] under aqueous conditions,

whilst others stabilise the ideal surface [Skoluda [2011]]. The reconstructed status of

AuNP facets, either in the presence or absence of adsorbates, is at present unknown

[Zehner et al. [1975]; Shi and Stampfl [2008]; Li et al. [2008]; Wang and Palmer

[2012]; Surrey et al. [2012]]. Thus, in the shortage of conclusive evidence, it was

considered appropriate to consider both the native and reconstructed forms of the

Au(100) surface when investigating the potential for peptide adsorption to be used

as a means of discriminating between Au(111) and Au(100). However, the large size

of the unit cell of the reconstructed surface (Au(100)(28×5) [Wang [1991]]) makes

26



it inpractically large for computational simulation in its precise form. While some

have approximated the Au(100)-hex surface by Au(111) [Lin and Gross [2012]]–both

feature Au atoms hexagonally arranged–this approach neglects the influence of sur-

face rumpling–a feature of the former interface only–which could play an important

role in liquid water adsorption [Phan et al. [2012]]. Many groups, have used the

Au(100)(5×1) approximation when studying the reconstructed Au(100) interface at

the first-principles level of theory [Venkatachalam et al. [2008]; Jacob [2007]; Feng

et al. [2005]; Shi and Stampfl [2008]; Sun et al. [2011]; Baber et al. [2012]]. Since

their results were in good agreement with experiment, this approximation has also

been used here. Therefore, the three aqueous gold interfaces modelled in this thesis

are: Au(111), Au(100)(1×1) and Au(100)(5×1) (Figure 1.3).
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Chapter 2

Methods

2.1 Describing the Potential Energy Landscape

The Potential Energy Landscape (PEL) is a description of the potential energy of a

system as a function of the co-ordinates of its constituent particles. Stable configu-

rations are located at minima on the PEL, whilst the saddle points between minima

correspond to transition states. The minimum on the PEL with the most negative

potential energy, the global minimum, is the thermodynamically most favourable

state of the system; higher energy, metastable states may be observed under ex-

perimental conditions, however. Since the ultimate goal of most computational

modelling studies is to either reproduce experimental and/or generate complimen-

tary novel data, it is important that as much of the PEL is considered as possible

in these works, not just the global minimum state.

The results of any modelling investigation depend critically on how the PEL

is defined. Two approaches have been adopted in this thesis: first-principles and

atomistic force-field, described in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 First Principles Methods

Using first-principles methods, the PEL of a system is defined quantum mechan-

ically. The basic entities–nuclei and their surrounding electrons–are modelled as

wave-functions, φ(r, s) (functions of position, r, and spin state s). Unlike classical

particles which are described in terms of position and momentum, the exact location

of an entity described using quantum mechanics (QM) is unknown. Instead, only

the probability of finding it in a given region of space at any one time can be de-

termined. Moreover, from the Heisenberg Uncertainty Principle, the accuracy with

which a particle’s position and momentum can be known are inversely proportional.
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The wave-function describing a system in state i, Φi, is, by definition, a

solution of Schrödinger’s equation:

ĤΦi = EiΦi (2.1)

where Ĥ is the Hamiltonian operator (comprised of kinetic, T̂ , and potential, Û ,

energy operators) and Ei is the energy eigenvalue of state i. This eigenvalue equation

must be solved for both the nuclei and electrons in a system. However, since the mass

of an electron is significantly less than that of an atomic nucleus, the motions of the

two can be separated. Using what is commonly referred to as the Born-Oppenheimer

approximation, Schrödinger’s equation for electronic states of a system as a function

of fixed nuclei co-ordinates, R, simplifies to:

ĤΦi = − h̄2

2me

∑

j

∇2
jΦi +

1

2

∑

j,kj 6=k

e2

4πǫ0|rj − rk|
Φi + v(r)Φi = E(R)iΦi (2.2)

where h̄, me and ǫ0 are the fundamental quantities the reduced Planck’s constant

(or Dirac constant), electron mass and the permittivity of a vacuum, respectively;

|rj − rk| is the distance between the jth and kth electron; and v(R) is the external

field experienced by the electrons due to the presence of the nuclei. For all but the

simplest cases–one or two electron systems–exact analytical solutions to Equation

2.2 do not exist. Instead, iterative numerical strategies based on the variational

principle are adopted. This theorem states that the true ground state energy of a

system will always be less than or equal to that predicted using a trial wave-function.

Electronic wave-functions, comprised of linear combinations of atomic orbitals, obey

Pauli’s exclusion rule: namely that a wave-function of a fermion is antisymmetric

under particle exchange.

The inter-electron repulsive term in Equation 2.2 is computationally expen-

sive and challenging to calculate due to the pair-wise summation and indistinguisha-

bility of the electrons involved. In 1964, however, Hohenberg and Kohn [Hohenberg

and Kohn [1964]] made a significant breakthrough by proving that the ground state

energy, E0, and electronic properties of a system can be uniquely described by its

electron density, n(r):

E[n(r)] = T [nr)] + Uee[n(r)] +

∫

n(r)v(r)dr (2.3)

where, as before, T and Uee are functionals of the kinetic and inter-electron interac-

tion potential energies and v(r) is the external field, respectively. Electron density,
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n(r), and the electronic wave-function, Φ, of a system are related by:

δn(r) =

∫

r+δr

r

Φ(r′, s)∗Φ(r′, s) dr′ (2.4)

Equation 2.3 is the fundamental basis behind Density Functional Theory

(DFT), with the electron density distribution for the ground state of a system, n0(r),

being that which minimises E to E0. Although precise by definition, approximations

have to be made in practice in order to obtain solutions since the functional forms of

T and Uee are unknown. First proposed by Kohn and Sham the most fundamental

simplification is to describe the system in terms of non-interacting electrons [Kohn

and Sham [1965]]. In this case both the kinetic and potential energy functionals

are defined and exact solutions, known as Kohn-Sham orbitals, exist. However, for

real systems a correction, known as the ‘exchange-correlation’ functional, is needed

in order to recover Equation 2.3. This term, the functional form of which is unde-

fined, encompasses the contributions of the exchange (the energy associated with

the indistinguishability of any two electrons) and correlation (the energy associated

with instantaneous repulsion between electrons) energies to the total energy of the

system; both normally small perturbations to the total energy.

Exchange correlation functionals can be categorised according to their form.

Currently three different classes are in widespread use: Local Density Approxima-

tion (LDA), Generalised-Gradient Approximation (GGA) and hybrid. The first is a

functional of n(r) only, while the second is a functional of both n(r) and its gradient.

Hybrid functionals combine different methods, such as Hartree-Fock exchange with

DFT. One of the major shortfalls of all three, however, is their description of the

dispersion interactions within a system. (These interactions involve the non-local

response of an electron in one region of space due to a remote instantaneous fluctu-

ation in n(r) and are characterised by a decay in the inter-atomic interaction energy

which is approximately proportional to −1/r6, where r is the distance between two

atoms.) For instance, using PBE (a GGA-type exchange-correlation functional), π

stacking of two benzene rings is predicted to be unfavourable [Rosa et al. [2012]].

In recent years new DFT functionals which better account for dispersion

have been derived. These functionals can be broadly classed into 3 categories (See

Reference [Klimes and Michaelides [2012]] for a recent review). Briefly:

1. DFT-D methods: In this class of DFT functionals, dispersion is reproduced

by the additive correction:
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Edisp = −
∑

A,B

CAB
6

r6AB

(2.5)

where the exact form of CAB
6 , the dispersion coefficient, differs from method to

method. In the simplest case, DFT-D, CAB
6 are tabulated and are invariant to

the particular environment or chemical state of the atoms in question. More

complex schemes aiming to reproduce these effects have been derived. For ex-

ample, using the DFT-D3 method, the C6 value for each specific atom within a

system is dependent on its co-ordination number [Grimme et al. [2010]], while

for the vdW(TS) functional reference polarisabilities are used alongside C6

coefficients in order to distribute the electron density of a molecule between

its constituent atoms depending on their effective volumes [Tkatchenko and

Scheffler [2009]]. Although the accuracy of some DFT-D functionals, relative

to experiment, is reasonably high for specific test sets of molecules, the empir-

ical nature of the dispersion correction limits their transferability to systems

outside of those used in the parameterisation procedure.

2. Long-range methods: Unlike, DFT-D, dispersion interactions are calculated

from the electron density directly, without the need for external parameters,

by this set of functionals. All are variants of the vdW-DF method [Dion et al.

[2004]; Thonhauser et al. [2007]]. Within this scheme the exchange-correlation

functional is broken down into:

EXC [n(r)] = EGGA
X [n(r)] + El

C [n(r)] + Enl
C [n(r)] (2.6)

where EGGA
X , the exchange functional, is modelled by the GGA; El

C , the local

contribution to the correlation energy, is modelled by the LDA; and Enl
C , the

non-local contribution to the correlation energy, is estimated from n(r) iter-

atively. In the case of vdW-DF, revPBE [Hammer et al. [1999]] is employed

as the GGA. The strength of dispersion interactions, relative to experimental

and high order ab initio calculations, in a range of different systems can be

accurately reproduced by vdW-DF [Thonhauser et al. [2007]; Roman-Perez

and Soler [2009]; Langreth et al. [2009]; Toyoda et al. [2009]; Li et al. [2012];

Wellendorff et al. [2010]; Rosa et al. [2012]]. There are however, two main

deficiencies of this functional which are known: overestimation of equilibrium

separations and underestimation of hydrogen bond strength. Improved vari-

ants of vdW-DF attempt to address these issues by making changes to EGGA
X
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and Enl
C [Lee et al. [2010]] and/or using an alternative the GGA [Klimes et al.

[2011]].

3. Higher-order methods: Using either DFT-D or long-range functionals, dis-

persion is treated as a pair-wise interaction, with the exact nature of the

medium separating the two atoms neglected. Methods which go beyond this

approach are currently being developed. Examples include those based on

the atom-centred Axilrod-Teller-Muto functional which incorporates three-, as

well as two-, bodied dispersion interactions [Axilrod and Teller [1943]; Muto

[1943]]; and double hybrid functionals, in which two corrections are added to

the GGA: one from the Hartree-Fock exchange energy and the other from the

MP2 dispersion energy [Schwabe and Grimme [2007]].

In addition to the fundamental approximation of DFT, the exchange-correlation

functional, further simplifications to Equation 2.3 must be made in practice. First,

wave-functions describing n(r) are constructed as a linear combination of functions

from a basis set. The form of these functions which represent the Kohn-Sham atomic

orbitals is chosen for computational efficiency, as well as physical and chemical ac-

curacy. Atom-centred basis sets require only a small number of basis functions, such

as Gaussians, to define an orbital and are intrinsically suited to isolated molecules.

Plane-wave (PW) basis sets, on the other hand, are more apt for periodic calculations

and thus have been used in Chapter 6 to calculate the interaction energy between

small molecules and planar gold surfaces. Another advantage of using PW-DFT is

that the accuracy of the calculation can be systematically improved by increasing

the maximum wave vector, normally quoted as the PW cut-off energy.

The wave-functions of core electrons can only accurately be reproduced by

PW-DFT using a very large number of wave vectors due to the steep change in

potential energy close to the nucleus. However, the contribution of these electrons

to binding is small in comparison to those in valence orbitals. Thus to reduce the

computational expense of a calculation, core electrons are commonly modelled by

pseudopotentials: functions which are smooth within a core region but reproduce

contribution of core electrons to the overall electron density of an atom for distances

outside this limit.

For periodic systems, integration in reciprocal space only needs to be carried

out over a selected number of points, the Brillouin-Zone: the smallest volume with

the same symmetry as the system as a whole which can be periodically repeated to

fill wave-vector reciprocal space. In practice, this is normally done on a 3D grid–the

Monkhorst-Pack grid. The number of grid points required for convergence varies
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inversely with cell dimension. Finer grids are needed for metallic systems, in order

to reproduce the Fermi surface. A further consideration for periodic calculations is

the size of the system in real space. A compromise is sought between computational

expense (which increases with cell volume) and accuracy–increased by minimising

interactions between periodic images of the cell.

2.1.2 Atomistic Force-Fields

A force-field (FF) is a set of empirical equations describing the forces acting between

particles within a system. In an atomistic FF, the fundamental particles are atoms,

normally represented by point masses of fixed charge. All FF-based simulations

reported in this thesis (unless otherwise stated) have employed FFs compatible

with CHARMM [MacKerell et al. [1998, 2004]; Piana et al. [2011]]. In CHARMM

inter-atomic interactions are divided into two groups: bonded, VB, involving atoms

connected by 3 or fewer covalent bonds; and non-bonded, VNB. Intra-molecular

non-bonded interactions between atoms separated by 2 or fewer bonds are excluded.

The functional form of intra-molecular bonded interactions involving 2, 3

and 4 atoms (Vbond, Vangle and Vdihedral, respectively) are given below in Equations

2.7, 2.8 and 2.9. In CHARMM a simple harmonic potential is used to model bond

stretching:

Vbonds(rij) =
1

2
kbij(rij − bij)

2 (2.7)

where rij is the distance between two atoms, kb the bond stretching force constant

and bij the equilibrium bond length. Whilst computationally efficient, representing

covalent bonds in this form excludes the possibility of chemical reactions (i.e. the

dynamic fission and reformation of a chemical bond).

Three-bodied bonded interactions, angle bending, are modelled by the Urey-

Bradley potential which comprises 3-bodied and 2-bodied harmonic terms:

V angle(θijk) =
1

2
kθijk(θijk − θ0ijk)

2 +
1

2
kUB
ijk (rik − r0ik)

2 (2.8)

where θijk is the angle between the three atoms, kθ the angle bending force con-

stant and θ0 the equilibrium angle, while kUB and r0ik are the force constant and

equilibrium bond length for the fictitious 1-3 bond, rik, respectively.

Dihedrals are divided into two groups- proper and improper. While the four

atoms i, j, k and l of a proper dihedral are all connected by covalent bonds, the

same is not true of improper dihedrals; the latter are used to model the out-of-plane

motion of planar groups such as benzene rings and carbonyls. Proper dihedrals can
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be represented by more than one periodic cosine function of the form:

V dihedral(φijkl) = kφijkl(1 + cos(nφijkl − φ0ijkl)) (2.9)

where kφ, φ0 and n are the dihedral torsion force constant, equilibrium angle and

multiplicity, respectively, of the dihedral φijkl. Improper dihedrals, on the other

hand, are modelled by the simple harmonic:

V improper(ηijkl) =
1

2
kη(ηijkl − η0ijlk)

2 (2.10)

where kη and η0 are the force constant and equilibrium angle for the improper

dihedral ηijkl, respectively.

Non-bonded interactions comprise of two components- van der Waals and

Coulomb electrostatics. The former, van der Waals, are modelled by the 12-6

Lennard Jones (LJ) potential, VLJ in CHARMM:

V LJ(rij) = 4εij





(

σij
rij

)12

−
(

σij
rij

)6


 (2.11)

where εij and σij are the van der Waals interaction energy and spatial extent of

atoms i and j, respectively. For CHARMM, εij and σij are obtained using the

Lorentz-Borthelot mixing rules [Allen and Tildesley [1987]]. Specifically, σij is the

arithmetic mean of σii and σjj while εij is the geometric mean of εii and εjj .

The Coulombic electrostatic interaction, VCoulomb between any pair of atoms

is reproduced by the function:

V Coulomb(rij) = C
qiqj
rij

(2.12)

where qi and qj are the partial charge on atoms i and j and C is the constant 1/4πǫ

(ǫ is the electrical permittivity of the medium). Unlike bonded interactions, non-

bonded ones must be calculated over every pair of atoms within a system and hence

constitute significantly to the computational expense of a FF-based simulation. It is

hence advantageous to truncate both interactions using a spherical cut-off at some

radius, rc, for which VNB(rc) → 0 (NB= LJ or Coulomb). In addition to being

computationally efficient, by setting rc < L, where L is the shortest box vector,

artifacts arising from the finite size and periodicity of the system can be minimised.

While VLJ is convergent for rij → ∞, the same is not true of VCoulomb. The sum of

the partial charges on all atoms within a cut-off distance of atom i will change from

time-frame to time-frame as atoms move in and out of the cut-off sphere. This is
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demonstrated pictorially in Figure 2.1.

time = t +   ttime = t

rcrc

Figure 2.1: Schematic diagram to depict the movement of a second partial charge
(blue) out of a sphere of radius rc surrounding the first charge (red) from time t to
time t+∆t.

However, Ewald summation of electrostatic terms, which is convergent, was

used in all simulations performed in this thesis. Briefly using this method, for every

point charge, a Gaussian of opposite charge is added; both point and disperse charges

are centred at the same position. The sum of the two is convergent in real space.

To retain the original distribution, a second Gaussian–a compensatory charge–is

added. The sum of the compensatory charges can be shown to be convergent in

reciprocal space [Ewald [1921]]. A third and final contribution to an Ewald sum

is a correction to remove the artificial interaction between point and compensatory

charges. The exact form of Ewald summation used here was Particle Mesh Ewald

(PME) [Darden et al. [1993]]–a computationally efficient way in which to implement

Ewald summation in reciprocal space where compensatory Gaussian charge clouds

are discretised on a grid.

Simulations using any of the standard biomolecular FFs are subject to two

main limitations: the inability to capture chemical reactions and atomic polari-

sation. ReaxFF [van Duin et al. [2001]] and AMOEBA [Ren and Ponder [2003]]

are examples of specialist FFs which address these issues. (Polarisable versions of

CHARMM [Anisimov et al. [2005]; Patel and Brooks [2006]; Xie et al. [2007]] also

exist.) In ReaxFF [van Duin et al. [2001]], all pairs of atoms are subject to non-

bonded interactions, described by Coulombic (Equation 2.12) and Morse potentials.

Inter-atomic distance is used to define the order of a bond and it is bond order

which is employed to determine the extent of corrections required to bond, angle

and dihedral terms in order to reproduce the physical properties of a molecule. In
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the AMOEBA FF atomic polarisability is captured by a combination of permanent

mono-, di- and quadra-poles added to each atom and polarisable dipoles located in

specific positions. Both fixed and induced multipoles surrounding a polarisable site

contribute to the strength of the electric field experienced at that location. Thus,

induced dipoles must be determined iteratively. Both ReaxFF and AMOEBA are

not commonly employed in large scale molecular simulations at present due to the

extra computational expense associated with their implementation [Liang and Walsh

[2006]].

2.2 Molecular Dynamics

In a Molecular Dynamics (MD) simulation the position and momenta of all con-

stituent particles are propagated in time. Only classical MD simulations, in which

trajectories are generated by integrating Newton’s equation’s of motion (Section

2.2.1), are reported in this work. The forces acting within each system here were

either described by atomistic FFs (Section 2.1.2) or a DFT exchange-correlation

functional (Section 2.1.1). MD is one of the most widely used computational sim-

ulation techniques. Its scope arises from the ergodicity principle. Namely, that

the time-averaged and ensemble-averaged properties of a system are equal. Thus,

macro- and micro-scopic observables, which can be defined using statistical mechan-

ics in terms of the position and momenta of the microscopic components of a system,

can be calculated.

There are three main components to performing an MD simulation:

1. System setup: encompassing the initial choice of co-ordinates and description

of PEL.

2. Generation of the trajectory.

3. Analysis.

The steps taken to setup a simulation are system dependent but typically

include energy minimisation–to remove unfavourable steric contacts–and multiple

initial system geometries–to aid conformational sampling of the PEL. The two most

commonly used ensembles for MD simulation–canonical (constant number, volume

and temperature, NVT) and isothermal-isobaric (constant number, pressure and

temperature, NPT)–have been used in the simulations reported hereafter; the al-

gorithms used to implement them, along with those required for propagating a

trajectory are described below in Sections 2.2.1, 2.2.2 and 2.2.3. Analysis common

to a number of the studies detailed in Chapters 3 to 9 is outlined in Section 2.5.
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2.2.1 Time Evolution

It is not possible analytically to solve Newton’s equations of motion for all but the

most simple systems. Instead, time-reversible numerical algorithms based on two

Taylor expansions of the positions of each particle (r)–one forward and one backward

in time–are used to carry out the integration. Specifically, the leapfrog algorithm

[Hockney et al. [1974]] was used in all simulations reported in this thesis. Using this

method, the integration error is on the order of ∆t4, where ∆t is the time-step of

the simulation. Velocities and positions are updated sequentially according to:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t) (2.13)

r(t+∆t) = r(t) + ∆tv(t+
1

2
∆t) (2.14)

where F(t) is the force acting on a particle at time t, determined from knowledge of

the positions of all the other particles within the system at the same point in time.

For numerical stability the time-step, ∆t must be shorter than the period of fastest

vibration within a system.

2.2.2 Thermostats

In order to simulate a system in either the NVT or NPT ensemble, temperature must

be maintained using a heat bath. The principles behind three different thermostats–

Berendsen, Anderson and Nosé Hoover–are discussed below; only the latter has been

implemented in this work.

Berendsen thermostat

Using the simplest thermostat to implement, Berendsen, the system is weakly cou-

pled to an external heat bath at the desired temperature, T0, by first order kinetics:

dT

dt
=
T0 − T

τ
(2.15)

where deviations in temperature, T, from T0 decay exponentially with time constant

τ . Fluctuations in the kinetic energy of the system are suppressed meaning that the

Berendsen thermostat does not rigorously generate the correct statistical ensemble.

37



Andersen thermostat

Unlike the Berendsen thermostat, simulations employing either the Andersen or

Nosé Hoover sample the correct Boltzmann weighted ensemble of states. Main-

tenance of temperature is achieved in the former by randomly selecting particles

at each time-step to undergo a collision. The probability with which a particle is

selected governs the strength of coupling between the system and the heat bath.

Particles selected for collision are assigned new velocities chosen from the Maxwell

Boltzmann distribution at T0. All remaining particles are unaffected.

Nosé Hoover

Opposed to the stochastic nature of the Andersen thermostat, the Nosé Hoover

thermostat [Nosé [1984]; Hoover [1985]] is a deterministic method for maintaining

temperature in a MD simulation. The external heat bath, at the desired tempera-

ture, T0, is represented by a frictional entity, b. A Lagrangian restraint is added to

the equation of motion of the system:

d2ri
dt2

=
Fi

mi
− fb
Q

dri
dt

(2.16)

where Fi is the force acting on the ith particle, of mass mi and position ri; Q is

a constant used to describe the strength of the coupling between the system and

a heat bath; and fb is the momentum of the frictional parameter of the reservoir,

described by:

dfb
dt

= (T − T0) (2.17)

where T is the instantaneous temp of system. Fluctuations in temperature are

subject to oscillatory relaxation using the Nosé Hoover thermostat. The constant

Q, which has dimension of mass, is related to the period of oscillation τT by:

τT =

√

4Qπ2

T0
(2.18)

2.2.3 Barostats

Algorithms analogous to those described above for thermostats exist for maintain-

ing the pressure in a simulation by dynamically scaling the box dimensions. The

Parrinello-Rahman barostat [Parrinello and Rahman [1981]; Nosé and Klein [1983]],

which follows the same principles as the Nosé Hoover thermostat, has been used
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in all isobaric simulations carried out here. Specifically, the NPT ensemble was

implemented by employing both Nosé Hoover thermostat and Parrinello-Rahman

barostat.

2.2.4 First-Principles MD

All the concepts of MD discussed above are independent of the method used to cal-

culate the forces acting on a particle in the system. In the case of ‘first-principles’

MD (by which I refer to the method used to calculate forces, rather than the evo-

lution of time through a trajectory), two schemes exist: Born-Oppenheimer MD

(BOMD) and Car Parrinello MP (CPMD).

The first, BOMD, is a straight combination of first-principles (normally DFT)

calculations to identify the ground state wave-function (Section 2.1.1) and integra-

tion of Newton’s classical equations of motion to evolve the simulation (Section

2.2.1). The forces, required in the second step, can be derived from the wave-

function, φ, using Hellman-Feynman theorem which states that the derivative of

the energy with respect to position (i.e. force, F ) is equal to the expectation of the

derivative of the Hamiltonian, Ĥ:

F(r) = −
∫

φ∗(r′)
δĤ

δr
φ(r′)dr′ (2.19)

This equation only strictly holds if φ is an exact solution to Schrödinger’s equation.

Using variational principle, wave-functions closer to the exact solution can be de-

termined iteratively by reducing the tolerance in the ground state energy. This is

done at the expense of increased computation. Hence a compromise must be sought

between accuracy and efficiency. It is also noted, that in the case of DFT, the exact

form of the exchange-correlation functional is unknown meaning that the principle

of variation no longer holds. Thus a trial wave function will not necessarily provide

an upper estimate of the ground state energy.

A second approach to first-principles MD simulation, CPMD, was first for-

mulated by Car and Parrinello in 1985 [Car and Parrinello [1985]] in an attempt

to remove the need for expensive wave-function optimisation calculations at every

time-step. In this scheme, electronic wave-functions, {φi}, as well as atomic nuclei,

RN , are treated as time-dependent properties of the system. The conserved energy

is thus:

Econs =
∑

i

1

2
µ

∫

|φi|2dr+
∑

I

MIṘ
2
I + E[{φi},RN ] (2.20)
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where µ is the fictitious ‘mass’ of an electron, MI is the real mass of the Ith nucleus

and E is the ground state energy of the system. If a very low temperature is

used to evolve φ then the electronic energy can be kept close to the ground state.

Thus, a simulation can be performed with only a single wave-function optimisation

calculation: at the first step. The motion of electrons and nuclei are decoupled

to prevent thermal transport between the two by careful choice of µ. Very small

fictitious electron masses prevent the electronic system from deviating from the

Born-Oppenheimer surface at the computational cost of reducing the integration

time-step.

CPMD simulations of ammonium and ethanoate at the aqueous (100) α-

Quartz interface are reported in Chapter 4. Traditionally, due to reduced frequency

with which the wave-function must be optimised during a simulation, CPMD allows

longer time scales to be reached (and for simulation of larger systems) than BOMD,

for a given computational resource. Today, however, the computational efficiency

of the two methods is more code-dependent: improvements in algorithms for wave-

function optimisation can make BOMD competitive with CPMD since time-steps

an order of magnitude smaller are needed in the latter.

2.3 Replica Exchange Methods

As mentioned in Section 1.2.4, one of the biggest challenges facing atomistic bioin-

terfacial simulation is adequate exploration of phase space. Multiple minima exist

in the PEL of these complex systems and, depending on their depth and the height

of the barriers between them, a simulation may remain kinetically trapped in a

single state within the time-scales currently accessible to molecular simulation. In

recent years a number of advanced sampling techniques based on Replica Exchange

Molecular Dynamics (REMD) [Sugita and Okamoto [1999]] have been developed for

aqueous peptide systems in an attempt to overcome these problems [Sugita et al.

[2000]; Liu et al. [2005]; Li et al. [2007, 2011]; Li and Latour [2011]; Rick [2007]; Lee

and Rick [2009]; Ballard and Jarzynski [2009, 2012]; Moors et al. [2011]; Wang et al.

[2011]; Terakawa et al. [2011]]. The methods fall into two broad categories: tem-

perature and Hamiltonian REMD (T-REMD, Section 2.3.1, and H-REMD, Section

2.3.2, respectively). The principles behind both are the same: namely, a number

of identical copies of the system (replicas) are simulated in parallel with exchanges

being attempted between replicas at regular intervals. By incrementally scaling the

temperature or Hamiltonian employed in each ensemble across replica space, the

system is able to escape from deep potential energy minima. To maintain detailed
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balance (i.e. ensuring that Pij = Pji, where Pij is the probability of the exchange

~ij ), exchanges are accepted using the Metropolis criterion:

Pij = 1,∆ij ≤ 0 (2.21)

where, ∆ij is the difference in potential energy of the two replicas before and after the

attempted swap. However, the transferability and performance of these methods to

peptide-surface interface simulations is yet to be fully investigated. This is addressed

in Chapter 5.

2.3.1 T-REMD

In T-REMD, the temperature of the highest replica is ideally chosen such that the

system can cross even the highest barriers between minima on the PEL. The number

of replicas required for T-REMD scales on the order of f1/2, where f is the number of

degrees of freedom of the entire system. Not only does this become computationally

expensive for large complex systems, such as an aqueous peptide-surface interface,

but the increased number of replicas prolongs the time taken for a replica to traverse

the entire temperature ladder, degrading the performance of the method.

Different methods to improve the efficiency of T-REMD by reducing the

number of replicas required to span temperature space have been proposed [Li et al.

[2007, 2011]; Li and Latour [2011]; Rick [2007]; Lee and Rick [2009]; Ballard and

Jarzynski [2009, 2012]]. Latour and co-workers developed the Temperature Intervals

with Global Exchange of Replicas (TIGER) algorithm [Li et al. [2007, 2011]; Li and

Latour [2011]], and subsequent variants, in which all replicas are quenched to a base-

line temperature before calculation of a Metropolis-like exchange criterion. Replica

Exchange with Nonequilibrium Switches (RENS) follows a similar methodology but

instead of quenching all replicas to a baseline temperature prior to the attempted

exchange A↔B, the temperature of A is increased to that of ensemble B and the

temperature of B decreased to that of ensemble A in short ‘switching simulations’

[Ballard and Jarzynski [2009]]. The principles behind this approach can equally be

applied to H-REMD with the potential A/B being increased/decreased to that of

ensemble B/A respectively [Ballard and Jarzynski [2012]]. A third method that has

been proposed for reducing the computational expense of a T-REMD simulation

is Replica Exchange with Dynanical/Driven Scaling (REDS/REDS2) [Rick [2007];

Lee and Rick [2009]]. In REDS, a replica which is transient in temperature space

is placed between each pair of conventional replicas. The latter are constant tem-

perature ensembles widely separated in temperature space. The potential energy of
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the former, transient, replica is scaled between 0 and 1 by a parameter λ which is

either treated as a dynamic variable within the simulation [Rick [2007]] or follows a

fixed trajectory [Lee and Rick [2009]]. Both RENS and REDS have so far, however,

been subjected to only limited testing.

2.3.2 H-REMD

H-REMD has bright prospects for reducing the computational cost of REMD for

large, complex systems. A number of different variations of H-REMD have been

reported in the literature so far that focus on addressing specific physio-chemical

challenges [Fukunishi et al. [2002]; Liu et al. [2006]; Hritz and Oostenbrink [2008];

Meng et al. [2011]; Liu et al. [2005]; Itoh et al. [2010]; Itoh and Okumura [2013]]. In

addition, T- and H-REMD can be combined in multidimensional REMD, where ex-

changes could be attempted between replicas at different temperatures and potential

alternately [Sugita et al. [2000]].

Recently, promising results have been reported for Solute Tempering [Liu

et al. [2005]; Moors et al. [2011]; Terakawa et al. [2011]; Wang et al. [2011]; Itoh

et al. [2010]; Itoh and Okumura [2013]], a variant of H-REMD in which in the

Hamiltonian the potential energy of the system, V (X), is divided into two groups:

one that comprises the ‘solute’ (denoted ‘p’)–typically the peptide/protein or portion

thereof–and the other the ‘solvent’–all remaining molecules/atoms (denoted ‘s’):

U(X) = Upp(X) + Ups(X) + Uss(X) (2.22)

By only scaling those parts of the Hamiltonian related to the solute, Upp and Ups,

the number of replicas required scales on the order of f
1/2
p , where fp is the number of

degrees of freedom of the solute and not the entire system. Unlike T-REMD, only the

zeroth replica, with a unmodified potential, samples the correct Boltzmann-weighted

ensemble in this method. However, it is possible to extract unbiased data from the

other replicas using reweighting techniques [Itoh et al. [2010]; Itoh and Okumura

[2013]]. Solute Tempering has additional advantages for biointerfacial simulations

since it offers a way in which to circumvent the issue of the substrate (included in

the ‘solvent’ group) melting or dissolving at high temperatures–a potential pitfall of

T-REMD.

In the most general form of solute tempering H-REMD, referred to herein as

‘REST’, all intra-solute interactions are incrementally scaled by an ‘effective’ tem-

perature. Alternative versions have been proposed, namely: van der Waals REM

[Itoh et al. [2010]] and Couloumb REM [Itoh and Okumura [2013]], in which only
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the LJ extent and partial charges of solute atoms are scaled, respectively. Only the

REST method has been employed in this thesis. In its original formulation [Liu

et al. [2005]], REST was found to perform badly for biomolecular systems which

underwent large conformational changes [Huang et al. [2007]]. Several groups con-

currently proposed an alternative scaling factor for the solute–solvent interactions

[Moors et al. [2011]; Terakawa et al. [2011]; Wang et al. [2011]] within the Hamilto-

nian which not only improved replica mobility through effective temperature space

and conformational sampling but also could be implemented within the MD soft-

ware code Gromacs [Hess et al. [2008]]. It is this second formulation of REST that

has been used here and is outlined in Section 2.3.3].

2.3.3 Replica Exchange with Solute Tempering

All REST simulations were implemented according to the method outlined in Ter-

akawa et al. [Terakawa et al. [2011]] using the replica exchange and free energy

perturbation codes within the standard Gromacs package [Hess et al. [2008]]. Specif-

ically, in the biointerfacial REST simulations reported in Chapters 5, 7 and 8, the

potential energy of replica j was scaled according to:

Uj(X) =
βj
β
Upp(X) +

√

βj
β
Ups(X) + Uss(X) (2.23)

where Upp is the intra-peptide, Ups the peptide-water and peptide-surface, and Uss

the water-water, water-surface and surface-surface potential energies of the system

X, respectively. β and βj are the inverse of the system and ‘effective’ temperatures

(i.e. β=1/T , T=system temperature) of replica j and are related via λj :

βj = β(1− λj) + βHλj (2.24)

where 0 ≤ λj ≤ 1 and βH is the highest effective temperature. To recover Equation

2.23 intramolecular peptide bonded (dihedral torsion force constants only in the case

of Chapter 5 but both bond stretching and dihedral torsion force constants for the

simulations reported in Chapters 7 and 8) and non-bonded LJ interaction energy

parameters were scaled in each replica by λγ (where γ=βH/β), while atomic partial

charges were scaled by λ
√
γ. Wang et al. reported that out of the intramolecular

bonded interactions, it was only essential to scale dihedral torsion force constants in

order to achieve optimal conformational sampling of a peptide [Wang et al. [2011]].

Prior to production simulation, the ‘effective’ temperature of each replica was iter-

atively derived from a series of short test simulations to ensure uniform acceptance
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probabilities across replica space using the formula proposed by Terakawa et al.

[Terakawa et al. [2011]]:

λnewi = λnewi−1 + (λoldi − λoldi−1)(ai/ < a >)
1

6 (2.25)

where ai and < a > are the acceptance probability of the exchange (i− 1) → i and

the average value across all replicas, respectively.

2.4 Free Energy Methods

Using the principle of ergodicity, the free energy change associated with moving

from state i to state j, ∆Gij , can be approximated from a MD simulation using the

following relationship:

∆Gij = −kBT ln(Pij) (2.26)

where Pij is the ratio of the probability of the system being in state j to the proba-

bility of it being in state i taken over the length of the simulation; T the temperature

of the system; and kB the Boltzmann constant. For Equation 2.26 to hold it is essen-

tial that both states i and j are adequately sampled, something which is difficult to

achieve in large simulations of systems with complex PEL, as mentioned previously

(Section 1.2.4).

In the case of biointerfacial systems, the free energy change of adsorption

is of particular interest. In order to calculate this from molecular simulation for

systems in which the adsorbate has high affinity for the interface, advanced sampling

techniques are often used. For example, Latour and co-workers derived a scheme

for calculating the free energy of adsorption of peptides which incorporated both T-

REMD–to facilitate sampling of internal peptide conformational space–and a biasing

potential–to ensure that the peptide visits both adsorbed and desorbed states [Wang

et al. [2008]]. This method has been successfully applied to the adsorption of host-

guest TGTG-X-TGTG peptides at a range of interfaces [Vellore et al. [2010]; Snyder

et al. [2012]].

A number of alternative free energy approaches exist, two of which have

been employed in the work carried out for this thesis (Chapters 3 and 8) and de-

scribed in detail below–the Potential of Mean constraint Force (PMF) method and

metadynamics (Sections 2.4.1 and 2.4.2, respectively).

44



2.4.1 Potential of Mean Force

Using a suitable reaction co-ordinate (z′) which connects the two states of interest,

the free energy landscape of the system along the same reaction co-ordinate can be

calculated using [Trzesniak et al. [2007]]:

∆G(z) =

∫ z

0
< F (z′) > dz′ (2.27)

where ∆G(z) is the free energy change associated with the transition z′=0 → z′=z

and < F (z′) > is the average force required to constrain the system at z′. In order

to calculate the free energy of adsorption a small molecule at an interface, a suitable

reaction co-ordinate is the vertical distance between the surface and the centre of

mass (c.o.m.) of the adsorbate. The PMF method, using this reaction co-ordinate,

has in recent years been used to quantify the adsorption of amino-acids (or their

analogues) at the Quartz [Notman and Walsh [2009]; Wright and Walsh [2012a]],

rutile [Monti and Walsh [2010]] and gold [Hoefling et al. [2010a]] aqueous interfaces.

The calculations reported in Chapter 3 were performed using the Gromacs

pull code, to calculate the force required to constrain the reaction co-ordinate at each

time step. Simulations at each adsorbate-surface separation were run for a minimum

of 2 ns or until convergence of force block averages [Hess [2002]] was achieved (up to

a maximum of 14 ns). The average force was calculated over the last 1 ns for large

adsorbate-surface separations and over the last 2 or 4 ns for adsorbates close to the

surface, where the force block averages converged more slowly. Between 50 and 60

MD runs per adsorbate were performed with the separation between the adsorbate

and the surface being varied systematically from around 1.0 Å to 14 Å. A block

averaging method [Hess [2002]] was used to estimate errors in the average forces.

Average forces were integrated according to Equation 2.27. Errors in the PMF free

energy were calculated by propagation of the average force errors in the integration.

Whilst by performing non-equilibrium simulations the PMF method ensures

that all states of the system that lie along the reaction co-ordinate are adequately

sampled, its ability to probe all possible configurations along orthogonal directions

on the PEL is not enhanced [Jambeck and Lyubartsev [2013]]. For example, in

the case of bio-interfacial PMF calculations, additional measures must be taken to

ensure different internal adsorbate and adsorbate-surface geometries are sampled.

Small molecules, such as those used in Chapter 6, have few internal degrees of

freedom and adequate adsorbate-substrate sampling can be achieved using a small

number (2 or 3) of different starting geometries for each restrained simulation. For

larger adsorbates, such as peptides, however, the extra computational expense of
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ensuring adequate conformational sampling makes the PMF method for calculating

the free energy of adsorption prohibitive.

2.4.2 Metadynamics

Metadynamics (metaD) is a method in which the free energy profile of a system

along (a) given reaction co-ordinate(s) can be reconstructed from the bias added

on-the-fly to a non-equilibrium MD simulation [Laio and Parrinello [2002]]. Briefly,

reaction co-ordinates, si, (more commonly, in the context of metaD, referred to as

‘collective variables’) which connect significant minima in the PEL must be chosen.

Typically Gaussians of width σi and height w are added with a frequency of 1/τ

to the PEL at the co-ordinates of each collective variable si(X(t)) (where X is the

co-ordinates of the system at time t). The simulation therefore progresses on the

time-dependent energy landscape given by the unbiased PEL of the system, U(X),

and the metaD bias, V(X,t):

V (X, t) = wΣt′<tΠiexp

[

−(si(X(t))− si(X(t′)))2

2σ2i

]

. (2.28)

As the bias is built up, barriers between low energy states of the system are reduced

thus enabling the simulation to escape from deep minima in the unbiased PEL. In

the limit t→ ∞:

V (X, t) → −G(X) (2.29)

where G(X,t) is the free energy of the system. In the case of bio-interfacial simu-

lation, a suitable collective variable for determining the free energy of adsorption is

the distance between the centre of mass (c.o.m.) of an adsorbate and the surface, in

the direction of the surface normal. In Chapter 8 the adsorption of a gold binding

peptide, AuBP-1 [Hnilova et al. [2008]] onto different crystallographic planes of gold

is simulated using metaD. As with PMF calculations, the issues associated with

adequately sampling phase-space orthogonal to a collective variable [Jambeck and

Lyubartsev [2013]] remain. Hence in the work reported here, the REST method–

to augment peptide conformational sampling–has been used in combination with

metaD [Camilloni et al. [2008]; Schneider and Ciacchi [2012]]. The same principles

lie behind REST metaD and the biased T-REMD method developed by Latour and

co-workers [Wang et al. [2008]; Vellore et al. [2010]; Snyder et al. [2012]]. In the

former, REST metaD, the PEL is biased on-the-fly, while in the latter, expensive

umbrella-sampling calculations to determine the form the biasing potential should
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take, prior to the T-REMD simulation, are required. ‘Umbrella-sampling’ is a free

energy method, analogous to PMF but using a harmonic constraint rather than a

fixed restraint on the reaction co-ordinate [Trzesniak et al. [2007]].

When implementing metaD with REST, the metaD bias added to the two

replicas i and j involved in a trial exchange must also be included in the potential

energy difference, ∆ij , used to determine the probability with which the exchange

is accepted (Equations 2.21):

∆ij = {Ui(Xi)+Vi(Xi)+Uj(Xj)+Vj(Xj)}− {Ui(Xj)+Vi(Xj)+Uj(Xi)+Vj(Xi)}
(2.30)

where, U(X) and V(X) refer to the potential energy of the system in the absence

of the metaD bias (Equation 2.23) and the metaD bias itself (Equation 2.28), re-

spectively. It is noted that there are two principal differences between Hamiltonian

replica-exchange metaD (such as REST metaD) and Temperature replica exchange

metaD reported by Bussi et al. [Bussi et al. [2006]] in terms of how the two are

implemented:

1. The momenta of particles following a successful exchange attempt move are

not rescaled;

2. Gaussians of the same height are added to the biasing potential in all replicas.

Both of these features arise from the fact that system temperature is invariant in

replica space in the former, Hamiltonian replica exchange metaD.

Equilibrium, but not time dependent, properties of a system can be recovered

by suitable reweighting of data from non-equilibrium simulations. In general, the

unbiased probability of an observable having a specific value P (Obs) can be derived

from the respective biased probability, Pbiased(Obs), using:

P (Obs) =
< Pbiased(Obs)exp{W

kT } >
< exp{W

kT } >
(2.31)

where W is the weight factor. For REST metaD simulations specifically, W is

comprised of two components: the time dependent metaD bias and the bias due to

the scaling of solute interactions by an effective temperature, Y (X(t)) (derived from

Equation 2.23):

Y (X(t)) = (1− βj
β
)Upp(X(t)) + (1−

√

βj
β
)Ups(X(t)) (2.32)
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The simplest approach, analysis of the reference replica (λ = 0, Equation 2.24) has

been adopted only herein–both for REST MD simulations reported in Chapters 5

and 7, and REST metaD simulations detailed in Chapter 8. Incorporating data

obtained from all replicas in a REST simulation would be one way to improve

statistical sampling in the future.

The factor by which the time dependent metaD bias to the reference replica

of a REST metaD simulation must be re-weighted to obtain the unbiased ensemble

of states also requires careful consideration. While using V (X(t), t), as defined in

Equation 2.28, directly is formally correct, it will exponentially weight frames from

the end of the simulation more heavily than those in the initial stages–a consequence

of V (X(t), t) growing continuously with time. Alternative reweighting strategies are

discussed in Section 8.3.

2.5 Analysis

In the analysis of all interfacial simulations carried out in this work it was important

that adsorbate-surface separation was defined in a consistent manner. In the case

of the aqueous α-Quartz interface, the average z co-ordinate of Si atoms in the top

layer of silica was chosen as the reference point. The same definition has been used in

previous studies [Notman and Walsh [2009]; Oren et al. [2010]]. Similarly, binding

distances were measured from the z co-ordinate of gold atoms in the uppermost

layer of the three gold surfaces. For the reconstructed Au(100) interface this was an

average co-ordinate due to undulations in the surface.

2.5.1 Hydrogen Bonding

The geometric criteria defined by Jedlovszky et al. to determine the existence of

a hydrogen bond in a box of TIP3P water were employed in the analysis of most

simulations reported in this thesis [Jedlovszky et al. [1998]]. (Hydrogen bond anal-

ysis presented in Chapters 5 and 6 was carried out slightly differently for the rea-

sons outlined in the text.) Specifically, a hydrogen bond was said to be present

on the simultaneous satisfaction of two distance metrics–O/N· · ·O and H· · ·O–and

one angle–H· · ·(O/N)· · ·O. In Chapters 3 and 4, cut-off distances were fine-tuned

for each specific type of hydrogen bond using the position of the first minimum in

the appropriate radial distribution function (RDF), following the precedent set in

reference Jedlovszky et al. [1998]. Distances derived for intermolecular hydrogen-

bonding in TIP3P water were used in all other cases. An angular cut-off of 30◦ was

used throughout to ensure a near linear arrangement of the three atoms involved

48



Jedlovszky et al. [1998]; Luzar and Chadler [1996, 1993].

The persistence of a hydrogen bond over two different time-scales (ps and

ns) can be probed by calculation of the continuous S(t) and instantaneous C(t)

hydrogen-bond time autocorrelation functions respectively. These are defined as:

X(t) =
< h(0) · h(t) >

< h >
(2.33)

where < h > is the number of hydrogen bonds at t=0 averaged over a number of

different starting points throughout the simulation. h(t) is 1 if a hydrogen bond

present at time 0 is also present at time t and 0 otherwise; for X(t) = S(t) this

holds only if the particular hydrogen-bond exists between times 0 and t, whilst for

X(t) = C(t) it is independent of this condition. For short time-scale simulations,

such as the CPMD simulations reported in Chapter 4, the continuous hydrogen-

bond time-autocorrelation function, S(t), has been reported to be a better measure

of hydrogen-bond lifetime [Rosenfeld and Schmuttenmaer [2011]; Paul and Chandra

[2004]] because it normally displays exponential decay within the timescales probed

and is not dependent on the time at which the hydrogen bond was formed. In ad-

dition, for small length-scale systems it is inevitable that hydrogen bonds between

specific atoms will break and reform in time due to the limited number of atoms.

This would potentially lead to an over-estimation in the characteristic hydrogen-

bond lifetime if the instantaneous, rather continuous time autocorrelation function

was used. On the other hand, for large systems and larger time-steps, the instanta-

neous correlation function is more appropriate since it is independent of sampling

frequency apart from for very short life-times. It must be noted that in this study

hydrogen bonds between individual atoms rather than between molecules have been

identified in all analyses. (For example, hydrogen bonds HaOc−Hb · · ·OdH2 and

HbOc−Ha · · ·OdH2 were classed as distinct.)

2.5.2 Peptide Structure Clustering

To identify the most likely structure a peptide or protein sequence is likely to adopt

in a particular environment it is often useful to group similar structures, generated

during a simulation, together into clusters. Not only this, but cluster analysis can

also:

• give an indication of the amount of peptide conformational space explored by

a system. (For example a peptide sequence which samples a larger number

of clusters than another is likely to be conformationally more lable, whilst

when benchmarking two methods using the same system, the method which
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enhances conformational sampling the most will give rise to the largest total

number of clusters.)

• be used as a metric for equilibration of a simulation by monitoring convergence

in the total number of clusters identified.

Throughout this thesis (Chapters 5, 7 and 8), the Daura clustering algorithm

was used to classify peptide (QBP-1 [Oren et al. [2007]] and AuBP-1 [Hnilova et al.

[2008]]) structures into clusters [Daura et al. [1999]]. Briefly, the protocol for this

procedure was as follows:

1. Calculate the root mean squared deviation (RMSD) of a subset of peptide

atoms, after least-squares fitting, between all pairs of structures within the

pool of structures generated during a trajectory.

2. Determine the number of neighbours each structure has. A ‘neighbour’ is

defined as another structure for which the RMSD between the pair is less

than a cut-off value.

3. Assign the structure with the largest number of neighbours (labelled the ‘cen-

troid’ structure of the cluster), along with all its neighbouring structures to a

cluster.

4. Remove all structures assigned to the cluster from the overall pool of struc-

tures.

5. Repeat steps 1-4 until all structures have been assigned to a cluster.

Unless stated otherwise, peptide structures were clustered according to their

backbone atom positions, with a RMSD cut-off of 2 Å. The same procedure and

cut-off were used to assign structures of QBP-1 in solution [Notman et al. [2010]].

Here a cluster was defined as being ‘significant’ based on its size. Specifically, the

total number of ‘significant’ clusters was that required to account for 95% of the

total structure population.

To investigate whether similarities existed between different simulations (Chap-

ter 5) or environments (Chapter 7 and 8), in the structures most likely to be

adopted by a given peptide, additional RSMD calculations were performed. In

this case only the centroid structures of the most populated clusters from each en-

vironment/simulation were chosen. Clusters, and the structures within them, were

said to be ‘identical’ if the RMSD was less than the cut-off used in the original

cluster analysis (2 Å) and ‘similar’ if it fell within the range 2-3 Å.
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Figure 2.2: Boundaries in φ/ψ space demarking the principal regions in a Ramachan-
dran plot for analysis of QBP-1 structure.

2.6 Peptide Secondary Structure

A Ramachandran plot, which depicts the distribution of peptide backbone φ-ψ di-

hedral angles sampled over a trajectory, is often used to give a visual indication of

the secondary structural characteristics of a peptide. Specific combinations of the

torsion angles are representative of different peptide secondary structures, such as

α-helix (-60,-45), β-sheet (-135,-135), and PPII (-75, 150). As with peptide cluster

analysis, it is interesting to quantify the similarities and/or differences in the sec-

ondary structural characteristics of a given peptide either in different environments

or in the same environment (Chapter 7 and 8), but simulated using a different proto-

col (Chapter 5). For this purpose φ-ψ phase-space was subdivided into bins centred

around the characteristic range of values for each type of secondary structure region

(see Figures 2.6 and 2.6). The percentage of dihedral angles found to lie within each

bin was then calculated.
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Figure 2.3: Boundaries in φ/ψ space demarking the principal regions in a Ramachan-
dran plot (1 β, 2 PPII, 3 α, 4 αL and 5 γL) for analysis of AuBP-1 structure.
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Chapter 3

Free Energy Calculations of

Amino-Acid Analogue

Adsorption at Aqueous

α-Quartz Interfaces.

3.1 Introduction

In this Chapter, the free energy of adsorption of amino-acid analogues at three

different aqueous α-Quartz interfaces–(100), (011) and (001)–have been calculated

using the Potential of Mean constraint Force method. The motivation for carrying

out this work was two-fold. First the relative binding affinities of the functional

groups present in the side-chains of amino-acids to α-Quartz gives an indication of

the intrinsic contribution of a residue, within a peptide, to its overall adsorption.

Such binding energies are independent of the influence of peptide conformation.

Secondly, the affinity of a given adsorbate for one interface over another allows, for

the first time, the hypothesis that peptide binding could be used to discriminate

between the different crystallographic planes of α-Quartz to be probed.

This work is an extension of that previously reported by Notman and Walsh

who calculated the free energy of adsorption of water, methane and methanol at

the aqueous (100) α-Quartz interface [Notman and Walsh [2009]]. For the rea-

sons outlined in Section 1.2.2, the adsorption of simple small molecules which fea-

ture the same functional groups as those present in a peptide has been modelled,

rather than the amino-acids themselves. This was done in order to de-convolute

side-chain from N-/C-terminus driven adsorption; the former being more relevant
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for peptide interfacial binding. The ‘building block’ approach of using the surface

binding affinity of each functional group present in an amino-acid in isolation, to

estimate its overall attraction to an interface, has recently been validated by first-

principles calculations of glycine adsorption on to chromium oxide [Garrain et. al.

[2011]]. Seven adsorbates were chosen for the study–water, methane, methanol, ben-

zene, ethanoate, ammonium and butyl ammonium–analogues of the amino-acids ala-

nine/leucine/valine/isoleucine, serine/threonine, phenylalanine/tryptophan/tyrosine,

glutamate/aspartate and lysine, respectively. Two analogues of lysine were mod-

elled to investigate the possible role that post-translational alklylation of the residue

in silaffins [Kroger et al. [1999, 2001]]–proteins known to aid silica precipitation in

diatoms–might play in silica binding. The results for five adsorbates–methane, am-

monium, butyl ammonium, benzene and ethanoate–only are presented hereafter.

For further details concerning water and methanol adsorption see reference [Wright

and Walsh [2012a]].

3.2 Methods

MD simulations of the adsorption of amino-acid analogues at the aqueous (100),

(001) and (011) α-quartz interfaces, were carried out using the Gromacs 3.3.3 soft-

ware package [Lindahl et al. [2001]]. The (100) (α termination), (001) and (011)

surfaces had areas of 544, 837 and 1359 Å2 and silanol densities 0.0588, 0.0765 and

0.0471 OH Å−2, respectively (Figure 1.2). (In order to satisfy the partial charge dis-

tribution in LFF [Lopes et al. [2006]], the FF used to model quartz here, the opposite

surface of each slab was hydrogenated. The same slab set-up–hydroxylation of the

interface at which adsorption occurs and hydrogenation of the other–has been used

throughout this thesis, in all simulations of aqueous Quartz interfaces (Chapters 3,

4, 5, 7).) Three-dimensional periodic boundary conditions were imposed such that

the average inter-slab (vertical) spacing was around 33.2 - 36.7 Å, amounting to a

total of approximately 580, 1000 and 1450 explicit water molecules located between

neighbouring slabs for the (100), (001) and (011) cases respectively.

All simulations were performed using the NPT ensemble at a temperature of

300K using a Nosé-Hoover thermostat, and at a pressure of 1 bar with pressure cou-

pled to a Parrinello-Rahman barostat (in the direction normal to the surface only).

Newton’s equations of motion were solved using the leapfrog algorithm [Hockney

et al. [1974]] with an integration time step of 1 fs. Cut-offs for non-bonded Lenard-

Jones and Particle Mesh Ewald (PME) electrostatic interactions were 10 Å. Unlike

previously [Notman and Walsh [2009]], no constraints were applied to any of the
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silanol O-H bonds, so that all α-Quartz atoms in the slab were free to move in

these simulations. Bond lengths within the water molecules were constrained us-

ing the SETTLE algorithm [Miyamoto and Kollman [1992]]. Each simulation was

prepared by a steepest decent energy minimisation followed by a 1 ns MD run to

equilibrate the water molecules. For larger adsorbates, butyl ammonium, benzene

and ethanoate, several different starting conformations relative to the surface were

used for the constrained runs at small adsorbate-surface separations.

Since this work was a prelude to investigations into the interactions between

peptides and α-Quartz surfaces, both the quartz (LFF [Lopes et al. [2006]]) and

water (modified TIP3P [Jorgensen et al. [1983b]; Neria et al. [1996]]) FFs were

chosen because they are compatible with the bio-organic FF, CHARMM [MacKerell

et al. [1998]]. Amino-acid analogues were modelled using the CHARMM parameters

for the side-chain functional groups of their respective amino-acids. Partial charges

were adjusted slightly after hydrogen termination to ensure that the charge state of

each adsorbate was correct for pH 7. Counter-ions (either Na+ or Cl−) were added

where required.

3.2.1 Analysis

The average number of hydrogen bonds per time frame and their average lifetime,

made by ammonium and ethanoate to either the α-Quartz surface or water at their

PMF minima distance from the surface, were calculated over the last 0.5 ns of their

respective constrained trajectories. For this analysis, coordinates were saved more

frequently, every 0.01 ps. The characteristic lifetime of a hydrogen bond was defined

as the time taken for C(t) (hydrogen bond time autocorrelation function, see Section

2.5.1 for definition) to decay to 1
e .

To reveal whether adsorbates were anisotropically oriented at their PMF

minimum separations, adsorbed conformations were classified by the angles made

by key bonds (or in the case of benzene, plane) with respect to the surface normal.

Analysis was done using the last 2 ns of the constrained MD runs for all molecules.

Details of the specific angles used for each classification are given with the corre-

sponding Figures (Figures A.3, A.4 and A.5).

3.3 Results

The optimal free energy of adsorption for each adsorbate, and the surface-separations

at which these occur are summarised in Table 3.1. In the following, the results for
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the five adsorbates, methane, ammonium, butyl ammonium, benzene and ethanoate,

are presented in turn.

(100) (001) (011)
kJ mol−1 Å kJ mol−1 Å kJ mol−1 Å

methane −5.17± 0.49 1.4 −4.48± 0.37 3.2 −6.71± 0.38 3.0
ammonium 1.26± 0.36 4.0 3.04± 0.37 4.1 5.98± 0.25 5.0
butyl ammonium −2.82± 0.56 3.7 −1.94± 0.42 4.6 −4.39± 0.36 4.4
benzene −8.75± 0.47 3.1 −7.16± 0.35 4.7 −11.89± 0.35 4.2
ethanoate −5.51± 0.45 3.7 −6.76± 0.39 4.1 −11.96± 0.42 4.0

Table 3.1: Optimal PMF free energy of adsorption, and vertical position of the PMF
minimum for amino-acid analogues on (100), (001) and (011) α-Quartz surfaces,
under aqueous conditions. Errors were obtained via block averaging as outlined in
Section 2.4.1.

3.3.1 Methane

Methane adsorbed favourably at all three aqueous α-Quartz interfaces with optimum

binding strength increasing with decreasing surface-silanol density (Table 3.1). The

binding of methane to the (011) surface was significantly more favourable than that

to either the (100) or (001) surfaces, indicating that the binding of methane to α-

quartz is facet specific (Table 3.1). As well as showing energetic discrimination over

crystallographic termination, there was also a distinct spatial difference (in terms

of the optimal methane-surface separation (Table 3.1)) between (100) and the (001)

and (011) surfaces.

The (100) methane free energy profile agrees with previous work [Notman

and Walsh [2009]] (Figure A.1a). The PMF minimum at 1.4 Å coincides with the

PMF local minimum of water within interstitial surface sites, where water density is

approximately half that of bulk. This suggests that the unfavourably close proximity

of methane to surface silanols is more than outweighed energetically by the ability

of the interface hydrophobically to shield the adsorbate. Herein, surface-mediated

‘hydrophobic shielding’ refers to both the direct–a reduction in the solvent accessible

surface area of a bound species–and indirect–regions of low density being present at

an interface which perturbs the structure of water–influence of adsorption. Although

the (011) and (001) surfaces have no interstitial sites, orientational analysis [Wright

and Walsh [2012a]] revealed that hydrophobic screening could be used to explain the

trend in binding affinities of methane at all three aqueous interfaces. Specifically,

preferential adsorption to (011) is consistent with this being the only interface at

which the most likely adsorbed geometry was ‘tripod’-like (Figure A.1d)–an orien-
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tation which minimises solvent accessible surface area of the hydrophobic molecule.

Whilst at odds with the highly charged nature of silica-binding peptides (Ta-

ble 1.1), the favourable adsorption of methane tallies with the hydrophobic content

of those sequences thought to have high affinity specifically for α-Quartz [Tamer-

ler et al. [2007]; Oren et al. [2007]]. It also raises the possibility that it is the

post-translational alkylation of lysines in silaffins (which enriches their hydropho-

bic content) that promotes silica-binding, rather than the presence of the charged

ammonium groups.

3.3.2 Ammonium

Unlike methane, the free energy of adsorption of ammonium at all three aqueous

interfaces was unfavourable at all distances considered (Figure 3.1, inset, Table

3.1). Only for (100) and (001) was there a local minimum in the PMF profile, at a

surface separation of approximately 4.0 Å; a distance commensurate with the second

minimum in the PMF profile of methane on (100) (Figure A.1). These results were

in sharp contrast to the (110) rutile titania surface where calculations suggest that

ammonium adsorbs relatively strongly while methane does not [Monti and Walsh

[2010]].

Adsorption of ammonium to α-Quartz can only be mediated by hydro-

gen bonding and/or electrostatic interactions. The very small number of quartz-

ammonium hydrogen bonds formed, either at the PMF minima or when closer to

the surface, can be accounted for by the small partial charge on the silanol oxygens

within the FF (Tables 3.2 and A.1). Hence moving ammonium from bulk water into

interstitial sites on the (100) surface, where the water density is approximately half

that of bulk, is unfavourable. Equally, for (001) the ammonium PMF local mini-

mum was located in a water-dense region, so moving closer to the interface, into

water-depleted region, is unfavourable. However, the degree of structuring of the

first water layer cannot be the only reason for the lack of adsorption since the free

energy change of bringing ammonium from bulk water to the (011) surface was the

least favourable of the three, despite the first water layer being most dense at this

aqueous interface [Notman and Walsh [2009]; Wright and Walsh [2012a]]. This sug-

gests that the adsorption of ammonium is also dependent on surface silanol density

and topology.

The repulsive nature of the quartz-ammonium interaction suggested by these

PMF calculations is at odds with the primary sequences of silica binding peptides

(Table 1.1). However, the results of previous experimental and computational stud-

ies which probe this phenomenon [Churchill et al. [2004]; Vlasova and Golovkova
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(100) (001) (011)

quartz-ammonium 0.14 0.07 0.05
water-ammonium 1.82 1.93 2.15
quartz-ethanoate 17.34 >100 27.67
water-ethanoate 6.54 7.74 6.26

Table 3.2: Hydrogen bond correlation life-time (ps) formed by the adsorbates am-
monium and ethanoate at the PMF minimum distance on (100), (001) and (011)
α-Quartz.

[2004]; Zimmerman et al. [2004]; Kitadai et al. [2009]; Holinga et al. [2011]; Ben Shir

et al. [2010, 2012]; Nonella and Seeger [2008]; Costa et al. [2008]; Zhao et al. [2011];

Rimola et al. [2009]; Folliet et. al. [2013]], against which the findings could be bench-

marked, are ambiguous (see Sections 1.3.1 and 4.4 for a longer discussion). The

possibility that a deficiency exists in the FFs used to model the system, therefore,

could not be either verified or ruled out and hence warranted further study.

First, the FF used to model the adsorbate–CHARMM–was considered. Pre-

vious reports revealed that the attraction between a terminal NH+
3 peptide group

and non-modified TIP3P water is overestimated by CHARMM for solution-based

simulations [Liang and Walsh [2007]]. Since in the work of Liang and Walsh [Liang

and Walsh [2007]] closer agreement to first-principles was obtained for simulations

carried out with AMBER than CHARMM, in terms of the NH+
3 –Hw RDF profile,

the adsorption free energy profile of ammonium on the (100) α-Quartz surface was

also calculated using AMBER parameters for NH+
4 . However, the PMF profiles

for both FF were in agreement–both indicating that adsorption of ammonium on to

α-Quartz was unfavourable (Figure A.2). In the bio-interfacial context, biomolecule-

surface interactions modelled by CHARMM at the aqueous ammonium-terminated

SAM interface were found to be underestimated [Vellore et al. [2010]]. Both the

exaggerated ammonium-water interaction, making displacement of waters from the

hydration shell of the molecule on surface adsorption unfavourable, and the un-

derestimated attraction for the interface itself could account for the unfavourable

ammonium-Quartz binding affinity calculated here.

Second, first-principles simulations of ammonium adsorption at the aqueous

(100) α-Quartz interface were carried out to investigate the role of the silica FF.

These calculations are reported in Chapter 4.
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3.3.3 Butyl ammonium

Unlike ammonium, butyl ammonium bound to all three surfaces although not as

strongly as the hydrophobic adsorbates methane and benzene (Table 3.1, Figure

3.1a). Within error, the adsorption free energy was the same on (100) and (001),

but stronger on (011); this concurs with the binding trend of methane. However,

there were notable differences in the PMF adsorption profiles between the (100) and

the (001)/(011) surfaces arising from their surface topologies. For (100) the PMF

minimum surface-separation was 3.7 Å. This was followed by a plateau in the ad-

sorption profile at a distance which was approximately commensurate with the PMF

adsorption minima on the other two surfaces. This can be explained by considering

the positions of the individual atoms within butyl ammonium at each surface-c.o.m.

separation in relation to the PMF profiles of methane and ammonium. For all three

surfaces, the favourable adsorption free energies correspond to the closest approach

of the c.o.m. for which the NH+
3 group is positioned at distances commensurate

with local minima in the corresponding ammonium PMF profile. The hydrophobic

part of the molecule can then adopt average conformations for which individual car-

bon atoms are at separations roughly commensurate with minima in the methane

PMF profile. On the (100) surface two minima in the methane PMF profile were

accessible whereas on the other two surfaces there was only one minimum. Hence

the surface topology directly gives rise to the distinctly shaped PMF profile of butyl

ammonium on the (100) surface.

Visual inspection of the constrained trajectories at the PMF minima revealed

that the mobility and conformational freedom of butyl ammonium was slightly re-

duced on the (100) surface relative to the other two surfaces as one/two carbons

were trapped within the interstitial sites, preventing lateral movement–motion ob-

served in the [1̄20] and [110], and [2̄10] directions (Figure 1.2) on the (001) and

(011) surfaces, respectively. Figure 3.1b-d depicts typical geometries of butyl am-

monium adsorbed at the PMF minimum separation at each interface; in every case,

the NH+
3 group protruded into bulk water. However, for the (001) surface it was

difficult to identify a ‘typical’ conformation as the adsorbate retained full confor-

mational freedom upon adsorption. Orientational analysis confirmed these visual

observations, revealing on (100) a preferential adoption of an ‘N-up’ conformation

at the PMF minimum surface separation; on (001) ‘flat’ conformations were most

common, whilst on (011) ‘flat’ and ‘N-up’ were equally likely (Figure A.3).

To probe whether the effect on the adsorption free energy of adding an alkyl

chain to ammonium is additive, the average height above the surface for each heavy

atom in butyl ammonium was found from the last 2 ns of the constrained trajectories
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[011][001][100] d)c)b)

a)

Figure 3.1: a) PMF free energy of adsorption butyl ammonium on the (100), (001)
and (011)) α-quartz surfaces as a function of surface separation. Typical configura-
tions of butyl ammonium adsorbed onto the b) (100) (‘N-up’), c) (001) (‘flat’) and
d) (011) (‘flat’) surfaces. Inset: PMF free energy of adsorption of ammonium on the
(100), (001) and (011) α-quartz surfaces as a function of vertical surface separation.
Data in red, purple and yellow correspond with (100), (001) and (011) respectively.
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at its PMF minimum. Each atom was then assigned an adsorption energy contri-

bution, corresponding to the free energy of adsorption of methane or ammonium

at same height on that surface. A prediction of the adsorption free energy of butyl

ammonium was then made by summation of these contributions from each heavy

atom. The additive free energies (in kJmol−1) were −4.5± 2.25, −10.3± 4.09 and

−13.81± 1.74 for (100), (001) and (011) respectively, lying outside the error bound-

aries of the actual PMF free energies calculated here for the latter two. The dif-

ference between the additive and calculated free energies can in part be accounted

for by the size differences between the CH2/CH3 groups and methane. It would

therefore be expected that the surface would provide each CH2 or CH3 group with

less hydrophobic shielding than methane and hence their associated free energy of

adsorption would be less. The closer agreement between the additive and calculated

free energies for (100), relative to the other two surfaces, could be a consequence of

the lack of lateral motion on the former at its PMF minimum, resulting in a more sta-

ble ‘average conformation’. However, these data suggest that for a conformationally-

restricted molecule adsorbed onto α-Quartz, a qualitative estimate of its adsorption

free energy can be obtained from additive contributions of its functional groups.

This could be a powerful tool in correlating the work here to AFM experimental

data for small molecule adsorption on α-Quartz surfaces, where functional groups

are typically attached to an AFM tips by a hydrocarbon chain.

3.3.4 Benzene

Of all the adsorbates tested, benzene adsorbed the most strongly onto the (100) and

(001) surfaces (Figure 3.2, Table 3.1), showing statistically significant facet speci-

ficity in binding energy, between all three surfaces. The PMF adsorption profiles

also display the same surface topological dependence as butyl ammonium, in which

the (100) surface profile has a minimum followed by a plateau, whereas on (001)

and (011), there is one minimum only.

Orientational analysis (Figure A.4) shows that for all three surfaces at its

PMF minimum, benzene preferentially adopts an ‘upright’ conformation, whilst the

‘flat’ conformation is unfavourable. This is in contrast to butyl ammonium where

on adsorption different orientations on the (100) and (001) surfaces were preferen-

tially adopted. Visual inspection indicated that hydrophobic shielding of benzene

by the (100) surface at the PMF minimum arose from the penetration of some of

its hydrogen atoms into the interstitial sites when in an ‘upright’ conformation. On

(001) and (011), it might be expected that maximal surface hydrophobic shielding

could be obtained by benzene in a ‘flat’ conformation in the absence of large in-
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[011][001][100] d)c)b)

a)

Figure 3.2: a) PMF free energy of adsorption benzene on (100), (001) and (011)
α-Quartz surfaces as a function of surface separation. Typical configurations of
benzene adsorbed onto the b) (100) (‘upright’), c) (001) (‘upright’) and d) (011)
(‘upright’) surfaces.
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terstitial sites at either interface. However, calculation of the average height above

the surface of the hydrogen atoms (using data from the last 2 ns of the constrained

trajectories at the PMF minimum) revealed that on average four lay within water

depleted regions at all three aqueous interfaces. This highlights the importance of

water structuring above α-quartz surfaces on the adsorption of aromatic residues.

All the α-Quartz surfaces studied feature interstitial grooves. To test whether

benzene showed preference over any of these grooves at the PMF minimum surface

separation, ring plane lateral orientational analysis was carried out. This revealed

that plane orientation was isotropic at this separation in all three cases. Lateral

orientation became anisotropic at very small surface separations with alignment to

surface grooves being preferred. This confirms visual inspection of the trajectories,

in which benzene was observed to spin and tumble at the PMF minimum, but move

laterally above the (001) (in the [1̄20] and [110] directions, Figure 1.2) and (011) (in

the [2̄10] direction, very slowly, Figure 1.2) surfaces only.

Tryptophan is one of the residues prevalent in the sequence motifs identified

by Oren et al. to be enriched in quartz-binding peptide sequences [Oren et al.

[2010]]. They also reported that, during MD simulations of strong quartz-binding

peptide sequences, the residue made close contact with the (100) α-quartz surface

suggesting that tryptophan has a direct role in peptide adsorption. The same result

was found from the simulations carried out in Chapters 5 and 7. However, it is

expected that on adsorption a tryptophan residue within a peptide would have less

conformational freedom than benzene due to the longer aspect ratio of the indole ring

and the constraints imposed by the peptide backbone on the adsorption geometries.

3.3.5 Ethanoate

Ethanoate was the amino-acid analogue which bound most strongly to the (011)

surface (Table 3.1, Figure 3.3a). It also showed substantial affinity for the (100) and

(001) surfaces, where it adsorbed more strongly than methane. As with the other

adsorbates, ethanoate also displayed spatial facet specificity. Contrary to benzene,

methane and butyl ammonium, it bound more strongly to the (001) surface than

(100), indicating that the forces driving ethanoate adsorption are distinct from those

for the other three molecules.

There are two competing mechanisms for ethanoate adsorption onto α-quartz:

hydrophobic shielding of the methyl group, and carboxylate-silanol hydrogen bond-

ing. On the (100) surface two significant minima existed in the PMF profile. At the

local minimum (3 Å) hydrophobic shielding of the methyl group may drive adsorp-

tion. This can be inferred from both visual inspection of the trajectory, where the
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[100] c)b) [011]d) [001][100] e)

a)

Figure 3.3: a) PMF free energy of adsorption ethanoate on (100), (001) and (011)
α-Quartz surfaces as a function of surface separation. b)-d) Typical configurations
of ethanoate on (100) at b) a separation of 3.0 Å (‘carboxylate-up’) and c) PMF
minimum (‘methyl-up’), d) on (001) (‘flat’), and e) on (011) (‘flat’).

64



methyl group penetrates the interstitial space (Figure 3.3b), and by orientational

analysis, where ‘carboxylate-up’ configurations are preferred (Figure A.5). However,

hydrogen bond analysis identified that ethanoate-silanol hydrogen bonds also have

an important role in driving its adsorption at this surface separation, having a very

long characteristic lifetime (57.3 ps). This would also account for the average height

of methyl carbon (when the c.o.m of ethanoate is at this local minimum) being closer

to the surface than that which would be energetically favourable for the adsorption

of methane. On the other hand, at the global PMF minimum carboxylate-silanol

hydrogen bonding drives ethanoate adsorption. Orientational analysis at this sur-

face separation showed that ‘flat’ and ‘methyl-up’ configurations were almost equally

likely (Figures 3.3 and A.5). The former configuration balances partial hydrophobic

shielding of the methyl group with carboxylate-silanol hydrogen bonding, whilst in

the latter, hydrogen bonding is maximised at the expense of exposing the methyl

group to bulk water.

As noted previously, differences in surface topology, relative to the (100) sur-

face, means that the PMF profiles of ethanoate adsorption onto (001) and (011) have

only one significant minimum. Consistent with butyl ammonium, ethanoate also

preferentially adopts a ‘flat’ configuration when bound to the latter two interfaces

(Figures 3.3 and A.5). Both partial hydrophobic shielding of the methyl group and

ethanoate-silanol hydrogen bonding drive adsorption. Although there were no statis-

tically significant differences between the average numbers of ethanoate-silanol and

ethanoate-water hydrogen bonds at the three interfaces, there was significant varia-

tion in the characteristic lifetimes of the ethanoate-silanol hydrogen bonds (Tables

3.2 and A.1). The longest lifetimes for both ethanoate-silanol and ethanoate-water

hydrogen bonds were seen for (001), the surface with the highest silanol density,

and on which ethanoate displayed the least lateral motion. The greater persistence

of ethanoate-water hydrogen bonding at this interface is consistent with the previ-

ous study, in which the lateral diffusion of water molecules was found to be slower

above the (001) surface than the (100) and (011) [Notman and Walsh [2009]]. How-

ever, neither the characteristic lifetimes of ethanoate-silanol hydrogen bonds nor the

adsorption energy onto the three surfaces correlate with surface silanol density, sug-

gesting that surface topology is also important. The fact that ethanoate adsorption

onto the (011) surface is significantly stronger than onto the other two surfaces is

likely, in part, to be due to ethanoate-water hydrogen bonding in the dense water

layer above this surface.

Experimentally, the role of negatively-charged residues on the silica binding

characteristics of peptides has not been probed extensively. Sano et al. examined
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the influence of residue D5 in TPB-1 (RKLPDA) on silica binding and silification

by alanine substitution [Sano et al. [2005]]. They concluded that aspartate had a

slight influence on the silica binding characteristics of the peptide, but not on silica

precipitation. However, phage-displayed, rather than isolated, peptides were used in

the surface binding experiments, where the presence of the phage could significantly

influence peptide conformation and hence binding. The adsorption of aspartic and

glutamic acid on α-quartz surfaces was found to be negligible by Churchill et al.

[Churchill et al. [2004]], whose findings indicated that amino-acid–quartz adsorption

was driven by electrostatic interactions.

Like experiment, the seeming inconsistency between the strong binding affin-

ity of ethanoate calculated here and the relatively minor presence of the amino-acids

aspartate and glutamate in strong silica-binding sequences (Table 1.1) cannot be

readily understood by previous computational studies (see Section 4.4 for a detailed

discussion). Thus, similar to ammonium, in order to rule out the possibility that the

findings from the PMF calculations carried out here were purely due to a deficiency

of the FF used to model the silica interface, first-principles simulations of ethanoate

adsorption at the aqueous (100) α-Quartz interface were conducted; the results of

which are presented in Chapter 4.

3.4 Discussion

If the calculated adsorption strength of these amino-acid analogues is to be useful

in the design of quartz-binding peptides with predictable properties, the lowest

energy adsorbate-surface configurations found here must be taken into account. For

most residues the alkyl content of the side-chains will be restrained away from the

surface by the peptide backbone, unable to contribute to surface binding unless

flanked by residues which orient it such that it has close surface contact. This is

particularly important when extrapolating the adsorption free energies of ethanoate

and butyl ammonium calculated in this study to those of aspartate/glutamate and

lysine within a peptide, since the hydrophobic portions of these amino-acids would

not be able to interact to the same degree with a α-Quartz surface. More faithfully

to calculate the free energy of adsorption of charged (and polar) amino-acids onto

surfaces in future, the possible adsorbed configurations of their analogues could be

restricted. For example, for the lysine analogue (butyl ammonium), the terminal

CH3 group could be restrained at a minimum surface separation. However, in the

context of understanding the role of post-translationally modified lysines in silaffin-

silica adsorption, the length of the altered side-chain is substantial. Direct contact
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between these alkyl moieties and the surface could increase the binding affinity of

silaffins, as well as aid their aggregation in solution; a role identified by previous

work [Kroger et al. [2002]; Sumper and Brunner [2008]].

Alongside accounting for differences in the availability (for surface adsorp-

tion) of a given residue side-chain compared to its analogue, the influence of peptide

conformation must also be considered. For example, at first sight these data suggest

that a peptide rich in alanine might have lower affinity for the (100) surface than one

enriched in tryptophan. However, if the bulkier nature of tryptophan restricts the

conformation of the latter peptide such that fewer residues are able to make direct

surface contact, then the combined adsorption of a larger number of alanines in the

former sequence may result in it having higher overall surface affinity. The influence

of peptide conformation on its surface adsorption is complex, and discussed more in

Chapters 5, 7 and 8.

3.5 Conclusions

Potential of Mean constraint Force free energy calculations to quantify the adsorp-

tion strength of amino-acid analogues on α-quartz surfaces under aqueous conditions

suggest the following trends in binding: non-polar aromatic > negatively-charged >

non-polar aliphatic > positively-charged. Hydrophobic shielding by the surface, of

both charged and uncharged molecules, had a major role in driving binding. This

was exemplified by the more favourable free energy of adsorption of butyl ammo-

nium than ammonium. In addition, closer analysis revealed that molecules with

hydrophobic content tended preferentially to adopt configurations for which maxi-

mal hydrophobic screening by the surface could be achieved. All adsorbates showed

energetic facet specificity in binding, and most (ammonium being the exception),

displayed spatial and configurational surface discrimination. Differences in the pre-

ferred adsorbate orientation between the three surfaces were mainly due to surface

topology rather than silanol density. Namely, molecules adsorbed on the (100)

surface tended to adopt upright configurations with hydrophobic content penetrat-

ing interstitial spaces; while for (001) and (011) the lack of penetrable interstitial

spaces meant that flat configurations relative to the interface were more frequently

observed.

The two seemingly anomalous results–the weak/strong affinities of ammo-

nium/ethanoate for the aqueous α-Quartz interface–are addressed in Chapter 4.
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Chapter 4

First-Principles Molecular

Dynamics Simulations of

Ammonium and Ethanoate

Adsorption at the Aqueous

(100) α-Quartz Interface.

4.1 Introduction

The relative binding affinities of ammonium and ethanoate at the aqueous α-Quartz

interface calculated in Chapter 3 were contrary to what might be expected based

on the prevalence of positive and negatively charged residues, respectively, in silica-

binding peptide sequences (Table 1.1). One explanation for these seemingly anoma-

lous results could be a deficiency in the FF used to model silica-adsorbate inter-

actions, LFF [Lopes et al. [2006]]; a possibility which is addressed in this chapter

by CPMD simulations of the two amino-acid analogues adsorbed onto the (100)

α-Quartz surface under aqueous conditions. The functional groups of ammonium

and ethanoate–NH+
3 and COO−–are prevalent in peptides, featured by both peptide

and amino-acid termini in solution and the side-chains of aspartate, glutamate and

lysine residues at pH 7. It is therefore important for future FF-based MD, simu-

lations employing LFF, that the surface adsorption of these two moieties can be

reasonably reproduced.

The first-principles simulations reported herein were necessary to check the

accuracy of LFF due to a lack of consensus in the literature concerning ammonium
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and carboxylate adsorption at aqueous silica interfaces (see Sections 1.3.1 and 3.3.5).

For example, experimental studies to date have indicated that lysine binds both

strongly [Churchill et al. [2004]; Kitadai et al. [2009]] and weakly [Zimmerman et al.

[2004]] to silica. Previous theoretical studies are equally ambiguous and have only

modelled the co-adsorption of the two functional groups–NH+
3 and COO−–at this

interface. (By co-adsorption I refer to the surface binding of the N- and C-termini

of the simple amino-acids glycine or alanine. In this case the connectivity of the

two functional groups means that the affinity of one moiety for the interface cannot

be probed in isolation from the other.) Specifically, again like experiment, these

amino-acid–silica DFT calculations have suggested that either direct ammonium-

silanol interactions are stronger [Nonella and Seeger [2008]] or weaker [Costa et al.

[2008]; Zhao et al. [2011]; Folliet et. al. [2013]] than COO−-silanol interactions,

and/or, that both types of interaction are indirectly mediated through interfacial

waters [Nonella and Seeger [2008]; Rimola et al. [2009]].

4.2 Methods

Due to the computational expense of using CPMD to model an interface that

includes liquid water, and to maintain a like-for-like comparison between first-

principles and FF-based MD simulations, both were of modest spatial- and time-

scales. Specifically, each system was comprised of 95 waters, a slab of α-Quartz

(Si52O104H16), 1 adsorbate (NH+
4 or CH3COO−) and 1 counter-ion (Cl−, and Na+

(for FF-based MD ethanoate simulation) or H3O
+ (for the CPMD ethanoate sim-

ulation)). As in Chapters 3, 5 and 7, adsorption onto the fully hydroxylated α

termination of the (100) surface, featuring geminal silanol groups, has been mod-

elled (Figure 1.2a). Counter-ions were inserted into the cell as far from the adsorbate

as possible (equal to or greater than a distance of approximately 23 Å, based on

the thickness of the inter-slab water layer–see below), adjacent to the hydrogenated

quartz facet. They were not observed to interfere with or approach the relevant

adsorbate at any point during the simulations. Simulations of 10 ps duration were

carried out, with two runs for each adsorbate performed.

The same combination of FFs used in Chapter 3–LFF [Lopes et al. [2006]],

CHARMM [MacKerell et al. [1998]] and modified TIP3P [Jorgensen et al. [1983b];

Neria et al. [1996]]–were employed in the FF-based MD simulations detailed below.

(A comparison between CPMD and an alternative FF for silica, CLAYFF [Cygan

et al. [2004]], was also carried out. The results of this study can be found in Reference

[Wright and Walsh [2012b]].) Exact, direct comparison between the CPMD and FF-
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based MD approaches was impossible due to the different PEL of the DFT functional

and FF; hence the latter simulations were set up in a couple of different ways (e.g.

LFF-run1 and LFF-run2; see details below).

4.2.1 Car-Parrinello Molecular Dynamics Simulations

All CPMD simulations were carried out using the CPMD software package, version

3.13.2 [CPMD [1997-2001]]. The PBE functional [Perdew et al. [1996]], with a cut-

off of 340 eV was used in combination with Vanderbilt ultrasoft pseudopotentials

[Vanderbilt [1990]]. Prior to MD simulation, each simulation cell was geometry op-

timised under these conditions (to a threshold of 2.57×10−02 eV Å−1). The resulting

orthorhombic unit cells had dimensions of 10.710 × 12.470 × 40.501 Å3 and 10.708

× 12.470 × 40.900 Å3, for ammonium and ethanoate respectively. A total of 95 wa-

ter molecules were inserted into the space between the slab and its periodic image

in the z-direction, with a resulting inter-slab water layer thickness of ∼23 Å. This

water layer was of sufficient thickness to minimise perturbations in the water den-

sity at the top surface of the slab arising from the presence of the adjacent periodic

image of the slab in the z-direction. The water layer thickness was comparable to

that used in recent first-principles simulations of the quartz (101̄1)-water interface

reported by Skelton et al. [Skelton et al. [2011a]], and in excess of that employed in

recent first-principles simulations of the interface between the quartz (0001) surface

and liquid water [Sulpizi et. al. [2012]; Gaigeot et al. [2012]].

All atoms were free to move in the subsequent MD simulations, which were

conducted in the NV T ensemble and at a temperature of 300K using a Nosé-Hoover

thermostat. Although deviating from experimental conditions (which would be bet-

ter represented by the isobaric-isothermal ensemble), the use of the NV T ensemble

was a practical necessity–an approximation routinely used in first-principles simu-

lations of mineral–water interfaces [Nonella and Seeger [2008]; Zhao et al. [2011];

Skelton et al. [2011a]; Tilocca and Cormack [2011]; Sulpizi et. al. [2012]]. A time-step

of 0.09976 fs and a fictitious electron mass of 0.219 a.m.u. were used, and k-point

sampling included the Γ point only. For both ammonium and ethanoate, two in-

dependent CPMD simulations (denoted ‘CPMD run-1’ and ‘CPMD run-2’) were

initiated from the same starting coordinates (with the centre of mass of ammonium

and ethanoate located 1.818 and 2.485 Å above the quartz surface respectively),

making a total of 20 ps of dynamics for each adsorbate, and 40 ps of CPMD simula-

tion time in total. Only one adsorbate-surface initial configuration, per adsorbate,

was used in this study, due to the extreme computational expense of the CPMD

simulations. While the initial configuration between the two runs for each adsorbate
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was the same, different initial velocities were assigned to the atoms in runs 1 and 2.

Although using only one starting configuration per adsorbate may impose

limitations on the interpretation of the results, exhaustive adsorbate-surface confor-

mational sampling is currently not computationally viable using CPMD. However,

in comparison with previous work modelling the adsorption of whole amino-acids

[Nonella and Seeger [2008]; Costa et al. [2008]; Zhao et al. [2011]; Folliet et. al.

[2013]], the ability of each functional group to explore different surface binding ge-

ometries during a simulation is not limited here by the added complexity of the

connectivity to the other terminus. To probe the dependence on initial conditions,

the lateral motion of each adsorbate across the surface was monitored during the

CPMD simulations. These results showed that neither adsorbate remained laterally

trapped in its initial geometry or location (Figure B.1).

4.2.2 Force-field MD Simulations

Although LFF was extensively parametrised following the CHARMM methodology

[Lopes et al. [2006]] and contains both bonding and non bonding parameters for

silica atoms, discrepancies between the dimensions of a fully-flexible quartz slab

modelled with LFF and that modelled with first principles techniques exist. For

this reason direct, like-for-like comparison between LFF and CPMD (in terms of

the relaxation state of the initial co-ordinates) is not possible. LFF simulations

using both the PBE (run-1) and LFF (run-2) optimised geometries for quartz were

therefore carried out. In LFF run-1 silica atoms were restrained to their initial PBE

positions for the entire simulation, whilst in run 2 they were free to move within

the constraints of the LFF potential. The initial adsorbate-quartz configurations in

run-1 were identical to those in the CPMD trajectories, whilst for run-2 the CPMD

adsorbate-quartz conformations were relaxed using LFF-CHARMM potential prior

to initiation.

All LFF simulations were carried out using GROMACS 4.0.7 in the NV T

ensemble (to maintain as much similarity with CPMD as possible). Identical to the

CPMD simulations, the temperature was maintained at 300K using a Nosé-Hoover

thermostat and a time-step of 0.1 fs was used. Cut-offs for non-bonded LJ and

PME electrostatic interactions were 5 Å. The unusually small cut-off distances arose

due to the small system size of the CPMD simulations. To investigate whether

the finite size, together with the periodic boundary conditions employed in both

the LFF and CPMD simulations, introduced artifacts in to the results, larger scale

simulations (2×2 super-cell of the original CPMD-sized cell) were performed. In the

spatially extended runs a cut-off distance of 10 Å was used. Since comprehensive
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analysis revealed that only negligible differences existed between the large- and

small-scale simulations, only the results from the latter set (those of comparable

size to CPMD) are presented herein. Water was modelled using the modified TIP3P

potential (herein referred to as TIP3P), with the O–H bond lengths restrained by

the SETTLE algorithm [Miyamoto and Kollman [1992]]. The same CHARMM

parameters used for ammonium and ethanoate in Chapter 3 were employed in this

study.

4.2.3 Analysis

As a measure of adsorption, both the height of the adsorbate centre of mass (c.o.m.)

in the z direction relative to the top of the quartz surface and the shortest possible

‘hydrogen-bond like’ distance (either NH· · ·OSi or COO− · · ·HOsi) were monitored

as a function of time in all simulations. This ‘hydrogen-bond like’ distance is not

intended formally to describe a hydrogen-bond (see below), but was included for the

purposes of comparison with previous simulation studies [Zhao et al. [2011]].

In addition to the ‘hydrogen-bond like’ distance described above, hydrogen-

bonds between the surface/water and the adsorbate were formally defined according

to Section 2.5.1. The specific distance metrics used (Table B.1) were derived from

adsorbate-water RDFs (Figure B.2). The dependence of the results on these RDF-

based geometric criteria, instead of the ‘standard’ atom-atom values for typical

hydrogen bonds in TIP3P liquid water (O· · ·O< 3.5 Å, O· · ·HO< 2.45 Å and angle

of 30◦), was tested; the difference between the two sets of results was negligible and

so only the results based on the first (RDF-based) criteria are reported herein. The

characteristic hydrogen-bond lifetime, τHB, of both adsorbate–silica and adsorbate–

water hydrogen-bonds was determined from S(t), the continuous hydrogen-bond

time autocorrelation function (Section 2.5.1) using the method outlined by Rosenfeld

and Schmuttenmaer [Rosenfeld and Schmuttenmaer [2011]]. Namely, for a hydrogen-

bond for which S(t) 6= 0 at t = 4ps then:

τHB =
−tδ

lnS(tδ)
(4.1)

where tδ is the longest time period over which S(t) was calculated (4 ps). For less

persistent hydrogen-bonds, where S(t) = 0 at t = 4ps, τHB could be determined by

numerically integrating S(t) over the time period investigated:

τHB =

∫ ∞

0
S(t) dt (4.2)
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4.3 Results

4.3.1 Ethanoate

Ethanoate remains very close to the α-Quartz surface in all runs, both CPMD and

LFF, for the whole timescale probed (Figures 4.1a, 4.2a). For both CPMD runs,

the ethanoate centre of mass remains within 3 Å from the surface, maintaining a

(CO)O−· · ·HOSi separation of 1-2 Å throughout the entire trajectory. For the LFF

simulations, the ethanoate-surface separation and (CO)O−· · ·HOSi distance were

slightly greater. These discrepancies, however, were small and arise in part from

differences in the dimensions of the quartz slab for the two approaches (Section

4.2.2).

In Chapter 3 the optimal surface-separation of ethanoate bound to α-Quartz

was found to be 3.70 Å with an additional local minimum present in the adsorption

free energy profile at 2.95 Å [Wright and Walsh [2012a]]. Whilst it is inappropriate

to compare these adsorption distances to the CPMD trajectories (due to differences

in between PBE and LFF in the description of the PEL) it is noted that in the

case of the LFF simulations, ethanoate remains kinetically-trapped within the lo-

cal minimum on the timescales probed. The slow diffusion of the adsorbate away

from the interface, if it was merely an “indifferent” binder to α-Quartz, could thus

potentially be overseen by the short MD runs. Hence it was necessary formally

to quantify adsorbate-surface hydrogen-bonding to help discriminate between the

two states: “strong” and “indifferent” adsorption. (The short ‘hydrogen-bond like’

distance of ethanoate from the surface does not preclude non-linear geometries, in-

dicative of the latter state.)

Careful analysis revealed, however, that extensive hydrogen-bonding between

ethanoate and the surface was in fact responsible for driving persistent close contact.

Within error, approximately two ethanoate-silanol hydrogen-bonds were present,

on average, per time frame during both the CPMD and LFF trajectories (Table

B.2). Differences between the two approaches existed only in the overall hydration

number of COO−, with the total number of hydrogen-bonds made by ethanoate

being ∼4 on average for CPMD and ∼6 for LFF. The over-structuring of water

around COO− using CHARMM relative to CPMD has been previously noted in

other studies [Hugosson et al. [2006]; Liang and Walsh [2006, 2007]]. The aver-

age ethanoate-silanol and ethanoate-water hydrogen-bond lengths were compara-

ble, within error, both between each other and between CPMD and LFF. Using

the persistence of a hydrogen-bond as measure of strength, it is clear from the

hydrogen-bond time-autocorrelation functions that ethanoate-silanol (eq) hydrogen
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b) Ammonium

a) Ethanoate

Figure 4.1: Vertical separation between the quartz surface and centre of mass of a)
ethanoate, and b) ammonium, taken from the CPMD and FMD simulations.

bonds were significantly more persistent than ethanoate-water (ew) ones, with for

CPMD τ eqHB being in excess of 2 ps whilst τ ewHB was an order of magnitude smaller,

0.1-0.2 ps (Figure 4.3a). Again, in terms of persistence, LFF is seen slightly to

over-estimate ethanoate-water hydrogen-bonding relative to CPMD. Despite this,

LFF can reasonably recover the main characteristics governing ethanoate adsorp-

tion onto α-Quartz relative to first-principles. In addition, these simulations suggest

that ethanoate is strongly attracted to the (100) α-Quartz surface under aqueous

conditions.

4.3.2 Ammonium

In sharp contrast to the strong adsorption of ethanoate, ammonium maintains close

surface contact (defined as consistently sustaining a surface separation of less than

3 Å after an initial repulsion) for the entire timescale probed in only one out of

the two CPMD trajectories (CPMD run-1) (Figure 4.1b). During CPMD-run2 the

molecule moved to ∼4 Å away from the surface after 6 ps and did not return to make

consistent surface contact for the remainder of the trajectory. LFF simulations in

Chapter 3 revealed a (repulsive) local minimum in the PMF profile of ammonium

adsorbed onto the (100) surface at a separation of 4 Å. Unlike ethanoate, the short
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timescale LFF simulations reported here for the more loosely bound ammonium

corroborate this, with the ammonium-surface separation fluctuating around 4 Å in

LFF runs 1 and 2. However, both LFF simulations display weaker ammonium-

quartz binding than CPMD run-2, with desorption being almost immediate in the

former, but not the latter.

b) Ammonium

a) Ethanoate

Figure 4.2: ‘Hydrogen-bond like’ distances between the quartz surface and a)
ethanoate ((CO)O−· · ·H(OSi) distance), and b) ammonium (NH· · ·O(H)Si dis-
tance), taken from the CPMD and LFF simulations. In both plots the black-dashed
line denotes the RDF-determined cut-off used in the criteria to define each type of
hydrogen-bond.

Consistent with trends in ammonium-surface separations, only for CPMD

run-1 was significant adsorbate-surface hydrogen-bonding observed (Table B.3),

with the trajectory average being 1.4 hydrogen-bonds per time frame. This was sig-

nificantly greater than LFF simulations, in which the average number of hydrogen-

bonds per time frame fell in the range of 0.0-0.4. The total number of hydrogen-

bonds made by ammonium (to either the surface or water) and the lengths of these

bonds on average were found to be approximately 3 and 1.9 Å respectively for both

CPMD and LFF simulations. This suggests that, in contrast to ethanoate, ammo-

nium was hydrated to a similar degree in each approach. Persistence of both water-

and silanol- ammonium hydrogen-bonding, qualified by their continuous hydrogen-

bond time-autocorrelation functions, is shown in Figure 4.3b. These data reveal
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that not only were there more hydrogen-bonds made between the surface and am-

monium during CPMD simulations than LFF on average, but that they were also

significantly more persistent. Water-ammonium hydrogen bonds were also slightly

more persistent in the case of CPMD than LFF. However, like ethanoate, LFF cor-

rectly recovers the trend in the persistance between the two types of hydrogen-bond

(surface and water) relative to first-principles.

b) Ammonium

a) Ethanoate

Figure 4.3: Continuous hydrogen-bond time-autocorrelation functions for: a)
ethanoate–quartz (eq) and ethanoate–water (ew) hydrogen-bonds, and, b)
ammonium–quartz (aq) and ammonium–water (aw) hydrogen-bonds, taken from
the CPMD and LFF simulations.

Closer analysis of ammonium-silanol hydrogen-bonding featured in CPMD

run-1, where ammonium maintains the most consistent surface contact, indicates

that even here ammonium-silanol hydrogen bonds were relatively weak. Although

in this run the adsorbate remains within hydrogen-bonding distance of the surface

at all times, its adsorbed N–H· · ·OSi geometry is not always linear, meaning that the

actual number of formal interfacial hydrogen-bonds formed was much less than that

which might be expected from inspection of Figure 4.2b. This highlights the need

for more than one distance criterion in the geometric definition of a hydrogen-bond.

Hence, considering all the evidence from both CPMD runs, the short ammonium-

surface separation in CPMD run-1 was more likely due to the “indifferent” nature

of ammonium-quartz interaction than the adsorbate being proactively attracted to
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the aqueous interface. Ideally, this hypothesis could be tested by performing a series

of much longer CPMD simulations, starting from a wide number of different initial

configurations and surface separations. However, such a study is outside the scope

of what is currently feasible computationally.

Although these simulations suggest that LFF underestimates the attraction

between ammonium and the (100) quartz surface relative to CPMD, the FF still

captures most of the essential features of the ammonium-quartz interaction. First,

both CPMD runs indicate a lack of compelling driving force for ammonium to

remain adsorbed at the interface. This is mimicked by LFF, although the LFF

ammonium-quartz interaction appears to be slightly repulsive, rather than merely

“indifferent”. Second, water-ammonium hydrogen-bonds are more persistent on

average than silanol-ammonium hydrogen-bonds for both CPMD and LFF. The

characteristics of these hydrogen-bonds are pivotal to the description of ammonium-

quartz adsorption; that LFF reproduces the CPMD trend for ammonium-quartz

hydrogen bonds to be weaker than that of water-ammonium is essential if the FF is

to be used in future biointerfacial studies.

4.4 Discussion

The first-principles simulations reported in this Chapter tally with a number of

other studies; specifically: the very recent work of Folliet et al. [Folliet et. al. [2013]]

who investigated the adsorption of glycine to two different sites (vicinal and nested

geminal) on an amorphous silica surface under microsolvated conditions using PBE

with the DFT-D2 dispersion correction [Grimme [2006]]; Zhao et al. [Zhao et al.

[2011]] who used MD to model the adsorption of zwitterionic glycine in liquid wa-

ter on the (100) edingtonite surface with a self-consistent charge density functional

tight-binding approach; and Costa et al. [Costa et al. [2008]] who studied the ad-

sorption of microsolvated zwitterionic glycine onto an amorphous silica surface using

first-priniciples MD. In the first, published after the work reported here [Wright and

Walsh [2012b]], short CPMD simulations in the NV E ensemble were carried out

to identify conformations of glycine at the interface which were stable for 0.5 ps or

more. These glycine-silica geometries were subsequently optimised in the absence

and presence of water (up to 3 molecules) in order to identify the lowest energy

state of the system. The authors found that in its most favourable conformation,

the C-terminus of glycine was directly hydrogen-bonded to a silanol group while a

water molecule bridged between the ammonium moiety and the surface. Consistent

results, in terms of direct carboxylate- and water-mediated ammonium-silica bind-
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ing, were reported in the earlier MD study [Costa et al. [2008]] which employed fully

solvated conditions. Similarly, the DFTB simulations of Zhao et al., which were

much longer in duration (20 ps compared to only 1.5 ps at most for those of Costa et

al.), suggested that N-terminal contact between glycine and edingtonite was tran-

sient whilst carboxylate binding persisted for the entire length of their trajectories

[Zhao et al. [2011]]. In this latter work a single distance criterion (equivalent to

the ‘hydrogen-bond like’ distance monitored in this Chapter) was used to identify

adsorbate-surface hydrogen bonding, making it difficult to establish the exact na-

ture (“strong”, “indifferent” or “weak”) of the interaction between the N-terminus

of glycine and the interface.

Only a first-principles MD study modelling the adsorption of alanine to the

hydroxylated (001) edingtonite surface [Nonella and Seeger [2008]] is at odds with

the CPMD simulations carried out here (and the other works detailed above). In

this last study a number of different first-principles simulations were run- each em-

ploying slightly different conditions. In the most relevant simulation with which

to compare, a zwitterionic alanine molecule was initially placed with its centre of

mass about 5.5 Å from the top of the surface (fully protonated, carrying no overall

charge). The system was simulated for 15.5 ps, the first 2.5 ps equilibration period

being conducted at 100K before the temperature was raised to 300K. Neither the

carboxylate nor ammonium groups made direct contact with the surface during this

time period. However, diffusion of alanine to the interface and its subsequent re-

orientation to facilitate strong binding would not necessarily occur on the timescale

probed–most likely the reason for the discrepancy between the conclusions of Nonella

and Seeger and other works. Additionally, when making comparison between the

CPMD simulations carried out here to the other reports mentioned above, the con-

nectivity of the N- and C-termini in an amino-acid makes it possible that the strong

adsorption of one terminus (eg. the carboxylate group) inhibited adsorption of the

other by restricting the range of functional group-surface geometries accessible.

The stronger affinity of ethanoate to the (100) α-Quartz surface compared

to that of ammonium may arise, not only from the opposing charge states of the

two adsorbates, but also the differing adsorbate geometries. In particular, the spa-

tial match between surface silanols and hydrogen bond donor or acceptor atoms in

each molecule impacts on the preferred adsorbate-surface binding mode and hence

may also limit the number of adsorbate-surface hydrogen bonds that can form. The

CPMD trajectories chiefly featured ethanoate bound to the surface in a bidentate

manner, bridging two silanol groups (not part of the same geminal pair) (Figure

4.4a). Around 87% and 70% of all ethanoate-surface hydrogen-bonds arose from
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a) [100] b) [100]

Figure 4.4: Snapshots of typical configurations of a) ethanoate and b) ammonium
at the aqueous (100) α-quartz interface (taken from ethanoate CPMD-run1 and
ammonium CPMD-run2 respectively). a) Shows ethanoate bound in a bidentate
orientation whilst in b) ammonium is bound monodentate to the surface. Silicon
atoms are shown as yellow, oxygen as red, hydrogen as white, nitrogen as blue and
carbon as green. Water is omitted for clarity.

this bidentate geometry in CPMD run-1 and CPMD run-2, respectively. Although a

similar bidentate geometry was possible for ammonium adsorption, ammonium was

also observed to bind in a monodentate fashion for a significant proportion of the

time (Figure 4.4b). Consistent with differences in surface separation between the two

CPMD trajectories in the case of ammonium, the preferred mode of binding varied

between runs. Overall, differences in the hydrogen-bonded configurations of ammo-

nium and ethanoate are a consequence of the longer O· · ·O span of a COO− group

being more comensurate with (100) α-quartz silanol-silanol spacings, compared to

the corresponding H· · ·H span of NH+
4 . The specific mode of quartz-binding by each

functional group could therefore differ between crystallographic planes depending

on surface topology. In addition, at the (100) interface a detailed comparison of

adsorbate binding modes between CPMD and LFF however, is not appropriate due

to subtle differences in the geometries of the underlying silica surfaces used for both

approaches.

Finally, it is worth considering possible artifacts that might have been in-

troduced into the CPMD simulations carried out in this thesis by use of the PBE

exchange correlation functional. As noted in Section 2.1.1, deficiencies in the de-

scription of dispersion interactions by PBE are well known. However, Skelton et

al. compared first-principles simulations of the (100) α-Quartz interface to experi-

mental X-ray data, finding good agreement between the two [Skelton et al. [2011b]].

To date, equivalent benchmarks of dispersion corrected functionals at this interface

have not been carried out and the use of such functionals for MD simulation of
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aqueous interfaces remains rare in the literature. Furthermore, static calculations

of glycine adsorption onto Cr2O3 [Garrain et. al. [2011]] and silica [Folliet et. al.

[2013]] surfaces performed with and without dispersion corrections have shown that

dispersion only altered the absolute binding strength, not the trend in the relative

affinities.

4.5 Conclusions

In summary, CPMD simulations, the first to model the adsorption of charged

biomolecule fragments at the aqueous (100) α-Quartz interface, indicate that ethanoate

has a strong affinity for the surface. On the other hand, the evidence suggested

that ammonium-quartz interactions were more “indifferent” in nature, being nei-

ther strongly attractive nor repulsive. The relative adsorption strengths of the two

molecules was inferred by not only monitoring binding distances but also by quanti-

fying adsorbate-silanol hydrogen bonding. In particular, ethanoate-silanol hydrogen

bonding was found to be both more extensive and more persistent than that of

ammonium-silanol. These results corroborate those presented in Chapter 3 sug-

gesting that the seemingly anomalous finding that the more favourable free energy

of adsorption at the aqueous α-Quartz interface of ethanoate than ammonium was

not due to the FF used. In fact, in this Chapter it has been shown that, relative

to CPMD, LFF was able to model the key features of ammonium and ethanoate-

quartz adsorption. For ammonium however, this work also suggests that the LFF

description of adsorbate-quartz interactions is slightly too repulsive in nature and

thus there is scope for future improvements to the potential.
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Chapter 5

Benchmarking Replica

Exchange with Solute

Tempering for Bio-interfacial

Systems: QBP-1 Adsorption

onto the (100) α-Quartz Surface.

5.1 Introduction

In addition to the direct contribution of each residue within a peptide to contribute

to its overall affinity for an interface, the role of peptide conformation, also imparted

by its primary sequence, must be considered (Section 3.4, [Skelton et al. [2009]; Verde

et al. [2011]; Feng et al. [2012]]). Use of regular MD to identify trends in the confor-

mations of peptides with strong affinity for a given interface is hampered however

by multiple minima which exist in the PEL of these large complex systems (Section

2.3). While experimental techniques to probe interfacial peptide conformation re-

main in their infancy (Section 1.2.3), it is important to investigate the suitability

of advanced sampling simulation methods, designed for solution-based biomolecu-

lar studies, to the bio-interfacial regime. In theory the structural data required to

aid the rational design of strong material-binding peptide sequences able to dis-

criminate between either substrates of different composition or those presenting a

different crystallographic plane of the same material could be obtained from such

studies.

In this Chapter, the performance of two methods based on REMD–T-REMD
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(Section 2.3.1) and REST (Section 2.3.3)–in terms of sampling different adsorbed

conformations of a peptide at an aqueous inorganic interface are evaluated. The

aim of the work is to identify a REMD variant which maximises the amount of

peptide phase space sampled for a given computational resource. At first glance,

the reduced number of replicas required for a REST simulation compared to con-

ventional T-REMD makes it appear favourable. However, without a study such as

this to benchmark the two techniques, the possibility that the results of the former

method, REST, are in some way compromised can not be ruled out. In addition

to comparing REST with T-REMD, the influence of the initial replica population

on the results and of combining of solvent/side-chain mass scaling [Bennett [1975];

Lin and Tuckerman [2010]] with REMD are investigated here. First proposed by

Bennett in 1975, scaling of atomic masses can speed up/slow down low/high fre-

quency dynamics without altering the equilibrium properties of the system [Bennett

[1975]]. More recently this concept has been implemented by Lin and Tuckerman

to enhance the conformational sampling of a peptide under aqueous conditions by

scaling solvent and side-chain atomic masses [Lin and Tuckerman [2010]]. The con-

cept of combining mass scaling with T-REMD and REST to a bio-interfacial system

had not been used prior to this work [Wright and Walsh [2013]].

Adsorption of the QBP-1 peptide [Oren et al. [2007]] (also referred to as

‘S1’) onto the (100) α-quartz surface was used as exemplar system for this study.

Previously reported MD [Oren et al. [2010]] and T-REMD [Notman et al. [2010]]

simulations of QBP-1 adsorbed at the same interface and in solution, respectively,

provide theoretical benchmarks against which the REMD-based simulations carried

out in this Chapter can be compared. In addition, the physical reliability of the

results can be interrogated by comparison with experimental solution CD structural

and motif enrichment data [Oren et al. [2010]]; the latter derived from bioinformatics

approaches [Oren et al. [2010]].

5.2 Methods

5.2.1 System Details

All variants of the Replica Exchange Molecular Dynamics (REMD) simulations car-

ried out here have modelled the quartz binding peptide QBP-1 (PPPWLPYMP-

PWS) [Oren et al. [2007]] adsorbed at the fully hydroxylated aqueous (100) α-quartz

interface (Figure 1.2a) using the Gromacs (version 4 and above) software package

[Hess et al. [2008]]. As throughout this thesis, the α termination of the (100) sur-

face, which features geminal silanols of surface density 0.0588 Å−2, has been used.
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Here the quartz slab had dimensions 74.6 x 65.6 x 21.3 Å3. A total of 7300 water

molecules were inserted between neighbouring slabs in the z-direction with peri-

odic boundary conditions being applied to all three dimensions. All quartz atoms

were free to move within the simulations, whilst the O-H bond length of water was

constrained using the SETTLE algorithm [Miyamoto and Kollman [1992]].

Simulations were performed in the NPT ensemble at a pressure of 1 bar cou-

pled to a Parrinello-Rahman barostat (in the z dimension only), with the desired

temperature of each replica being maintained using a Nosé-Hoover thermostat. New-

ton’s equations of motions were solved using the leapfrog algorithm [Hockney et al.

[1974]], with an integration time step of either 0.5 fs (for simulations involving mass

scaling) or 1 fs (for all other simulations). PME electrostatic summation was cut-off

at 13 Å, whereas a force-switched cut-off starting at 10 Å and ending at 12 Å was

used for LJ non-bonded interactions.

Like in Chapters 3 and 4, silica was modelled using LFF [Lopes et al. [2006]],

while CHARMM27 [MacKerell et al. [1998, 2004]] and the modified TIP3P poten-

tial [Jorgensen et al. [1983b]; Neria et al. [1996]] were used to model the peptide

and water, respectively. Although the first-principles simulations reported in Chap-

ter 4 and reference [Wright and Walsh [2012b]] suggested that LFF slightly un-

derestimates the strength of attraction between ammonium functional groups and

α-Quartz, it was thought to be the most appropriate biointerfacial silica FF for

studying QBP-1–quartz adsorption at the time at which the simulations reported

here were performed. QBP-1 is a highly hydrophobic sequence featuring only one

ammonium group at the N-terminus.

5.2.2 Temperature-REMD

T-REMD simulations were conducted by simulating a number of independent repli-

cas in parallel, each at a different temperature. A total of 36 replicas were used in

each simulation, at temperatures ranging from 295.0K to 392.29K (295.00, 297.49,

300.00, 302.52, 305.06, 307.61, 310.18, 312.77, 315.37, 317.99, 320.63, 323.28, 325.95,

328.61, 331.31, 334.03, 336.77, 339.53, 342.31, 345.10, 347.91, 350.74, 353.58, 356.45,

359.32, 362.23, 365.15, 368.11, 371.07, 374.05, 377.04, 380.05, 383.09, 386.14, 389.22,

392.29). Temperatures were generated using the online temperature generator for

T-REMD simulations [Patriksson and van der Spool [2008]]. Each replica was pop-

ulated with a different initial peptide-surface configuration to maximise the amount

of peptide conformational phase space sampled, and thus, prevent the system from

being kinetically-trapped within a deep local minimum, as might occur if the same

initial peptide configuration was used in each replica. Therefore, initial peptide con-
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formations were chosen randomly to be one of three things: 1) QBP-1 structures

specifically featuring the most common folded peptide secondary structure config-

urations constructed by hand (namely, α-helix, α-turns, β-sheet, β-turns or PPII),

2) the centroid structure of one of the four most dominant clusters of QBP-1 in

solution [Notman et al. [2010]], or 3) snapshots taken from a 1 ns regular MD sim-

ulation of QBP-1 in aqueous solution at 400K. Prior to T-REMD, each replica was

equilibrated at its target temperature for 1 ns (with no exchange moves attempted).

This set of equilibrated replicas was then used as the starting point for each of the

different variants of T-REMD simulations subsequently conducted. Smaller subsets

of these equilibrated replicas were used in the REST simulations (see below).

Exchanges were attempted between replicas of neighbouring temperatures

every 1000MD steps [Okabe et al. [2001]]. (Specifically, as implemented by Gromacs

[Hess et al. [2008]], the probability of exchange between odd (1↔2, 3↔4, etc) and

even (0↔1, 2↔3, etc) pairs of replicas was determined alternately with the frequency

of exchange between any given pair (e.g. 0↔1) being 2000MD steps.) Exchanges

were accepted with an average probability of approximately 0.2. All T-REMD

simulations were run for 15x106 MD steps making a total simulation of 540×106

MD steps per method tested.

One T-REMD simulation using regular, unscaled, atomic masses was carried

out to provide a benchmark against which the performance of all the other REMD-

based methods could be based. Three additional T-REMD simulations were also

conducted, each with different degrees of mass scaling. The scaling constants chosen

were those reported by Lin and Tuckerman [Lin and Tuckerman [2010]]. In the first

case, denoted herein as ‘light’, the masses of the water atoms were scaled by 0.1.

The remaining two T-REMD simulations carried out combined mass scaling of the

water atoms (0.1) with mass scaling of the peptide side-chain atoms, by constants

of 0.6 and 0.8 respectively (herein denoted as ‘light sc 0.6’ and ‘light sc 0.8’).

5.2.3 Replica Exchange with Solute Tempering

A number of different REST simulations of QBP-1 adsorbed at the aqueous (100)

α-Quartz interface were carried out to establish parameters which optimised the per-

formance of this method. All simulations were implemented as described in Section

2.3.3. Each replica was simulated in the same NPT ensemble, at a temperature of

300K. The effective temperatures of the 11 replicas (300.00, 307.61, 315.20, 323.61,

331.95, 341.32, 350.99, 361.05, 370.44, 379.59, 392.29K) were derived iteratively.

The highest ‘effective’ temperature was chosen to be 392.29K, to make the effective

and actual temperature windows of the REST and T-REMD simulations approxi-
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mately equivalent. The number of replicas used, 11, was based on comparison with

previous works in which the version of REST employed here was also used. Specif-

ically, Terakawa et al., modelling a 13 residue peptide [Terakawa et al. [2011]], and

Wang et al., simulating the peptide trpcage (20 residues) [Wang et al. [2011]], both

used 10 replicas to span an effective temperature ranges of 300-600K and 300-572K,

respectively. Both studies were of peptides in aqueous solution. The ratio of number

of replicas to effective-temperature window was increased in this work to account for

the added complexity of simulating an interfacial system. (The number of replicas

and effective temperature range was increased in the REST simulations reported

in Chapters 7 and 8 in order to optimise the method to the computational re-

source available.) Before initiating REST, starting configurations were equilibrated

for 1 ns at their target potentials with no exchange moves attempted. Preliminary

simulations, detailed in Reference [Wright and Walsh [2013]], indicated an optimal

exchange attempt frequency for REST of 1000MD steps. This was adopted for

all simulations reported hereafter. In this Chapter, the average probability of an

exchange attempt being accepted was approximately 0.7. Simulations were run for

10×106 MD steps.

In total 6 REST simulations were performed. Firstly, the influence of initial

replica structure population on the performance of REST, in terms of conforma-

tional sampling, was investigated. The specific focus was on the inclusion of helical

peptide structures and initial peptide-surface separation. Previous MD studies and

solution-based CD measurements suggested that QBP-1 does not exhibit significant

α-helix secondary structure [Oren et al. [2010]; Notman et al. [2010]]. However,

the findings from these former simulations may have been biased by the absence of

helices in the starting configurations tested due to the high potential energy barrier

involved in α-helix formation. Conversely, preliminary results from the interfacial

REST simulation performed here which included α-helices as part of the initial

replica population (herein labelled ‘REST 1’) showed that such structures were per-

sistent. The findings from this initial run could have arisen from a deficiency in the

FF used to model the peptide, although the evidence in the literature supporting

a helical bias in CHARMM27 is conflicting. For example, the benchmark biointer-

facial study carried out by Latour and co-workers modelling the LKβ7 and LKα14

peptide adsorption onto SAMs reported no bias [Collier et al. [2012]], contrary to

the results of solution-based simulations which suggested there was [Piana et al.

[2011]]. Therefore, in order to investigate whether the presence/absence of α-helical

structures of QBP-1 in this work was solely due to the initial replica population,

a second REST simulation in which none of the starting configurations featured a
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helix was carried out (labelled ‘REST no h’). In a similar vein, visual inspection of

the ‘REST 1’ simulation revealed that in some replicas QBP-1 remained strongly

adsorbed to the surface, ‘locked’ in a particular conformation by penetration of cer-

tain residues into interstitial surface sites. To investigate the extent to which this

hindered sampling, another REST simulation for which the initial replica population

differed from ‘REST 1’ only in the displacement of the peptide further away from

the quartz surface in two out of the 11 replicas, was carried out (labelled ‘REST 2

off’).

Secondly, the influence of combining mass scaling with REST was investi-

gated for each of the three sets of initial replicas described above: ‘REST 1’ (labelled

‘REST light’), ‘REST no h’ (labelled ‘REST light no h’) and ‘REST 2 off’ (labelled

‘REST light 2 off’). Only scaling of the water atomic masses (by 0.1) was imple-

mented during these simulations.

5.2.4 Analysis

In this Chapter detailed analysis of the constant-ensemble run at a(n) (effective)

temperature of 300K for each variant of the REMD simulations was carried out only.

To assess how well each variant performed in terms of conformational sampling, two

principal benchmarks were used: one based on clustering of the trajectory (Section

2.5.2), and the other based on peptide secondary structure (Section 2.6). For all

analyses (unless stated otherwise), data from the last 4×106MD steps was used

only. In these later stages, each simulation was observed to have reached a steady

state (Figure 5.1). It must be noted that since the aim of this work was to identify a

REMD-based method which optimised conformational sampling of the peptide for a

given CPU resource, throughout this Chapter MD steps, rather than time, was used

as a monitor of simulation progression. This was done in order to place simulations

employing ‘normal’ and ‘light’ water (which differ in terms of integration time step)

on a level-footing.

A number of peptide-surface binding properties were also calculated, to allow

comparison with previous simulation and experimental studies [Oren et al. [2010];

Notman et al. [2010]] of QBP-1. Hydrogen bonding (intra-peptide, peptide-quartz

and peptide-water) was quantified using just two of the geometric criteria outlined

in Section 2.5.1. Namely, a hydrogen bond was defined as being present on the si-

multaneous satisfaction of a heavy atom donor–acceptor distance of less than 3.5 Å

and a hydrogen-donor-acceptor angle of less than 30◦. For each simulation residues

bound to the Quartz surface for structures belonging to the three most populated

clusters were identified using a closest-atom residue-surface cut-off distance of 3 Å.
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The structures themselves were identified by cluster analysis conducted over the

final 4×106MD steps of a simulation. Binding motifs–dyads and triads–were iden-

tified using the same closest atom-surface criterion applied to two/three sequential

residues. In this case analysis was conducted over the ensemble of all peptide struc-

tures sampled in the last 2×106MD steps of each trajectory, not only those belonging

to the most stable clusters.

To investigate whether the most populated clusters identified by the REMD-

based simulations represented low-energy peptide-quartz configurations, the relative

potential energies of a number of systems were probed by carrying out several addi-

tional standard MD simulations of 5 ns duration. This was particularly important

to help identify whether helical structures were in fact low-energy adsorbed states

of QBP-1, or just an artefact of the initial replica population chosen. Hence, six dif-

ferent snapshots of QBP-1 adsorbed onto the (100) α-quartz surface, representative

of both extended, helical, and solution clusters 1 to 4 [Notman et al. [2010]], were

taken from different REMD simulations. Each system was otherwise identical (e.g.

in terms of periodic cell dimensions and chemical composition). Simulations were

conducted in the NV T ensemble, at a temperature of 300K. The average potential

energy of the entire system, PEsys, was calculated over the last 2 ns of the trajectory

with a block averaging method used to estimate the errors [Hess [2002]] in each case.

All results were reported relative to the lowest energy configuration (extended, ext):

∆PEsys−ext = PEsys − PEext (5.1)

where sys = helix, Sol-1, Sol-2, Sol-3 or Sol-4.

5.3 Results

5.3.1 Replica Mobility

For any T/H-REMD simulation efficiently to sample as much of peptide conforma-

tional space as possible, all replicas must be mobile throughout the entire temper-

ature (potential) window. This is one of the main prohibiting factors for the use of

T-REMD to simulate large systems, since replica mobility is reduced if one increases

the number of replicas used, and/or decreases the exchange acceptance probability.

Long total simulation times are therefore required for a given replica, initially at

the lowest temperature, to migrate through the temperature ladder. The version

of REST used here, was reported to show improvement in this regard for test cases

of biomolecules in solution [Wang et al. [2011]]. However, the effect on replica mo-
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bility of increasing system complexity by adding a mineral interface onto which the

peptide adsorbs, for both T-REMD and REST methods, had not been considered

prior to this work.

Representative mobilities of four replicas (lowest, highest and two intermedi-

ate (effective) temperatures), taken from the simulations, of for each of the different

variants of T-REMD and REST are shown in Figures C.1 and C.2, respectively.

As expected, the extent of replica mobility for T-REMD is much less than that

for REST, but in both cases replicas initially at the lowest/highest (effective) tem-

perature were able to visit all the (effective) temperatures within the simulation

time.

5.3.2 Clustering Analysis

The number of clusters representing different backbone structures of QBP-1 as a

function of MD steps for each of the REMD-based simulations performed in this

Chapter is shown in Figure 5.1. The total number of unique peptide structures

sampled by QBP-1 in all T-REMD simulations of the peptide adsorbed at the aque-

ous α-Quartz interface was less than that found by REMD-based simulations of

QBP-1 in solution (37-41 clusters for each of the T-REMD methods used here,

compared to both 61 for the previous T-REMD study [Notman et al. [2010]] and

106 for the solution-based REST QBP-1 simulation reported in Chapter 7, all after

10×106MD steps). Taken together with the fact that the number of clusters found in

the interfacial simulations appears to have plateaued after 15×106MD steps, these

results suggest that upon adsorption to quartz the conformation of QBP-1 is more

restricted than it is in solution, as might be expected.

When comparing the number of clusters found by the different variants of T-

REMD used, the influence of mass scaling on these results appears to be slight, with

the performance of each effectively equivalent to that of the normal T-REMD simu-

lation. However, the slight trend in these ‘light’ T-REMD results was in agreement

with Lin and Tuckerman [Lin and Tuckerman [2010]] with optimal conformational

sampling achieved over the majority of the trajectory by the simulation in which

mass scaling parameters of 0.1 for water and 0.6 for side-chain atoms were used.

Previous work has shown that QBP-1 is an exceptionally stiff peptide due to its

high proline content [Notman et al. [2010]]. Hence it might be the case that the

ability of mass scaling significantly to enhance conformational sampling of the sys-

tem was impeded by the rigid nature of the peptide studied here. This does not

rule out the possibility that combining the technique with REMD for more flexible

sequences in the future may yield more positive results.
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Fewer clusters were found by the REST simulations than the T-REMD ones

within the same number of MD steps (Figure 5.1b). This was due to the reduced

number of replicas used in the REST method than T-REMD, effectively seeding the

REST simulations with fewer clusters. It is noted, however, that the total number of

clusters found by a method is not necessarily an absolute measure of its peptide con-

formational sampling performance, e.g. if only large numbers of sparsely populated

(minority), high-energy clusters are being found and the low energy adsorbed states

of the peptide are not being adequately sampled. For this reason, both the total

number and number of ‘significant’ (see Section 2.5.2) backbone clusters over the

final stages of each simulation, after the systems had equilibrated, were calculated

(Table 5.1). Using these refined metrics of conformational sampling performance,

the difference between T-REMD and REST was less pronounced. Hence, whilst

clustering analysis can be a useful tool for the comparison of the different T-REMD

and REST variants, it is of limited use as a stand-alone assessment of performance

and should be used with care.

method total signif. 1 /(%) 2 /(%) 3 /(%)

T-REMD normal 21 12 31.7 19.9 14.3
T-REMD light water 21 11 45.1 11.2 9.9
T-REMD light 0.6 sc 19 11 33.5 12.9 10.9
T-REMD light 0.8 sc 22 11 21.1 20.0 17.8
REST 1 15 6 44.7 15.8 10.4
REST no h 24 10 21.9 19.2 16.7
REST 2 off 18 9 29.0 13.8 13.8
REST light 18 9 26.2 21.6 18.7
REST light no h 21 8 31.5 30.2 8.9
REST light 2 off 16 7 34.9 18.8 17.5

Table 5.1: Total number and number of ‘significant’ clusters identified for each
REMD-based simulation. (Cluster analysis carried out over the last 4×106 MD
steps only.) The % of total structure population belonging to each of the three most
populated clusters identified over the same time period is also recorded.

As with T-REMD, data pointing to the benefits of combining mass scaling

with REST are inconclusive here, with the results being highly dependent on the

initial replica population. As anticipated, the variant ‘REST 2 off’, in which the

peptide was displaced from the quartz surface initially in 2 out of the 11 replicas,

showed slightly enhanced conformational sampling, in terms of the number of clus-

ters found, compared to ‘REST 1’. This confirms the hypothesis that for some

peptide-surface geometries, strong interfacial adsorption can hinder conformational

sampling of the peptide. It is anticipated that this phenomenon would be even more
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Figure 5.1: Number of clusters of QBP-1 backbone structure found from a) T-REMD
and b) REST simulations as a function of MD steps.
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pronounced for simulations of other material-binding peptides at their respective in-

terfaces, since in comparison the interactions between quartz-binding peptides and

quartz are thought to be relatively weak [Seker and Demir [2011]]. Interestingly,

however, combining mass scaling of water with displacing the peptide from the sur-

face in two replicas (‘REST light 2 off’) was not so favourable. In these simulations

the light water, with reduced viscosity, enhanced the rate of peptide diffusion to the

quartz surface. The time taken for peptide adsorption was just 4×106MD steps in

both replicas initially displaced from the interface in the ‘REST light 2 off’ simu-

lation, compared to more than twice as long in the ‘REST 2 off’ one (employing

‘normal’ water). Hence, for ‘REST light 2 off’, the benefits (defined in terms of

conformational sampling) of displacing the peptide from the surface initially in two

replicas were cancelled out, in this case, by the reduced viscosity of the ‘light water’.

Omission of helices from the initial replica population (‘REST no h’) en-

hanced the number of clusters found by the REST method to a greater degree than

peptide displacement (‘REST 2 off’). In fact, the total number of clusters found

by ‘REST no h’ after 10×106MD steps was roughly equivalent to that found by

normal T-REMD after the same number of MD steps, despite the former being

seeded with less than 1/3rd of the number of initial structures. However, in light

of previous conflicting reports of a possible helical bias in CHARMM27 (Section

5.2.3), even though the omission of helices may increase the total number of clusters

identified and enhance peptide conformational sampling, it still may be still essen-

tial to incorporate them in the initial replica population of a T-REMD or REST

simulation fully to capture the physical characteristics of the system. To probe this,

the relative potential energies of systems containing extended and helical forms of

QBP-1 adsorbed onto the (100) surface were calculated (Section 5.3.6). Like ‘REST

2 off’, use of ‘light water’ with ‘REST no h’ (‘REST light no h’) did not improve

conformational sampling, in terms of the number of clusters identified.

5.3.3 Peptide Structures and Ramachandran Analysis

Extended structures of QBP-1 dominated the three most populated clusters identi-

fied during backbone clustering analysis over the last 4×106MD steps, for each of the

REMD-based methods used. RMSD comparison between the centroid structures of

each cluster from the different variants quantified visual inspection that indeed very

similar structures were being frequently sampled in all of the T-REMD and REST

simulations. This verified that none of the variations to the standard T-REMD

procedure employed here had a significantly biasing effect. The three most popu-

lated clusters, which taken together typically encompassed up to 70% of the total
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population of structures (Table 5.1), could be broadly described as ‘fully extended’,

‘extended with kinks’ and ‘C-shaped’ (Figure 5.2). Helical structures of QBP-1 on

adsorption (Figure 5.2d) formed minority clusters in most variants (accounting for

10% or less of the total structure population in the latter stages of the simulations

(Table C.1)) apart from ‘REST 2 off’, ‘REST light’ and ‘REST light 2 off’. In

these three simulations, helical clusters (defined as a cluster for which the RMSD

of backbone atom positions of the centroid structure to that of an ideal QBP-1 α-

helix was less than 2 Å) formed the 2nd or 3rd most significant clusters in analysis

carried out either over the entire trajectory or only over final 4×106MD, steps and

accounted for up to 24% of the total structure population. Not only this, but their

populations were stable with time, neither significantly growing nor decreasing in

size as a proportion of the total number of structures (Figure C.3). The evidence is

suggestive that the presence of helical clusters in this subset of REST simulations

was not just a consequence of the initial conditions used. Instead, it indicates that

these three variants of REST, all of which incorporated helical structures in the ini-

tial population of peptide structures, were either more or less accurately capturing

the physical characteristics of the system; an issue addressed by energetic analysis

in Section 5.3.6.

As well as there being structural overlap between structures in the three most

populated clusters in each of the REMD-based methods, there was also structural

overlap between the findings from these interfacial simulation and the four most

populated clusters of QBP-1 in solution, identified by a previous study [Notman

et al. [2010]] (Table C.2). Structures similar to the extended solution clusters 2 and

4 were found more frequently when QBP-1 was adsorbed on the α-Quartz surface

than those similar to the ‘C’-shaped cluster 1 and ‘n’-shaped cluster 3. This RMSD

analysis suggests that in terms of the most populated clusters, QBP-1 undergoes

relatively small structural changes upon adsorption to the (100) α-Quartz surface

from bulk water, perhaps due to the rigid nature of its backbone imparted by the

large proportion of proline present in the sequence. This behaviour is in contrast to

a number of other material binding sequences [Capriotti et al. [2007]; Collino and

Evans [2008]].

Ramachandran plots generated over the last 4×106MD steps of the trajec-

tories are shown in Figure 5.3. In each, four regions of φ-ψ space corresponding to

PPII (-75, 160◦), β (-135, 135◦), α (-60, -45◦) and αL (60, 45◦) have been compre-

hensively sampled. This is in stark contrast to the Ramachandran plot of QBP-1 in

solution ([Notman et al. [2010]] and Figure 7.3), where only the PPII and α regions

were sampled. However, akin to in solution, the most dominant secondary structure
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Figure 5.2: Commonly observed structures of QBP-1 in the most populated clusters
after REMD simulations of the peptide adsorbed onto the (100) α-quartz surface:
a) extended, b) extended with kinks (akin to solution clusters 2 and 4 Reference
[Notman et al. [2010]]), c) ‘C’ shaped (akin to solution cluster 1), and d) helix (found
as a top-3 populated cluster using the ‘REST 2 off’, ‘REST light’ and ‘REST light
2 off’ methods). Water has been omitted for clarity.
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Figure 5.3: Ramachandran plots for QBP-1 adsorbed on the quartz surface for each
RE-based variant.
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characteristic of QBP-1 is PPII when adsorbed onto the quartz surface, with typ-

ically 50% or more of the dihedral angles sampled in all variants of T-REMD and

REST simulations falling within this signature region. It is noted that the shape

of the α region sampled by the solution and adsorbed peptide is markedly differ-

ent, with only the latter showing the characteristic elliptical footprint of an α-helix.

Hence, despite the RMSD analysis revealing strong structural similarities between

the most populated clusters of QBP-1 in solution and those adsorbed at the aqueous

α-Quartz interface, the presence of the surface does bring about differences in an

ensemble containing all QBP-1 structures upon adsorption.

Comparison of Ramachandran plots revealed only small differences between

methods, mainly in the sparsely sampled regions of φ-ψ phase space, corresponding

to structures thought to have high energy. For example the γ region was only visited

in the normal T-REMD simulation, whilst the γL and ǫ regions were more developed

in some variants compared with others.

More detailed analysis of the Ramachandran plots was carried out by subdi-

viding each plot into bins corresponding to regions of different secondary structure

(Figure 2.6). The results revealed slight differences between the REMD variants

in the relative frequencies with which each region was sampled. However, to in-

terpret these data in a more meaningful way, regions were ranked according to the

frequency with which they were sampled; the correlation of these ranks with those

for normal T-REMD was quantified by a simple statistical parameter, Spearmans’

Rank Correlation Coefficient [Zar [1972]]. This showed that the relative frequency

with which each secondary structure region was sampled was in fact correlated in

a statistically significant manner with the normal T-REMD simulation for all the

other methods, with calculated Spearman’s Rank Correlation Coefficients ranging

from 0.90 to 1 (corresponding to significances of 95-100%, respectively). Not only

this, but visual inspection of the evolution of the Ramachandran plots with number

of MD steps revealed strong similarities, with the PPII, α and αL regions being the

first to be sampled across all the variants.

Special consideration of the α region in the Ramachandran plots was carried

out in light of the difficulties described above in determining the biasing influence

of the inclusion/omission of α helices in the initial replica populations. First, it is

noted that the region was present and developed in the ‘REST no h’ and ‘REST

light no h’ simulations, suggesting that the α signature cannot solely have arisen

as a result of the initial replica population. Analysis similar to that above, ranking

the contribution of each residue to sampling within the α region and comparing the

ranks of each method with those obtained from the normal T-REMD simulation,
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did not reveal any significant correlation. However, the calculated α propensities of

the amino acids present in QBP-1 (intrinsic α propensities of an amino acid when

not part of a well defined secondary structure such as a helix or β-sheet) are perhaps

too similar (ranging from 0.85 for Tyr to 1.17 for Trp [Swindells et al. [1995]]) for

the results of this type of analysis to be significant.

5.3.4 Hydrogen Bonding

In all of the T/H-REMD-based simulations carried out the general trend in the num-

ber of hydrogen bonds formed by QBP-1 was as follows: intra-peptide < peptide-

quartz < peptide-water (Table C.1). This trend was also in agreement with previous

MD simulations of QBP-1 adsorbed onto the (100) α-quartz surface [Oren et al.

[2010]], although the absolute number of each type of hydrogen bond formed dif-

fered slightly. These discrepancies were most pronounced for the average number of

intra-peptide hydrogen bonds formed, with QBP-1 in ‘REST no h’, and the previ-

ous MD simulations exhibiting negligible intra-peptide hydrogen bonding compared

to the other simulations. The most probable reason for this was the presence of

helical-type structures being sampled, which are stabilised by backbone hydrogen-

bonded bridges between residues. In particular, ‘REST light’ and ‘REST light 2

off’, simulations in which 18.8% and 17.5% of structures sampled in the final stages

were helical, respectively, featured more intra-peptide hydrogen bonding on average

than the other REMD variants.

5.3.5 Binding Residues and Motifs

Identifying the residues in the three most populated backbone clusters which were

on average bound to the quartz surface, revealed once more that there were strong

similarities between the different REMD variants (Table C.3). In general these

results showed that surface adsorption of QBP-1 was primarily mediated through

residues W4, L5, P6, Y7, M8, P9 and W11. The high affinity of these hydrophobic

residues for the quartz interface concurs with both previous MD simulations of

QBP-1 adsorbed at the aqueous (100) α-Quartz interface [Oren et al. [2010]] and

the findings of Chapter 3, where the free energy of the hydrophobic amino-acid

analogues, methane and benzene, was found to be very favourable [Wright and

Walsh [2012a]]. In particular, it is interesting to note that analogous to preferred

geometry of benzene adsorbed at this interface (Section 3.3.4, Figure 3.2b), the

tryptophan and tyrosine residues of QBP-1 were found preferentially to bind such

that the six-membered aromatic ring was perpendicular to the surface plane. Despite
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the caveats highlighted in Sections 3.3.4 and 3.4, this demonstrates that amino-acid

analogues can adopt similar configurations on adsorption to their respective residue

side-chains within a peptide, substantiating the use of analogues in future simple

computational models of peptide adsorption simulations.

A recent bioinformatics study identified a number of dyad (2 residue), triad

(3 residue) and tetrad (4 residue) motifs that are enriched in peptide sequences with

high affinity to quartz, relative to the biocombinatorial library (Ph.D.-12) used in

the peptide screening process [Oren et al. [2010]]. A number of these dyads and

triads are also present in QBP-1 and so it is interesting to investigate whether

these enriched motifs are directly responsible for binding QBP-1 to quartz or only

contribute indirectly, in terms of either overall conformation and/or hydrophobicity

of the sequence. A similar analysis conducted after regular MD simulations of QBP-1

adsorbed on the quartz surface concluded that they were binding motifs [Oren et al.

[2010]]. However, in light of potentially inferior peptide conformational sampling

accessible from regular MD simulations (Section 5.3.6), a similar analysis was also

carried out here. Not only does this quantify QBP-1 surface binding, but it also

provides another criterion against which the different REMD-based methods can be

compared.

Of the enriched quartz-binding dyads present in the QBP-1 sequence, PW,

WL and LP were commonly found also to be binding dyads in most REMD sim-

ulations (Table C.4). The enriched dyad PP was also identified as a binding dyad

in one of the ten simulations. The relative frequencies with which each of these

enriched dyads was identified, across the different REMD simulations, as being a

binding dyad followed a similar trend to the ranking of their Motif Enrichment Fac-

tors (MEFs) [Oren et al. [2010]], with PW and WL being more prevalent than LP

and PP. In a similar vein, dyads WS and MP, with small MEFs, were not identified

as significant binding dyads in the simulations of adsorbed QBP-1. Akin to binding

dyad motifs, the enriched triads PPW, PWL, WLP were also commonly found to

contribute to the adsorption of QBP-1 onto the quartz surface (Table C.5).

Also consistent with previously [Oren et al. [2010]], tyrosine played an im-

portant role in QBP-1 adsorption in all simulations performed here, in terms of it

being a bound residue both in its own right and within a motif (especially noted the

binding dyads PY and YM). Hence although tyrosine and its motifs are not statis-

tically enriched in the experimentally-identified ensemble of quartz binding peptide

sequences, possibly as a result of a bias in the specific peptide libraries screened,

or that introduced by the elution conditions [Puddu and Perry [2012]], when sur-

rounded by the appropriate flanking residues, as in QBP-1, it can mediate strong
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surface adsorption.

Although the absolute contributions from each motif to QBP-1 adsorption

differed from method to method, the broad findings from this motif analysis for the

different REMD simulations were in qualitative agreement, and more importantly

concurred with experimental data [Oren et al. [2007, 2010]] (which is independent

of the force-field and model used).

5.3.6 Energetics

The total potential energies of otherwise identical systems containing the QBP-1

peptide adsorbed onto the (100) α-quartz surface indicate that out of the six dif-

ferent configurations tested, the extended conformation was the most energetically

favourable. This concurs with the results of the majority of the T-REMD/REST

simulations, where the most populated clusters featured extended QBP-1 structures.

Systems containing QBP-1 in adsorbed configurations which had strong similarities

to solution clusters 2 and 4 [Notman et al. [2010]] were next lowest energy, followed

by solution clusters 1 and 3 (in that order) [Notman et al. [2010]] and then the

helical structure (Figure 5.4). This energetic trend, taken over all of the replica

exchange variant simulations, correlates with the number of highly populated clus-

ters of the same structures. Qualitatively, therefore, these data suggest that QBP-1

conformations with a greater degree of chain extension are favoured by the peptide

upon adsorption to the aqueous (100)-αQuartz interface.

Figure 5.4: Potential Energy difference, ∆PEsys−ext, Equation 5.1.
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Particularly important to note is that the helical structure at the interface is

significantly disfavoured in terms of energy compared to the other adsorbed configu-

rations tested. Hence, in the case of QBP-1, the presence of helical structures being

regularly sampled during REMD simulations, even after an initial equilibration pe-

riod, is possibly the result of their inclusion in the initial replica population, as well

as possible helical bias in the CHARMM27 FF [Piana et al. [2011]]. Since confor-

mational sampling, in terms of the number of different backbone clusters found, was

greatest for ‘REST no h’, this could be particularly advantageous for future simula-

tions of the QBP-1 peptide: it suggests that the performance of the REST method

can be enhanced by the exclusion of helices from the initial replica population, with-

out biasing the results. This conclusion cannot necessarily be extrapolated to other

peptide sequences though, without a similar energetic analysis. On the other hand,

the fact that one of the more populated clusters identified by the ‘REST 2 off’,

‘REST light’ and ‘REST light 2 off’ methods featured a helical structure opens a

number of questions, such as whether the use of the CHARMM27 FF, and/or sol-

vent mass scaling or the REST method itself, may have contributed to this effect.

Thus in Chapter 7 the first of these factors was tested by using a newer version of

CHARMM (CHARMM22*), which features modified torsion potentials [Piana et al.

[2011]], to model QBP-1–quartz adsorption and comparing the results with those in

this Chapter, where CHARMM27 [MacKerell et al. [1998, 2004]] was used.

Finally, visual inspection revealed that in each of these regular MD simula-

tions, no change in peptide conformation or lateral motion of the peptide across the

surface occurred during the 5 ns time period. This again highlights the need for the

development of enhanced sampling methods for modelling complex systems such as

peptides adsorbed at interfaces.

5.4 Discussion

These simulations demonstrate that REST can deliver results of comparable quality

to T-REMD. However, extrapolation to REMD-based simulations of other material

binding peptides at their respective interfaces must be done with caution for a

number of reasons mentioned above. In particular, QBP-1 is a stiff peptide [Notman

et al. [2010]] with high proline content, and so it is possible that techniques such as

mass scaling, used alongside T-REMD or REST, may have a more profound effect

on conformational sampling when applied to more flexible peptides sequences. In

addition, for the specific case of employing ‘light water’ in a simulation, the possible

effect of reduced solvent viscosity on facilitating more rapid surface adsorption, as
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observed in the ‘REST light 2 off’ trajectory must be considered. Whether this was

an anomalous result, borne out by the particular set of random initial velocities

used, can only be verified by further extensive testing.

However, even taking this into account it is unlikely that T-REMD with mass

scaling could out-perform REST in terms of the computational resource required to

sample the equivalent amount of phase-space. As noted by Wang et al., not only is

the REST method less computationally intensive compared with T-REMD, in that

significantly fewer replicas are required, it is also computationally less expensive, in

that a given number of MD steps can be completed in fewer CPU hours [Wang et al.

[2011]]. For the system simulated in this study, the REST simulations took roughly

50% less CPU time for the same number of steps using the same number of processors

per replica. Combined with the reduced number of replicas required for the REST

simulations, T-REMD was up to six times more computationally expensive. Hence

for T-REMD with mass scaling to be competitive with REST, then it must sample

the same amount of phase-space in less than 1/6th of the number of MD steps–a

feat not achieved by the simulations performed in this Chapter.

The choice of structures used in the initial replica population can influence

both the results (i.e. of the inclusion or omission of helices) and the opportunity for

the peptide optimally to sample conformational space (in the case of displacing the

peptide from the quartz surface in 2 of the 11 replicas). Although the findings of this

study suggest that helical folding and unfolding is unlikely to be observed within

the time-scale accessible to a REMD-based simulation with modest temperature

window, the question of whether helices should be included in the initial population

of structures can at present only be addressed on a case-by-case basis. Energetic

analysis, similar to that carried out here (Section 5.3.6), is one way in which this

choice could be made. However, for flexible peptide sequences, such considerations

may yet prove unnecessary, if the energetic barrier to the formation and destruction

of helices is significantly smaller than that for QBP-1.

Strong peptide-surface adsorption can in itself also hinder exploration of

phase-space during REMD simulations. In the case of QBP-1, the number of dif-

ferent backbone clusters sampled was limited when the peptide was initially po-

sitioned close to the quartz surface in all replicas. However, this effect can be

more pronounced for more strongly adsorbing material binding peptides, such as

the gold binding peptide, AuBP-1 [Hnilova et al. [2008]], at the aqueous gold inter-

face (Chapter 8). Initially displacing the peptide from the surface in a number of

the replicas may not be sufficient to overcome this issue for starting configurations

in which the peptide is moderately displaced from the interface, rapid adsorption
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may occur; larger initial surface separations, on the other hand, risk sampling the

solution, rather than, adsorbed-state of the peptide. Use of biasing potentials, ei-

ther predetermined [Wang et al. [2008]; Vellore et al. [2010]; Snyder et al. [2012]] or

calculated on the fly (e.g. metadynamics [Schneider and Ciacchi [2012]]), combined

with replica exchange based methods, are possible solutions to the problem.

When considering the influence of initial replica population on the perfor-

mance of REST, then it is important also to remember that if a bio-interfacial

system has fully equilibrated during a REMD-based simulation then the reference

replica would sample the canonical/isobaric isothermal ensemble (dependent on the

simulation conditions used) of conformational states of the adsorbed peptide; this

ensemble is, of course, independent of the starting conditions. One could estimate

the simulation time required to reach this state from two key metrics: the char-

acteristic time taken by a replica (by ‘replica’ I mean the continuous trajectory

of co-ordinates) to undergo significant conformational change, and the average time

period for a replica to cycle through all (effective) temperatures. Whilst, as has been

shown here, REMD-based methods can vastly improve exploration of phase space

in complex systems relative to regular MD, reaching the fully equilibrated state re-

quires extensive simulation times and remains computationally unviable for most

systems. Until alternative methods are perfected, therefore, REST, when compared

to T-REMD, offers an efficient way to sample as much of peptide conformational

space in a bio-interfacial simulation as possible for a given CPU resource.

5.5 Conclusions

The simulations performed in this Chapter demonstrate that REST-based approaches

can accomplish enhanced conformational sampling of peptides adsorbed at aqueous

interfaces, for around half the computational time and one third of the total amount

of processors, compared with temperature-based REMD approaches, while deliver-

ing comparable performance in a range of key metrics. Use of mass-scaling, for

either the solvent or the solvent and solute side-chains, was found to deliver little

benefit when implemented for the QBP-1 peptide adsorbed onto quartz in either

approach, although further testing with more flexible sequences is necessary before

strong conclusions about this technique can be reached. In agreement with experi-

ment and bioinformatics studies, in its most likely conformation the QBP-1 peptide

was adsorbed to the α-Quartz surface by motifs featuring proline, tryptophan and

leucine. Comparison with previous T-REMD simulations of the QBP-1 in solution

[Notman et al. [2010]] and those carried out here (Chapter 7) suggests it does not
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undergo substantial structural change upon adsorption, but remains predominantly

extended with pronounced PPII character. The data in this Chapter suggest that

the overall ensemble of structures bound at the interface is, however, different to

the corresponding ensemble in solution.

The possible influence of the FF to favour helical conformations of QBP-

1 is probed in Chapter 7, whilst it would be interesting to investigate the effect of

combining REST with mass scaling for alternative bio-interfacial systems with more

flexible peptide sequences in the future. In addition, REST simulations of QBP-1

adsorption at the (001) and (011) aqueous α-Quartz interfaces would be one way

to investigate whether the ability of amino-acid analogues to discriminate between

different crystallographic planes of quartz on binding observed in Chapter 3 can be

extrapolated to peptide adsorption.
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Chapter 6

GolP-CHARMM: A

First-Principles Based

Force-field for modelling protein

adsorption to Au(111),

Au(100)(1×1) and

Au(100)(5×1).

6.1 Introduction

The potential range of nanotechnological applications based on AuNPs is vast due to

their unique optical and chemical properties (Section 1.4). Size and shape selective

AuNP synthesis directed by the presence of a peptide which preferentially binds

to one crystallographic plane of gold over another would be an important step in

realising these goals. Unlike platinum [Chiu et al. [2011]; Ruan et al. [2013]] and

palladium [Peng et al. [2013]], facet selective sequences for gold have yet to be

identified, however. The use of simulations carried out at the aqueous biomolecule–

gold interface, in partnership with experiment, to guide the design of such peptides

is hindered at present by the lack of a suitable FF.

Prior to commencing the work reported in this Chapter, two bio-interfacial

FFs for gold–CHARMM-METAL [Heinz et al. [2008]; Feng et al. [2011]; Pandey et al.

[2009]] and GolP [Iori et al. [2009]; Iori and Corni [2008]]–were commonly in use.
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Each has different shortcomings, discussed in depth in Section 1.4.2. Briefly, while

GolP has a number of advantages over CHARMM-METAL–namely that it includes

terms to account for the dynamic polarisation of gold atoms and was specifically

parameterised to reproduce differences in the nature of the interactions between

chemi- and physi-sorbing functional groups–it was only derived for modelling ad-

sorption at the aqueous Au(111) interface. The protocol used to parameterise GolP

has therefore been improved and extended here. In this FF parameters compatible

with the bio-organic FF CHARMM [MacKerell et al. [1998]] for modelling peptide

adsorption onto the Au(111), Au(100)(1x1) and Au(100)(5x1) planar surfaces un-

der aqueous conditions have been derived. Whilst peptide adsorption to AuNP edge

and vertex sites cannot be modelled using the new FF, GolP-CHARMM [Wright

et al. [2013b,c]], the relative length scales of the sequences [Brown [1997]; Naik et al.

[2002b]; Slocik et al. [2005b]; Hnilova et al. [2008]; Causa et al. [2013]] and AuNPs

currently used in experimental work [Sethi and Knecht [2009, 2010]; Causa et al.

[2013]] suggest that AuNP facets can often be acceptably approximated by planar

surfaces [Brancolini et al. [2012]]. It was appropriate to include terms for both the

native and reconstructed forms of the Au(100) surface in GolP-CHARMM since the

exact structure of a Au(100) facet featured by a AuNP is presently unknown [Zehner

et al. [1975]; Shi and Stampfl [2008]; Li et al. [2008]; Wang and Palmer [2012]; Surrey

et al. [2012]].

GolP-CHARMM has been primarily fit to quantum mechanical, rather than

experimental, data. The latter was used however to benchmark the dispersion cor-

rected functional, vdW-DF [Dion et al. [2004]; Thonhauser et al. [2007]], used to

carry out the PW-DFT calculations. Empirical bio-interfacial FFs parameterised

against first-principles calculations can often be more accurate than their experi-

mental counterparts principally because both adsorbate conformation and binding

affinity can be used in the fitting process [Herbers et al. [2013]]. Experimental in-

teraction energies are normally ensemble-based and hence offer little information

about preferred adsorbate-surface geometry.

6.2 Methods

In GolP-CHARMM, the potential energy function for the interaction between the

gold surface and a biomolecule is [Iori et al. [2009]]:

V tot
Au−X = V im

Au−X + V vdW
Au−X + V chemisorb

Au−X + V π
Au−X (6.1)

where Vim
Au−X is the Coulombic electrostatic interaction between the biomolecule and
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the image charges it induces in the gold upon adsorption, and VvdW
Au−X , Vchemisorb

Au−X and

Vπ
Au−X are the van der Waals, chemisorption and π electron interactions between the

biomolecule and gold. A dynamic ensemble of rigid rods (described elsewhere [Iori

and Corni [2008]]), each with small dipole, has been used to capture image charge

effects, whilst van der Waals interactions are described by the 12-6 LJ potential

(Equation 2.11). LJ parameters for gold atoms (σAu−Au, ǫAu−Au), when combined

with LJ parameters from biomolecule atom types, were fitted to reproduce either

experimental or PW-DFT interaction energies. Since the gold atoms themselves are

immobile in the FF, the Au-Au terms are not needed to model the gold directly,

but only to define cross-terms with atoms from the interacting biomolecules. In

accordance with CHARMM, the Lorentz-Berthelot mixing rules (Section 2.1.2) were

used here [Allen and Tildesley [1987]].

Figure 6.1: Scheme depicting the general steps taken to derive GolP-CHARMM FF
parameters for the Au(111) and Au(100) surfaces.

Analogous to GolP [Iori et al. [2009]] a multi-scale approach has been adopted

(Figure 6.1), similar to that used by delle Site and co workers [Schravendijk et al.

[2007]; Ghiringhelli and delle Site [2008]]. Generic LJ parameters for gold (denoted

‘Au–Au’) were fit to reproduce alkane adsorption energies. Specific Au-X (X=S,

N, O, H(-O/S) and C in aromatic ring systems) LJ terms have then been derived

for weakly-chemisorbing species and aromatic sp2 hybridised carbon systems, using

small molecules containing the same functional groups as those present in peptides.

Whilst in the original GolP these terms were added for Au–S and Au–N interactions

only, this has been extended in GolP-CHARMM also to include Au–O and Au–

H(O). Here the FF was fitted to reproduce the adsorbed geometry and energetics

of single water molecules using PW-DFT data. This contrasts with both GolP and

CHARMM-METAL, neither of which were parametrised specifically against gold-

water interactions.

Experimental data for alkane adsorption, from which LJ parameters can

be derived, is only available for the Au(111) surface. Hence, in order to extend

GolP to gold surfaces other than Au(111), interaction energies have been calculated
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using PW-DF. Here the long-range, dispersion corrected, van der Waals Density

Functional (vdW-DF) (Section 2.1.1) [Dion et al. [2004]; Thonhauser et al. [2007];

Roman-Perez and Soler [2009]], combined with the revised Perdew-Burke-Ernzerhof

(revPBE) [Hammer et al. [1999]] functional, was employed. First, in this Chapter,

the suitability of this functional for describing small molecule-gold adsorption was

assessed by comparing experimental and calculated interaction energies for a num-

ber of different functional groups on Au(111) (6.3.1). A combination of experimental

and calculated reference adsorption energies was used to fit FF LJ parameters for

the Au(111) surface. In the absence of appropriate experimental data, LJ terms for

Au(100)–both native and reconstructed forms–were fitted to PW-DFT data calcu-

lated here.

It is important to stress that, unlike GolP [Iori et al. [2009]], both the energy

and geometry of the adsorbed molecules were used to refine the FF when fitting

parameters for the native forms of the two gold surfaces–Au(111) and Au(100).

However, several groups have shown that vdW-DF overestimates equilibrium inter-

molecular [Dion et al. [2004]; Thonhauser et al. [2007]; Lee et al. [2010]] and molecule-

surface [Toyoda et al. [2009]; Romaner et al. [2009]; Lee et al. [2010]] separation

distances. Therefore, it was not appropriate to fit FF parameters to match these

calculated distances exactly. After reviewing the literature, a tolerance of∼0.2–0.3 Å

was adopted to parameterise the FF; the trend in equilibrium separations from the

Au(111) and Au(100)(1×1) surfaces predicted by GolP-CHARMM in vacuo is the

same as that found from vdW-DF calculations. The more complex nature of adsorp-

tion onto the reconstructed Au(100) surface–chiefly due to the spatial and energetic

heterogeneity of the interface–made explicitly incorporating equilibrium adsorbate-

gold separation distances in the parameterisation strategy unfeasible; molecular-

surface geometry was qualitatively accounted for, however.

Since the gold atoms themselves are immobile in GolP-CHARMM, the struc-

ture of the interfacial slab must be carefully considered (Figure 1.3). In the case

of the native surfaces–Au(111) and Au(100)–gold atoms were arranged ideally us-

ing an Au-Au separation distance of 2.93 Å [Iori et al. [2009]]. In contrast, the

PW-DFT optimised, rather than ideal, Au(100)(5×1) slab geometry was used as

the basic structural unit for making larger slabs in this case. In its relaxed struc-

ture the reconstructed Au(100) interface is buckled due to the spatial mismatch

between surface and underlying Au atoms. In contrast, optimisation of the two na-

tive surfaces brought about minimal changes in slab geometry–the Au(111) surface

remained topologically flat despite sharing a similar hexagonal-like spatial arrange-

ment of surface Au atoms with Au(100)(5×1). The degree of surface corrugation of
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Au(100)(5×1) modelled by vdW-DF was in good agreement with experiment (See

Section 6.3.1). Since the rumpled topography of the Au(100)-hex surface may play

a role in facet-selective binding [Phan et al. [2012]], it was essential to incorporate

this structural feature in GolP-CHARMM. (The bottom of the Au(100)(5×1) gold

slab used to parametrise the FF featured the Au(100)(1×1) surface. In the fitting

procedure for the reconstructed interface, FF parameters derived for the native sur-

face were used to model atoms in this bottom facet and those in the bulk of the

slab.)

A feature of GolP is the presence of virtual interaction sites on the Au(111)

surface to direct ‘atop’ Au atom adsorption (by ‘atop’ I mean that the heteroatom

is preferentially adsorbed directly above a real Au atom in the surface, rather than

above a hollow or bridge surface site) as observed in first-principles calculations [Iori

et al. [2009, 2008]; Hong et al. [2009]]. The use of non atom-centred interaction sites

is an established practice in FFs (e.g. the TIP4P [Jorgensen et al. [1983a]] or TIP5P

[Mahoney and Jorgensen [2000]] potentials). In GolP-CHARMM it is the virtual in-

teraction sites, and not the gold surface atoms, that have spatial extent and interact

with adsorbing species via the LJ terms; the dipolar rods which capture the image

charge contribution to this interaction are, however, located on the Au atoms. The

combined use of atom centred/off-centred dipolar rods/virtual interaction sites in

GolP-CHARMM is an empirical tool for describing the delocalised electron density

in the plane of the metal surface.

All three gold interfaces parameterised in this Chapter therefore feature vir-

tual interaction sites sited in surface hollows (Figure 6.2). For the Au(111) surface

this is an identical geometry to that used previously [Iori et al. [2009]]. Four different

geometries were tested in the case of Au(100)(1×1) [Wright et al. [2013b]] with the

hollow site found to be the most favourable. The reconstructed Au(100) FF is more

complex. In order for the FF to reproduce the spatial heterogeneity of adsorption

observed in the first-principles calculations (Table D.3), two sets of virtual interac-

tion sites were necessary. Those located in the hollow sites (denoted ‘AUIU’), were

homogeneous, whereas the second set (denoted ‘SX’, where X=0, 1, 2, 3), located

in bridge sites running perpendicular to the reconstruction (in the [011] direction),

were not. For all three interfaces the virtual interaction sites lie within the plane of

the surface, with the z co-ordinate being the arithmetic mean of the two/three Au

atoms from which the bridge/hollow site is comprised.
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a) Au(111) b) Au(100)(1x1) c) Au(100)(5x1)

[011]

[011]

[011]

[011]

[110]

[101]

Figure 6.2: Arrangement of virtual sites on a) the Au(111), b) the Au(100)(1×1)
and c) Au(100)(5×1) surfaces. Real gold surface atoms are shown in gold and hollow
virtual interaction sites in blue. The same colour scheme has been used for bridge
virtual interaction sites on the Au(100)(5×1) surface as that in Figure 6.4.

Plane Wave DFT Calculations

PW-DFT calculations have been carried out for the molecules listed in Table 6.1

adsorbed onto the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces in vacuo, us-

ing Quantum Espresso (versions 4.3.x) [Giannozzi et al. [2009]]. Three-dimensional

periodic boundary conditions were employed, with supercell dimensions (Au(111):

2
√
3×3 for small molecules and 3×3

√
3 or 2

√
3×4 for larger ones; Au(100)(1×1):

3×3/4×4 for small/large adsorbates; Au(100)(5×1): 1×4 in all calculations) and

vacuum thickness in the direction normal to the surface chosen to ensure inter-

actions between periodic images were insignificant [Iori et al. [2009]]. (An Au-Au

lattice parameter of 2.93 was used throughout.) Gold slabs 4/5/5 atomic layers thick

were used for the Au(111)/Au(100)(1×1)/Au(100)(5×1) surfaces. In the case of the

reconstructed interface only, Au atoms in the lower-most layer were frozen in their

ideal Au(100)(1×1) positions; all other Au atoms were relaxed. Calculations were

performed using vdW-DF [Dion et al. [2004]; Thonhauser et al. [2007]; Roman-Perez

and Soler [2009]] with the revPBE exchange-correlation functional [Hammer et al.

[1999]] and ultrasoft pseudopotentials [Vanderbilt [1990]] (derived using the PBE

exchange-correlation functional [Perdew et al. [1996]; Rosa et al. [2012]]) to describe

electron-ion interactions. Plane wave kinetic energies and electron densities were

truncated at 25Ry and 200Ry, respectively. Brillouin zone integration was carried

out using a Gaussian smearing technique [Fu and Ho [1983]] with width 0.05Ry.

Optimal adsorbate-gold geometries (Figures D.2, D.3, D.4 and D.5) were ob-

tained by relaxing the structure of each small molecule when in close proximity to

the surface (to a convergence criterion of 0.026 eV/Å). In the case of the Au(111)

surface, favourable configurations found from the previous study [Iori et al. [2009]]
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molecule Au(111) Au(100)(1×1) Au(100)(5×1)
kJmol−1 Å kJmol−1 Å kJmol−1 Å

acetone −40.8 3.21 n/a n/a n/a n/a
benzene n/a n/a −57.9 3.39 −59.0 3.27
butane −42.3 3.90 −43.2 3.72 −45.5 3.72
cyclohexane −50.6 3.78 n/a n/a n/a n/a
diethyl sulphide −76.6 3.00 −85.3 2.87 −85.5 2.73
dimethyl sulphide n/a n/a −69.1 2.87 −71.4 2.70
ethane −24.7 3.84 n/a n/a n/a n/a
ethanethiol n/a n/a −55.1 2.77 −57.7 2.72
imidazole −54.1 2.51 −67.2 2.43 −65.5 2.35
indole n/a n/a −87.9 3.27 −90.4 3.29
hexane −60.3 3.88 n/a n/a n/a n/a
methane −16.5 3.77 −16.3 3.69 −18.0 3.83
methanethiol −45.3 2.88 −51.8 2.78 −52.8 2.74
methanoic acid −29.2 3.06 −29.5 2.94 −32.3 3.05
methanol −30.5 2.93 −31.7 2.85 −34.1 2.83
methyl amide −34.2 2.97 −34.9 2.72 −40.8 2.74
methyl amine −54.8 2.57 −61.3 2.48 −62.3 2.46
phenol n/a n/a −66.3 3.33 −67.6 3.40
toluene n/a n/a −68.8 3.21 −69.6 3.45
water −18.3 3.03 −20.8 2.90 −20.5 2.97

Table 6.1: Optimal PW-DFT calculated interaction energies of small molecules
adsorbed onto the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces in vacuo

(kJmol−1) and equilibrium separations in direction normal to the surface (Å). ‘n/a’
refers to a calculation which was not performed.

(which employed the PBE functional only) were used as the starting point for the

work here. For Au(100)(1×1) a number of initial geometries were tested, differing

in both molecular orientation in space (e.g. with plane or key bonds oriented either

perpendicular or parallel to the surface normal) and position relative to the under-

lying gold lattice (e.g. heteroatoms placed above top, hollow and bridge Au atom

sites). A vacuum thickness of 10 Å and a Monkhorst-Pack k-point mesh of 4×4×1

were used in all geometry optimisation calculations at these two interfaces.

The large size (104 Au atoms) and low symmetry of the gold slab needed to

model the Au(100)-hex reconstruction, however, made full exploration of adsorbate-

gold conformational space (i.e. positioning and orientation of the adsorbate relative

to the underlying gold surface, as well as internal adsorbate conformation) com-

putationally prohibitive at the first-principles level of theory in this case. Hence

the extended, four-step systematic procedure described below was used to identify

favourable adsorbate-gold geometries at the Au(100)(5×1) interface (Figure 6.3).
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(A slightly coarser Monkhorst-Pack k-point mesh of 2×2×1 was used in these cal-

culations.)

Figure 6.3: Scheme depicting the steps taken to identify optimal adsorbate-gold
geometries on the Au(100)(5×1) surface. See Figure 6.4 for description of adsorption
site labels.

1. First, the bare Au(100)(5×1) surface was relaxed from an initial structure in

which the surface Au atoms were arranged in an ideal hexagonal geometry

[Havu et al. [2010]; Shi and Stampfl [2008]; Venkatachalam et al. [2008]; Jacob

[2007]; Feng et al. [2005]; Baber et al. [2012]] above an Au(100) lattice (Au-

Au distance 2.93 Å). After relaxation, six distinct spatial environments for Au

atoms in the Au(100)(5×1) surface were identified (Figure 6.4, labelled T0 to

T5).

2. Therefore, second, it was necessary to probe the spatial dependence of ad-

sorption energies on this surface. Water and methane were chosen as test

molecules. Water, a representative polar molecule, was selected due to is preva-

lence in biomolecule-gold simulations carried out under aqueous conditions,

for which the FF developed herein is designed. Methane is a representative

non-polar molecule, chosen for these test calculations since it is the simplest

analogue of the hydrophobic moieties present in all peptides. In addition, the

methane–gold calculated and experimental interaction energies at the Au(111)

interface in vacuo (16.5 and 14.5 kJmol−1 [Wetterer et al. [1998]], Table D.7)

were found to agree well using the vdW-DF functional [Wright et al. [2013b]].

For water, however, suitable experimental data against which the calculated

water-Au(111) interaction could be benchmarked was not available. On both
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Figure 6.4: The Au(100)(5×1) surface after relaxation using vdW-DF [Dion et al.
[2004]; Thonhauser et al. [2007]] viewed a) from above and b) from the side. For the
plan view (left) surface layer Au atoms are depicted as largest and in medium gold,
2nd layer Au atoms dark gold and medium size, while the 3rd layer of Au atoms are
the smallest size and light gold in colour.

the Au(111) and Au(100)(1×1) surfaces a single water molecule was found

preferentially to adsorb atop Au atoms, while methane adsorbed above hollow

sites. Hence, water and methane were used here to investigate the relative

adsorption energies of the different top (Figure 6.4) and hollow (Figure D.1)

site locations, respectively, on the Au(100)(5×1) surface.

3. Third, optimal adsorbate-gold geometries at the Au(100)(5×1) interface for

the other small molecules listed in 6.1 were then obtained by performing at

least two different geometry optimisation calculations (each initiated in a dif-

ferent conformation) per adsorbate. Since the preferred orientation and posi-

tioning (above a top, hollow or bridge surface site) relative to the underlying

gold surface for each molecule was the same on adsorption to the Au(111) as it

was on the Au(100)(1×1) surface (Figures D.2 and D.3) [Wright et al. [2013b]],

this favourable orientation was used to construct starting conformations for

calculations at the Au(100)(5×1) interface. The most and least binding top

(T2 and T1, respectively, Figure 6.4) and hollow (H5 and H3, respectively,

Figure D.1) sites, identified by the water and methane calculations, were also

used in this process. For example, benzene was found preferentially to adsorb

with its plane parallel to the surface, centred above a hollow site on both the

Au(111) and Au(100)(1×1) surfaces (Figures D.2 and D.3). Therefore the two

initial conformations of the adsorbate-Au(100)(5×1) system relaxed were: one
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with the benzene ring centred above an H3 site, and the other with it centred

above a H5 site—in each geometry the plane of the molecule was parallel to

the plane of the surface. In contrast, imidazole preferentially adsorbed with its

plane perpendicular to both the Au(111) and Au(100)(1×1) surfaces with its

unprotonated nitrogen atop a surface Au atom (Figures D.2 and D.3). Hence,

in this case the two imidazole–Au(100)(5×1) configurations relaxed featured

the same imidazole–gold geometry, but with the unprotonated nitrogen ad-

sorbed to T1 and T2 surface sites, respectively.

To test the hypothesis that the most favourable adsorption site and geometry

identified for each molecule on both the Au(111) and Au(100)(1×1) surfaces

were also optimal at the Au(100)(5×1) interface, additional calculations were

performed for water, methane and methyl amide. The last was chosen to en-

sure that the new FF could acceptably reproduce peptide backbone adsorption.

Both the orientation of water relative to the gold surface (‘O-down’, ‘H-down’

or ‘flat’) and adsorption to hollow sites were investigated; for methane, ad-

sorption to selected top sites was probed. Three supplementary optimisations

of the methyl amide–gold system were performed: one in which the plane of

the molecule was initially parallel, rather than perpendicular, to the surface;

one with the molecule initially above surface hollow, rather than top, sites;

and one in which the orientation of the molecule with respect to the direction

of the reconstruction was tested. While methyl amide adsorption to hollow

sites and oriented with its plane parallel to the surface were both found to

be unfavourable, the calculations did identify that it was more favourable for

the normal to the plane of the amide group to be oriented along the [011]

vector, i.e. perpendicular, rather than parallel, to the direction of the surface

reconstruction. In other words, a structure in which the O atom of methyl

amide was above a T2 site while the N atom was approximately atop a T3

site, rather than both atoms being atop T2 sites. This favourable orienta-

tion was subsequently found to be low-energy for methanoic acid, where the

carboxylate O was atop T2 and the hydroxyl O atop T3.

4. A fourth step was only required for those molecules which weakly chemisorb

to gold. The interaction energies of species that interact with gold via ph-

ysisorption only were found to vary minimally with adsorption site on the

Au(100)(5×1) surface. However, there was a strong spatial dependence, of up

to almost 20 kJmol−1, for the weakly chemisorbing molecules such as methyl

amine, imidazole, thiols (methane- and ethanethiol) and dialkyl sulphides
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(dimethyl and diethyl sulphide). For the FF to reproduce this surface het-

erogeneity in adsorption energy, parameters must be fit to each of the six

different top site locations on the Au(100)(5×1) surface. However, T1 and T5

atoms are almost spatially equivalent, in terms of both their positioning in

the plane of the surface, relative to the second layer of Au atoms, and perpen-

dicular to it. The same is true of T2 and T4 Au atom environments. Hence,

only two further geometry optimisation calculations were carried out for these

weakly chemisorbing molecules: one with the adsorbate initially placed above

a T0 and one in which it was placed above a T3 site.

Once optimal adsorbate-gold geometries had been identified at each surface–

Au(111), Au(100)(1×1) and Au(100)(5×1)–interaction energies were calculated as

follows:

∆Emol Au = Emol Au − Emol − EAu (6.2)

where Emol Au, Emol and EAu are the total energies of systems describing the small

molecule adsorbed at the interface, the adsorbate only and the gold slab only, respec-

tively. All three cells were relaxed, as described above, with optimal geometries being

used in a single point calculation to determine the total energy. A thicker vacuum

layer of 25 Å and a finer Monkhorst-Pack k-point mesh of 6×8×1/8×8×1/4×4×1

(Au(111)/Au(100)(1×1)/Au(100)(5×1)) were employed in these single-point calcu-

lations.

6.2.1 in Vacuo Force-Field Calculations

FF-based calculations were performed using the MD simulation package, Gromacs

version 4.5.X [Hess et al. [2008]]. All simulations were carried out in the NVT

ensemble, implemented with a Nosé-Hoover thermostat and three dimensional pe-

riodic boundary conditions. The leap-frog algorithm [Hockney et al. [1974]] with

a timestep of 1 fs was employed. PME electrostatic summation was used with a

real-space cut-off at 11 Å, whereas a force-switched cut-off starting at 9 Å and end-

ing at 10 Å was used for LJ non-bonded interactions. The rigid-rod-dipole method

for gold atom polarisation was implemented following an identical method to the

original GolP FF [Iori et al. [2009]; Iori and Corni [2008]] with random initial dipole

orientations used throughout.

Gold slabs of surface areas 29.3×30.4 Å 2, 29.3×29.3 Å 2 and 29.3× 23.44 Å 2

(5 layers thick in all cases) were used for the Au(111), Au(100)(1×1) and Au(100)(5×1)

surfaces respectively. (For Au(100)(5×1) this was a 2×2 supercell of the PW-DFT
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optimised slab.) The z dimension of the simulation cell was 70 Å, giving a vacuum

gap between the adsorbed molecule and the nearest periodic image of the slab of

approximately 60 Å.

To identify the minimum energy structure of each small molecule when ad-

sorbed, short simulated annealing MD simulations of up to 40 ps were carried out.

The temperature of the gold dipoles was maintained at 300K throughout whilst that

of the adsorbate was incrementally decreased to 1K. Initial adsorbate temperatures

were varied, to ensure adsorption, from 300K to 100K, depending on the size of the

molecule. In all cases simulations were started with the adsorbate displaced from

the interface. At least 5 different annealing cycles were performed per adsorbate,

starting from different initial adsorbate conformations.

Akin to PW-DFT, this protocol for identifying optimal adsorbate-gold FF

geometries was modified slightly for the reconstructed Au(100) interface. Briefly,

the simulated annealing simulations performed fell into two categories: 1) anneal-

ing from vacuum–analogous to the the annealing procedure used for the Au(111)

and native Au(100) surfaces; and 2) site-specific annealing. The first procedure was

used to fit FF parameters for those molecules which only physisorbed onto the gold

surface, whilst the second was necessary for chemisorbing species. In the latter case,

six independent simulations were initiated per adsorbate: in each the molecule was

placed close to the surface above a different top site. The optimal PW-DFT orien-

tation of the molecule relative the underlying gold surface was used as the starting

configuration. To prevent diffusion away from weak interaction sites, stimulated

annealing runs of 1 ps duration only, in which the temperature was reduced from

5K to 1K, were performed. As a test of FF parameters derived for this surface, the

‘site-specific’ annealing protocol was also carried out for a number of physisorbing

molecules, whilst the ‘vacuum’ annealing procedure was applied to chemisorbing

species.

Classical interaction energies were calculated following two 50 ps constant-

temperature (300K) MD simulations: the first with the molecule midway between

the gold slab and its periodic image, and the second with the molecule adsorbed on

the surface. During both, all atoms were kept fixed in their initial relaxed positions

with only the gold dipoles able freely to rotate. The non-electrostatic contribution

to the interaction energy is the difference between the bond, angle, dihedral and

LJ components of the potential energy of the bound and free molecule systems.

The free-energy of the electrostatic interaction between the adsorbed molecule and

the ensemble of dipoles (FCoul) was approximated from the difference between the

average electrostatic energies (ECoul) using 6.3, which was derived previously [Iori
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and Corni [2008]].

FCoul =
ECoul

2
(6.3)

6.2.2 Force-field MD Simulations of Aqueous Gold Interfaces

MD simulations of the aqueous Au(111), Au(100)(1×1) and Au(100)(5×1) interfaces

were performed to investigate facet-selective differences in water structuring above

each surface using the newly derived FF parameters. Gold slabs, of surface areas

43.95× 40.60 Å2/29.30× 29.30 Å2/29.3× 23.44 Å 2 (Au(111)/Au(100)(1×1)/Au(100)(5×1))

were solvated with 2040/1425/1354 modified TIP3P [Jorgensen et al. [1983b]; Neria

et al. [1996]] water molecules. The cell dimension in the direction normal to the

surface was adjusted prior to the simulation such that density of water midway be-

tween opposite gold facets was correct for liquid TIP3P water in bulk. All other

conditions were the same as those in Section 6.2.1 other than the cut-offs used in

conjunction with non-bonded interactions were slightly modified in the case of the

Au(111) and Au(100)(1×1) simulations. (Specifically, PME summation was cut-off

at 13 Å whilst a force-switched cut-off starting at 10 Å and ending at 11 Å were

used for LJ non-bonded interactions.)

6.2.3 Analysis

The structure of water at all three interfaces was analysed using data from the final

2 ns of the respective simulations. The mass density profile of water above the surface

was used to define the thickness of the first adsorbed water layer. Specifically, this

layer of water was defined as those molecules residing between the gold surface and

the z co-ordinate corresponding to the position of the first minimum in the water

density profile. In contrast to analysis carried out in other Chapters, here hydrogen

bonds were defined using the criteria of Cicero et al. to facilitate comparison between

the two studies [Cicero et al. [2011]]. Namely, in this Chapter, a hydrogen bond was

present on the simultaneous satisfaction of an O· · ·O distance of less than 3.5 Å and

an O· · ·HO angle greater than 140◦.

The orientation of a water molecule with respect to the surface was monitored

using its dipole moment. Specifically, < cos(θ) > was calculated as a function of

the perpendicular distance from the interface, where θ was defined by the angle

between the water dipole moment and the surface normal. Using this definition,

cos(θ) can vary from −1 (corresponding to both H atoms pointing towards the

surface) to +1 (corresponding to both H atoms directed away from the surface); a
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water molecule with its dipole moment oriented perpendicular to the surface normal

will have cos(θ)=0.

6.3 Results

6.3.1 Evaluation of vdW-DFT

In recent years the vdW-DF functional has been successfully used to model small

molecule-Au(111) adsorption [Toyoda et al. [2009]; Li et al. [2012]; Wellendorff et al.

[2010]; Rosa et al. [2012]]. However, these studies are limited in number and mainly

consider aromatic absorbates only. Moreover, the structure of the gold itself, and in

particular the reconstruction of the Au(100) surface, has not been probed in depth.

As mentioned in Section 2.1.1, whilst it has been shown that vdW-DF can accurately

reproduce van der Waals interactions at minimum energy separations, a number of

limitations have also been identified [Lee et al. [2010]], chiefly: 1) equilibrium sep-

arations can be overestimated; 2) dispersion interactions can be overestimated at

intermediate separations; and 3) hydrogen-bond strengths can be underestimated.

In light of these factors it was necessary to evaluate the suitability of using vdW-

DF/revPBE here. This was accomplished by first comparing experimental [Wet-

terer et al. [1998]; Syomin and Koel [2002a]; Lavrich et al. [1998]; Syomin and Koel

[2002b]] and calculated interaction energies for a range of adsorbates on Au(111).

Second, the structure of the PW-DFT optimised Au(100)(5×1) surface was bench-

marked against experimental data [Ocko et al. [1991]] and previous first-principles

calculations [Jacob [2007]; Shi and Stampfl [2008]; Havu et al. [2010]].

in vacuo Small Molecule Adsorption Energies on Au(111)

Figure 6.5 shows that vdW-DF is, in fact, able to reproduce experimentally-determined

interaction energies for small-molecule gold adsorption reasonably well. The slight

tendency for PW-DFT interaction energies of unbranched molecules of long aspect

ratio to be larger than the experimentally reported values is consistent with a re-

cent MD study [Fichthorn et al. [2007]]. Specifically, Fichthorn et al. found that

the pre-exponential factor used in the method to calculate alkane interaction ener-

gies from raw experimental data increased with chain length, a fact that had not

been accounted for [Wetterer et al. [1998]]. As a result, the experimental interaction

energy of dodecane with Au(111) was thought to be underestimated by as much as

24 kJmol−1 [Fichthorn et al. [2007]]. Taking this into account, the evidence suggests

that vdW-DF is a reliable, computationally-accessible first-principles method, that
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accounts for dispersion. The functional is hence appropriate for use in determining

the small molecule-gold interaction energies needed herein to derive FF parameters.

Figure 6.5: Correlation between experimental interaction energies for small
molecules adsorbed onto the Au(111) surface and those calculated with vdW-DF
[Dion et al. [2004]; Thonhauser et al. [2007]; Roman-Perez and Soler [2009]].

The Au(100)(5×1) surface

After relaxing the Au(100)(5×1) surface from an initial structure–featuring surface

Au atoms arranged in an ideal hexagonal over-layer above an ideal bulk Au(100)(1×1)

lattice–using vdW-DF, significant undulations were present in the uppermost layer

(Table D.1). In addition, expansion of the Au-Au interlayer distance by 20% at

the interface, also due to the spatial mismatch between surface and underlying Au

atoms, was observed (Table D.2). To compare the structure of the reconstructed

Au(100) surface relaxed using vdW-DF with previous work at this interface [Ocko

et al. [1991]; Jacob [2007]; Shi and Stampfl [2008]; Havu et al. [2010]] both effects–

surface buckling and interlayer expansion–were quantified using the order parame-

ters defined by Havu et al. [Havu et al. [2010]] (Tables D.1 and D.2). Importantly

the results for vdW-DF functional, together with the (5×1) approximation to the

Au(100)-hex reconstruction, were in good agreement with experimental data [Ocko

et al. [1991]].

Six different surface Au atom environments exist along the [011̄] direction
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(herein referred to as the direction of the reconstruction) on the relaxed Au(100)(5×1)

surface (Figure 6.4). Top sites T0, T2 and T4 all have Au-Au-Au angles greater than

180◦ (190.7◦, 189.7◦ and 189.4◦ respectively), making them slightly more electron

deficient than top sites T1, T3 and T5, all of which have Au-Au-Au angles less than

180◦ (175.1◦, 160.3◦ and 174.9◦ respectively, Figure D.6). Consistent with this trend,

T2 was identified by geometry optimization calculations of the water-Au(100)(5×1)

system to be the most strongly adsorbing of all the interaction sites; top site T1 was

the least adsorbing. The difference in energy between the two interaction sites was,

however, just 2.7 kJmol−1 (Table D.3). Similarly, geometry optimization calcula-

tions of the methane-Au(100)(5×1) system in which the binding affinity of different

hollow sites was probed revealed a maximum difference of 1.4 kJmol−1 between the

sites (Table D.3, Figure D.1). Weakly chemisorbing gold species (thiols, dialkyl sul-

phides and nitrogen moieties possessing a lone pair of electrons), on the other hand,

showed a significant energetic preference on adsorption, for protruding top sites T0

and T2 (Table D.3).

6.3.2 Force-field Parameterisation

Implicit in the derivation of all FFs is the balance between chemical and physical

accuracy and practical implementation. At the first principles level of theory it

can be shown that the interaction between an atom in an adsorbing molecule and

gold is unique to the specific chemical environment of both the adsorbate and gold.

For instance, the presence of the electron withdrawing carbonyl group in an amide,

compared to an alkyl moiety in an amine, means that the overlap of N and Au

atomic orbitals on adsorption to a gold surface is different for the two nitrogen atoms.

Similarly, the spatial arrangement of gold atoms, and therefore the surface electron

density distribution, differs from one crystallographic plane of gold to another, thus

requiring each surface to be parametrized separately. On the other hand, a FF

parametrized to contain a unique Au-X (X= any atom) parameter for each atom in

each molecule would, most likely, be overparametrized.

In the FF derived herein, parametrized to describe the interaction of pep-

tides with the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces, only a small

number of different Au-X parameters were in fact necessary for each interface.

Cross-terms fit for one species adsorbed at a given surface were often transferable

to similar chemical moieities bound to the same crystallographic plane. However,

unlike CHARMM/CVFF-METAL [Feng et al. [2011]; Pandey et al. [2009]; Heinz

et al. [2009]], parameters were not transferrable between surfaces. Tests were car-

ried out to see if parameters derived to capture peptide adsorption at the aqueous
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Au(111) interface could be directly transferred, unaltered, to the Au(100)(5×1)

surface due to strong similarities in the spatial arrangement of surface Au atoms

between the two. Not only was the fit, relative to the reference PW-DFT data,

of the Au(100)(5×1) surface FF compromised by adopting this approach, but the

Au(111) FF terms could not reproduce the coupled energetic/spatial heterogene-

ity of adsorption of weakly chemisorbing species onto the Au(100)(5×1) surface.

Hence, in GolP-CHARMM, a separate set of parameters for each gold surface has

been derived. Importantly though, the three interfaces–Au(111), Au(100)(1×1) and

Au(100)(5×1)–were parametrized in a consistent manner to enable the FF to be used

to model direct facet-dependent differences in adsorption.

Optimal GolP-CHARMM parameters for the Au(111), Au(100)(1×1) and

Au(100)(5×1) surfaces are presented in Tables D.4, D.5 and D.6, respectively. Data

used in the fitting process is presented in Tables D.7, D.10, D.12, D.13 and D.14.

In what follows, the parameters for each interface are discussed in turn.

Au(111)

Following the GolP methodology, and for reasons outlined in Section 6.2, virtual in-

teraction sites exist in GolP-CHARMM to enable the FF to reproduce the favourable

geometries of small molecules relative to the underlying gold surface identified by the

vdW-DF calculations. For the Au(111) surface there are two virtual sites (denoted

AUI) for every real gold surface atom (denoted AUS), located in the two hollow

sites of each surface unit cell (Figure 6.2a). It has previously been shown that the

same LJ σAu−Au and ǫAu−Au parameters can be applied to both the surface virtual

interaction sites and gold atoms within the bulk (denoted AUB) without loss of

accuracy [Iori et al. [2009]].

Generic Au–Au parameters Using the generic Au–Au LJ parameters (to be com-

bined with all CHARMM atom types other than the special cases described below)

the RMSD between experimental [Wetterer et al. [1998]] and GolP-CHARMM inter-

action energies for alkane adsorption was 1.88 kJmol−1 (Figure D.7). The marked

difference between these GolP-CHARMM parameters and those used in the existing

GolP FF is a direct consequence of both energetic and spatial data being used in

the fitting procedure. In fact, choosing LJ parameters for GolP-CHARMM that

were closer to the OPLS-AA values (σAu−Au=3.2 Å, ǫAu−Au=0.75 kJmol−1 GolP-

CHARMM; σAu−Au=3.2 Å, ǫAu−Au=0.65 kJmol−1 OPLS-AA) also gave a reason-

ably good fit to the adsorption energy for alkanes (RMSD=2.92 kJmol−1) but re-

sulted in adsorption geometries for which the molecules were too close to the surface.

Parameters for sp2 hybridised carbon Following the procedure originally developed
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for GolP [Iori et al. [2009]], a refined set of Au–Au LJ parameters, to be used in con-

junction with existing CHARMM LJ parameters for sp2 hybridized carbon atoms

(eg. carbon atoms either within aromatic rings or those in isolated/conjugated

C=C bonds), were needed. In the absence of these customised terms, the affini-

ties of ethene [Wetterer et al. [1998]], benzene [Wetterer et al. [1998]; Syomin et al.

[2001]] and 1,3-butadiene [Wetterer et al. [1998]] for the Au(111) surface were un-

derestimated to a similar degree in GolP-CHARMM as that reported previously for

OPLS-AA [Iori et al. [2009]]. This refinement of the generic Au–Au LJ parameters

for aromatic C was also required for the two Au(100) surfaces.

Parameters for chemisorbing species Sulphur containing moieties and functional

groups featuring a nitrogen atom with a lone pair of electrons were shown previ-

ously weakly to chemisorb onto the Au(111) facet [Iori et al. [2009]]. PW-DFT

calculations, performed here using vdW-DF, confirmed these findings. It was not

possible to represent this weak chemisorption using standard mixing rules to com-

bine CHARMM potentials with the generic Au–Au potential described so far: the

resulting FF substantially overestimated the binding distance, and underestimated

the energy of interaction. Therefore specific LJ cross-terms for Au–S (fitted to

methanethiol and methyl sulphide adsorption) and Au–N interactions were intro-

duced. For nitrogen it was also essential to differentiate between N atom types

in aliphatic and aromatic groups when fitting these special interaction parameters.

This perhaps was not surprising considering differences in the electron density distri-

bution surrounding N atoms in the two chemical environments; a phenomenon which

not only influences the magnitude of the image charge induced in the metal slab, but

also the degree of orbital overlap between N and surface Au atoms. Therefore sepa-

rate Au–N cross-terms for unprotonated histidine residues (to reproduce imidazole-

Au(111) adsorption (atom type ‘NR2’)) and for unprotonated amino-acid/peptide

N-terminal groups and lysine residues were fitted. This second set was fitted to

methylamine-Au(111) adsorption. Methylamine, featuring an alkyl group, is a bet-

ter analogue of the unprotonated N-terminus than ammonia, originally used to fit

FF parameters in GolP [Iori et al. [2009]]. Since polar hydrogens bonded to N al-

ready have a small spatial extent in CHARMM, unlike OPLS-AA, no additional

Au–H(N) parameters for the amine H atoms were required. The same procedure–

involving fitting two sets of LJ cross-terms for N–was also found to be necessary for

the native and reconstructed Au(100) interfaces.

Parameters for Oxygen The issues with the heteroatoms N and S also extended to

organic oxygen. In particular, using only the terms described above, the FF was

able to reproduce the correct interaction energy for methylamide adsorbed onto the
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Au(111) surface, but gave the wrong geometry; the Au–O interaction was too weak

in comparison to the Au–N. In fact, the affinity of all oxygen containing moieties

to Au(111) was consistently underestimated relative to PW-DFT. Therefore the FF

was extended by the inclusion of a specific Au–O cross-term. It is important to note

that for GolP-CHARMM correctly to describe both the binding energy and geometry

of amide group adsorption onto gold (at all three surfaces–Au(111), Au(100)(1×1)

and Au(100)(5×1)) a new atom type must be introduced into CHARMM to differ-

entiate between amide (labelled ‘NH2’) and unprotonated amine N (herein labelled

‘NHT2’). The refined Au–N cross terms derived for each surface should be applied

only to the interaction of the former, the unprotonated amine nitrogen atoms, with

gold (i.e. Au–NHT2 intearations).

In re-parametrising the Au(111) surface to be compatible with CHARMM, a

specific aspect of the description of the Au(111)-liquid water interface that remained

previously unresolved in the two existing classical FFs (Section 1.4.2) has been ad-

dressed. Recent CPMD simulations using the PBE functional revealed that inter-

facial water molecules have an enhanced tendency to act as hydrogen bond donors,

relative to those molecules in bulk liquid water [Cicero et al. [2011]]; a finding subse-

quently confirmed by BOMD simulations of the same interface by Nadler and Sanz

using dispersion corrected functionals [Nadler and Sanz [2012]]. This behaviour is

not captured by the original GolP/SPC and CVFF-METAL/SPC models [Cicero

et al. [2011]]. A correction for GolP/SPC (i.e. to add a small Au–H(O) LJ inter-

action) was identified in Cicero et al. [Cicero et al. [2011]]. Here, to reproduce the

first-principles behaviour using GolP-CHARMM, it was critical to ensure that the

vdW-DF energetics and geometry of a single water molecule adsorbed onto Au(111)

in vacuum could be reproduced. When using the generic GolP-CHARMM Au–Au

LJ terms in combination with water atoms, O and H, not only was the affinity of

a TIP3P water molecule for Au(111) significantly underestimated (−13.4 kJmol−1

GolP-CHARMM v.s −18.3 kJmol−1 vdW-DF), but it was also mis-oriented with

one of its H atoms pointing towards the gold surface (Figure 6.6a). Configurations

similar to this were sometimes found with SPC waters at the (uncorrected) GolP

Au(111)-water interface [Cicero et al. [2011]]. This orientation hinders the molecule

from acting as a hydrogen bond donor to surrounding waters. In the current work

it was necessary both to increase the strength of the interaction between the water

oxygen atom and the gold surface, and to enlarge the spatial extent of its hydrogen

atoms. Whilst it was not possible to make the preferred TIP3P-Au(111) confor-

mation identical to that found in vdW-DF calculations (Figure 6.6b), the optimal

configuration for a single water molecule adsorbed at the interface (Figure 6.6c) at
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least does not impair its potential to act as a hydrogen bond donor when surrounded

by liquid water.

c)b)a)
[111] [111] [111]

Figure 6.6: The most favourable orientation of a single water molecule adsorbed onto
Au(111) a) using the FF without extra Au–O LJ parameters, b) using vdW-DF and
c) using the new FF with Au–O LJ parameters.

Au–O and Au–H LJ cross parameters that were fitted to water adsorption

were found subsequently to be transferable to other small molecules. Only for

methanol was the affinity for gold still underestimated by the FF, although this

discrepancy was reduced from 8.7 kJmol−1 to 5.5 kJmol−1 by the inclusion of Au–

O and Au–H parameters.

in vacuo FF validation As an initial validation of the Au(111) GolP-CHARMM

parameter set, the in vacuo binding energies of a number of small molecules that had

not been used in the fitting process were calculated and compared with experiment

[Wetterer et al. [1998]; Syomin and Koel [2002a,b]] (Table D.8). The test set was

chosen to benchmark the interaction of a range of different functional groups, both

independently and in combination, with Au(111). For example, the transferability of

the generic Au–Au LJ parameters derived using linear alkanes to cyclic systems was

tested with cyclohexane, whilst the ability of the new FF to describe the adsorption

of a molecule with more than one independently parametrized functional group

tested with non-1-ene, trans-2-butene, ethanethiol, dibutyl sulphide and toluene.

The agreement between GolP-CHARMM and experiment was comparable to that

of GolP (RMSD of interaction energy of 4.15 kJmol−1 for GolP-CHARMM; cf.

4.97 kJmol−1 for GolP [Iori et al. [2009]] for a similar set of test molecules, see

Table D.8 for details).

Ideally, FF parameters for all of the functional groups present in a peptide

would be benchmarked against experimental results obtained in a consistent man-

ner, but such data are not available. Therefore the transferability of the Au–O and

Au–H parameters, which were not probed by the experimental test set (Table D.8),

was tested using vdW-DF calculations (Table D.9). For charged molecules, extensive
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calculations carried out as part of this work revealed that the PW-DFT interaction

energies depended on the simulation cell dimensions–far more strongly than would be

expected for electrostatic interactions alone [Makov and Payne [1995]]. Thus it was

not possible to obtain reliable in vacuo gold-binding affinities for these species using

vdW-DF (for any of the three surfaces considered here), against which the FF could

be compared. However, NH+
3 and COO− moieties, in particular, are prevalent in

biomolecules, being featured by all uncapped peptide termini under neutral pH con-

ditions. Hence it was essential for future meaningful bio-interfacial-gold simulations

to be sure that the new CHARMM FF parameters were also transferable to these

moieties. The potential energies of adsorption at the aqueous Au(111) interface for

5 amino-acids–Ala, Asp, Arg, Lys, His–were calculated from MD simulation. The

trend in the binding affinities of these residues (reported in Reference Wright et al.

[2013b]), which included both positively and negatively charged functional groups,

compared favourably with experimental evidence [Cohavi et al. [2011]; Peelle et al.

[2005]; Hnilova et al. [2008]].

Figure 6.7: Comparison between the interaction energies of small molecules with
Au(111) in vacuo calculated using GolP-CHARMM FF and either experimental
data (green) or those calculated using the vdW-DF exchange functional (black).
Both molecules used to derive FF parameters (crosses) and those in the test set
(open circles) are shown. The solid blue line denotes 1:1 correlation.
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Au(100)(1×1)

Generic Au–Au parameters For the Au(100) surface–both native and reconstructed

forms–in the absence of appropriate experimental data, all reference small-molecule

interation energies used in the FF fitting and validation process were obtained from

vdW-DF calculations. Specifically, for the two Au(100) interfaces, the generic Au–

Au LJ parameters (for use with all CHARMM atom types, other than those in-

dividually parametrized below) were fitted to the interaction energies of methane

and butane, with the respective facet, only. Larger alkanes were not used since

hydrocarbon chains of longer lengths are not present in peptides.

Parameters for sp2 hybridised carbon As with Au(111), a number of gold-organic

cross-terms were refined, including those between aromatic C and Au atoms, satis-

factorily to fit the FF for the Au(100)(1×1) surface. In general, the transferability

of the cross-terms, between atoms in similar chemical environments, was slightly

less effective at this interface, however. This is best exemplified by the adsorption

of hydrocarbon molecules with sp2 hybridized carbon atoms. Specifically, unlike

Au(111), it was not possible to derive a single set of refined Au–Au LJ parameters

for the native Au(100) surface that was transferable between different chemical en-

vironments (eg. aromatic rings, isolated C=C and conjugated C=C bonds). The

computational expense of the PW-DFT calculations necessary to derive and test

modified Au–Au parameters for different types of C=C bonds (isolated and con-

jugated) was beyond the scope of this work (to present a FF for polypeptide-gold

adsorption where isolated C=C bonds are not present) and so was not carried out.

As a repercussion, the customised Au–Au parameters present in Table D.5, fitted to

benzene adsorption, are for use with sp2 hybridised carbon atoms in aromatic sys-

tems only. These terms, however, transferred well to other small molecules featuring

aromatic rings (e.g. phenol, indole and toluene (Table D.11)).

Parameters for chemisorbing species A greater dispersity of interaction, relative to

Au(111), was also seen for sulphur with the Au(100)(1×1) surface. In particular,

the gold-binding affinities of thiols and sulphides were quite different–a character-

istic common to both forms of the Au(100) surfaces. Therefore, two sets of Au–S

cross-terms were defined, parameterized using methanethiol and dimethyl sulphide,

respectively. Like nitrogen, a new atom type was introduced into CHARMM to

distinguish between thiol (herein labelled ‘ST’) and dialkyl sulphide (labelled ‘S’)

sulphur atoms. The organic interactions associated with these two S atom types are

identical and it is only the LJ gold cross-terms which differ. Like Au(111), two sets

of Au–N LJ cross-terms (Au–NR2 and Au–NHT2) were fit for the Au(100)(1×1)

surface.
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Parameters for Oxygen In a manner consistent with the Au(111), Au–O and Au–

H cross-terms were fit to PW-DFT data–energetics and adsorbed geometry–for a

single water molecule at the Au(100)(1×1) interface. However, in the absence of ex-

perimental or first principles MD data, validation was difficult. Specifically, unlike

Au(111) there is no evidence to suggest what the favourable water-gold orientation

is at the gold-liquid water Au(100) (either native or reconstructed) interface. In-

stead, FF parameters were checked against first-principles data for the adsorption

of a single water molecule in vacuo. Specifically, the energetic trend in interaction

energies for binding to different surface sites (bridge, hollow, top) and/or different

water-gold geometries (‘O down’, ‘1H down’, ‘2H down’ and ‘flat’) was considered.

Agreement between FF and vdW-DF, at least at this single molecule level, was

found to be favourable.

Figure 6.8: Comparison between the interaction energies of small molecules with
Au(100) in vacuo calculated using GolP-CHARMM to those calculated using the
vdW-DF exchange functional. Both molecules used to derive FF parameters
(crosses) and those in the test set (open circles) are shown. The solid blue line
denotes 1:1 correlation.

Unlike the Au(111) interface, in the absence of specific Au–O parameters,

only the binding affinities of water and methanol were underestimated relative to

vdW-DF. Therefore, these cross-terms are only to be used with water and hydroxyl

oxygen atoms attached to aliphatic groups (herein labelled ‘OHM1’); they are not

appropriate for -OH attached to aromatic or acid groups such as those found in ty-
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rosine and glutamic acid, respectively (these retain the default atom type of ‘OH1’).

A second set of Au–O LJ parameters were needed for carbonyl oxygen, however,

in order for the FF correctly to reproduce the first-principles trend in equilibrium

separations of methanoic acid and methyl amide adsorbed onto the Au(111) and

Au(100)(1×1) surfaces.

in vacuo FF validation As an initial test of the Au(100) FF parameters, the inter-

action energies of seven small molecules (methanol, indole, methanoic acid, phenol,

ethanethiol, diethyl sulphide, toluene) that had not been used in the fitting proce-

dure were used to benchmark GolP-CHARMM against the results of the PW-DFT

calculations (Table D.11). Most of the different functional groups parametrized

above were represented by this group, either independently or in combination. The

agreement between FF and vdW-DF interaction energies for the test set was good,

with an RMSD in the interaction energies of 3.64 kJmol−1 (Figure 6.8). The largest

outlier was ethanethiol, where the strength of Au(100)(1×1) binding was overesti-

mated by approximately 12%.

Au(100)(5×1)

As stated in Section 6.2, the spatial and energetic heterogeneity of the reconstructed

Au(100) surface necessitates the use of two sets of virtual interaction sites in the FF

(Figure 6.2c). Parameters (generic Au–Au, refined Au–Au for sp2 hybridised carbon

and special Au–O cross terms) for physisorbing species were derived in a manner

consistent with the Au(111) and Au(100)(1×1) surfaces [Wright et al. [2013b]]. The

derivation of these LJ terms, which apply only to virtual interaction sites located

in the surface hollows, AUIU, is outlined in detail in reference Wright et al. [2013c].

In this Chapter, the Au–N and Au–S cross terms, defined for both types of virtual

interaction site–AUIU and Sx (where ‘x’=0, 1, 2, 3)–are discussed only.

The first stage of this fitting procedure was to test whether the significant

differences (of up to 20 kJmol−1, Table D.3), identified by vdW-DF calculations, in

adsorbate interaction energies at the different top site locations on the Au(100)(5×1)

surface could be reproduced by the FF using just a homogenous set of hollow site

Au–N/Au–S parameters. That these tests were negative suggests the energetic

heterogeneity of the surface found in PW-DFT calculations (for example, the pref-

erential adsorption of methanethiol to T2 surface sites over T3) did not solely arise

from the geometrical arrangement of Au atoms; this is identical in both FF and

first-principles slab models (Section 6.2). Instead I propose that electron density is

unevenly distributed across the Au(100)(5×1) surface, and it is this which can direct

the adsorption of species with lone pairs of electrons to electron-deficient sites.
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Special parameters for Nitrogen Like Au(111) and Au(100)(1×1), two sets of Au–N

LJ parameters were needed for the Au(100)(5×1) surface: Au–NR2 and Au–NHT2.

Both sets of refined Au–N parameters were fitted using ‘site specific’ annealing: Au–

NHT2 to methyl amine adsorption, and Au–NR2 to imidazole adsorption (Table

D.13). In each case a small Au–N LJ cross-term was added to the hollow interac-

tion sites ‘AUIU’, while the σ and ǫ parameters of the bridge interaction sites were

adjusted in turn to incorporate spatial heterogeneity into surface adsorption. The

σ/ǫ parameters given to S0 and S2 sites were significantly smaller/larger than those

assigned to S1 and S3 sites in order to represent the increased acidity of Au atoms

in T0 and T2-type locations. Cross-terms were subsequently tested by annealing

both molecules from vacuum to the surface to allow full relaxation of internal adsor-

bate and adsorbate-gold conformation (D.12). In the case of imidazole the optimal

adsorbed location identified by these tests was atop a T2-type site, in agreement

with vdW-DF; for methyl amine it was atop a T0 site. Whilst a preference for T2

over T0 site adsorption was found using vdW-DF for the latter adsorbate, methyl

amine, the energetic difference between the two locations was slight, 2.2 kJmol−1.

Special parameters for Sulphur Refined parameters for Au–S interactions–one set for

thiols and another for dialkyl sulphides–with the Au(100)(5×1) interface were fit in

a similar manner to that described above for nitrogen. Namely, LJ terms for both

types of virtual interaction sites, hollow (AUIU) and bridge (Sx), were fit using ‘site

specific’ annealing (thiol Au–ST to methanethiol adsorption, and dialkyl sulphide

Au–S to dimethyl sulphide adsorption, respectively, Table D.14); the refined pa-

rameter sets were subsequently tested using the more extensive annealing protocol.

The atom-type ‘ST’, introduced to differentiate between thiol and dialkyl sulphide

adsorption onto the Au(100)(1×1) surface, was also used for the reconstructed in-

terface. For methanethiol and dimethyl sulphide the energetic (D.12) and spatial

agreement between FF and vdW-DF was good, with T2-type site adsorption being

optimal for both.

The transferability of the refined Au–S LJ parameters from one thiol/dialkyl

sulphide to another was also assessed by calculating the interaction energies of

ethanethiol and diethyl sulphide with the Au(100)(5×1) surface respectively (Ta-

ble D.12). Similar to Au(100)(1×1), the interaction energy of ethanethiol with

Au(100)(5×1) was overestimated by approximately 12%, relative to vdW-DF, us-

ing FF parameters fit to methanethiol adsorption. Experimentally, although it

has been shown that the strength of thiol physisorption to the Au(111) surface

in vacuo increases linearly with alkyl chain length for CnH2n+1SH, n≥2 [Lavrich

et al. [1998]], there is no evidence to suggest whether this trend can be extrapolated
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to methanethiol and to adsorption onto the Au(100) surface or not. Hence it is

speculated that the overlap of Au and S atomic orbitals is significantly hindered

on the addition of a second carbon atom to the alkyl chain of a protonated thiol,

at least in the case of adsorption to the Au(100) surface. These quantum effects

would account for the non-linear increase in interaction energy from methanethiol to

ethanethiol Au(100) adsorption; a feature that cannot be reproduced by an additive

FF such as that derived here. However, the ultimate aim of the work presented in

this Chapter was to derive a FF to describe the interactions of peptides with Au(100)

under aqueous conditions. Since methanethiol is a closer analogue of the cysteine

side-chain than ethanethiol, the former, methanethiol, was chosen for fitting Au–ST

parameters for both forms of the Au(100) surface.

Akin to ethanethiol, the adsorption of diethyl sulphide to the Au(100)(5×1)

surface, after annealing from vacuum, was overestimated by the FF. There were

small differences in the optimal diethyl sulphide–gold geometries identified by the

FF and PW-DFT, including the angle between the surface normal and a vector from

S to the mid-point between the two methylene C atoms (66.3◦ and 20.3◦ for the FF

and vdW-DF, respectively). An additional PW-DFT calculation, initiated in the

optimal FF geometry above the T2 top site, revealed that this conformation was not

favourable at the first-principles level of theory. However, on closer inspection, the

internal conformation of diethyl sulphide itself was slightly different after relaxation

using vdW-DF, compared to that found by the FF. For example, the C–S–C angle

was larger (102.7◦ compared to 97.2◦ for vdW-DF and the FF, respectively) and

the C–C–S angles more varied (110.2◦ and 117.0◦ compared to 113.3◦ and 113.7◦

for vdW-DF and the FF, respectively). Hence, part of the discrepancy between the

optimal diethyl sulphide-gold FF and vdW-DF interaction energies arose from dif-

ferences in the internal configuration of the molecule described by the two methods;

a feature of the CHARMM FF itself rather than the GolP-CHARMM terms fit to

reproduce its interaction with the gold surface. This was supported by the much

closer agreement between PW-DFT and FF interaction energies observed when the

‘site-specific’ annealing protocol was used (Table D.14); in this case the simulations

were too short for the internal conformation of diethyl sulphide to be relaxed from

its initial DFT optimised geometry to that of the FF. Importantly, however, GolP-

CHARMM Au–S parameters can reproduce the features in diethyl sulphide binding

to Au(100)(5×1) which are most relevant for describing methionine adsorption (S

as the closest point of contact with the surface, with both flanking methyl groups

pointing away from the surface).
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6.3.3 Aqueous Au(111) and Au(100) Interfaces

It is essential for future bio-interfacial simulations that the new FFs can model

liquid water at the Au(111) and Au(100) surfaces, since it has been previously shown

that water structuring above an inorganic surface can strongly influence biomolecule

adsorption (Section 1.2.4, [Skelton et al. [2009]; Jena and Hore [2010]; Schneider and

Ciacchi [2012]]). However, few unambiguous atomistic descriptions of liquid water

adsorbed onto gold exist. Only the aqueous Au(111) interface has been previously

studied at the first-principles level of theory [Cicero et al. [2011]; Nadler and Sanz

[2012]], although several groups have used BOMD to probe water bilayer adsorption

onto both Au(111) [Meng et al. [2004]; Schnur and Gross [2009]] and Au(100)(1×1)

[Lin and Gross [2012]] in vacuo. In this section GolP-CHARMM parameters for

the aqueous Au(111) surface are first benchmarked against the CPMD simulations

of Cicero et al. [Cicero et al. [2011]]. The structure of liquid water adsorbed to

the three gold surfaces parameterised here is then compared to probe whether facet

selective differences occur. These simulations using the new FF offer predictions

which, in the future, could be confirmed or falsified by either experiment or first-

principles calculations.

Au(111): Comparison between GolP-CHARMM and CPMD

In general, the structure of liquid water above Au(111) observed in the simulations

performed here using GolP-CHARMM was in good overall agreement with the pre-

vious CPMD study [Cicero et al. [2011]]. Specifically, the new FF reproduced the

enhanced tendency of interfacial water molecules to act as hydrogen bond donors

compared with those in bulk liquid water (Figure 6.9b). The ability of the FF to

capture these subtle water characteristics is critical for improving the accuracy of

bio-interfacial simulations, where hydrogen bonding to first-layer adsorbed waters

may enhance or facilitate biomolecule-surface binding [Schneider and Ciacchi [2012]].

Detailed analysis of water-gold conformation as a function of surface separa-

tion revealed that, for the Au(111) surface, molecules in the first layer are oriented

in an ordered fashion, with a preference for the oxygen atom in a water molecule to

lie closer to the interface than the hydrogen atoms (Figure 6.9c). The modal angle

between the dipole moment of these waters and the surface normal was 90◦ however,

similar to the geometry of a single water adsorbed in vacuo onto the same surface

calculated using vdW-DF (Figure 6.6b). Conformations such as this were also ob-

served to be favourable for the subset of molecules residing in the first adsorbed

layer in the CPMD simulations [Cicero et al. [2011]].
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a)

b)

c)

Figure 6.9: A comparison of the structure of water above the Au(111), Au(100)(1×1)
and Au(100)(5×1) surfaces using three metrics: a) normalised mass density profiles,
b) total number and number of donor/acceptor hydrogen bonds as a function of
surface separation and c) water dipole moment.
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GolP-CHARMM also shows improvement in its description of the Au(111)-

water interface over both the original GolP and the CVFF/SFC FFs. Unlike GolP,

GolP-CHARMM does not require any further corrections [Cicero et al. [2011]] to

be able to reproduce the predominance of water molecules acting as hydrogen bond

donors. Whilst, at odds with CVFF/SFC, it correctly reproduces the preference of

water for top site adsorption. In addition, it must be remembered that only GolP-

CHARMM was specifically fit to reproduce the energetics of single water molecule

adsorption onto the Au(111) surface to PW-DFT data. It is worth noting that if

direct comparison is made between GolP-CHARMM and its predecessor, GolP [Iori

et al. [2009]], then subtle changes in the structure and affinity of water at the aque-

ous Au(111) interface, brought about by the additional Au–O and Au–H(O) terms

in GolP-CHARMM, may impact on biomolecule adsorption. For instance, the in-

teraction energy of a single water molecule in vacuo for Au(111) was −14 kJmol−1

using GolP [Iori et al. [2009]] but −18.1 kJmol−1 using GolP-CHARMM. Thus the

competition between biomolecule and water adsorption on the gold surface is pre-

dicted to be less enthalpically favourable for GolP-CHARMM than the original

GolP. However, at the same time, the denser, more structured first adsorbed water

layer featured by GolP-CHARMM means that the entropy change brought about by

displacement of these waters into solution by an adsorbate would be larger. These

two effects may partially cancel each other out.

Some discrepancies between GolP-CHARMM and the CPMD simulation of

Cicero et al. [Cicero et al. [2011]] remain, however. First, using the FF, only a single

population of water molecules in the first layer exist, with no shoulder on the Ow

mass density profile in the direction normal to the surface. Second, interfacial water

remains relatively over-structured, with the density of the first adsorbed layer being

greater using GolP-CHARMM than that found from first-principles. Despite these

small differences, GolP-CHARMM can acceptably describe the aqueous Au(111)-

gold interface.

Facet Dependent Water Structuring

The careful derivation of FF parameters for the Au(111) and Au(100) surfaces in a

consistent manner allows detailed comparison between the structure of liquid water

at each interface for the first time (Figures 6.9 and 6.10). In the past the water-

Au(100)-hex interface has been approximated by the water-Au(111) one, since the

hexagonal arrangement of Au surface atoms is similar in both cases [Lin and Gross

[2012]]. This assumption was recently brought into question by FF-based MD sim-

ulations which found differences in the structure of the aqueous MgO interface ex-
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isted when two different surface models–one atomically flat (akin to Au(111)) and

the other corrugated (akin to Au(100)(5×1)–were employed [Phan et al. [2012]]. In

the case of gold though, the simulations performed in this Chapter show that many

of the properties of the planar aqueous gold interface are, in fact, common to the

Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces.

For all three surfaces there is a preference for interfacial waters to be oriented

‘O down’ (inferred from the positive dipole moment, Figure 6.9c), facilitating their

enhanced ability to act as hydrogen bond donors to surrounding water molecules

(Figure 6.9b). This preference is weakest in the case of the Au(100)(5×1) surface–

most likely a consequence of its rumpled topography disrupting regular water pack-

ing. Unlike the native form of the surface though, there is no significant shoulder in

the Hw mass density profile of water close to the Au(100)(5×1) interface to indicate

the presence of a small subset of water molecules oriented in the opposite manner,

‘H down’ (Figure 6.9a).

The most profound differences between the three aqueous interfaces were

observed in the in-plane distribution of water molecules, rather than structuring in

the perpendicular direction (Figure 6.10). Specifically, although waters in the first

adsorbed layer are localised atop Au atoms in each case, this is significantly more

pronounced for the native Au(100) surface than the other two. The trend correlates

loosely with that in water density of the first adsorbed layer as a whole, with the

average mass of water per unit surface area being 339/331/324× 10−9 kgm−2 for

the Au(100)(1×1)/Au(100)(5×1)/Au(111) surfaces, respectively. (Density per sur-

face area is a more appropriate metric than the maximum density per volume taken

directly from Figure 6.9a due to undulations in the Au(100)(5×1) surface.) Inter-

estingly, however, both observations differ slightly from the trend in the interaction

energies of single water molecules adsorbed in vacuo, predicted by GolP-CHARMM:

−21.8/−20.9/−18.1 kJmol−1 for Au(100)(5×1)/Au(100)(1×1)/Au(111).

Since both the degree to which liquid water close to the native and recon-

structed Au(100) surfaces is structured and the geometrical arrangement of the

interfacial molecules differ significantly, water structuring could play an important

role in determining selectivity in biomolecule adsorption. Thus in order for simu-

lation to aid the design of peptide sequences able to distinguish between Au(111)

and Au(100), either the reconstructed status of the Au(100) surface must be known

experimentally, or both the native and reconstructed forms of the interface should

be considered in the modelling process–something which has been neglected in the

past [Heinz et al. [2009, 2010]; Yu et al. [2010, 2012]]. Based on the structure of

the aqueous interfaces alone, it could be suggested that the differences in the mech-
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Figure 6.10: Spatial arrangement of Au atoms in the a) Au(111), b) Au(100)(1×1)
and c) Au(100)(5×1) surfaces, together with the density of water in the plane of the
interface, for the first adsorbed layer only.

anisms governing peptide selectivity between Au(111) and Au(100) on adsorption

would be weakened by reconstruction of the latter surface.

6.4 Conclusions

In conclusion, in this Chapter a new FF for modelling peptide adsorption at the

aqueous Au(111), Au(100)(1×1) and Au(100)(5×1) interfaces, GolP-CHARMM,

has been derived using a combination of experimental and PW-DFT data. This FF

is the first biointerfacial FF for gold to be specifically parameterised to reproduce

both the energetics and geometry of an adsorbed water molecule relative to first-

principles. In keeping with its predecessor, GolP [Iori et al. [2009]], refined sets

of parameters for describing the interaction of a number of functional groups–sp2

hybridised carbon atoms and the heteroatoms O, S and N–with gold were fit. These

terms were needed to account for disparities in the physical and chemical binding

characteristics (e.g. chemi- v.s physi-sorption) of each moiety. The energetic spatial

heterogeneity of the Au(100)(5x1) surface for chemisorbing S and N species, observed

in PW-DFT calculations (at this interface only), has also been accounted for.
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As well as being a significant contribution to the realm of bio-interfacial sim-

ulation in its own right–by enabling selectivity in peptide adsorption at the aqueous

Au(111) and Au(100) interfaces to be investigated by simulation–the protocol used

to derive GolP-CHARMM can be adopted by others in the future to derive terms for

other surfaces. If the same procedures are used for a range of noble metals (e.g. Ag,

Cu, Pt, Pd) the adsorption of a specific peptide sequence at the aqueous gold and,

say, silver surfaces could be investigated on a level-footing for the first time whilst

accounting for the dynamic polarisation of metal atoms. The method by which

surface heterogeneity in the reconstructed Au(100) facet is empirically accounted

for here could also be built on to design FFs for other non-ideal metal surfaces

such as those with defect sites. Differences between the aqueous Au(100)(1×1) and

Au(100)(5×1) interfaces in Section 6.3.3 highlight the need for future computa-

tional models to account for the exact experimental structure of the surface, where

possible.

As part of this study (but not reported in this Chapter for the sake of brevity)

the adsorption of five amino acids–Ala, Arg, Asp, His (both protonated and unpro-

tonated forms) and Lys–at each of the three aqueous gold interfaces parameterised

in GolP-CHARMM were simulated [Wright et al. [2013b,c]]. Qualitatively the re-

sults suggested that, for the majority, the mode of binding and the strength of

binding to the Au(111) and Au(100)(5x1) surfaces were similar. In the case of the

native Au(100) surface, however, adsorption driven by consistent contact between

adsorbate and gold atoms was only observed for chemisorbing species, HisA (unpro-

tonated His). (Arginine also made direct contact with the surface in some runs.)

The remaining amino acids were not able to penetrate the strong layer of interfacial

waters. It was therefore interesting to investigate how the qualitative trends in ad-

sorption between Au(111), Au(100)(1x1) and Au(100)(5x1) for small biomolecules,

amino acids [Wright et al. [2013b,c]],are translated into the binding mechanism of

whole peptides. The REST metaD simulations of AuBP-1–gold adsorption reported

in Chapter 8 quantitatively address this phenomenon.
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Chapter 7

Material Selectivity of QBP-1

Adsorption.

7.1 Disclaimer

Part of the work reported in this Chapter was carried out by Dr. P. Palafox-

Hernandez. Specifically: the REST simulation of QBP-1 adsorbed at the aqueous

Au(111) interface and the regular MD simulations conducted for energetic analysis

(Section 7.3.3). The former included the choice of initial peptide structures and

number of replicas (and their effective temperatures) used, and construction of the

peptide topology file, which were also all subsequently used in the solution and

quartz REST simulations. The analysis of the data from all simulations, and its

presentation in this Chapter, is my own work.

7.2 Introduction

In this Chapter the adsorption of quartz-binding peptide QBP-1 [Oren et al. [2007]]

is reconsidered. This time, its adsorption to two different aqueous interfaces–(100)

α-Quartz and Au(111)–was studied using REST [Moors et al. [2011]; Wang et al.

[2011]; Terakawa et al. [2011]], a computationally efficient REMD-based method for

studying the interfacial conformation of a peptide investigated in Chapter 5. The

GolP-CHARMM FF for modelling protein-gold interactions [Wright et al. [2013b]],

derived in Chapter 6, was employed.

Material-binding peptide sequences able to discriminate between two sub-

strates of differing composition are highly desirable due to their potential to enable

fine control over NP assembly (Figure 1.1a, b). In recent years fusion proteins
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consisting of gold- and silica-binding domains have been commonly used to demon-

strate the viability of these synthetic strategies [Hnilova et al. [2012a,b,c]]. Interest

in these two substrates in particular stems from the potential to combine the optical

or catalytic properties of AuNPs with an abundant resource, silica, to manufacture

functional materials economically (Section 1.1). In all of the case studies carried out,

QBP-1 was used as the silica binding domain. The prevailing opinion in the litera-

ture, based on experiment, suggests that QBP-1 preferentially adsorbs to quartz over

gold [Hnilova et al. [2012b,a,c]; Tamerler et al. [2010]]. However, when the evidence

is critically examined, the results are more inconclusive (Section 7.5). It is hence

interesting to use simulation to investigate whether QBP-1 is able to discriminate

between the two materials–quartz and gold–on binding. In addition, the possibility

suggested in Section 5.3.6 that the FF used in Chapter 5 may have accounted for the

anomalous occurrence of helical structures of QBP-1 at the aqueous (100) α-Quartz

interface is followed up in this work. In this Chapter, CHARMM22* [Piana et al.

[2011]] was used, enabling comparison between CHARMM22* and CHARMM27

[MacKerell et al. [1998, 2004]] FFs for the study of small peptides in biointerfacial

systems.

7.3 Methods

7.3.1 System Details

All simulations of Quartz Binding Peptide-1, QBP-1 (PPPWLPYMPPWS) [Oren

et al. [2007]], performed in this Chapter were carried out using the software package

Gromacs 4.5.5 [Hess et al. [2008]]. Three different systems were considered: the iso-

lated peptide in solution, the peptide adsorbed at the aqueous (100) α-Quartz inter-

face (Figure 1.2a) and the peptide adsorbed at the aqueous Au(111) interface (Figure

1.3a), denoted ‘solution’, ‘quartz’ and ‘gold’, respectively. The first comprised the

peptide solvated by 6605 TIP3P water molecules in a simulation cell of dimensions

58.60× 60.90× 55.50 Å3. A quartz slab of dimensions identical to that used in Chap-

ter 5 was in this case solvated by 9164 TIP3P water molecules for the second, quartz,

run. The simulation cell had dimensions 74.58× 65.64× 79.00 Å3, slightly larger

than those used previously (Section 5.2.1). The third system, ‘gold’, comprised a

gold slab 5 layers thick featuring the Au(111) surface, the QBP-1 peptide and 6605

TIP3P water molecules; the simulation cell had dimensions 58.60× 60.90× 67.60 Å3.

The depth of water between the top surface of the slab and the bottom surface of

its image was comparable in both sets of interfacial simulations, ‘quartz’ and ‘gold’,

being ∼50 Å.
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In contrast to previous solution [Notman et al. [2010]] and bio-interfacial

quartz (Chapter 5, [Wright and Walsh [2013]]) simulations, the CHARMM22* [Pi-

ana et al. [2011]] FF was used to model the peptide in this Chapter. FFs compatible

with CHARMM, namely LFF [Lopes et al. [2006]] and GolP-CHARMM (Chapter

6, [Wright et al. [2013b]]), were employed to describe peptide-substrate interactions

at the aqueous α-Quartz and Au(111) interfaces, respectively. Water was modelled

by the modified TIP3P [Jorgensen et al. [1983b]; Neria et al. [1996]] potential. As

throughout this thesis, the rigid form of water was used, with bond lengths con-

strained by the SETTLE algorithm [Miyamoto and Kollman [1992]]. Simulations in

all three environments were carried out in the NV T ensemble with the temperature

maintained at 300K using a Nosé-Hoover thermostat [Nosé [1984]; Hoover [1985]].

Cell dimensions in the z dimension were adjusted prior to simulation to ensure that

the density of liquid water far from (both) the peptide (and substrate) was consis-

tent with that of TIP3P water simulated under the same conditions in an NPT

ensemble at a pressure of 1 bar. Newton’s equations of motion were solved using

the Leapfrog algorithm [Hockney et al. [1974]] with an integration time-step of 1 fs.

Distances consistent with those used to derive LFF [Lopes et al. [2006]] and GolP-

CHARMM (Section 6.2.1, [Wright et al. [2013b]] were chosen for truncation of PME

electrostatic summation and LJ non-bonded interactions. Namely, in the solution

and gold simulations PME summation was truncated at 11 Å, while for the quartz

run it was truncated at 12 Å with a switching potential applied at 10 Å. A force-

switched cut-off starting at 9 Å and ending at 10 Å was used for LJ non-bonded

interactions in all three simulations.

7.3.2 Replica Exchange with Solute Tempering

To ensure adequate sampling of peptide conformational space, the REST (Section

2.3.3, [Moors et al. [2011]; Terakawa et al. [2011]; Wang et al. [2011]] method was

employed to simulate QBP-1 in the three environments–solution, quartz and gold.

In this Chapter a total of 16 replicas, spanning an effective temperature window of

300-433K was used (300.00, 305.35, 310.89, 317.25, 323.88, 331.57, 339.88, 349.11,

358.07, 367.37, 380.98, 389.80, 398.22, 406.85, 419.97, 433.00K). The replica number

was increased from 11 to 16 in this work, compared to that carried out in Chapter

5, to enable a better fit to the architecture of the computational resource available.

By using more replicas, the effective temperature range could, in turn, be increased.

Following a similar procedure to Chapter 5, the initial conformation of the

peptide present in each replica featured a different common folded backbone sec-

ondary structure configuration (e.g. α-helix, β-sheet, β-turn etc) constructed by
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hand. REST simulations of QBP-1 in the three environments all featured the same

set of peptide starting conformations (Section 5.2.2). It is worth commenting here

specifically on the inclusion of helices in these starting conformations. Although the

previous study suggested that conformational sampling of QBP-1 could be max-

imised by the exclusion of helical structures from initial replica configurations with-

out biasing the results (Chapter 5) [Wright and Walsh [2013]], these conclusions

were reached from energetic analysis of the peptide adsorbed at the aqueous (100)

α-Quartz interface (Section 5.3.6). The QBP-1 helix may be a favourable confor-

mation for the peptide to adopt in solution or when adsorbed onto gold. For the

reasons highlighted in Section 5.2.3–namely the high energy barrier to helix forma-

tion due to the stiff nature of the peptide–therefore, it was necessary to include the

QBP-1 helix initially in the REST simulations performed in this Chapter.

Before initiating REST, starting configurations were equilibrated for 1 ns at

their target potentials with no exchange moves attempted. Simulations were run for

15×106 MD steps, with an exchange attempted between neighbouring replicas every

1000 MD steps. In all three runs the average probability with which an exchange

was accepted was ∼70%; in each case, all replicas were mobile throughout the whole

of effective temperature space (Figure E.1).

7.3.3 Analysis

For each of the three environments–solution, quartz and gold–analysis was carried

out on the constant-ensemble replica run at the reference effective temperature of

300K. Two fundamental aspects of QBP-1 adsorption were investigated: the struc-

ture of the peptide and the manner in which substrate binding was mediated. Unless

stated otherwise, only the final 5 ns of each REST trajectory was analysed. In these

later stages, each simulation was observed to have reached a steady state (Figure

E.2).

Unlike the closest atom–surface separation criterion used in Chapter 5 (Sec-

tion 5.2.4) to identify adsorbed residues and motifs (dyads and triads), here the

distribution of residue functional group-surface distances generated over the entire

REST trajectory (Figures E.3 and E.4) was used to define residue specific ‘bound

distance’ cut-offs for each interface (Table E.1). A dyad/triad was classed as being

bound to the surface if the two/three sequential residues from which it was composed

were simultaneously adsorbed.

138



7.4 Results

7.4.1 Peptide Conformation

The study of a peptide’s conformation can be subdivided into two fundamental as-

pects: characterisation of the dominant structures it adopts; and analysis of the

regions of conformational space sampled by the entire ensemble of its structures.

In the following, cluster analysis was used to probe the first phenomenon (Section

2.5.2), while secondary structure analysis based upon Ramachandran plots was em-

ployed to investigate the latter entity (Section 2.6).

Clustering of QBP-1 structures sampled in the final stages of each trajectory

(Table 7.1) suggests that the conformational freedom of the peptide was significantly

restricted on adsorption to either interface, quartz or gold, relative to solution, in

agreement with the findings reported in Section 5.3.2. There was little difference

between the two substrates, however, with a total of 26 clusters being identified

in both cases. This result was invariant to the exclusion of infrequently sampled

clusters–thought to represent high energy peptide structures–with the number of

‘significant’ clusters of adsorbed peptide structures being almost the same (9 and

11, at the gold and quartz interfaces, respectively).

total significant 1/% 2/% 3/%

Solution 69 31 21.6 11.7 8.9
Quartz 26 11 39.4 16.4 10.4
Au(111) 26 9 34.4 16.1 12.2

Table 7.1: Total number of, and the number of ‘significant’, backbone clusters cal-
culated over the final 5 ns. Percentage population of top 3 clusters identified by
clustering analysis conducted over the same portion of the trajectory, is also given.

In all three environments, the most populated clusters of QBP-1 repre-

sented extended–either straight PPII or extended with a kink in the central region–

structures (Figure 7.1). Calculation of atom backbone position RMSDs between

pairs of centroid cluster structures identified in different simulations revealed that

there were significant similarities between the most likely conformations of the pep-

tide, both between in solution and at either interface and between adsorption to the

two different substrates. The extended nature of these structures is broadly con-

sistent with both experimental CD measurements of the peptide in solution [Oren

et al. [2010]; Notman et al. [2010]] and previous simulation studies (Chapter 5: Fig-

ure 5.2; [Notman et al. [2010]; Wright and Walsh [2013]]) of the peptide (in solution

or adsorbed at the aqueous (100) α-Quartz interface).
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Figure 7.1: Snapshots of the centroid structure belonging to the three most popu-
lated clusters of QBP-1 in solution and adsorbed at either the aqueous α-Quartz or
Au(111) interfaces. Water has been omitted for clarity.
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There was one notable exception: solution cluster 1 (the cluster found to

have the largest population after simulation of QBP-1 in solution), which was a

helix. Helical clusters of QBP-1 were also identified at the aqueous α-Quartz and

Au(111) interfaces, but had much smaller relative populations (3.1% and 10.4%,

respectively, compared to 21.6% of the total population of structures in solution).

While helices featured as prominent structures in a subset of the REST simulations

of QBP-1 adsorbed onto the α-Quartz surface performed in Chapter 5 (Section

5.3.3), potential energy calculations revealed that they were in fact unfavourable

with respect to extended conformations of the peptide on adsorption (Section 5.3.6)

[Wright and Walsh [2013]]. In addition, CD spectra of QBP-1 in solution did not

display any significant α signature, even in the presence of the secondary structure

stabilising agent 2,2,2-trifluoroethanol [Oren et al. [2010]]. That, even using the

newer CHARMM22* FF [Piana et al. [2011]]–which features modified torsional pa-

rameters designed to correct for the reported helical bias of CHARMM27 [MacKerell

et al. [1998, 2004]]–for the present work, helical structures still featured, albeit with

a reduced frequency, warrants further comment.

Firstly, the solution CD spectrum of QBP-1 may, in fact, not be inconsistent

with the results of the solution-based REST simulation. CD is an ensemble and

sequence averaged measurement of secondary structure (Section 1.2.3). Only the

central region of QBP-1 in solution cluster 1 was helical–the conformation of both

termini deviated substantially from a helix. In addition, even with a cluster popu-

lation of ∼20% the helix was a minority structure. Taken together, these two facts

mean that the α-helix signature of QBP-1 may have been overwhelmed in the CD

spectrum. It must also be commented that the deconvolution of CD spectra is done

with reference to databases containing proteins of known structure. The suitability

of these references for identifying the secondary structural propensity of an IDP–a

lable class of proteins with no fixed secondary structure to which material binding

peptides are thought to belong [Evans et al. [2008]]–is unknown.

Secondly, energetic analysis, carried out in an identical manner to that per-

formed in Chapter 5, was done to determine the potential energy of each system

featuring QBP-1 in the centroid structure of the most highly populated cluster

(PECX), relative to that featuring QBP-1 in the centroid structure of the helical

cluster (PEhelix):

∆PE = PECX − PEhelix. (7.1)

(In the case of solution, the potential energy differences of clusters 2 and 3 rel-

ative to that of the helical cluster (solution cluster 1) were calculated.) Regular
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MD simulations were performed using both CHARMM22* [Piana et al. [2011]] and

CHARMM27 [MacKerell et al. [1998, 2004]].

Figure 7.2: Potential energy difference between centroid structure of cluster CX and
that of the cluster representing QBP-1 helical conformations.

The results of the energetic calculations are presented in Figure 7.2. In each

environment, the QBP-1 helix structure was unfavourable with respect to more ex-

tended conformations of the peptide, consistent with the findings of Section 5.3.6.

However, the energetic discrimination between helical and more extended structures

was very small for the peptide in solution. Thus, the relatively large population of

the solution helical cluster is not inconsistent with the REST simulation having

reached a steady state. (At equilibrium, based on the Boltzmann distribution, the

population of a cluster should be exponentially related to its free energy. The poten-

tial energy difference calculated in Equation 7.1 is only a reasonable approximation

of the free energy difference between two states if the entropic contribution to the

free energy is small.) In addition, these results suggest that for QBP-1, at least,

there is little difference between CHARMM22* [Piana et al. [2011]] and CHARMM27

[MacKerell et al. [1998, 2004]] in terms of helical propensity. This is perhaps unsur-

prising considering the primary sequence of the peptide. Proline–which accounts for

50% of QBP-1–is one of only two amino-acids in CHARMM22* (Gly and Pro) for

which the torsional parameters are identical to those of CHARMM27 [Piana et al.

[2011]].

142



a)

b)

c)

Key
1−2
3−5
6−8
9−11

12−15 31+
16−20
21−25
26−30

Figure 7.3: Left: Ramachadran plots of QBP-1 a) in solution and adsorbed at the
aqueous, b) α-Quartz, or c) Au(111) interfaces. Right: Pie charts depicting the
frequency with which each region of φ/ψ space was sampled.
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In addition to the structural similarities between the most likely conforma-

tions of QBP-1 adsorbed onto quartz and gold, the REST simulations suggest that

there is little difference in the ensemble of all structures featured at these interfaces

(Figure 7.3). In solution, as well as when adsorbed, QBP-1 mainly has PPII char-

acter; structures with α, β and random coil character are also featured, to a lesser

extent, by the ensemble of all peptide conformations. Consistent with the presence

of a helical cluster of QBP-1 in each simulation, the three Ramachandran plots all

feature an elliptical footprint in the −180<φ<0, −180<ψ<0 quadrant–the signature

associated with an α helix. Only minor variation, in regions of φ/ψ phase-space in-

frequently sampled, was observed between the different systems. The most notable

of these was the existence of structures with γ character at the aqueous Au(111)

interface only.

However, by making comparison with Figure 5.3, the regions of conforma-

tional space sampled by an ensemble of QBP-1 structures can be seen to depend more

on the FF used than the substrate onto which the peptide is adsorbed (Figure E.5).

In particular, using CHARMM27 [MacKerell et al. [1998, 2004]] the α/random coil

character of QBP-1 upon adsorption to α-Quartz was more/less pronounced than

that predicted by CHARMM22*. Additionally, QBP-1 was found to sample the αL

region of φ/ψ phase-space at this interface only whilst modelled using CHARMM27;

a secondary structural signature of the peptide which was consistently identified

in all of the REMD-based simulations carried out in Chapter 5, independent of

the initial replica population (Figure 5.3) [Wright and Walsh [2013]]. Never-the-

less, RMSD analysis revealed structural similarities between the two FFs when the

backbone conformation of the centroid structures representing dominant clusters of

QBP-1 adsorbed at the α-Quartz interface was considered. Hence the evidence sug-

gests that while the alterations made to CHARMM can bring about small changes

in the ensemble of all structures of small peptide sequences such as QBP-1, they do

not significantly impact on the configuration of its most likely structures.

Overall, the structural analysis carried out here suggests that QBP-1 does not

undergo significant conformational change on adsorption to either the α-Quartz or

Au(111) surface. Moreover, the findings imply that surface induced peptide folding

is unlikely to be the source of the material selectivity of QBP-1, should it exist.

7.4.2 Surface Binding

While the structure of the QBP-1 peptide itself, in its adsorbed state, may not

significantly differ between the quartz and gold surfaces, the orientation of the pep-

tide with respect to the interface could contribute to its reported selectivity. For
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instance, one possible explanation for weak binding to gold would be if QBP-1, in

an extended conformation, was bound to the surface with its axis perpendicular to

the interface; in such bound peptide geometries, surface contact would be minimal.

To probe this phenomenon the degree of surface contact found in the later stages of

each interfacial simulation has been quantified using data from the entire ensemble

of peptide structures. Both the frequency with which individual residues (Figure

7.4, Tables E.2) and motifs of consecutive residues (Tables E.3 and E.4) were in

contact with the surface was investigated.

M8
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P9
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S12
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W11

Key
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Figure 7.4: Schematic depicting the degree to which each residue contributes to
surface binding at the aqueous a) α-Quartz and b) Au(111) interfaces. The key
corresponds to the percentage of frames in which the residue is bound to the surface
(Table E.2).

Consistent with trends in the gold binding propensities of individual amino-

acids reported in the literature [Cohavi et al. [2011]; Hnilova et al. [2008]; Peelle et al.

[2005]; Hoefling et al. [2010a]; Feng et al. [2011]; Wright et al. [2013b]], aromatic

residues W4, Y7 and W11, along with the sulfur containing residue M8 were all

bound to the Au(111) surface in the majority of frames. The same four residues

were also found to be important in mediating QBP-1–quartz adsorption. Making

direct comparison for each of these strong binding residues individually between the

two materials, the likelihood of them being adsorbed to the gold surface was, in

fact, slightly greater than that to quartz. However, although the terminal residues,
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P1 and S12, also contributed to gold-binding, albeit to a lesser extent, the majority

of the sequence remained unbound. Conversely, at the aqueous α-Quartz interface

the binding propensity of each residue was more consistent, especially in the central

segment of the peptide, W4 to W11. This was particularly apparent when the

adsorption of consecutive residues–namely, dyad and triad motifs–was considered

(Tables E.3 and E.4). Namely, at the Au(111) interface, none of the 10 possible

triads made significant surface contact.

Visual inspection of bound states, taken together with data analysis for the

adsorption of residue functional groups, suggests that differences between gold and

quartz in terms of the mode of QBP-1 adsorption exist. In its adsorbed state

on the Au(111) surface, the QBP-1 peptide can be thought of as being bound to

the interface through a series of ‘stilts’; at the aqueous α-Quartz interface, however,

QBP-1 is more likely to lie flat against the surface, making more continuous contact.

The frequency with which the backbone, rather than side-chain, atoms of each

residue make surface contact with the two substrates is in agreement with this

hypothesis (Table E.5 and Figure E.6). Moreover, aromatic residues Trp and Tyr in

QBP-1 can be seen further to discriminate between the two materials in their mode

of side-chain binding. In the case of adsorption to gold, only one dominant adsorbed

residue–surface geometry existed–that in which the phenyl ring was oriented parallel

to the plane of the interface (7.5b). The mode of adsorption of Trp and Tyr to the

quartz surface was slightly more ambivalent, however. In their most likely bound

state at this interface, in contrast to gold, the aromatic ring was upright or tilted

with respect to the surface (7.5a) to facilitate penetration into an interstitial site.

Such bound geometries for phenyl groups at the aqueous α-Quartz interface have

been reported before (Sections 3.3.4 and 5.3.5).

7.5 Discussion

There is no strong evidence from the REST simulations carried out in this Chapter

qualitatively to suggest that QBP-1 preferentially adsorbs to quartz over gold. At

both interfaces, the number of contact residues and structure of QBP-1 are similar.

Only the mode of binding differs slightly, with more continuous contact along the

whole length of the sequence and closer backbone-substrate binding being found

upon adsorption to quartz than gold (Section 7.4.2). Without further simulations

to calculate the free energy of adsorption, it is not possible to determine whether

this slightly more concerted adsorption mode of binding to quartz is sufficient to

mediate material selectivity or not. However, when the experimental data in the
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b)

a)

Figure 7.5: The orientation of aromatic residues with respect to a) the α-Quartz
and b) the Au(111) surface. θ was defined as the angle between the normal to
the aromatic plane of each residue and the z direction. Data from the tryptophan
residues W4 (dark) and W11 (light) were plotted in green, whereas that from Y7 was
plotted in purple. Right: Snapshots depicting a trp residue adsorbed onto the α-
Quartz surface in an upright/flat conformation (top/middle) and onto the Au(111)
surface in a flat conformation (bottom).
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literature [Hnilova et al. [2012b,a,c]], suggestive of material selectivity, is analysed

carefully, the results are open to interpretation.

In what follows, each of the experimental studies is reviewed. First, be-

fore turning to more circumstantial evidence, it is worth considering the energetic

data. Hnilova et al. fitted SPR shifts to a Langmuir adsorption isotherm in order

to calculate the free energy of adsorption of QBP-1 to silica, reporting a value of

−8 kcalmol−1 [Hnilova et al. [2012c]]. The raw SPR data from the equivalent exper-

iment at the aqueous gold interface is also reported in the paper and is suggestive

of weaker binding. No binding energy was calculated though from this data. More

recently, Knecht and co workers used QCM to determine the binding affinity of

QBP-1 to polycrystalline gold surfaces, reporting a value of −8.4± 0.3 kcalmol−1

[Tang et al.. [2013]]. The conditions (e.g. presence or absence of buffer, concen-

tration of adsorbate) under which the two studies–SPR and QCM–were carried out

differed, meaning that it is not possible to draw strong conclusions. However, at

first glance, taken together these results indicate that in fact QBP-1 cannot ener-

getically discriminate between the two substrates on binding; evidence supported

by the simulations performed here.

Over the last couple of years the material selectivity of QBP-1 has been in-

ferred a number of times from fusion peptide experiments. In two cases the peptide–

QBP-1· · ·AuBP-1 [Hnilova et al. [2012b,a]], AuBP-1· · ·QBP-1 [Hnilova et al. [2012b]]–

was stamped onto a glass surface. Assuming AuBP-1 has little affinity for quartz,

then the fusion peptide is likely to adhere to the slide via its QBP-1 domain. Subse-

quent exposure to gold, in the form of AuNP, may have been too short (15-30min)

for significant QBP-1–quartz desorption and QBP-1–gold adsorption to be observed,

especially as the evidence in this Chapter together with the two experimental bind-

ing energies suggest that the thermodynamic driving force for the process would be

slight at most. Overall, however, the results from these two fusion peptide experi-

ments [Hnilova et al. [2012b,a]] are not inconsistent with the findings here.

Only the study carried out by Hnilova et al. published in Soft Matter in 2012

is, perhaps, at odds with the simulations performed in this Chapter [Hnilova et al.

[2012c]]. In this case the QBP-1, labelled with the biotinylating agent NSH-biotin,

was exposed to a silica substrate patterned with gold regions. Preferential adsorption

of QBP-1 to silica over gold was inferred by visualisation with streptavidin quantum

dots and high resolution AFM. The whole procedure was carried out in the presence

of PBS buffer, however. The presence of buffers in material-binding peptide assays

has previously been noted to moderate the results (Section 1.3.1 [Brunner et al.

[2004]; Lutz et al. [2005]; Nergiz et al. [2013]]). Not only this, but conjugation to
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the biotintylating agent may have brought about conformational changes in either

QBP-1 itself or its aggregates in solution which favoured silica adsorption over gold.

It is difficult to conclude, therefore, based on the results of this one study, that QBP-

1 is able to discriminate between quartz and gold on binding. Further experiments,

to determine the free energy of adsorption of QBP-1 to quartz and gold under

identical conditions, are required.

7.6 Conclusions

In conclusion, the REST simulations reported in this Chapter suggest that while the

conformation of the QBP-1 peptide itself is almost invariant to its environment–in

solution or adsorbed at the aqueous (100) α-Quartz or Au(111) interfaces–its mode

of adsorption to the two materials, quartz and gold, differs slightly. A significant

proportion of the peptide was found to make moderate contact with the quartz sur-

face, while it was adsorbed to gold via the side-chains only of a number of strong

binding residues. In both cases, extended backbone structures were the most likely.

In terms of overall binding residue contact and conformation, however, there was

little evidence to support the experimental hypothesis of preferential QBP-1–quartz

adsorption. Free energy calculations, like those carried out in Chapter 8, together

with experimental measurements carried out in a consistent manner at both inter-

faces are required to further probe this phenomenon.

In addition, simulations at the aqueous α-Quartz interface performed in this

work, when compared against those in Chapter 5, reveal that the differences between

the CHARMM27 and CHARMM22* FFs are subtle, at least for the QBP-1 peptide.
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Chapter 8

Facet Selectivity of AuBP-1

adsorption onto Gold: A

Replica Exchange with Solute

Tempering Metadynamics

Study.

8.1 Disclaimer

Part of the work reported in this Chapter was carried out by Dr. P. Palafox-

Hernandez. Specifically many of the details associated with setting up the ‘REST’

component of the simulations (number of replicas, effective temperature of each

replica, initial replica peptide conformations and scaled peptide topology file) were

taken from a parallel study reported in reference Tang et al.. [2013] which included

the Au(111) REST MD run mentioned herein. The Au(111) REST metaD simula-

tion was also carried out by Dr. P. Palafox-Hernandez; the latter only was under

my direction–I supplied initial co-ordinate files and the modified code.

The analysis of the data from all simulations, and its presentation in this

Chapter, is my own work.

8.2 Introduction

In this Chapter the FFs derived in Chapter 6 for modelling the adsorption of proteins

to the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces under aqueous conditions
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are used in combination with the REST method [Moors et al. [2011]; Terakawa et al.

[2011]; Wang et al. [2011]]–benchmarked in Chapter 5 for biointerfacial systems–

to investigate whether adsorption of the AuBP-1 [Hnilova et al. [2008]] peptide

could be used to differentiate between these crystallographic planes of gold. Peptide

sequences able to discriminate between different gold surfaces on adsorption are

highly desirable due to their potential for mediating the growth of AuNP with

well-defined tunable morphologies (Section 1.1). Whilst others in the past have

used simulation to investigate the facet selective adsorption of peptides onto gold–

specifically between Au(111) and Au(100)–the reconstructed status of the latter

surface, amongst other things (Section 1.4.2), was neglected. As well as probing

the role that Au(100) surface reconstruction may have on peptide adsorption, the

work in this Chapter aims to build on the qualitative findings from amino-acid

MD simulations at the three aqueous interfaces reported briefly in Section 6.4 and

documented in full in references Wright et al. [2013b,c].

As mentioned in Section 5.5, the affinity of AuBP-1 for gold is qualitatively

stronger than that of QBP-1 for quartz. Preliminary investigations of the former

system (AuBP-1–gold) revealed that, during REST MD simulations, the peptide

remained tightly bound to the interface in the reference replica. The large poten-

tial energy difference between adsorbed and desorbed states led to segmentation

of replicas in effective temperature space, with minimal exchange between the two

regimes (Figure F.1a). The ability of REST to enhance the conformational sam-

pling of AuBP-1 at the aqueous gold interface was thus dimished. In this Chapter,

metaD (Section 2.4.2)–where a small bias was added to the peptide COM–surface

separation–was used in combination with REST to ensure that AuBP-1 was both

bound and unbound to the surface in each replica as the simulation progressed. The

metaD method was primarily used here to enhance conformational sampling within

the scope of REST.

The work in this Chapter is divided into two main segments. First, schemes

for recovering the unbiased distribution of AuBP-1 characteristics at each interface

from the metaD simulations are discussed (Section 8.4); before, second, the physical

insights which can be inferred from this study are presented (Section 8.5).

8.3 Methods

8.3.1 System Details

Both Molecular Dynamics (MD) and metadynamics (metaD) simulations of AuBP-1

(WAGAKRLVLRRE) [Hnilova et al. [2008]], performed here were carried out using
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the software packages PLUMED 1.3 [Bonomi et al. [2009a]] and GROMACS 4.5.5

[Hess et al. [2008]]. The appropriate exchange criterion (Equation 2.30) was added

to the PLUMED code in order to implement Hamiltonian replica exchange metaD–a

procedure not present in standard packages at the time when the work was initi-

ated. Four different systems were considered: the isolated peptide in solution and,

the peptide adsorbed at the aqueous Au(111), Au(100)(1×1) and Au(100)(5×1) in-

terfaces. The first comprised the AuBP-1 peptide solvated by 6605 TIP3P water

molecules in a cubic simulation cell of length 58.28Å. Orthorhombic cells of dimen-

sions 58.60× 60.90× 67.60 Å3, 58.60× 58.60× 67.60 Å3 and 58.60× 58.60× 76.51 Å3

were used for the interfacial simulations carried out at the Au(111), Au(100)(1×1)

and Au(100)(5×1) surfaces, respectively. These were comprised of the AuBP-1 pep-

tide, a gold slab (5/5/9 layers thick) and 6605/6540/6355 TIP3P water molecules.

The protonation state of the peptide at pH 7 was modelled, with 3 Cl− counterions

added to balance the charge. The depth of water between the top surface of the slab

and the bottom surface of its image was comparable in all three sets of interfacial

simulations, being ∼60 Å.

In all simulations, CHARMM22* [Piana et al. [2011]] was chosen to model

the peptide, while the modified TIP3P [Jorgensen et al. [1983b]; Neria et al. [1996]]

potential, with which the bio-organic CHARMM FF [MacKerell et al. [1998]] has

been harmonised, was used to represent water. Bond lengths within water were

constrained by the SETTLE algorithm [Miyamoto and Kollman [1992]]. Peptide-

gold interactions at each of the different aqueous gold interfaces were described by

GolP-CHARMM [Wright et al. [2013b,c]]. In this work the interfacial simulation of

the Au(100)(5×1) surface used a gold slab with a lateral footprint of dimension 4× 5,

and approximately double thickness, compared to the basic structural unit of the

surface in the FF [Wright et al. [2013c]]. Simulations were carried out in the NV T

ensemble with the temperature maintained at 300K using a Nosé-Hoover thermostat

[Nosé [1984]; Hoover [1985]]. In all cases, the cell dimension in the z dimension was

adjusted prior to simulation to ensure that the density of liquid water far from both

the substrate and peptide was consistent with that for TIP3P water simulated under

the same conditions in an NPT ensemble at a pressure of 1 bar. Newton’s equations

of motion were solved using the Leapfrog algorithm [Hockney et al. [1974]] with an

integration time-step of 1 fs; co-ordinates were saved every 1 ps. PME electrostatic

summation was truncated at 11 Å, while a force-switched cut-off starting at 9 Å and

ending at 10 Å was used for LJ non-bonded interactions.
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8.3.2 Replica Exchange with Solute Tempering

REST simulations were set up in a manner identical to that employed in Chapter 7.

Briefly, a total of 16 replicas were used to span an effective temperature range of 300-

433K (300.00, 305.35, 310.89, 317.25, 323.88, 331.57, 339.88, 349.11, 358.07, 367.37,

380.98, 389.80, 398.22, 406.85, 419.97, 433.00K). Each replica was initially popu-

lated with AuBP-1 present in a different conformation; peptide structures were con-

structed by hand to feature common folded backbone secondary structural motifs.

All REST simulations featured the same set of internal-peptide and peptide-gold

(orientation with respect to and distance from the gold surface) starting conforma-

tions. The peptide was initially close to the top surface of the gold slab in 13 out of

the 16 replicas, in the centre of the cell in 2 and close to the nearest periodic image

of the bottom face in one. Before initiating REST, starting configurations were

equilibrated by a short MD simulation, of duration 1 ns, at their target potentials.

No exchange moves were attempted and no bias was added to the collective vari-

able during this time. In the subsequent production simulations, exchanges between

neighbouring replicas were attempted every 1 ps.

The results of three REST metaD and two REST MD simulations are re-

ported in this Chapter. The CV chosen for the interfacial metaD runs was the

position of the c.o.m. of the peptide in the z dimension (the direction normal to

the gold surface). Small Gaussians of width, σ=0.1 Å, and height, w=0.1 kJmol−1,

were added every 0.5 ps along the direction of the CV. MetaD simulations were run

for 100 ns, making a total of 1.6µs of dynamics per interface. All replicas were

mobile throughout the whole of effective temperature space (See Figure F.1b for

trajectories along the effective temperature ladder of representative replicas in each

simulation). The two REST MD simulations–one of AuBP-1 in solution and the

other of the peptide at the aqueous Au(111) interface–were carried out for compar-

ative purposes and were run for 15 ns only.

8.3.3 Analysis

Like Chapter 7, analysis of the simulations reported herein was oriented to help

answer two key questions: 1) how does the structure of AuBP-1 differ when ad-

sorbed to one crystallographic plane of gold compared to another and 2) is there

evidence for energetic and/or spatial selectivity in adsorption between the aqueous

Au(111) and Au(100) interfaces. Unless otherwise stated, the entire 100 ns REST

metaD trajectory of the reference replica (the replica in which the effective and ac-

tual simulation temperatures are identical) was analysed in all three cases–Au(111),
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Au(100)(1×1) and Au(100)(5×1). It is recognised that both adsorbed and desorbed

states of AuBP-1 are sampled in these metaD simulations. The primary aim of this

work was to investigate the former (surface-bound conformations) only. This can

be achieved by reweighting the bias added to the CV connecting the two states in

a suitable way (Section 8.4). The advantage of this method is that it circumvents

the need for an arbitrarily chosen cut-off to be used to mark the transition from

the peptide being adsorbed, to free in solution. Analysis of the two REST MD

simulations, where presented, was performed on the final 5 ns of each run only.

As before, a combination of secondary structural analysis based on φ/ψ

phase-space depicted in a Ramachandran plot (Section 2.6) and structure clustering

was used to probe the potential for AuBP-1 to fold in a different manner on ad-

sorption to Au(111) and Au(100). In the latter case–structure clustering–however,

it was not appropriate here to use the Daura cluster algorithm [Daura et al. [1999]]

to analyse data from the metaD simulations. Each structure within the pool of

structures identified over the entire trajectory (Step 1, Section 2.5.2) has a different

weight, determined by the metaD bias added to the simulation at the time at which

the structure was sampled. These different weights must be accounted for, both

when identifying reference structures (cluster centroids, in the case of the Daura

algorithm) and when assigning structures to clusters.

An alternative strategy for grouping together the similar conformations of

AuBP-1 sampled during a simulation is to use a pre-defined set of reference struc-

tures. In this study 9 distinct conformations of AuBP-1 were identified: 8 from the

REST MD runs and 1 unique structure–the latter found only to feature significantly

after the more extensive metaD simulations. Specifically, the Daura algorithm was

used to cluster structures sampled in the final stages of the REST MD simulations of

AuBP-1 in solution and at the Au(111) interface. As in Chapters 5 and 7, data from

the unbiased reference replica only was used, meaning that the assumption that all

structures had a uniform weight was justified. A RMSD peptide backbone position

cut-off of 3 Å was employed. Across the two simulations, the centroid structures of

8 clusters–S2, S3, S4, S6 (A5), A1 (S1), A2 (S5), A3 and A4 (where Ax and Sx are

the xth most populated clusters of the Au(111) and solution runs respectively)–were

distinct (by which I mean that the RMSD in peptide backbone atoms between any

pair was greater than the cut-off used in the clustering). Hereafter, these struc-

tures are labelled a-h (Figure 8.1). Broadly, solution derived conformations a-d are

more globular than the extended structures e-h found to dominate at the Au(111)

interface in the REST MD simulation. The ninth structure, i, is also extended in

nature.
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Figure 8.1: Reference structures a-i used to cluster conformations of AuBP-1 at the
aqueous Au(111), Au(100)(1×1) and Au(100)(5×1) interfaces, during the REST
metaD simulations.
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Akin to Chapter 7, the residues and motifs (dyads and triads) which were

involved in binding AuBP-1 to an interface were identified using a set of criteria

based on side-chain functional group surface separations. However, since the pep-

tide COM–gold distance was the CV biased in the metaD simulations it was not

appropriate to use the trajectory-averaged distribution of side-chain–surface sepa-

rations, as before, to determine cut-off distances for adsorbed states. Instead, the

maximum distance for which a residue could physically be interpreted as being in

direct contact with the gold atoms in the upper-most layer of each surface has been

used. This distance was defined as the Au-X (X=side-chain functional group heavy

atom as stated in Table F.1) van der Waals equilibrium separation plus 1 Å. The

binding propensity of a residue was classed as one of three things based on its per-

centage likelihood of being adsorbed to an interface: 26-50% ‘moderate’, 51-75%

‘significant’ and 76-100% ‘strong’.

8.4 Schemes for Reweighting Structural Data from a

Metadynamics Simulation

While in recent years metaD has become a more frequently employed technique

within the realm of molecular simulation, its use thus far reported in the literature

has mainly been focussed on either accelerating rare event sampling (for example

simulating the crystallisation of ice [Quigley and Rodger [2008]]) or for calculat-

ing free energy landscapes [Jambeck and Lyubartsev [2013]; Schneider and Ciacchi

[2012]]. Analysis of the structural data generated by such simulations has largely

been neglected due to the difficulties in relating the biased metaD trajectory to

the properties of the system in the ensemble of interest. In this Section 6 different

reweighting schemes are described and subsequently evaluated. Schemes 1-4, derived

here, are based on simple manipulation of the metaD bias added to the CV, s, at the

time in the simulation when a frame is sampled, V(s(X(t)), t) (Equation 2.28, X(t)

are the co-ordinates of the system at time t). The reweighting factor identified by

these schemes, W(X(t), t), is used directly in Equation 2.31 to recover the unbiased

probability distribution of an observable. Strategies 5 and 6, are methods published

by Tiana and Bonomi et al., respectively, for reweighting normal [Tiana [2008]] and

well-tempered [Bonomi et al. [2009b]] metaD simulations.
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8.4.1 Scheme 1: Total bias ‘V’

In this, the simplest case, the total bias added to the CV, up until the time when a

structure is sampled, is used for reweighting. i.e.

W (X(t), t) = V (s(X(t)), t) (8.1)

where V(s(X(t)), t) is defined in Equation 2.28.

8.4.2 Scheme 2: Relative Bias ‘∆V’

One of the problems of reweighting data from a metaD simulation using Scheme 1

is that the bias added, V(s(X(t)), t), increases continuously with time even after

free energy differences between important states have converged. Thus, the weight

given to two identical structures, sampled at different stages during a trajectory, is

not the same–the second occurrence is given more importance than the first.

In theory, after convergence, the shape of a free energy profile is independent

of time. The weight of a structure can therefore be related to its corresponding

relative bias, ∆V(s(X(t)), t), defined as:

∆V (s(X(t)), t) = V (s(X(t)), t)− V (s(X0(t)), t) (8.2)

where V(s(X0(t)), t) is the bias added to a reference region (corresponding to sys-

tem co-ordinates X0) along the CV. For the biointerfacial systems considered here,

V(s(X0(t)), t) was chosen to be the average bias added to the region of CV-space

(peptide COM–gold separation) corresponding to the 5 Å either side of the mid-

point between the gold slab and the periodic image of it nearest neighbour. Since

the reference bias changes with time and must be defined in some discrete manner,

there is a possibility that small statistical errors will be introduced into the weight

given to a structure determined using this strategy.

8.4.3 Scheme 3: Relative Bias ‘∆V equilib’

For Scheme 2, data from the entire metaD trajectory was analysed using the reweight-

ing factor W(X(t), t) = ∆V(s(X(t)), t). As stated above, the physical basis for using

∆V, rather than V, to reweight structures relies on convergence in the free energy

profile of the system of interest. There is evidence to suggest that this criterion may

not strictly have been met in any of the runs performed here, even within the 100 ns

simulation time-frame probed (Section 8.5.1). Before convergence, and especially

in the initial stages of a simulation, the bias V(s(X(t)), t) does not grow uniformly
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along the CV. The peptide was initially placed adjacent to the upper facet of the

gold slab in the majority of replicas. Thus, the simulations sample the region of CV

space corresponding to the free energy minimum close to this surface extensively at

the start of each trajectory; the bias added to the reference region V(s(X0(t)), t)

grows at a much slower rate during this period. As a consequence, structures sam-

pled at the start of a simulation will be given more weight in the final results than

those visited later–the opposite bias to that inherent in Scheme 1. In an attempt to

overcome this shortcoming of Scheme 2, a third Scheme, ‘∆V equilib’, was tested.

Schemes 2 and 3 differ only in the number of frames used for analysis–data from

only the second half of the trajectory (t =50-100 ns) was employed in the latter

instance. From Figure F.3 it can be seen that the free energy of AuBP-1 adsorption

onto all three surfaces was approximately stationary over the majority of this later

time period.

8.4.4 Scheme 4: ‘Time period’

To prevent frames sampled during the early/late stages of a metaD trajectory from

contributing significantly more to the final results, based on time alone, then it

may be more appropriate to calculate the unbiased probability of an observable,

Obs, in small intervals of time; structures could be weighted and normalised within

each time segment using the average bias potential for the interval. By substituting

B((X(t)))=exp{W/kT} into Equation 2.31, the unbiased ensemble average value of

Obs, < Obs >, is:

< Obs >=
< B(X(t))Obs(X(t)) >

< B(X(t)) >
(8.3)

which can be split up into the sum over time intervals t′=1–n:

< Obs >=
1

∑n
t′=1Rt′

(

R1

∫ t1
0

∫

Obs(X(t′), t′)B̄(X)dXdt′
∫ t1
0

∫

B̄(X)dXdt′
+R2

∫ t2
t1

∫

Obs(X(t′), t′)B̄(X) dXdt′
∫ t2
t1

∫

B̄(X) dXdt′
+ ...

)

(8.4)

This scheme, labelled ‘time period’ (or ‘tp’) was implemented usingB(X(t))=exp{V (s(X(t)), t)/kT}
and a time interval of 1 ns. Specifically the work flow was as follows:

1. Calculate the reweighted average of the observable within each segment of

time Obst′ , t=t1 to t=t2. To do this, the weight given to a frame at time= t

was set equal to exp{Vt2(s(X(t)), t)/kT} (i.e. the bias added to the CV being

sampled at time t determined using the bias potential generated at the end

158



of the time segment, time t2). Obst′ was normalised in each time segment to

counterbalance the fact that the total bias, V(s(X(t)), t), grows continuously

during a simulation.

2. The contribution of the average value of the observable over an individual

time period, Obst′ , to the overall trajectory-averaged value, < Obs >, was

determined by the range of the CV being sampled in the time interval, t’.

Time periods during which the simulation samples the CV close to a free

energy minimum extensively should be given more importance than those

during which it primarily visits higher energy regions. The weight given to

each time period thus requires prior knowledge of the free energy profile of the

system along the direction of the biased CV, G(s(X)). The average weight

given to a time interval, R(t′), was:

R(t′) =

∑t=t2
t=t1 exp(−G(s(X(t)))/kT )

t2 − t1
(8.5)

Two variants of the reweighting Scheme 4–differing only in the definition of

G(s(X))–have been tested here. The first, ‘time period 1’ (or ‘tp1’), employed

the free energy profile generated after 100 ns of simulation as the best estimate

of G(s(X)), labelled Gf1(s(X)). As discussed in Section 8.5.1, for complex

systems such as those considered in this study, both the slow diffusion of the

peptide and convergence in sampling along directions on the PEL orthogonal

to the biased CV, introduce errors into the free energy profile derived in this

manner.

3. Within the ‘time period’ reweighting method, however, the free energy profile

a system can be improved in a self-consistent manner. Using the weights,

B(X(t)) derived from iteration i, the CV biased in a simulation can be treated

as an observable. Its unbiased probability distribution, P(s(X)) can therefore

be calculated from the simulation data. Inverting P(s(X)) according to the

standard relationship:

G = −kT ln(P (X)) (8.6)

generates Gfi+1
(s(X)), an improved free energy profile which can be fed-back

into step 2, above.

4. After 5 rounds of iterations, the free energy profiles of the three systems investi-

gated in this work–AuBP-1 adsorption at the aqueous Au(111), Au(100)(1×1)
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and Au(100)(5×1) interfaces–were observed to converge. The 5th generation

profile, Gf5(X), was used in the second variant of the reweighting Scheme 4,

‘time period 5’ (also referred to as ‘tp5’).

8.4.5 Scheme 5: Tiana method

In 2008 Tiana proposed a method whereby the microscopic ensemble average value

of a variable y, orthogonal to the CV biased in a metaD simulation (x), can be

estimated. The reweighting scheme is based on the fundamental assumption that

barriers in the PEL of the system projected in the y plane are small. Between succes-

sive updates to the bias potential, the system explores all accessible conformational

phase-space in the y direction, on a given range of x. The algorithm, outlined in

detail in Reference Tiana [2008], requires knowledge of x, y, the potential energy of

the entire system, U, and metaD bias, V, each time the bias is updated and at all

time intervals in between. Briefly, it operates as follows:

• For each interval of time between successive updates of the metaD bias po-

tential, t, the partition function of the system corresponding to the range of

x sampled, Zt, can be approximated from average Boltzmann factor of the

energy term (U+Vt):

Zt = Ω(At) < exp(−(U + Vt)/kT ) >At (8.7)

where At is the largest range of connected x sampled in the time period and

Ω(At) is the ‘volume’ of At (taken to be proportional to At).

• By dividing the entire range of x visited during a simulation into bins, Λi

(= xi+1−xi), the overall partition function for the system, Z, can be calculated

at the end of the trajectory. The product Zt < exp{Vt/kT} >At contributes

to Z if the range of x sampled within the time interval t, At, includes Λi (i.e.

t : Λi ⊂ At) by the expression:

Z =
∑

i

1

ns(Λi)

∑

t:Λi⊂At

Zt < exp(Vt/kT ) >At (8.8)

where ns(Λi) is the number of unique time intervals in which the region of

x-space corresponding to Λi is visited during a simulation.

• Using the partition functions–both partial and full versions–calculated in Equa-

tions 8.7 and 8.8 the unbiased ensemble average < y > can be estimated:
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< y >=
1

Z

∑

i

1

ns(Λi)

∑

t:Λi⊂At

Zt < yexp(Vt/kT ) >At (8.9)

Tiana tested the algorithm on two ‘toy’ 2-D systems–the second of which differed

from the first only in the addition of a ‘roughness’ factor added in the y dimension–as

well as using it to estimate the mean ψ dihedral angle of alanine dipeptide in vacuum

from a metaD simulation in which the φ angle was biased [Tiana [2008]]. In the

case of the simplest model system, results predicted by the reweighting scheme were

compared to analytical solutions. Two conclusions were drawn: first, the accuracy

of the scheme decreased with increasing temperature; and second, the algorithm

failed if the length and number of points sampled in each time interval between

successive updates of the metaD bias was too small. In turn, to maintain the same

degree of accuracy at two different temperatures, a longer time interval had to be

employed in the hotter case. To date, there are no reports in the literature of this

reweighting scheme, proposed 5 years ago, being applied to more complex systems,

such as those under aqueous conditions.

8.4.6 Scheme 6: Bonomi Method

Scheme 6, derived by Bonomi et al., is designed for reweighting CVs orthogonal to

those to which the metaD bias is added during a well-tempered metaD simulation

[Bonomi et al. [2009b]]. Well-tempered metaD is a recent variant of metaD where the

height, w, of a Gaussian hill added to the biased CV (Equation 2.28) incrementally

decreases with time [Barducci et al. [2008]] according to:

w = ω0τexp{−V (s(s(X(t))), t)/∆T} (8.10)

where ω0 is the initial bias deposition rate, τ the frequency with which Gaussian

hills are added during a simulation and ∆T a temperature representing the well-

tempered bias factor. In contrast to normal metaD, the total bias, V(s(X(t)), t),

thus, does not continue to grow as a simulation progresses, but converges to a time

independent limit of:

V (s(X(t)), t→ ∞) → − ∆T

∆T + T
G(s(X)) (8.11)

where T is the system temperature. Assuming V(s(X(t)) evolves adiabatically (i.e.

that the rate of growth of V is independent of s(X)) then Parrinello and co-workers

suggested that the rate at which the biased distribution of an observable changes,

Pbiased(Obs, t+∆t), can be related to the rate of change of V, V̇ , by the approximate
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expression:

Pbiased(Obs, t+∆t) = exp{−(V̇ (s(Obs), t)− < V̇ (s, t) >)∆t/kT}Pbiased(Obs, t)

(8.12)

From Pbiased(Obs, t) and V(s(X(t)), t), the unbiased probability distribution Punbiased

can be recovered (Equation 2.31). The algorithm needed to carry out this reweight-

ing procedure is distributed as part of the PLUMED software package [Bonomi

et al. [2009a]] and can be implemented when post-processing a well-tempered metaD

simulation. Whilst this scheme has been peer-reviewed and is now an established

method for reweighting well-tempered metaD simulations, some of the assumptions–

foremost, V(s(X(t)) adiabaticity–upon which it is based, undermine its suitability

for analysising the REST metaD runs carried out in this Chapter.

8.4.7 Evaluation

To evaluate each of the reweighting schemes outlined above, a number of properties

of the three systems–AuBP-1 adsorbed at the aqueous Au(111), Au(100)(1×1) and

Au(100)(5×1) interfaces–were calculated and the results compared. As expected,

due to the inherent propensity of some schemes to exponentially weight structures

sampled earlier/later in a metaD trajectory greater (for example, Schemes 2 (∆V)

and 1 (V), respectively) the conclusions which could be drawn from such findings

were dependent on the method employed. In what follows, the propensity for R10

and R11 to directly bind to the Au(100)(1×1) surface has been used as an example

(Table 8.1).

raw 1 (V) 2 (∆V) 3 (∆V equilib) 4 tp1 4 tp5 6 (Bonomia)
% % % % % % %

R10 11.8 70.4 100.0 60.5 54.8 57.0 20.2
R11 13.9 18.0 90.3 14.2 37.5 46.9 23.0

Table 8.1: Percentage of frames in which residues R10 and R11 make direct contact
with the Au(100)(1×1) surface under aqueous conditions, calculated using the dif-
ferent reweighting schemes outlined above. ‘raw’ corresponds to bias data extracted
from the metaD simulation without reweighting;a reference Bonomi et al. [2009b].
No data is available for Scheme 5 (Tiana [Tiana [2008]]) due to the numerical insta-
bility of the algorithm.

As expected, due to the inherent propensity of Scheme 1, and by selecting

frames from the second half of the trajectory for analysis only in Scheme 3, there is

qualitative agreement between the results of the two methods: R10 displays signifi-
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cantly greater affinity for the Au(100)(1×1) surface than R11. In contrast, analysis

using Scheme 2–which implicitly favours initial structures–suggests that both R10

and R11 are important in mediating strong gold binding. After inspecting the

evolution ∆V with time during this simulation (Figure F.2b), it was possible to

observe two phases–t< 30 ns and t> 30 ns–during the second of which ∆V was ap-

proximately constant. Consistent with this trend, the binding propensities of R10

and R11 were almost invariant when the range of time frames selected in Scheme

3 was extended from t =50-100 ns to t =30-100 ns (R10/R11 were bound to the

Au(100)(1×1) surface in 58.8/13.9% of frames respectively).

Analysis of the raw data suggests differences exist in the mode of AuBP-1

adsorption to the Au(100)(1×1) surface between the two time zones, t</> 30 ns.

The effect is two-fold. Firstly, the ratio of frames in which R10 is adsorbed and R11

desorbed to that in which R10/R11 are unbound/bound is ∼3:2 in the later ‘phase’.

Secondly, during this time, the peptide COM–surface separation is larger on average

for the latter set of conformations (R10 desorbed and R11 adsorbed to the surface),

decreasing their weighting in the analysis. It is this second binding characteristic,

rather than the proportion of frames in the raw data which feature R10/R11 as the

single tethering point, which differs in the initial phases. Ideally, the two modes of

binding should be weighted equally, or at least not unequally in a manner biased

solely on the time point in the simulation at which they were sampled. Reweighting

Schemes 1-3 all fail in this regard and therefore were not considered for the final

data analysis. It must also be noted that the agreement between Schemes 1 and

3 in terms of the physical results that they predicted was only reasonable in the

case of the Au(100)(1×1) interface. As can be observed from Figures F.2a and c,

the magnitude of ∆V remains large and transient for the majority of the metaD

simulations at the Au(111) and Au(100)(5×1) surfaces. Thus, in these two cases,

while Scheme 1 inherently gives more importance to frames in the final 10-20 ns of

the trajectory, Scheme 3 weights conformations at the beginning of the time period

considered (t=50ns) greater, leading to discrepancies.

It was not possible to implement Scheme 5, the reweighting method pro-

posed by Tiana [Tiana [2008]], to the complex bio-interfacial systems considered

here; fluctuations in the potential energy, U, on the order of 4000 kJmol−1 make the

algorithm numerically unstable (Equations 8.7 and 8.8). This shortcoming of the

scheme has been noted previously [Bonomi et al. [2009b]]. In addition, the funda-

mental assumption on which the algorithm is based–that phase space orthogonal to

the biased CV is extensively sampled between updates to the bias potential–was not

met. In part this was due to the manner in which the simulations were conducted,
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with the metaD bias being added more frequently (0.5 ps) than frames being saved

for analysis (1 ps). However, even had the metaD bias been evolved much more

slowly, the complexity of the system, again, would have most likely prevented this

criterion from being satisfied [Jambeck and Lyubartsev [2013]].

Whilst the reweighting algorithm for analysing well-tempered metaD sim-

ulations, Scheme 6 [Bonomi et al. [2009b]], is numerically stable, like Scheme 5,

insufficient data between successive updates of the metaD bias potential was avail-

able (due to the way in which the simulations were conducted) to justifiably use it,

in its current form. In addition, as stated previously, the method is based on the

assumption of V(s(X(t)) adiabaticity. Whilst this criterion is satisfied as t→ ∞
for a well-tempered metaD simulation, it is not held in the case of normal metaD

prior to convergence in the free energy profile. Thus, reweighting Scheme 6 was

also thought not to be suitable for physically interpreting the results of the REST

metaD simulations carried out here.

Disregarding Schemes 1-3 and 5-6, leaves only the two variants of the ‘Time

Period’ Scheme 4: tp1 and tp5. The advantage of this method is that, depending on

the accuracy of the approximate free energy profile on which data from individual

time intervals is weighted, the ‘value’ given to each peptide structure is independent

of the time at which it was sampled. For modelling AuBP-1 adsorption to the

aqueous Au(100)(1×1) interface, employing either the 1st or 5th generation free

energy profile (Gf1 or Gf5, respectively, Figure 8.2b) in the reweighting scheme has

only a marginal influence on the final results (Table 8.1). For the other two surfaces,

however, where the profiles at the end of the metaD simulations are less developed,

the differences are more pronounced. Ideally, all three simulations would be run

until ∆G(s(X(t)) is invariant with time (or at least, as discussed in Section 8.5.1,

the profile averaged over different time intervals at the end of the simulation was

stationary). Without access to unlimited computational resource, such a demand is

presently not feasible.

The self-consistently derived 5th generation Gf5 is perhaps a better estimate

of the exact free energy profile of the system along the direction of the CV than

Gf1 for all three systems. By being constructed from the unbiased distribution of

the CV throughout the entire trajectory, the issue associated with the region of

phase space closest to the top/bottom surface of the gold slab being sampled more

in the early/late stages of the trajectories, due to the way in which the simulations

were initially set up, is overcome. In particular, for Au(111) and Au(100)(5×1),

Gf1, due to this sampling issue, features a deeper/broader free energy minimum

close to the bottom gold surface of the nearest periodic image of the slab (Figure
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Figure 8.2: Free Energy Profiles Gf1 and Gf5 of AuBP-1 adsorbed at the aqueous
a) Au(111), b) Au(100)(1×1) and c) Au(100)(5×1) interfaces.

8.2a, c). As a consequence, time intervals during which this region of phase-space

was more extensively sampled (the majority of which fall in the second half of the

trajectory) are given more importance than those during which the symmetrically

equivalent region–the free energy minimum close to the top surface of the gold slab–

was primarily visited. Thus, a slight bias towards frames at the end of the simulation

is introduced into the reweighting scheme ‘tp1’. The symmetry of the simulation

cells is, on the whole, better represented by Gf5 than Gf1 (Figure 8.2). The time

dependent unequal weighting of peptide structures in ‘tp1’ scheme is therefore to

corrected for in scheme ‘tp5’.

After careful consideration of all the reweighting options outlined in this

Section, Scheme 4 ‘tp5’ was the most favourable. It has therefore been used in

all analysis of the three REST metaD simulations reported hereafter. The number

of different methods for interpreting the structural information generated during

a biased metaD trajectory investigated here was not exhaustive. In addition, it is

anticipated that as the use of metaD as a simulation technique–either in combination

with replica exchange methods or in isolation–becomes more widespread, motivation

in the scientific community to develop better and/or more efficient protocols for

eliciting as much information as possible from the trajectories will increase.

As well as the reweighting schemes discussed above, there are two alternative
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approaches which could have been adopted here:

1. Bound frames: The CV (peptide COM–surface separation distance) could

be divided into ‘adsorption zones’ (e.g. 0-7.5 Å, 7.5-10.0 Å, 10.0-15.0 Å, 15.0-

20.0 Å and bulk water) and frames from each metaD simulation binned ac-

cordingly. By analysing the physical characteristics of the peptide in each

zone separately, the properties of AuBP-1 when in close contact with the

Au(111) surface could be compared and contrasted with those when adjacent

to Au(100)(1×1) etc. Using ‘raw’ data makes the assumption that the free en-

ergy profile of the peptide is constant within each adsorption zone–something

which is only approximately true at distances far from the interface. A further

problem with this method is the use of arbitrarily chosen cut-off distances to

demark between the adsorbed and desorbed states of AuBP-1.

2. Further Simulation: The biased PEL of each system built up over the

100 ns of REST metaD simulation carried out here could be used as the ini-

tial PEL employed in subsequent REST MD runs. Data from the extended

portion of the simulations, where no additional metaD bias is added, could

be reweighted in a straight forward manner using Equation 2.31. Whilst this

two step protocol–run a REST metaD simulation until the system samples

all relevant states along the biased CV with equal likelihood and then use the

resulting biased PEL in an extended REST MD simulation–is both simple and

can be used to recover information about the Boltzmann weighted ensemble

of states of the system, it is not computationally efficient. Not only is all the

structural information generated in the first, REST metaD, simulation lost,

but the second, REST MD, simulation must be of significant length to enable

all parts of, what is an essentially flat PEL, to be exhaustively sampled.

8.5 Results

8.5.1 Binding Strength

While the primary aim of employing metaD in combination with REST in this

study was to overcome the issues associated with strong surface adsorption hindering

conformational sampling of the REST MD method (Section 5.4), rather than to

accurately calculate the free energy of adsorption of AuBP-1 to the three different

crystallographic planes of gold, it is none-the-less interesting to consider whether

there is a trend in the relative binding affinities of the peptide to the different

surfaces. First it is noted that even after 100 ns of simulation neither the shape of
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the adsorption free energy profile (Figure 8.3) nor the magnitude of the free energy

of adsorption (Figure F.3) has ‘converged’. (By ‘converged’ I mean stationary–

within the limit of small fluctuations on the order of w=0.1 kJmol−1 (the height of

a Gaussian hill)–with time.) Whether strict ‘convergence’ within computationally

feasible simulation time scales, for complex systems such as those considered here, is

possible, is questionable. Certainly in this instance the simulations were setup in a

non-optimal manner, with the peptide initially clustered to one region of the CV in

the majority of replicas. Not only must the metaD bias be built up sufficiently in all

replicas for the PEL to be essentially flat, but sufficient time must have elapsed for a

random walk on this landscape to disperse these clustered replicas across CV space,

for the adsorption profiles to begin to converge. While progress towards satisfiying

the first of these conditions was made during the simulations reported here, the time

scale for the second is much longer.

As highlighted by the recent paper by Jambeck and Lyubartsev [Jambeck and

Lyubartsev [2013]], the inability to adequately sample all of conformational space

orthogonal to a biased CV within the time period of a simulation will also hinder con-

vergence of a metaD run. In the case of the biointerfacial systems modelled here, it

is the inter-conversion between different modes of peptide adsorption, in particular,

which could impeed convergence. For instance, if the transition between two binding

states of AuBP-1 is only possible by the following mechanism–complete desorption,

re-folding/orientation in solution and readsorption in an alternative manner–then

the time scale for this process would be slow.

As stated in Section 8.4.7, the symmetrical nature of the CV in the REST

metaD simulations reported here means that two estimates of the binding affinity

of AuBP-1 for the crystallographic plane in question–the top and bottom surface of

the gold slab and its periodic neighbour, respectively–can be attained per run. A

simple estimate of the uncertainty in the binding free energy–adopted herein–at a

given interface, is thus the difference between these two values. Others in the past

have calculated this error boundary as the maximum fluctuation of ∆Gads
min(t) over

the final stages of a metaD run, Tf , away from its average value, < ∆Gads
min >Tf

,

taken over the same time period [Schneider and Ciacchi [2012]]. For AuBP-1–gold

adsorption the magnitude of the error estimated by the two different methods was

comparable.

Independent of the adsorption free energy profile used–∆Gf1 or ∆Gf5–there was

the following (statistically significant) energetic trend:

Au(111) > Au(100)(5×1) > Au(100)(1×1)
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a)

b)

c)

Figure 8.3: The free energy of adsorption profile for AuBP-1 binding at the aqueous
a) Au(111), b) Au(100)(1×1) and c) Au(100)(5×1) interfaces. Profiles shown after
60, 70, 80, 90 and 100 ns of metaD simulation.
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∆Gf1/ kJmol−1 ∆Gf5/ kJmol−1

Au(111) −80.3± 37.1 −55.1± 1.5
Au(100)(1×1) −21.0± 2.4 −13.5± 7.8
Au(100)(5×1) −31.8± 2.7 −43.5± 7.8

Table 8.2: Free energy of adsorption of AuBP-1 at the aqueous Au(111),
Au(100)(1×1) and Au(100)(5×1) interfaces estimated using both the ∆Gf1 and
∆Gf5 binding profiles (Section 8.4.4 and Figure 8.2).

i.e. AuBP-1 adsorbs more strongly to Au(111) than Au(100) under aqueous condi-

tions, irrespective of the reconstructed status of the latter surface. These conclusions

are consistent with the previous work of Heinz and co-workers [Heinz et al. [2009,

2010]; Yu et al. [2010, 2012]] who modelled peptide adsorption at the native form

of the two aqueous interfaces using the CVFF/CHARMM-METAL FF [Heinz et al.

[2008]; Pandey et al. [2009]; Feng et al. [2011]]. However, they also confirm the

hypothesis put forward on the basis of MD simulations employing GolP-CHARMM

[Wright et al. [2013b,c]] in which the characteristics of amino-acids bound to the

Au(100)(1×1) and Au(100)(5×1) surface were compared, Section 6.4 [Wright et al.

[2013c]]. Namely, that peptides have stronger affinity for the reconstructed form

of the surface, than native, under aqueous conditions. Therefore, whilst seemingly

inline with current opinion in the literature, this study–the first to investigate trends

in the free energy of peptide–gold binding at different crystallographic planes of the

metal–adds significantly to scientific knowledge in a number of ways:

• First, the exact structure of Au(100) faces–native or reconstructed–present on

the surface of a AuNP has an important influence on the energetic selectivity

of binding between Au(100) and Au(111). In the limit of planar interfaces, it

is known that the Au(100)-hex structure is the energetically most favourable

under experimental conditions. A simple model for Au(100) structure–AuNP

growth might be a gradual reduction in the surface energy of the reconstructed

form of the surface, relative to the native, as overall particle size increases. In

terms of peptide adsorption (assuming that the biomolecule binding in itself

does not alter the relative surface energies of the native and reconstructed

forms of Au(100)), then Au(111)/Au(100) selectivity would decrease with NP

size. This potentially could have consequences for using peptides to mediate

shape-selective AuNP synthesis, especially in the realm of larger NPs.

• Second, differential binding of AuBP-1 between Au(111) and Au(100)(5×1) is

contary to the ‘epitaxial match’ mechanism of peptide–gold adsorption pro-

posed by Heinz et al. [Heinz et al. [2009]]. Following his conjecture, adsorption
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to the two interfaces would be comparable since in both cases the surface atoms

are arranged hexagonally.

Finally, as both a benchmark of the ‘convergence’ of the metaD simulations

performed in this Chapter and the GolP-CHARMM FF derived in Chapter 6, it is

interesting to compare these calculated binding affinities for AuBP-1–gold adsorp-

tion with experiment. The latter, −8.9 kcal± 0.2mol−1 (−37.4 kJ± 0.8mol−1), was

determined from SPR measurements of the peptide (in phosphate buffer) bound to

a polycrystalline gold surface [Hnilova et al. [2008]]. While the exact composition

of the surface probed experimentally is unknown, it is reasonable to suppose that it

primarily featured the Au(111) interface, the lowest energy crystallographic plane

of gold. The slightly stronger affinity of AuBP-1 for Au(111) calculated here can

in part be accounted for by insufficient sampling in the region of bulk water, mid-

way between the gold slab and it nearest period neighbour, evidenced by a lack of

‘convergence’ in the corresponding free energy profile (Figures 8.3a, F.3a). Other

reasons for the discrepancy between the two values–experiment and calculated–could

include: the presence of surface defects and grain boundaries experimentally, not

included in the computational model; contributions from binding to the Au(100)

and other higher energy crystallographic planes of gold; and a higher concentration

of AuBP-1 at the gold surface in experiment resulting in electrostatic interactions

between adjacent bound peptides becoming significant. Despite these caveats, it

it important to note that the overall agreement between experiment and theory is

good, with both binding affinities being of the same order of magnitude. If the

relationship between potential and free energy of adsorption is linear for both GolP-

CHARMM and CHARMM-METAL, then based on the results of amino-acid MD

simulations [Feng et al. [2011]; Wright et al. [2013b]], it can be predicted that the

latter FF would overestimate AuBP-1 binding by an additional factor of four.

In the following analysis, the possible origin for this differential adsorption

of AuBP-1 to different gold surfaces has been probed.

8.5.2 Cluster Analysis

At all three aqueous gold interfaces AuBP-1 is predominantly present in an extended

structure corresponding to reference clusters e and f (Table F.2, Figure 8.1). In con-

trast to solution, the peptide becomes conformationally restricted upon adsorption,

as evidenced by a less even distribution in the population of the 9 different clus-

ters (Table F.2). An analogous finding for QBP-1 upon adsorption to either (100)

α-Quartz or Au(111) is reported in Sections 5.3.2 and 7.4.1. These results suggest

170



that, in terms of its most likely structure, AuBP-1 undergoes adsorption-induced

chain extension when bound to any planar gold interface, independent of the exact

spatial arrangement of Au atoms in the surface.

8.5.3 Secondary Structure

While the most likely interfacial conformation of AuBP-1 is independent of the spe-

cific crystallographic plane of gold to which the peptide is adsorbed, there was a

slight difference in ensemble of all structures at the three surfaces (Figure 8.4). First

though, like QBP-1, it is interesting to compare the secondary structural characteris-

tics of AuBP-1 in solution predicted by this computational model–CHARMM22*/TIP3P–

to the experimental CD spectrum of the peptide [Hnilova et al. [2008]]. With the

caveats highlighted in Section 7.4.1 for the interpretation of CD spectra in mind,

the agreement between the two–experiment and theory–is good: both suggest a

propensity for AuBP-1 to adopt PPII and random coil structures. On adsorption to

the Au(100)(1×1) surface the ensemble of all AuBP-1 conformations is perturbed

only minimally, as might be expected due to the weak affinity of the peptide for

this interface. On binding to Au(111) and Au(100)(5×1), this secondary structural

analysis, in agreement with cluster data, suggests that the ensemble of all AuBP-1

structures undergoes a slight conformational change from compact configurations–

with α character–to more extended ones–with increased β content.

8.5.4 Binding Mechanism

Taken together–cluster and secondary structure characteristic–analysis of AuBP-

1 at each of the three aqueous gold interfaces probed in this work revealed only

marginal differences existed between the surfaces. These variations were too small

to reasonably support the notion of differential surface-induced folding being the

mechanism responsible for the energetic selectivity in adsorption calculated in Sec-

tion 8.5.1. Therefore, given the internal configuration of AuBP-1 is approximately

the same at the aqueous interfaces of the three crystallographic planes of gold, the

orientation of the peptide with respect to the surface and, in particular, differences

in the contact made between each residue and the surface gold atoms must play an

important role.

The number of residues bound to gold directly on average was calculated for

each interface and was found to be 6.7, 3.1 and 6.7 for the Au(111), Au(100)(1×1)

and Au(100)(5×1) surfaces respectively. The trend in this data correlates with

that for the stronger adsorption of AuBP-1 to Au(111) and Au(100)(5×1) than
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Figure 8.4: Secondary structural characteristics of AuBP-1 in solution and upon
adsorption to the Au(111), Au(100)(1×1) and Au(100)(5×1) surfaces under aqueous
conditions. Top left depicts the regions of φ/ψ phase-space on a Ramachandran plot
used to define each characteristic- β, PPII, α, αL, γL and random coil (RC).
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Au(100)(1×1). When the binding propensity of the 12 residues is considered and

ranked in turn, the results indicate strongly that the number and ‘quality’ of the

anchoring points between AuBP-1 and gold increases concurrently with the binding

affinity of the peptide as a whole. Specifically, as shown in Figure 8.5, on adsorp-

tion to Au(111)–the surface with the greatest binding affinity–4 residues were strong

binders, 4 significant and 1 moderate. An intermediate number of residues mediated

adsorption to Au(100)(5×1) (4 strong, 2 significant and 3 moderate); while at the

aqueous Au(100)(1×1) interface the fewest made direct contact with gold (1 signif-

icant and 5 moderate). The trend in the binding affinities of individual residues is

reflected in those of the corresponding sequential dyad and triad sequences (Tables

F.3 and F.4).

Figure 8.5: The binding propensity of individual residues within AuBP-1 at the
aqueous a) Au(111), b) Au(100)(1×1) and c) Au(100)(5×1) interfaces rated ac-
cording to the percentage likelihood of being in direct contact with the gold surface.
Residues labelled as ‘strong’ binders are highlighted in magenta, ‘significant’ binders
in ‘cyan’ and ‘moderate’ in yellow.

The significantly greater degree of direct contact made between AuBP-1

and Au atoms in the surface layer of the interface in the case of Au(111) and

Au(100)(5×1), compared to Au(100)(1×1), is in agreement with observations made

during MD simulations of amino acids bound to the three surfaces [Wright et al.

[2013b,c]]. Consistent with the hypothesis put forward in Section 6.4, it is suggestive
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of two distinct modes of peptide adsorption: the first mediated by direct contact

with gold and the second by the layer of interfacial water. Energetic data calculated

in this Chapter indicates that the second, solvent-separated adsorption mode is

quantitatively weaker than the first. In addition it is interesting to note that the

relative binding affinity of AuBP-1 for the three surfaces increases with decreasing

density, per unit surface area, of water molecules in the first adsorbed layer (Section

6.3.3). Thus, like as has been reported previously for metal oxide interfaces [Skelton

et al. [2009]; Schneider and Ciacchi [2012]], interfacial water structuring plays a

critical role in peptide–gold adsorption.

In terms of the nature of the residues anchoring AuBP-1 to the three gold

surfaces, there is little difference. Arginine contributes strongly in all cases. The

presence of the –RR– motif in the C-terminal portion of the peptide means that

this half of AuBP-1 makes surface contact more, on average, than the N-term. On

adsorption to Au(100)(1×1), where binding is weakest, AuBP-1 is effectively teth-

ered to the surface by the R10 residue only. The planar aromatic W1, is a ‘strong’

binder on the atomically flat Au(111) surface, but only a ‘significant’ anchoring

point at the rumpled Au(100)(5×1) interface. Conversely, the bulkier side-chain of

the hydrophobic L9 residue, which could feasibly have a greater degree of surface

area contact with an undulating surface, such as Au(100)(5×1) than an atomically

flat one, contributes more to AuBP-1 adsorption on the reconstructed Au(100) sur-

face than Au(111). However, there is insufficient evidence from this study alone

for strong conclusions about the relationship between residue shape and binding

propensity for the aqueous Au(111) and Au(100)(5×1) interfaces to be drawn. The

conjecture that the adsorption of peptides rich in aromatic planar residues is stronger

to atomically flat surfaces, such as Au(111), could be tested in the future.

8.6 Conclusions

In this Chapter it has been demonstrated that Replica Exchange with Solute Tem-

pering can be combined with metadynamics as a simulation technique to interrogate

the interfacial structure of a material-binding peptide with relatively high affinity

for its respective interface. A small bias is added on-the-fly to a collective variable

connecting the peptide to the surface, driving the adsorbate away from the interface

and thus, ensuring that both bound and unbound states are sampled. In doing so,

the issues associated with strong peptide adsorption hindering replica mobility, and

hence conformational sampling, during a REST MD simulation can be overcome.

The properties of the system in the Boltzmann weighted ensemble of interest can
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be recovered from the biased REST metaD trajectory by careful reweighting. Here,

after evaluating six different reweighting schemes, the ‘time-period 5’ method, based

on reweighting frames within short time intervals using an average bias potential

(Section 8.4.4), was selected as the most appropriate.

Not only is the work in this Chapter novel in terms of reweighted-data anal-

ysis applied to the REST metaD trajectories, but it also provides a unique insight

into the facet-selectivity of AuBP-1 gold adsorption. Confirming current scientific

opinion (Section 1.4.2), the trend in the free energies of adsorption calculated here

suggests that peptides bind more strongly to the Au(111) surface under aqueous

conditions than the Au(100), irrespective of the reconstructed status of the latter

crystallographic plane. However, Au(100) surface reconstruction does have a sig-

nificant impact on both the strength and mode of AuBP-1 adsorption. Binding to

Au(100)(5×1) is substantially stronger than that to Au(100)(1×1) with the adsorbed

form of AuBP-1 at the Au(111) interface having more characteristics in common

(secondary structural propensity and, number and nature of binding residues) with

the peptide bound to the reconstructed Au(100) surface than the native. Taken

together with differences in interfacial water structuring at the three gold surfaces

(Section 6.3.3), these results suggest that solvation plays a critical role in pepitde-

gold adsorption, a hypothesis proposed in the past for biomolecule binding to metal

oxide interfaces only [Skelton et al. [2009]; Schneider and Ciacchi [2012]].
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Chapter 9

Conclusions and Future

Prospects

In conclusion, the simulations reported in this thesis indicate that it is indeed possi-

ble for peptides to be able to discriminate between different crystallographic planes

of a given material upon adsorption to either the aqueous α-Quartz or gold inter-

face. For the former substrate–Quartz–this was demonstrated in Chapter 3 by the

energetic and spatial selectivity of small molecule adsorption. That the binding of

species which form the fundamental building-blocks of peptides is facet-specific, is

highly suggestive of the same differential binding characteristics being displayed by

the biomolecules themselves. In the case of gold, the extensive simulations employ-

ing advanced sampling techniques at the forefront of current research reported in

Chapter 8, provide direct evidence for the strength with which the gold-binding

peptide AuBP-1 [Hnilova et al. [2008]] adsorbs to gold to decrease according to the

following trend: Au(111) > Au(100)(5×1) > Au(100)(1×1). Continued investiga-

tions at both interfaces–quartz and gold–should in principal permit simulation to

rationally design facet-selective peptide sequences; a highly desirable outcome in the

realm of bionanotechnology and biomimetic materials synthesis (Section 1.1).

In addition to the main conclusion, stated above, there are a number of

smaller outcomes to this work, each of which is a significant contribution to the

realm of biointerfacial simulation and/or provides a novel insight into the physical

system investigated. Firstly, the strong similarities between the binding behaviours

of the side-chains of residues within a peptide sequence (Chapters 5 and 7) and

amino-acid analogues featuring the same functional group (Chapter 3) validates the

use of the latter in future work. This is highly desirable when probing the binding

propensity of individual amino-acids to an interface (e.g. during parametrisation of
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a biointerfacial FF) since it enables the use of smaller, simpler systems and hence

circumvents many of the problems associated with conformational sampling.

Secondly, the investigations reported in Chapters 3 to 5 at the aqueous

Quartz interface all indicate that peptide binding is mediated by strong attractive

interactions between hydrophobic residues such as tryptophan and tyrosine. The in-

teraction between ammonium and quartz was found to be minimal. Whilst this later

result is contrary to the prevalence of positively charged residues in silica-binding

peptides identified experimentally (Section 1.3.1), it was confirmed by first-principles

simulations at the aqueous, charge-neutral, fully hydroxylated α-Quartz interface,

detailed in Chapter 4. This raises a number of possibilities: the exact nature of

the silica surface (e.g. amorphous v.s crystalline, charge density, topology etc) onto

which a peptide adsorbs is critical to its binding mechanism; there are two different

modes of peptide-silica adsorption–the first mediated by electrostatic interactions

and the second by hydrophobic ones; and that the positively charged residues en-

riched in experimentally identified sequences play an important conformational role,

rather than being surface anchoring points.

Thirdly, critical analysis of existing data in the literature and REST simula-

tions of QBP-1 [Oren et al. [2007]] adsorption to the (100) α-Quartz and Au(111)

surfaces under aqueous conditions, both presented in Chapter 7, bring into question

the specificity of this sequence for quartz. One option for resolving this matter in

the future would be carry out free energy calculations, such as the REST metaD

simulations reported in Chapter 8, of QBP-1 adsorbed onto the two materials. It

is interesting to note, however, that neither in the case of QBP-1 adsorbed onto

surfaces of differing composition (Chapter 7), nor the instance of AuBP-1 bound to

alternative crystallographic planes of gold (Chapter 8), was there evidence from the

simulations carried out here, for discrepancies in peptide structure being the main

driving force for any reported/observed material/facet selectivity. All simulations

suggested that selectivity, should it exist, was instead mediated by differences in

residue–surface contact and the influence of interfacial water structuring on this

phenomenon. The possibly that larger, intrinsically disordered, materials binding

peptides, such as n16N [Collino and Evans [2008]] or JAK-1 [Capriotti et al. [2007]],

may undergo interfacial-selective surface-induced folding remains open.

The work presented in Chapters 5 and 8, benchmarking the Replica Ex-

change with Solute Tempering (REST) method, is critically important for the future

of biointerfacial simulations, if the issues associated with the poor conformational

sampling of such complex systems are to be overcome. Although the tests car-

ried out in Chapter 5 showed that REST could achieve a comparable degree of
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conformational sampling for up to 1/6th of the computational resource of a conven-

tional T-REMD simulation, there is still scope for further improvement. This was

highlighted in Chapter 8 when the AuBP-1–gold system was considered. For strong

material-binding peptides at their respective interfaces, additional measures must be

taken–such as the combination of REST with the free energy technique metaD–for

the method to remain favourable. There were also a number of the other questions

posed by the findings of Chapter 5 which could be addressed by future work. In

particular, it would be interesting to investigate the influence of scaling the mass

of water and/or side-chain atoms on conformational sampling within a REST MD

simulation, using peptide sequences of graded flexibility. This would help establish

whether the relatively insignificant impact of mass scaling reported here primarily

arose due to the conformationally stiff nature of QBP-1 imparted by its high proline

content.

If the use of metadynamics is to become widespread in the future–in the

realm of biointerfacial simulation or any other environment–then the issue of how

best to reweight the biased trajectories generated, in order to recover properties of

the system in the Boltzmann weighted ensemble of interest, must be addressed fully.

The evaluation of six different reweighting schemes presented in Chapter 8 provides a

foundation for others to build on. In addition to the unique physical insights which

were gained from the REST metaD simulations of AuBP-1–gold adsorption, the

work raised numerous issues. First and foremost is the choice of collective variable(s)

for biointerfacial systems. Peptide COM–surface separation alone is insufficient for

ensuring that the whole range of adsorbed and desorbed states is sampled within

a computationally reasonable simulation time-frame, when the transition between

different modes and/or geometries of adsorption remains slow (Section 8.5.4). Use

of more than one biased collective variable, on the other hand, increases both the

computational overhead of the simulation and the time taken for ‘convergence’ in

the free energy landscape. The definition of ‘convergence’ itself, in the context of an

adsorption free energy profile, should be debated by those within the scientific com-

munity. With only one dimension, these profiles are inherently weighted averages

of multiple adsorption pathways and should strictly be interpreted as such. One

approach, which may prove to be more insightful, could be to identify a handful of

unique mechanisms possible for peptide binding. Carrying out a series of metaD (or

metaD in combination with another advanced sampling technique such as REST)

simulations in which the pathway to adsorption is restricted, could help identify the

most favourable adsorption mechanism, in a computationally efficient manner.

Finally, without the FFs derived in Chapter 6, it would have been necessary
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to make a number of severe compromises in order to carry out the simulations at the

aqueous gold interface reported later in this thesis (Chapters 7 and 8); shortcomings

existed in both of the previously widely used biointerfacial gold FFs, as detailed in

Section 1.4.2. Not only can the GolP-CHARMM suite of FFs be used directly

by others within the simulation community, but the methodology outlined in its

derivation could be adopted to parametrise other noble metal surfaces (e.g. Ag, Pt

or Pd). If a range of metal FFs were derived using the same procedure, then peptides

could be tested, by means of simulation, for selectivity in binding. In addition, the

protocol developed for the Au(100)(5×1) surface, to introduce spatially-dependent

energetic heterogeneity in adsorption paves the way for others to consider other non-

planar and/or non-ideal surfaces, hence moving simulation closer to experiment.

One of the most interesting outcomes of Chapters 6 and 8 in investigat-

ing facet selectivity upon adsorption to gold surfaces, is the apparent importance

of interfacial water structuring. Previously, water was thought to play a less fun-

damental role at planar metal interfaces in determining peptide binding than at

metal oxide ones. The work carried out here suggests that the in- and out-of-plane

structure of Au atoms in the upper-most layer of a gold slab, together with the

binding affinity of a single water molecule for an interface in vacuo, contribute to

AuBP-1 binding significantly more weakly to Au(100)(1×1) than the other two sur-

faces investigated–Au(111) and Au(100)(5×1). To interrogate these issues further, it

would be interesting to use GolP-CHARMM to probe the impact of adsorbate shape

and surface topology on binding affinities under aqueous conditions. Simple amino-

acid analogues could be considered first, before moving onto peptide sequences.

GolP-CHARMM could also enable scientists to shed light on the recon-

structed status of Au(100) facets featured by AuNPs. One method would be to

compare the theoretical binding affinities of small biomolecules to the Au(100)(1×1)

and Au(100)(5×1) surfaces with appropriate experimental data for the same species

adsorbed to AuNPs. Alternatively, analogous to the experimental procedure used

by Chui et al. [Chiu et al. [2011]], peptide sequences able to discriminate between

the planar Au(100)(1×1) and Au(100)(5×1) surfaces could be designed with the

aid of simulations using GolP-CHARMM. By measuring the experimental affinity

of these engineered peptides for AuNPs, the nature of the Au(100) facet featured

by AuNPs of a given size and shaped could be determined.

In closing, two of the grand challenges facing the realm of biointerfacial

simulation–the development and benchmarking of FF parameters, and improving

conformational sampling within these complex systems–have been tackled here. Two

further major issues must be addressed in the future if simulation is to move closer
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to experiment: first, the use of non-ideal systems which include additives (e.g. ions

or buffers) and/or surface defects; and second, regimes in which the surface con-

centration of the adsorbate is high enough for peptide-peptide interactions and/or

aggregation to become important.
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Appendix A

Additional Information: Free

Energy Calculations of

Amino-Acid Analogue

Adsorption at Aqueous

α-Quartz Interfaces.
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[011][001][100] d)c)b)

a)

Figure A.1: a) PMF free energy of adsorption methane on (100), (001) and (011)
quartz surfaces as a function of surface separation. b) Typical configurations of
methane adsorbed onto the (100), c) (001) and d) (011) surfaces.
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(100) (001) (011)

quartz-ammonium 0.173± 0.391 0.083± 0.279 0.009± 0.093
water-ammonium 2.947± 0.817 3.239± 0.755 3.003± 0.782
quartz-ethanoate 1.619± 0.709 1.699± 0.519 1.497± 0.612
water-ethanoate 5.263± 0.953 5.229± 0.902 5.307± 0.942

Table A.1: Average number of hydrogen bonds formed by the adsorbates, methanol,
ammonium and ethanoate, at the PMF minimum distance above the (100), (001)
and (011) α-quartz surfaces. Hydrogen bonds to methanol were defined as the
simultaneous satisfaction of the following criteria: O-OMeOH distance of less than
3.46 Å; either H-OMeOH distance of less than 2.50 Å or O-HMeOH distance of less
than 2.32 Å; and H-O-O angle of less than 30◦; hydrogen bonds to ammonium as the
simultaneous satisfaction of the following criteria: N-O distance of less than 3.72 Å;
H-N distance of less than 2.24 Å; and H-N-O angle of less than 30◦; and hydrogen
bonds to ethanoate as the simultaneous satisfaction of the following criteria: O-O
distance of less than 3.28 Å; H-O distance of less than 2.46 Å; and H-O-O angle of
less than 30◦.
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Figure A.2: PMF free energy of adsorption of ammonium on the (100) α-quartz
surface as a function of surface separation calculated with CHARMM and AMBER
parameters for NH+

4 .
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a) (100)

b) (001)

c) (011)

Figure A.3: Orientational analysis of butyl ammonium as a function of vertical
surface separation from the a) (100), b) (001) and c) (011) α-quartz surfaces. The
angle the CH3–NH

+
3 vector of butyl ammonium made to the surface normal was

calculated as a function of surface separation. Angles less than 60◦ were classed as
‘N-up’, between 60◦ and 120◦ as ‘flat’, and greater than 120◦ as ‘C-up’. The surface-
separation corresponding to the minimum in the PMF profile of butyl ammonium
above each surface is indicated by the blue line. The green lines on the (100)
orientation plot a) define the region of the plateau in the PMF profile above this
surface.
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a) (100)

b) (001)

c) (011)

Figure A.4: Orientational analysis of benzene as a function of vertical surface sepa-
ration from the a) (100), b) (001) and c) (011) α-quartz surfaces. The angle between
the normals to the planes made by the benzene aromatic ring and the quartz sur-
face was used to classify adsorbed structures as follows: benzene plane made to
the surface normal was classified as follows: structures with angles of less than 30◦

or greater than 150◦ correspond to ‘upright’, those greater than 60◦ but less than
120◦ to ‘flat’, and all others to ‘tilted’. The surface-separation corresponding to the
minimum in the PMF profile of benzene above each surface is indicated by the blue
line. The green lines on the (100) orientation plot a) define the region of the plateau
in the PMF profile above this surface.
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a) (100)

b) (001)

c) (011)

Figure A.5: Orientational analysis of ethanoate as a function of vertical surface
separation from the a) (100), b) (001) and c) (011) α-quartz surfaces. The angle
the CH3–CO

−
2 vector of ethanoate made to the surface normal was calculated as a

function of surface separation. Angles less than 60◦ were categorised as ‘carboxylate-
up’, between 60◦ and 120◦ as ‘flat’, and greater than 120◦ as ‘methl-up’. The surface-
separation corresponding to the minimum in the PMF profile of ethanoate above
each surface is indicated by the blue line. The green line on the (100) orientation
plot a) corresponds to the local minimum in the PMF profile above this surface.
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Appendix B

Additional Information:

First-Principles Molecular

Dynamics Simulations of

Ammonium and Ethanoate

Adsorption at the Aqueous

(100) α-Quartz Interface.
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ethanoate

ammonium
a)

b)

Figure B.1: Displacement of a) NH+
4 and b) CH3COO− from their initial positions,

during CPMD simulations, along the [1̄20] and [001] vectors in the (100) quartz
surface. These vectors point along the major grooves in the surface.

189



CPMD TIP3P/CHARMM
Å Å

NH+
4

NH· · ·O 2.40 2.39
N· · ·O 3.41 3.76
Ethanaote
OH· · ·O− 2.24 2.40
O· · ·O− 3.48 3.30

Table B.1: Cut-off distances for hydrogen bond definitions, taken from radial dis-
tribution functions for each approach.
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Figure B.2: Radial Distribution Function plots for water surrouding ethanoate and
ammonium from which the distance criteria for hydrogen bonding were derived, for
both CPMD and FMD approaches.
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number of H-bonds length
Å

quartz-CH3COO−

LFF run 1 1.898± 0.506 1.889± 0.235
LFF run 2 1.645± 0.511 1.834± 0.180
CPMD run 1 1.915± 0.315 1.721± 0.191
CPMD run 2 2.417± 0.532 1.700± 0.230
water-CH3COO−

LFF run 1 3.909± 0.832 1.816± 0.172
LFF run 2 5.062± 1.045 1.857± 0.185
CPMD run 1 2.583± 0.804 1.855± 0.213
CPMD run 2 1.863± 0.705 1.919± 0.233

Table B.2: Trajectory average number (per timeframe) and average length (Å) of
hydrogen bonds formed by CH3COO− to water or the quartz surface from both
CPMD and FMD simulations. Hydrogen bonds were defined as per the criteria
detailed in Section 2.5.1 and defined in Table B.1.
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number of H-bonds length
Å

quartz-NH+
4

LFF run 1 0.019± 0.165 2.057± 0.196
LFF run 2 0.404± 0.529 2.074± 0.161
CPMD run 1 1.378± 0.698 1.889± 0.148
CPMD run 2 0.340± 0.530 1.952± 0.166
H2O-NH+

4

LFF run 1 3.230± 0.892 1.882± 0.165
LFF run 2 2.704± 0.738 1.871± 0.161
CPMD run 1 2.032± 0.581 1.858± 0.174
CPMD run 2 2.122± 0.770 1.871± 0.178

Table B.3: Trajectory average number (per timeframe) and average length of hy-
drogen bonds formed by NH+

4 to water or the quartz surface from both CPMD
and FMD simulations. Hydrogen bonds were defined as per the criteria detailed in
Section 2.5.1 and defined in Table B.1.
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Appendix C

Additional

Information:Benchmarking

Replica Exchange with Solute

Tempering for Bio-interfacial

Systems: QBP-1 Adsorption

onto the (100) α-Quartz Surface.
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T−REMD light sc 0.8

T−REMD norm T−REMD light

T−REMD light sc 0.6

Figure C.1: Temperature mobilities for 4 out of the 36 replicas in each T-REMD
simulation. Replicas shown are (clockwise from top left) 1 (black), 12 (green), 24
(red) and 36 (gold).
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REST no h

REST 1 REST light

REST light no h

REST light 2 offREST 2 off

Figure C.2: Effective temperature mobilities for 4 out of the 11 replicas in each
REST simulation. Replicas shown are (clockwise from top left) 1 (black), 4 (green),
8 (red) and 11 (gold).
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REST 2 off

REST light

REST light 2 off

Figure C.3: Percentage of the total structure population belonging to each of the
three most populated clusters as a function of MD steps shown for ‘REST 2 off’,
‘REST light’ and ‘REST light 2 off’ simulations. Data shown for cluster analysis
performed over the entire trajectory and over the last 4x106MD steps only (inset).
Clusters comprised of helical structures are shown in red.
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method % helical-type structures intra peptide pept-water pept-quartz

normal T-REMD 0.0 0.49 27.37 4.89
light T-REMD 0.0 0.23 27.84 4.95
light sc 0.6 T-REMD 0.0 0.42 28.09 4.90
light sc 0.8 T-REMD 0.0 0.27 27.53 5.49
REST1 10.4 0.68 28.16 4.77
REST no h 0.0 0.15 27.97 4.61
REST 2 off 13.9 0.76 28.39 3.80
REST light 18.8 1.01 27.24 4.56
REST light no h 0.0 0.23 27.92 5.41
REST light 2 off 17.5 1.14 27.36 4.64

Table C.1: Average numbers of hydrogen bonds per MD frame.
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method cluster sol 1 sol 2 sol 3 sol 4

T-REMD normal 1 0.262 0.247 0.591 0.213
T-REMD normal 2 0.382 0.351 0.764 0.277
T-REMD normal 3 0.504 0.563 0.165 0.674
T-REMD light 1 0.385 0.365 0.788 0.267
T-REMD light 2 0.317 0.316 0.670 0.279
T-REMD light 3 0.280 0.246 0.437 0.442
T-REMD light 0.6 sc 1 0.388 0.366 0.786 0.274
T-REMD light 0.6 sc 2 0.296 0.320 0.652 0.273
T-REMD light 0.6 sc 3 0.352 0.344 0.716 0.292
T-REMD light 0.8 sc 1 0.352 0.329 0.764 0.213
T-REMD light 0.8 sc 2 0.195 0.291 0.582 0.328
T-REMD light 0.8 sc 3 0.330 0.318 0.658 0.272
REST1 1 0.394 0.350 0.787 0.235
REST1 2 0.341 0.322 0.668 0.281
REST1 3 0.293 0.313 0.678 0.304
REST no h 1 0.147 0.279 0.579 0.314
REST no h 2 0.323 0.163 0.644 0.198
REST no h 3 0.348 0.408 0.301 0.563
REST 2 off 1 0.348 0.328 0.702 0.262
REST 2 off 2 0.373 0.366 0.498 0.418
REST 2 off 3 0.260 0.129 0.587 0.278
REST light 1 0.337 0.312 0.696 0.279
REST light 2 0.365 0.339 0.783 0.209
REST light 3 0.364 0.350 0.511 0.395
REST light no h 1 0.372 0.316 0.760 0.199
REST light no h 2 0.175 0.336 0.506 0.391
REST light no h 3 0.462 0.528 0.225 0.621
REST light 2 off 1 0.370 0.341 0.770 0.259
REST light 2 off 2 0.377 0.318 0.729 0.276
REST light 2 off 3 0.353 0.341 0.455 0.449

Table C.2: Average RMSD of backbone atom positions of all structures in the
three most populated clusters identified by each REMD-based method from the
centriod structure of the four most populated solution clusters of QBP-1 [Notman
et al. [2010]]. ‘Identical’ clusters are highlighted in red, whilst ‘similar’ ones are
highlighted in green (see Section 2.5.2).
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n N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
n N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
n N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l w N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l w N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l w N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.6 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.6 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.6 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.8 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.8 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
l 0.8 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 1 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 1 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 1 N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l nh N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C
re l 2 off N P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12 C

Table C.3: Residues underlined are those which are on average bound to the quartz
surface. Results are shown for the three most populated backbone clusters identified
by clustering analysis carried out over the last 4x106MD steps of each simulation.
(Index: ‘n’= normal T-REMD, ‘l w’= light T-REMD, ‘l 0.6’= light sc 0.6 T-REMD,
‘l 0.8’= light sc 0.8 T-REMD, ‘re 1’= REST1, ‘re nh’= REST no h, ‘re 2 off’= REST
2 off, ‘re l’= REST light, ‘re l nh’= REST light no h,‘re l 2 off’= REST light 2 off.)
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1 2 3 4

normal T-REMD 4,5 (38.4) 7,8 (27.2) 6,7 (22.6) 10,11 (18.9)
light T-REMD 3,4 (34.5) 5,6 (29.9) 6,7 (29.3) 4,5 (22.1)
light 0.6 sc T-REMD 5,6 (33.3) 6,7 (25.9) 4,5 (24.3) 3,4 (22.9)
light 0.8 sc T-REMD 10,11 (40.5) 4,5 (37.6) 6,7 (25.1) 7,8 (18.2)
REST1 4,5 (32.3) 7,8 (25.2) 10,11 (18.5) 6,7 (16.6)
REST no h 10,11 (36.4) 4,5 (32.8) 5,6 (26.3) 7,8 (23.6)
REST 2 off 6,7 (30.1) 10,11 (12.8) 4,5 (11.1) 5,6 (8.0)
REST light 4,5 (38.8) 6,7 (38.0) 10,11 (8.7) 9,10 (7.4)
REST light no h 10,11 (57.3) 6,7 (51.6) 3,4 (41.4) 7,8 (39.1)
REST light 2 off 4,5 (30.7) 7,8 (22.1) 10,11 (16.6) 6,7 (14.5)

Table C.4: Top 4 binding dyad motifs in the REMD-based simulations, calculated
over the last 2x106MD steps of each trajectory. Percentage of trajectory for which
the dyad makes binding contact is given in parenthesises. Dyads present in S1
which were found to be enriched dyads in quartz binding peptides [Oren et al.
[2010]] are highlighted as follows: PW, WL, PP, LP, (given in order of reducing
Motif Enrichment Factor).
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1 2 3 4

normal T-REMD 4,5,6 (15.6) 10,11,12 (14.0) 5,6,7 (12.2) 3,4,5 (8.2)
light T-REMD 6,7,8 (13.9) 5,6,7 (13.0) 10,11,12 (11.8) 7,8,9 (8.5)
light 0.6 sc T-REMD 2,3,4 (17.3) 4,5,6 (12.9) 1,2,3 (11.8) 10,11,12 (9.9)
light 0.8 sc T-REMD 10,11,12 (14.6) 6,7,8 (10.8) 9,10,11 (6.5) 4,5,6 (5.4)
REST1 4,5,6 (10.7) 2,3,4 (6.5) 3,4,5 (5.4) 1,2,3 (5.2)
REST no h 10,11,12 (26.4) 4,5,6 (18.9) 2,3,4 (11,4) 6,7,8 (10.7)
REST 2 off 4,5,6 (5.9) 9,10,11 (4.5) 10,11,12 (4.3) 6,7,8 (2.5)
REST light 3,4,5 (14.9) 2,3,4 (8.1) 10,11,12 (5.6) 6,7,8 (2.9)
REST light no h 6,7,8 (40.3) 10,11,12 (33.5) 2,3,4 (9.5) 4,5,6 (4.7)
REST light 2 off 10,11,12 (8.2) 4,5,6 (6.1) 6,7,8 (5.0) 3,4,5 (4.0)

Table C.5: Top 4 binding triad motifs in the REMD-based simulations, calculated
over the last 2x106MD steps of each trajectory. Percentage of trajectory for which
the dyad makes binding contact is given in parenthesises. Dyads present in S1 which
were found to be enriched dyads in quartz binding peptides [Oren et al. [2010]] are
highlighted as follows: PPW, PWL and WLP (given in order of reducing Motif
Enrichment Factor).
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Appendix D

Additional

Information:GolP-CHARMM:

A First-Principles Based

Force-field for modelling protein

adsorption to Au(111),

Au(100)(1×1) and

Au(100)(5×1).
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Figure D.1: Hollow sites surrounding top sites T1 and T2 tested in methane–
Au(100)(5×1) PW-DFT calculations. Surface layer Au atoms are depicted as largest
and in medium gold, 2nd layer Au atoms dark gold and medium size, while the 3rd
layer of Au atoms are the smallest size and light gold in color.
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methane

NH3

ethene

water CH3OH HCOOH acetone

HCONH2

CH3SH

CH3NH2

butaneethane

trans−but−2−ene

hexane

cyclohexane

diethyl sulfide

imidazole

Figure D.2: Optimal geometries of a number of small molecules adsorbed onto
Au(111) in vacuo obtained from PW-DFT calculations using the vdW-DF exchange
functional. Images rendered using XCrySDen. Gold atoms gold, hydrogen cyan,
oxygen red, nitrogen blue, carbon yellow and sulphur cream.
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methane ethene

water CH3OH

CH3SH

NH3 CH3NH2 HCONH2

CH3CH2SHdimethyl sulfide

HCOOH

butane benzene trans−but−2−ene

toluene indole phenol

imidazole

diethyl sulfide

Figure D.3: Optimal geometries of a number of small molecules adsorbed onto
Au(100)(1×1) in vacuo obtained from PW-DFT calculations using the vdW-DF
exchange functional. Images rendered using XCrySDen. Gold atoms gold, hydrogen
cyan, oxygen red, nitrogen blue, carbon yellow and sulphur cream.
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Water

Methane

Butane

Benzene

Methanol

Phenol

Toluene

Indole

Figure D.4: Most favorable geometry of each small molecule adsorbed onto the
Au(100)(5×1) surface found from PW-DFT calculations using the vdW-DF func-
tional. Left depicts a view from above the surface whilst right the system is shown
from the side. Gold atoms are shown in gold (for the plan view only: surface layer
are largest in medium gold, 2nd layer are dark gold and 3rd layer are smallest and
light gold), carbon in green, hydrogen in white, oxygen in red, nitrogen in blue and
sulfur in yellow.
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Methyl amine Imidazole

Methyl Amide Methanoic Acid

Methanethiol Ethanethiol

Diethyl SulfideDimethyl sulfide

Figure D.5: Most favorable geometry of each small molecule adsorbed onto the
Au(100)(5×1) surface found from PW-DFT calculations using the vdW-DF func-
tional. Left depicts a view from above the surface whilst right the system is shown
from the side. Gold atoms are shown in gold (for the plan view only: surface layer
are largest in medium gold, 2nd layer are dark gold and 3rd layer are smallest and
light gold), carbon in green, hydrogen in white, oxygen in red, nitrogen in blue and
sulfur in yellow.
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(5×20)a (5×1)b (7×1)b (5×1)† (5×1)⋆ Expc

b1/dbulk 0.32 (0.32) 0.384 0.405 0.303 0.307 0.275
b2/dbulk 0.044 (0.044) n/a n/a 0.066 0.065 0.069

Table D.1: Buckling amplitudes b1 and b2 relative to bulk dbulk. Values given in
parentheses from Havu et al. [Havu et al. [2010]] are those obtained using the
PBE functional, those not in parentheses were obtained using LDA only. Data to
calculate b2 from Jacob [Jacob [2007]] is not available. a reference Havu et al. [2010];
b reference Jacob [2007]; c reference Ocko et al. [1991]; † are values calculated in this
work using a k-point mesh of 2×2×1 and ⋆ are values calculated in this work using
a k-point mesh of 4×4×1.
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(5×20)a (5×1)b (5×1)c (7×1)c (5×1)† (5×1)⋆ Expd

d12/dbulk 1.21 (1.22) 1.20 1.19 1.16 1.19 1.20 1.20
d23/dbulk 0.99 (0.98) 0.992 0.988 0.990 0.998 0.998 n/a

Table D.2: Average interlayer distances d12 and d23 relative to bulk dbulk. Values
given in parentheses from Havu et al. [Havu et al. [2010]] are those obtained using
the PBE functional, those not in parentheses were obtained using LDA only. a

reference Havu et al. [2010]; b reference Shi and Stampfl [2008]; c reference Jacob
[2007]; d reference Ocko et al. [1991]; † are values calculated in this work using a
k-point mesh of 2×2×1 and ⋆ are values calculated in this work using a k-point
mesh of 4×4×1.
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[100]

T2 T3 T4

Figure D.6: Side view of the gold slab highlighting the Au-Au-Au angle about the
T3 top site.
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Adsorbate H3 H5
EvdW dvdW EvdW dvdW

kJmol−1 Å kJmol−1 Å
methane −16.6 3.74 −18.0 3.83
butane −43.5 3.90 −45.5 3.72
benzene −57.8 3.45 −59.0 3.27
toluene −69.6 3.45 −68.2 3.29

Adsorbate T1 T2
EvdW dvdW EvdW dvdW

kJmol−1 Å kJmol−1 Å
indole −90.4 3.29 −89.7 3.38
phenol −67.4 3.37 −67.6 3.40
water −17.8 3.10 −20.5 2.97

methanol −29.4 3.04 −34.1 2.83

Adsorbate T1 T2 T23
EvdW dvdW EvdW dvdW EvdW dvdW

kJmol−1 Å kJmol−1 Å kJmol−1 Å
methanoic acid −29.6 3.23 −30.4 3.02 −32.3 3.05
methyl amide −34.9 3.02 −38.0 2.73 −40.8 2.74

Adsorbate T0 T1 T2 T3
EvdW dvdW EvdW dvdW EvdW dvdW EvdW dvdW

kJmol−1 Å kJmol−1 Å kJmol−1 Å kJmol−1 Å

methanethiol −49.7 2.74 −41.3 3.02 −52.8 2.74 −39.8 3.19
ethanthiol −54.1 2.72 −43.0 3.75 −57.7 2.72 −44.3 3.25

dimethyl sulfide −67.5 2.67 −57.8 2.85 −71.4 2.70 −55.5 3.00
diethyl sulfide −82.6 2.67 −71.1 3.00 −85.5 2.73 −68.7 3.13
methyl amine −60.1 2.44 −48.7 2.62 −62.3 2.46 −45.0 2.70
imidazole −62.9 2.34 −49.5 2.53 −65.5 2.35 −46.5 2.66

Table D.3: Interaction energies and equilibrium separations of all the small molecules
used to fit and test FF parameters for the Au(100)(5×1) surface found from PW-
DFT calculations using the vdW-DF functional. ‘Tx’ and ‘Hx’ refer to the initial
location of the molecule on the surface; ‘T23’ denotes a geometry in which the two
heteroatoms in methanoic acid and methyl amide are adsorbed atop different sites
(see Section 6.2).
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AUI AUB
ǫ σ ǫ σ

kJmol−1 Å kJmol−1 Å

Au–Au 0.48 3.80 0.48 3.80
Au–Au (π-C) 1.30 3.20 0.48 3.80
Au–N (imidazole) 1.60 2.85 1.60 2.85
Au–N (unprotonated N termini) 0.90 2.90 0.90 2.90
Au–S 3.20 2.85 3.20 2.85
Au–O 0.70 3.10 0.70 3.10
Au–H 0.28 2.70 0.28 2.70

Table D.4: GolP-CHARMM LJ parameters for the Au(111) surface. Interaction
strengths ǫ (kJmol−1) and distances σ (Å) are given for both surface virtual sites
(AUI) and bulk gold atoms (AUB). Note the Au–H interaction is for hydroxyl and
amide H only.
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AUI AUB
ǫ σ ǫ σ

kJmol−1 Å kJmol−1 Å

Au–Au 2.10 4.00 2.10 4.00
Au–Au (aromatic C) 2.80 3.40 2.10 4.00
Au–N (imidazole) 4.40 3.00 4.40 3.00

Au–N (unprotonated N termini) 5.40 3.00 5.40 3.00
Au–S (sulfide) 6.90 3.00 6.90 3.00
Au–S (thiol) 5.20 3.00 5.20 3.00

Au–O(=C) (carbonyl) 0.60 3.35 0.60 3.35
Au–O(-H) (water/methanol) 1.50 3.275 1.50 3.275

Au–H 0.60 2.725 0.60 2.725

Table D.5: GolP-CHARMM LJ parameters for the Au(100)(1×1) surface. Interac-
tion strengths ǫ (kJmol−1) and distances σ (Å) are given for both surface virtual
sites (AUI) and bulk gold atoms (AUB). Note the Au–H interaction is for hydroxyl,
amide and thiol H only.
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σ ǫ
kJmol−1 Å

AUIU AUIU 3.50 0.575
AUIU AUIU (aromatic C) 3.4 0.70
AUIU O 3.15 0.800
AUIU H(-O/-S) 2.70 0.28
AUIU NHT2 2.90 0.70
AUIU NR2 2.85 0.30
S0 NR2 2.50 7.60
S1 NR2 3.25 0.25
S2 NR2 2.50 9.00
S3 NR2 3.50 0.25
S0 NHT2 2.50 8.00
S1 NHT2 2.70 1.50
S2 NHT2 2.50 10.75
S3 NHT2 3.53 0.25
AUIU S 2.85 1.20
AUIU ST 2.85 1.20
S0 ST 2.60 7.50
S1 ST 3.00 1.00
S2 ST 2.60 9.00
S3 ST 3.75 0.40
S0 S 2.60 12.20
S1 S 3.15 0.525
S2 S 2.55 12.175
S3 S 3.8265 0.25

Table D.6: GolP-CHARMM LJ parameters for the Au(100)(5×1) surface. Interac-
tion strengths ǫ (kJmol−1) and distances σ (Å) are given for both hollow (AUIU)
and bridge (S0, S1, S2, S3) surface interaction sites. ‘NR2’ corresponds to an un-
protonated N in imidazole, ‘NHT2’ to N in an unprotonated N-terminus or lysine
side-chain, ‘S’ to S atoms in dialkyl sulfide moieties, ‘ST’ to S atoms in thiols.
Note the Au–H interaction is for hydroxyl, thiol and amide H only. All cross terms
involving bridge interaction sites that have not been explicitly given above are zero.
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Figure D.7: Correlation between experimentally-determined interaction energies of
alkanes of varying chain length (CnH2n+2) [Wetterer et al. [1998]] with Au(111),
and those calculated using GolP-CHARMM parameters for gold.
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molecule Eref EGolP−CHARMM dvdW−DF dGolP−CHARMM

kJmol−1 kJmol−1 Å Å

methane −16.5a, −14.5b −13.5 3.77 3.53
ethane −24.7a, −24.1b −21.5 3.84 3.60
butane −42.3a, −40.5b −38.4 3.90 3.68
hexane −60.3a, −55.9b −54.2 3.88 3.70
heptane −62.7b −62.2 n/a 3.71
octane −69.7b −70.7 n/a 3.72
nonane −75.2b −78.0 n/a 3.73
ethene −27.7a, −27.0b −26.3 3.35 3.27

1,3 butadiene −46.2b −46.7 n/a 3.27
benzene −57.9b, −61.5c −60.8 n/a 3.25
CH3SH −45.3a, −48d, −58e −46.5 2.88 2.62

diethyl sulfide −76.6a, −68b −70.0 3.00 2.64
methylamine −54.8a −54.8 2.57 2.26
imidazole −54.1a −54.5 2.51 2.32
water −18.3a −18.1 3.03 2.54

Table D.7: Interaction energies and equilibrium separations of set of molecules used
to fit GolP-CHARMM parameters for the Au(111) surface. Energies in kJmol−1

and distances in Å. a PW-DFT energy calculated from this work; b Experimen-
tal interaction energy taken from reference [Wetterer et al. [1998]]; c Experimental
interaction energy taken from reference [Syomin et al. [2001]]; d Experimental inter-
action energy taken from reference [Lavrich et al. [1998]]; e Experimental interaction
energy taken from reference [Nuzzo et al. [1987]].
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molecule Eexp EGolP−CHARMM

kJmol−1 kJmol−1

acetone −41a −35.69
cyclohexane −50.6b, 50c −51.9
cyclohexene −54c −51.6
non-1-ene −76.2b −72.6
toluene −66.1b −70.9

trans-but-2-ene −41.7b −42.9
ethanethiol −57b −55.4

dibutyl sulfide −86b −93.9

Table D.8: Comparison between experimental interaction energies (kJmol−1) and
those obtained using GolP-CHARMM parameters for the Au(111) surface. a Ex-
perimental interaction energy taken from reference [Syomin and Koel [2002a]] ; b

Experimental interaction energy taken from reference [Wetterer et al. [1998]]; c

Experimental interaction energy taken from reference [Syomin and Koel [2002b]].
RMSD between GolP-CHARMM and experiment was 4.15 kJmol−1 using the above
‘test set’ whereas the RMSD between GolP and experiment was 4.97 kJmol−1 [Iori
et al. [2009]] using a ‘test set’ of molecules that comprised of cyclohexane, cyclo-
hexene, cycloctane, toluene, non-1-ene, acetone, trans-but-2-ene, diethyl sulfide and
undec-1-ene.
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molecule EvdW−DF EGolP−CHARMM

kJmol−1 kJmol−1

CH3OH −30.5 −24.99
HCOOH −29.2 −29.43
CHONH2 −34.2 −35.62

Table D.9: Interaction energies for test set of molecules adsorbed onto the Au(111)
surface. Energies in kJmol−1.

219



molecule Eref EGolP−CHARMM dvdW−DF dGolP−CHARMM

kJmol−1 kJmol−1 Å Å

methane −16.3 −16.9 3.69 3.47
butane −43.2 −43.3 3.72 3.66
benzene −57.9 −58.4 3.39 3.26
CH3SH −51.8 −51.6 2.78 2.51

CH3SCH3 −69.1 −69.2 2.87 2.56
methylamine −61.3 −60.8 2.48 2.29
imidazole −67.2 −67.0 2.43 2.25
water −20.8 −20.9 2.90 2.50

HCONH2 −34.9 −34.7 2.72 2.43

Table D.10: Interaction energies and equilibrium separations of the set of molecules
used to fit GolP-CHARMM parameters for the Au(100)(1×1) surface. Energies in
kJmol−1 and distances in Å.
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molecule EvdW−DF EGolP−CHARMM

kJmol−1 kJmol−1

toluene −68.8 −70.3
indole −87.9 −82.3
CH3OH −31.7 −28.7
phenol −66.3 −69.0
HCOOH −29.5 −30.4

diethyl-sulfide −85.3 −86.3
ethanethiol −55.1 −61.5

Table D.11: Interaction energies for the test set of molecules adsorbed onto the
Au(100)(1×1) surface. Energies in kJmol−1.

221



EvdW−DF EGolP−CHARMM dvdW−DF dGolP−CHARMM

kJmol−1 kJmol−1 Å Å

methane −18.0 −17.5 3.83 3.54
butane −45.5 −45.4 3.72 3.72
benzene −59.0 −58.5 3.27 3.22
toluene −69.6 −70.5 3.45 3.23
indole −90.4 −84.6 3.29 3.11
water −20.5 −21.8 2.97 2.55
methanol −34.1 −30.5 2.83 2.60
methanoic acid −32.3 −36.5 3.05 2.60
methyl amide −40.8 −38.1 2.74 2.57
phenol −67.6 −69.2 3.40 3.14
methyl amine −62.3 −61.7 2.46 2.21
imidazole −65.5 −66.0 2.35 2.18
methanethiol −52.8 −51.5 2.74 2.50
dimethyl sulfide −71.4 −71.4 2.70 2.49
ethanethiol −57.7 −64.6 2.72 2.46
diethyl sulfide −85.5 −91.2 2.73 2.46

Table D.12: Optimal interaction energies (kJmol−1) and equilibrium closest surface
separations (Å) for all small molecules investigated adsorbed onto Au(100)(5×1),
calculated using vdW-DF and optimal FF parameters given above.
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EvdW−DF EGolP−CHARMM dvdW−DF dGolP−CHARMM

kJmol−1 kJmol−1 Å Å

methyl amine T0 −60.1 −60.7 2.44 2.22
methyl amine T1 −48.7 −46.9 2.62 2.31
methyl amine T2 −62.3 −59.3 2.46 2.25
methyl amine T3 −45.0 −41.2 2.70 2.67

imidazole T0 −62.9 −65.0 2.34 2.16
imidazole T1 −49.5 −50.0 2.53 2.33
imidazole T2 −65.5 −65.6 2.35 2.19
imidazole T3 −46.5 −46.6 2.66 2.59

Table D.13: Interaction energies (kJmol−1) and equilibrium closest surface sep-
arations (Å) for molecules containing an unprotonated N atom adsorbed onto
Au(100)(5×1) in vacuo, calculated using vdW-DF and optimal FF parameters given
above. Labels ‘Tx’ refer to the top site location 0-3 on the Au(100)(5×1) surface.
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EvdW−DF EGolP−CHARMM dvdW−DF dGolP−CHARMM

kJmol−1 kJmol−1 Å Å

methanethiol T0 −49.7 −52.1 2.74 2.46
methanethiol T1 −41.3 −39.7 3.02 2.62
methanethiol T2 −52.8 −53.6 2.74 2.46
methanethiol T3 −39.8 −40.8 3.19 3.08

ethanethiol T0 −54.1 −54.0 2.72 2.45
ethanethiol T1 −43.0 −52.3 3.75 2.59
ethanethiol T2 −57.7 −64.4 2.72 2.48
ethanethiol T3 −44.3 −41.8 3.25 3.04

dimethyl sulfide T0 −67.5 −72.0 2.67 2.52
dimethyl sulfide T1 −57.8 −60.2 2.85 2.65
dimethyl sulfide T2 −71.4 −71.4 2.70 2.49
dimethyl sulfide T3 −55.5 −60.7 3.00 3.00

diethyl sulfide T0 −82.6 −78.6 2.67 2.54
diethyl sulfide T1 −71.1 −68.4 3.00 2.70
diethyl sulfide T2 −85.5 −86.3 2.73 2.51
diethyl sulfide T3 −68.7 −67.4 3.13 3.15

Table D.14: Interaction energies (kJmol−1) and equilibrium closest surface sepa-
rations (Å) for sulfur containing molecules adsorbed onto Au(100)(5×1) in vacuo,
calculated using vdW-DF and optimal FF parameters given above. Labels ‘Tx’ refer
to the top site location 0-3 on the Au(100)(5×1) surface.
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Appendix E

Additional Information:Material

Selectivity of QBP-1

Adsorption.

Figure E.1: Trajectories of four representative replicas (0, 5, 10, 15) through effecive
temperature space in simulations a) ‘sol’, b) ‘quartz’ and c) ‘gold’.
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Figure E.2: Number of clusters of QBP-1 structure as a function of simulation time.
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Figure E.3: Distribution of functional group—gold distances used to define residue
specific adsorption cut-offs at the aqueous (100) α-Quartz interface.
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Figure E.4: Distribution of functional group—gold distances used to define residue
specific adsorption cut-offs at the aqueous Au(111) interface.
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func. group Quartz Au(111)
Å Å

Pro Cγ 2.5 5.0
Trp Cδ2 and Cǫ2 7.0 4.0
Leu Cγ 4.5 4.1
Tyr phenyl ring 7.0 4.0
Met S 5.0 3.5
Ser O(-H) 2.0 4.0

Table E.1: Atoms or groups of atoms used to calculate residue–surface separations
and the cut-off distances defining the adsorbed state of the residue at each interface.
(In the case of more than one atom being used to define a functional group, the
binding distance cut-off refers to the surface-separation of the centre of mass of the
atoms involved.)
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a) CHARMM22 * b) CHARMM27

Figure E.5: Pie charts depicting the frequency with which each region of φ/ψ space
was sampled in REST simulations of QBP-1 adsorbed at the aqueous (100) α-Quartz
interface modelled using a) CHARMM22* and b) CHARMM27.
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P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12

quartz 0.6 29.3 15.1 92.2 37.8 40.0 67.0 69.2 11.8 24.9 84.4 2.6
gold 43.0 12.6 25.2 97.6 4.1 15.0 84.0 93.7 15.4 0.6 99.8 44.7

Table E.2: Percentage of frames in the last 5 ns of the trajectory in which each
residue is adsorbed to the quartz/gold surface. The four residues with the greatest
degree of interfacial contact have been highlighted in red.

231



1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10 10,11 11,12

quartz 0.3 0.0 12.6 35.0 2.5 25.8 47.8 6.8 0.0 24.3 2.2
gold 7.9 1.0 24.2 4.1 4.0 0.0 77.8 9.5 0.6 0.5 44.6

Table E.3: Percentage of frames in the last 5 ns of the trajectory in which each diad is
adsorbed to the quartz/gold surface. Diads which are statistically enriched in quartz
binding peptides, compared to the Ph.D.-12 peptide library as a whole are PW,
WL, PP, LP [Oren et al. [2010]]. Motifs found to have significant interfacial contact
during the simulations carried out in this work have been highlighted according to
their sequence using the same colour scheme or underlined.
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1,2,3 2,3,4 3,4,5 4,5,6 5,6,7 6,7,8 7,8,9 8,9,10 9,10,11 10,11,12

quartz 0.0 0.0 2.9 2.5 0.0 21.0 4.6 0.0 0.0 1.0
gold 0.0 1.0 0.0 4.0 0.0 0.0 0.0 0.0 0.5 0.3

Table E.4: Percentage of frames in the last 5 ns of the trajectory in which each triad
is adsorbed to the quartz/gold surface. Triads which are statistically enriched in
quartz binding peptides, compared to the Ph.D.-12 peptide library as a whole are
PPW, PWL and WLP [Oren et al. [2010]]. Motifs found to have significant inter-
facial contact during the simulations carried out in this work have been highlighted
according to their sequence using the same colour scheme or underlined.
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P1 P2 P3 W4 L5 P6 Y7 M8 P9 P10 W11 S12

Quartz 12.2 38.2 65.7 56.2 60.4 73.1 39.8 45.6 37.1 47.7 51.6 55.1
Gold 0.0 0.0 1.8 24.3 0.6 0.7 1.8 0.0 0.1 0.9 23.4 1.5

Table E.5: Percentage of frames in the last 5 ns of the trajectory in which each the
backbone of each residue is adsorbed to the quartz/gold surface. Surface-separation
cut-off distances of 5.1 Å and 4.4 Å were used to define the adsorbed state of a
residues’ backbone atoms (defined as the centre of mass of the amide group) at the
(100) α-Quartz and Au(111) interfaces respectively.
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Figure E.6: Normalized frequency distribution of residue backbone atoms above the
(100) α-Quartz and Au(111) surfaces. Cut-offs for backbone group surface binding
are demarked by dotted lines (dark green- quartz and red- gold).
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Appendix F

Additional Information:Facet

Selectivity of AuBP-1

adsorption onto Gold: A

Replica Exchange with Solute

Tempering Metadynamics

Study.

236



b) REST metaD

a) REST MD

Figure F.1: Trajectories of representative replicas (0, 5, 10, 15) through effective
temperature space during a) REST MD simulations (of AuBP-1 in solution and
at the aqueous Au(111) interface) and during b) REST metaD simulations (at the
aqueous Au(111), Au(100)(1×1) and Au(100)(5×1) interfaces). Data shown for first
10 ns of all simulations only.
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funct. group DirAu(111) DirAu(100)(1×1) DirAu(100)(5×1)

/ Å / Å / Å

ALA Cβ 4.7 4.8 4.6
ARG guanidium group 4.5 4.6 4.4
GLU COO− 4.1 4.4 4.2
GLY CαH2 3.1 3.2 3.0
LEU Cδ 4.7 4.8 4.6
LYS -NH+

3 4.5 4.6 4.4
TRP phenyl ring 4.4 4.4 4.4
VAL Cγ 4.7 4.8 4.6

Table F.1: Amino-acid functional group gold distances used as cut-off to define
direct gold adsorption at the aqueous Au(111), Au(100)(1×1) and Au(100)(5×1)
interfaces. In the case of Arg and Trp, the c.o.m. of the heavy atoms in the
functional group described above was used in determining residue side-chain surface
separation, whereas for Glu, Gly, Leu and Val it was the closest carboxylate oxygen
atom, hydrogen or methyl carbon, respectively.
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a)

b)

c)

Figure F.2: Evolution of ln(W) (Equation 2.31) as a function of simulation time at
the aqueous a) Au(111), b) Au(100)(1×1) and c) Au(100)(5×1) interfaces.
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a)

b)

c)

Figure F.3: Time evolution of the free energy of adsorption of AuBP-1 to a) Au(111),
b) Au(100)(1×1) and c) Au(100)(5×1). Plotted in black is the minimum energy
based on the peptide binding to either the top or bottom surface of the gold slab;
error bars represent the energetic differences between the two interfaces. The average
energy of adsorption to the two identical gold surfaces present in each simulation cell
is demarked by a green line, while the free energy of adsorption, with its associated
error, calculated self consistently using the ‘time period’ reweighting method after
five iterations is plotted in brown.
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a b c d e f g h i unass.
% % % % % % % % % %

Solution 15.8 12.4 6.3 14.1 14.6 11.2 5.0 3.6 5.5 11.4
Au(111) MD 0.0 2.8 0.0 12.5 26.6 36.1 9.0 6.4 4.5 2.1

Au(111) 0.3 0.2 1.3 11.2 47.2 25.1 1.4 2.9 8.9 1.4
Au(100)(1×1) 1.5 1.2 0.3 16.3 42.0 34.2 0.2 0.0 0.2 4.2
Au(100)(5×1) 3.5 0.0 2.1 11.1 20.9 43.1 1.8 6.2 10.3 1.0

Table F.2: Percentage population of each reference cluster of AuBP-1. The most
populated clusters have been highlighted as follows: C1, C2, C3.

WA AG GA AK KR RL LV VL LR RR RE
% % % % % % % % % %

Au(111) 51.5 8.9 2.3 4.5 14.7 46.0 35.5 39.4 52.5 76.0 13.7
Au(100)(1×1) 10.7 1.9 0.4 0.4 11.0 8.9 17.3 29.7 30.7 40.2 1.9
Au(100)(5×1) 40.3 16.7 20.9 3.5 17.0 55.0 9.3 12.2 86.5 82.2 15.6

Table F.3: Percentage likelihood for each potential binding diad to be in direct
contact with the gold surface. The binding characteristics of a dyad have been
highlighted following the scheme: strong 76-100%; significant 51-75%; and moderate
26-50%.

WAG AGA GAK AKR KRL RLV LVL VLR LRR RRE
% % % % % % % % %

Au(111) 8.8 1.6 0.3 4.3 7.0 29.5 19.4 38.3 43.3 13.0
Au(100)(1×1) 1.8 0.1 0.0 0.3 0.5 7.8 17.2 29.7 30.3 1.3
Au(100)(5×1) 13.4 10.9 1.0 3.5 6.8 9.1 5.6 12.2 73.1 15.3

Table F.4: Percentage likelihood for each potential binding triad to be in direct
contact with the gold surface. The binding characteristics of a triad have been
highlighted following the scheme: strong 76-100%; significant 51-75%; and moderate
26-50%.
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