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Abstract 

Anammox (anaerobic ammonium oxidation) is an environmentally significant 

process with great importance for global biogeochemical cycles. This process is 

mediated by a unique suite of phylogenetically distinct chemolithoautotrophic 

bacteria which demonstrate novel physiological and metabolic characteristics. 

However, despite the importance of these organisms, there is still much which is 

poorly understood about them, specifically the diversity and distribution of these 

bacteria and their controlling environmental factors. Furthermore, genomic studies 

and observations from the field suggest that anammox bacteria may have a far 

greater metabolic diversity than previously thought, suggesting that the current 

understanding of these organisms is incomplete. This study aimed to elucidate these 

aspects of the ecology of anammox bacteria in estuarine and OMZ (oxygen 

minimum zone) environments. A clear community shift was observed in estuarine 

environments from Ca. Brocadia spp. dominated freshwater sites to Ca. Scalindua 

spp. dominated marine sites. The OMZ was dominated by Ca. Scalindua spp. though 

diversity within this clade was observed between organisms in the upper oxycline 

and those within the core of the OMZ. Microcosm experiments amended with 

organic substrates suggested that some anammox organisms (namely Ca. Brocadia 

spp., Ca. Jettenia spp. and Ca. Kuenenia spp.) may have the ability to assimilate 

carbon directly from organic substrates such as dimethylamine and urea. However, 

these data were inconclusive and further investigations are required to prove or 

disprove the hypothesis that anammox bacteria can utilise organic substrates. 

Nevertheless, this study improves the understanding of the ecology of anammox 

organisms in estuarine and OMZ environments, providing an unprecedented depth of 

data as to the diversity and distribution and unique insights into potentially novel 

metabolic capabilities of these organisms. 

  



 

xvi 

 

Abbreviations 

AMZ  Anoxic Marine Zone 

Anammox Anaerobic Ammonium Oxidation 

ATU  Allylthiourea 

BOD  Biological Oxygen Demand 

bp  (Nucleotide) Base pair 

BSL Below Sea-Level 

Ca.  Candidatus 

CCA  Canonical Correspondence Analysis 

CTD  Instrument to measure conductivity, temperature in depth in 

oceanography 

DGGE  Denaturing Gradient Gel Electrophoresis 

DIN  Dissolved Inorganic Nitrogen 

DMA  Di-methylamine 

DNRA  Dissimilatory Nitrate Reduction to Ammonium 

DOC  Dissolved Organic Carbon 

DOM Dissolved Organic Matter 

DON  Dissolved Organic Nitrogen 

ETNP  Eastern Tropical North Pacific 

ETSP  Eastern Tropical South Pacific 

FISH  Fluorescence In Situ Hybridisation 

GC Gas Chromatography/Chromatograph 



 

xvii 

 

HGT Horizontal Gene Transfer 

HPLC High-performance Liquid Chromatography 

IC Ion Chromatography/Chromatograph 

IPT  Isotope Pairing Technique 

IRMS Isotope-ratio Mass Spectrometry 

MBM  Medway Bridge Marina 

Ndef  Nitrogen Deficit 

ODZ  Oxygen Deficient Zone 

OFN Oxygen Free Nitrogen 

OMZ  Oxygen Minimum Zone 

OrgN  Organic Nitrogen 

OTU  Operational Taxonomic Unit 

PCR  Polymerase Chain Reaction 

PEG  Polyethylene Glycol 

qPCR  Quantitative PCR 

Rep.  Replicate 

RLIC  Read Length Incremental Clustering 

SE  Standard Error 

SIP  Stable Isotope Probing 

sp.  Species (singular) 

spp.  Species (plural) 



 

xviii 

 

TMA  Tri-methylamine 

 



 

1 

 

1. Introduction 

1.1. Global Nitrogen Cycling 

1.1.1. The Nitrogen Cycle 

Nitrogen is an essential element for all life on this planet (Redfield, 1934; Francis, et 

al., 2007) and hence is an important factor in biogeochemical cycling. Furthermore, 

it is also the primary nutrient-limiting factor  for primary production in many 

environments (Seitzinger, et al., 2002). It is therefore essential that a lucid 

understanding of the nitrogen cycle be obtained for the benefit of environmental and 

life sciences as a whole. 

 

Figure 1.1: Diagram showing the currently accepted view of the nitrogen cycle.  The anammox reaction (in 

blue) can be seen to play an important role in the anaerobic nitrogen cycle, providing an alternative route to N2 

production (other than denitrification) and a route to the removal of NH4
+ (other than assimilation). 

The nitrogen cycle (Manahan, 2005; Francis, et al., 2007) can be divided into three 

broad stratifications: atmospheric, aerobic and anaerobic environments (Figure 1.1). 

Atmospheric di-nitrogen (N2) gas is fixed into organic matter to fulfil various 

metabolic roles. Organic nitrogen (org-N) is released back to the environment either 
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through death or excretion and is, ultimately, converted to ammonium (NH4
+
) 

through putrification. In aerobic environments, NH4
+ 

is oxidised to nitrate (NO3
-
) and 

nitrite (NO2
-
) via nitrification. NO3

- 
and NO2

-
 can then be reduced anaerobically to 

N2 and nitrous oxide (N2O) via denitrification, releasing these compounds back into 

the atmosphere. Until recently NH4
+
 was believed to be inert in anaerobic 

environments and it was not until the discovery of anaerobic ammonium oxidation 

(anammox) that this assumption was falsified (van de Graaf, et al., 1995). Anammox 

provides an alternative pathway to N2 production, using NO2
-
 as an oxidising agent 

(Francis, et al., 2007). Dissimilatory nitrate reduction to ammonium (DNRA) is a 

further element of the N-cycle, providing a novel source of NH4
+
 in anaerobic 

environments (An and Gardner, 2002; Dong, et al., 2011). 

1.1.2. Anammox, Denitrification and Nitrogen Cycling – N2 loss 

Gaseous N2 represents 78% of the planet’s atmosphere (Francis, et al., 2007) which 

presents a significant source of nitrogen for fixation by primary producers. Thus it is 

important that a comprehensive understanding of the processes leading to the loss of 

fixed nitrogen from environments to the atmosphere is developed (Kuypers, et al., 

2006). 

Prior to the discovery of the anammox process, denitrification was viewed as the 

only process producing N2 in marine environments and one of the largest sinks for 

fixed nitrogen (Devol, 2003; Francis, et al., 2007). Denitrification is the process by 

which NO3
-
 is reduced sequentially to N2 (Ward, et al., 2007) as represented in 

Figure 1.1 and by the following equation: 

   
     

            

(Devol, et al., 2006) 

Denitrification can couple either NOx
-
 molecules to either N2 or N2O however a 

balanced reaction for the heterotrophic conversion of NO3
-
 to N2 can be represented 

as: 

    
          

                

(Manahan, 2005) 
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Denitrification is a microbial process mediated by ~50 different genera of 

facultatively anaerobic, heterotrophic organisms (Francis, et al., 2007) spanning the 

domains of bacteria, archaea and eukarya (Ward, et al., 2007). These organisms are 

abundant in a wide range of anaerobic environments (Seitzinger, et al., 2006).  

However it had been evident for some time that our understanding of nitrogen loss 

from anaerobic systems was not complete. Richards (1965) noted that the amount of 

NH4
+
 found in anaerobic environments was much less than would be 

stoichiometrically expected because, if NH4
+ 

was truly inert in these environments, it 

would steadily accumulate over time. Later Broda (1977) hypothesised, based on 

thermodynamic calculations, a mechanism for the conversion of NH4
+
 to N2, 

mediated by a lithotrophic organism, suggesting that this could be the missing piece 

of the nitrogen-cycle. Despite such discrepancies being reported in the literature, it 

was not until much later that anammox was discovered in a wastewater reactor 

(Mulder, et al., 1995) and the organisms responsible for this process identified (van 

de Graaf, et al., 1995; Strous, et al., 1999). 

Anammox, in its most basic definition, is the oxidation of NH4
+
 to N2 utilising NO2

-
 

as an electron (e
-
) acceptor: 

   
     

          

(Van de Graaf, et al., 1996) 

Anammox thus provided an alternative route to N2 loss, potentially bypassing 

denitrification and dispelling the theory that this process was the only sink for fixed 

nitrogen in anaerobic environments (Devol, et al., 2006; Francis, et al., 2007). 

Following the discovery of anammox, much research was conducted investigating 

this process and evidence for it was soon found in a range of different environments 

(see section 1.2.1) but most notable in marine, coastal sediments and within the 

Oxygen Minimum Zones (OMZs). However, it was initially argued that anammox 

was environmentally insignificant, due to their slow growth rates (reviewed in Jetten, 

et al., 2009), and that denitrification was the dominant nitrogen sink in these 

environments (Zehr and Ward, 2002; Ward, et al., 2007). Indeed, theoretical 

calculations based on the Redfied ratio (Redfield, 1934) suggest that the maximum 

contribution of anammox to N2 loss can only be 29% (Kuypers, et al., 2006; Ward, 
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et al., 2007) though due to the diverse metabolisms of denitrifiers (Francis, et al., 

2007) anammox were likely to be outcompeted in most environments, posing 

interesting questions for the niche adaptation and environmental significance of these 

organisms. 

This view was challenged when the contribution of anammox to global nitrogen 

cycling was investigated. This was made possible by the adaption of the Isotope 

Pairing Technique (IPT), devised by Nielsen (1992) for measuring denitrification 

rates, to include the anammox process (Thamdrup and Dalsgaard, 2002; Risgaard-

Petersen, et al., 2003). In IPT, samples are incubated with 
15

N-labelled NOx
-
 

substrates and the amount of 
29

N2 and 
30

N2 is measured via mass spectrometry 

(Nielsen, 1992). The addition of experiments including 
15

NH4
+
 allows for the relative 

rate of anammox compared to denitrification to be measured as, with this substrate, 

29
N2 can only be produced via the anammox reaction (Trimmer, et al., 2003). Using 

this method, anammox was found to be a significant contributor to marine, 

continental shelf sediments, potentially contributing up to 60% of N2 production 

(Thamdrup and Dalsgaard, 2002). Anammox was also shown to be significant in 

OMZs, producing 30-50% of N2 in these environments (Devol, 2003). However, 

similar studies in estuarine environments (Trimmer, et al., 2003; Dale, et al., 2009) 

and stratified lakes (Hamersley, et al., 2009) found the potential contribution of 

Anammox to be much lower (1 – 16.5% and 13% respectively).  

However, it is likely that these measurements are not entirely accurate as this method 

does not (and cannot) account for the conversion of NO3
-
 to NH4

+
 via DNRA 

(Trimmer, et al., 2003) nor does it account for the potential for more diverse 

metabolisms of anammox bacteria (see section 1.2.2 and chapter 5). Thus, the 

potential contribution of anammox to the N-cycle may either be under- or over-

estimated. DNRA is a problem for IPT methodologies as it could produce 
15

NH4
+
 

from 
15

NO3
-
 which would lead to the acquisition of 

30
N2 from the anammox process, 

thereby producing a “false denitrification” signal (Kartal, et al., 2007a). Recently 

however, Dalsgaard, et al. (2012) succeeded in modelling the contribution of DNRA 

in OMZs to the “false denitrification” signal potentially obtained using this method 

and found that it was negligible. Regardless of these advances, our knowledge of the 

anaerobic nitrogen cycle based on stoichiometry and theoretical calculations do not 
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agree with observations from the field (Ward, et al., 2007) and thus our 

understanding of these processes is still incomplete (Devol, 2003). Nevertheless, it is 

widely agreed that anammox is a significant process in these environments and is an 

essential component of our understanding of the global nitrogen and carbon cycles 

(Francis, et al., 2007). As such it is imperative that the global significance of 

anammox is further quantified and the factors which regulate this process elucidated 

(Kuypers, et al., 2006). 

1.2. Anammox Microbiology and Ecology 

1.2.1. Phylogeny, Diversity and Distribution 

Shortly after the discovery of the anammox reaction, it was shown that anammox 

was a biologically mediated process (van de Graaf, et al., 1995). These organisms 

were shown to be chemolithoautotrophic, solely using the redox of inorganic 

nitrogen compounds (i.e. NH4
+
 and NO2

-
) to create the energy in order to fix CO2 

into biomass (Van de Graaf, et al., 1996). Strous, et al. (1999) later identified these 

organisms as being evolutionary distinct bacteria belonging to the order 

Planctomycetales. Recently however anammox have been assigned to their own 

order, Brocadiales, (Figure 1.2) within the phylum Planctomycetes (Gori, et al., 

2011). 

 

Figure 1.2: Classification of known anammox bacteria. 

Kingdom
• Bacteria

Phylum
• Planctomycetes

Class
• Planctomycetia

Order
• Brocadiales

Family
• Brocadiaceae

Genus

•Ca. Anammoxoglobus
•Ca. Brocadia

•Ca. Jettenia
•Ca. Kuenenia •Ca. Scalindua
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To date, five candidate distinct genera of anammox bacteria have been identified 

(Figure 1.3); Ca. Anammoxoglobus, Ca. Brocadia, Ca. Jettenia, Ca. Kuenenia and 

Ca. Scalindua (van Niftrik and Jetten, 2012). These organisms belong to a 

monophyletic clade within the phylum Planctomycetes, based on 16S rRNA gene 

diversity (van Niftrik and Jetten, 2012). All known anammox organisms have been 

shown to belong strictly to this clade. However despite this, the evolutionary history 

of anammox bacteria is relatively unknown and there are a number of theories as to 

their origins (van Niftrik and Jetten, 2012), although it does seem evident that 

anammox organisms are ancient (Fuerst, 2005) and thus may have been important in 

the biogeochemical cycles of the early earth and the formation of an N2 rich 

atmosphere. 

 

Figure 1.3: 16S rRNA phylogeny of anammox bacteria.  Anammox 16S rRNA sequences cluster separately 

from other Planctomycetes. Ca. Scalindua spp. are distinct from other members of the anammox clade. Figure 

adapted from (Kuenen, 2008). 

The first anammox organisms to be found in the natural environment were observed 

in the Black Sea and belonged to the Ca. Scalindua genus (Kuypers, et al., 2003). 

Since then anammox have been found in a number of different marine environments, 

apparently dominated by Ca. Scalindua spp.; these include marine sediments 

(Dalsgaard and Thamdrup, 2002; Rysgaard, et al., 2004; Engstrom, et al., 2005; 

Ca. Scalindua spp. Non-Scalindua
anammox

10 %
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Amano, et al., 2007; Rich, et al., 2008; Engstrom, et al., 2009), OMZs (Hamersley, 

et al., 2007; Woebken, et al., 2008; Galan, et al., 2009; Galan, et al., 2012), estuarine 

sediments (Trimmer, et al., 2003; Risgaard-Petersen, et al., 2004; Dale, et al., 2009; 

Nicholls and Trimmer, 2009), particulate matter in oceanic water columns 

(Hamersley, et al., 2007; Jaeschke, et al., 2007), arctic sea ice (Rysgaard and Glud, 

2004), hydrothermal vents (Byrne, et al., 2008), mangrove forests (Amano, et al., 

2011), marine sponges (Mohamed, et al., 2010), and other anoxic marine 

environments and upwelling regions (Dalsgaard, et al., 2003; Kuypers, et al., 2003; 

Kuypers, et al., 2005; Woebken, et al., 2007). A greater diversity of anammox 

bacteria have also been found in numerous terrestrial environments including; the 

freshwater extents of river estuaries (Dale, et al., 2009), stratified lakes (Schubert, et 

al., 2006; Hamersley, et al., 2009; Yoshinaga, et al., 2011), wetland environments 

(Penton, et al., 2006; Humbert, et al., 2012), hot springs (Jaeschke, et al., 2009a), 

petroleum reservoirs (Li, et al., 2010a), anaerobic soils (Humbert, et al., 2010), 

groundwater (Clark, et al., 2008; Moore, et al., 2011) and paddy fields (Sato, et al., 

2012). As anammox bacteria are found to be present and active in an increasing 

number of environmentally diverse ecosystems, it appears as if anammox may be 

ubiquitous in anaerobic environments (Francis, et al., 2007; Kartal, et al., 2008)
*
. 

However, to date, no anammox organisms has been successfully isolated and grown 

in pure culture and as such, all anammox organisms are classified as Candidatus 

organisms (Jetten, et al., 2009) although highly enriched cultures are obtainable after 

considerable effort (Jetten, et al., 2005). 

1.2.2. Genetics 

Despite the absence of cultured anammox organisms, successful attempts have been 

made to sequence anammox genomes which have significantly improved our 

understanding of these organisms. Strous, et al. (2006) were the first to sequence an 

anammox genome, Ca. Kuenenia stuttgartiensis, from a community metagenome, 

but were unable to obtain the complete genome for this organism. Strous, et al. 

(2006) found genes encoding the entire coenzyme-A (CoA) pathway of carbon 

assimilation as well as novel genes encoding for proteins for the synthesis and 

subsequent oxidation of N2H4, suggesting that previous hypotheses as to anammox 

                                                 
*
 For a more comprehensive review of anammox bacteria and diversity in the environment, especially 

in relation to estuaries and OMZs, please refer to chapter 5. 
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metabolism (i.e. that N2H4 was an important intermediate to the anammox process 

and that anammox bacteria are autotrophs, fixing CO2 via the CoA pathway) may be 

correct (van de Graaf, et al., 1997; Schalk, et al., 2000). Ca. K. stuttgartiensis was 

also shown to contain genes encoding for the first steps of the denitrification 

pathway, narG (nitrate::nitrite oxidoreductase) and nirS (nitrite::nitric oxide 

oxidoreductase). Similar, subsequent studies have acquired metagenomes for Ca. 

Brocadia fulgida (Gori, et al., 2011), Ca. Jettenia asiatica (Hu, et al., 2012) and Ca. 

Scalindua profunda (van de Vossenberg, et al., 2012). These studies reveal a greater 

potential metabolic diversity of these organisms than previously thought (see chapter 

5 for a full review and discussion) however conclusions drawn from incomplete 

metagenomic data, without empirical observations, must be used with caution. 

Nevertheless, such studies have largely elucidated the principal functional genes 

involved in the anammox reaction, aiding future research.  

1.2.3. Physiology and Structure 

Anammox bacteria have been described as obligate anaerobes, and are active only in 

environments with O2 concentrations less than 2 μM (Strous, et al., 1997). However, 

anammox activity is only inhibited by higher O2 concentrations, O2 is not toxic to 

anammox bacteria (Strous, et al., 1997) perhaps allowing anammox bacteria to 

survive in environments with transient exposure to oxygen (e.g. estuarine sediments). 

Anammox have also been shown to be active at a wide range of temperatures, from -

1.8°C (Rysgaard and Glud, 2004) to 65°C (Jaeschke, et al., 2009a) and 85°C (Byrne, 

et al., 2008). Anammox bacteria have been reported to exhibit a high affinity for 

NO2
-
 and NH4

+
, utilising these substrates even at concentrations < 5 μM (Jetten, et 

al., 2009). However, the metabolic rate of anammox has been reported to be very 

low, producing 15 – 80 μmol N2 per g cells (dry weight) min
-1 

(Jetten, et al., 2009).  

The anammox reaction occurs in a 1:1 ratio of NH4
+
:NO2

-
 (van de Graaf, et al., 

1995). Anammox utilise the oxidation of NH4
+
 to synthesise adenosine triphosphate 

(ATP) as an energy source (G°
-
 = -275 kJ mol

-1
 NH4

+
) which is then used to fix 

CO2 into biomass and perform other metabolic functions (Güven, et al., 2005; Jetten, 

et al., 2009). The anammox reaction is in actuality a three-step reaction with 

hydrazine (N2H4) being an important intermediate (Kartal, et al., 2011b). However, 

an overall equation for chemolithotrophic anammox can be expressed as: 
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(Strous, et al., 1998) 

Anammox cells are coccoidal and are typically between 0.8 and 1.1 μm in diameter, 

with some Ca. Scalindua organisms exhibiting pili (van Niftrik and Jetten, 2012) and 

have been shown to form flocs or attach themselves to aggregate matter (Schmid, et 

al., 2003; Hamersley, et al., 2007; Jaeschke, et al., 2007; Woebken, et al., 2007; 

Quan, et al., 2008). Anammox bacteria have also been shown to have unique 

characteristics in terms of their cell structure (van Niftrik and Jetten, 2012). 

Planctomycetes in general have interesting cellular properties and characteristics, 

such as large phylogenetic distances from other bacteria and a lack of peptidoglycan, 

adding to the suggestion that this phylum represents an evolutionarily historic group 

of organisms, perhaps representing one of the early evolutionary steps from 

prokaryotic to eukaryotic life (Fuerst, 2005). Most Planctomycetes have intracellular 

compartments which perform a variety of roles (Fuerst, 2005; Jetten, et al., 2009; 

Fuerst and Sagulenko, 2011). Anammox bacteria are no different and contain a 

similar structure named the ‘anammoxosome’ (van Niftrik, et al., 2010). It has been 

shown that the anammoxosome is the reaction centre for anammox bacteria (Figure 

1.4), where N2H4 and NO are synthesised and oxidised (Neumann, et al., 2011; van 

Niftrik and Jetten, 2012). The proteins associated with anammox metabolism, 

specifically hydrazine hydrolase/hydrazine synthase (HH/HZS) have been shown to 

be present only inside the anammoxosome (Karlsson, et al., 2009) and a significant 

number of membrane-bound ATPases were found to be associated with the 

anammoxosome membrane (van Niftrik, et al., 2010). The anammoxosome 

membrane is made from unique “ladderane” lipids, which have been hypothesised to 

protect the rest of the anammox cell and the nucleoid from potentially toxic 

compounds such as N2H4 and NO (Rattray, et al., 2008; Boumann, et al., 2009). As 

these ladderane lipids have only been reported in anammox bacteria, they have been 

postulated to be suitable as biomarkers for anammox in the environment (Jaeschke, 

et al., 2009b). 
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Figure 1.4: Diagram showing the current accepted view of the anammox reaction and the proteins 

involved coupled to the anammoxosome membrane. Figure adapted from van Niftrik, et al. (2008) and van 

Niftrik and Jetten (2012). Key: bc1, cytochrome bc1 complex; cyt, cytochrome; NirS, nitrite reductase S; HZS, 

hydrazine synthase; HZO, hydrazine oxidireductase; Q, coenzyme Q; a, anammoxosome compartment; r, 

riboplasm compartment. This model clearly shows separation of the anammox reaction and toxic compounds 

from the rest of the anammox cell. 

1.2.4. Microbial Ecology and Anammox 

Ecology is the study of “the relationships of organisms to their environments” 

(Brock, 1966). Thus, the microbial ecologist wishes to study what an organism is, 

what it does, when it is active and how this organism affects both its environment 

and other organisms within its ecosystem (and vice versa). Classically, in order to 

study the ecology of a particular organism, it is necessary to isolate an organism 

from its environment in order to study its physiology and nature (Brock, 1966; 

McArthur, 2006). Laboratory experiments can be performed investigating factors 

which control the particular organism’s activity using traditional microbiological, 

genomic, transcriptomic and proteomic approaches. In such experiments it is 

important to measure responses of the same organism under different conditions, to 

ensure that observations are comparable and that subsequent conclusions are valid. 

These findings can ultimately be taken out of the laboratory and tested in situ to 

further understand the organism in question as the effect of organisms on their 

environment can only be truly investigated in-situ (Brock, 1966; McArthur, 2006). 

Recently, the development of the “meta” age and associated technologies has 
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provided the ecologist with far more powerful tools (Huse, et al., 2008; Kunin, et al., 

2010) to investigate his/her particular organism in its environments; though such 

technologies should be viewed as an addition to in vitro techniques and not a 

substitute. 

Although enrichment cultures of anammox organisms do exist, to date, attempts to 

isolate these bacteria from the natural environment have been unsuccessful (Jetten, et 

al., 2009). Thus, the studying the ecology of anammox organisms provides a unique 

challenge, as the classical methodology that one would hope to use (see above) is 

unavailable. This is further hindered by the fact that anammox bacteria are generally 

found to be of a low abundance, even in environments where they have been shown 

to be significantly active (Byrne, et al., 2008; Hamersley, et al., 2009). As such, 

anammox research has not progressed as rapidly as one might expect for such a 

unique and environmentally important group of organisms and much about these 

unique organisms is relatively unknown. Hence, the diversity and distribution of 

anammox organisms in natural environments is relatively unknown, as is the 

environmental factors affecting such diversity and the niche adaptation of these 

organisms (Hamersley, et al., 2009; Humbert, et al., 2010). 

The acquisition of anammox genomes and metagenomes (section 1.2.2) has 

potentially revealed a far greater metabolic diversity of these organisms than has 

previously been suggested. However few investigations have investigated the 

potential for such metabolic diversity outside of the laboratory and what potential 

impact this may have for the ecology of anammox organisms. More detailed reviews 

of anammox metabolic and phylogenetic diversity and environmental distribution are 

included in the introduction sections of the subsequent chapters.  

1.3. Aims, Hypotheses and Scientific Rationale 

1.3.1. Overall Aims 

This project aims to elucidate aspects of the ecology of anammox organisms: 

a) To investigate anammox diversity and distribution and what drives this 

biogeography over environmental gradients.  
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b) To investigate whether evidence of anammox organisms utilising organic-

nitrogen substrates can be found.  

To achieve these aims a molecular approach was used implementing high throughput 

sequencing technologies as well as SIP. 

1.3.2. Scientific Rationale and Hypotheses 

1.3.2.1. Biogeography 

1.3.2.1.1. Rationale 

Anammox is an important and significant process in estuarine environments 

(Nicholls and Trimmer, 2009) and OMZs (Devol, 2003). To date, a detailed 

understanding of the biogeography of anammox organisms in such environments has 

yet to be achieved (Humbert, et al., 2010) despite multiple studies investigating the 

diversity and distribution of these organisms (e.g. Rich, et al., 2008; Dale, et al., 

2009; Galan, et al., 2009). However, previous studies all have some issue relating to 

their methodologies (e.g. sampling strategy, sampling depth, specificity of PCR 

primers used etc) which prevented the findings of any particular study from being 

conclusive. Furthermore, no study exists within the literature which investigates both 

marine and estuarine anammox organisms in the same study. This creates an issue as 

no two investigations use exactly the same methodologies and therefore can never be 

directly comparable. 

However, via comparison of all of these studies, it appears that “Ca. Scalindua spp.” 

inhabit marine environments whereas the other four genera (“Ca. Brocadia spp.”, 

“Ca. Jettenia spp.”, “Ca. Kuenenia spp.” and “Ca. Anammoxoglobus spp.”) exist 

solely in freshwater or terrestrial environments (reviewed in Jetten, et al., 2003; 

Jetten, et al., 2009). From inference, one can assume that the biogeography of these 

organisms is dependent on salinity though whether this is as a direct result of 

changes in salinity or due to a secondary variable is unknown. Kartal, et al. (2006) 

however demonstrated that enrichments of terrestrial anammox bacteria were not 

greatly affected by increases in salinity. Furthermore, how the anammox community 

changes across a salinity gradient (e.g. along an estuary) is also unknown as no study 
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to date has comprehensively investigated both the freshwater and saline parts of an 

estuary in relation to the diversity of anammox bacteria.  

Though OMZs appear to be dominated by Ca. Scalindua spp. and some hypotheses 

have been made concerning the micro-diversity of Ca. Scalindua in these ecosystems 

(Woebken, et al., 2008; Galan, et al., 2009), in truth few studies have investigated 

anammox diversity comprehensively in such environments due to small clone 

libraries and poor data resolutions. Though the core of the OMZ is relatively stable, 

in terms of its geochemistry, the periphery of the OMZ is typified by steep and 

potentially transient oxyclines and chemoclines (Paulmier and Ruiz-Pino, 2009). 

Such regions may present a key niche for anammox bacteria and a source of 

anammox diversity. Bae, et al. (2010) commented that anammox communities may 

be more diverse with increased O2 concentrations (compared with complete anoxia) 

however, this observation was made from laboratory based anammox reactors and it 

is yet to be seen whether such an observation would hold true in the natural 

environment. 

1.3.2.1.2. Specific Hypotheses 

Anammox diversity was investigated across two environmental gradients; a salinity 

gradient (Medway Estuary, Kent, UK) and an oxygen gradient (ETNP OMZ). It was 

hypothesised that anammox diversity and community structure would change over 

these environmental gradients and that the observed anammox diversity would be 

dependent on varying environmental conditions. 

1.3.2.1.2.1. Medway Estuary 

Along the Medway Estuary, it was hypothesised that the anammox community 

would change from a Ca. Scalindua spp. dominated community in marine (high 

salinity) locations to a Ca. Brocadia spp., Ca. Jettenia spp. and Ca. Kuenenia spp. 

dominated community towards the freshwater end of the estuary (i.e. towards 

Allington Lock, see Chapter 2 for site descriptions). However as the specific niche 

adaptations of the different anammox genera is currently unknown, freshwater 

anammox communities may be dominated by a single, non-Scalindua genus or 

demonstrate a greater richness and diversity. It was hoped that the conclusions of this 

study would aid the understanding of the niche adaptations of these organisms. 
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It was further hypothesised that the transition between marine and freshwater 

anammox communities would be gradual, with decreasing salinity along the estuary, 

and would not demonstrate a sudden and distinct community shift. Although 

previous studies have suggested that Ca. Scalindua spp. are dominant in marine 

environments and non-Scalindua genera are adapted to less saline environments 

(reviewed in Song and Tobias, 2011), some studies have also reported the 

coexistence of several different anammox genera including suspected marine and 

freshwater species (Dale, et al., 2009). As such it would seem that anammox bacteria 

(or at least some anammox bacteria) are reasonably tolerant to transient 

environmental conditions which would be advantageous to their survival in 

environments, such as estuaries which experience tidal surges and varying 

environmental parameters (e.g. salinity, temperature and concentrations of inorganic 

and organic compounds) throughout the year (Wharfe, 1977; Manahan, 2005; Dale, 

et al., 2009). Therefore, it is unlikely that a distinct community shift between 

different anammox communities would be observed along the extent of the Medway 

Estuary but instead a gradual change in the proportion of different community 

members would be reported by the data.  

Typically the range in salinity experienced towards the middle of the Medway 

Estuary is more variable throughout the year than at either extent (Figure 1.5) and so 

specific anammox community members, who may be more tolerant to such 

conditions, may outcompete their community rivals here. As such it was also 

hypothesised that, in addition to marine and freshwater dominated anammox 

communities, a separate anammox community may be observed which has adapted 

to meso-haline conditions and would be more dominant community members in such 

environments. However, as no such community has previously been reported in the 

literature, the nature of this anammox community, if it indeed exists, cannot be 

speculated on. 
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Figure 1.5: Mean annual salinity along the Medway Estuary. Mean annual salinity range across 5 sites along 

the Medway Estuary. Data obtained from The Environment Agency, UK. Error bars represent standard errors 

calculated from 12 year averages for each month. No data was available for the absolute marine extent of the 

estuary though salinities of ~ 30-35 ppt would be expected corresponding with global averages for seawater. The 

salinity at the most upstream site (Aylesford) was low throughout the year (mean value 0.54 ± 0.24 ppt) whereas 

salinities in downstream sites were more variable throughout the year (demonstrating an annual salinity range of 

approximately 10 ppt). 

However, previous in-vitro research has suggested that anammox bacteria are 

highly-tolerant to varying salinities (Kartal, et al., 2006). This appears to contradict 

in-situ anammox investigations which suggest that the diversity observed within the 

Brocadiaceae is determined by salinity (Song and Tobias, 2011). Therefore it was 

hypothesised that by comparing environmental data with measurements of anammox 

diversity along the extent of the Medway Estuary, other environmental parameters 

may be discovered which may have a controlling effect on anammox diversity 

(though this would have to be confirmed with in-vitro experimentation and can only 

be inferred from in-situ observations). As such, anammox diversity in estuarine 

environments may not be controlled by salinity, but rather by secondary variables 

which also increase or decrease along the estuary in conjunction with salinity. One 

such parameter may be the concentration of DOM which has been suggested to have 

a controlling influence on anammox bacteria (Trimmer, et al., 2003; Rooks, et al., 
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2012) and varies along estuaries with changing land use (e.g. from anthropogenic 

loadings). 

1.3.2.1.2.2. ETNP OMZ 

Previous studies concerning anammox diversity in OMZ settings have reported that 

these environments are dominated by Ca. Scalindua spp. but that the anammox 

community may also demonstrate a degree of micro-diversity within this genus 

(Woebken, et al., 2008; Galan, et al., 2009). As such it was hypothesised that this 

study’s investigation into anammox community structure and diversity in the ETNP 

OMZ would also discover a Ca. Scalindua spp. dominated anammox population, 

despite the fact that this OMZ is the least well characterised, in terms of nitrogen 

cycling and anammox rates and diversity, of the planet’s OMZ regions. 

OMZ environments typically exhibit a stable anoxic (or suboxic) core with steep 

oxyclines and chemoclines above and below this core (Paulmier and Ruiz-Pino, 

2009). The temporal variability of these periphery regions is unknown (largely due 

to the vast spatial extent of these OMZs and difficulties associated with regular and 

comprehensive sampling) though it is expected that they vary in depth with seasonal 

upwelling events or blooms in primary productivity (Paulmier and Ruiz-Pino, 2009). 

Furthermore, the steepness of the oxycline, certainly in the upper oxycline, where O2 

concentrations can rise as steeply as 2 μM/m (Paulmier and Ruiz-Pino, 2009), will 

produce highly variable environmental conditions with even minor fluctuations as to 

the size and depth of the oxycline. As oxygen is a major controlling factor on 

anammox activity (Jetten, et al., 2009), the periphery of the OMZ is likely to 

produce a challenging environment for anammox bacteria compared with the stable 

core. However, recent research suggests that the definition of anammox bacteria as 

being strict anaerobes may (at least in some cases) be erroneous and some organisms 

may be able to operate in higher O2 concentrations (Woebken, et al., 2007). Thus, it 

was hypothesised that, if micro-diversity within the Scalindua genus exists in the 

ETNP OMZ, the upper and lower boundaries of the OMZ would potentially 

demonstrate the most significant shift in the anammox community. Organisms 

within the Scalindua genus may have adapted to become more tolerant to these 

regions of variable O2 concentrations and hence would outcompete their less 

aerotolerant relatives, resulting in a shift in the anammox community between these 
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regions. It was further hypothesised that these distinct groups, if they existed, would 

likely be evenly distributed throughout the lateral extent of the OMZ and would vary 

with depth in conjunction with variations to the vertical extent of the OMZ (e.g. a 

shallower or deeper oxycline). 

However, the variability associated with the OMZ’s oxycline is also correlated with 

variation in the concentration of inorganic nutrients (Nicholls, et al., 2007). As the 

availability of DIN is obviously a major limiting factor to anammox rates (Jetten, et 

al., 2009), changes in the anammox community may also be observed representing 

increases and decreases in the concentrations of NO2
-
 and NH4

+
 with the potential for 

different anammox organisms to demonstrate a higher or lower affinity for these 

substrates. However, as the dominant environmental variable in OMZ environments, 

it was hypothesised that O2 concentrations and the extent of the upper and lower 

oxyclines would be the greatest controlling factor on anammox community structure 

in the ETNP OMZ. 

1.3.2.2. Utilisation of Organic Nitrogen Substrates 

1.3.2.2.1. Rationale 

Anammox organisms are classically defined as strictly autotrophic bacteria (Van de 

Graaf, et al., 1996; Güven, et al., 2005) using solely inorganic substrates for 

metabolism. Despite this, anammox from laboratory bioreactors have been reported 

to be potentially able to oxidise propionate to CO2 with either NO2
-
 or NO3

-
 as an 

electron acceptor (Güven, et al., 2005) and a new, novel anammox organism, “Ca. 

Anammoxoglobus propionicus”, has been suggested to be responsible for this 

process (Kartal, et al., 2007b). Furthermore, anammox have also been reported to 

have close metabolic associations with nitrifiers (Dalsgaard, et al., 2003) and 

methane oxidisers (Strous and Jetten, 2004; Luesken, et al., 2011; Zhu, et al., 2011). 

Clearly, the metabolism of anammox organisms and their ecological interactions and 

significance are not as simple or succinct as previously believed. 

Prior to this project, serendipitous findings by Trimmer and Purdy (2012) showed 

that in the Arabian Sea OMZ, amine groups from allythiourea (ATU) were oxidised 

with NO2
-
 to produce N2 in a 1:1 ratio, similar to that of the anammox reaction. 

However, it was unknown whether this oxidation occurred directly (i.e. by anammox, 
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therefore making them mixotrophic) or via a syntrophic partnership (e.g. with 

organisms excreting inorganic compounds from the catabolism of organic substrates).  

1.3.2.2.2. Specific Hypotheses 

This project aims to attempt to discover more concrete evidence for such a process 

from a molecular standpoint (i.e. investigating in-situ microorganisms instead of just 

process measurements) and to look for potential syntrophic partners which may have 

a close spatial correlation with known anammox organisms. Investigation into the 

potential for organic pathways to the anammox reaction (henceforth named 

“organammox”) would be conducted on samples collected from the Medway Estuary 

and ETNP OMZ. 

It was hypothesised that if organammox existed as a process it would likely occur in 

one of two ways: 

a) A syntrophic reaction with heterotrophic organisms which would metabolise 

organic compounds such as methyl amines or urea, potentially releasing 

amine groups as NH4
+
 which would then be utilised by anammox bacteria. 

b) A heterotrophic anammox reaction in which anammox bacteria directly 

metabolise DON compounds, potentially incorporating organic carbon into 

biomass, in a unique and unprecedented reaction pathway in anammox 

bacteria. 

If the first hypothesis is true, then anammox bacteria will be observed to react 

positively (in terms of activity and bacterial growth) to the introduction of organic 

substrates such as methyl amines and urea but would not be observed to incorporate 

organically derived carbon into biomass (though some organically derived carbon 

may be observed in anammox biomass via a feedback loop through CO2 produced by 

anammox bacteria’s potential syntrophic partners). Furthermore a close spatial 

correlation between anammox bacteria and syntrophic organisms would likely be 

observed, e.g. the formation of flocs as suggested by (Woebken, et al., 2007; Quan, 

et al., 2008). 
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Alternatively, if the second hypothesis is true, anammox communities amended with 

suitable organic compounds would potentially be seen to incorporate organic carbon 

into their biomass. As organammox bacteria would require high concentrations of 

DIN as a source of NO2
-
 (and so it is likely that suitable inorganic NH4

+
 would also 

be available in such a system) it is unlikely that organammox would have evolved as 

a reaction to only cleave amine groups from organic molecules unless some other 

competitive advantage was also gained (e.g. the acquisition of carbon for anabolism). 

However, as the existence of such a process has yet to be confirmed, any hypotheses 

as to how it would occur are purely speculative and are based on little previous 

evidence. 

In the Medway Estuary, it was hypothesised that, if organammox is present in this 

environment, it would be more prevalent upstream where organic loadings from 

agriculture and associated land uses are greater. However, DOM is present along the 

entirety of the estuary and as such the potential for organammox could be observed 

throughout the extent of the estuary. 

Initial evidence for organammox was first observed in the Arabian Sea OMZ and so 

it was hypothesised that the ETNP OMZ would also contain anammox communities 

capable of this process. It was hypothesised that the potential for organammox would 

be greatest towards the top of the OMZ, in horizons of high NO2
- 
concentrations, 

where the availability of this substrate would not be a limiting factor. However the 

potential for such a process to exist throughout the vertical extent of the OMZ could 

not be ignored. Furthermore, if evidence for organammox was found within the 

ETNP OMZ, then it was hypothesised that this process would be observed spatially 

throughout the OMZ, at least at the equivalent depth at which it was initially 

discovered. 

1.3.3. Site Description and Rationale for Selection 

1.3.3.1. Medway Estuary 

The River Medway is a tributary of the Thames, flowing through the counties of 

West and East Sussex and Kent in south-eastern England. The river flows for 260 

km from its source at Turners Hill, West Sussex to where it joins the Thames 

Estuary at Sheerness, Kent and is the largest river basin in Kent, covering a drainage 
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area of 1,800 km
2
 (The Environment Agency, 2013). The lower Medway is 

navigable and the lock at Allington defines the tidal extent of the estuary (The 

Environment Agency, 2013). The upper river flows mainly through clay (Weald 

Clay), sandstone (Lower Greensand) and chalk (Upper and Lower Chalk) 

sedimentary formations whereas the tidal extent of the river flows through clay 

(Wadhurst Clay and London Clay) sediments (The Environment Agency, 2005; The 

Environment Agency, 2013). The prevalence of less permeable clay sediments 

makes the river liable to flooding in times of increased rainfall (The Environment 

Agency, 2005). 

The main land use in the Medway river basin is agricultural though the lower extent 

of the estuary is heavily urbanised. The intensive use of fertilisers associated with 

increased agriculture has resulted in a high concentration of NO3
-
 in the river leading 

to the Medway catchment and the underlying groundwater to be classified as a 

Nitrate Vulnerable Zone (NVZ) by The Environment Agency (The Environment 

Agency, 2005). 

Tidal, Medway sediments are predominantly fine silts and clays with a high water-

retention rate (42-66%) which gradually changes to more sandy sediments towards 

the mouth of the estuary (Wharfe, 1977). Medway Estuary sediments have also been 

reported to contain high levels of organic matter and exhibit a pronounced seasonal 

shift in their chemical properties due to seasonal algal blooms (Wharfe, 1977). The 

decomposition of such high concentrations of organics provides an ample source of 

NH4
+
 for the anammox reaction and bioturbation by the river’s fauna (e.g. annelids) 

ensures that NO2
-
 is also readily bioavailable (Rooks, et al., 2012). Wharfe (1977) 

also described highly reduced redox potentials below a depth of 1 cm in tidal 

sediments, indicating anoxic (or substantially sub-oxic) conditions below this depth. 

However, redox potentials were higher (more positive) towards the downstream 

extent of the estuary suggesting higher concentrations of oxygen in these sediments 

(Wharfe, 1977). 

Previous studies have shown that anammox organisms are both present and active in 

Medway Estuary sediments. Nicholls and Trimmer (2009) measured anammox rates 

along the estuary from Wouldham (salinity 5) to Stoke (close to where the estuary 

meets the Thames Estuary). Anammox rates were recorded ranging from 3.09% of 
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N2 production to 10.93% of N2 production (Nicholls and Trimmer, 2009). Rooks, et 

al. (2012) however recorded anammox rates as high as 32% of N2 production at 

Medway Bridge Marina with rates decreasing to 6% of N2 production at the marine 

extent of the Medway Estuary. No measurements were available for the most 

freshwater extent of the estuary. Anammox bacteria have also been shown to be 

present in the Medway Estuary, with FISH analysis indicating the presence of Ca. 

Scalindua organisms comprising up to 8% of the total prokaryotic community 

(Rooks, et al., 2012). However, no study has investigated the presence and diversity 

of anammox bacteria in the estuary using sequencing techniques. 

As such the Medway Estuary was chosen as a suitable location to investigate the 

hypotheses outlined in section 1.3.2.1.2.1, facilitated by the fact that the estuary was 

easily accessible. Please refer to section 2.1.1.1 for specific site locations 

investigated during this study and chapter 5 for a more detailed introduction in the 

biogeography of anammox organisms in estuarine environments. 

1.3.3.2. ETNP OMZ 

The ETNP OMZ is one of the four, major OMZs which exist permanently in the 

World’s oceans (Podlaska, et al., 2012). The ETNP OMZ typically extends from 0°-

25° N and from approximately 80° W to 160° W, off the coast of Central America 

(Paulmier and Ruiz-Pino, 2009). OMZs are characterised by regions of very low 

oxygen concentrations, caused by intense upwelling of nutrients promoting blooms 

of primary producers at the surface, although there is currently no consensus as to 

what (i.e. a specific O2 concentration) defines the extent of the OMZ, largely due to 

previous difficulties with accurately measuring low O2 concentrations (Paulmier and 

Ruiz-Pino, 2009). Nevertheless, OMZs consistently demonstrate a steep oxycline 

(with an O2 gradient of approximately -2 μM/m) from the surface, a stable OMZ 

core and then a more gradual oxycline below the OMZ core, returning to oceanic O2 

concentrations (Paulmier and Ruiz-Pino, 2009). These oxyclines produce unique 

redox and geochemical gradients which are important to our understanding of 

geochemical cycling (Stewart, 2011). 

The ETNP OMZ is the largest of the permanent OMZ, covering an area of 12.4 ± 1 × 

10
6
 km

2
 (Paulmier and Ruiz-Pino, 2009). Despite the size of the ETNP OMZ, it has 
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not previously been characterised as thoroughly as other global OMZs (particularly 

the Arabian Sea and ETSP OMZs), however previous research suggests that the 

ETNP OMZ typically demonstrates a shallow upper oxycline (at approximately 40-

100 meters BSL) with the core extending from 200-1000 m BSL (Yamagishi, et al., 

2007; Karstensen, et al., 2008; Paulmier and Ruiz-Pino, 2009; Podlaska, et al., 2012). 

To date, no direct measurements of anammox rates and activity are available for the 

ETNP OMZ though anammox has been shown to be a significant contributor to N2 

loss from other OMZs, contributing up to 48% of the total N2 loss (Kuypers, et al., 

2005; Thamdrup, et al., 2006; Hamersley, et al., 2007). Previous studies, using 

ladderane lipid (Rush, et al., 2012) and 16S rRNA (Podlaska, et al., 2012) analyses, 

have however shown that anammox bacteria are present in the ETNP OMZ. The 

presence of anammox bacteria in the ETNP OMZ and ubiquity of the anammox 

reaction in other OMZs suggests that anammox may also an important role in N 

cycling in the ETNP. This made the ETNP a suitable site for the investigation of the 

hypotheses outlined in section 1.3.2.1.2.2. However the ETNP OMZ was the only 

OMZ which was available for study during the timescale of this project. 

1.3.4. Outline of the Project 

This project was divided into three main components. Initially it was necessary to 

develop robust and effective methodologies for the investigation of anammox 

bacteria from the environment (see chapters 3 and 4). Secondly, the diversity and 

distribution and potential controls of these organisms were investigated (using the 

methods developed during the first part of the investigation) in the Medway Estuary 

and ETNP OMZ (see chapter 5). Thirdly, the potential for organammox was 

investigated in microcosm experiments from these two environments (see chapter 6).  
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2. Methodology 

2.1. Sampling Strategy 

2.1.1. Site Locations 

The hypotheses presented in section 1.3 were investigated at two different locations; 

The Medway Estuary, Kent, UK and the ETNP OMZ (Figure 2.1). These two 

locations represented two different environmental gradients; a salinity gradient 

(Medway Estuary) and an oxygen gradient (ETNP OMZ). 

 

Figure 2.1: Map showing approximate locations of Medway Estuary and ETNP sampling locations. 

2.1.1.1. Medway Estuary 

Environmental samples were collected from the Medway Estuary at seven sites 

along the estuary (Figure 2.2). These sampling locations were chosen to represent the 

entire range of salinities experienced along the estuary, i.e. from freshwater to saline 

environments. Samples were collected at different dates during this project. Samples 

used for initial investigations into the suitability of different PCR primers in 

specifically targeting anammox organisms were collected from site M6 on 

23/02/2010 (see section 3.2). Samples were collected from all 7 sites on 15/03/2012 

in order to investigate anammox diversity along the extent of the estuary (see chapter 

5). Samples for a pilot study into the potential for organammox were collected on 

15/02/2011 (see section 2.4 chapter 6). Further experiments were also conducted on 

ETNP

Medway 
Estuary
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Medway Estuary sediment collected on 25/07/2011 and 15/03/2012 to investigate 

the potential for this process (see section 2.4 and chapter 6). All sediment samples 

collected for organammox experiments were collected at site M6 apart from those 

which were collected on 15/03/2012 which were collected from sites M1 and M6 

(see Table 2.6). 

 

Figure 2.2: Map showing approximate locations of sites along the Medway Estuary. Map was annotated 

from www.google.co.uk/maps. The attached table shows the exact locations and common names for each site. 

2.1.1.2. ETNP OMZ 

Samples were collected from the ETNP OMZ between 04/12/2011 and 28/01/2012 

during NERC cruise D373. Samples were collected from 6 locations over a North-

South longitudinal transect (Figure 2.3). 

5 km

M7

M6

M5

M1M2

M3

M4

Site Name Latitude (° N) Longitude (° E) 

M1 Allington Lock 51° 17.83' 00° 29.87' 

M2 Aylesford Priory 51° 18.18' 00° 28.05' 

M3 Burham Marshes/Snodland 51° 19.29' 00° 27.64' 

M4 Holborough Marshes/Works 51° 20.02' 00° 27.10' 

M5 Cuxton Marina 51° 21.90' 00° 27.90' 

M6 Medway Bridge Marina 
1 51° 22.15' 00° 28.16' 

2 51° 22.07' 00° 28.16' 

M7 Hoo Marina 51° 24.50' 00° 33.20' 
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Figure 2.3: Map showing location of 6 sampling sites from ETNP cruise (D373). Map was drawn using 

Ocean Data View (ODV). Table shows the locations of sites sampled during ETNP Cruise. Start date is the date 

that sampling commenced at each site and depth to bottom is the depth of the water column at each site. 

2.1.2. Sampling  

2.1.2.1. Medway Estuary 

All samples were collected in triplicate at the low-water mark. Samples were 

collected using 5 cm
3
 corers, extracting the top 5 cm of sediment and transported 

back to the laboratory. The top 5 cm of sediment had previously been shown to 

demonstrate a high activity of anammox (Trimmer, et al., 2003; Nicholls and 

Trimmer, 2009 and personal communication) with anoxic conditions experienced 

within the first ~1 cm. Samples were homogenised and porewater was extracted 

from these samples by centrifugation at 3000 rpm for approximately 15 minutes after 

Site 1

Site 2

Site 3

Site 4

Site 5
Site 6

Site Latitude (° N) Longitude (° E) Start Date 
Depth to Bottom 

(m) 

1 12.009 -92.503 11/12/2011 3882 

2 12.998 -92.505 17/12/2011 4035 

3 10.999 -92.501 23/12/2011 2671 

4 9.997 -92.505 30/12/2011 3731 

5 9.000 -92.500 05/01/2012 3611 

6 8.000 -92.502 11/01/2012 3335 
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which the supernatant was filtered through a 0.2 μm filter and stored at -20°C. 

Sediment was transferred to 50 ml falcon tubes and stored at -20°C until extraction. 

Samples which were to be used for SIP experiments were collected as outlined in 

section 2.4.2 (see below). 

2.1.2.2. ETNP OMZ 

Environmental samples were collected from 6 depths at each site (except site 2) in 

triplicate using a deck-controlled CTD with Niskin rosette attachment. Samples at 

site 2 were collected from 100 m, 200 m, 540 m and 750 m; site 4 were collected at 

50 m, 60 m, 250 m, 436 m, 700 m and 860 m; site 5 were collected at 40 m, 67 m, 

200 m, 450 m, 600 m and 719 m (see chapter 5). Triplicate samples for each depth 

were collected from three different Niskins which had been fired at the same time. 3 

l of seawater from each Niskin was pre-filtered on collection using 200 μm filters 

and then filtered through Supor®-200 0.2 μm, ø 47 mm, polycarbonate filters (Pall, 

USA) with gentle vacuuming. Individual filters were placed in 2 ml cryotube vials 

and flash frozen in liquid nitrogen before being stored at -80°C. 

SIP samples were collected as outlined in section 2.4.2 (see below). 

2.2. Nucleic Acid Extraction 

2.2.1. Extraction 

DNA and RNA were extracted from environmental samples and SIP microcosms 

using the method outlined in Purdy (2005). This methodology was used as it has 

been shown to consistently provide high yields and purity of extracted nucleic acids 

(Purdy, et al., 1996; Purdy, 2005) and allowed for the extraction of either total 

nucleic acids, only DNA, only RNA or separate DNA and RNA from one 

environmental sample. This methodology has also been found to be able to 

effectively extract nucleic acids from environments with low bacterial abundances 

(Zanardini, et al., Unpublished; and personal communication with E. Monagahan, 

University of Warwick). 
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2.2.1.1. Medway Sediment 

Nucleic acids were extracted from 0.5 - 0.7 g of homogenised estuarine sediment. 

Sediment was weighed in autoclaved 2 ml screw capped microcentrifuge tubes, with 

0.5 g of DNA/RNA free glass beads, using a clean, sterile spatula and extracted as 

outlined by Purdy (2005). 

2.2.1.2. ETNP Samples 

For marine substrates, nucleic acids were extracted from either half of or a full 

polycarbonate filter. Due to low bacterial abundances from marine SIP incubations it 

was necessary to use the whole filter during extraction in order to obtain suitable 

quantities of DNA for downstream analyses. Filters were removed from storage and 

cut in half using a sterile scalpel and forceps. Cut filters were directly inserted into 

autoclaved 2 ml screw-capped microcentrifuge tubes with 0.5 g of DNA/RNA free 

glass beads and lysis buffer (see Purdy, 2005). DNA was then extracted as outlined 

in (Purdy, 2005). Using this method, the entire filter was seen to 

disintegrate/dissolve during lysis, thus negating the need to scrape, or wash cells 

from the filter as described in other extraction methods from aquatic samples. 

2.2.2. Purification 

It was occasionally necessary to perform a further purification step before sample 

analysis and downstream processing. This was particularly needed whilst processing 

sediment samples as it was discovered, even after extraction, that there were still 

large quantities of impurities (e.g. humic compounds) which hindered further 

processing (e.g. PCR). 

DNA was purified using a Poly-ethylene-glycol (PEG) precipitation method adapted 

from Selenska and Klingmuller (1991) and Arbeli and Fuentes (2007). 0.2 volumes 

of a 5M NaCl solution and 1 volume of a 30% PEG6000 (Sigma-Aldrich) solution 

was added to DNA samples to be purified. Samples were incubated at 4°C overnight 

and then centrifuged for 30 minutes at 13,000 rpm. The resulting pellet was then 

washed twice with a 70% ethanol solution, again centrifuging for 30 minutes at 

13,000 rpm between each wash. The supernatant was removed and the pellet left to 
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dry naturally for 15-30 minutes. The pellet was then re-suspended in 30-50 µl of a 10 

mM Tris pH 7.5 solution. 

2.2.3. Quantification 

Extracted nucleic acids were quantified either by agarose gel electrophoresis with 

comparison against commercial ladders (Bioline, UK and Invitrogen, UK) or using a 

Nanodrop ND-1000 Spectrophotometer.  

Typically 5 μl of aqueous, nucleic acid solution was mixed via gentle pipetting with 

2 μl of loading dye and loaded onto 1% agorose gels (Bio-rad, UK). Agarose gels 

were run for between 30 minutes to 1 hour with a constant voltage of ~5 V cm
-1

 in 

1x TAE buffer. 

Aqueous nucleic acid samples were analysed via a Nanodrop ND-1000 

Spectrophotometer as per the instructions which came with the instrument. 

2.3. Environmental Analysis 

2.3.1. Overview 

The diversity and distribution of anammox organisms across environmental 

gradients was investigated using both a phylogenetic (16S rRNA) and functional 

(hzo) approach. Due to the difficulties associated with investigating anammox 

ecology (e.g. low abundance) it was necessary to develop a suite of PCR primers 

which would be able to effectively isolate and amplify target anammox sequences 

from the environment.  

2.3.2. PCR 

2.3.2.1. 16S rRNA 

2.3.2.1.1. Primers 

A range of PCR primers targeting anammox 16S rRNA genes were utilised during 

this project (Table 2.1). A full description of the primers used to detect anammox 

16S rRNA genes during this study and their validation is given in chapter 3. PCR 

reaction protocols for each set of primers can be seen in Table 2.1.
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Table 2.1: Table showing list of 16S rRNA primers used in this study. 

 

Primer Name Primer Sequence Specificity 
Annealing 

Temperature 
(°C) 

Approximate 
Amplicon Length 

(bp) 
Reference 

 

16S 1 

Pla46F 5’-GGA TTA GGC ATG CAA GTC-3’ Planctomycetales 

62 1344 

(Neef et al., 
1998) 

 
1390R 5'-GAC GGG CGG TGT GTA CAA-3' Bacteria 

(Zheng et al., 
1996) 

 

16S 2 

Amx368F 5’-TTC GCA ATG CCC GAA AGG-3’ All Anammox 

62 480 

(Schmid et 
al., 2003)     

Amx820R 5’-AAA ACC CCT CTA CTT AGT GCC C-3’ Non-Scalindua Anammox 
(Schmid et 
al., 2000) 

 

16S 3 

Amx368F 5’-TTC GCA ATG CCC GAA AGG-3’ All Anammox 

62 480 

(Schmid et 
al., 2003) 

 
BS820R 5’ -TAA TTC CCT CTA CTT AGT GCC C-3’ Ca. Scalindua spp. 

(Kuypers et 
al., 2003) 

 

16S 4 

Amx368F-GC 
5’-CCG CCG CGC GGC GGG CGG GGC GGG 
GGC ACG GGG TTC GCA ATG CCC GAA AGG-3’ 

All Anammox 

62 510 

This Study 

 
Amx820R 5’-AAA ACC CCT CTA CTT AGT GCC C-3’ Non-Scalindua Anammox 

(Schmid et 
al., 2000) 

 
16S 5 

An7F 5'-GGC ATG CAA GTC GAA CGA GG-3' 
All Anammox 63 1380 

(Penton et al., 
2006)  An1388R 5'- GCT TGA CGG GCG GTG TG-3' 

 

16S 6 

An7F 5'-GGC ATG CAA GTC GAA CGA GG-3' 

All Anammox 63 511 

(Penton et al., 
2006) 

 
518R 5'-ATT ACC GCG GCT GCT GG-3' 

(Muyzer et 
al., 1993) 

 
16S 7 

Brod541F 5'- GAG CAC GTA GGT GGG TTT GT-3' 
Ca. Scalindua spp. 60 719 

(Penton et al., 
2006)  Brod1260R 5'-GGA TTC GCT TCA CCT CTC GG-3' 

 
16S 8 

B540F 5'-GCT ACC GAA AGG GTT GCT AA 
Non-Scalindua Anammox 55 669 This Study 

 B1209R 5'-CCA TCG TTT ACG GCT AGG AC-3' 

 
16S 9 

J697F 5'-AGG GTA AAG GCC TAC CAA GG-3' Ca. Jettenia spp. and Ca. 
Kuenenia spp. 

58 568 This Study 
 J1265R 5'-CAA AAC CCC TCT ACC GAG TG-3' 

 
16S 10 

K580F 5'-GCA AAA GCA CTT GTG GTC AA-3' 
Ca.Kuenenia spp. 51 467 This Study 

 K1047R 5'-CCC GTA CTC AAG CCC TGT AG-3' 
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Table 2.2: Table showing PCR reaction conditions for PCRs targeting anammox 16S rRNA genes.  All 

PCRs were performed using a hot start at 96°C. Primer set numbers collaborate with those shown in Table 2.1. 

The initial 10 cycles of PCR reaction 16S 1 utilised a touch-up PCR methodology, rising from 57°C to 62°C in 

increments of 0.5°C per cycle. 

2.3.2.1.2. Promega Reagents 

PCR was performed in either sterile 0.2 ml eppendorf tubes or 96 well PCR plates 

(Thermo-Scientific, UK). PCR was performed in 50 μl reactions using reagents and 

DNA Go-Taq polymerase (Promega, UK), dNTPs (Invitrogen, UK) and sterile, 

nuclease free water (Ambion, UK). The concentrations and volumes of PCR reagents 

are shown in Table 2.3. PCR was performed in an Eppendorf Mastercycler 

epgradient thermocycler using the specific conditions outlined in Table 2.2. 

Primer 
Set 

Hot Start 
No. 

Cycles 
Denaturation Annealing Elongation 

Final 
Elongation 

16S 1 
95 °C for 2 

min 

a) 10 
95 °C for 45 s 

57 °C - 62 °C for 50 s
* 

72 °C for 1 min 22 
s 

72 °C for 5 
min 

b) 20 62 °C for 50 s 

16S 2 
95 °C for 2 

min 
30 95 °C for 45 s 62 °C for 50 s 

72 °C for 1 min 22 
s 

72 °C for 5 
min 

16S 3 
95 °C for 2 

min 
30 95 °C for 45 s 62 °C for 50 s 

72 °C for 1 min 22 
s 

72 °C for 5 
min 

16S 4 
95 °C for 2 

min 
30 95 °C for 45 s 62 °C for 50 s 

72 °C for 1 min 22 
s 

72 °C for 5 
min 

16S 5 
96 °C for 2 

min 
30 96 °C for 45 s 63 °C for 1 min 72 °C for 1 min  

72 °C for 7 
min 

16S 6 
96 °C for 2 

min 

a) 10 
96 °C for 1 

min 63 °C for 30 s 

72 °C for 2 min 30 
s 72 °C for 

10 min 
b) 20 94 °C for 30 s 72 °C for 2 min  

16S 7 
96 °C for 2 

min 
30 96 °C for 45 s 60 °C for 1 min 72 °C for 1 min 

72 °C for 7 
min 

16S 8 
96 °C for 2 

min 

a) 10 
96 °C for 1 

min 55 °C for 30 s 

72 °C for 2 min 30 
s 72 °C for 

10 min 
b) 20 94 °C for 30 s 72 °C for 2 min  

16S 9 
96 °C for 2 

min 

a) 10 
96 °C for 1 

min 58 °C for 30 s 

72 °C for 2 min 30 
s 72 °C for 

10 min 
b) 20 94 °C for 30 s 72 °C for 2 min  

16S 10 
96 °C for 2 

min 

a) 10 
96 °C for 1 

min 55 °C for 30 s 

72 °C for 2 min 30 
s 72 °C for 

10 min 
b) 20 94 °C for 30 s 72 °C for 2 min  
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Table 2.3: Table showing concentrations and volumes of PCR reagents for PCR carried out with Promega 

reagents. Volumes are for one reaction. 

2.3.2.1.3. Bioline Reagents 

PCR was also performed using reagents produced by Bioline, UK. One reaction 

contained: 12.5 μl Bioline My-Taq Red master mix, 1 μl of 10 μM of forward primer 

solution,  1 μl of 10 μM of reverse primer solution, 9.5 μl of sterile, nuclease free 

H2O and 1μl of DNA solution to a final volume of 25 μl. PCRs were performed in an 

Eppendorf Mastercycler epgradient thermocycler using the specific conditions 

outlined in Table 2.2. 

2.3.2.2. hzo Functional Genes 

2.3.2.2.1. Primers 

A range of primers targeting anammox hzo were used in this project (Table 2.4). A 

full discussion of these primers can be read in chapter 4. 

 

Table 2.4: Table showing PCR primer sequences used during the investigations into the use of hzo as a 

molecular marker of anammox. 

Reagent Concentration Volume Final Concentration 

PCR Reaction Buffer 5X 10 μl 1X 

MgCl2 25 mM 4 μl 2 mM 

dNTPs 25 mM (each) 0.5 μl 0.25 mM (each) 

Forward Primer 10 μM 2 μl 0.4 μM 

Reverse Primer 10 μM 2 μl 0.4 μM 

Bovine Serum 

Albumin (BSA) 
100 μg/ml 2 μl 4 μg/ml 

Taq DNA Polymerase 5 Units/μl 0.2 μl 1 Unit (0.02 Units/μl) 

DNA Variable 1 μl - 

ddH2O Pure Up to 50 μl (28.3 μl) - 

 

Primer 
Set 

Primer 
Name 

Primer Sequence 
Length 

(bp) 
Reference 

hzo 1 
hzocl1F1 5’-TGY AAG ACY TGY CAY TGG-3’ 

470 (Schmid et al., 2008) 
hzocl1R2 5’-ACT CCA GAT RTG CTG ACC-3’ 

hzo 2 
hzocl1F1l 5’-TGY AAG ACY TGY CAY TGG G-3’ 

471 (Schmid et al., 2008) 
hzocl1R2 5’-ACT CCA GAT RTG CTG ACC-3’ 

hzo 3 
HZO4F 5’-TTG ART GTG CAT GGT CTA WTG AAA G-3’ 

1037 (Hirsch et al., 2011) 
HZO1R 5’-CTC TTC NGC AGG TGC ATG ATG-3’ 
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2.3.2.2.2. Protocol 

PCR was performed with primers targeting hzo as outlined in section 2.3.2.2 and 

Table 2.3 except that, for primers hzocl1F1 & hzocl1R2 and hzocl1F1L & hzocl1R2 

(hzo 1 and hzo 2 in tables), 2.5 μl of 25 mM MgCl2 (c.f. Table 2.3) was added per 

reaction to a final concentration of 1.25 mM as performed by Schmid, et al. (2008). 

PCR was performed in an Eppendorf Mastercycler epgradient thermocycler using the 

conditions outlined in Table 2.5. 

 

Table 2.5: Table showing PCR protocols used with primers targeting anammox hzo.  All PCRs were 

initiated with a hot start at 94 °C. Primer set numbers collaborate with those in Table 2.4. 

2.3.2.3. Analysis 

The presence or absence of amplifiable product was determined via electrophoresis 

on 1% agarose gels as described in section 2.2.3. PCR product was quantified either 

by visual comparison of agarose gels or using a Nanodrop ND-1000 

Spectrophotometer (section 2.2.3). 

2.3.2.4. PCR Purification 

PCR products required for downstream processing (e.g. sequencing) were purified to 

remove impurities which may remain after PCR (e.g. unbound dNTPs). PCR 

products were purified either using a PCR Purification Kit (Qiagen, UK) or were 

extracted from 1% agarose gels using a Gel Extraction Kit (Qiagen, UK). 

2.3.3. Cloning of Environmental Sequences 

Small clone libraries of anammox DNA amplicon sequences were prepared in order 

to determine the specificity of PCR primers and to ensure that anammox gene 

Primer 
Set 

Initial 
Denaturation 

No. 
Cycles 

Denaturation Annealing Elongation 
Final 

Elongation 

hzo 1 94 °C for 5 min 30 
94 °C for 1 

min 
50 °C for 1 

min 
72 °C for 1 min 30 

s 
72 °C for 10  

min 

hzo 2 94 °C for 5 min 30 
94 °C for 1 

min 
53 °C for 1 

min 
72 °C for 1 min 30 

s 
72 °C for 10  

min 

hzo 3 94 °C for 5 min 

a) 35 
94 °C for 1 

min 
53 °C for 1 

min 
72 °C for 2 min 

72 °C for 10  
min 

b) 1 
94 °C for 1 

min 
53 °C for 1 

min 
N/A  
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sequences could be successfully extracted from the environment prior to more 

comprehensive analyses using 454 pyrosequencing. 

PCR products were purified as outlined in section 2.2.2. Purified PCR products were 

cloned into pGEM-T Easy (Promega, UK) vectors and transformed into JM109 

competent E. coli cells (Promega, UK) as described in the pGEM-T Easy cloning 

manual (Promega, UK). 

Transformed cells were grown overnight on LAXI (LB agar containing 100 μg ml
-1

 

ampicillin, 2.5 μM IPTG and 80 μg ml
-1

 X-Gal) plates at 30°C (Sambrook, et al., 

1989). White colonies were isolated and screened for the correct sized insert using 

M13 vector-based primers. M13 PCR products were submitted for sequencing at 

either The Natural History Museum, London, UK or GATC, Germany via Sanger 

sequencing technologies. Typically between 5 and 10 clones were submitted per 

sample for sequencing. Amplicons were sequenced using both the forward and 

reverse primers. Forward and reverse motifs were manually checked for errors and 

trimmed in SeqManII (DNAStar, USA) and assembled into contigs. Motifs which 

could not form contigs (e.g. due to poor sequencing results) were discarded. 

2.3.4. Phylogenetic Analysis 

Environmental sequences were analysed in MEGA 5.1 (Tamura, et al., 2011). 

Sequences were aligned to sequences from reference databases (e.g. NCBI, SILVA) 

using MUSCLE (Edgar, 2004) and phylogenetic differences inferred using a 

Neighbour-Joining methodology calculated using the p-distance model. 1000 

bootstrap replications were calculated as a test of phylogeny. 

2.3.5. 454 Pyrosequencing 

2.3.5.1. Sample Submission and Sequencing 

Selected DNA samples from the Medway Estuary and ETNP were submitted for 454 

pyrosequencing analysis to investigate the diversity of anammox organisms in these 

environments. Samples were amplified using primers Amx368F & Amx820R to 

target anammox 16S rRNA gene sequences (see chapter 3 for full discussion of 
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primers) as outlined in section 2.3.2. PCR products were purified as outlined in 

section 2.3.2.4. 

Purified PCR products were submitted to either The Research and Testing 

Laboratory, Lubbock, Texas, USA or DHVLA, Surrey, UK for standard amplicon 

pyrosequencing with tagged primers suitable for titanium chemistries (Dowd, et al., 

2008; Oakley, et al., 2012). 

2.3.5.2. Processing Raw Data 

Raw 454 pyrosequencing data were analysed using a custom bioinformatics pipeline, 

originally designed by Oakley, et al. (2012), using the PERL scripting language, to 

quality control and analyse amplicon 454 pyrosequencing reads. These scripts were 

further developed during this project to suit the particular requirements of this study. 

2.3.5.2.1. Quality Control and Data Clean-up 

A number of assumptions (Huse, et al., 2007; Kunin, et al., 2010), as to what 

qualifies as erroneous or poor quality read, were used to remove such sequences 

from 454 pyrosequencing data; namely the absence of the primer sequences in the 

read sequence, the presence of ambiguous bases (Ns) and the length of sequenced 

reads. The application of these assumptions to the quality control of 454 

pyrosequencing data included the use of a novel, innovative technique, Read Length 

Incremental Clustering (RLIC), developed as part of this thesis, for removing 

arbitrary decision making from read length trimming. A full discussion of the 

development of RLIC and the quality control of 454 pyrosequencing data is 

presented in section 5.3. 

2.3.5.2.2. Defining OTUs and Clustering 

OTUs were created from sequencing data which had passed the above quality control 

using CD-HIT-EST (Li, et al., 2001; Niu, et al., 2010; Fu, et al., 2012). OTUs were 

defined at a similarity cut-off of 95%. Low abundance OTUs (i.e. those containing 

small numbers of reads), in general, were omitted from analysis of the diversity of 

anammox organisms as these were deemed to have a high potential for containing 

poor quality reads. However, these low abundance clusters were included in the 
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analysis of ETNP 454 pyrosequencing data in order to investigate the validity of this 

assumption (see section 5.4.3.3). 

2.3.6. Measuring Diversity and Distribution 

Rarefaction curves and OTU distributions and frequencies were calculated using 

MOTHUR (Schloss, et al., 2009) and R. The output from CD-HIT provided 

reference sequences for each OTU. These sequences were aligned with other 

anammox sequences and phylogenetic distances calculated as outlined in section 

2.3.4. These phylogenetic relationships were used to assign taxonomies to specific 

OTUs. 

CCA plots for OTU abundances across samples were calculated in order to test for 

the degree of similarity between these samples. CCA statistics were calculated in R 

using the VEGAN package (Dixon, 2003). This was correlated with geochemical 

data collected during sampling (for ETNP data) or provided by The Environment 

Agency, UK (for Medway data). Exact data for each sampling point along the 

Medway estuary was not available and so data was interpolated and extrapolated 

linearly using MATLAB v8.1.0.604 (R2013a), The MathWorks Inc. (2013). Mantel 

tests were conducted using the VEGAN package (Dixon, 2003) and plotted with 

CCA plots in R. 

2.4. SIP 

2.4.1. Overview 

Stable Isotope Probing (SIP) was used to investigate the potential for anammox 

organisms to utilise organic substrates and demonstrate a greater metabolic diversity 

than previously reported.  
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Table 2.6: Table showing exact locations, dates and substrate concentrations of each SIP experiment 

carried out during this study.  All incubations were set up in triplicate. Concentrations are the final 

concentration in each microcosm. For ETNP SIP experiments, identical experiments were set up at two depths at 

each site as indicated in the table. For more details of how SIP microcosms were set up please refer to the main 

text. 

Experiment Location Site Date Incubations Concentration Time 

Pilot Medway M6 15/02/2011 

13C DMA 10 mM 

4 weeks 13C Urea 10 mM 

No Addition N/A 

Exp 1 Medway M6 25/07/2011 

12C DMA 10 mM 

4 weeks 

13C DMA 10 mM 

12C Urea 10 mM 

13C Urea 10 mM 

12C DMA 20 mM 

13C DMA 20 mM 

12C Urea 20 mM 

13C Urea 20 mM 

12C TMA 10 mM 

13C TMA 10 mM 

No Addition N/A 

Exp 2 Medway 

M1 

15/03/2012 

12C DMA 10 mM 

4 weeks 

13C DMA 10 mM 

12C Urea 10 mM 

13C Urea 10 mM 

No Addition N/A 

M6 

12C DMA 10 mM 

13C DMA 10 mM 

12C Urea 10 mM 

13C Urea 10 mM 

No Addition N/A 

       

Exp 1 ETNP 

S4:    
436 m + 
700 m 

03/01/2012 

12C TMA 100 μM 

3 weeks 

13C TMA 100 μM 

12C Urea 100 μM 

13C Urea 100 μM 

12C TMA + NO2- 100 μM + 25 μM 

13C TMA + NO2- 100 μM + 25 μM 

12C Urea + NO2- 100 μM + 25 μM 

13C Urea + NO2- 100 μM + 25 μM 

No Addition N/A 

S5:    
450 m + 
600 m 

09/01/2012 

12C TMA 100 μM 

2 weeks 

13C TMA 100 μM 

12C Urea 100 μM 

13C Urea 100 μM 

12C TMA + NO2- 100 μM + 25 μM 

13C TMA + NO2- 100 μM + 25 μM 

12C Urea + NO2- 100 μM + 25 μM 

13C Urea + NO2- 100 μM + 25 μM 

No Addition N/A 
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2.4.2. Microcosm Set-up 

2.4.2.1. Medway Estuary 

Microcosms were set up with sediment collected from sites 1 (Allington Lock) and 

M6 (Medway Bridge Marina) from the Medway Estuary. 5 cm
3
 cores were collected 

at low water mark in triplicate. Cores were transported back to the laboratory on ice 

and transferred to clean 50 ml serum bottles. 5 ml of filtered (0.45 μm) porewater 

(collected from sediment collected at the same time as sediment cores) was added to 

each microcosm with an amount of labelled organic substrate (see section 2.4.3 

below). Serum bottles were sealed with butyl stoppers and crimped. The headspace 

gas in each sealed serum bottle was flushed with oxygen free nitrogen (BOC, UK) 

for approximately 20 minutes, using a surgical needle, in order to ensure microcosms 

were anaerobic. A second needle was also inserted into the serum bottle to allow 

expelled gas to escape; this was removed prior to removing the inflow in order to 

prevent backflow of oxygenated air and in order to create a slight positive pressure. 

Microcosms were incubated in the dark for approximately four weeks after which 

microcosms were stored at -20°C prior to DNA extraction. 

2.4.2.2. ETNP OMZ 

Water was captured at specific depths (see Table 2.6) using a deck –controlled CTD 

with a Niskin rosette attachment. On deck, water was extracted from Niskins in 

triplicate directly into 1 L serum bottles using PVC tubing. Tubing was inserted into 

the bottom of the serum bottle and allowed to fill up 3 times to maintain anaerobic 

conditions. The tubing was removed allowing for the serum bottle to be overfilled 

and a butyl stopper carefully inserted so as to prevent oxygenated air entering the 

serum bottle. Serum bottles were crimped with aluminium seals. A 4 ml headspace 

of He was introduced into each serum bottle. Microcosms were amended with 

organic substrates as outlined in section 2.4.3.  Microcosms were incubated at 4°C 

for approximately 2 weeks at which point they were filtered through 0.2 μm poly-

carbonate filter (Whatman, USA) using a vacuum pump and flash frozen in liquid 

nitrogen and stored at -80°C prior to DNA extractions. 
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2.4.3. Substrates 

Microcosms were amended with 
12

C Urea, 
13

C Urea, 
12

C DMA, 
13

C DMA, 
12

C TMA 

or 
13

C TMA (Sigma-Aldrich, UK). 
13

C labelled substrates contained >99.9% labelled 

carbon. Varying concentrations of these substrates were added to different 

experiments. For a full list of SIP experiments and microcosms set up see Table 2.6. 

2.4.4. DNA Extraction 

DNA was extracted from SIP microcosms as outlined in section 2.2. The protocol 

was followed as described in Purdy (2005) except that the 120 mM Na2HPO4 wash 

step was replaced with 150 mM K2HPO4 in order to remove RNAs. This was done 

as a precaution to avoid the possibility that RNAs may act as a carrier to DNA 

during fractionation. 

2.4.5. SIP 

2.4.5.1. Centrifugation 

SIP was performed on extracted DNA as outlined in (Neufeld, et al., 2007). 2-5 μg 

of DNA from each sample was mixed with a 7.163 M CsCl solution and gradient 

buffer (0.1 M Tris, 0.1 M KCl and 1 mM EDTA) to a final density of 1.725 g ml
-1

 

and volume of ~5.5 ml. Densities were measured using a AR200 digital 

refractometer (Reichert, USA). CsCl mixtures were added to ultracentrifuge tubes 

and centrifuged in a Beckman Coultier Optima L-90K Ultracentrifuge for 48 hours at 

44,100 rpm. Centrifuged samples were fractionated immediately. 

2.4.5.2. Fractionation 

Centrifuged DNA samples were fractionated into 12 equal fractions as described in 

Neufeld, et al. (2007). The density of each fraction was measured using a AR200 

digital refractometer (Reichert, USA) and gradients for each sample were calculated 

in order to ensure that density gradients had formed correctly during centrifugation 

and had remained intact during fractionation. DNA was obtained from each fraction 

via precipitation with PEG6000 (Selenska and Klingmuller, 1991) as outlined in 

section 2.2.2 except that 1 μl of 20 mg/ml glycogen (Roche UK) was also added as 
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this had been reported to aid the precipitation of low quantities of DNA (Neufeld, et 

al., 2007). 

2.4.6. PCR 

PCR was performed on fractionated DNA as outlined in section 2.3.2. 1-2 μl of 

aqueous DNA (depending on the quantity of DNA) was amplified using primers 

Amx368F & Amx820R (Table 2.1).  

hzo genes were also amplified from fractionated DNA using a nested PCR approach. 

DNA was initially amplified using primers HZO4F & HZO1R. 1 μl of product from 

this first reaction was then further amplified using primers hzocl1F1l & hzocl1R2. 

PCR product was not purified between the first and second round amplifications as, 

due to the low quantities of DNA, even after the first round of amplification, 

purification was deemed detrimental to further amplification. Furthermore, 

purification did not seem necessary to produce clean, PCR product of the correct size, 

from the second round amplification (Figure 4.2). 

2.4.7. DGGE 

DGGE was used to investigate the potential enrichment of 
12

C and 
13

C DNA 

fractions and to investigate community change of anammox bacteria across these 

fractions. Fractionated DNA was amplified for anammox 16S rRNA genes with 

primers Amx368F-GC & Amx820R (Table 2.1). DGGE was performed as described 

in (Schafer and Muyzer, 2001). Denaturing gradients were formed between 20% and 

80% urea and 18 μl of PCR product loaded to each gel. Denaturing gels were run for 

16 hours at a constant voltage of 100 V. Gels were stained with ethidium bromide 

for 30 minutes with constant shaking and then washed for 30 minutes in pure water. 

Gels were observed using a UV-illuminator. 

2.4.8. Clone Libraries 

Clone libraries were constructed (Sambrook, et al., 1989) from SIP DNA fractions 

using both 16S rRNA bands obtained from DGGE and PCR product obtained from 

hzo specific PCR primers as outlined in section 2.3.3. 
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Notable bands observed during DGGE analysis were excised from polyacrylamide 

gels using a sterile scalpel and a UV trans-illuminator. Gel slices were transferred to 

autoclaved microcentrifuge tubes and washed with 200 μl of nucleic acid free water 

and incubated for 2 hours at room temperature. Samples were centrifuged and the 

supernatant removed. Slices were then re-washed with 50 μl of the same water, 

centrifuged briefly and incubated overnight at 4°C. 1 μl of the resulting supernatant 

was then re-amplified via PCR with primers Amx368F & Amx820R.  

PCR product was purified using a commercial PCR Purification Kit (Qiagen, UK) 

and then cloned into the pGEMT-Easy vector (Promega, UK) as per kit instructions 

Cloned plasmids were transformed into JM109 competent E. coli cells (Promega, 

UK) and single colonies isolated. Colonies were screened for containing the insert 

and then sequenced via Sanger sequencing (Natural History Museum, UK or GATC, 

Germany) using both the M13F and M13R primers. Forward and reverse reads were 

checked and trimmed manually in SeqMan II (DNASTAR, USA) and assembled 

into contigs. Contigs were aligned against reference sequences and phylogenetic 

relationships calculated in MEGA4 and MEGA5 (Tamura, et al., 2007; Tamura, et 

al., 2011). 

2.4.9. 454 Pyrosequencing 

Individual fractions were submitted for pyrosequencing of anammox 16S rRNA 

genes and analysed as outlined in section 2.3.5.  
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3. Development of Robust and Effective Methods for Investigating 

Anammox Organisms and Ecology In Situ 

3.1. Introduction 

Microbial ecology, the “study of the interactions of (micro)organisms and their 

environments” (Brock, 1966), is a challenging subject. The microbial ecologist is 

presented with a number of unique challenges, namely: 

a) The issue of in vitro versus in vivo studies; whereby observations made in 

vitro are not necessarily comparable with those from the environment. 

b) That the potential power of in vitro experiments is far greater than in situ 

studies (e.g. the ability to test an organism’s response to individual conditions, 

the possibility of whole genome and transcriptome sequencing and the ability 

to isolate and purify specific proteins from a known organism and test their 

function and activity). 

c) The problem of scale. 

d) That many ecological methods and theories have been devised from 

observations of macro-fauna and flora and thus are not necessarily 

transferrable to the microbial realm (e.g. the concept of species). 

Nevertheless, as our knowledge of our planet and global environment increases and 

the role of microorganisms within geochemical cycles are found to be increasingly 

important, microbial ecology presents itself as a crucial discipline within the life and 

environmental sciences. Thus it is imperative that effective methods for investigating 

microbial ecology be devised and developed. However, with robust scientific 

methodologies including the definition of stringent and testable hypotheses, many 

crucial advances in this field can (and have) been made using a combination of in 

vitro and in situ measurements. 

Despite this, the challenges presented to the microbial ecologist wishing to 

investigate anammox organisms (or indeed the anaerobic nitrogen cycle) are even 

greater. To date, anammox bacteria have resisted attempts to isolate them in pure 

culture and as such all described anammox organisms are only “Candidatus” species’ 
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(Jetten, et al., 2009; Li, et al., 2010b). The doubling time of anammox bacteria has 

been reported to be between 11 and 20 days under optimum conditions (Jetten, et al., 

2009) and this slow growth rate appears to be the major factor limiting isolation 

(Hirsch, et al., 2011). Hence, most investigations into anammox ecology have been 

restricted to culture-independent methods (Li, et al., 2010b) which has culminated in 

a lack of physiological and molecular information about these organisms (Amano, et 

al., 2007).  

Some studies have been successful in growing enrichment cultures of these bacteria 

which typically comprise of between 70-99% (Gori, et al., 2011; van de Vossenberg, 

et al., 2012) anammox cells. From such studies it has been possible to sequence the 

genomes for two anammox bacteria; Ca. Kuenenia stuttgartiensis (Strous, et al., 

2006) and Ca. Scalindua profunda (van de Vossenberg, et al., 2012) although the 

coverage of Ca. K. stuttgartiensis was not complete and the 5 contigs did not overlap. 

A metagenomic approach was also taken in reporting key genes from Ca. Brocadia 

fulgida from a 70% enrichment culture (Gori, et al., 2011). Enrichment cultures have 

also allowed for investigations into key functional proteins of the anammox reaction 

such as hydrazine oxidoreductase (HZO, Shimamura, et al., 2007) and nitrite 

reductases (NirS and NirK, Li, et al., 2011; Hira, et al., 2012). However, despite the 

usefulness of such studies to our knowledge of anammox, the findings from such 

research (e.g. de novo genome assembly) based on enrichment cultures must always 

be used with caution as the possibility of including genes and proteins from non-

target or anammox-related organisms is high. Furthermore the acquisition of 

anammox enrichment cultures is far from trivial with numerous different reactors 

being used to create cultures in batch which typically take up to two years to produce 

a significant proportion of anammox cells (Jetten, et al., 2009; van de Vossenberg, et 

al., 2012). 

Anammox activity rates, in terms of N2 produced, can be measured, relative to 

denitrification rates, in situ using an adaption to the isotope pairing technique (IPT) 

(Nielsen, 1992). The addition of incubations with 
15

NH4
+
 (with and without NO2

-
) 

and 
15

NO3
-
 (with and without NH4

+
) and the subsequent measurement of 

28
N2,

29
N2 

and 
30

N2 allows for the relative rates of denitrification and anammox to be calculated 

(Thamdrup and Dalsgaard, 2002). However, even this technique may not give an 
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accurate representation of anammox rates as it does not (and cannot) account for the 

role of dissimilatory nitrate reduction to ammonia (DNRA) which could potentially 

produce 
30

N2 from the anammox reaction after incubation with only 
15

NO3
-
 (Kartal, 

et al., 2007a). There is debate within the literature of whether DNRA is a significant 

contributor to the N-cycle (Dong, et al., 2009; Dong, et al., 2011). Furthermore, it 

has been suggested that anammox may have the ability to carry out a DNRA-like 

reaction themselves and can convert NO3
-
 to NO2

-
 and eventually NH4

+
 (Francis, et 

al., 2007; Kartal, et al., 2007a). However, Dalsgaard, et al. (2012), although they 

were unable to measure the effect of DNRA directly, were able to model the 

potential effect of this process on N2 measurements and found this “false 

denitrification” signal to be negligible. Nevertheless, these discrepancies are likely to 

underestimate the role of anammox to global N2 production. 

Anammox organisms are typically low abundance in the environment despite 

apparently being of great significance in terms of global N2 production. Cell counts 

in the literature range from 1.9 ± 0.8 ×10
4
 cells ml

-1
 in the Black Sea (Kuypers, et al., 

2003) to 10.1 ± 1.5 ×10
4
 cells ml

-1
 in the Peruvian OMZ (Hamersley, et al., 2007) 

though it must be noted that these were determined using different methodologies 

and so may not be directly comparable. In pelagic environments, anammox bacteria 

typically represent much less than 5% of the total bacterial population and this is 

likely to be less in more diverse environments (e.g. sediments). It is impossible to 

accurately determine microbial numbers using FISH from sediments as fluorescent 

stains also bind to organic compounds which cannot be completely removed from a 

sample (Song and Tobias, 2011). Furthermore, bacterial cells which have adhered to 

such particles or have formed flocs cannot be accurately enumerated. This may also 

be an issue when performing cell counts on aquatic samples. FISH probes of 

unknown specificity and efficiency of hybridisation may also lead to inaccurate cell 

counts, exacerbating this problem. 

The difficulties associated with the use of culture-dependent methods limits the type 

of investigations and experiments which can be conducted with these organisms. 

Therefore, in order to achieve the aims of this project (section 1.3) it was necessary 

to develop robust and efficient, culture-independent methods to investigate anammox 

ecology. Thus, a predominantly molecular approach was used to test the hypotheses 
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of this project (see section 1.3.2.1.2). PCR using primers specific for the anammox 

clade, amplifying the target genes above background levels, would allow for the 

qualitative and relative quantitative analysis of these organisms in situ and the 

determination of their diversity. 

In recent years the power of molecular biological techniques has increased 

enormously. The development of “omics” approaches has increased our 

understanding of the systems which we, as scientists, wish to elucidate. With the 

onset of high-throughput sequencing technologies our ability to process and analyse 

such data has also developed making these techniques valuable tools if used in 

conjunction with good experimental procedure. However, due to low anammox cell 

densities in the environment, the use of general bacterial primers (or even those 

targeting a smaller, but still relatively broad clade e.g. targeting Planctomycetes) are 

likely to underestimate anammox diversity by returning only a small number of 

anammox-related sequences (Amano, et al., 2007). It was therefore necessary to 

develop a specific and comprehensive suite of primers to target anammox genes 

which could be used reliably and with confidence to amplify anammox sequences 

from environmental samples via PCR. 

To this end a range of PCR primers exist within the literature to amplify anammox 

16S rRNA genes (reviewed in Li, et al., 2010b; Song and Tobias, 2011). However 

such primers have been used with varying amounts of success (Penton, et al., 2006; 

Li, et al., 2010b) and have been shown to target 16S rRNA gene sequences from 

outside of the anammox group (Song and Tobias, 2011). If such PCR primers are 

non-specific and amplify non-target organisms, this may pose a problem for 

anammox ecology as the amplification of these non-target sequences may be far 

greater than that of target, anammox sequences, resulting in a dilution of the already 

weakened anammox signal. 
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3.2. Methodology 

3.2.1. General Anammox 16S rRNA Primers 

3.2.1.1. Overview 

16S rRNA PCR primers, reported to be anammox specific (see table), were 

investigated as to their suitability for investigating anammox ecology. Primarily two 

candidate PCR assays were investigated: An7F & An1388R and Amx368F & 

Amx820R/BS820R. 

3.2.1.2. Environmental Samples and PCR Controls 

Primers were initially tested for specificity using a number of controls including 

environmental samples (Medway Estuary site M6, collected 23/03/2010), three 

environmental clones positively identified as Ca. Jettenia sp. Ca. Brocadia sp. and 

Ca. Scalindua sp. and the entire synthesised 16S rRNA gene of Ca. Kuenenia 

stuttgartiensis (GenScript, USA) and genomic DNA extracted from a pure culture of 

Planctomyces maris DSM-8797 (DSMZ, Germany) along with other DNA samples 

from the laboratory including archaeal DNA and DNA extracted from isolates of 

non-anammox bacteria. Site M6 was chosen as it had previously demonstrated high 

anammox rates and the presence of anammox bacteria (Rooks, et al., 2012). DNA 

was extracted from environmental samples and P. maris cultures using the method 

outlined in Purdy (2005). PCRs were performed as outlined in section 2.3.2.1. 

3.2.1.3.  454 Pyrosequencing 

Following initial investigations as to the specificity of these primers in the laboratory, 

their suitability for measuring anammox ecology using high-throughput sequencing 

technologies (i.e. 454 pyrosequencing) was tested. PCR product was obtained in 

triplicate from environmental samples. Triplicate PCR products were pooled, 

purified (PCR Purification Kit, Qiagen, UK) and submitted for pyrosequencing (as 

outlined in section 2.3.5).  

However, the amplicon produced by primers An7F & An1388R (~1380 bp) was too 

large to be used with 454 pyrosequencing (at time of sequencing maximum amplicon 
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size was around 800 bp)
*
. Hence this primer set was unsuitable for use with this 

technology. Therefore, in order to obtain a usable amplicon for pyrosequencing, 

amplification was attempted with the anammox-specific An7F primer and a 

universal bacterial reverse 16S rRNA primer. Potential reverse primers were initially 

checked for suitability by aligning them against anammox 16S rRNA sequences 

from NCBI and SILVA (Pruesse, et al., 2007) and calculating primer sensitivity and 

specificity using ThermoPhyl (Oakley, et al., 2011), BLAST (Altschul, et al., 1990; 

Zhang, et al., 2000) and ARB (Ludwig, et al., 2004). Primer 518R (see Table 2.1) 

was highlighted as a suitable reverse primer as it targeted all known anammox 16S 

rRNA sequences and theoretical calculations showed that the primer could work 

thermodynamically with primer An7F. Primers An7F & 518R were used as a second 

round nested PCR on purified product from An7F & An1388R (see section 2.3 for 

full methods) as, although the addition of a universal reverse primer (i.e. 518R) 

would likely target organisms outside of the anammox clade, it was hoped that the 

specificity of the first round PCR would ensure that primarily anammox related 

sequences were obtained from the 2
nd

 round reaction. This methodology produced a 

clear band of the correct size. Non-specific bands were also observed in this PCR but 

these were distinct from the band of correct size and the correct band was easily 

purified by gel extraction. 

3.2.1.4.  PCR Validation 

Primers Amx368F & Amx820R were further validated as to their ability to be able to 

target non-Scalindua anammox organisms from environmental DNA. Unfortunately, 

due to the difficulties associated with investigating anammox organisms, such 

samples were not readily available. Nevertheless, a collection of samples were 

generously donated by several other research groups (see Table 3.1) which had been 

positively identified to contain a range of anammox genera. These samples were 

amplified using the suite of primers discussed above to test their specificity and their 

ability to amplify target DNA assessed on a simple presence/absence basis. All 

samples underwent a nested PCR approach with primers Pla46F & 1390R as a first 

round PCR. This PCR product was gel extracted and purified prior to the second 

round of amplification (see chapter 2.3.2.4). Samples which exhibited negative 

                                                 
*
 N.B. The amplicon of primers Amx368F & Amx820R/BS820R was already of a suitable size for use 

with pyrosequencing technologies. 
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results after this two-step PCR were then further optimised in order to ascertain that 

the lack of amplifiable product was indeed due to the inability of this primer set to 

amplify DNA from that sample and not due to other complications associated with 

PCR (e.g. impurities, low DNA yields etc). All samples which failed to be amplified 

after the nested PCR could not be amplified following this further optimisation. 

 

Table 3.1: Table of collaborations with other research groups who generously donated environmental DNA 

and positive controls which were used in the optimisation and validation of anammox specific PCR primers 

during this study. 

 

Table 3.2: Identity of individual samples donated by the Zopfi and Amano Laboratories (see Table 3.1) 

including sample names, used throughout this study. 

To further investigate the ability of primers Amx368F & Amx820R to amplify 

anammox DNA from non-Scalindua genera, a small clone library was constructed 

using the samples mentioned above (Table 3.2). PCR product was purified using a 

commercial PCR Purification Kit (Qiagen, UK) and then cloned into the pGEMT-

Easy vector (Promega, UK). Cloned plasmids were transformed into JM109 

competent E. coli cells (Promega, UK) and single colonies isolated. Colonies were 

Lead Researcher Institution Sample Location Sample Description Reference 

Jakob Zopfi 

University of 

Lausanne, 

Switzerland 

Lake Neuchâtel, 

Switzerland 
DNA from bulk soil (Humbert et al., 2010) 

Teruki Amano 

Kyoto 

University, 

Japan 

Haipong, 

Vietnam 

DNA from sediment 

collected from 

Mangrove forest and 

shrimp pond sites 

(Amano et al., 2011) 

Josh Neufeld 

University of 

Waterloo, 

Canada 

Ontario, Canada 

Cloned 16S rRNA 

genes extractd from 

groundwater 

samples 

(Moore et al., 2011) 

 

 
Sample 

Quantity 

(ng/ul) 
A260/A280 Description 

Reported anammox 

genera 

Z
o

p
fi

 

S
a

m
p

le
s Z1 132 1.68 

DNA ext. from anammox enriched 
soil 

Unknown 

Z2 82 1.68 DNA ext. from soil LnA Ca. Brocadia spp.  

Z3 201 1.85 
Plasmid DNA from enrichment 

culture 
Ca. Jettenia sp. 

A
m

a
n

o
 S

a
m

p
le

s MF1 109 1.8 Mangrove Forest 1 
All anammox (dominated 

by Ca. Scalindua spp.) 

MF2 157 1.7 Mangrove Forest 2 
All anammox (dominated 

by Ca. Scalindua spp.) 

SP1 134 1.58 Shrimp Pond 1 
All anammox (dominated 

by Ca. Kuenenia spp.) 

CH 67 1.63 Channel 
All anammox (dominated 

by Ca. Scalindua spp.) 
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screened for containing the insert and then sequenced via Sanger sequencing 

(Natural History Museum, UK) using both the M13F and M13R primers. Five 

colonies were sequenced for each of the seven samples. Forward and reverse reads 

were checked and trimmed manually in SeqMan II (DNASTAR, USA) and 

assembled into contigs. Contigs were aligned against reference sequences and 

phylogenetic relationships calculated in MEGA4 and MEGA5 (Tamura, et al., 2007; 

Tamura, et al., 2011). 

3.2.2. Genera Specific Anammox 16S rRNA Primers 

Genus specific 16S rRNA PCR primers, targeting intra-anammox diversity, were 

also investigated during this study. A suite of primers targeting individual genera, 

which could be used in conjunction with primers specific for the entire anammox 

clade, would be advantageous when investigating anammox diversity. Both primers 

from the literature and primers designed during this investigation were assessed as to 

their ability to target specific groups of anammox organisms (Table 2.1).  

Thermodynamically viable primer pairs were obtained using BatchPrimer3 (You, et 

al., 2008). Primers were then checked against target and non-target (i.e. anammox 

and non-anammox) 16S rRNA sequences from the SILVA database (Pruesse, et al., 

2007) using ThermoPhyl (Oakley, et al., 2011). Potential primers were then further 

checked for specificity and nucleotide mismatches with target sequences using ARB 

(Ludwig, et al., 2004). This was necessary as the position of mismatches (either 

towards the 5’ or 3’ ends or middle of the primer) and whether these mismatches 

represented true differences between the primer and reference sequences or were as a 

result of missing sequence data needed to be known in order to assess the suitability 

of each primer set. Such data were not provided by Thermophyl. Primer sets which 

appeared to show the desired specificity were tested empirically in the lab using the 

samples outlined in section 3.2.1.2. 
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3.3. Results and Discussion 

3.3.1. Amplification Using Primers An7F & An1388R 

3.3.1.1. Overview 

Initially primers An7F & An1388R (Penton, et al., 2006) were investigated as 

potential candidates for the specific amplification of anammox 16S rRNA genes. 

These primers were chosen as they had been reported to have a higher affiliation for 

anammox sequences than other 16S rRNA primers in the literature (Engstrom, et al., 

2009), had been shown to be able to amplify environmental anammox DNA (Moore, 

et al., 2011) and produced the longest amplicon of any anammox specific primer set 

(Table 2.1) and thus were deemed more likely to produce more informative sequence 

data. 

3.3.1.2. Primer Specificity 

Investigations in the laboratory were promising and appeared to show that primers 

An7F & An1388R were suitable to be used as a tool for investigating anammox 

ecology (Figure 3.1). After optimisation, PCRs using these samples showed that 

these primers amplified all known anammox positive controls efficiently and also 

produced clear bands from DNA extracted from Medway Bridge Marina 

environmental samples, where anammox activity had previously been shown (Rooks, 

et al., 2012). Furthermore, all negative PCR controls were not amplified by these 

primers with the exception of P. maris DNA. However, P. maris is one of the more 

closely related non-anammox Planctomycetes (based on 16S rRNA gene similarity) 

and therefore, if this primer set amplified the entire known anammox 16S rRNA 

gene diversity then it was reasonable to assume that sequences branching just outside 

of this clade may also be amplified. 
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Figure 3.1: Agarose gel image of environmental and control DNA amplified by primers An7F & An1388R. 

PCR primers An7F & An1388R amplified DNA from both environmental samples known to contain anammox 

organisms and DNA isolated from anammox bacteria. DNA from cloned or isolated, non-anammox organisms 

(which were available in the laboratory) were not amplified by these primers. 

However, despite satisfactory results using these primers in the laboratory, results 

from 454 pyrosequencing data were not as favourable. DNA extracted from Medway 

Estuary sites M6-1 and M6-2 was sequenced in order to investigate the specificity of 

these primers. From the two samples a total of 15,008 raw reads were obtained of 

which 3,401 passed quality control. Reads were clustered at 95% producing 510 

potential OTUs. OTUs representing less than 0.1% of the total number of reads (i.e. 

< 4 reads/OTU representing 350 OTUs) were deemed insignificant and were omitted 

from downstream processing
*
. These 350 OTUs represented a total of 499 reads. It 

could be argued that such a large number of sequences may represent an important 

proportion of the population; nevertheless it was unlikely that these would alter the 

conclusions which would be drawn from these data. Reference sequences from each 

OTU which passed these criteria were aligned against the entire nucleotide database 

at NCBI using BLAST (Altschul, et al., 1990; Zhang, et al., 2000), the output of 

which was parsed in order to report only the highest scoring “hit” (based on e-

values) for each.  

                                                 
*
 For a full description and discussion of the bioinformatics pipeline used please refer to section 5.3. 

1 2 3 4 5 6

7 8 9

1. Site 1 (rep 1)
2. Site 1 (rep 2)
3. Site 1 (rep 3)
4. Site 2 (rep 1)
5. Site 2 (rep 2)
6. Site 3 (rep 3)
7. Ca. Jettenia sp.
8. Negative control (non-

anammox clone)
9. Blank

Medway 
Bridge 
Marina 

Env. DNA

An7F & An1388R

2000 bp

1000 bp

500 bp

250 bp

100 bp

2000 bp

1000 bp
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Figure 3.2: Percentage of 454 pyrosequencing reads, sequenced from amplicons using primers An7F & 

518R associated with different bacterial taxa.  See text for methodology. OTUs were defined at 95% similarity. 

A total of 510 OTUs were produced by this clustering cut-off. OTUs which represented <0.1% of the total 

number of reads (n=3401) have been omitted. Reference sequences for each of the remaining 160 OTUs were 

aligned against the NCBI nucleotide database using BLAST (Altschul, et al., 1990). BLAST hits were parsed to 

return the top hit (based on e-values) for each sequence if the percentage identity was greater than 50%. None of 

the sequences was found to be directly related to an anammox organism. The vast majority of BLAST hits 

returned “uncultured bacteria” sequences (53.34%) none of which were sequenced from studies especially 

looking for anammox bacteria though several were sequenced from environments where anammox have 

previously been found (e.g. the Black Sea, anoxic marine sediments, rice paddy fields, oil reservoirs). 

As is evident from Figure 3.2, none of the 160 OTUs were directly associated with 

anammox sequences and represented a wide distribution of different micro-

organisms suggesting that this primer set was not suitable for targeting and 

amplifying anammox 16S rRNA from the environment. 53.34% of the reads were 

associated with “uncultured bacterial” sequences from the NCBI database. It was not 

deemed necessary to investigate these sequences in depth though the environment 

from which they had been sequenced was recorded. None of the sequences were 

obtained from studies directly looking for anammox organisms in the environment, 

though several studies had investigated environments where anammox bacteria had 

previously been observed (e.g. oil reservoirs, the rhizosphere of rice crops and Black 

Sea sediments and free-floating aggregates). However, as none of the sequences 

were identified as anammox organisms, it is clear that this methodology was not 

Actinobacteria

1%

Chloroflexi

46%

Uncultured bacteria
53%

An7F & 518R

Actinobacteria

Chloroflexi

Uncultured bacteria

No. OTUs = 160
No. Reads =2902
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suitable for isolating and amplifying anammox 16S rRNA sequences from the 

environment. Rarefaction curves for the data (Figure 3.3) were plateauing in both 

samples for both the entire 510 OTUs and the 160 OTUs which passed the >0/1% 

cut-off. Therefore it can be assumed that the depth of sequencing was suitable to 

target the entire diversity of sequences amplified by the primers and so the lack of 

anammox related sequences cannot be explained by a poor sequencing effort. Even if 

the 350 OTUs omitted from this analysis had all represented anammox organisms, 

which is unlikely, this would not have affected these conclusions as the majority of 

sequences would still have been identified as belonging to non-anammox organisms. 

Hence, it was concluded that primers An7F & An1388R/518R were not suitable to 

investigate anammox 16S rRNA diversity. Furthermore, the depth of 454 

pyrosequencing appeared to highlight potential short-fallings within the primers 

which were not observed whilst testing primers empirically either in vitro or in silico. 

Thus reinforcing the need for a specific and efficient primer set for the detection and 

isolation of anammox 16S rRNA sequences. 
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Figure 3.3: Rarefaction curves for Medway Bridge Marina data pyrosequenced using primers An7F & 

518R. a) only those OTUs which satisfied the >0.1% of total reads criteria and b) all OTUs. Clustering was 

performed at 95% similarity. As can be seen, all curves can be seen to begin to plateau. Therefore it can be 

assumed that this sequencing effort represents most of the diversity amplified by this primer set. 

3.3.2. Amplification using Primers Amx368F & Amx820R/BS820R 

3.3.2.1. Overview 

Due to the lack of specificity of primers An7F & An1388R/518R in the 

amplification of anammox 16S rRNA genes from the environment, further primer 

sets were investigated as to their suitability in specifically targeting this group of 

organisms. A suitable primer set would specifically target the entirety of the known 

anammox diversity, showing little or no bias towards specific genera within the 

family Brocadiaceae, be able to reliably and efficiently amplify environmental DNA 

and be of a suitable length for 454 pyrosequencing. Of these primer sets, primers 

Amx368F (Schmid, et al., 2000) & Amx820R (Schmid, et al., 2003) or BS820R 
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(Kuypers, et al., 2003) emerged as the best candidates for an efficient and specific 

primer set for targeting anammox 16S rRNA diversity via PCR.  

3.3.2.2. Primer Specificity 

 

Figure 3.4: Heatmap showing specificity of 16S rRNA primers used during this study.  All anammox 

samples were amplified effectively by primers Amx368F & Amx820R and Amx368F & BS820R indicating that 

they are capable of amplifying DNA from all known anammox genera. Genus specific primers also showed 

suitable specificity. Primers Brod541F and Brod1260R were shown to only amplify samples known to contain 

Ca. Scalindua spp. Primers B540F & B1209R appeared to amplify DNA from the Brocadia, Jettenia and 

Kuenenia genera whereas primers J697F & J1265R showed similar specificity but appeared unable to amplify Ca. 

Brocadia spp. DNA. Primer K580F & K1047R, designed to be specific for Ca. Kuenenia spp., have only been 

shown to be able to amplify DNA from Ca. K. stuttgartiensis and have not been shown to amplify environmental 

DNA. 

These primers continually produced a large, single band from both positive controls 

and environmental DNA (see Figure 3.4, Figure 3.5 and Figure 3.6) and did not 

amplify DNA from organisms known to be outside of the anammox clade (e.g. P. 

maris). However, in samples where the abundance of anammox 16S rRNA genes 

may have been low, it was necessary to perform a nested PCR (see chapter 2) with 

primers Pla46F (Neef, et al., 1998) & 1390R (Zheng, et al., 1996) as suggested by 

Humbert, et al. (2010). The size of the amplicon from these primers (~480 bp) was 

also suitable for use with 454 pyrosequencing technologies available at the time of 

optimisation. 
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Figure 3.5: Agarose gel image of PCR products obtained from anammox control DNA using a) Amx368F 

& Amx820R and b) Amx368F & BS820R. Both primer sets amplified DNA from all anammox positive 

controls and did not amplify DNA from any of the negative controls (i.e. from non-anammox organisms). 

 

Figure 3.6: Environmental DNA samples amplified by primers a) Amx368F & Amx820R and b) Amx368F 

& BS820R.  Sample names are described in Table 3.2. All samples were amplified by both primer sets with the 

exception of sample Z2. Sample Z2 was amplified by both of these primer sets after purification of this sample, 

however this had not been undertaken at the time that these images were taken. 

However, the results of this investigation did not corroborate with those reported 

from the literature concerning the specificity of Amx368F & Amx820R/BS820R. 

Similar studies, suggest that primers Amx368F & BS820R specifically target Ca. 

Scalindua spp. whereas primers Amx368F & Amx820R target Ca. Brocadia spp. and 

Ca. Kuenenia spp. (Humbert, et al., 2010; Moore, et al., 2011). Primers Amx820R 

and BS820R are identical except for 3 base pair changes in the last 5 bases at the 5’ 

end (see Table 2.1). Nevertheless, PCR amplification with these primer sets showed 

no difference in their specificity; both primer sets successfully amplified all four 

anammox positive controls (namely Ca. Brocadia sp., Ca. Jettenia sp., Ca. Kuenenia 
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stuttgartiensis and Ca. Scalindua sp.) and PCR product was obtained using both 

primer sets from the same environmental samples.  

It had previously been discovered (see above) that apparently positive results from 

initial primer specificity investigations did not necessarily lead to satisfactory results 

in the acquisition of high-throughput sequencing data, as the greater sensitivity of the 

latter tended to reveal inadequacies in the specificity of the primers. Samples 

collected from M6-1 and M6-2 were amplified using primers Amx368F & 

Amx820R/BS820R in triplicate and sequenced using 454 pyrosequencing (see 

section 2.3.5), in a repeat of the investigation outlined in section 3.3.1, to assess 

whether these primers were more suitable for use with this sequencing technology.  

After quality control of pyrosequencing data obtained using primers Amx368F & 

Amx820R a total of 20,255 reads (out of 53,762) remained. These were clustered 

into OTUs at a threshold of 95% similarity. 30 OTUs were defined, 6 of which 

contained single sequences. OTUs representing less than 0.1% of the total number of 

reads (i.e. less than 20 reads) were omitted leaving 15 OTUs for downstream 

analysis. Rarefaction analysis (Figure 3.7) indicate that the depth of sequencing was 

probably sufficient to report the entire diversity observed within these samples using 

this primer set. Reference sequences from each OTU were aligned against the NCBI 

nucleotide database using BLAST (Altschul, et al., 1990; Zhang, et al., 2000). The 

top hit for each sequence (based on e-value scores) was selected in order to 

determine the best indicator of the identity of each OTU. 
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Figure 3.7: Rarefaction curves for 454 pyrosequencing data sequenced using primers Amx368F & 

Amx820R.  Rarefaction curves show that, despite a low number of OTUs in each of the two samples, the entire 

diversity within these samples appears to have been reported and no significant OTUs are absent from the 

analysis. 

As is evident from Figure 3.8, all OTUs were identified as most closely related to 

anammox organisms. 99.85% of the sequences were associated with Ca. Scalindua 

spp. with most of the sequences (89.22%) being most closely related to Ca. 

Scalindua marina. One OTU (n=31 reads) was identified as belonging to a non-

Scalindua anammox organism, namely Ca. Brocadia caroliniensis. 

Pyrosequencing data obtained with primers Amx368F & BS820R were analysed as 

above. Of a total of 31,678 reads 13,326 passed quality control. Clustering at a 

threshold of 95% similarity produced 25 OTUs of which 13 contained less than 0.1% 

of the total number of reads (i.e. 14 reads) representing a total of 31 reads. These 

were omitted resulting in 12 OTUs for downstream analysis. 
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Figure 3.8: Pie chart showing the proportion of reads from 454 pyrosequencing data, sequenced using 

primers Amx368F & Amx820R, which were identified as different anammox organisms.  OTUs were 

defined at a cutoff of 95% similarity and OTUs representing less than 0.1% of the total read abundance 

(n=20,255). 15 OTUs passed these criteria representing 20,203 reads. Reference sequences for each OTU were 

aligned against the NCBI nucleotide database using BLAST (Altschul, et al., 1990; Zhang, et al., 2000). 

Nucleotide sequences of uncultured organisms from NCBI were omitted from this BLAST query. BLAST results 

were parsed to report the top hit (i.e. lowest e-value) for each query and this hit was used to identify the OTU. 

99.85% of the total reads were representative of Ca. S. spp. with only one OTU (n=31 reads) representing a non-

Scalindua organism (namely Ca. B. caroliniensis). 

Similar to data obtained with primers Amx368F & Amx820R, primers Amx368F & 

BS820R reported a population dominated by Ca. Scalindua spp. representing 

99.87% of the total number of reads (Figure 3.9). Only one OTU was not identified 

as a Ca. Scalindua spp. but as an anaerobic ammonium-oxidising Planctomycete, 

however this sequence (Genbank accession number AB281489.1), was obtained 

from a marine environment which, according to the literature, is dominated by Ca. 

Scalindua spp. and thus this sequence may indeed represent this genus. This OTU 

however did not represent a significant proportion of the population encompassing 

only 0.14% of the total number of reads (n=18 reads). 
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Figure 3.9: Pie chart showing the proportion of reads from 454 pyrosequencing data, sequenced using 

primers Amx368F & BS820R, which were identified as different anammox organisms.  OTUs were defined 

at a cutoff of 95% similarity and OTUs representing less than 0.1% of the total read abundance (n=13,326). 12 

OTUs passed these criteria representing 13,295 reads. Reference sequences for each OTU were aligned against 

the NCBI nucleotide database using BLAST (Altschul, et al., 1990; Zhang, et al., 2000). Nucleotide sequences of 

uncultured organisms from NCBI were omitted from this BLAST query. BLAST results were parsed to report the 

top hit (i.e. lowest e-value) for each query and this hit was used to identify the OTU. 99.87% of the reads were 

identified as Ca. Scalindua spp. with the majority of these identified as Ca. S. marina (85.68%). One OTU (n=18 

reads) was identified as an anaerobic ammonium-oxidising planctomycete though this sequence was obtained 

from a marine environment and therefore is likely to also represent a Ca. Scalindua sp. 

The results of this investigation appear to indicate that there is little difference 

between primers Amx368F & Amx820R and Amx368F & BS820R in terms of their 

specificity and amplification efficiency. Data from both primer sets produced a 

similar number of OTUs and were dominated by Ca. Scalindua spp. Non-Scalindua 

anammox genera represented a very small proportion of the total number of reads 

(<0.2% of reads) and may have even been absent in primers Amx368F & BS820R. 

Furthermore, although the absolute proportions of different Scalindua species was 

different, in both primer sets Ca. Scalindua marina represented the vast majority of 

Scalindua organisms (85-89%) with Ca. Scalindua wagneri being the second most 

abundant (8-10%) and Ca. Scalindua brodae being the least abundant (<4%). It is 

difficult to determine the relative diversity of these samples and primers (which was 

not the aim of this part of the study) without the presence of proper controls and 
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replication however it seems evident that there is little difference in either the 

specificity or efficiency of these two primer pairs. This is in direct contradiction with 

the literature which suggests that these primer sets, though specific to the 

Brocadiales, target different genera within this order namely Ca. Scalindua spp. and 

non-Scalindua organisms (Humbert, et al., 2010; Moore, et al., 2011). 

 

Figure 3.10: Rarefaction curves for 454 pyrosequencing data sequenced using primers Amx368F & 

BS820R.  Rarefaction curves show that, despite a low number of OTUs in each of the two samples, the entire 

diversity within these samples appears to have been reported and no significant OTUs are absent from the 

analysis. 

However, a new problem presented itself with the optimisation of these primer sets 

and analysis of 454 pyrosequencing data. Although these primers did not report the 

presence of any non-anammox organisms (at least after quality control) and therefore 

can be deemed to target only anammox organisms, nor did they detect significant 

non-Scalindua DNA. Primers Amx368F & Amx820R did however report one OTU 

which was positively identified as a non-Scalindua organism (namely Ca. Brocadia 

caroliniensis). Nevertheless, it was impossible to determine with the present data 

whether this apparent lack of non-Scalindua related sequences was as a result of bias 

within the primers or due to the actually diversity of anammox bacteria within the 

samples. These primers had successfully amplified cloned 16S rRNA gene fragments 

identified as non-Scalindua anammox but had not been shown to amplify such 

genera from environmental DNA. Such a question would need to be clarified before 

these primers could be utilised effectively to pursue the overall aims of this project. 
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3.3.2.3. Primer Validation 

In order that the ability of primers Amx368F & Amx820R to amplify non-Scalinuda 

DNA from environmental samples might be assessed, it was necessary to obtain 

DNA or samples from environments which had previously been shown to contain 

such organisms. Such samples had been generously donated by several other 

research groups (see Table 3.1) which had been positively identified to contain a 

range of anammox genera. These samples were amplified using the suite of primers 

discussed above to test the specificity of each and their ability to amplify target DNA 

assessed on a simple presence/absence basis. All samples underwent a nested PCR 

approach with primers Pla46F & 1390R as a first round PCR. This PCR product was 

gel extracted and purified prior to the second round of amplification (see section 

2.3.2.4). Samples which exhibited negative results after this two-step PCR were then 

further optimised in order to ascertain that the lack of amplifiable product was 

indeed due to the inability of this primer set to amplify DNA from that sample and 

not due to other complications associated with PCR (e.g. impurities, low DNA yields 

etc). All samples which failed to be amplified after the nested PCR could not be 

amplified following this further optimisation and therefore did not amplify these 

samples due to the specificity of the primers in question. 

As can be seen in Figure 3.4, all primers used within this investigation demonstrated 

the desired specificity. Primers Pla46F & 1390R amplified all samples with the 

exception of the positive controls for Ca. Brocadia sp., Ca. Jettenia sp. and Ca. 

Scalindua sp., however, these three samples are cloned inserts and the PCR primers 

used to clone them produced an amplicon which was shorter than that of primers 

Pla46F & 1390R. Furthermore DNA extracted from the P. maris culture was not 

amplified by any of the anammox specific primer sets suggesting that amplification 

by these primers was restricted to the anammox clade. 

Both primer sets Amx368F & Amx820R and Amx368F & BS820R appeared to 

exhibit the same specificity within the anammox clade as they both amplified all 

positive control samples and all environmental samples. Furthermore the 

amplification efficiency of these two primer sets also appeared to be similar as the 

intensity of amplified bands appeared to be similar between them (i.e. if a band was 

weakly amplified by Amx368F & Amx820R the same was true using primers 
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Amx368F & BS820R). These primers produced PCR products from samples which 

had been reported to contain only non-Scalindua anammox genera indicating that 

these primers are not specific to Ca. Scalindua spp (Figure 3.4 and Table 3.2). 
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Figure 3.11: Phylogenetic tree showing identity of clones sequenced from environmental samples using 

primers Amx368F & Amx820R.  For sample names see Table 3.2. All clones are annotated as the name of the 

sample followed by the clone identifier number. Red highlighted clones were obtained from samples donated by 

the Jakob Zopfi Laboratory, University of Laussane, Switzerland whereas those highlighted in blue were donated 

by the Amano Teruki Laboratory, Kyōto University, Japan. The tree was constructed using the Neighbour-

Joining method using p-distances in Mega 5.10 (Tamura, et al., 2011). A bootstrap test (1000 replicates) was 

conducted on the phylogeny; branch annotations represent the percentage of replicate trees in which the 

associated taxa clustered together. Scale bar represents 2% sequence similarity. Clones were sequenced which 

were found to have a high degree of similarity with all known anammox genera therefore demonstrating the 

ability of these PCR primers to amplify DNA from the entire anammox diversity. 

As can be seen from Figure 3.11, sequences were obtained from these samples using 

primers Amx368F & Amx820R which showed a high similarity with 16S rRNA 

sequences obtained from Ca. Brocadia spp., Ca. Jettenia spp., Ca. Kuenenia spp. and 

Ca. Scalindua spp. The majority of sequences belonged to either the Jettenia or 

Kuenenia genera. It is unlikely that the prevalence of sequences from these two 

genera represent bias within the sample as previous investigations on samples from 

the Medway Estuary indicate anammox populations dominated by Ca. Scalindua spp. 

(see above). Thus these primers are capable of amplifying anammox 16S rRNA 

genes in both Ca. Scalindua spp. and non-Scalindua dominated communities. As 

such it appears that the primers Amx368F & Amx820R are suitable to be used 

within this study to investigate anammox ecology as they are both specific to the 

order Brocadiaceae and have been shown to target all the known genera within this 

family. 

3.3.3. Genera Specific Anammox Primers 

Primers Brod541F & Brod1260R demonstrated the specificity reported in the 

literature in that they appeared to be specific to Ca. Scalindua spp. (Penton, et al., 

2006). Of the four anammox positive controls only DNA from Ca. Scalindua sp. was 

amplified (Figure 3.12). Also, of the environmental samples, no PCR product was 

obtained from samples Z2 or Z3 which were not reported to contain Ca. Scalindua 

spp. (Humbert, et al., 2010) but did amplify product from MF1, MF2, SP1 and CH 

which had tested positive for this genera (Amano, et al., 2011). 
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Figure 3.12: Environmental DNA samples amplified by primers Brod541F 7 Brod1260R.  For sample 

names see Table 3.2. DNA from samples Z1-Z3 (which were not reported to contain Ca. Scalindua spp, DNA) 

were not amplified by these primers whereas samples MF1, MF2, SP1 and CH were amplified. Furthermore 

these primers amplified the Ca. Scalindua sp. positive control but did not amplify any of the other anammox 

clones or any non-anammox clones or isolates. 

The genera specific primers designed during this study to target intra-anammox 

diversity also appeared to show a reasonably satisfactory specificity. Primers B540F 

& B1209R, designed to specifically target Ca. Brocadia spp., were unable to amplify 

Ca. Scalindua sp. or P. maris DNA but amplified all other anammox controls 

(Figure 3.4 and Figure 3.13). Furthermore they amplified product from all of the 

environmental DNA samples (Figure 3.4 and Figure 3.13). However this primer set 

does not appear to be specific to only Ca. Brocadia spp., but also targets Kuenenia 

and Jettenia genera. Both of these controls were strongly amplified as well as sample 

Z3 (plasmid DNA from an anammox enrichment culture which predominantly 

consisted of Ca. Jettenia spp).  

1 2 3 4 5 6 7

8 9 10 11

1. Z1
2. Z2
3. Z3
4. MF1
5. MF2
6. SP1
7. CH
8. Ca. Scalindua sp.
9. Ca. Brocadia sp.
10. P. maris
11. Blank

Brod541F & Brod1260R

2000 bp

1000 bp

500 bp

250 bp

100 bp

2000 bp

1000 bp

500 bp



 

66 

 

 

Figure 3.13: Environmental DNA and anammox controls amplified by primers B540F & B1209R.  For 

sample names see Table 3.1. Primers amplified all environmental samples (Z2 was only amplified after 

purification of DNA c.f. lanes 2 and 8). All anammox controls were amplified except for Ca. Scalindua sp., 

suggesting these primers are specific to non-Scalindua anammox organisms. 

Primers J697F & J1265R, designed to solely target Ca. Jettenia spp., also did not 

show the desired specificity. Although they were shown to not amplify DNA from 

Ca. Scalindua spp. or Ca. Brocadia spp. (amplifying neither the control sample or 

sample Z2) they did amplify Ca. K. stuttgartiensis DNA (Figure 3.14). However, the 

high similarity of the 16S rRNA gene between Brocadia, Jettenia and Kuenenia 

genera (Jetten, et al., 2009) may make it difficult or even impossible to design 

primers which can specifically amplify these three genera independently. However, 

these primers do not appear to amplify the 16S rRNA gene of Ca. Scalindua spp. and 

so could be utilised as an effective molecular marker for non-Scalindua anammox 

organisms. Furthermore, as primers J697F & J1265R do not appear to amplify Ca. 

Brocadia spp. DNA, they could be used to indirectly identify the presence of this 

genus as, if PCR product was amplified from a sample by primers B540F & B1209R 

and not J697F& J1265R, then it could be concluded that the sample contained Ca. 

Brocadia spp. but not Ca. Jettenia spp. or Ca. Kuenenia spp. 
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Figure 3.14: Environmental DNA and anammox controls amplified by primers J697F & J1265R. For 

sample names see Table 3.2. Primers amplified all environmental DNA samples and DNA from Ca. Jettenia sp. 

and Ca. Kuenenia stutgartiensis. Primers were not able to amplify Ca. Brocadia sp. or Ca. Scalindua sp. DNA. 

Primers K580F & K1047R appear to be specific to the Kuenenia genus, only 

amplifying DNA from Ca. K. stuttgartiensis. However, to date, no product has been 

obtained from PCRs on environmental DNA using these primers. This may be due to 

inadequacies with this primer set (e.g. as to its specificity) or because no sample has 

been analysed which contained any target DNA. Samples MF1, MF2, SP1 and CH 

had been reported to contain Ca. Kuenenia spp. (Figure 3.11 and Table 3.2) but were 

not amplified by these primers. Therefore these primers may not target the whole 

Kuenenia genus but only a sub-division of it (e.g. only Ca. K. stuttgartiensis). 

However, it is unable to answer this question with the present data and it did not 

appear to be a sufficiently important one to warrant further analysis during this 

project. 

3.4. Conclusion 

The data presented in this study demonstrate that primers An7F & An1388R are not 

suitable for use as a phylogenetic marker for anammox organisms. Although the 

primers were capable of amplifying anammox DNA via PCR, the data also indicate 

that many non-anammox organisms were targeted by these primers. This was most 

evident in data obtained from 454 pyrosequencing which show that the majority of 

reads were associated with 16S rRNA genes from non-anammox organisms. 
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Due to the failings of these primers in their ability to specifically target only 

anammox 16S rRNA genes, it was necessary to investigate other primers in order to 

achieve the aims of this project. Primers Amx368F & Amx820R demonstrated the 

ability to both solely target anammox 16S rRNA genes and also to report the entire 

known diversity of anammox organisms. Pyrosequencing data obtained using these 

primers demonstrate that all reads (after quality control) were associated with 

anammox or anammox-related sequences. As such, these primers appear suitable for 

accurately reporting anammox phylogenetic diversity and are a suitable tool for 

investigating anammox ecology. 

PCR primers targeting 16S rRNA genes specific to individual anammox genera were 

also investigated in this study. Primers Brod541F & Brod1260R were shown to be 

able to specifically target Ca. Scalindua spp. Primers were also designed which were 

show to be able to target non-Scalindua (i.e. B540F & B1209R) and Ca. Jettenia spp. 

and Ca. Kuenenia spp. (i.e. J697F & J1265R). The ability to use these intra-

anammox specific primers within a nested PCR allows them to be used as a 

potentially powerful tool for anammox ecology. Though the power of this technique 

would be far less than other molecular ecological methods (e.g. high-throughput 

sequencing), the ability to use this suite of primers to obtain an approximate 

understanding of anammox diversity within an environmental sample (at least in 

terms of the presence/absence of specific anammox genera and hence an estimation 

of the richness of the sample) would be advantageous. The ability to obtain results 

from this method within a day makes it a more useful tool for investigating 

anammox ecology. However, conclusions drawn from this method would have to be 

used tentatively in anticipation of more extensive data in terms of the presence of 

anammox genera within the sample in question. 

3.5. Summary 

 The investigation of anammox ecology is a challenging subject and, in 

the absence of classic ecological methods, requires the development of a 

reliable and efficient suite of culture-independent techniques. 

 The onset of high-throughput sequencing technologies, gleaning ever-

increasingly greater amounts of data, may potentially reveal problems 
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with the specificity of molecular markers used to investigate anammox 

(and other bacteria) in the environment. 

 PCR primers Amx368F & Amx820R appear to be the best candidates, of 

the primers investigated, to specifically amplify anammox 16S rRNA 

sequences from environmental samples and to be able to target the entire 

known anammox diversity. 

  



 

70 

 

4. Potential Use of Functional Genes as Molecular Markers for 

Anammox Diversity 

4.1. Introduction 

4.1.1. Overview 

Following the successful development of an effective suite of anammox specific 

PCR primers targeting the 16S rRNA gene (see chapter3), the possibility of 

developing primers targeting functional molecular markers for the activity of 

anammox bacteria was also investigated. The ability to investigate one or more 

functional genes would not only allow for the investigation of anammox activity 

(through gene expression) within an environmental sample but also for the 

collaboration of measurements of diversity. That is, if the functional diversity within 

a particular gene represented the phylogenetic diversity of the entire organism, then 

the diversity of this gene could be used in conjunction with the 16S rRNA gene in 

order to gain more confidence about the diversity reported in the latter. Furthermore, 

it has been suggested that the conserved nature of the 16S rRNA gene may limit its 

effectiveness as a tool to measure anammox diversity and is not directly linked to 

function (Hirsch, et al., 2011). However such a methodology would depend on the 

existence of a suitable gene, which was both unique to and ubiquitous in anammox 

bacteria, and the development of reliable primers which would target only the gene 

in question and, ideally, the entire diversity of that gene. To date, in the literature, 

three potential functional genes for the detection of anammox bacteria have been 

suggested; a nitrite reductase (nirS) (Li, et al., 2011), hydrazine oxidoreductase (hzo) 

(Hirsch, et al., 2011) and hydrazine synthase (hzs) (Harhangi, et al., 2012). 

4.1.2. Nitrite Reductase (NirS) 

The reduction of nitrite is a crucial step in denitrification but is also utilised by many 

organisms to combat the toxic effect of NO2
-
 accumulation within the cell (Klotz, et 

al., 2008). nirS has been shown to be present in the genomes of Ca. K. stuttgartiensis 

and Ca. S. profunda (Strous, et al., 2006; van de Vossenberg, et al., 2012) and is 

thought to be an important step in anammox metabolism (Kartal, et al., 2011a; van 

Niftrik and Jetten, 2012). As such nirS has been suggested to be an effective 

functional marker for anammox (Lam, et al., 2009; Li, et al., 2011). However nirS 
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genes are also found in numerous other organisms including denitrifiers (Smith, et 

al., 2007; Hira, et al., 2012), which can exist in the same environments as anammox 

bacteria. Thus, it would be potentially difficult to confirm with certainty that a 

particular nirS sequence obtained from the environment was from either an 

anammox or denitrifying bacteria. Furthermore, nirK, reported to be unique to 

denitrifiers has also been discovered in KSU-1, a potential anammox organism from 

a continuous-flow reactor (Hira, et al., 2012). In addition, nirS genes were not been 

found in anammox bacteria in a number of studies investigating the genomes of Ca. 

Brocadia fulgida (Gori, et al., 2011), KSU-1 (Hira, et al., 2012) and Ca. Jettenia 

asiatica (Hu, et al., 2012) and therefore nirS genes may not be ubiquitous in 

anammox organisms. 

 Our knowledge of nir genes in relation to anammox bacteria is not complete and 

hence use of this gene as a potential functional marker for anammox must be viewed 

with caution. In addition, the findings of Li, et al. (2011) can be disputed as the tree 

of nirS sequences presented in their study bases the division of anammox and non-

anammox related sequences on unsupported branches which appear to be 

insignificantly different. Thus the conclusion that sequences from the environment 

can be classified as belonging to one of these two groups and that the diversity of 

“anammox” nirS represents anammox phylogeny is, at present, unsubstantiated. 

Furthermore, the identification of clades within this tree appears to be founded on 

only one sequence from a known anammox organism (i.e. Ca. K. stuttgartiensis). 

The anammox nirS sequences presented in the supplementary information presented 

by Lam, et al. (2009), though they appear to show a more evident phylogenetic 

difference from denitrifier nirS genes, are still defined based on similarity to only 

three, definitively anammox-related sequences, of which only one belongs with any 

certainty to an anammox bacteria. As such, it was decided not to pursue the use of 

nirS as a potential functional marker for anammox further for the purposes of this 

study. 

4.1.3. Hydrazine Oxidoreductase (hzo) and Hydrazine Synthase (hzs) 

Anammox has been shown to exhibit a novel and unique metabolism in terms of the 

oxidation of NH4
+
 (van Niftrik and Jetten, 2012). This pathway involves the 

synthesis (from NH4
+
 and NO) of hydrazine (N2H4) and its subsequent oxidation to 
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N2. The ability to utilise N2H4 in this way has not previously been observed within a 

bacterial species (Jetten, et al., 2009). Thus, the genes responsible for this process, 

hydrazine oxidoreductase (hzo) and hydrazine synthase (hzs), provide a unique 

possibility to be effective as molecular markers for anammox function and 

phylogeny.  

The hzs gene encodes for a protein that synthesises N2H4 and the formation of the N-

N bond (Kartal, et al., 2011a; Harhangi, et al., 2012). Initial research into the use of 

hzs as a phylogenetic marker appear promising (Harhangi, et al., 2012), however the 

role of this gene within anammox metabolism was only confirmed towards the end 

of this project and as such it was not possible to investigate its use within the time-

scale of this study. 

The hzo gene has been more extensively studied than hzs as a molecular marker for 

anammox and so was a more suitable candidate for measuring diversity. It therefore 

warranted further investigation within this study. A number of primers targeting the 

hzo gene have been developed and used within the literature (Hirsch, et al., 2011). 

Schmid, et al. (2008) reported that the diversity of hzo/HZO could be clustered into 

3 clades though only “hzo Cluster 1” was suitable as a marker for anammox diversity 

as it contained sequences obtained from all 5 anammox genera and the phylogeny 

was consistent with that observed within the 16S rRNA gene. The diversity within 

this cluster was proposed to be related to two copies of the hzo gene (hzoA and hzoB) 

found in the genome of KSU-1 (Shimamura, et al., 2007). However, Hirsch, et al. 

(2011) reported a greater phylogenetic diversity within this cluster than previously 

suggested, though maintained that it was still congruous with anammox diversity. 

Furthermore, up to nine putative copies of hzo/hao genes have been reported in the 

genome of Ca. K. stuttgartiensis, indicating further issues with the potential use of 

hzo as a functional marker for anammox (Klotz, et al., 2008; Kartal, et al., 2011a). 

4.2. Methods 

A selection of different primers has been used in the literature to detect hzo “cluster 

1” (Table 2.4). Primer sets hzocl1F1 & hzocl1R2 and hzocl1F1l & hzocl1R2 were 

used as the literature suggested these where the most efficient primers for targeting 

the diversity of “hzo cluster 1” and the amplicon size (470 bp) would have been 
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suitable for 454 pyrosequencing if this was deemed necessary. DNA was amplified 

from sediment samples collected from Medway Estuary Site 6 on (23/03/2010).  

Reference sequences were acquired from GenBank (NCBI) which were submitted by 

Dang, et al. (2010) and Li, et al. (2010b). Sequences from these studies were chosen 

as they also used PCR primers reported to only target “hzo cluster 1”. For a full 

description of the methods used including specific PCR conditions and sampling 

locations see section 2.3.2.2. 

4.3. Results 

4.3.1. PCR Efficiency 

 

Figure 4.1: Agarose gel image of PCR product obtained using primers a) hzocl1F1l & hzocl1R2 and b) 

hzocl1F1 & hzocl1R2 from DNA extracted from Medway Estuary M6 sediment.  PCR product from primers 

hzocl1F1l & hzocl1R2 was visible for all environmental replicates however no bands from primers hzocl1F1 & 

hzocl1R2 were evident. Negative and blank controls for both primer sets demonstrated no amplification. 

Increasing the intensity of UV light on this gel did show that PCR product had been obtained from primers 

hzocl1F1 & hzocl1R2 though the amount of product was minimal. 

Difficulty was encountered when attempting to amplify hzo sequences using either 

primers hzocl1F1 & hzocl1R2 or hzocl1F1l & hzocl1R2 from DNA obtained from 

Medway Bridge Marina sediment. Clear bands of the correct size were difficult to 

obtain from samples which had previously produced positive results for the presence 

of anammox bacteria via 16S rRNA screening (see chapter 3). This was surprising 

considering that Ca. K. stuttgartiensis has been reported to have up to 9 copies of hzo 

(Klotz, et al., 2008; Kartal, et al., 2011a), two of which are targeted by the “hzo 
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Cluster 1” PCR primers (Hirsch, et al., 2011), compared with 1 copy of 16S rRNA  

(Strous, et al., 2006). Thus, it can only be concluded that these primers have a low 

efficiency of amplification, possibly due to numerous degeneracies in the primer 

sequence (Table 2.4) or due to a greater susceptibility to sample contamination due 

to a decrease in the efficiency of DNA polymerase with these primers. Nevertheless, 

in general, better amplification was observed using primer set hzocl1F1l & hzocl1R2 

(Figure 4.1) and so these primers were used during further investigations. 

 

Figure 4.2: Agarose gel image of PCR product obtained from SIP fractions using hzo specific primers 

hzocl1F1l & hzocl1R2 as a nested PCR.  Clear bands of the correct size were only obtainable after a nested 

PCR with a first round PCR using HZO4F & HZO1R. However, amplification efficiency of this nested PCR 

appeared to be far greater that the single round PCR (c.f. Figure 4.1). 

However, primer set hzocl1F1l & hzocl1R2 was unable to directly amplify hzo genes 

from SIP DNA fractions. Despite extensive optimisation, no visible PCR reaction 

product could be seen. However this is not surprising considering the low yields of 

DNA obtained after fractionation and precipitation. Therefore, a nested PCR 

approach was attempted using primers HZO4F & HZO1R before amplification with 

“hzo Cluster 1” specific primers hzocl1F1l & hzocl1R2. This methodology is similar 

to that outlined in Hirsch, et al. (2011) except that primer hzocl1F1l was used 

instead of hzocl1F1 based on the results obtained from the cloning of hzo genes from 

Medway Bridge Marina sediment (see above). This nested PCR provided a much 

greater amplification and higher yields efficiency than the one step PCR approach 

which facilitated cloning attempts (Figure 4.2). 
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Figure 4.3: Phylogenetic tree containing hzo gene sequences  Sequences obtained from Medway Bridge 

Marina environmental samples and from SIP fractions (see chapter 6 for context and full discussion). Medway 

Bridge sequences (red, n=9) were amplified using either PCR primers hzocl1F & hzocl1R2 or hzocl1F1l & 

hzocl1R2 (annotated in tree) whilst SIP sequences (blue, n=19) were amplified using a nested PCR using 

hzocl1F1l & hzocl1R2 followed by HZO4F & HZO1R. Reference sequences were obtained from GenBank from 

a mixture of clones from enrichments and environmental samples. Jiaozhou Bay (China) sequences were 

obtained from Dang, et al. (2010) and Mai Po Nature Reserve (Hong Kong) and South China Sea sequences from 

(Li, et al., 2010b). Tree was constructed using the Neighbour-Joining method using p-distances in Mega 5.10 

(Tamura, et al., 2011). A bootstrap test (1000 replicates) was conducted on the phylogeny; branch annotations 

represent the percentage of replicate trees in which the associated taxa clustered together. Scale bar represents 

5% sequence similarity. As can be seen from the tree, there is little consensus as to the phylogenetic diversity 

within the hzo gene. There appears to be a distinction between a potentially Ca. Scalindua spp. clade and other 

anammox organisms but this is based on unsupported branches and thus can be used with little confidence. The 

small amount of sequences from identified anammox organisms limits the usefulness of this data. As such it was 

concluded that the hzo gene was not a suitable marker for the phylogenetic diversity within anammox, at least 

with the current level of research. However, hzo gene sequences obtained using these PCR primers do appear to 

be distinct from hao and so may be suitable as a functional marker for anammox activity in an environment. 

4.3.2. Phylogenetic Analysis of hzo 

Phylogenetic analysis of hzo sequences from Medway Estuary M6 sediment (red 

highlights) is shown in Figure 4.3. The majority of clones obtained from Medway 

Estuary M6 sediments (7 out of 9) clustered within a distinct cluster, ‘Cluster B’ 

(bootstrap consensus=74%). From 16S rRNA analysis of these samples (Figure 3.8) 

it appeared that the only anammox organisms present in these samples were related 

to Ca. Scalindua spp. However these sequences clustered independently from the 

only known Ca. Scalindua sp. hzo sequence (FM163627.1), available at the time of 

constructing this tree, which was obtained from an enrichment culture. It must be 

noted that this reported lack of phylogenetic congruity can be used with little 

confidence as only one identified Ca. Scalindua sp. hzo sequence was found within 

the GenBank database. Indeed for all five characterised anammox genera, only one 

hzo, nucleotide sequence was available in GenBank (i.e. there were not even two hzo 

sequences which were identified as coming from the same organism or genus). Thus 

it is impossible to infer phylogenetic relationships with the data present due to the 

lack of positively identified sequences. Furthermore, the fact that all “uncultured” 

hzo sequences acquired from GenBank (which were used in calculating phylogeny to 

provide a greater statistical robustness to the analysis) were generated from only two 

studies (Dang, et al., 2010; Li, et al., 2010b) from three environments, all of which 

are from a marine setting, raises further questions as to the usefulness of this tree. 
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Marine environments (both coastal and open-ocean) are dominated by Ca. Scalindua 

spp. (Schmid, et al., 2007) and therefore it is probably reasonable to accept that hzo 

sequences obtained from such environments would be heavily biased towards this 

genus. 

4.4. Discussion 

From the results of these investigations it appears as if the diversity of hzo does not 

match the phylogenetic diversity of the 16S rRNA gene. This contradicts the 

findings of Schmid, et al. (2008) who reported that the phylogeny of “hzo Cluster 1” 

was in good agreement with that of the 16S rRNA gene. Conversely, it has been 

argued that 16S rRNA does not accurately report phylogenetic diversity. Li, et al. 

(2010b) concluded that hzo primers were more specific and efficient than those of 

16S rRNA targeting primers whereas Hirsch, et al. (2011) argued that the 16S rRNA 

gene underestimated anammox diversity based on a greater diversity obtained from 

hzo sequences which they concluded to be a closer representation of the true 

diversity. Wang and Gu (2013) further agreed with these statements. However, these 

claims are unreasonable as firstly, determination of the “true” microbial diversity, 

especially in complex environments, is impossible to attain due to the inability to 

accurately and comprehensively enumerate the number of individuals within the 

environment. Furthermore, it is also impossible to accurately determine bacterial 

“species” richness as the definition of what constitutes a “species” is neither clear 

nor universally implemented in bacteria and nevertheless, if a bacterial species could 

be accurately defined, each individual would have to be isolated from the community 

to positively determine which species it belonged to beyond doubt. As such 

measurements of the “true” diversity of a bacterial population cannot be obtained 

and so any investigations into bacterial ecology can only report a relative diversity. 

Secondly, with the present data available, it cannot be positively determined that 

diversity within the hzo gene represents phylogenetic diversity. Therefore it cannot 

be assumed that the higher measurement of diversity is more correct simply because 

it is the greater of the two as the assumption that it is overestimating diversity is 

equally as valid. In addition, regardless of whether the 16S rRNA gene is an accurate 

measurement of “true” anammox diversity, it remains the method by which the 

current interpretation of anammox taxonomy was established and as such, must be 
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used as the benchmark until anammox diversity is validly re-classified. Hirsch, et al. 

(2011) stated that “16S rRNA sequences provide taxonomic identification of bacteria 

but no evidence for functional capability. Thus the detection of hzo genes can be 

more promising to examine functional anammox bacteria in the environment”. This 

statement is true providing that we can be confident of the role and identity of hzo 

and the quality of sequences obtained using primers to specifically target this gene. 

However, this may be confounded by multiple analogues of the hzo gene in the 

genomes of anammox bacteria, which may be functionally redundant. 

It could be argued that ‘Cluster A’ and ‘Cluster B’ represent diversity within the 

genus Scalindua whereas the other three clusters represent that of other anammox 

organisms, however this would be in disagreement with the literature where Ca. 

Scalindua spp. hzo/HZO clearly cluster into one distinct clade within “hzo Cluster 1” 

(Schmid, et al., 2008; Hirsch, et al., 2011). In fact, these data do not support this 

claim as no sequences obtained from this investigation were positively identified as 

belonging to non-Scalindua anammox organisms. Only one sequence (Urea-1-8 

clone 9) could be putatively assigned to an unknown, non-Scalindua anammox 

organism based solely on its association with ‘Cluster E’, which has been inferred to 

represent a sub-section of non-Scalindua anammox bacteria (Li, et al., 2010b). As 

such, the ability of these primers to differentiate between hzo genes belonging to Ca. 

Scalindua spp. and non-Scalindua organisms cannot be asserted with confidence. 

Therefore, in the light of these data, it is difficult to confidently infer anammox 

diversity with the use of these primers. 

Another issue with the use of hzo as a molecular marker for anammox is its 

similarity to hao genes found in aerobic ammonium oxidising bacteria (AOB). hzo 

and hao share a close functional and sequence similarity and it is difficult to 

definitively distinguish between HZO and HAO protein sequences (Klotz, et al., 

2008). In fact Klotz, et al. (2008) further speculated that HZO and HAO may be the 

same protein which oxidises different molecules depending on the upstream 

metabolic products of that particular organism (i.e. N2H4 in anammox and NH2OH in 

AOB). However Shimamura, et al. (2007) managed to separate HZO and HAO like 

complexes from KSU-1 and demonstrated that the resulting HZO protein could 



 

79 

 

oxidise N2H4 but not NH2OH thus suggesting a different function in at least some of 

the proteins translated from hzo/hao like genes. 

4.5. Summary 

 Three functional genes have been suggested in the literature as suitable for 

investigating the ecology of anammox organisms: hzo, hzs and nirS. 

 nirS does not appear suitable as a phylogenetic marker due to its close 

relationship to nirK and discrepancies reported in the literature. 

 hzs shows promise as a functional and phylogenetic marker for anammox 

organisms however requires further research to validate these claims. 

 Despite contrary findings published in the literature, hzo does not appear to 

be a suitable molecular marker for measuring anammox diversity based on 

the data gathered during this investigation. However it may be suitable as a 

molecular marker for anammox functionality within an environment. Further 

research is required in order to elucidate the diversity of the hzo gene and its 

implications for anammox ecology. 
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5. Biogeography of Anammox Bacteria 

5.1. Introduction 

5.1.1. Overview 

The anammox process is mediated by a unique suite of chemolithautotrophic 

bacteria (van Niftrik and Jetten, 2012). These bacteria belong to a monophyletic 

clade (Figure 1.3) which branch deeply within the phylum Planctomycetes (van 

Niftrik and Jetten, 2012). Recently, anammox have been designated as belonging to 

a new, distinct family, the Brocadiaceae (Song and Tobias, 2011), and order, the 

Brocadiales (Gori, et al., 2011). Currently 5 genera of Brocadiales (Figure 1.3) have 

been identified from a range of environments; Candidatus Anammoxoglobus, 

Candidatus Brocadia, Candidatus Jettenia, Candidatus Kuenenia and Candidatus 

Scalindua (van Niftrik and Jetten, 2012). However, to date, anammox bacteria have 

not been successfully isolated or grown in pure culture and, as such, all anammox 

organisms have been designated as “Candidatus” organisms. The current phylogeny 

of anammox organisms is described by 16S rRNA sequence similarity. However, 

despite large phylogenetic differences both between anammox genera and other 

prokaryotes, the evolutionary history of these organisms is unclear (van Niftrik and 

Jetten, 2012). 

The anammox reaction was first discovered in a wastewater treatment plant in the 

Netherlands (Mulder, et al., 1995; van de Graaf, et al., 1995; Van de Graaf, et al., 

1996) and it is from these environments that the majority of enriched anammox 

communities have been obtained. However anammox bacteria have since been found 

in a multitude of environments including marine sediments (Dalsgaard and 

Thamdrup, 2002; Engstrom, et al., 2005; Amano, et al., 2007; Rich, et al., 2008; 

Engstrom, et al., 2009), oxygen minimum zones in the World’s oceans (Rysgaard, et 

al., 2004; Hamersley, et al., 2007; Woebken, et al., 2008; Galan, et al., 2009; Galan, 

et al., 2012) and other anoxic marine waters (Dalsgaard, et al., 2003; Kuypers, et al., 

2003; Kuypers, et al., 2005; Woebken, et al., 2007), particulate matter in oceanic 

anaerobic water columns (Hamersley, et al., 2007; Jaeschke, et al., 2007), estuarine 

sediments (Trimmer, et al., 2003; Risgaard-Petersen, et al., 2004; Dale, et al., 2009; 

Nicholls and Trimmer, 2009), stratified lakes (Schubert, et al., 2006; Hamersley, et 
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al., 2009; Yoshinaga, et al., 2011), hot springs (Jaeschke, et al., 2009a), petroleum 

reservoirs (Li, et al., 2010a), marine sponges (Mohamed, et al., 2010), terrestrial 

anaerobic soils (Humbert, et al., 2010), wetlands (Penton, et al., 2006; Humbert, et 

al., 2012), hydrothermal vents (Byrne, et al., 2008), groundwater (Clark, et al., 2008; 

Moore, et al., 2011), mangrove forests (Amano, et al., 2011) and paddy fields (Sato, 

et al., 2012). Indeed it has been suggested that anammox may be a ubiquitous 

process (Francis, et al., 2007; Kartal, et al., 2008) and may be found in any 

ecosystem with high amounts of dissolved inorganic nitrogen (DIN) and very low 

concentrations of  O2, i.e. less than 2 μM (Strous, et al., 1997; Jetten, et al., 2009). 

5.1.2. Anammox and Global Nitrogen Cycling 

Despite initial scepticism as to the importance of anammox in terms of the global 

nitrogen cycle (Zehr and Ward, 2002; Devol, 2003; Ward, et al., 2009; Bulow, et al., 

2010), anammox has been shown to be a significant contributor to N2 production 

(Francis, et al., 2007; Russ, et al., 2012). Anammox have been reported to account 

for as much as 50% of the total oceanic N2 production (Devol, 2003) and have been 

reported to be responsible for 40% of N2 production in the Black Sea (Kuypers, et al., 

2003), up to 35% in the Golfo Dulce, Costa Rica (Dalsgaard, et al., 2003) and up to 

67% in continental shelf sediments (Dalsgaard and Thamdrup, 2002). Theoretically, 

assuming that anammox and denitrification are the only routes to nitrogen loss from 

the anoxic environment, that anammox is a completely chemolithoautotrophic 

process which relies on denitrification for the production of NO2
-
 and NH4

+
 (through 

the mineralisation of organic matter) and that the Redfield ratio (Redfield, 1934) 

holds true, anammox can only account for a maximum of 29% of N2 production 

(Ward, et al., 2007; Dalsgaard, et al., 2012). Clearly this is not in agreement with 

data presented in the literature, presumably due to an over-simplistic view of the 

anammox process and the metabolic versatility of the organisms responsible for it. 

Furthermore, if these assumptions were true, anammox would be dependent on the 

presence and activity of denitrifying organisms which has not always been shown to 

be the case (Thamdrup, et al., 2006; Galan, et al., 2009). Dalsgaard, et al. (2012) 

argued that this statement does hold true in OMZs and that pockets of high 

denitrification were spatially separated from anammox which contributed to an 

overall ratio of anammox to denitrification of ~29:71. They also argued that the 
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small number of such regions expressing high denitrification rates meant that they 

had not been represented by the poor sampling resolution of previous investigations 

(see above), thereby skewing the data. However, if this were true then NH4
+
 would 

be seen to accumulate in the presence of denitrification which is not shown by the 

current data (e.g. Bulow, et al., 2010). Furthermore, if anammox bacteria were solely 

dependent on denitrifiers for NO2
-
 it would be unreasonable to presume that they 

would be spatially separated. 

However, the relative importance of anammox to N2 production has been reported to 

be much lower in non-pelagic environments. In coastal regions anammox have been 

found to be responsible for less than 10% of N2 production (Thamdrup and 

Dalsgaard, 2002; Kuypers, et al., 2006). Anammox rates in estuarine environments 

have also been shown to be low, with estimates of N2 production by anammox 

bacteria ranging from <1-8% (Trimmer, et al., 2003), 0-24% (Risgaard-Petersen, et 

al., 2004) and 3.8-16.5% N2 (Dale, et al., 2009). Trimmer, et al. (2003) also showed 

that anammox rates were higher towards the marine end of the estuary and were 

much lower upstream. However, the large numbers of estuarine environments on 

Earth still make anammox an important component of the global N-cycle. Anammox 

rates from stratified lakes were also shown to be less than those of pelagic 

environments with ~13% of N2 production attributed to anammox in Lake 

Tanganyika (Schubert, et al., 2006) although Yoshinaga, et al. (2011) did report 

maximum values of N2 production via anammox of 40% though this was only at 2 of 

11 sites. 

5.1.3. Diversity 

Ca. Brocadia anammoxidans was the first anammox bacterium to be identified and 

named (Strous, et al., 1999) and was enriched from the wastewater plant mentioned 

above. Other anammox bacteria were subsequently discovered in similar wastewater 

systems belonging to the other four anammox genera (Schmid, et al., 2000; Schmid, 

et al., 2003; Kartal, et al., 2007b; Quan, et al., 2008). Anammox bacteria were first 

discovered in the natural environment, namely the Black Sea, by Kuypers, et al. 

(2003) and identified as belonging to the Scalindua genus (Ca. S. sorokinii). Since 

then many investigations have been conducted on anammox bacteria in the natural 

environment (see above). Observations made from such studies appear to suggest 
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that anammox diversity can be divided into two distinct groups: Ca. Scalindua spp. 

which are specific to marine environments and non-Scalindua anammox organisms 

found in freshwater and brackish environments (Hirsch, et al., 2011). However, most 

investigations into the diversity of anammox organisms have been limited due to the 

low resolution of acquired data and paucity of the number of sequences obtained 

(largely from clone libraries) which restricts the strength of subsequent conclusions 

(Humbert, et al., 2010). Furthermore the methods for targeting specific anammox 

genes have been used with varying success (see chapter 3 and 4). 

Despite some level of understanding in the diversity of anammox organisms in 

terrestrial and marine environments, the causes of this biodiversity and its 

environmental controls are relatively unknown (Amano, et al., 2007; Hamersley, et 

al., 2009). Kartal, et al. (2007b) state that each anammox species occupies a “well-

defined (but yet unknown) niche” and that “different anammox species are rarely 

found in the same ecosystem”. Dale, et al. (2009) report that different levels of 

anammox diversity and distribution are observed in different environments. However, 

few studies from the literature utilise the same methodologies in comparing 

anammox organisms in different environments and so conclusions drawn from such 

research must be used with trepidation. Due to the ecological importance and 

environmental significance of these organisms, the acquisition of a clear and 

comprehensive understanding of the diversity and distribution of anammox bacteria 

is imperative (Kuypers, et al., 2006).  

There has been suggestion that the diversity of anammox organisms is controlled by 

salinity, at least in estuarine environments (Dale, et al., 2009; Hirsch, et al., 2011), 

however experiments conducted on enriched, freshwater anammox organisms 

(Kartal, et al., 2006) demonstrated that they were not affected by changes in salinity. 

It has been suggested that anammox bacteria are metabolically diverse (Strous, et al., 

2006; Kartal, et al., 2007a; Jetten, et al., 2009), though the extent of such metabolic 

diversity is poorly understood, which may account for at least some of the diversity 

and distribution of these organisms (see chapter 6 for full discussion). Anammox 

may have the ability to utilise organic substrates as sources of carbon and nitrogen or 

as an energy source (Kuypers, et al., 2006; Trimmer and Purdy, 2012) and, if this 

were true, it would be feasible that the bioavailability of organic matter may affect 
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anammox diversity (the potential for organic pathways to the anammox reaction is 

covered in chapter 6). 

5.1.4. Anammox in Estuaries and OMZs 

Estuaries and oceanic OMZs have been shown to be important environments in 

global nitrogen cycling associated with the anammox process (see above) however 

we know little about the anammox organisms present in these environments. These 

two environments are doubly interesting as they allow for the investigation of 

anammox diversity over two contrasting environmental gradients; a salinity gradient, 

along an estuary and an O2 gradient, in an OMZ. 

OMZs, sometimes called anoxic marine zones (AMZs) (Ulloa, et al., 2012) or 

oxygen deficient zones (ODZs) (Chang, et al., 2012), have been shown to be 

important regions for nutrient cycling despite the fact that they are small in size (in 

relation to the entire ocean) and number (Paulmier and Ruiz-Pino, 2009). The most 

significant OMZs, in terms of size and N2/N2O loss, are the Eastern Tropical North 

Pacific (ETNP), Eastern Tropical South Pacific (ETSP), Arabian Sea, Bay of Bengal 

and the Benguela Upwelling (Woebken, et al., 2008; Paulmier and Ruiz-Pino, 2009). 

OMZs occur in regions of massive upwelling of nutrients either from nutrient rich 

oceanic currents coming into contact with land masses (Kuypers, et al., 2005), wind-

driven upwelling (Karstensen, et al., 2008) or the Ekman Effect (Bauer, et al., 1991). 

This upwelling over-stimulates aerobic primary production (eutrophication) in 

surface waters which in turn draws up dissolved O2 creating zones of low oxygen 

concentrations below (Woebken, et al., 2008). OMZs typically demonstrate a steep 

oxycline (a decreasing O2 gradient from the surface to the top of the OMZ) followed 

by a large anoxic core and a shallower oxycline at the bottom of the OMZ as 

dissolved O2 content recovers (Paulmier and Ruiz-Pino, 2009; Rush, et al., 2012; 

Ulloa, et al., 2012). Such O2 gradients create unique redox gradients where a diverse 

range of electron acceptors and donors are utilised by microorganisms (such as 

anammox bacteria) for metabolism (Stewart, 2011). 

Estuaries have been shown to be important environments for the removal of nitrogen 

through N2 and N2O (Ogilvie, et al., 1997; Trimmer, et al., 2003; Nicholls and 

Trimmer, 2009) and are a major diffuse and point sources for anthropogenically 
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sourced nitrogen entering the water cycle (Dong, et al., 2009). Estuarine 

environments demonstrate strong gradients of salinity and nutrients (Nogales, et al., 

2002). Such pronounced changes in salinity and salt-water intrusions give estuarine 

environments unique chemical and biological characteristics and thus are often 

ecologically diverse and environmentally important (Manahan, 2005). 

This study aims to elucidate the diversity and distribution of anammox bacteria in 

estuarine and OMZ environments and to begin to investigate the environmental 

factors influencing the biogeography of these organisms as per the hypotheses 

outlined in 1.3.2.1.2. High-throughput sequencing techniques (454 pyrosequencing) 

were used in order to gain an extensive and comprehensive representation of these 

organisms which would be unprecedented in investigations of anammox ecology. 

5.1.5. Measuring Diversity Using Next Generation Sequencing 

The use of 454 pyrosequencing technologies (or indeed any high-throughput 

sequencing technology) presents unique challenges for metagenomic or amplicon 

sequencing applications (also known as massively parallel sequencing) compared 

with whole genome sequencing. In the latter, consensus data is obtained by aligning 

the data with either reference genomes or to itself, and thus the effect of erroneous 

bases or reads is ameliorated with increased coverage (Huse, et al., 2007; Kunin, et 

al., 2010). For example, if the genome coverage after sequencing was 20x, then the 

likelihood of a single base being miscalled 20 times is small and thus, the potential 

of a small number of errors, randomly distributed across the data, to effect the 

overall conclusions or outcome of the data is also small. However, with 

metagenomic or amplicon sequencing to investigate microbial diversity, these errors 

are more important as each individual read can represent a unique gene or taxa. Thus 

it is challenging to determine what constitutes an erroneous base or read and what 

constitutes true sequence diversity (Huse, et al., 2007). Such a problem would be 

particularly debilitating when searching for single nucleotide polymorphisms (SNPs) 

or when investigating organisms that are phylogenetically closely related. 

As such, the pipeline used in this study (chapter 2) is based on a number of 

assumptions as to what would qualify an erroneous read (or a read with significant 

errors in it) which are described in section 5.3 below. This method was chosen, 
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compared with other more widely used methods, e.g. QIIME (Caporaso, et al., 2010) 

or Pyronoise (Quince, et al., 2009), as the limits and effects of each step in this 

pipeline were better understood and it provided the ability to modify the various 

scripts in order to meet the specific requirements of this study. Furthermore, this 

pipeline produced good quality data for downstream analysis (see sections 5.4.2.1 

and 5.4.3.2). Attempts were made in this investigation to validate some of these 

assumptions to ensure that good quality reads were not being removed with those of 

poorer quality. In addition a novel and innovative approach to the use of read lengths 

to determine good quality reads, Read Length Incremental Clustering (ReLIC), was 

developed. The rationale behind this method and the other assumptions used in this 

pipeline are discussed in section 5.3. 

5.2. Methodology 

5.2.1. Sampling Site Locations 

Environmental samples were taken from 2 locations; the Medway Estuary (Kent, 

UK) and the ETNP OMZ. For a full description of sampling locations and strategies 

see chapter 2. All environmental samples were collected in triplicate. 

5.2.2. DNA Extraction 

DNA was extracted from ~0.5 g of wet sediment collected from the Medway Estuary 

using the protocol described in chapter 2 (Purdy, 2005). DNA was PEG precipitated 

as described in chapter 2 in order to remove impurities (Selenska and Klingmuller, 

1991) and stored at -20°C in 50 μl of 10 mM Tris pH 7.5. 

DNA was extracted from filtered samples collected from the ETNP OMZ as outlined 

in chapter 2. The filter was cut in half using a sterile scalpel blade and forceps and 

inserted into a 2 ml screw cap tube with ~0.5 g of sterile glass beads. DNA from 

filters was extracted as described in Purdy (2005) for other types of environmental 

samples. During this protocol the polycarbonate filter was observed to completely 

disintegrate/dissolve allowing for effective lysis of bacterial cells and negating the 

need to scrape off cells from the filter as discussed in other methods for the 

extraction of nucleic acids from aquatic environments. Samples were not PEG 

precipitated as only low quantities of DNA were obtained from these samples and 
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the DNA appeared to be of a suitable purity for downstream analysis and therefore 

this step was not necessary. DNA was re-suspended in 40 μl
*
 of 10 mM Tris pH 7.5 

and stored at -20°C. 

5.2.3. PCR 

PCR was performed on extracted DNA as outlined in chapter 2. DNA was first 

amplified with primers Pla46F & 1390R and product purified via gel extraction (Gel 

Extraction Kit, Qiagen, UK). A second round PCR using primers Amx368F & 

Amx820R was then utilised to specifically target anammox 16S rRNA genes. 

5.2.4. 454 Pyrosequencing 

Selected samples were submitted for pyrosequencing as outlined in chapter 2. PCR 

product obtained from Medway Estuary DNA was sequenced at the Research and 

Testing Laboratory (Lubbock, Texas, USA) and PCR product from ETNP OMZ 

DNA was sequenced by AHVLA (Surrey, UK). All PCR products were submitted in 

triplicate. Raw pyrosequencing data was analysed using the pipeline outlined in 

chapter 2. However, ETNP data were analysed both including and omitting OTUs 

which represented <0.1% of the total number of reads in order to assess the validity 

of the assumption that such OTUs are likely to represent poorer quality sequences or 

true rare taxa which would not affect investigations of relative anammox diversity 

and subsequent conclusions. 

5.2.5. Environmental Data 

Environmental data were obtained for both the Medway Estuary and ETNP OMZ in 

order to compare these data with anammox diversity data and investigate the 

potential factors affecting anammox diversity and distribution in these environments.  

Medway Estuary data were obtained from the Environment Agency, UK. Data were 

available for the twelve years prior to this investigation from which yearly and 

monthly averages (with standard error measurements) were calculated. Twelve year 

averages for the month sampled (i.e. March) were interpolated and extrapolated to 

                                                 
*
 A lesser volume of 10 mM Tris was used to increase the final concentration of DNA in order to aid 

downstream analysis. 
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obtain measurements for the exact sites sampled (Figure 2.2) using Matlab 

v8.1.0.604 (R2013a), The MathWorks Inc. (2013). 

ETNP OMZ data was obtained during NERC research cruise D373 (December 2011-

January 2012). O2 data was acquired using a CTD attached to the Niskin rosette 

which provided continuous data with every drop. Nutrient data was collected using a 

segmented flow auto analyser (Skalar, The Netherlands) from 60 ml of seawater 

collected anaerobically. These data were obtained by the research group of Professor 

Mark Trimmer, Queen Mary’s University, London in conjunction with this study. 

Nitrogen deficits (Ndef) were calculated as outlined in Gruber and Sarmiento (1997) 

from these nutrient data. 

Environmental data were compared with 454 pyrosequencing data using Mantel tests 

and CCA analyses as outlined in chapter 2. Mantel tests were used to plot the effects 

of environmental variables on CCA plots. 

5.3. 454 Pyrosequencing, Quality Control and Rationale 

5.3.1. Overview 

A number of assumptions (Huse, et al., 2007; Kunin, et al., 2010), as to what 

qualifies as erroneous or poor quality read, were used to remove such sequences 

from 454 pyrosequencing data. 

5.3.2. Presence of Primer Sequences 

Initially, the raw data were screened for reads which did not contain the forward or 

reverse primer sequences (Table 2.1). If a particular read did not contain the forward 

primer then it can be assumed that the sequence represents DNA from a source other 

than the pool of anammox 16S rRNA amplicons which were being investigated or 

that there had been significant errors during PCR or sequencing. Similarly, if the 

reverse primer sequence was not present, then this may be indicative that the read 

has been prematurely truncated or fragmented during PCR or sequencing or may 

represent a chimeric sequence (Brakenhoff, et al., 1991; Kopczynski, et al., 1994; 

Huber, et al., 2004). 
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In the data collected during this investigation, the quality of the majority of reads 

(determined via investigation of Q scores and visual comparison) was greater to the 

start of the read (5’ end) than the end (3’ end). This contradicts the findings of Huse, 

et al. (2007), who did not observe any discernible or significant reduction in the 

quality along reads, however, the smaller amplicon length of their study (~200 bp), 

compared with the data presented in this investigation (~450 bp), may have resulted 

in a greater quality throughout the read. As such, a higher number of reads contained 

the forward primer sequence than the reverse primer sequence. It was possible to 

only screen for the forward primer, ignoring either the presence or absence of the 

reverse primer, to increase the number of reads kept after screening. This is not 

desirable as a higher proportion of sequences screened with only the forward primer, 

compared with both primers, contained significant errors, as discovered during 

downstream analysis. However, this may be the only course of action when dealing 

with large amplicons which are close to the current limits of such sequencing 

technologies. Fortunately, in this investigation, the depth of coverage was sufficient 

to be able to be stringent at this initial stage of quality control and still report the 

entire diversity observed in these samples (see Figure 5.3 and Figure 5.15). 

Therefore, reads which did not contain both the forward and reverse primer 

sequences were omitted from further analysis. Specific results as to the number of 

reads in each investigation which did not contain the primer sequence are presented 

in the relevant sections below. 

5.3.3. Ambiguous Bases 

The presence of ambiguous bases (Ns) have also been shown to be indicative of poor 

quality sequence data (Huse, et al., 2007; Kunin, et al., 2010). The data produced 

during this investigation typically had very low numbers of ambiguously called 

bases, with typically only between 0 and 1% of the reads having more than one ‘N’ 

present (see section 5.4). Nevertheless, any read which did contain ambiguous bases 

was omitted from further analysis as this could affect phylogenetic analyses. 

5.3.4. Length Statistics 

The length of individual reads has also been used as an indicator of poor quality 

sequences (Kunin, et al., 2010). Each amplicon will have a particular length and so 
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deviation away from this length would suggest significant insertions or deletions 

(indels), perhaps indicative of poor quality sequence. True indels, i.e. arising from 

true sequence variation, are common in nature (Britten, et al., 2003) though are more 

common in functional, protein coding genes than highly conserved ribosomal genes 

within closely related organisms. Therefore, a large deviation from the expected 

amplicon size when investigating 16S rRNA genes is likely to be due to considerable 

errors. 

However, what constitutes “considerable deviation” is unclear and there has been 

little investigation in the literature to define this. Kunin, et al. (2010) were highly 

specific in how they trimmed read lengths, selecting read lengths which only exactly 

matched the expected amplicon size. Such an approach may be suitable when 

investigating pyrosequencing data from pure cultures, as in Kunin, et al. (2010), but 

is unlikely to be so when investigating complex microbial communities where 

different taxa will have different amplicon lengths. Therefore a range of read lengths 

must be selected which will remove reads of erroneous lengths but not those 

representing true, good quality sequences. However the literature contains no method 

for the designation of suitable length cut-offs and so read lengths are commonly 

chosen arbitrarily. Thus, during this investigation, a novel method, ReLIC, was 

developed in order to attempt to designate such cut-offs statistically. 

Read length distributions were calculated for each dataset using the above data 

analysis pipeline. Distributions calculated from these data typically demonstrated an 

overall bell-shaped distribution which was negatively skewed. This negative skew is 

likely to represent the fact that read length was constrained by a minimum value (i.e. 

0) and maximum value constrained by the current limitations of 454 pyrosequencing 

technologies (maximum read length is around 500-600 nucleotides). The mean read 

length (~460-470 nucleotides typically observed with these data) lies closer to the 

upper than the lower bound, resulting in a negatively skewed distribution. That is to 

say, if the data were not constrained by lower and upper bounds, it was expected that 

the data would be more evenly distributed about the mean with little or no skew. 

Frequently, distributions also demonstrated more than one peak, with a main peak 

approximately centred about the mean value. It was assumed that individual peaks 

represented different taxonomic groups and the distribution about the individual 
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apexes, however confirmation of this hypothesis, would require further investigation 

using datasets with known amounts of different taxa with varying lengths. 

The minimum and maximum read lengths which represented “real” (i.e. not 

erroneous) sequences were investigated during this study. Sequences which had 

passed the quality control criteria discussed in sections 5.3.2 and 5.3.3 were trimmed 

incrementally down from the median value (in these datasets the mean and median 

were almost equal except for that the median represented a discrete value). The data 

were also trimmed independently up from the median value, creating two series of 

sequence files in FASTA format (i.e. one series representing the minimum read 

length up to the median length and the other encompassing read lengths from the 

median to the maximum observed read length). Each increment was then clustered 

independently as discussed in section 2.3.5.2.2. The increase of OTUs and reads 

between adjacent lengths was calculated and investigated. The ratio of the increase 

in OTUs compared with the increase in reads (Rinc) for each length was calculated 

using the equation: 

     
    
     

 

Rinc provided a numerical representation of the relative increase in the number of 

OTUs compared with reads. A low value (approaching 0) would indicate that new 

reads from that increment either clustered into existing clusters or that a large 

number of reads clustered into a new OTU, representing a new taxon, observed at 

that specific length. Values approaching 1 would indicate that the inclusion of a new 

read produced a new OTU, suggesting that this read contained significant errors as 

the sequence failed to align to other sequences within the dataset. Plots of these data 

(see Figure 5.2 and Figure 5.12) indicated that Rinc remained low either side of the 

median length, but appeared to reach a critical length value, increasing rapidly to 1. 

This critical value was deemed as a suitable cut-off where lengths below (or above 

for lengths above the median) this value were likely to represent erroneous sequence 

data. As such, reads outside of these critical length values were omitted from further 

analyses.  

This is unlikely to be the optimum method for removing erroneous read lengths from 

such data and has the potential to still include poor quality data. Due to poor data 
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resolution (i.e. not every potential read length was represented in the data and often a 

specific length had no data available) the determination of an exact critical length 

value was impossible. Furthermore, a clear shift in Rinc from ~0 to 1 was not always 

observed, especially for lengths greater than the median (see Figure 5.2 and Figure 

5.12). Negative values were also encountered, where an increase in the number of 

reads reduced the number of OTUs (due to the clustering algorithm used, see below) 

which also made the determination of a cut-off length value difficult. As such, poor 

quality reads, potentially producing misleading or erroneous results may still be 

included in these data. Regardless of the potential inclusion of poorer quality reads, 

RLIC remains to be a preferable method than choosing minimum and maximum read 

length values arbitrarily. Investigations into more accurate methods of defining 

maximum and minimum length cut-off values to develop the approach highlighted 

above, including the modelling of length distributions to determine critical values, 

are required; however time constraints prevented their inclusion in this thesis. 

5.3.5. Defining OTUs and Clustering 

454 pyrosequencing reads which had passed the above quality controls were 

clustered into OTUs as outlined in section 2.3.5.2.2. OTUs were defined at a 

similarity cut-off of 95%. In the literature 97% is often used as an indicator of 

species level diversity in 16S rRNA genes (Quince, et al., 2008), however, this value 

is often misquoted from Stackebrandt and Goebel (1994). Regardless, a universal 

cut-off of 97% does not represent the diversity of bacterial genetic variation even if 

the concept of a bacterial species was well constrained. Furthermore, anammox 

organisms do not conform to such a strict diversity cut-off as the observed sequence 

variation is not consistent between different groups of anammox organisms (Jetten, 

et al., 2009). Therefore, a cut-off distinguishing between Ca. Brocadia spp. may not 

necessarily be transferrable when investigating diversity within the genus Ca. 

Scalindua and therefore is not universally applicable to the anammox clade. 

Furthermore, to my knowledge, the literature does not contain any similar study on 

anammox diversity using next generation sequencing technologies. Thus, no 

similarity cut-off value was satisfactorily defined in the literature to determine 

individual OTUs from anammox 16S rRNA sequence data. As such, a cut-off value 

of 95% was chosen for this study as greater, similarity cut-off values tended to give 
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large numbers of OTUs which proved difficult to analyse whereas lower cut-off 

values did not appear to accurately portray anammox inter-genera diversity. A cut-

off of 95% was also chosen as it consistently appeared to represent the entire 

anammox diversity of the sample through rarefaction analyses (Figure 3.3, Figure 

3.7, Figure 5.3 and Figure 5.15). 

Failure to absolutely and consistently define a “species” (or even higher taxonomic 

groups) in these data was not seen as an issue for analysis. This would only be an 

issue when defining absolute diversity, which is not possible in microbial ecology 

due to the vast numbers of organisms involved (each member of a community would 

have to be individual characterised and measured). As such it is only possible to 

measure relative diversity, for which, as long as the criterion which are used to 

define OTUs remain consistent throughout analysis, the specific cut-off used is 

irrelevant (providing that the entire diversity of the sample is represented). 

Low abundance OTUs (i.e. those containing small numbers of reads) were generally 

omitted from analysis
*
 of the diversity of anammox organisms as these were deemed 

to have a high potential for containing poor quality reads. Potentially, some of these 

low abundance clusters may have represented true, rare taxa which may be 

ecologically significant (Sogin, et al., 2006; Huse, et al., 2010; Kunin, et al., 2010). 

However, the aims of this investigation (section 1.3) were to investigate the diversity 

and distribution of anammox organisms across environmental gradients. To achieve 

these aims the relative diversity of samples was measured as a representation of the 

true microbial diversity and so, the omission of rare taxa is not an issue as long as 

this was universally implemented across samples. The investigation of rare taxa is in 

itself a major problem for microbial ecology but was not necessary to achieve the 

aims of this study. 

                                                 
*
 These clusters were included in the analysis of ETNP data in order to test the validity of this 

assumption (see section 5.4.3.3). 
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5.4. Results 

5.4.1. 454 Pyrosequencing Errors and Reproducibility 

5.4.1.1. Positive Controls 

DNA from a cloned 16S rRNA gene fragment, positively identified as belonging to a 

Ca. Brocadia sp., and technical replicates from ETNP sample S2-100m 2 were 

sequenced in triplicate using 454 pyrosequencing in order to ascertain the error 

associated with these sequencing runs. It must be noted however that the error rates 

in 454 pyrosequencing are likely to be variable and associated with individual reads 

and genes.  

After quality control a total of 12,306 reads remained out of 14,771, with 5,041 reads 

from replicate 1, 4,077 reads from replicate 2 and 3,189 reads from replicate 3. 

Reads were clustered at similarity cut-off values of 97%, 95% and 93%. All three 

cut-off values produced identical results with all but one read (i.e. a singleton 

cluster) being assigned to the same OTU. BLAST analysis of representative 

sequences from this cluster showed that this cluster showed a 95-96% sequence 

similarity with other Ca. Brocadia spp. 16S rRNA gene sequences. As such, the 454 

pyrosequencing technologies used in this project appeared to demonstrate a high 

degree of accuracy. 

5.4.1.2. Technical Replication 

Technical replicates to analyse the precision of 454 pyrosequencing were acquired 

by sequencing a single PCR product from an environmental sample (S2-100m 2) in 

triplicate. Sequencing produced 9,221 reads of which 8,081 survived quality control 

(replicate 1=2,877, replicate 2=2,872 and replicate 3=2,332 reads). Reads were 

clustered at a similarity cut-off value of 95% resulting in 8 OTUs. Mean read 

abundances (expressed as percentages) were calculated for each OTU with standard 

errors. Mean read abundance data can be seen in Figure 5.1. These data showed a 

high degree of precision (SE <0.23%) associated with the 454 pyrosequencing 

technologies used in this project with low standard errors associated with each OTU 

indicating a low degree of variance about the mean value. 
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Figure 5.1: Histogram showing the mean percentage of reads from 454 pyrosequencing technical replicates.  

Technical replicates were obtained from sample S2-100 m. Clusters were defined at a similarity cut-off of 95%. 

Error bars represent ± 1 S.E. 

5.4.2. Medway Diversity 

5.4.2.1. Quality Control 

A total of 179,439 reads were obtained from Medway Estuary 454 pyrosequencing 

data for the seven sites M1-M7 (including biological triplicates). Of these 84,379 

contained both the forward and reverse anammox specific 16S rRNA primer 

sequences (i.e. Amx368F & Amx820R) with which PCR had been conducted. 
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Figure 5.2: Rinc values for all 454 pyrosequencing data from Medway estuary sites 1-7.  Only read lengths 

which were represented in the data are shown. Red hashed lines indicate chosen minimum and maximum cut-off 

values from which reads between these two values were used for downstream analysis. 

The length distribution of these reads ranged from 334 to 515 reads with the median 

value at 476 bases. No ambiguous bases (Ns) were observed in any of the 84 k reads. 

ReLIC analysis and calculation of Rinc was carried out as described in section 5.3, the 

results of which can be seen in Figure 5.2. This analysis typically demonstrated a 

clear division between low (~0) and high (~1) Rinc values towards lower read lengths 

but this division was not as clear or definitive towards higher read lengths (see 

section 5.3 for full discussion). However, an approximate upper-bound cut-off value 

was estimated. As such reads were trimmed between lengths of 460 bases and 492 

bases and only reads between these two cut-offs were included in further analysis. 

This produced 83,999 reads for downstream processing. 
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5.4.2.2. Clustering and Phylogenetic Analysis 

 

Figure 5.3: Rarefaction curves from Medway Estuary 454 data.  Rarefaction curves are shown for a) all 

OTUs (n=294 OTUs) and b) only OTUs which represented >0.1% of the total number of reads (n=49 OTUs). 

Including all OTUs, most samples contained <50 OTUs except sample M6-B (n=78) and M7-A (n=126), 

potentially highlighting a large number of poor quality reads and OTUs in these samples. Rarefaction curves for 

each sample were shown to plateau, indicating that the sampling depth was sufficient to report the entire 

anammox diversity in these samples, as expressed by the specificity of these primers. Rarefaction curves drawn 

only from clusters which represented greater than 0.1% of the total number of reads (b) were also shown to 

plateau indicating that by omitting these clusters, relative measurements of anammox diversity were unlikely to 

be affected and conclusions drawn from both datasets would be comparable. 

Reads which had passed quality control (n=83,999) were clustered as outlined in 

section 5.2.4 at a similarity cut-off of 9%. This produced 294 OTUs of which 245 

represented less than 0.1% of the total number of reads and 48 of these were 

singleton clusters. These reads/clusters were omitted resulting in a total of 49 OTUs 

for further analysis representing 97.47% of the total number of reads (83,999) which 

had passed quality control. Rarefaction analysis of these data (Figure 5.3) indicates 

that in all samples, rarefaction curves were plateauing indicating that the entire 

anammox diversity, as represented by the specific primers used (i.e. Amx368F & 

Amx820R) had been reported and as such, the sequencing depth used had been 

suitable. Rarefaction curves were also plateauing when performing rarefaction 

analysis on only OTUs which represented greater than 0.1% of the total number of 

reads (Figure 5.3b), indicating that by omitting these OTUs, subsequent 

measurements of relative anammox diversity would not be significantly affected. 
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Figure 5.4: Phylogenetic tree of OTUs from Medway Estuary.  Blue text indicates taxonomic classifications 

designated to OTUs. OTUs were defined at a similarity cut-off of 95%. A total of 294 OTUs were defined at this 

cut-off from 84,379 reads. Only OTUs which represented greater than 0.1% of the total number of reads are 

included in this tree (n=49 OTUs). Reference sequences were obtained from NCBI and include accession 

numbers. Sequences were aligned using MUSCLE (Edgar, 2004) and phylogeny inferred using a neighbour-

joining methodology with a bootstrap test involving 1000 replications using MEGA 5 (Tamura, et al., 2011). 

Branch lengths with bootstrap values greater than 50% are labelled. 

Reference sequences for each OTU were aligned with anammox 16S rRNA 

sequences from NCBI as outlined in section 5.2. A neighbour-joining phylogenetic 

tree built from this alignment can be observed in Figure 5.4. OTUs were show to 

cluster with sequences from all the known anammox genera except Ca. 

Anammoxoglobus. A total of ten groups containing Medway OTUs were defined 

(Figure 5.4). In addition two, anammox related clades (‘Anammox related A’ and 

‘Anammox related B’) were also observed though one of these clusters comprised of 

largely unsupported branch nodes. A further clade was also observed which appeared 

to cluster outside of the recognised Brocadiales clade and was therefore designated 

as ‘Potentially non-anammox’ OTUs. Table 5.1 indicates taxonomic identities 

assigned to each OTU obtained from these data. 
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Table 5.1: Table of assigned taxonomic groups to Medway clusters.  Clusters defined at 95% similarity. Only 

OTUs representing > 0.1% of the total number of reads (84,379 reads) are included in this table. 

5.4.2.3. Richness 

Table 5.2 shows the richness (defined here as the number of different OTUs obtained 

after clustering at 95% similarity) of samples M1-M7
*
 along the Medway Estuary. 

The total richness appeared to be lower at either end of the sampled range of the 

estuary i.e. towards the freshwater end (M1) and the marine end (M7); 20 different 

OTUs were observed at M1 and 21 at M7. Sites M2-M6 demonstrated a higher 

degree of richness ranging from 31 to 34 OTUs. The number of non-Scalindua OTUs 

decreased from M1/M2 (8/9 OTUs) to M7 (2 OTUs) whereas the number of OTUs 

related to Ca. Scalindua demonstrated the opposite trend, increasing from 9 OTUs at 

M1 to 18 different Scalindua OTUs at M6. M7 however contained fewer Ca. 

                                                 
*
 For a list of sampling locations and names please refer to chapter 2. Henceforth samples will be 

referred to by their sample codes M1-M7 which are in order of geographical distance from Allington 

Lock (M1) the most freshwater site sampled. 

Cluster Taxonomic Group 
 

Cluster Taxonomic Group 

Cluster 0 Other Scalindua 
 

Cluster 43 Anammox related A 

Cluster 1 Ca. Brocadia B 

 
Cluster 44 Ca. Kuenenia 

Cluster 2 Ca. Brocadia B 
 

Cluster 50 Pot. Non-anammox 

Cluster 3 Ca. Brocadia A 

 
Cluster 52 Other Scalindua 

Cluster 5 Anammox related A 
 

Cluster 56 Pot. Non-anammox 

Cluster 6 Other Scalindua 
 

Cluster 57 Anammox related A 

Cluster 7 Anammox related B 
 

Cluster 58 Other Scalindua 

Cluster 8 Ca. Scalindua wagneri 

 
Cluster 60 Anammox related A 

Cluster 9 Pot. Non-anammox 
 

Cluster 83 Scalindua related 

Cluster 10 Other Scalindua 
 

Cluster 85 Ca. Jettenia 

Cluster 12 Ca. Brocadia A 
 

Cluster 86 Ca. Brocadia B 

Cluster 14 Anammox related B 
 

Cluster 90 Pot. Non-anammox 

Cluster 15 Ca. Scalindua wagneri 
 

Cluster 97 Other Scalindua 

Cluster 16 Pot. Non-anammox 
 

Cluster 101 Anammox related A 

Cluster 17 Scalindua related 
 

Cluster 102 Ca. Scalindua wagneri 

Cluster 18 Scalindua related 
 

Cluster 106 Pot. Non-anammox 

Cluster 19 Other Scalindua 
 

Cluster 114 Ca. Brocadia B 

Cluster 20 Ca. Scalindua wagneri 

 
Cluster 116 Ca. Brocadia B 

Cluster 22 Pot. Non-anammox 
 

Cluster 124 Pot. Non-anammox 

Cluster 23 Pot. Non-anammox 
 

Cluster 129 Ca. Scalindua wagneri 

Cluster 24 Other Scalindua 
 

Cluster 138 Anammox related A 

Cluster 25 Ca. Brocadia A 

 
Cluster 149 Ca. Scalindua wagneri 

Cluster 28 Other Scalindua 
 

Cluster 152 Anammox related B 

Cluster 33 Other Scalindua 
 

Cluster 217 Anammox related B 

Cluster 36 Other Scalindua 
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Scalindua OTUs (8 OTUs) than M6. OTUs related to ‘Potentially non-anammox’ 

and ‘Anammox related B’ clusters were only observed in samples M6 and M7. 

OTUs representing the ‘Anammox related A’ cluster were observed ubiquitously in 

all samples though demonstrated a higher richness towards the middle of the 

sampling range (M2-M5). 

 

Table 5.2: Table showing sample richness from Medway Estuary sites per taxanomic group.  Table shows 

the number of OTUs (95% similarity) in each sample (richness). Richness is calculated from the OTU 

abundances from triplicate samples and OTUs were counted even if they only appeared once across the three 

triplicates. 

5.4.2.4. Diversity and Distribution 

Figure 5.5 shows mean frequency distributions and standard errors for each OTU. Of 

the 10 non-Scalindua OTUs, only 5 (Clusters 3, 12, 1, 2 and 86) appeared to be 

important in reporting anammox diversity in these samples as the other 5 OTUs 

represented less than 1% of the reads in each samples (Figure 5.5a). Data from sites 

M6 and M7 contained only a small number of reads from these OTUs. Of the 5 

OTUs representing greater than 1% of the total number of reads from each site, only 

Clusters 3 and 12 appeared to show any substantial difference between different sites. 

Both Clusters 3 and 12 had a higher proportion of reads assigned to them in M1 and 

M2 compared with M3-M7. However, in Cluster 3 the error bars for M2 and M4 are 

seen to overlap. A decreasing trend in the number of reads assigned to Clusters 1, 2 

and 86 may be observed between M1 and M7 though this is not significant as 

determined by overlapping standard error bars (although no reads from M6 and M7 

were associated with these clusters). 

Taxa M1 M2 M3 M4 M5 M6 M7 

Ca. Brocadia A 3 3 3 3 3 3 2 

Ca. Brocadia B 5 5 5 4 3 1 0 

Ca. Jettenia 1 1 1 1 0 0 0 

Ca. Kuenenia 0 1 0 0 1 0 0 

Ca. Scalindua wagneri 4 5 5 6 6 5 4 

Other Scalindua 3 9 11 10 11 11 4 

Scalindua related 2 2 3 3 3 2 0 

Amx related A 2 5 6 6 5 3 2 

Amx related B 0 0 0 0 0 4 4 

Pot. Non-anammox 0 0 0 0 0 4 5 

Total 20 31 34 33 32 33 21 
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Figure 5.5: Mean frequency distributions of Medway Estuary clusters.  Frequencies are represented as the 

mean percentage of reads assigned to each cluster per sample for a) non-Scalindua anammox OTUs, b) Scalindua 

OTUs, c) anammox related OTUs and d) potentially non-anammox OTUs. All samples were sequenced in 

triplicate. Error bars represent ± 1 S.E. Only clusters representing >0.01% of the total number of reads (84,379) 

are included in these figures. 

The frequency of OTUs associated with Scalindua organisms (Figure 5.5b) appeared 

to be more evenly distributed although most Scalindua related reads (48.42%) 

appeared to cluster within one OTU (Cluster 6). Despite large standard error bars, 

Cluster 6 appeared to show a difference between sites to the extremes of the 

sampling range (M1, M2 and M7) and sites M3-M6, with these middle sites 

exhibiting a greater number of reads associated with this OTU. Cluster 17 also 

appears to show higher read frequencies between sites M2 and M5. However, most 

OTUs appeared to show a trend in increasing frequencies towards the marine end of 

the estuary (i.e. towards M7) though only in clusters 58, 8, 102 and 149 were 

standard error bars (±1 SE) not seen to overlap. 

Anammox related OTUs (Figure 5.5c) generally exhibited a low read abundance 

although clusters 43 and 101 represented up to ~2.5% of the total number of reads in 

some sites and appear to demonstrate an increase trend from M2 to M6. Cluster 14 

contained the largest proportion of reads of the ‘Anammox related’ OTUs however 

reads were only assigned to this OTU from 1 M6 triplicate sample and 2 M7 

triplicate samples resulting in large error bars. 

Reads assigned to ‘Potentially non-anammox OTUs’ (Figure 5.5d) were only 

observed at sites M6 and M7. However, as is evident from Figure 5.5d, all of these 

OTUs are associated with large standard errors as these reads were not found in all 

of the triplicate samples from these sites. 

Figure 5.6 shows the mean percentage of reads attributed to each taxonomic 

grouping as defined from Figure 5.4. The percentage of reads associated with non-

Scalindua anammox organisms is greater upstream of the estuary and represent 

greater than 90% of the reads in sites M1 and M2. Non-Scalindua anammox reads 

are dominated by Ca. Brocadia spp. with only a few reads associated with Ca. 

Jettenia and Ca. Kuenenia spp. However, downstream sites (M5 and M6) are 

dominated by Ca. Scalindua spp. with ~80% of reads in M5 and ~60% in M6 
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identified as belonging to this clade. Sites M3 and M4 exhibit more equal 

proportions of non-Scalindua and Scalindua related reads. Data from M7 comprised 

of a large number of ‘Anammox related’ and ‘Potentially non-anammox’ reads. 

‘Anammox related’ reads were observed within data from all sites though were more 

abundant downstream, particularly in M6 and M7. 

 

Figure 5.6: Mean Medway Estuary read abundance per sample, expressed as a percentage.  Mean values 

for each OTU were calculated from triplicate samples. The mean abundance of OTUs which had been assigned to 

specific taxonomic groups (see Figure 5.4) were combined as mean values and are presented in these figures. The 

black, dotted line shows the salinity (ppt) at each site which is extrapolated from twelve year average data 

(Environment Agency, UK) for the sampling month (March). Upstream sites M1 and M2 are dominated by non-

Scalindua anammox genera whereas downstream sites have a greater proportion of OTUs associated with Ca. 

Scalindua spp. 

Medway 454 pyrosequencing data were analysed in conjunction with Environment 

Agency data (see section 5.2.5) in order to attempt to elucidate the observed trends in 

terms of their environmental significance. An unconstrained CCA plot for these data 

can be seen in Figure 5.7. The majority of the diversity is represented along the x-

axis (CA1) indicating a clear trend between upstream and downstream sites. There is 

also considerable diversity as represented by the y-axis (CA2) showing a trend in 

diversity between mid-estuary sites (M3, M4, M5) and sites towards either end of the 

sampling range associated with an increase in diversity towards the middle of the 
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estuary (see above and  Table 5.2 and Figure 5.6). The trend in diversity between M1 

and M7 was positively correlated with increasing salinity and conductivity (which is 

related to salinity) downstream and with increased DIN (NO2
-
 + NO3

-
 + NH4

+
) and 

PO4
3-

 upstream
*
. These environmental factors appeared to be the strongest drivers of 

anammox diversity as expressed by these data. The trend towards greater diversity 

and richness towards the middle of the samples range (as expressed by the y-axis) 

may be correlated negatively with temperature, BOD, dissolved O2 and pH though if 

this were true, the observed correlation was weak. 

 

Figure 5.7: Unconstrained CCA plot for Medway Estuary 454 pyrosequencing data with environmental 

variables.  CCA was constructed using all OTUs which represented greater than 0.1% of the total number of 

reads. A clear trend between sites upstream and downstream can be seen represented by CA1 (x axis). A trend 

also appears to be present between sites at the extremities of the estuary and sites towards the middle as 

represented by CA2 (y axis). 

                                                 
*
 Naturally a positive correlation with increasing salinity downstream corresponds to a negative 

correlation with salinity upstream. 
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5.4.3. ETNP Diversity 

5.4.3.1. ETNP Characterisation 

Profile data was collected at each of the six sites during sampling of the ETNP OMZ. 

Sites drew a longitudinal gradient between the latitudes ~8°N and 13°N (see Figure 

2.3). Mean O2 concentrations across this gradient can be seen in Figure 5.8. The 

ETNP OMZ in this region was characterised by a shallow OMZ and a steep oxycline 

from the surface to approximately 50 m. The core of the OMZ (where concentrations 

remained ~0 μmol/kg) extended from approximately 300 m and 800 m. The top of 

the OMZ sporadically had horizons of slightly higher concentrations of O2 up to ~10 

μmol/kg. Below the core of the OMZ, a gradual oxycline was observed down to a 

depth of approximately 2,200 m where O2 concentrations reached and maintained 

~108 μmol/kg. The OMZ appeared to be slightly thicker to the north with the core 

extending to about a depth of 1000 m. This may be due to greater upwelling of 

nutrients at the coastal margin. 

 

Figure 5.8: O2 depth profile of ETNP OMZ.  Plot calculated using mean O2 (μmol/kg) data from every CTD at 

each station. The OMZ was characterised by a steep oxycline with the upper limit at about 50 m. The core of the 

OMZ is situated from approximately 300 m to 700 m. Sampling sites investigated in this study (i.e. 2, 4 and 5) 

are indicated by diamonds (site 2), circles (site 4) and crosses (site 5). 
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Figure 5.9: ETNP Profile data for Site 2.  Profiles show data for a) NO2-, b) NO3-, c) NH4+, d) Nitrogen 

deficit and e) PO43-. Data for each graph is plotted in red and are plotted against O2 concentrations (blue). 
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Figure 5.10: ETNP Profile data for Site 4.  Profiles show data for a) NO2-, b) NO3-, c) NH4+, d) Nitrogen 

deficit and e) PO43-. Data for each graph is plotted in red and are plotted against O2 concentrations (blue). 
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Figure 5.11: ETNP Profile data for Site 5.  Profiles show data for a) NO2-, b) NO3-, c) NH4+, d) Nitrogen 

deficit and e) PO43-. Data for each graph is plotted in red and are plotted against O2 concentrations (blue). 

Depth profiles for sites 2, 4 and 5 can be seen in Figure 5.9, Figure 5.10 and Figure 

5.11. These data describe a reasonably constant nutrient profile throughout the OMZ. 
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difficulties were reported to have been experienced on the cruise when making these 

measurements and hence these data may be prone to errors (personal 

communication). 

5.4.3.2. Quality Control 

454 pyrosequencing of anammox 16S rRNA PCR products obtained from triplicate
*
 

samples from sites 2, 4 and 5 produced a total of 264,050 reads. Of these reads, 

225,602 contained both the forward and reverse primer sequences.  

Length distribution analyses of these data indicated that the minimum read length 

was 46 nucleotides, the maximum was 557 nucleotides and the median was 477. 

2,868 reads contained more than one ambiguous base (Ns). However the distribution 

of lengths (data not shown) was not entirely centred about the median (although this 

was the largest peak in length frequencies) and a secondary peak was observed 

centred around length 506 nucleotides (maximum peak height was 895 reads). 

 

Figure 5.12: Rinc values for all 454 pyrosequencing data from ETNP sites 2, 4 and 5.  Only read lengths 

which were represented in the data are shown. Red hashed lines indicate chosen minimum and maximum cut-off 

values from which reads between these two values were used for downstream analysis. 

                                                 
*
 N.B. Only two replicates were available for S2 100m as one triplicate was lost between sampling 

and DNA extraction 
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ReLIC and calculation of Rinc values (Figure 5.12) indicated a clear division between 

low and high Rinc values towards lower read lengths, suggesting that a minimum 

length cut-off of 460 nucleotides would omit poor quality reads whilst including 

good quality sequences and not removing true low abundance clusters. However, as 

previously found with this type of analysis, the upper boundary did not show such a 

clear definition and made the selection of a maximum length cut-off more difficult. 

Rinc values did however appear to increase significantly after a length of 512 and so 

this was chosen as the upper boundary. Trimming of read lengths lower than 460 

bases and greater than 512 bases resulted in a total of 222,565 reads, with no 

ambiguous bases, for downstream processing. 

5.4.3.3. Phylogenetic Analysis 

Clustering of reads which passed quality control, using a similarity cut-off of 95% to 

define clusters, produced 44 potential OTUs, 8 of which were singleton clusters and 

25 contained less than 0.1% of the total reads. Initially, these 33 clusters were 

included in phylogenetic analyses as, the low number of potential OTUs created (i.e. 

44) meant that this was a manageable number of OTUs to process (c.f. 294 OTUs 

obtained from similar Medway analysis, see section 5.4.2.1)
*
. It was also decided to 

include such clusters in phylogenetic analysis to assess the validity of the assumption 

that low abundance clusters had a greater likelihood of representing erroneous and 

poor quality sequences. 

  

                                                 
*
 N.B. As stated previously, the logic behind omitting these low abundance clusters from analysis was 

to remove clusters which were highly likely to be as a result of poor quality sequencing, in the 

knowledge that true, rare taxa would likely be omitted. The omission of such ‘good’ OTUs was 

deemed unimportant as the aims of these investigations was to measure relative anammox diversity 

and therefore, providing such omissions were made consistently, this would have little, if any, effect 

on the overall conclusions due to the perceived low ecological significance of these clusters. 
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Figure 5.13: Phylogenetic tree of OTUs from ETNP.  Blue text indicates taxonomic classifications designated 

to OTUs. Red text indicates OTUs which represent <0.1% of the total number of reads which passed quality 

control (222,565). OTUs were defined at a similarity cut-off of 95%. Reference sequences were obtained from 

NCBI and include accession numbers. Sequences were aligned using MUSCLE (Edgar, 2004) and phylogeny 

inferred using a neighbour-joining methodology with a bootstrap test involving 1000 replications using MEGA 5 

(Tamura, et al., 2011). Branch lengths with bootstrap values greater than 50% are labelled. 
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Figure 5.14: Phylogenetic tree of OTUs from ETNP omitting low abundance OTUs.  Tree is identical to that 

shown in Figure 5.13 except that OTUs representing <0.1% of the total number of reads (highlighted in red in 

Figure 5.13) had been omitted from phylogenetic analysis. The phylogeny expressed by this tree is congruent 

with that in Figure 5.13 and so the addition of these low abundance OTUs would not affect taxonomic 

classification and further analysis. 
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Table 5.3: Table of assigned taxonomic groups to ETNP clusters.  Clusters defined at 95% similarity. The 

left-hand table (blue) contains clusters which represent >0.1% of the total number of reads after quality control 

(222,565). The right-hand table (red) represent clusters which represent <0.1% of the total number of reads and 

therefore reads assigned to these clusters may have a number of errors. 

A neighbour-joining phylogenetic tree of ETNP OTUs, including OTUs representing 

<0.1% of the total number of reads, from sites 2, 4 and 5 is presented in Figure 5.13. 

A phylogenetic tree was also conducted omitting these low abundance OTUs (Figure 

5.14) to ensure that the inclusion of low abundance OTUs did not affect the overall 

phylogenetic consensus and taxonomic inference. Comparison of Figure 5.13 and 

Figure 5.14 clearly demonstrates that the same phylogeny was encountered with and 

without the inclusion of the 33 low abundance OTUs and that all of the 11 larger 

OTUs maintained the same taxonomies in both trees. Therefore the inclusion of low 

abundance OTUs did not affect the inference of taxonomic identities and could be 

included in the analysis without affecting the results. 

> 0.1 % of Reads 
 

<0.1 % of Reads 

Cluster  Taxonomic group 
 

Cluster  Taxonomic group 

Cluster 1 Scalindua Group B 
 

Cluster 0 Scalindua Group A  

Cluster 3 Scalindua Group A  
 

Cluster 2 Scalindua Group A  

Cluster 4 Scalindua Group B 
 

Cluster 6 Scalindua Group A  

Cluster 5 Scalindua Group A  
 

Cluster 7 Scalindua Group A  

Cluster 8 Scalindua Group B 
 

Cluster 9 Anammox related 

Cluster 10 Scalindua Group A  
 

Cluster 12 Scalindua Group B 

Cluster 11 Scalindua Group A  
 

Cluster 16 Ca. Brocadia sp. 

Cluster 13 Ca. Kuenenia sp. 
 

Cluster 17 Scalindua Group A  

Cluster 14 Scalindua Group A  
 

Cluster 18 Ca. Jettenia sp. 

Cluster 15 Scalindua Group B 
 

Cluster 19 Scalindua Group A  

Cluster 20 Scalindua Group B 
 

Cluster 22 Scalindua Group A  

Cluster 21 Scalindua Group A  
 

Cluster 23 Ca. Jettenia sp. 

Cluster 24 Scalindua Group B 
 

Cluster 31 Scalindua Group A  

Cluster 25 Scalindua Group A  
 

Cluster 32 Scalindua Group A  

Cluster 26 Scalindua Group A  
 

Cluster 33 Anammox related 

Cluster 27 Ca. Jettenia sp. 
 

Cluster 34 Pot. non-anammox 

Cluster 28 Scalindua Group B 
 

Cluster 35 Ca. Jettenia sp. 

Cluster 29 Scalindua Group B 
 

Cluster 36 Ca. Brocadia sp. 

Cluster 30 Scalindua Group A  
 

Cluster 37 Scalindua Group A  

   
Cluster 38 Pot. Non-anammox 

   
Cluster 39 Scalindua Group A  

   
Cluster 40 Pot. non-anammox 

   
Cluster 41 Pot. non-anammox 

   
Cluster 42 Scalindua Group A  

   
Cluster 43 Scalindua Group A  
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OTUs were designated into taxonomic groups based on this phylogeny the results of 

which are depicted in Table 5.3. The majority of OTUs (n=30 OTUs) were 

associated with Ca. Scalindua spp. and clustered within two distinct groups 

designated ‘Scalindua Group A’ and ‘Scalindua Group B’. ‘Scalindua Group A’ 

however did not contain any reference anammox 16S rRNA sequences and was 

comprised entirely of OTUs defined from these ETNP data. ‘Scalindua Group B’ 

was comprised of reference sequences from Ca. S. brodae, Ca. S. marina and Ca. S. 

sorokinii. No OTUs gleaned from ETNP sequence data were similar to Ca. S. 

wagneri 16S rRNA genes. The proportion of OTUs which represented less than 

0.1% of the total number of reads was greater in ‘Scalindua Group A’ (13/22) than 

‘Scalindua Group B’ (1/9). 

7 OTUs were associated with non-Scalindua anammox organisms, Ca. Brocadia spp., 

Ca. Kuenenia spp. and Ca. Jettenia spp. No OTUs appeared to be related to the Ca. 

Anammoxoglobus genera. Of these non-Scalindua anammox OTUs, only 2 

represented greater than 0.1% of the total number of reads in this dataset, Cluster 27 

(Ca. Jettenia sp.) and Cluster 13 (Ca. Kuenenia sp.). 

2 OTUs clustered outside of both the Ca. Scalindua and non-Scalindua anammox 

clades and were designated as ‘Anammox related’ OTUs, though both represented 

less than 0.1% of the total number of reads. 4 OTUs were seen to cluster outside of 

the known anammox diversity however all of these ‘Potentially non-anammox’ 

OTUs also represented less than 0.1% of the total number of reads, 3 of which were 

singleton clusters. 

Rarefaction analysis on these data indicate that in the majority of samples, 

rarefaction curves (Figure 5.15) are plateauing suggesting that these data represent 

the entire diversity in these samples as described by these particular primers and 

hence and conclusions drawn from further measurements of relative anammox 

diversity are likely to be a fair representation of the true anammox diversity. 

However, some rarefaction curves are not seen to completely plateau, although they 

were beginning to do so suggesting that if taxa had been omitted from these samples, 

they are unlikely to affect measurements of relative anammox diversity greatly. 
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Figure 5.15: Rarefaction curves for all OTUs obtained from ETNP 454 pyrosequencing data.  Rarefaction 

curves are shown for a) Site 2, b) Site 4 and c) Site 5. Rarefaction curves for most samples are shown to plateau 

suggesting that the entire anammox diversity at these sites is represented in these data (at least that is represented 

by the primers used). However, rarefaction analysis of some samples (e.g. S5-719m1) were not seen to 

completely plateau although they were beginning to do so. This might suggest that the sampling depth of these 

samples might not be sufficient to report the entire anammox diversity. However the low resolution of these 

rarefaction curves (i.e. < 20 OTUs) may prevent these curves to clearly plateau. 
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Table 5.4: Table showing sample richness from sites 2, 4 and 5 per taxanomic group.  Table shows the number of OTUs (95% similarity) in each sample (richness). Richness is calculated 

from the OTU abundances from triplicate samples and OTUs were counted even if they only appeared once across the three triplicates. At all sites, richness was greater at approximately 200-

250 m. 

 

Taxa 
 

Site 2 

 
Site 4 

 
Site 5 

 

100 m 200 m 540 m 750 m 
 

50 m 60 m 250 m 436 m 700 m 860 m 
 

40 m 67 m 200 m 450 m 600 m 719 m 

Ca. Brocadia sp. 
 

0 0 0 0 
 

0 0 0 0 0 0 
 

2 1 0 1 0 0 

Ca. Jettenia sp. 
 

2 4 1 1 
 

1 0 1 1 0 2 
 

1 0 2 0 0 3 

Ca. Kuenenia sp. 
 

0 0 1 0 
 

1 0 0 0 0 0 
 

1 0 0 1 1 1 

Scalindua Group A  
 

13 16 12 14 
 

10 6 15 12 13 14 
 

13 8 15 14 12 11 

Scalindua Group B 
 

8 8 7 6 
 

8 9 8 6 6 7 
 

8 8 8 6 3 7 

Anammox related 
 

1 2 1 0 
 

0 0 0 1 0 0 
 

0 0 1 0 1 2 

Pot. non-anammox 
 

0 2 0 0 
 

0 0 1 0 1 0 
 

0 0 1 0 1 0 

Total 
 

24 32 22 21 
 

20 15 25 20 20 23 
 

25 17 27 22 18 24 
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5.4.3.4. Richness 

The richness of each sample, defined as the number of OTUs in each sample, is 

shown in Table 5.4. The majority of OTUs in every sample are associated with Ca. 

Scalindua organisms. In all 3 sites the greatest richness was observed at around 200 

m corresponding to the upper core of the OMZ. The deeper core of the OMZ 

typically had a lower richness. Site 4 and 5 appear to show that the richness of these 

sites increases again towards the bottom of the OMZ and start of the bottom oxycline. 

This trend is not seen in samples from site 2 however this may be because the 

bottom oxycline was not sampled at this site (see Figure 5.8). At both sites 4 and 5 

the lower half of the upper oxycline (S4-60 m and S5-67 m) appeared to show a 

marked drop in richness from the top half of the oxycline. Again, this portion of the 

oxygen profile had not been sampled at site 2. 

5.4.3.5. Diversity and Distribution 

Frequency distributions for each OTU, which represented greater than 0.1% of the 

total number of reads, are depicted in Figure 5.16. Individual OTUs appear to group 

into three approximate classifications; OTUs which are ubiquitous and evenly 

distributed at all depths, OTUs which are more abundant towards the top of the OMZ 

and OTUs which have a greater abundance with depth. The majority of the 19 OTUs 

presented in Figure 5.16 are of a relatively low abundance, typically comprising of 

less than 1-2% of the total number of reads in each sample. 

Clusters 4, 8, 20, 24 and 28 appeared to be more abundant in the upper oxycline and 

upper core of the OMZ at all 3 sampling sites. Other OTUs appear to show a similar 

trend but were not observed at all sites. Cluster 21 was significantly more abundant 

in the upper core of the OMZ than at depth but was only observed at site 2 (Figure 

5.16a). Cluster 27 also demonstrated this trend but was only present in very low 

abundances at site 4 (Figure 5.16b) and site 5 (Figure 5.16c). Cluster 27 did however 

demonstrate a large frequency of reads at S5-719 m where it contributed to 34.8 ± 

29.7% of the total reads. A number of OTUs appeared to be evenly distributed with 

depth but were absent in the lower half of the upper oxycline (i.e. at 60 m at site 4 

and 67 m at site 5). This region of the depth profile was not sampled at site 2. 

Clusters 5, 11, 25, 26 and 30 all appeared to demonstrate this trend. Clusters 5, 11 
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and 25 appeared to demonstrate a greater abundance with depth (although this OTU 

was not absent in shallower depths) however this was only observed at sites 2 and 4. 

This trend was also observed in Cluster 11 at site 2 however the standard error bars 

(±1 SE) of the 100 m and 750 m depths are seen to overlap. 
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Figure 5.16: Mean frequency distributions of ETNP clusters.  Frequencies are represented as the mean percentage of reads assigned to each cluster per sample for a) Site 2, b) Site 4 and c) 

Site 5. All samples were sequenced in triplicate. Error bars represent ± 1 SE Only clusters representing >0.01% of the total number of reads (222,565) are included in these figures. 
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Figure 5.17: Mean ETNP read abundance per sample, expressed as a percentage.  Graphs are shown for a) 

Site 2, b) Site 4 and c) Site 5. Mean values for each OTU were calculated from triplicate samples. The mean 

abundance of OTUs which had been assigned to specific taxonomic groups (see Figure 5.13) were combined as 

mean values and are presented in these figures. 
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Mean read abundances for sites 2, 4 and 5, for each taxonomic group (as defined 

above in section 5.4.3.3) are presented in Figure 5.17. At all three sites, reads 

associated with ‘Scalindua Group A’ are found at all depths (although only 0.3% of 

the reads in S4-60 m are attributed to this group) and largely represent the majority 

of reads obtained from each sample. Reads associated with ‘Scalindua Group B’ 

were more frequently observed in the upper oxycline or upper core of the OMZ and 

was the dominant taxa in the lower half of the oxycline (i.e. S4 60 m and S5-67 m, 

Figure 5.17b and c respectively). At all three sites ‘Scalindua Group B’ was almost 

absent in the deeper core of the OMZ (<0.4% of reads except at S2-540 m where this 

group contributed to 1.3% of the total reads) but was present in the bottom oxycline 

at a slightly greater abundance (1.2% of reads in S4-860 m and 2.0% of reads in S5-

719 m). 

All sampling sites and depths were dominated by OTUs representing Ca. Scalindua 

spp. although non-anammox reads were also obtained from 454 pyrosequencing data. 

Of these only two OTUs (Cluster 13 representing Ca. Kuenenia spp. and Cluster 27 

representing Ca. Jettenia spp.) contributed more than 0.1% of the total number of 

reads. Of these Cluster 27 was the most abundant. Both OTUs were almost absent in 

samples collected from site 4 (in these samples where these OTUs were present they 

contributed to less than 0.1% or the reads in each sample). The highest abundance of 

Cluster 13 was observed in S5-600 m (1.3 ± 1.3%) though this OTU was only 

observed in a single replicate sample at this depth. Cluster 27 was typically more 

abundant in these data, contributing 1.7 ± 0.7% of the reads in S2-100 m, 7.0 ± 1.9% 

in S2-200m and 34.8 ± 29.7% of reads in S5-719 m. In addition a further non-

anammox cluster, Cluster 16 (representing Ca. Brocadia spp.) appeared to contribute 

to the diversity of S5-40 m (3.6 ± 3.6% of reads) though this was not significant and 

this OTU was only observed in one triplicate from this sampling depth and only 

appeared once within the data. The presence of non-Scalindua anammox OTUs did 

not appear to adhere to any observable trend in the data and appeared to be 

sporadically distributed across the dataset. 

CCA and Mantel tests were calculated for these data and the environmental data 

associated with these sampling depths (see Figure 5.9, Figure 5.10 and Figure 5.11). 

These data failed to indicate a significant trend between anammox diversity across 
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these depth profiles related to NO2
-
, NO3

-
, NH3, O2 or PO4

3-
. Unconstrained CCA 

plots for anammox diversity data are presented in Figure 5.18. Figure 5.18a shows a 

CCA plot for all OTUs. In this plot the majority of the diversity in these samples is 

represented along the x-axis (CA1) though the data is skewed by a large diversity as 

represented by the y-axis (CA2) which separates sample S5-719 m and S2-200 m 

from the rest of the samples, presumably due to the near exclusive presence of 

Cluster 13 and Cluster 27 in these sites. Omitting non-Scalindua anammox OTUs 

(Figure 5.18b) aids the interpretation of this analysis and indicates that samples 

appeared to cluster into three groups of similar diversity; upper oxycline samples 

(blue), upper core OMZ samples (red) and deeper core and bottom oxycline (green). 

Samples fit into these three grouping perfectly (based on the depth which they were 

obtained) except for S5-40 m (upper half of the upper oxycline) which clusters with 

the deeper samples (green). These deeper samples (green) are more closely 

correlated, indicating a lower degree of diversity than the upper oxycline (blue) and 

upper core OMZ (red) samples which show greater diversity amongst these sampling 

depths. 

 

Figure 5.18: Unconstrained CCA plots created from ETNP 454 Pyrosequencing data for Sites 2, 4 and 5.  

CCA plots are shown for a) all observed anammox genera and b) only OTUs representing the Ca. Scalindua 

genus. Data for sampling sites and depths are calculated using mean values from biological triplicate samples. 

The presence or absence of non-Scalindua genera appeared to have the largest effect on sample similarity as 

these OTUs, though generally of low abundance, were only observed at a couple of locations. Omitting these 

OTUs show 3 clusters which appear to correspond to shallow depth within the oxycline (circled blue), upper core 

of the OMZ (red) and lower core to bottom of the OMZ (green) with the exception of S5-40m which clusters 

with the deeper OMZ sites. 

a) b)
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5.4.4. Ca. Scalindua spp. Diversity 
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Figure 5.19: Phylogenetic tree showing relationship between Ca. Scalindua spp. OTUs from Medway and 

ETNP 454 pyrosequencing data.  A bootstrap analysis involving 1000 repetitions was used as a test of 

phylogenetic analysis. Only branches showing bootstrap values greater than 50% are labelled. OTUs were 

defined at a similarity cut-off of 95% for both the Medway and ETNP datasets. Only OTUs representing greater 

than 0.1% of the total number of reads from each set and which had been positively identified as being related to 

the Scalindua genus were included in this phylogenetic analysis. Most OTUs from both sampling sites appeared 

to cluster together. However, two clear clusters of OTUs, related to Ca. Scalindua wagneri sequences, can be 

seen which contain only OTUs obtained from the Medway Estuary. A further Scalindua related cluster was also 

observed containing only OTUs from the ETNP OMZ. 

OTUs obtained from Medway and ETNP 16S rRNA pyrosequencing data, which 

had been identified as being related to the Scalindua genus, were analysed in order to 

investigate the diversity of Scalindua organisms across these two environments. 

Only OTUs representing greater than 0.1% of the total number of reads from their 

respective dataset were included in this analysis. Phylogenetic relationships between 

these OTUs and reference sequences can be seen in Figure 5.19. 

Phylogenetic analysis of Ca. Scalindua OTUs (Figure 5.19) indicates that a number 

of OTUs were present in both the Medway Estuary and ETNP OMZ. These OTUs 

primarily belonged to the ‘Ca. Scalindua brodae/marina/sorokinii Group’ as defined 

from Medway data (Figure 5.4) and ‘Scalindua Group A’ and ‘Scalindua Group B’ 

from ETNP OMZ data (Figure 5.13). However, there was no clear distinction from 

this phylogenetic analysis between ETNP ‘Scalindua Group A’ and ‘Scalindua 

Group B’ as is seen when analysing only OTUs obtained from ETNP data (Figure 

5.13). This may be due to an increased number of sequences improving the strength 

of phylogenetic relationships in this analysis compared with the analysis for only 

ETNP OTUs, perhaps suggesting that the designation of ETNP ‘Scalindua Group A’ 

and ‘Scalindua Group B’ is erroneous and due to a lack of data rather than a true 

phylogenetic phenomenon. 

However, phylogenetic analysis of Scalindua-only OTUs also indicated the presence 

of distinct clusters which were only present in either the ETNP OMZ or Medway 

Estuary. Two OTU clusters, both associated with Ca. Scalindua wagneri 16S rRNA 

sequences, were observed containing solely OTUs obtained from Medway data. 

These OTUs represented ~8.9% of the total number of reads from the Medway 

dataset (see section 5.4.2.4).  
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In addition a further cluster was observed which contained only OTUs from ETNP 

pyrosequencing data. However, this cluster demonstrated limited similarity to any of 

the Ca. Scalindua spp. 16S rRNA sequences though it did cluster within the 

Scalindua clade. The OTUs present in this cluster were seen to cluster within 

‘Scalindua Group B’ in Figure 5.13 (although branch lengths of these sequences 

were longer than their neighbouring sequences) and their unique clustering in the 

analysis presented in this section may be due to an improvement in the sequence 

database with the inclusion of both Medway and ETNP OTUs. 

5.5. Discussion 

5.5.1. Quality of 454 Pyrosequencing Data 

A major and repeating issue in the use of 454 pyrosequencing technologies, and data 

obtained via this method, for microbial ecology is the quality of the data obtained 

and its reproducibility (Huse, et al., 2008; Kunin, et al., 2010). As such, it is 

important to stringently control and analyse the quality of 454 pyrosequencing data 

to provide validity to one’s conclusions. This is especially true when utilising novel 

methods for analysing these types of data (as in this investigation). However, this 

does not negate the use of stringent controls when using more widely used methods 

e.g. QIIME (Caporaso, et al., 2010) and Pyronoise (Quince, et al., 2009). 

Initial observations into the quality of the data presented in this thesis indicated that, 

in general, the quality of obtained reads was high. A large number of reads were 

produced for each dataset; 179.5K reads for the Medway Estuary (~8.5K per 

triplicate sample) and 264K reads for the ETNP (~5.5K per triplicate sample). These 

data would provide a sufficient depth of study for investigating the ecology of 

anammox bacteria using 16S rRNA primers Amx368F & Amx820R based on 

previous, preliminary investigations (~4K reads per sample to report the entire 

relative diversity based on rarefaction analyses based on the results from trial 454 

pyrosequencing runs using these samples). Of these a suitable proportion of reads 

(47% and 85% for the Medway Estuary and ETNP OMZ datasets respectively) 

contained both the forward and reverse primer motifs. In the analysis of previously 

obtained data (not shown), a large number of reads which did not contain both of the 

primer regions was found to be indicative of a generally poor quality and error-prone 
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sequencing run. The large number of reads from the Medway dataset which did not 

contain the primer sequences would usually be of concern, however, even taking this 

into account, the number of ‘good’ reads obtained from these data would still be 

more than sufficient to assess the aims of this investigation (i.e. they would provide 

suitable sequencing coverage). The difference between the two sequencing runs 

analysed here is that the ETNP dataset contained a much larger number of samples 

than that of the Medway Estuary and so 454 pyrosequencing was performed using an 

entire half of a plate. Potentially, as the Medway data would have been obtained on a 

plate containing samples from other research projects using other primers, this may 

have caused interference during sequencing, resulting in a lower quality of data. 

Controlling this (by using the entire half plate) appeared to ameliorate this problem. 

In future research projects it is highly recommended to run samples on at least half a 

plate, even at greater financial outlay (though the steadily reducing cost of 

sequencing should offset this), in order to improve the quality of raw data. 

During this project a novel approach (ReLIC) was used in aiding the quality control 

of these data, namely the investigation of minimum and maximum length cut-off 

values and Rinc ratios from read length data (see section 5.3 for full discussion). The 

data produced from this quality control step was of a good quality (see section 5.4). 

However, a small number of OTUs were encountered which clustered outside of the 

known anammox diversity and therefore the possibility of poor quality sequences 

affecting clustering results cannot be discounted. Therefore, this method may have 

been too liberal in terms of the reads which passed the quality control stages, 

however ReLIC does appear to be a reasonable starting position from which to 

research the use of this method further. Regardless, this method did produce data of a 

good standard (see subsequent sections) suggesting that the use of read lengths to 

determine good and poor quality reads may be an effective method. As can be seen 

in Figure 5.2 and Figure 5.12 a clear distinction between high and lower Rinc values 

at shorter read lengths could be determined for both datasets however the distinction 

at longer read lengths was not clear. This may be a potential source of poor quality 

sequences. As such using these exact cut-offs may not be the best method, but 

instead they could be used to determine significance levels about the median values 

(using mathematical modelling) to obtain an improved cut-off where the researcher 

is more confident that poor quality sequences are being excluded. Regardless of 
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future improvements which could be made to ReLIC, it appears to be a reasonable 

method, at least with these datasets of relatively low diversity, to remove the 

majority of poor quality reads from the data. Furthermore, this method removes 

arbitrary decision making from such processes to the improvement of the statistical 

robustness and reproducibility of the quality control of high throughput sequencing. 

Pyrosequencing positive controls were conducted by sequencing a cloned anammox 

16S rRNA gene of known identity (Ca. Brocadia sp.) in triplicate (section 5.4.1.1). 

These data produced only two OTUs at a clustering similarity cut-off of 95%, one of 

which comprised of only one read (total number of reads=12,306) and so is likely to 

be an erroneous OTU arising from a read with significant sequencing errors. Manual 

investigation of this read, in comparison with the other OTU, highlighted the 

presence of some potentially chimeric regions and the presence of indels associated 

with homopolymers within this singleton read, suggesting that this OTU had indeed 

arisen from a poor quality read within the dataset. The main OTU demonstrated a 

high similarity to Ca. Brocadia spp. (greater than other anammox sequences) 

suggesting that these data were accurate. 

Technical replicates were also conducted in order to test the precision of these data. 

A summary of these data is shown in Figure 5.1 (see section 5.4.1.2). All three 

triplicates produced the same number of OTUs (n=8) at a cut-off of 95%. 

Furthermore, the standard errors associated with each OTU (error bars on Figure 5.1) 

were all small, showing that the variation between samples, in regards to the relative 

abundance of each OTU, was also small. As such, similarly precise data could be 

expected for the other samples in the dataset and any large errors are likely to be as a 

result of true biological variation amongst biological replicates, not poor replication 

from 454 pyrosequencing technologies. 

5.5.2. Anammox Diversity Across Environmental Gradients 

5.5.2.1. Medway Estuary 

5.5.2.1.1. Data Quality 

Medway Estuary data produced a large number of OTUs (294 OTUs) at a clustering 

cut-off of 95% similarity, however only 49 OTUs represented a sizeable proportion 
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of the total number of reads (>0.1%). As discussed previously, the aim of this 

investigation was to measure the relative diversity of anammox organisms and so 

low abundance OTUs were omitted in the knowledge that such OTUs may be 

ecologically significant but would not affect measurements of diversity providing 

such omissions were universally implemented. The ecological significance of such 

organisms is an important question but one that would require a more thorough 

knowledge of the diversity, distribution and environmental controls of anammox 

bacteria, the elucidation of which was the aim of this study. Rarefaction analyses for 

these data (Figure 5.3) indicate that, even with the omission of these low abundance 

OTUs, relative measurements of diversity are likely to be unaffected and that the 

entire anammox diversity was represented in these data (i.e. the sequencing coverage 

was sufficient to not omit any significant OTUs). 

5.5.2.1.2. Phylogeny and Richness 

The richness of the anammox community (Table 5.2) was greater in the middle of 

the sampled range (~30 OTUs) than at either end (~20 OTUs). This may represent a 

more specialist community at either end of the estuary (i.e. at the extremes of the 

salinity gradient which ranged from approximately 0 ppt at M1 to 25 ppt at M7) 

whereas the community in the middle of the estuary was more diverse, perhaps 

representing the changing state of these environments and periodic salinity intrusions. 

Twelve year averages for salinity data along the Medway Estuary indicate that the 

salinity at Aylesford (near site M1) remained low (0.54 ± 0.24 ppt, yearly average) 

throughout the year. Data for sites along the estuary however demonstrated a large 

salinity range of approximately 10 ppt over the year; Wouldham (near M4) 3.18 ± 

1.83 ppt (December) to 13.25 ± 1.83 ppt (August) and M2 Bridge (near M6) 8.56 ± 

2.61 (December) to 19.96 ± 1.06 ppt (September). However, data for Arethusa 

station (near M7) fluctuated between 18.79 ± 2.62 ppt (January) to 28.60 ± 0.67 

(August), indicating that a similar annual salinity range (i.e. ~10 ppt) was observed 

at this end of the estuary as that observed over the middle of the estuary, despite M7 

demonstrating a low degree of richness. This may suggest that the limiting salinity 

concentration affecting niche adaptation of anammox bacteria was approximately 20 

ppt, i.e. above this salinity a specific anammox taxon or clade has adapted to 

specialise in such salinity ranges, explaining lower measurements of richness. 
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Alternatively it may suggest that anammox bacteria may not be affected by salinity, 

but instead are affected by a secondary variable associated with salinity and/or 

distance along the estuary (e.g. organic loadings) which in turn affects anammox 

specialisation. Indeed Kartal, et al. (2006) found that salinity did not affect the 

activity of the “freshwater” Ca. K. stuttgartiensis suggesting this may be the case.  

Phylogenetic analysis of OTUs representing greater than 0.1% of the total number of 

reads (Figure 5.4) shows that OTUs were obtained from these data which 

represented all of the known anammox genera except Ca. Anammoxoglobus. The Ca. 

Anammoxoglobus sequences used in this analysis were obtained from enrichment 

cultures from a bioreactor (Viancelli, et al., 2011) and so the failure to detect 

organisms related to such sequences in the natural environment might not be 

surprising. Indeed it is from such environments that Ca. Anammoxoglobus spp. were 

first identified (Kartal, et al., 2007b) and no study in the literature has detected 

sequences in the natural environment which demonstrate a high similarity to this 

genus. More OTUs were related to Ca. Scalindua organisms than non-Scalindua 

bacteria perhaps suggesting that the diversity of Ca. Scalindua bacteria was greater 

along the estuary. Nine OTUs demonstrated a lower degree similarity to any known 

anammox bacteria (‘Potentially non-anammox’ group in Figure 5.4) and clustered 

outside of the anammox clade. These OTUs were typically associated with large 

standard errors (Figure 5.5d). 

5.5.2.1.3. Diversity and Distribution 

A clear change in anammox diversity and community structure was observed along 

the estuary in the data presented in Figure 5.6. Anammox bacteria have been found 

to have only one copy of the 16S rRNA gene (Strous, et al., 2006) and so, although 

454 pyrosequencing data cannot be used to determine absolute organism abundances, 

it can be used as a proxy for the relative abundance of anammox bacteria
*
. The 

relative abundance of non-Scalindua anammox bacteria is greatest at M1 (the most 

upstream site) where these organisms dominate the anammox community (98.64% 

of reads). Non-Scalindua anammox organisms also dominated M2 contributing to 

90.32% of the total number of reads. The abundance of non-Scalindua anammox 

                                                 
*
 As shown in chapter 3, the primers used in this study did not show any bias towards different 

anammox genera. 
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organisms decreased downstream contributing 40.04% of the total reads at M3, 

49.95% at M4 and 10.10% at M5 and were almost absent at sites M6 and M7 (0.43% 

and 0.08% respectively).  

Of these, reads associated with Ca. Brocadia spp. were most abundant with 76.26% 

of reads associated with ‘Brocadia A’ and 21.94% of reads with ‘Brocadia B’. This 

was true for all seven sites, where ‘Brocadia A’ and ‘Brocadia B’ represented the 

vast majority of the non-Scalindua anammox reads. These two groups contributed to 

>99% of the reads associated with non-Scalindua organisms in all sites except M5 

where they contributed to 86.23% of reads (the rest being made up of reads 

associated with Ca. Kuenenia spp.). These findings agree with those of Hirsch, et al. 

(2011) where Ca. Brocadia spp. were found to be the most dominant organisms in 

freshwater river sediments. This observation is also consistent with the original 

hypotheses outlined in section 1.3.2.1.2.1. As shown in chapter 3, these primers 

(Amx368F & Amx820R) demonstrated the ability to target all the known anammox 

genera and did not appear to be biased towards particular organisms and so this 

dominance of Ca. Brocadia spp. in terms of the diversity of non-Scalindua anammox 

organisms is likely to be an accurate representation of the anammox community 

along the Medway Estuary.  

Ca. Scalindua organisms demonstrated the opposite trend to non-Scalindua 

anammox organisms, decreasing in abundance upstream which is consistent with the 

hypotheses outlined in section 1.3.2.1.2.1. Ca. Scalindua organisms dominated the 

anammox community at site M5 (83.03% of reads) and decreased in abundance (to 

be replaced as the dominant community members by non-Scalindua anammox 

organisms) towards the freshwater end of the estuary, contributing to 47.69% of the 

total reads at M4, 53.31% at M3, 8.90% at M2 and 1.08% at M1. Ca. Scalindua 

organisms appeared to be less abundant at sites M6 and M7 (60.81% and 33.28% of 

reads respectively). However, the remainder of reads at these sites were not made up 

of non-Scalindua anammox bacteria, but reads which could only be attributed to 

‘anammox related’ or ‘potentially non-anammox’ organisms (Figure 5.6) which 

demonstrate a low degree of similarity to known anammox organisms and hence 

may represent reads containing sequencing errors which could be associated with the 

large standard errors associated with these data (see Figure 5.5). However, the 
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presence of a large proportion of sequences belonging to OTUs classed as anammox 

‘related’ or ‘potentially non-anammox’ may be indicative of a low copy number of 

anammox 16S rRNA genes at this site. Lower copy numbers of target genes could 

potentially produce proportionally fewer reads associated with anammox bacteria 

and an increase in the number of reads associated with chimeric or-non target 

amplified sequences gained from high-throughput sequencing technologies. 

However, if this claim were true, rarefaction curves for these samples may be 

expected to rise more sharply (see Figure 5.3) and no issues were encountered in the 

laboratory (e.g. lower PCR amplification efficiencies) which may suggest an 

unusually low copy number of anammox 16S rRNA genes at this site. Alternatively, 

these OTUs may represent a novel anammox phylogeny however, as previously 

stated, extreme caution must be used when attempting to assign novel taxa from such 

data, especially without the aid of other measurements of ecological diversity (e.g. a 

functional gene conforming to the phylogenetic consensus). Omission of such OTUs 

would reveal that M6 and M7 are dominated by Ca. Scalindua anammox organisms 

(>99% of reads) which would fit with the trend observed in the rest of the data. 

The majority of OTUs (11 OTUs) associated with Ca. Scalindua organisms clustered 

with reference sequences from Ca. S. brodae, Ca. S. marina and Ca. S. sorokinii 16S 

rRNA genes (Figure 5.4). This OTU cluster also represented the most abundant 

group of Ca. Scalindua organisms at all but site M1 (Figure 5.6), where the 

‘Scalindua related’ cluster represented the largest number of reads (53.20% of Ca. 

Scalindua reads). However, as shown previously, Ca. Scalindua organisms only 

represented 1.08% of the total number of reads at this site. Despite the ‘Ca. 

Scalindua brodae/marina/sorokinii’ cluster representing the majority of Ca. 

Scalindua spp. reads at these sites, an interesting trend was nevertheless observed 

concerning the ‘Ca. S. wagneri’ cluster. Although in general, Ca. Scalindua 

organisms appeared to demonstrate a decrease in abundance upstream, Ca. S. 

wagneri appeared to be most abundant at M5 (34.95% of Ca. Scalindua reads, 

29.02% of total reads) and decreased in abundance both downstream and upstream 

of this site. The lowest abundance of Ca. S. wagneri related organisms was observed 

at M7 (0.14% of Ca. Scalindua reads and 0.05% of total reads at this site). The 

abundance of these organisms at M1 was also low representing 0.20% of the total 

number of reads (the contribution to the Ca. Scalindua community was larger, 



 

135 

 

18.54%, however the low number of reads associated with these organisms at M1 

has likely produced misleading data in regards to this). The most abundant OTU 

representing Ca. S. wagneri organisms, Cluster 8, demonstrates this trend (Figure 

5.5b) with M5 having a substantially higher frequency of reads assigned to Ca. S. 

wagneri than M4 and M6 which in turn contain more reads than M3 and M7. The 

error bars of all of these mean read frequencies from Cluster 8 (±1 SE) did not 

overlap. The other five Ca. S. wagneri OTUs, (Clusters 15, 20, 102, 129 and 149, 

Table 5.1) did not appear to demonstrate this trend (Figure 5.5b) though all these 

OTUs represented <5% of the total number of reads in data from these sites and 

therefore did not substantially affect the abundance of these organisms and their 

trend in distribution across the sites. As can be seen in Figure 5.6, Ca. S. wagneri 

organisms appear to be most abundant between salinities of 4-10 ppt. This may 

suggest that these organisms are adapted to mesohaline conditions (though the data 

present are not sufficient to define the exact range of these organisms) whereas other 

Ca. Scalindua organisms are abundant in brackish to saline environments. The 

existence of such an anammox community, adapted to mesohaline conditions was 

hypothesised previously (see section 1.3.2.1.2.1). 

Unconstrained CCA analysis of these data (Figure 5.7) indicates that the greatest 

difference in anammox diversity (represented by CA1 along the x-axis) was 

observed along the estuary sequentially from M1 to M7. This trend was perfectly 

linear except for M3 and M4 (the orders of which is reversed, see Figure 5.7) 

however these sites are very similar (as demonstrated by the closeness of these 

points in Figure 5.7) and therefore do not detract from the validity of this trend. A 

trend in increasing anammox diversity was also observed towards the middle of the 

estuary (represented by CA2 along the y-axis, with M5 demonstrating the greatest 

diversity), with low diversity observed at either extreme of the sampled range (M1 

and M7). These two axes (CA1 and CA2) represented 100% of the observed 

diversity (68% and 32% respectively). Dale, et al. (2009) reported lower diversity 

upstream of the Cape Fear River Estuary, correlating with the findings of this 

investigation, but reported a greater diversity with increasing salinity. CCA analysis 

conforms with the conclusions drawn from the rest of the data analysis (see above) 

and indicate that the greatest diversity was observed at M5, which corresponds with 
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the site where Ca. S. wagneri, a potentially mesohaline adapted anammox organism, 

was found to be most abundant. 

5.5.2.1.4. Environmental Controls and Significance 

Mantel tests were conducted on interpolated/extrapolated environmental data 

(Environment Agency, UK) and plotted on CCA plots to test for relationships 

between diversity measurements and environmental conditions. Figure 5.7 shows the 

effects of salinity, conductivity, NH3, NO2
-
, NO3

-
, PO4

3-
, biological oxygen demand 

(BOD), dissolved O2, temperature and pH on anammox diversity. The environmental 

factors showing the strongest correlation to diversity appear to be salinity and 

conductivity (which are related environmental factors) and demonstrate a positive 

correlation with the change in diversity observed from M1 to M7. A strong negative 

correlation is also observed with NO3
-
 and PO4

3-
 between M1 and M7, with 

increasing concentrations of these anions towards the freshwater end of the estuary. 

The concentration of NH3 and NO2
-
 also demonstrate a negative trend (increasing 

towards freshwater end of the estuary) with the trend in anammox diversity between 

M1 and M7 though this was not as strong as that demonstrated by NO3
-
 and PO4

3-
. 

The increase in diversity towards the middle of the estuary (y-axis on Figure 5.7) 

was strongly correlated with a decrease in pH and less strongly correlated with 

decreasing temperature and dissolved O2, with higher values for these environmental 

factors observed to either extreme of the sampling range. Hamersley, et al. (2009) 

also reported an increase in anammox diversity in brackish environments but stated 

that the reasons for this were unclear. 

No direct measurements of anammox activity in Medway Estuary sediments were 

available for the locations and dates sampled. However, anammox rate measurement 

data was available from a previous study along the estuary by Nicholls and Trimmer 

(2009). These data suggest that the potential for anammox activity was highest 

around site M6 (~10.93% of N2 produced) and decreased from this point both 

upstream and downstream, though measured rates were marginally higher upstream 

(~7.48% of N2 around M4) than downstream (~4.49 % of N2 around M7). Nicholls 

and Trimmer (2009) presented data for anammox rates further downstream, beyond 

the extent of this investigation, reporting rates of 3.09% and 5.39% (at the most 
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downstream site) of N2 production. No anammox rate measurements were available 

for the most freshwater sites namely M1, M2 and M3.  

However, these data must be used with caution as they were not taken at the same 

time as samples collected during this investigation nor where measurements taken at 

the exact same site locations as this study. Furthermore, Nicholls and Trimmer 

(2009) did not present error data associated with these measurements and the low 

number of data points makes interpolation (within the context of the data presented 

in this thesis) impossible and so no firm conclusions could be drawn from 

comparison with these data. 

The data presented in this study clearly demonstrate a trend in anammox diversity 

and community structure along the Medway Estuary. The diversity of anammox 

organisms appeared to be strongly correlated with the increase of salinity along the 

estuary which corresponds with the findings of other investigations into anammox 

diversity along estuarine environments (Dale, et al., 2009; Hirsch, et al., 2011). If 

salinity is indeed the major controlling factor in anammox diversity and distribution, 

this may suggest a large degree of seasonal variation in the anammox community 

with annual salinity fluctuations (Dale, et al., 2009). Freshwater site M1 was 

dominated by non-Scalindua anammox organisms. The abundance of non-Scalindua 

organisms decreased through M2, M3 and M4 (oligohaline) and M5 (mesohaline) 

and they were almost absent at M6 and M7 (very brackish to saline). The abundance 

of Ca. Scalindua spp. was greatest at the saline end of the estuary (M5 and M6) and 

lowest at the freshwater end (M1). Thus the data suggest that non-Scalindua 

organisms are adapted to freshwater/low salinity environments whereas Ca. 

Scalindua spp. are adapted to more high salinity environments. The diversity and 

richness of the anammox community was greatest towards the middle of the estuary 

which represents a community comprising of both Ca. Scalindua and non-Scalindua 

anammox bacteria. Ca. Scalindua wagneri organisms were most abundant toward the 

middle of the estuary, perhaps suggesting that these organisms are specifically 

adapted to mesohaline environments.  

However, as stated previously, investigations on enrichments of anammox organisms 

have shown that these organisms can survive and are active at a range of salinities 

(Kartal, et al., 2006). Therefore, the community change observed in the data 
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obtained from this study may not represent anammox organisms adapted to different 

salinities but rather to a secondary variable (such as the availability of DOM) also 

correlated with distance along the estuary as outlined in the original hypotheses 

(section 1.3.2.1.2). However these data are not sufficient to confirm this hypothesis 

and further research would be required to investigate this, including a more thorough 

investigation into the environmental conditions experienced along the Medway 

Estuary including measurements taken at the time of sampling. Nevertheless, such 

relationships can only be inferred from in-situ data and further experimentation 

would be required to confirm that variations of such environmental factors had a 

direct effect on the diversity of anammox bacteria. Caution must however be used 

when comparing the ecology of in-situ organisms with those grown in-vitro.  

One hypothesis, developed during this study, as to the causes of anammox diversity 

and community separation in estuarine environments, might be the ability of 

anammox organisms to utilise organic substrates as a source of carbon and/or 

nitrogen. Other data obtained during this study (see chapter 6) suggest that non-

Scalindua organisms may be able to metabolise organic substrates whereas Ca. 

Scalindua spp. cannot. Hence, these data might suggest a change in anammox 

metabolism along the estuary, from classical anammox in saline environments to 

‘Organammox’ in freshwater environments. However this hypothesis cannot be 

asserted with the data available and further research, including the measurement of 

anammox activity along the estuary with the addition of organic substrates, would be 

required to test this hypothesis. Alternatively the concentration and bioavailability of 

DIN and other nutrients along the estuary may also affect anammox community 

change (as shown if Figure 5.7, DIN and PO4
3-

 were seen to increase upstream and 

were correlated to anammox community structure) however there is no evidence in 

the literature that indicates that anammox organisms demonstrate a preference for 

low or high concentration of nutrients. There are however suggestions in the 

literature that anammox diversity may be strongly influenced by anthropogenic 

activity (Dale, et al., 2009; Li, et al., 2011; Wang and Gu, 2013). Sato, et al. (2012) 

further found that paddy field environments, which are typified by high nitrogen 

loadings from manure and fertilisers, were dominated by Ca. Brocadia spp., although 

paddy fields are also freshwater environments which may account for the presence of 

these organisms.  
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5.5.2.2. ETNP OMZ 

5.5.2.2.1. Data Quality 

A total of 44 OTUs were defined from ETNP OMZ data (n=222,565 reads after 

quality control). Of these, 25 OTUs did not represent greater than 0.1% of the total 

number of reads. However, in this instance, these low abundance clusters were 

included in order to investigate the validity of the assumption that such low 

abundance clusters are indicative of poor quality data and are unlikely to affect 

conclusions drawn from the data. Phylogenetic trees were constructed both including 

and omitting these low abundance OTUs (see section 5.4.3.3 and Figure 5.13 and 

Figure 5.14) and show that the phylogeny expressed by these two analyses was 

congruent and thus the inclusion of these low abundance OTUs did not affect the 

inferred phylogenies of the more abundant OTUs. Figure 5.15 demonstrates that in 

the majority of samples, rarefaction curves were plateauing, indicating that the 

sampling depth was sufficient to report the entire (relative) diversity of anammox 

bacteria in these samples. Those samples which were not observed to completely 

plateau were nevertheless all beginning to plateau, and so it can be assumed that no 

significant OTUs were missing from this dataset. 

5.5.2.2.2. Phylogeny and Richness 

Phylogenetic analysis of these OTUs (Figure 5.13) revealed seven clusters of OTUs 

(Figure 5.13). The majority of OTUs were shown to be related to Ca. Scalindua spp. 

and clustered into two clusters: ‘Scalindua Group A’ and ‘Scalindua Group B’. 

‘Scalindua Group A’ demonstrated no similarity to any known Ca. Scalindua 16S 

rRNA sequences (though this cluster definitely clustered within the Ca. Scalindua 

clade and outside the wider anammox phylogeny) though the majority of these OTUs 

(13/22 OTUs) represented <0.1% of the total number of reads. Conversely, only 1 

OTU from ‘Scalindua Group B’ represented <0.1% of the total number of reads and 

showed a high similarity to sequences representing Ca. S. brodae, Ca. S. marina and 

Ca. S. sorokinii 16S rRNA genes. No OTUs were found which demonstrated any 

similarity to Ca. S. wagneri sequences which is consistent with previous studies 

(Woebken, et al., 2008). 



 

140 

 

OTUs were also found to represent non-Scalindua anammox organisms namely Ca. 

Brocadia spp., Ca. Kuenenia spp. and Ca. Jettenia spp., however only 2 out of 7 

OTUs (one showing a high sequence similarity to Ca. Jettenia spp. and the other to 

Ca. Kuenenia spp.) represented greater than 0.1% of the total number of reads from 

this dataset. Despite the general consensus within the literature that Ca. Scalindua 

spp. are solely marine anammox organisms and non-Scalindua anammox inhabit 

terrestrial and freshwater environments (Hamersley, et al., 2009; Hirsch, et al., 2011; 

Song and Tobias, 2011), non-Scalindua organisms, such as Ca. K. stuttgartiensis , 

have been detected in marine environments (Byrne, et al., 2008; Ulloa, et al., 2012). 

However Woebken, et al. (2008) found no evidence of non-Scalindua anammox 

organisms in the Peruvian OMZ. No OTUs from the ETNP demonstrated any 

similarity to Ca. Anammoxoglobus spp. These organisms were also not observed in 

the Medway Estuary (see section 5.5.2.1.3). 

5.5.2.2.3. Distribution and Diversity 

The vast majority of reads obtained from ETNP OMZ pyrosequencing data were 

associated with Ca. Scalindua spp. as hypothesised previously (see section 

1.3.2.1.2.2). The Ca. Scalindua clade represented the majority of reads at all of the 

16 sampling depths across the 3 sites (Figure 5.17). The lowest abundance of Ca. 

Scalindua reads was observed at S5-719 m (64.35%). In general Ca. Scalindua spp. 

reads contributed >99% of the total number of reads at each site except at S2-100 m 

(98.24%), S2-200 m (92.23%), S5-40 m (96.13%), S5-600 m (98.61%) and S5-719 

m. In samples where Ca. Scalindua spp. did not contribute to 100% of the reads, the 

remainder were largely made up of non-Scalindua anammox organisms. ‘Anammox 

related’ and ‘Potentially non-anammox’ OTUs contributed very small numbers of 

reads to each site (<<0.1%) if they were present at all. The low abundance and large 

phylogenetic distances associated with these OTUs strongly indicates that they are a 

result of low quality sequences rather than true phylogenetic diversity and so were 

omitted from further analysis and discussion, except to highlight that the low number 

of erroneous reads and OTUs created from the dataset indicates that the methodology 

used in the analysis of this data (in terms of quality control) was good. 
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A trend was observed within the diversity of Ca. Scalindua spp. at all three sites 

(though the lower resolution of site 2 made this trend less pronounced
*
). ‘Scalindua 

group B’ organisms (i.e. those OTUs showing a high similarity to Ca. S. brodae, Ca. 

S. marina and Ca. S. sorokinii) were most abundant in the lower half of the upper 

oxycline (S4-60 m and S5-67 m). Organisms from the ‘Scalindua Group B’ clade 

were also observed in the upper half of the upper oxycline (S4-50 m and S5-40 m) 

and the upper core of the OMZ (S2-100 m, S2-200 m, S4-250 m and S5-200 m). 

These organisms were not detected in the lower core of the OMZ except at S2-540 m 

though this clade only represented 1.27% of the total number of reads and only two 

OTUs (Clusters 20 and 24) which were associated this clade showed a significant 

number of reads at this site. The deepest sampling depths at sites 4 and 5 (S4-860 m 

and S5-719 m), representing the lower oxycline below the core of the OMZ, also 

contained organisms from this clade though they only contributed 1.18% and 2.00% 

of the reads respectively. The deeper core of the OMZ at these three sites was 

dominated by organisms related to ‘Scalindua Group A’. 

Therefore, the data suggest a change in Ca. Scalindua diversity within the ETNP 

OMZ, with an increase in the abundance of ‘Scalindua Group B’ organisms (Ca. S. 

brodae, Ca. S. marina and Ca. S. sorokinii) in more oxygenated waters (e.g. the 

oxyxline and upper core of the OMZ, see Figure 5.8) whereas ‘Scalindua Group A’ 

organisms were dominant at the anoxic OMZ core. Dalsgaard, et al. (2012) reported 

a greater activity of anammox organisms in the upper core of the ETSP OMZ, 

compared with the lower core, which may be related to this community shift. Indeed, 

Woebken, et al. (2008) presented a case for different ecological niches for anammox 

bacteria in the OMZ but failed to speculate as to the causes of such niches. The data 

may also suggest that ‘Scalindua Group B’ begin to repopulate the anammox 

community in the lower oxycline however more sampling points at these depths 

would be required to confirm this observation as, as shown in Figure 5.8, Figure 5.9, 

Figure 5.10 and Figure 5.11, the sampling sites chosen during this investigation only 

just sampled the lower oxycline and failed to do so at site 2. These data therefore 

support the hypothesis outlined in section 1.3.2.1.2.2. These observations, 

considering they are observed at all three sites and that the change in abundance of 

most of these OTUs is significant (Figure 5.16), would suggest that ‘Scalindua 

                                                 
*
 N.B. Only four sites were sampled. 
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Group A’ does indeed represent a true clade within the Ca. Scalindua genus and is 

not as of a result of low quality sequencing reads (as suggested previously). 

Although previous studies have found evidence of non-Scalindua anammox 

organisms being present in marine settings (Byrne, et al., 2008; Ulloa, et al., 2012), 

this study presents the first data to suggest significant numbers of these organisms 

(i.e. not just single clones from clone libraries) using an established method for 

reporting phylogenetic diversity (i.e. not the hzo gene, see chapter 4). This would 

confirm hypotheses that the diversity and distribution of anammox organisms is not 

solely restricted to the salinity of the environment (see section 1.3.2.1). Reads were 

found which represented Ca. Brocadia spp., Ca. Jettenia spp. and Ca. Kuenenia spp. 

Of these, Ca. Jettenia spp. was the most abundant and Ca. Kuenenia spp. the least 

abundant. However, unlike Ca. Scalindua spp., non-Scalindua anammox organisms 

did not appear to be ubiquitously dispersed throughout the OMZ but instead 

occupied one or two distinct sampling sites. In only five of the sixteen sites did non-

Scalindua anammox organisms contribute to greater than 1% of the total reads from 

that site (Figure 5.17). Furthermore, there did not appear to be any obvious trend as 

to the presence or absence of non-Scalindua anammox organisms, though the highest 

abundances of these organisms were not found in the core of the OMZ (although 

they were present at these locations, e.g. S5-600 m).  

CCA analyses (Figure 5.18) of these data indicated that the majority of anammox 

diversity was correlated to depth (CA1 representing approximately 70% of the 

observed diversity). However, this diversity was skewed by the presence of non-

Scalindua anammox organisms (Figure 5.18a) as one would expect due to their large 

abundances but scarce distribution. Omission of these OTUs (Figure 5.18b) revealed 

three distinct clusters related to depth: the upper oxycline, the upper core OMZ and 

the lower core OMZ and edge of the lower oxycline. The greatest difference in 

diversity appeared to exist between the upper oxycline and deeper sites, presumably 

due to the effect of ‘Scalindua Group B’ which was most abundant in the upper 

oxycline. 
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5.5.2.2.4. Environmental Controls and Significance 

Oxygen profiles and nutrient profiles can be seen in Figure 5.8, Figure 5.9, Figure 

5.10 and Figure 5.11. The ETNP OMZ between 8°N and 13°N and appeared to be 

fairly constant throughout, exhibiting a standard OMZ depth profile (though the 

upper oxycline was very steep with the periphery of the OMZ beginning at a depth 

of approximately 50 m). The core of the OMZ appeared to be deeper towards the 

Central American coast (i.e. towards the North), presumably due to increased 

upwelling at the continental shelf boundary. Profile data for the ETNP OMZ (Figure 

5.9, Figure 5.10 and Figure 5.11) show a typical OMZ depth profile (Paulmier and 

Ruiz-Pino, 2009) with low NO2
-
 concentrations throughout except for a spike in the 

upper core of the OMZ. This NO2
-
 peak is typically associated with high 

denitrification, corresponding to a decrease in NO3
-
 concentrations and a lower value 

of Ndef (as seen in Figure 5.9, Figure 5.10 and Figure 5.11). A pronounced Ndef is 

indicative of a significant loss of fixed nitrogen (either from anammox or 

denitrification) from these regions (Devol, et al., 2006; Chang, et al., 2012; Nagel, et 

al., 2013). However, Rush, et al. (2012) found this NO2
-
 peak to correlate with an 

increase in anammox 16S rRNA copy numbers and ladderane lipids, implying either 

an increase in anammox activity and/or increase in bacterial abundance, perhaps 

indicative of an increase in both anammox and denitrifier activity at this depth. 

Although this study contains no quantitative measurements of anammox bacteria 

(except those inferred by 454 pyrosequencing read abundance), these observations 

by Rush, et al. (2012) would correspond to the change in Ca. Scalindua spp. 

diversity between upper oxycline and upper OMZ sites and core OMZ sites as 

discussed in section 5.5.2.2.4. NH4
+
 concentrations were low (< 2 μM) however 

technical difficulties were experienced in making these measurements and so these 

data may overestimate true concentrations. However these data were not too 

dissimilar to those reported by Rush, et al. (2012) and Chang, et al. (2012) from the 

ETNP OMZ.  

However CCA analyses combined with mantel tests, conducted using these data, 

failed to demonstrate any significant trend between anammox diversity and these 

profile data and as such the hypothesis outlined in section 1.3.2.1.2 concerning the 

environmental factors controlling the diversity of anammox organisms cannot be 
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asserted with these data. The diversity of Ca. Scalindua spp. appears to be 

approximately correlated with O2 (or at least between regions of oxygen deficient 

and anoxic regions) and perhaps higher resolution data (e.g. every 50 m) would be 

required to demonstrate a significant trend with these data. The reasons for the 

distribution of non-Scalindua anammox organisms are also unclear as no observable 

trend is evident (although the actual abundances of these reads are significant within 

the data and so are likely to represent real anammox diversity). Further and more 

extensive research would be required in order to investigate the ecological 

significance and environmental factors of the observed anammox diversity. 

5.5.3. Ca. Scalindua spp. Diversity 

454 pyrosequencing data was compared between Medway Estuary data and ETNP 

OMZ data in order to investigate the diversity of the genus Ca. Scalindua in different 

marine settings. As previously stated, Ca. Scalindua spp. have previously been 

shown to solely inhabit marine environments (Hamersley, et al., 2009; Song and 

Tobias, 2011). However, to date no single study has investigated the diversity of 

these organisms in such different marine settings as estuaries and OMZs, nor has any 

study investigated these environments with the high resolution presented in the data 

of this study. 

Anammox 16S rRNA gene sequences and OTUs obtained from these samples 

indicate that a number of organisms are shared between these two settings. OTUs 

obtained from both the Medway Estuary and ETNP OMZ data were shown to cluster 

together (Figure 5.19) and demonstrated a high degree of similarity to known 16S 

rRNA genes from Ca. S. brodae (Schmid, et al., 2003; van de Vossenberg, et al., 

2008), Ca. S. marina (Brandsma, et al., 2011) and Ca. S. sorokinii (Kuypers, et al., 

2003) which have been previously found in marine environments. Ca. Scalindua 

OTUs obtained from ETNP data appeared to produce a distinct cluster ‘Scalindua 

Group A’ (Figure 5.13), perhaps similar to the “novel subcluster” from the Eastern 

Tropical South Pacific (ETSP) OMZ as suggested by (Galan, et al., 2009). However, 

the alignment of these OTU sequences with data from the Medway Estuary (Figure 

5.19) effectively removed this independent cluster, clustering these OTUs, and those 

from the Medway Estuary, with Ca. S. marina and Ca. S. sorokinii 16S rRNA 

sequences. This may suggest that there may be a degree of phylogenetic diversity 
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between Ca. Scalindua spp. from the ETNP (and potentially other OMZs) and other 

Ca. Scalindua spp. (i.e. those from which the reference sequences have been 

obtained) however Ca. Scalindua spp. from estuarine environments may lie 

somewhere between the two. 

A number of OTUs were however found which were unique to either dataset. Five 

OTUs obtained from the ETNP dataset were found to cluster independently of all of 

the other Ca. Scalindua spp. (including all reference sequences) and represented 

19.57% of the total number of reads. It is unlikely that this cluster represents poor 

quality data as these 5 OTUs represent such a large proportion of reads and so must 

be treated as a true independent cluster. These OTUs were also found in most of the 

sampling sites and depths investigated during this study. However, whether this 

cluster represents a true novel taxa would require further investigation, not least as to 

the reproducibility and seasonality of this cluster (i.e. would it be encountered during 

further investigations of this region). 

Eight OTUs obtained from Medway Estuary data appeared to cluster with reference 

sequences representing Ca. S. wagneri organisms whereas no ETNP OTUs 

demonstrated a high degree of similarity with these sequences. As such these data 

appear to suggest that Ca. S. wagneri is not found in the ETNP OMZ. Ca. S. wagneri 

was first observed in and enriched from a wastewater treatment plant (Schmid, et al., 

2003) but has since been detected in estuarine environments (Amano, et al., 2007; 

Dale, et al., 2009) and a stratified lake (Hamersley, et al., 2009). However, no such 

study on anammox diversity in OMZ environments has reported to find this species. 

As such, Ca. S. wagneri appears to be associated with marine environments, but 

those found closer to terrestrial settings and not in the open ocean. Analysis of the 

distribution of this clade along the Medway Estuary (Figure 5.6) indicates that Ca. S. 

wagneri related OTUs were most abundant at site M5 (29.02% of reads), was present 

at low abundances at M1 and M2 (0.20% and 0.63% of reads respectively) and was 

almost absent (<0.05% of reads) at M7, the most saline of the seven sites. This might 

suggest that Ca. S. wagneri inhabits a mesohaline environmental niche ranging from 

salinities of ~4-10 ppt. However the elucidation of the role of this organism within 

this niche requires further investigation. 
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Nevertheless, these data indicate that the current view that Ca. Scalindua spp. are 

found in marine organisms and non-anammox organisms are not (Hirsch, et al., 

2011) may be overly simplistic and that the ecology of anammox organisms and 

diversity and distribution of the Ca. Scalindua clade is more complex than this. 

Although this has been suggested in previous studies (Hamersley, et al., 2009), this 

study presents the first data of anammox diversity and distribution which samples 

two different environments using exactly the same methodology and thus provides 

the best comparison between these environments. 

5.5.4. Comparison of Anammox Diversity in Estuarine and OMZ 

Environments 

The data presented above demonstrate a depth of study previously unseen in 

investigations of the microbial ecology of anammox bacteria and provides new 

insights into the in situ diversity of these organisms. Furthermore, it is the first study 

to use such an approach to compare two different ecosystems: a temperate estuary 

and a tropical OMZ region. 

The observed diversity was greater in the Medway Estuary than the ETNP OMZ, 

with more OTUs obtained from Medway Estuary. Rarefaction curves for each 

dataset were shown to be plateauing and therefore it is assumed that no significant 

members of the anammox community have been missed in these data. Furthermore, 

the 16S rRNA primers used for this study have been shown to target the entire 

known diversity of anammox bacteria
*
. The ETNP OMZ was dominated by Ca. 

Scalindua spp. whereas the Medway Estuary appeared to show equal abundances 

(over the entire sampled range) of Ca. Scalindua spp. and non-Scalindua anammox 

organisms (dominated by Ca. Brocadia spp.). Evidence for the presence of non-

Scalindua anammox organisms were also observed in the ETNP, dominated by reads 

demonstrating the closest similarity to Ca. Jettenia spp. These observations 

contradict those of Hirsch, et al. (2011), who stated that marine diversity was greater 

than that in freshwater environments, though they used hzo gene sequencing (in 

conjunction with 16S rRNA methods) which have been shown to be unreliable 

markers of phylogenetic diversity (chapter 4). Hirsch, et al. (2011) did however 

                                                 
*
 Though obviously, the potentially for previously undiscovered anammox community members 

cannot be accounted for. 



 

147 

 

observe similar trends as to the distribution of anammox organisms along estuarine 

gradients, comparable with further observations in the literature (Dale, et al., 2009). 

A similar trend in the anammox community, changing from a Ca. Brocadia spp. 

dominated to a Ca. Scalindua spp. dominated community with increasing salinity 

was also observed in a stratified lake environment (Hamersley, et al., 2009). 

Diversity was also observed within the Ca. Scalindua clade between these two 

environments. OTUs associated with Ca. S. wagneri were only observed in the 

Medway Estuary data. Furthermore these organisms were only observed along the 

middle stretch of the estuary (from ~4-10 ppt salinity) suggesting that these 

organisms may be adapted to mesohaline/brackish environments. A cluster of Ca. 

Scalindua spp. (’Scalindua Group B’) were also observed in ETNP OMZ data which 

were not found in the Medway Estuary. This cluster appeared to cluster separately 

from known Ca. Scalindua spp. and was only present in samples from the oxycline 

and upper core of the OMZ. A similar cluster was observed by Galan, et al. (2009) in 

the upper core of the ETSP OMZ (off the coast of Chile), which was also dissimilar 

to known Ca. Scalindua spp., and so this cluster may represent a truly novel Ca. 

Scalindua sp., potentially adapted to low O2 concentrations rather than complete 

anoxia (as encountered in the core of the OMZ). 

These data indicate a level of anammox community structure, distribution and 

diversity which has previously been unreported. The large number of reads gleaned 

from high-throughput sequencing technologies and robust data quality control 

reinforce previous findings within the literature as well as reporting previously 

unseen observations. The presence of non-Scalindua organisms in the ETNP OMZ 

and diversity within the Ca. Scalindua clade suggest that the current opinion that 

anammox organisms are either freshwater or saline adapted may be overly simplistic 

(although salinity may be a significant environmental factor). However, the 

environmental data obtained during this project are insufficient to ascertain the 

driving forces of anammox diversity and distribution and further research is required 

to fully understand the ecology of anammox organisms, preferably combining both 

in-situ and in-vitro studies. 
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5.6. Summary 

 Anammox organisms are environmentally important however we understand 

little about their diversity, distribution and environmental controls in natural 

environments. 

 This study utilised high-throughput sequencing analysis of established and 

validated marker genes for anammox, which accurately represent the 

phylogeny of these organisms, to obtain a comprehensive understanding of 

the diversity and distribution of these organisms in the ETNP OMZ and 

Medway Estuary. 

 Data from the Medway Estuary demonstrated a pronounced change in 

anammox diversity along the estuary, from Ca. Brocadia spp. dominated 

freshwater environments to Ca. Scalindua spp. dominated saline 

environments. 

 Ca. S. wagneri appeared to be adapted to a salinity range from ~4 ppt-10 ppt. 

 The diversity of anammox bacteria along the Medway Estuary (from 

upstream to downstream) was positively correlated with salinity and 

negatively correlated with nutrient concentrations. 

 The ETNP OMZ data demonstrated a change in anammox diversity between 

the upper oxycline and upper core of the OMZ, the core of the OMZ and the 

deep core and bottom oxycline of the OMZ. 

 Two distinct clusters within the Ca. Scalindua clade were observed in ETNP 

OMZ data, one representing known Ca. Scalindua spp. and one representing 

a potentially unidentified group of organisms which were not observed in the 

anoxic core of the OMZ. 
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 Evidence was also found for the presence of non-Scalindua anammox 

organisms in the ETNP though these were typically of low abundance and 

not ubiquitously dispersed in the OMZ. 

 These findings elucidate the distribution and diversity of anammox 

organisms in these environments but further research is required to fully 

understand the controlling factors and ecology of these organisms. 
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6. Investigation into the Potential for Organic Routes to 

Anammox 

6.1. Introduction 

6.1.1. Metabolic Diversity of Anammox 

The potential for an anammox-like reaction was first predicted thermodynamically 

by (Broda, 1977) following observations of NH4
+
 anomalies in anoxic basins 

(Richards, 1965; Richards, et al., 1971). However, it was not until much later that 

the reaction was discovered in a wastewater treatment plant in The Netherlands 

(Mulder, et al., 1995). Soon after, the microorganisms responsible for this process 

(see chapter 1) were characterised (van de Graaf, et al., 1995) and were discovered 

to be autotrophic bacteria, solely using CO2 for biomass and energy (Van de Graaf, 

et al., 1996). To date, anammox organisms are still described as 

chemolithoautotrophs, gaining energy solely from the catabolism of inorganic 

compounds (namely NH4
+
 and NO2

-
) to fix inorganic carbon via the acetyl coenzyme 

A (acetyl-CoA) pathway (Russ, et al., 2012; van Niftrik and Jetten, 2012). This 

pathway to anammox has been proven both experimentally (van de Graaf, et al., 

1997; Kartal, et al., 2011b) and through genomic studies (Strous, et al., 2006; Gori, 

et al., 2011; Hira, et al., 2012; Hu, et al., 2012; van de Vossenberg, et al., 2012). 

However, this view appears to be overly simplistic and anammox bacteria appear to 

have far more diverse metabolic capabilities than previously thought (Kartal, et al., 

2008). Anammox organisms have been shown to be able to use ferrous iron (Fe
2+

) or 

organic acids such as propionate, acetate and formate as electron donors (Güven, et 

al., 2005; Kartal, et al., 2007a; Kartal, et al., 2007b; Gori, et al., 2011; van Niftrik 

and Jetten, 2012) and can use ferric iron (Fe3
+
) and manganese oxide (MnO) as 

electron acceptors (Strous, et al., 2006; Kartal, et al., 2008). Furthermore Kartal, et 

al. (2008) found Ca. Brocadia fulgida to be capable of oxidising methylamines, 

releasing NH4
+
 in the process. However, it is maintained that anammox bacteria 

retain their autotrophic lifestyle, only fixing CO2 into biomass and not organic 

carbon sources (Kartal, et al., 2008). Güven, et al. (2005) stated that propionate was 

oxidised to CO2 which was then fixed by anammox bacteria, however they also 

claimed that the anammox organisms may have also directly incorporated some of 
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the propionate into biomass. Ca. K. stuttgartiensis has also been found to be capable 

of DNRA (Kartal, et al., 2007a), further highlighting the potential metabolic 

diversity of these organisms.  

To date, such investigations into the potential metabolic diversity of anammox 

organisms have only been conducted on enrichment cultures from wastewater 

treatment plants. There does not appear to be any reports in the literature of similar 

studies being conducted on in situ organisms. As such the ability to oxidise organic 

compounds has only been observed in anammox organisms belong to the genera Ca. 

Anammoxoglobus, Ca. Brocadia and Ca. Kuenenia (Kartal, et al., 2008). Kartal, et 

al. (2008) suggested that anammox bacteria have a high degree of evolutionary 

divergence and hence could occupy distinct ecological niches, insinuating a 

difference between Ca. Scalindua spp., incapable of oxidising organic substrates and 

other anammox organisms which possess this ability. However it is yet to be shown 

that Ca. Scalindua spp. are obligate autotrophs. 

6.1.2. Scientific Rationale 

Clearly, the current characterisation of anammox bacteria as being solely 

chemolithoautotrophic does not represent the metabolic diversity of these organisms 

which has been previously described. Recently, Karlsson, et al. (2009) suggested 

that anammox bacteria should not be thought of as specialists, but rather as 

generalists, utilising different metabolic pathways to survive in a wide range of 

ecological niches and under different environmental stresses. Indeed, anammox 

bacteria have been found to be active in a diverse range of environments, extending 

from low to high salinities, from sub-zero to temperatures in excess of 60°C and in a 

wide range of substrates including terrestrial soils, sediments, pelagic waters (both 

free floating and as part of particulate aggregates), groundwater, permafrost, 

estuarine and lacustrine environments (see chapter 1). It would be unreasonable to 

presume that such dissimilar environments would be inhabited by a narrow suite of 

organisms with restricted metabolic capabilities. Furthermore, a completely 

inorganic based metabolism may restrict anammox bacteria in certain environments 

(e.g. sediments) where the high availability of organic substrates could result in these 

organisms being out-competed by denitrifiers, especially as a solely 

chemolithoautotrophic metabolism requires 15 anammox reactions in order to fix 
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one mole of CO2 (van Niftrik and Jetten, 2012). Kuypers, et al. (2006) further stated 

that organic compounds cannot be excluded as either a potential carbon or energy 

source for anammox.  

Karlsson, et al. (2009) further discussed that anammox bacteria showed a much 

higher degree of genetic diversity than other bacteria with the Ca. K. stuttgartiensis 

genome containing approximately 200 genes involved in anammox catabolism and 

respiration. Furthermore it is evident from the literature that anammox organisms 

have many genes with currently unknown functions or regions of their genome 

which are yet to be sequenced (e.g. see Strous et al., 2006). Horizontal gene transfer 

(HGT) has been shown to be an increasingly important in bacterial genetic diversity 

(Ochman, et al., 2000; McDaniel, et al., 2010). Considering that anammox bacteria 

coexist in environments with a diverse consortia of other bacteria (Byrne, et al., 

2008; Li, et al., 2010a) and that they may be have developed early in The Earth’s 

history (Klotz, et al., 2008; Klotz and Stein, 2008) the potential for HGT is high. 

Hence anammox may have acquired a greater metabolic diversity through this 

method. Indeed, Russ, et al. (2012) recently discovered genes from anammox 

bacteria more closely associated with methanogenic bacteria, potential suggesting 

the sharing of genetic material between such organisms. Clearly there is a high 

potential for a greater metabolic diversity of these unique organisms than previously 

described. 

However, to date, no evidence has been presented that anammox can directly utilise 

organic substrates in natural environments. Recently, Trimmer and Purdy (2012) 

discovered that organic nitrogen from allylthiourea (ATU) was converted with NO2
-
 

into N2 gas by a biological process in the Arabian Sea oxygen minimum zone 

(OMZ). This process appeared to have a 1:1 stoichiometry as in the anammox 

reaction (Trimmer and Purdy, 2012). Furthermore, anammox organisms have 

previously been shown to be present and active in the Arabian Sea OMZ (Nicholls, 

et al., 2007; Woebken, et al., 2008). ATU is a hydrocarbon containing two amine 

groups at positions 1 and 3 along the carbon chain (Figure 6.1). Hence, Trimmer and 

Purdy (2012) concluded that anammox, or an anammox-related bacteria could be 

responsible for this coupling of an amine group from ATU and NO2
-
. This discovery 

was made as ATU was added to incubations as an inhibitor of nitrification (Trimmer 
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and Purdy, 2012). However, due to the serendipitous nature of this discovery, further 

observations either into this reaction or the microbial consortia responsible for it 

could not be made. Therefore, further research was needed in order to confirm the 

existence to such a pathway to the anammox reaction. This study aimed to 

investigate the microbial potential for “organammox” or organic pathways to the 

anammox reaction. 

 

Figure 6.1: Molecular structure of allylthiourea (ATU), urea and dimethylamine (DMA).  Urea and 

dimethylamine were chosen for this experiment as both are common organic substrates in the environment and 

shared similar functional groups with ATU. 

6.1.3. Hypotheses 

ATU is not a compound commonly found in the natural environment. However it 

was hypothesised that the potential for an anammox-like reaction to utilise this 

compound would suggest that the organisms responsible for this reaction may 

potentially utilise other analogous compounds. For the purpose of this investigation 

two compounds were chosen; urea and methyl-amine (Figure 6.1). Both of these 

compounds are abundant in the natural environment (Fitzsimons, et al., 2001; 

Sliekers, et al., 2004) and contain available amine groups.  

It was hypothesised (see section 1.3.2.2.2), that if anammox could utilise organic 

substrates, this would occur in one of two ways: 

a) A syntrophic relationship with other micro-organisms 

Allylthiourea (ATU)

Urea Dimethylamine
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b) Direct utilisation of organic nitrogen or carbon by anammox 

organisms 

 

Figure 6.2: Hypothetical models showing potential organic routes to anammox.  a) Classic 

chemolithoautotrophic anammox. b) Syntrophic pathway to anammox. c) Direct pathway to anammox. See text 

for full discussion. 

As discussed above, classic anammox is defined as a solely chemolithoautotrophic 

process mediated by a unique suite of strictly anaerobic bacteria (van Niftrik and 

Jetten, 2012). One molecule of NH4
+
 is oxidised to one molecule of N2 with one 

molecule of NO2
-
, providing the energy required to fix CO2 (Figure 6.2)

*
. The classic 

anammox reaction requires the acquisition of freely available dissolved inorganic 

nitrogen (DIN) from the environment. 

Most DIN is originally derived from organic matter which has been liberated by 

heterotrophs in the environment. The environment is inhabited by numerous 

microbial consortia operating within different ecological niches. The interactions of 

such microorganisms, both between themselves and the environment, are often 

overlooked when investigating microbial ecology. Therefore anammox bacteria may 

                                                 
*
 See chapter 1 for a full discussion of the anammox reaction and biochemistry. 
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oxidise liberated amine groups (released as NH4
+
) from organic compounds as a 

waste product of other microorganisms (Figure 6.2), e.g. methanogens release NH4
+
 

as a waste product from breaking down methyl-amines. Anammox could therefore 

operate within a syntrophic relationship with such organisms, feeding off waste N-

compounds while potentially aiding their syntrophic partner by reducing the toxic 

effect of high NH4
+
 concentrations. If this were true, a close spatial relationship 

might be expected between anammox and potential syntrophic partners. This would 

potentially explain the findings of Trimmer and Purdy (2012), as anammox, if 

forming aggregates with other microorganisms, would preferentially utilise liberated 

NH4
+
 from organic substrates over DIN as this source of NH4

+
 would exhibit a 

higher degree of bioavailability. This would explain the low measurements of 
29

N2 

from incubation with 
15

NO2
- 
and 

14
NH4

+ 
and far greater values when amended with 

15
NO2

- 
and 

14
NH4

+ 
and ATU (Trimmer and Purdy, 2012). There are also further 

reports in the literature suggesting that anammox may be found within flocs of 

microorganisms and particulate matter within open waters and exhibit close 

relationships with other microorganisms (Woebken, et al., 2007; Quan, et al., 2008; 

Hu, et al., 2012). 

Alternatively, anammox bacteria may have the ability to catabolise organic nitrogen 

directly (Figure 6.2). Genomic and transcriptomic studies on anammox organisms 

have been severely limited by the inability to grow these organisms in pure culture 

(Jetten, et al., 2009). Although the metabolic pathway of the anammox reaction has 

been empirically proven (Kartal, et al., 2011b), there remains much discrepancy in 

the literature as to the genomic information available for these novel bacteria and 

many sequenced genes have yet to be assigned a function. Furthermore, anammox 

organisms have a far greater catabolic gene diversity than other bacteria (Karlsson, et 

al., 2009) potentially suggesting a far greater metabolic diversity than hitherto 

thought. Therefore, anammox may be essentially mixotrophic, capable both of the 

classical chemolithoautotrophic anammox reaction and of utilising organic substrates. 

The presence of mixotrophic anammox organisms may lead to the discovery on new 

anammox organisms, potentially outside of the anammox diversity previously 

reported. However, the potential for the direct utilisation of organic carbon by 

anammox bacteria is, as of yet, unproven and so how such a process may occur is 

entirely speculative. 
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6.2. Methodology 

6.2.1. Overview 

SIP experiments were carried out in order to investigate the potential for organic 

pathways to the anammox reaction. Microcosms were set up at the locations and 

sites discussed in section 2.4 (see also Table 2.6). 

Initially, a pilot study was conducted on sediment collected from the Medway 

Estuary site M6 collected on 15/02/2011 in order to investigate the potential for 

organammox in these sediments and to highlight potential issues which may arise 

from the chosen methodology and experimental plan. Sediment from this site was 

chosen as it had previously demonstrated the highest anammox rates along the 

Medway Estuary (Nicholls and Trimmer, 2009). The pilot study did not involve a 

complete suite of controls (e.g. addition of unlabelled substrates) in order to facilitate 

sample processing and analysis. As such only no addition controls were used in 

conjunction with experiments labelled with 
13

C DMA and urea. 

Following the pilot study, two subsequent experiments were carried out investigating 

the potential for the existence of this process (see Table 2.2). Experiment 1, set up 

with sediment collected on 25/07/2011, incorporated incubations amended with 
12

C 

and 
13

C DMA, TMA and urea with no addition controls. In addition, experiments 

were set up with double the concentration of urea and DMA in order to investigate 

whether the use of greater substrate concentrations aided downstream analysis and 

amplification of 
13

C DNA. Experiment 2, set up with sediment collected on 

15/03/2012, investigated the potential for the incorporation of organic carbon into 

anammox biomass at sites M1 and M6. Incubations were set up amended with 
12

C 

and 
13

C DMA and urea with no addition controls (see Table 2.6). 

The varying conditions and concentrations of substrates used in these experiments 

and the date of sample collection can be seen in Table 2.6. Experiments were carried 

out as outlined in the following sections and in chapter 2. 
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6.2.2. Microcosm Set-up – Sediments 

6.2.2.1. Set-up 

5 cm
3
 sediment cores were taken in triplicate (within a 10 cm radius) from estuarine 

sediment at the low-water mark and transported back to the laboratory in cool-bags. 

Samples for environmental population analysis were also taken at this time from 

which pore water was extracted. 5 ml of this pore water was added to each 5 cm
3
 of 

sediment in a glass serum bottle. 

Slurries were amended with either 
12

C or 
13

C labelled di-methylamine (DMA), tri-

methylamine (TMA)
*
 or Urea (Table 2.6). All labelled isotopes were 99.9% labelled 

and were supplied by Sigma-Aldrich, UK. Microcosms were spiked with 100 μl of 

1M solutions (final concentration 0.01 M
†

) which had been filter sterilised. 

Microcosms were sealed with a butyl stopper and crimped with an aluminium seal. 

Headspace was flushed with oxygen-free-nitrogen (OFN) via a hypodermic needle, 

with a second needle as an outflow, for approximately 20 minutes. The outflow was 

removed before the inflow to create a slight positive pressure and to prevent 

potential back-flow of oxygenated air. Microcosms were incubated at room 

temperature in the dark for approximately three weeks (see section 6.3.1.2) at which 

point they were frozen at -20°C until analysis. 

6.2.2.2. Gas Chromatography 

CH4 concentrations in headspace gases from microcosms amended with 

methylamines (either DMA or TMA) were measured periodically during incubation 

in order to determine when the substrates had been completely utilised and therefore 

when would be a suitable time to terminate the experiment. CH4 measurements were 

taken using an Agilent 6890N gas chromatograph (GC) with a flame ionisation 

detector (FID) and a Porapak-Q (2 m x 3 mm) column (Waters, USA). A nitrogen 

(N2) carrier gas was used (BOC, UK). The injector temperature was set to 180°C, the 

detector to 250°C and the column temperature to 90°C. 0.1 ml of headspace gas was 

                                                 
*
 It was hypothesised that if the anammox reaction could use product from methyl-amines the 

mechanism for utilising different methyl-amines would be similar and therefore different compounds 

(either DMA or TMA) were used interchangeably. However, in one experiment solely one or the 

other compound was used, variation only existed between experiments conducted on samples 

collected at different times. 
†
 Some experiments were amended with 0.02 M of substrate (see Table 2.6). 
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injected directly into the injector using a syringe, needle and a Supelco Mininert 

valve (Sigma-Aldrich, UK). Headspace gas measurements for each microcosm were 

taken in triplicate. 

6.2.3. Microcosm Set-up – Marine 

Water was captured at specific depths (Table 2.6) using a deck-controlled CTD with 

a Niskin rosette. On deck, water was extracted from Niskins in triplicate directly into 

1 L serum bottles using PVC tubing. Tubing was inserted into the bottom of the 

serum bottle and allowed to fill up 3 times. The tubing was removed allowing that 

the serum bottle to be overfilled and a butyl stopper carefully inserted so as to 

prevent oxygenated air entering the serum bottle. Serum bottles were crimped with 

aluminium seals. A 4 ml headspace of He was introduced into each serum bottle. 

Microcosms were amended with TMA or urea (final concentration 100μM). 

Microcosms were also set-up with both TMA/urea and NO2
-
 (final concentration 25 

μM). Microcosms were incubated at 4°C (the in-situ temperature) for approximately 

2 weeks at which point they were filtered through 0.2 μm poly-carbonate filter 

(Whatman, USA) using a vacuum pump and flash frozen in liquid nitrogen prior to 

DNA extractions. 

6.2.4. DNA Extraction 

DNA was extracted from both sediment and marine microcosms using the protocol 

outlined in Purdy (2005). DNA was extracted from approximately 5 g of wet 

sediment or the entire polycarbonate filter
*
 (depending on microcosm substrate). The 

protocol was followed exactly as in Purdy (2005) except that, after the removal of 

proteins, hydroxyapatite columns were washed with 150 mM K2HPO4 in order to 

remove RNAs. DNA was then eluted from hydroxyapatite columns using 300 mM 

K2HPO4 and purified as per the protocol. DNA was not purified via PEG 

precipitation, as this tended to result in a loss of DNA and thus may have been 

detrimental to the SIP protocol. 

                                                 
*
 There was not a sufficient amount of biomass on half a filter after SIP incubations to obtain a 

suitable yield and therefore extractions were conducted on the whole filter (c.f. chapter 2). 
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6.2.5. SIP Fractionation 

Samples were fractionated in order to separate heavy (
13

C-labelled) and light (
12

C-

labelled) DNA as outlined by (Neufeld, et al., 2007) to identify organisms which had 

assimilated carbon from labelled organic sources. The densities of fractions were 

measured using a AR200 digital refractometer (Reichert, USA) to ensure that density 

gradients had formed correctly during centrifugation. Separation of 
12

C and 
13

C 

fractions was expected to be observed at densities ≈1.7250 g ml
-1

 (Neufeld, et al., 

2007). Fractions were then PEG precipitated (see section 2.4.5). For a full 

description of the SIP protocol used in this study see chapter 2. 

6.2.6. PCR 

6.2.6.1. 16S rRNA primers 

PCR was performed on purified SIP fractions as outlined in chapter 2. To amplify 

product from these samples it was necessary to perform a nested PCR, using Pla46F 

& 1390R as a first round PCR followed by Amx368F & Amx820R, as DNA 

concentrations were frequently low. 

6.2.6.2. hzo Primers 

DNA from selected SIP fractions (representing suspected 
12

C and 
13

C containing 

fractions from Urea and DMA incubations) was also amplified using primers 

targeting hzo genes in order to investigate whether the diversity of this gene 

represented metabolic, rather than phylogenetic diversity. DNA was amplified using 

a nested PCR approach as it proved difficult to amplify from these SIP samples 

directly with a single round approach, potentially due to low yields of target DNA 

after fractionation (see section 6.3). As such a first round PCR using primers HZO4F 

& HZO1R was conducted before amplification with “hzo cluster 1” specific primers 

hzocl1F1l & hzocl1R2. This methodology is similar to that outlined in Hirsch, et al. 

(2011) except that primer hzocl1F1l was used instead of hzocl1F1 based on the 

results presented in chapter 4. PCR was performed as outlined in chapter 2. 
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6.2.7. DGGE 

PCR products were analysed using DGGE to investigate community shifts in the 

anammox population between heavy and light DNA fractions (Schafer and Muyzer, 

2001). Samples to be analysed by this method were amplified as per the standard 

PCR protocol except that primer Amx368F was substituted with the same primer 

with a GC clamp attached to the 5’ end (Amx368F-GC see Table 2.1). 

Polyacrylamide gels were stained for 30 minutes using ethidium bromide and then 

destained for 30 minutes in pure water, both with gentle shaking. Polyacrylamide 

gels were viewed using a UV gel imager. 

6.2.8. Sequencing 

In order to identify notable bands from DGGE gels, bands were excised from 

polyacrylamide gels for sequencing. Poor results were experienced using the 

commercial gel extraction kit (Qiagen, UK). As such the gel extraction protocol 

described by Schafer and Muyzer (2001) was used. 1 μl of supernatant was amplified 

via PCR using primers Amx368F & Amx820R (see section 2.3.2.1). PCR product 

was cloned into the vector pGEMT-Easy (Promega, UK) and transformed into 

JM109 competent E. coli cells (Promega, UK) as per the established protocol (see 

section 2.3.3 for full details). Clones were grown overnight at 30°C on LAXI plates 

and white colonies selected. Colonies were boiled for 10 minutes and then amplified 

via PCR with primers M13F and M13R (see chapter 2.3.3) in order to check that the 

colony contained an insert of the correct size. M13 PCR product was purified and 

submitted to GATC, UK for Sanger sequencing from both ends of the read. Reads 

were checked manually for errors and contigs assembled using SeqMan II 

(DNASTAR, USA). Alignments and phylogenetics were conducted using Mega 4.0-

5.1 (Tamura, et al., 2007; Tamura, et al., 2011). 

6.2.9. 454 Pyrosequencing 

Some samples were also submitted for 454 pyrosequencing in order to determine the 

diversity in heavy and light DNA fractions. Samples were submitted as outlined in 

section 2.4.9. Clusters were defined at a similarity cut-off value of 95%. Clusters 

were identified via inference after phylogenetic analysis of reference sequences from 

each cluster with published sequences from NCBI (see section 2.3.5.2.2), i.e. if the 
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reference sequence for a particular cluster was shown to have the greatest similarity 

with a group of known anammox sequences (e.g. Ca. Kuenenia spp.), it was inferred 

that this cluster represented these organisms. 

6.3. Results 

6.3.1. Pilot Study 

6.3.1.1. Overview 

Initially a pilot study was conducted on sediment collected from Medway Bridge 

Marina site M6 (Figure 2.2) on 15/02/2011 in order to test the above experiment 

procedure and identify potential areas which required optimisation prior to a more 

comprehensive experiment. Microcosms were incubated with either 
13

C-labelled 

DMA or 
13

C-labelled urea in triplicate. No addition controls were also set-up in 

triplicate.  Killed controls were not performed during this experiment as, due to the 

speculative nature of the hypotheses being tested, it was not imperative at this stage 

to investigate whether organic substrates were being degraded biotically or 

abiotically, only whether these organic substrates were made available for anammox 

organisms (or their syntrophic partners) to utilise. 

6.3.1.2. Loss of Substrates 

The production of CH4 in pilot experiment microcosms amended with DMA was 

measured during incubation in order to aid the assessment of when to terminate the 

experiment
*
.  

Figure 6.3 shows the production of CH4 in pilot microcosms over the period of 

incubation. After an initial lag phase of 5-7 days, CH4 production increased rapidly 

in DMA amended microcosms. After 13-14 days the production of CH4 appeared to 

plateau with a maximum concentration of 578.47 ± 44.36 ppb ml
-1

 of headspace gas. 

In comparison, no CH4 was seen to accumulate in “no addition” microcosms over 

this period (Figure 6.3) indicating that the increase in CH4 concentrations in DMA 

amended microcosms was likely to be as a result of the degradation of DMA. 

                                                 
*
 At the time of experimentation no method was available within the laboratory for measuring the loss 

of urea in these substrates and therefore it was assumed (if a similar consortia of organisms utilised 

both urea and methylamines in similar ways) that urea would be utilised at a similar rate to DMA. 
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Therefore, on the basis of these data, it was decided to terminate these experiments at 

approximately 3 weeks, a week after it appeared as if all the 
13

C labelled substrate 

had been utilised. 

Attempts were made to determine what percentage of amended DMA had been 

converted to CH4 (and therefore what proportion had been incorporated into 

biomass) though these were unsuccessful, presumably due to the low accuracy of 

this instrument and difficulties associated with accurately determining the volume of 

gas in the microcosm. 

CH4 measurements were also taken during the incubation of Medway Estuary SIP 

experiments 1 and 2 (see Table 2.6). These demonstrated similar results (i.e. 

plateauing of CH4 production after ~14 days) to those of the pilot study and hence 

are not presented in this thesis. 
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Figure 6.3: Concentration of CH4 (ppm) in headsace gas frompilot SIP microcosms. Figure shows the 

production of CH4 in 0.1 ml headspace gas from pilot SIP microcosms amended with DMA. Error bars represent 

standard errors from triplicate measurements of each microcosm (3 microcosms per incubation in total). CH4 

production was measured as an indicator of when all DMA in the microcosm had been utilised and hence when 

was a suitable time to terminate the experiment. After an initial lag phase of 5-7 days, CH4 production in DMA 

amended microcosms (red) increased rapidly until day 13 at which point it began to plateau. In comparison, CH4 

was not seen to accumulate in any of the no addition (blue) microcosms demonstrating that CH4 was not 

produced in Medway Estuary M6 sediments under anaerobic conditions. Therefore the increase in CH4 

concentrations observed in DMA amended microcosms is a result of the conversion of DMA. Therefore it was 

decided to terminate this experiment at approximately 3 weeks. 

6.3.1.3. Fractionation 

Following DNA extraction and centrifugation samples were fractionated to separate 

heavy and light DNA fractions. Fraction densities, calculated after fractionation, are 

represented in Table 6.1. Frequently the density gradient was truncated, as the 

mixing of water with CsCl during the end of fractionation produced lower density 

readings. These erroneous data were omitted when calculating gradients (Table 6.1). 

In most samples the density gradient is constant between all fractions indicating that 

all fractions have remained intact and that there has been no (or at least little) mixing 

of DNA from different fractions. However, in 
13

C-DMA 2, issues encountered 

during fractionation resulted in lower observed densities though these still formed a 

reasonable gradient and so this sample was included in downstream analysis. 

-1000

9000

19000

29000

39000

49000

59000

69000

0 2 4 6 8 10 12 14 16 18 20

T
o

ta
l C

H
4
(p

p
m

) 
in

 0
.1

 m
l 
o

f 
h

e
a

d
s

p
a

c
e

 g
a

s

Day

No Addition

DMA



 

164 

 

 

Table 6.1: Table showing densities of fractions from SIP samples.  Fractions show that density gradients 

remained intact during fractionation and therefore there was minimal mixing of DNA from these fractions. Due 

to issues experienced during fractionation (see main text), density measurements from fraction 12 in samples No 

Addition 1-3, 13C DMA 1 & 3 and 13C Urea 1-3 were deemed anomalous and excluded from gradient 

calculations. Due to further complication associated with the fractionation of samples 13C DMA 2, fractions 8, 

10 and 11 were excluded from gradient calculations. 

 
Density (g/ml) 

Fraction 
No 

Addition 
1 

No 
Addition 

2 

No 
Addition 

3 

13
C 

DMA 1 

13
C 

DMA 2 

13
C 

DMA 3 

13
C 

Urea 1 

13
C 

Urea 2 

13
C 

Urea 3 

1 1.7461 1.7438 1.7449 1.7472 1.7427 1.7449 1.7449 1.7472 1.7438 

2 1.7438 1.7427 1.7438 1.7461 1.7393 1.7438 1.7427 1.7438 1.7427 

3 1.7416 1.7404 1.7404 1.7427 1.7359 1.7404 1.7393 1.7416 1.7404 

4 1.7382 1.7370 1.7370 1.7393 1.7325 1.7370 1.7359 1.7370 1.7370 

5 1.7337 1.7325 1.7348 1.7370 1.7269 1.7337 1.7303 1.7337 1.7337 

6 1.7303 1.7292 1.7292 1.7325 1.7224 1.7292 1.7269 1.7292 1.7303 

7 1.7247 1.7258 1.7258 1.7280 1.7190 1.7258 1.7224 1.7258 1.7258 

8 1.7213 1.7213 1.7213 1.7247 1.6650 1.7213 1.7179 1.7202 1.7224 

9 1.7179 1.7168 1.7179 1.7213 1.7134 1.7179 1.7134 1.7179 1.7190 

10 1.7145 1.7145 1.7156 1.7179 1.6965 1.7134 1.7100 1.7145 1.7156 

11 1.7111 1.7123 1.7111 1.7145 1.4363 1.7111 1.6773 1.7089 1.7100 

12 1.6683 1.6683 1.6548 1.6796 N/A 1.6650 1.2561 1.5805 1.5647 

          
Mean 1.7294 1.7288 1.7293 1.7319 1.7290 1.7290 1.7237 1.7291 1.7292 

Gradient -0.0037 -0.0035 -0.0035 -0.0034 -0.0038 -0.0036 -0.0054 -0.0038 -0.0034 

Intercept 1.75 1.75 1.75 1.75 1.75 1.75 1.76 1.75 1.75 

R
2
 0.9937 0.9903 0.9922 0.9938 0.9917 0.9940 0.8480 0.9958 0.9888 
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Figure 6.4: DGGE images for No Addition replicates from pilot SIP experiment.  Fractions are labelled 1 to 12, corresponding with table PILOT_1 (i.e. Fraction 1 is the highest density and 

fraction 12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. Highlighted bands are those from which bands were sequenced and 

band names and colours are the same as those in Figure 6.7.  No clear enrichment between 12C and 13C containing fractions is evident. 
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Figure 6.5: DGGE images for DMA replicates from pilot SIP experiment.  Fractions are labelled 1 to 12, corresponding with table PILOT_1 (i.e. Fraction 1 is the highest density and 

fraction 12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. Highlighted bands are those from which bands were sequenced and 

band names and colours are the same as those in Figure 6.7. A community shift is evident between 13C and 12C fractions (fractions 7 and 8) in replicate 2 though this was not observed in the 

other two replicates. 
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Figure 6.6: DGGE images for Urea replicates from pilot SIP experiment.  Fractions are labelled 1 to 12, corresponding with table PILOT_1 (i.e. Fraction 1 is the highest density and fraction 

12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. Highlighted bands are those from which bands were sequenced and band names 

and colours are the same as those in Figure 6.7. A community shift is evident between 13C and 12C containing fractions (fractions 7 and 8) in replicate 1. A similar community shift may also be 

observed in replicate 2 (fractions 5 and 7) though this is less apparent. No change in the anammox community was observed in replicate 3. 
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6.3.1.4. PCR and DGGE of 16S rRNA Genes 

DNA purified from SIP fractions was amplified via PCR. Due to the low yields of 

DNA obtained after fractionation, it was necessary to perform a nested PCR, as 

outlined in section 6.2.6, in order to amplify anammox 16S rRNA genes from these 

samples. It was not possible to amplify DNA from all fractions and, in general, those 

which were amplified were from less-dense fractions (i.e. towards fraction 12). This 

was as expected as DNA should have collected towards the top half of the 

ultracentrifuge tube during centrifugation (Neufeld, et al., 2007). Amplification of 

DNA from lower fractions (i.e. fractions 1-3) was probably due to a smearing effect 

of DNA throughout the ultracentrifuge tube (see section 6.4.2.2 for full discussion).  

All samples which were amplified via the standard anammox PCR were also able to 

be amplified using anammox specific DGGE-primers. Images of DGGE gels from 

this pilot study can be seen in Figure 6.4, Figure 6.5 and Figure 6.6. 

All three “no addition” replicates (No Addition 1-3) did not demonstrate any clear 

community change between fractions that would have been expected to contain 
13

C-

labelled and unlabelled DNA. Amplification efficiencies of these samples appeared 

to be poor with low yields of DNA, even after two rounds of PCR. Thus, these data 

show that there was no enrichment of DNA in 
13

C fractions with no addition of 

labelled substrate. Thus, any enrichment observed in 
13

C amended samples is likely 

to be as a result of incorporation of 
13

C into microbial DNA. 

It is important to note that the expected density of 
13

C-labelled DNA (i.e. 1.725 g ml
-

1
) is only an approximation and will vary slightly based on the mass of DNA of the 

particular organisms involved. Hence, such experiments conducted on a diverse, in 

situ community are unlikely to produce clear and definitive trends. However, the 

separation between 
12

C and 
13

C bearing fractions was commonly insinuated (Neufeld, 

et al., 2007) to be between fraction 6 and 7 or 7 and 8.  

Fractions from DMA replicate 1 (DMA-1) also demonstrated poor amplification 

efficiencies. Regardless, two clear bands (or groups of bands) can be observed in 

fractions from this sample. DMA replicates 2 and 3 (DMA-2 and DMA-3) exhibited 

much greater yields after PCR amplification. DMA-2 appears to show a community 

shift between fractions 6 and 7, approximately where heavy and light DNA would be 
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expected to diverge. However, DMA-3 did not demonstrate a clear community 

change between these fractions, though the lower of the two bands did seem to be 

enriched compared with other samples, perhaps indicating greater numbers of these 

anammox organisms in this microcosm (however caution must be used when 

comparing bands from different DGGE gels).  

Urea amended samples showed similar results. Again these samples appeared to 

show a greater amplification efficiency compared with no addition controls, 

potentially suggesting a greater amount of target DNA in these samples (however 

this can only be inferred with the present data). Replicate 1 (Urea 1) shows a clear 

community change between fractions 7 and 8, similar to that observed in DMA 2. 

Urea-2 may also show such a trend though this is less clear due to the absence of 

DNA in fractions 4 and 6. However, Urea-3 exhibits no discernible trend in the data 

though it was only possible to amplify DNA from fractions 9, 10 and 11 from this 

sample which represent 
12

C bearing fractions. 

6.3.1.5. 16S rRNA Clone Library of Notable Bands from DGGE 

Notable bands from the DGGEs described above (Figure 6.4, Figure 6.5 and Figure 

6.6) were excised from DGGE gels and sequenced as outlined in section 6.2.8 in 

order that potential anammox community changes, observed within the data, might 

begin to be investigated. Initially 20 bands were selected representing bands from 

fractions suspected of containing 
12

C and 
13

C DNA as well as no addition controls. 

Single colonies from cloning were sequenced in both the forward and reverse 

direction in order to obtain sequence data for the entire 16S rRNA region amplified 

by primers Amx368F & Amx820R. 6 bands/clones produced poor sequencing data 

and so were removed from the analysis. The remaining 14 sequences were processed 

as outlined in section 6.2.8. 
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Figure 6.7: 16S rRNA phylogenetic tree of bands excised from DGGE gels from pilot SIP investigation.  

Bands excised from 12C fractions were found to cluster within the genus Ca. Scalindua whereas 13C fractions 

appeared to cluster with the remaining anammox genera, suggesting that 13C-labelled organic substrates had been 

assimilated into biomass by non-Scalindua organisms. Phylogenetic tree was calculated and built in MEGA 5 

(Tamura, et al., 2011). Phylogenetic tree was calculated using a neighbour-joining methodology using a p-

distance model. 1000 bootstrap replications were calculated as a test of phylogeny. Branch labels represent the 

percentage of bootstrap trees which demonstrated this phylogenetic relationship. Scale bar represents a 2% 

sequence divergence. 

Figure 6.7 shows the phylogenetic relationship of these sequences with other known 

anammox sequences. All sequences fall within the anammox clade, as would be 

expected with these PCR primers (see chapter 3). Sequences obtained from 
12

C 

bearing fractions (labelled green in Figure 6.7), which correspond with ‘DGGE 

Cluster A’, all clustered with 16S rRNA genes related to Ca. Scalindua spp. 

NoAdd1 B
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Candidatus Scalindua sorokinii (AY257181.1)
Candidatus Scalindua brodae clone (AY254883.1)
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Sequences obtained from 
13

C DNA fractions (red in Figure 6.7), ‘DGGE Cluster B’, 

however, showed a high degree of similarity to non-Scalindua anammox organisms, 

specifically Ca. Brocadia spp. and Ca. Kuenenia spp.  

Sequences obtained from no addition controls clustered with both Ca. Scalindua spp. 

and non-Scalindua anammox 16S rRNA sequences, suggesting that non-Scalindua 

organisms are present in detectable quantities in these samples prior to the addition 

of these substrates. 

6.3.1.6. 454 Pyrosequencing of 
12

C and 
13

C Enriched Fractions 

Selected fractions from the pilot SIP experiment were amplified via 16S rRNA PCR, 

specific for anammox bacteria, and submitted for 454 pyrosequencing in order to 

investigate whether the relationships observed in the sequencing of bands from 

DGGE remained true with the application of more stringent measurements of 

ecological diversity. 

4 fractions from 2 samples were chosen for analysis: DMA-2 fractions 6 and 7 and 

Urea-1 fractions 5 and 8. A total of 64,923 raw pyrosequencing reads were obtained 

of which 28,785 passed quality control. Reads were clustered into OTUs at a cut-off 

of 95% sequence similarity. OTUs representing less than 0.1% of the total number of 

reads (5 OTUs, representing a total of 23 reads) were omitted from the analysis 

leaving 10 OTUs for downstream analysis. 

As can be seen from Figure 3.1, heavy, 
13

C-labelled DNA fractions were dominated 

by reads belonging to non-Scalindua anammox organisms. Non-Scalindua anammox 

organisms were identified as such as, after phylogenetic analysis of these clusters 

with reference sequences from the NCBI database, these clusters appeared to cluster 

outside the Ca. Scalindua spp. 16S rRNA clade but neither did they cluster closely 

with known, non-Scalindua anammox. These clusters may represent a previously un-

reported anammox clade, potentially capable of heterotrophic anammox, however it 

would be impossible to assert this and characterise these sequences based on inferred 

relationships with a relatively short sequence of 16S rRNA. 
12

C-labelled DNA 

fractions however showed a much greater diversity of anammox bacteria. Sequences 

obtained from these fractions were identified as Ca. Scalindua spp., Ca. Kuenenia 

spp. and non-Scalindua anammox. The proportions of different anammox organisms 
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in these two samples are not consistent however, without the presence of replication, 

it is impossible to draw any conclusions from this. 

 

Figure 6.8: Number of 16S rRNA 454 reads associated with different OTUs from sequenced from SIP 

DNA fractions.  Table shows cluster identities and abundance of anammox 16S rRNA 454 pyrosequencing data 

from pilot SIP DNA fractions. OTUs were defined at a cut-off of 95% sequence similarity. OTUs representing < 

0.1% of the total number of reads have been omitted (95 OTUs). Both 13C-labelled DNA fractions are dominated 

by sequences belonging to non-Scalindua anammox organisms whereas 12C-labelled DNA fractions appear to 

show a greater diversity of anammox organisms including Ca. Scalindua spp. and non-Scalindua organisms. 

6.3.1.7. Analysis of hzo Gene Sequences Obtained from 
12

C and 
13

C 

Enriched Fractions 

As it had been concluded that hzo genes did not represent the phylogeny of 

anammox organisms (see chapter 4) it was hypothesised, in light of the above 

Cluster # 
12

C-DMA 
13

C-DMA 
12

C-Urea 
13

C-Urea Identity 

Cluster 0 157 6411 2924 14267 Non-Scalindua anammox 

Cluster 1 149 0 73 0 Ca. Scalindua brodae/marina 

Cluster 2 909 0 929 0 Ca. Scalindua wagneri 

Cluster 3 78 0 169 0 Ca. Scalindua wagneri 

Cluster 4 19 0 67 0 Ca. Scalindua brodae/marina 

Cluster 5 11 0 144 1 Non-Scalindua anammox 

Cluster 6 15 0 198 0 Ca. Scalindua wagneri 

Cluster 7 0 0 188 0 Non-Scalindua anammox 

Cluster 8 209 0 1794 0 Ca. Kuenenia sp. 

Cluster 9 6 0 44 0 Ca. Scalindua wagneri 
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findings, that the diversity of hzo may represent metabolic diversity within anammox 

organisms (i.e. representing anammox capable of mixotrophic versus autotrophic 

growth).  

Figure 4.3 in chapter 4 shows the similarity of hzo gene sequences obtained from 

these samples in relation to other hzo sequences obtained from this study and those 

downloaded from the NCBI GenBank database. hzo clones obtained from SIP 

fractions are highlighted in blue. Clones labelled DMA-2-6 and Urea-1-5 were 

obtained from fraction believed to contain 
13

C-labelled DNA whereas those labelled 

DMA-2-7 and Urea-1-8 were from 
12

C-labelled DNA fractions
*
. 

Sequences obtained from SIP fractions showed a greater diversity of hzo than those 

obtained from Medway Estuary M6 samples (Figure 4.3). This was expected as 16S 

rRNA diversity analysis of these fractions had produced sequences identified as 

Ca.Scalindua spp., Ca. Brocadia spp. and Ca. Kuenenia spp. (see sections 6.3.1.5 

and 6.3.1.6 ). However, clones of hzo sequences obtained from these samples did not 

clearly cluster into 
12

C and 
13

C containing fractions (as shown above) but instead 

were distributed amongst the whole of hzo clusters ‘A’ and ‘B’. Only one clone was 

observed in the suggested “non-Scalindua” clusters of ‘C’, ‘D’ and ‘E’ (Li, et al., 

2010b). The apparent increase in diversity in these samples compared with the 

previous investigation into hzo diversity (see chapter 4) may be due to the nested 

PCR (used on SIP samples) being more specific at amplifying target sequences 

rather than an increase in hzo diversity. Thus, before further investigations into the 

use of hzo as a molecular marker of anammox it would be imperative that Medway 

Bridge Marina DNA samples are amplified using the same approach as that used on 

SIP DNA. However, due to the reasons stated in chapter 4, hzo was deemed not to be 

a suitable functional marker for anammox based on the available data and as such, it 

was decided not pursue this avenue of research any further. 

Clones from 
13

C-labelled DNA fractions did not cluster together and neither did 

those from 
12

C-labelled DNA fractions. This suggests that the diversity of the hzo 

gene (at least represented by the primers used during this study) does not represent a 

metabolic diversity within anammox bacteria between organisms capable of 

                                                 
*
 In these clones, the first number represents the replicate number and the second number represents 

the fraction from which the clone was obtained (see Figure 6.4, Figure 6.5 and Figure 6.6). 
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mixotrophic and autotrophic lifestyles. However all DMA related sequences (n=10) 

did cluster within ‘Anammox cluster A’ and all except 2 (i.e. Urea-1-8 clone 8 and 

Urea-1-8 clone 9) urea sequences (n=10) clustered within ‘Anammox cluster B’.  

This may indicate that the diversity of hzo may be dependent on metabolic diversity 

within anammox organisms capable of utilising different organic substrates. 

However the data presented here are not sufficient to verify such a claim and further 

experimentation would be required to investigate this. 

6.3.2. Medway Estuary SIP 

Based on the results of the pilot study, further experiments were conducted on 

sediment from the Medway Estuary in order to investigate the potential for organic 

pathways to anammox. This primarily involved two experiments. The first involved 

a repeat of the pilot study, with the addition of unlabelled urea and DMA controls, 

on sediment collected from Medway Bridge Marina on 25/07/2011. This experiment 

also included microcosms amended with twice the amount of unlabelled or labelled 

substrate (i.e. 0.02 M) as, with experiments on in situ sediment, the amount of 

labelled organic substrate may not be sufficiently enriched compared with ambient 

concentrations to produce a significant signal. All microcosms were set-up in 

triplicate. The second experiment was set up on sediment collected from Medway 

Bridge Marina and Allington Lock on 15/03/2012. Both unlabelled and labelled 

controls were set-up with urea and DMA amended samples (final concentration was 

0.01 M) as outlined previously. Samples were collected in the same month as the 

original, pilot study. Sediment was also collected from the Allington Lock site in 

order to investigate the ability of less saline anammox communities to utilise organic 

substrates. For full details of sampling locations refer to Figure 2.2. 



 

175 

 

 

Table 6.2: Density of fractions obtained after fractionation of SIP (10 mM DMA) experiments set-up using 

Medway Bridge Marina sediment collected in 03/2012.  All samples show a steady gradient between fractions 

indicating that density gradients formed satisfactorily during centrifugation and remained intact during 

fractionation. N.B. Fraction 12 was omitted from gradient calculations due to mixing of water and CsCl solution 

producing erroneous results (see discussion in main text). The density gradient of ‘No Add 3’ does not show a 

steady gradient but this is likely due to excessive mixing of water with the CsCl density gradient during 

fractionation. However the gradient between fractions 1 and 6 did show an even gradient and so it can only be 

presumed that the rest of the fractions would also, had water contamination not affected density measurements. 

Samples were processed as outlined in section 6.2 although no attempt to sequence 

these samples was made (see below). Density measurements of individual fractions 

after fractionation indicated that density gradients had formed satisfactorily during 

centrifugation and these had remained intact during fractionation. Density gradients 

for 
12

C and 
13

C DMA amended microcosms set up in 03/2012, along with no 

addition controls, can be seen in Table 6.2 as an example. These data are 

representative of the typical data obtained from these experiments. 

In general difficulties were encountered in the amplification of DNA via PCR from 

these samples. Even after two rounds of amplification, fractions from 07/2011 

microcosms showed minimal amplification. Therefore DGGE gels from these 

samples exhibited poor resolution. However, regardless of poor band intensities, 

none of the DGGE gels clearly demonstrated any observable community change. 

 

Density g/ml 

Fraction 
No add 

1 
No add 

2 
No add 

3 

12
C 

DMA 1 

12
C 

DMA 2 

12
C 

DMA 3 

13
C 

DMA 1 

13
C 

DMA 2 

13
C 

DMA 3 

1 1.7325 1.7337 1.7314 1.7359 1.7258 1.7370 1.7427 1.7427 1.7416 

2 1.7303 1.7314 1.7292 1.7337 1.7235 1.7348 1.7416 1.7404 1.7404 

3 1.7269 1.7280 1.7258 1.7303 1.7202 1.7314 1.7382 1.7382 1.7382 

4 1.7224 1.7247 1.7224 1.7269 1.7156 1.7280 1.7337 1.7348 1.7348 

5 1.7179 1.7202 1.7179 1.7235 1.7123 1.7247 1.7303 1.7303 1.7303 

6 1.7145 1.7168 1.7134 1.7190 1.7078 1.7202 1.7269 1.7269 1.7269 

7 1.7100 1.7123 1.7089 1.7145 1.7044 1.7156 1.7224 1.7224 1.7224 

8 1.7055 1.7066 1.6987 1.7111 1.7010 1.7123 1.7179 1.7179 1.7190 

9 1.7010 1.7033 1.6841 1.7066 1.6965 1.7078 1.7145 1.7145 1.7145 

10 1.6976 1.6987 1.6672 1.7021 1.6920 1.7044 1.7111 1.7111 1.7111 

11 1.6942 1.6954 1.6334 1.6987 1.6897 1.7010 1.7055 1.7078 1.7078 

12 1.6255 1.6605 1.5782 1.6785 1.6548 1.6920 1.5805 1.6672 1.6807 

 
         Mean 1.7065 1.7110 1.6926 1.7151 1.7036 1.7174 1.7138 1.7212 1.7223 

Gradient -0.0040 -0.0040 -0.0084 -0.0039 -0.0038 -0.0038 -0.0038 -0.0037 -0.0036 

Intercept 1.74 1.74 1.75 1.74 1.73 1.74 1.75 1.75 1.75 

R
2
 0.9973 0.9949 0.8303 0.9957 0.9975 0.9967 0.9939 0.9945 0.9914 
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Experiments conducted on sediment collected in 03/2012 presented similarly 

inconclusive results. Again difficulties were encountered in the amplification of 

DNA via PCR from fractions obtained from these samples. There appeared to be 

insufficient quantities of target DNA in each fraction to obtain a suitable 

amplification product however, a nested PCR approach tended to result in 

amplification of all fractions. DNA was not expected in the densest fractions 

(approximately fractions 1-4) however these were still amplified after 2 rounds of 

PCR. Such ubiquitous amplification probably represented the amplification of 

minimal amounts of DNA, which perhaps adhered to the inside of the 

ultracentrifugation tube. This smearing effect made it difficult to separate 
12

C and 

13
C DNA, exacerbated by over-efficient PCR.  

Considering that the density gradients had been shown to have formed satisfactorily 

during the SIP protocol, it can be assumed that the PCR product amplified from 

these fractions represents smearing inside the ultracentrifuge tube. Hence the 

amplification efficiency of the nested PCR may be too great, obscuring any real 

trends in the data by over-amplifying small quantities of DNA to similar levels as 

that of other fractions, limited by the availability of DNA polymerase.  
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Figure 6.9: Anammox specific DGGE gel images for 03/2012 SIP experiment no addition controls.  Fractions are labelled 1 to 12, corresponding with table MEDWAY_1 (i.e. Fraction 1 is 

the highest density and fraction 12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. Amplifiable product was obtained from the 

majority of fractions. No obvious community change can be observed in any of the samples. Replicate 3 appears to show a greater diversity than replicates 1 and 2. The banding pattern seen in 

this replicate appears to be comparable to that seen in the pilot study (Figure 6.4, Figure 6.5 and Figure 6.6) with two distinct band clusters apparently representing Ca. Scalindua spp. and non-

Scalindua anammox organisms. 

  

1 +12

No Addition Rep. 1 No Addition Rep. 2 No Addition Rep. 3

11102 3 4 5 6 7 8 9 1 +1211102 3 4 5 6 7 8 9 1 +1211102 3 4 5 6 7 8 9



 

 

 

1
7
8 

 

 

Figure 6.10: Anammox specific DGGE gel images for 03/2012 SIP experiment 12C DMA (10 mM) controls.  Fractions are labelled 1 to 12, corresponding with table MEDWAY_1 (i.e. 

Fraction 1 is the highest density and fraction 12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. Most fractions were amplified after 

2 rounds of PCR. 12C amended samples appear to show a greater diversity than no addition controls, perhaps indicating an enrichment of anammox bacteria, though such conclusions are highly 

speculative. 
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Figure 6.11: Anammox specific DGGE gel images for 03/2012 SIP experiment 13C DMA (10 mM) amended microcosms.  Fractions are labelled 1 to 12, corresponding with table 

MEDWAY_1 (i.e. Fraction 1 is the highest density and fraction 12 the lowest). Blue hashed lines represent the expected separation between 12C and 13C DNA bearing fractions. All but 1 

fraction in replicates 1 and 2 were amplified by PCR. Thus no enrichment of 13C labelled DNA was observable. Replicate 3 did not show ubiquitous amplification however, though it may 

demonstrate a definitive enrichment of 13C DNA, it did not show an observable community change (as seen in the pilot study) and, considering the other two replicates, does not support a claim 

for the utilisation of organic substrates by anammox bacteria. 
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Nevertheless, none of the samples, when analysed via DGGE, demonstrated any 

obvious trend in the data in terms of enrichment of 
13

C DNA or a change in the 

anammox population. Figure 6.9, Figure 6.10 and Figure 6.11 show typical data 

from samples amended with 
12

C and 
13

C DMA as well as no addition controls. 

Although microcosms inoculated with DMA appeared to show stronger 

amplification of anammox 16S rRNA genes (perhaps alluding to greater quantities of 

target DNA in these samples) no clear difference was observed between 
13

C DMA 

amended samples and either 
12

C DMA or no addition controls. Replicates neither 

show a clear enrichment of 
13

C DNA nor any definitive change in the anammox 

community. These data are representative of the typical data obtained from this 

experiment. 

6.3.3. ETNP SIP 

Data obtained from similar experiments conducted on water from the ETNP 

produced similar results. In general very low quantities of DNA were gleaned from 

microcosms which proved challenging when attempting SIP. Nevertheless, 

amplifiable product was obtained from fractions after the use of a nested PCR 

approach. Furthermore, density measurements from these fractions demonstrated that 

an even gradient had formed during centrifugation and had remained intact during 

fractionation. However, analysis of the microbial community via DGGE neither 

showed enrichment of 
13

C-bearing fractions compared with 
12

C controls nor any 

observable community change over these fractions. 

6.4. Discussion 

6.4.1. Potential for Organic Pathways to Anammox 

Data from the pilot study appeared to suggest that anammox bacteria may be able to 

assimilate organic carbon directly, similar to hypothesis b) described in sections 

1.3.2.2.2 and 6.1.3. To date such a discovery of heterotrophic anammox has not been 

reported and would be a completely novel metabolism of anammox organisms. Both 

urea and DMA amended microcosms appeared to show an enrichment of heavy 

labelled DNA in two out of three replicates. Furthermore, a community change 

within the anammox population was evident between 
12

C and 
13

C labelled fractions, 

potentially indicating a separation between anammox bacteria capable of 
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assimilating organic carbon and those which could not. Further analysis of these 

communities, via the sequencing of bands obtained from DGGE, indicated that light
 

DNA fractions were comprised of organisms representing Ca. Scalindua spp. 

whereas heavy fractions contained organisms representing Ca. Brocadia spp. and Ca. 

Kuenenia spp. These findings were collaborated with 454 pyrosequencing data. 

These data potentially suggest that Ca. Brocadia spp. and Ca. Kuenenia spp. have a 

more diverse metabolism than Ca. Scalindua spp., being capable of heterotrophic 

growth. This is in direct contradiction to findings previously reported in the literature 

(van Niftrik and Jetten, 2012). This may indicate a change in metabolic capabilities 

between marine anammox organisms (i.e. Ca. Scalindua spp.) and 

terrestrial/freshwater anammox organisms which have gained more versatile 

metabolic capabilities in order to survive and compete in more diverse environments.  

It could be argued that anammox may simply be assimilating CO2 which has been 

produced by the breakdown of organic compounds by other organisms as has been 

suggested by Güven, et al. (2005) and Russ, et al. (2012), hence retaining their 

autotrophic lifestyle. Thus anammox DNA may come to contain 
13

C via a similar 

feed-back loop during such an experiment. However these data do not support this 

claim as, if this were true, although there would be an enrichment of 
13

C DNA, there 

would be no observed change in the anammox community as different anammox 

organisms would not preferentially assimilate heavy and light CO2. Thus, if these 

data represent a true phenomenon, then they must represent anammox organisms 

capable of heterotrophy.  

However, the data cannot support a definitive conclusion as to the potential for 

organic pathways to anammox. The trends discussed above were only observed 

clearly in one replicate of the DMA amended sample and two replicates of those 

with urea. Although the absence of such trends do not disprove the hypothesis that 

anammox are capable of a mixotrophic metabolism, the lack of reproducibility does 

shed doubt on the accuracy of such findings. Furthermore, as this experiment was 

only a pilot study (in order to discover potential problems with the methodology) a 

comprehensive suite of controls was not conducted and so observations cannot be 

corroborated in this way. Sequence data, from the sequencing of DGGE bands and 

via 454 data, appear to suggest that a community change between heavy and light 
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DNA fractions was observable however, the low number of clones (n=14) and lack 

of replication in these respective analyses mean that any conclusions drawn from 

these data must be used with caution. As such, a more comprehensive experiment 

was needed in order to confirm the findings of this pilot study. 

The first experiment, conducted on sediment collected in 07/2011, did not show any 

observable trends in the data, similar to those seen in the data of the pilot study. No 

enrichment or discernible community changes were seen across any samples. 

However, it was speculated that this may be due to low or non-existent anammox 

activity during this period as anammox rates have been shown to be low along the 

estuary during the summer (Trimmer, et al., 2005). 

Therefore a similar experiment was conducted on sediment collected from the same 

month as the pilot experiment (i.e. March). However, this experiment produced 

similar data as the first experiment, with no discernible trends, either in enrichment 

or a change in anammox diversity being observed across these samples. Sediment 

from a less saline site along the Medway estuary (i.e. Allington Lock) was also 

investigated during this study as findings from the pilot study suggested than non-

Scalindua anammox organisms may be more capable of heterotrophy and these 

organisms were more numerous upstream along the estuary (see chapter 5). However, 

microcosms of sediment from this site also failed to show evidence that anammox 

organisms had assimilated carbon from organic compounds. 

A final experiment was conducted on water from the ETNP OMZ, an environment 

similar to that in which the findings of Trimmer and Purdy (2012) were made, which 

was the foundation of the hypotheses of this study. However data from this 

experiment also failed to demonstrate any evidence that anammox bacteria had 

utilised urea or TMA. 

The above data do not support the hypothesis that anammox bacteria could 

potentially utilise organic substrates such as urea or methylamines. However the 

observations made during the pilot study do suggest that some anammox organisms 

may have the potential to utilise DMA and urea in Medway Estuary sediments, 

though these findings could not be supported statistically. Furthermore, the 

experiments conducted after the pilot experiment failed to demonstrate any evidence 
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for the utilisation of organic carbon by anammox bacteria. Nevertheless, in light of 

such observations and the potential significance that organammox may have on our 

understanding of global N cycling, the hypotheses outlined in section 1.3.2.2.2 

warrant further investigation. To this end it is imperative that the shortcomings of the 

investigation presented in this chapter are analysed and subsequent improvements to 

the methodology are made. 

6.4.2. Methodological Shortcomings 

6.4.2.1. Potential Reasons for the Lack of Positive Data 

It is entirely feasible that the lack of solid positive evidence obtained during this 

investigation, into the presence of an organammox like reaction in estuarine and 

OMZ environments, is because such a process does not exist and that the hypotheses 

(section 1.3.2.2.2 and 6.1.3) are false. As such the positive observations observed 

during the pilot study may be false positives. However, following the analysis of 

these experiments there are a significant number of issues which have arisen 

regarding the methodology employed which could be improved. Therefore it would 

be prudent to repeat the experiment with such improvements before rejecting the 

hypotheses, especially considering the potential importance to global geochemical 

cycling of such a process (Trimmer and Purdy, 2012). 

Anammox bacteria are typically of low abundance in the environment (Kuypers, et 

al., 2003; Hamersley, et al., 2007) and thus the yield of anammox DNA obtained 

from these experiments, especially those from the ETNP OMZ, would be low. This 

may have hindered analysis of SIP experiments as typically high yields of DNA are 

required for SIP experiments as large quantities of DNA can be lost during 

fractionation and precipitation (Neufeld, et al., 2007). Lower yields of DNA would 

have weakened the anammox signal and potentially impaired downstream analysis 

(e.g. DGGE). 

The slow growth rates of anammox bacteria (Jetten, et al., 2009) also may have 

contributed to difficulties in analysing the results of these experiments as the rate of 

which 
13

C was incorporated into anammox cells would have been slow. Therefore 

there would be lower concentrations of 
13

C labelled DNA which would make 

fractionation and identification of this fraction difficult. However, without a 
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comprehensive knowledge of the potential metabolic rates of these organisms this is 

an issue which would be difficult to resolve. 

In addition there are a number of issues associated with using SIP for explorative 

microbiological experiments which may have hindered this investigation (see below). 

6.4.2.2. Using SIP to Investigate Anammox in Complex Communities 

SIP can be a powerful technique to investigate microbial ecology allowing for the 

fate of carbon and nitrogen from the environment to be traced into microbial biomass 

(Manefield, et al., 2002; Chen and Murrell, 2010). However the technique is not 

without its caveats, especially when investigating complex in situ microbial 

communities. 

SIP experiments conducted on pure or enrichment cultures have often led to a 

successful conclusion. Such organisms have frequently been well characterised and 

as such the conditions favourable for growth have been extensively investigated. 

Furthermore, in pure culture, organisms are not presented with the problems of 

environmental stress or competition. Characterisation of such organisms also 

provides information as to their metabolic rates, especially in terms of the 

assimilation of carbon and nitrogen into biomass and mass balance calculations. 

With knowledge of the organisms involved in the system of choice the exact 

densities of light and heavy DNA (taking into account assimilation rates and GC 

content) which can be expected after centrifugation can be calculated, allowing for 

more efficient targeting of 
12

C and 
13

C bearing fractions. Comprehensive data of 

metabolic rates can also aid decisions as to the incubation time of experiments, 

allowing for the maximum amount of carbon or nitrogen incorporation with the 

minimum amount of cross-feeding into other organisms. This said, with the 

knowledge gained from such experiments, experiments conducted on the micro-

organisms of interest in situ are likely to be more successful. 

However, if such investigations into the metabolic capabilities of the organism in 

question cannot be completed (as is the case with anammox bacteria) then SIP 

methodologies lose some of their power. Without knowledge of the assimilation 

rates and toxicity of compounds to be investigated, it is difficult to ensure that a 

suitably sufficient concentration of labelled substrate has been amended to the 
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samples which is imperative for a successful experiment (Manefield, et al., 2002). 

Furthermore without such data, it is impossible to determine the exact location of 

heavy and light DNA after fractionation except by subjective inference. This is 

further complicated as, with complex microbial communities, the varying molecular 

weights of DNA from different organisms is unlikely to produce a clear separation 

between labelled and unlabelled DNA. As such, SIP is not a particularly efficient 

tool for explorative microbial ecology as the scientist ideally needs to know 

something of the organisms which they wish to investigate. 

Further complications of the SIP methodology also have the potential to limit its 

effectiveness. Despite due care and attention and good laboratory practice, it is 

difficult to ensure that DNA does not smear along the sides of the ultracentrifuge 

tube during centrifugation. DNA can adhere to the surface of the ultracentrifuge tube 

and therefore, may not appear in the correct fraction during fractionation. This can 

produce a “smearing” effect across fractions during molecular fingerprinting 

techniques, making analysis difficult. This problem can be exacerbated when dealing 

with low yields of DNA (as in this study) and over-efficient PCR. In addition, 

investigation of mixed, microbial communities using SIP can further exacerbate the 

problem of determining a clear labelled and unlabelled fraction due to varying 

AT/GC concentrations (and hence molecular masses), cross-feeding and dilution 

(Cadisch, et al., 2005). 

As such, it is impossible to determine whether a “negative” result (i.e. no clear 

enrichment of heavy DNA or noticeable community change across fractions) is an 

accurate representation of the microcosm or due to difficulties arising from the SIP 

methodology. SIP can also resist the effective use of statistics to explore 

observations within the data as, without the ability to ensure that fractionation is 

consistent throughout replicates (i.e. to ensure that the exact same density ranges 

exist in the same fraction between different replicates), it is difficult to compare 

samples and fractions. Thus subjective observations must be made on trends 

observed across samples and fractions which are not conducive to robust statistical 

methods.  

Therefore, it must be questioned whether the above methodology is the best 

approach to investigate the potential for mixotrophy/heterotrophy in anammox 
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bacteria. SIP may not be the best tool for the exploration of novel, unknown 

pathways as a certain degree of prior knowledge is required in order to plan a 

successful SIP experiment. As the existence of such a pathway in anammox bacteria 

is yet to be investigated (other than the findings presented here), the design of such 

an experiment is based on completely hypothetical assumptions, from observations 

made in other organisms, which may or may not be valid. That is not to say that SIP 

would not be useful technique for future investigations, but rather other experiments 

should be conducted initially.  

6.4.3. Further Research 

Considering the limitations of the methodology used in this study (discussed above) 

a number of improvements should be made to further investigations of the 

hypotheses in order to be able to draw more definitive conclusions. 

Future studies should focus initially on determining the loss of organic substrates in 

such environments. This would allow for a greater understanding of the 

concentrations of substrates to use during these experiments and a better assessment 

of incubation times. The concentration of substrates such as urea and methylamines 

should be monitored over the incubation period in order to assess the microbial 

population’s ability to metabolise these compounds. A number of different 

calorimetric assays are available for the measurement of urea (e.g. Quantichrom™, 

BioAssay Systems, USA) though further investigation would be required to assess 

whether such assays are compatible with the substrates being investigated. 

Concentrations of methylamines in the environment have previously been measured 

using GC (King, 1984) and IC (Gibb, et al., 1995). This data could be collaborated 

with measurements of CH4 and CO2 from headspace gases in order to assess the fate 

of carbon in these microcosms. Killed controls should also be used to determine how 

much of the conversion of these amended substrates are biologically mediated. 

Anammox bacteria and activity should also be quantified, e.g. by qPCR, FISH and 

IPT (using 
15

N labelled urea and DMA/TMA), in order to determine whether the 

incorporation of organic compounds can stimulate the growth and activity of these 

organisms. Such an initial investigation would provide a better understanding of the 
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fate of such organic compounds in these environments and the  rate at which 

anammox bacteria can potentially utilise them.  

With a greater knowledge of the fate and utilisation rates of urea and methylamines 

in anaerobic estuarine sediments and OMZs, subsequent SIP experiments are likely 

to be more successful. Due to the problems associated with replication of the results 

presented in section 6.3, it may be prudent to increase the number of replicates of 

future SIP experiments investigating the potential for anammox and also to include 

technical replicates for these microcosms (i.e. repeated fractionation of DNA from 

the same microcosm). Although increasing the number of replicates would increase 

the cost (both financially and in terms of time) a greater number of replicates would 

improve the statistical validity to any conclusions drawn from future experiments. 

In addition to DNA-SIP, RNA-SIP should also be attempted. It has been suggested 

that RNA may be a more responsive biomarker for SIP experiments due to the higher 

turn-over rates and greater copy numbers of RNA (Manefield, et al., 2002). 

Therefore RNA-SIP may improve the strength of the recovered 
13

C signal after 

fractionation and aid downstream analysis. 

A major limitation of SIP experiments is the difficulty in accurately determining 

which fractions represent the heavy and light labelled DNA/RNA. This problem may 

be exacerbated when investigating complex microbial communities (Cadisch, et al., 

2005). Therefore, the fingerprinting (DGGE) and theoretical (based on the molecular 

weight of DNA) techniques used in this study to pinpoint 
13

C DNA may not be an 

accurate method for determining the location of 
13

C DNA. Alternatively ethidium 

bromide staining (Neufeld, et al., 2007; Chen and Murrell, 2010) could be used to 

more accurately locate 
13

C DNA. Previous studies have also suggested the use of 

IRMS (Manefield, et al., 2002; Chen and Murrell, 2010) or HPLC/IRMS (Cadisch, 

et al., 2005) to investigate whether labelled DNA/RNA had been enriched above 

natural abundance and identify 
13

C bearing DNA fractions. However the range of 

molecular weights of DNA associated with complex communities may also hinder 

the isolation of 
13

C labelled DNA using this methods. It is possible that flow 

cytometry (Amann, et al., 1990) or associated methodologies such as FLOW-FISH 

(Baerlocher, et al., 2006) could be used to isolate anammox organisms (or other 

organisms of interest) from the ambient microbial community which would aid the 
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isolation of 
13

C labelled DNA. Methodologies such as Raman-FISH (Huang, et al., 

2007) could also be utilised in conjunction with SIP in order to investigate bacterial 

cells which had incorporated labelled carbon from organic sources and would allow 

for the quantification of and enumeration of these bacteria. 

The above improvements to the methodology used in this study would allow for a 

more targeted approach to investigate whether anammox bacteria could utilise such 

compounds directly or via syntrophic relationships and lead to a more rigorous 

testing of the hypotheses. 

6.5. Summary 

 Anammox appear to have a greater metabolic diversity than previously 

thought. 

 Observations within the literature appear to suggest that anammox bacteria 

can utilise organic substrates either catabolically or anabolically. 

 Anammox organisms may either use such organic substrates directly or via 

syntrophic reactions with other organisms. 

 The data presented in this study fail to conclusively show anammox 

organisms to be able to utilise methylamines or urea, though some evidence 

eluded to the possibility of such a pathway to the anammox reaction. 

 Further, in-depth studies are required in order to elucidate the possibility of 

such a reaction. 

 Such further studies should focus initially on how much of such substrates 

are lost to the environment and whether anammox activity or cell numbers 

increase during incubation. 
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7. Concluding Remarks 

Anammox bacteria are clearly organisms of great environmental significance and the 

anammox process has been shown to be an important sink of fixed nitrogen in 

anaerobic environments, potentially rivalling denitrification in its contribution to N2 

production. Anammox organisms belong to a deep branching, monophyletic clade 

comprising of only five genera, perhaps surprising concerning that their 

environmental rivals, denitrifiers, demonstrate a far greater diversity spanning 

different domains of life. Anammox organisms appear to be ubiquitous in anaerobic 

environments, where O2 concentrations are low and DIN (and potentially 

DOC/DON) concentrations are high. As such an interesting parallel can be drawn 

between the specialist denitrifiers (with many different organisms occupying specific 

niches) and anammox bacteria which appear to be generalists. However, it has been 

suggested that anammox organisms also have a specific niche adaptation, the details 

of which are unknown. In fact, despite a relatively low richness (compared with 

other environmentally significant organisms), ubiquitous nature and monophyletic 

characteristics, very little is known about the diversity and distribution of these 

unique organisms and their controlling environmental factors. This study attempted 

to elucidate some of these discrepancies and provide a greater understanding of 

anammox bacteria in the natural environment. 

The data presented in this study provide an unprecedented level of detail to intra-

anammox diversity in estuarine and OMZ environments due to the use of high-

throughput sequencing technologies with robust and validated PCR primers, which 

specifically target the entirety of the known anammox 16S rRNA diversity. 

A clear shift in the anammox community was observed along the extent of the 

Medway River Estuary, from the freshwater end (Allington Lock) to the saline 

mouth of the estuary (Hoo Marina). Freshwater sites were dominated by Ca. 

Brocadia spp. whereas saline sites were dominated by Ca. Scalindua spp. Brackish 

sites, along the middle of the estuary, demonstrated a greater degree of diversity and 

the anammox community was evenly split between Ca. Scalindua and non-Scalindua 

organisms (though the relative abundance of non-Scalindua and Ca. Scalindua 

organisms gradually increased upstream and downstream respectively). Evidence for 

the presence of Ca. Jettenia spp. and Ca. Kuenenia spp. was also observed in the 
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data, although organisms from these genera were typically of low relative abundance. 

Ca. Scalindua wagneri organisms appeared to inhabit brackish environments with 

salinities ranging from approximately 3 to 15 ppt and were absent in both saline and 

freshwater environments. As such, the data describe a pronounced change in 

anammox diversity along the estuary which appeared to be correlated with salinity. 

However, the data also suggested that the diversity of anammox organisms was also 

correlated to increasing concentrations of DIN and nutrients upstream. As such, 

changes in salinity are unlikely to account entirely for the observed anammox 

diversity but instead contribute to the consortia of environmental factors which affect 

anammox distribution and community structure. However, further research is 

required to fully comprehend the niche adaptations of anammox bacteria in such 

environments.  

Sequencing data obtained from the ETNP OMZ indicate that the anammox 

community in this environment was dominated by Ca. Scalindua spp. as suggested 

in the literature. However, non-Scalindua organisms were also detected in the OMZ. 

These organisms, though significant, were generally of low relative abundance and 

appeared to inhabit only a few depths within the OMZ. However no observable trend 

was observed within these data to explain this distribution. While no substantial 

change occurred in the anammox data along the latitudinal transect, a change in 

anammox diversity and community structure appeared to exist within the Ca. 

Scalindua clade at different depths. Two main clusters of Ca. Scalindua spp. were 

observed from the data. One of these clusters, showing less similarity to known Ca. 

Scalindua sequences from the literature than the other cluster, dominated the 

community in the upper oxycline and upper core of the OMZ, where O2 

concentrations were found to be greater and potentially more transient. The core of 

the OMZ was dominated by organisms showing a close similarity to Ca. S. brodae, 

Ca. S. marina and Ca. S. sorokinii. Data from the lower oxycline (i.e. approaching 

ambient oceanic O2 concentrations below the OMZ) appeared to demonstrate that the 

first cluster of Ca. Scalindua spp., observed in the upper oxycline, had begun to re-

populate the anammox community; however a greater resolution of the data, 

sampling deeper sites, would be required to confirm this observation. No sequences 

were obtained from the data which demonstrated a high degree of similarity to Ca. S. 

wagneri organisms, perhaps suggesting that these organisms are indeed adapted to 
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brackish or mesohaline environments. There appeared to be no significant changes in 

the anammox community over a longitudinal scale, only with depth.  

Despite such clear trends in anammox diversity in the OMZ, no significant 

correlation could be observed with any environmental data. However, the 

community changes observed in the sequencing data did appear to suggest that two 

phylogenetically distinct groups of Ca. Scalindua spp. were observed; one of which 

appeared to be adapted to anoxic conditions within the core of the OMZ while the 

other was potentially adapted to higher, transient O2 concentrations which flank the 

core of the OMZ. A similar, previously unidentified group of Ca. Scalindua spp. had 

been observed in OMZ environments (Woebken, et al., 2008; Galan, et al., 2009), 

however the data presented in this study confirm these previous observations (made 

from scant data) and are the first to demonstrate that such a cluster may be 

environmentally significant and to speculate as to the niche adaptation of this cluster. 

Future research should be directed in observing the change in the anammox 

community below the OMZ and to sample the transition between the oxycline and 

core of the OMZ in greater detail; as it appears to be here that anammox 

communities are likely to be the most dynamic and hence would provide the greatest 

source for increasing our understanding of the diversity, distribution and niche 

adaptations of these organisms. Investigation of the temporal and global changes in 

anammox diversity in such environments would also be of great benefit to 

understanding anammox in OMZ environments.  

Investigation of the potential for anammox to utilise organic substrates in the natural 

environment was also attempted using labelled stable isotopes (
13

C). Some initial 

evidence was obtained which suggested that anammox organisms in Medway 

Estuary sediments (Medway Bridge Marina) were capable of assimilating carbon 

from organic compounds such as urea and DMA into biomass. This was only 

observed in non-Scalindua anammox organisms and Ca. Scalindua spp. were not 

shown to assimilate organic carbon. Such a metabolism would be novel in anammox 

bacteria, which are previously defined as strict chemolithoautotrophs. It could be 

suggested that these data did not represent direct assimilation of organic carbon into 

anammox biomass, but rather the conversion of DOC to CO2 which in turn was fixed 

via the conventional anammox pathway. However this is unlikely, as if this were true, 
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a distinction between 
13

C-labelled non-Scalindua and 
12

C-labelled Ca. Scalindua 

organisms would not be observed as there would be no preferential uptake of 
12

CO2 

and 
13

CO2.  

However, despite initial success in the investigation of this hypothesis, subsequent 

experiments failed to show any evidence for such a process. These data make the 

results from this investigation inconclusive and unable to prove or disprove the 

hypotheses. As such further investigations into the potential for organammox (such 

as investigating the fate of DON or potential syntrophic partners) were not possible.  

However, the data appear to suggest, if anammox were capable of such a process, 

that the potential for organammox would be greater towards the freshwater end of 

the estuary, where non-Scalindua anammox organisms were more abundant. 

Experiments conducted on water from the ETNP OMZ demonstrated no evidence 

that such a process occurred, which corroborates with the above conclusion as the 

OMZ was dominated by Ca. Scalindua spp. However, this is in direct contradiction 

of the observations of Trimmer and Purdy (2012), which led to this investigation, 

who demonstrated the potential for this process in the Arabian Sea OMZ.  

Nevertheless, the fact that some data, however sparse, were obtained which may 

suggest that organammox may occur, suggests that the potential for organic 

pathways to the anammox reaction warrants further investigation, especially 

considering the reported genomic diversity and environmental significance of these 

organisms. The lack of cultured isolates presents significant difficulties to such 

future research and this investigation suggests that a SIP-based methodology may 

not be the best approach to investigating these hypotheses (as SIP does not appear to 

be a strong enough tool for explorative microbiology). However the difficulty of the 

task and abundance of the problems facing further investigations should not dissuade 

such attempts and the risk of failure should not affect future research. Future 

investigations may first begin by attempting to clarify the seasonal and spatial 

variability in anammox bacteria and their activity so as to be able to ensure that 

further microcosm experiments are at least targeting anammox organisms that are 

currently active. Furthermore, the general impact of the introduction of large 

quantities of organic substrates to the anammox community (in terms of increase or 

decrease in biomass or transcription) should also be investigated prior to more in 
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depth studies. By adopting such approaches and obtaining a more lucid 

understanding of the environmental controls of anammox bacteria, future 

investigations into the potential for organammox may have greater success than the 

explorational investigation presented in this thesis. 

Regardless of the potential caveats and limitations associated with the conclusions 

drawn from the data obtained in this investigation, this thesis represents a significant 

increase to our knowledge and understanding of the ecology of anammox organisms. 

It provides an unprecedented level of detail as to the diversity and distribution of 

anammox organisms across environmental gradients from two environmentally 

important environments. It further speculates and provides some (however limited) 

data on the potential for novel metabolisms of these organisms which would 

revolutionise the understanding of the roles of anammox bacteria in relation to global 

biogeochemical cycling. 
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