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ABSTRACT
This thesis consists of four papers, entitled
(1) Homotppy Links,
(11) A Note on Piecewise-linear Immersions,
(iii) Open and Closed Disc Bumdles,
(iv) The Space of Homeomorphisms of a 2-menifold,
In (i), we define homotopy links and calculate them in the
metastable range.
In (ii), we prove the Haefliger-Poenaru immersion theorem,
using block bundles.
In (iii), we prove that 0, = PLZ(I) = FL,.
In (iv), we prove that the space of PL homeomorphisms of a
2-manifold, fixed on the boundary and an interior point, has

contractible identity component unless the manifold is 82 or P2.
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CHAPTER I
HOMOTOPY LINKS

A link is the oriented image of an embedding of two spheres SP ,
st in the sphere S®, Two links are equivalent if they are concordant
oriented submanifolds of S". In [6], Haefliger showed that, under
Suitable conditions —— smooth or piecewise-linear (PL), and

codimension three = these equivalence classes form a group L;l o
sq

A homotopy link is a pair of maps of two spheres sP R 82 into g®

With disjoint images, Two homotopy links are equivalent if they are
homo topic through homotopy links. These equivalence classes also
form a group HLm’ » provided we are in the metastable range,

P+29 € 2n-)4 or q+2p € 2m-4, These groups are the objects of study in

this paper, Our theorem determines HL:‘ q in this range. There is a
b4

- HL® as concordance implies isotopy
Py

Ratural homomorphism ¢: LI: q
’

(7] implies homotopy. ¢ is not an isomorphism, in general, as any
link with one linking class zero has zero image under ¢o It is

interesting that ¢ is no even an epimorphism, in general,
I am grateful to B. J. Sanderson for suggesting this idea,

S&. Notation
H denotes the Hilbert space of sequences (Xlsuo:xi:--o) of real

Numbers, R? denotes Euclidean n-space, and will
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be considered as the subset of H of vectors such that x,=0,

for i>n, S™ denotes the unit sphere in R™'. D" denotes the

unit ball in R®, and D" denotes the interior of D", wWe

define Dg = {zes® | x120}, and D" = {xes™ | x,<0].

Let T be the rotation of H whose restriction to R2

is

& rotation through x, and which leaves fixed the orthogonal

complement of R2. Let oy be the symmetry of H with respect

to the hyperplane x,=0.
Define u = (0,0,1,0,...) and v = (6,0,-1,0,...). Both

are points of s™, for all nx2.

$1. The group HL; q
— 2

In the following, we have p,q<m-3.
Define X} = { (f,g) | sP - 8%, g: 8% 8%, £(sP)Ng(52)=(]
4

by (fo,8 )o(fy,g )
p-b Sm’ gt: SQ.__’ S.

n
Define an equivalence relation p on X q
if and only if there are homotopies f: S
such that ft(sp)ngt(sq)=b.

Defi I n - Xln [ )
ne Iﬂ‘P’q P’q,p

Wenote that, as f£(SP) is compact and hence closed in Sm,
We can homotop g to a PL map in the complement of £(sP), by

doing a small enough homotopy in s™. Thus any element a of
m .
HLp,q has a representative (f,g) in which both f and g are

PL, and all such representatives are homotopic by PL

homotopies.
A representative (f,g) of a is in good position if

(1) £ and g are PL,
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(i1) f(D?) = u and g(DE) = v,
(i11) £(8) c i ana g(B%) c B].

@ always has such a representative. Also two such representatives
of @ are homotopic through good position representatives of ae For,
let P: SPx1 - smxI, e 8T - SPI be a PL homotopy between two good
Position representatives of a., Denote the point (~1,0,0,..,0) in n?_
by we F|{w}xI determines an element of ﬂlﬁsm) which is zero, as

A m
w33 by hypothesis. Therefore there is an ambient isotopy H, of 81,
fixed on s‘“xzx and commuting with projection onto I, such that H0 is

the identity and I'fiF({w}xI) = uxI, Now G|fw}xI determines an
element of tl(Sm-u) = 'l‘Rm) = 0, and hence there is an ambient

isotopy HY of §"xI, fixed on PaThiulxI and commuting with projection

onto I, such that H! is the identity and HiG({foI) = vxI, It is

0
now easy to arrange P(DPXI) = uxI and G-(DEXI) = wvxI, and then to

arrange F(ﬁi’_x:[) C ﬁ’:xl, G-'(BExI) cﬁfxl.

m
We can now défine the sum operation in HLp,q° Let o, B be

elements of HL™ . Take good position representatives (f,g), (f',g')
’

of them., We define (F,G) by
?|0P = £]0F, B[0P - 2 o7/ 0%,

a;]ng = gjng, 6ol = 7g'T| 2%

From the preceding work, (F,G) represents & well-defined
element of HL® , which we denote by a+f. This addition is
Psq

Sommutative, assooiative and has identity given by & pair of point
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maps,
We now prove the existence of inverses if p+2q € 2m-k or

Q+2p € 2m-4, Let a be an element of HL:: q’ and let (f,g) be a good
s

Position representative of a, Consider (azfaz,azgaz) , Which is also
in good position and represents f say. We define a+f using these

representatives to obtain a representative (f£',g') of a+f. f!
Dm+1, by mapping the line segment

of Dm+l, for

Mol
X in D.I:.' Similarly, g' extends to a map Gi. pi*™ 51

F(Dp"'l)(n(nq-{-l) = ¢

Now consider F: Dp+ll -

extends to a map F: PP+,

L, alx] of D°*! 1inearly onto the segment [fx,alfx]
, and

Dm+l.(;.(DQ+l). We can homotop F to an

embedding, keeping F|SP fixed, by (R ,Chepter 8], if the

conn : q+l - .
ectivity of -G-(D ) exceeds (2p&) (m+1)»;3_,s 1.5%_; e e®) B om
(m+1) (q+ l)-2 3 2p-m+2, i.e. if 2p+q € 2!11"4-[3}’ Zeeman's é'"-ffdd‘“a- a 4 i,

# §7- GHS 1) excreds 2p-med,
Unknotting Theorem for ball pairs [2! ,Chapter 4], we can ambient iff Koty L@m-3 )!
Y=o g (0P,

isotop F to standard position F' say. Now g° -E."(Sp

80 it follows that Gf: S% - s®-2(sP) is null homotopic, as we

have gy pa+l _, gtk p(np"'l) This immediately implies that (£',g")
is nui3 homotopic and hence a+f = 0. This completes the proof that

m
HLP,q is a group if p+2q & 2w~k or q+2p € 2mdi-e
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represents B, say. .e define a+p using these repres

extends to a

to obtain « esentative (£',g') of a+B.

D+, DH+1, e segment [x,0,x] of

map F: D

DP*! linearly onto the se

F(Dp+1)”G ) = §. This defines & null-homotOpx of (£',g"),

This completes the proof that HL®

hence a+p=0. ,

group.

m m
\ : -+ HL as
We have a natural map V¥ Lp’q D,q’ concordance

implies homotopy. ¥ 1s @ homomorphism. We also have a

- ﬁp(sm’q"1), which associates to a

homomorphism A: Lg q
’
-s9) = s, e

. m
link the homotopy class of sP in (S

define ¢: xp(sm-q-1) + HLg,q by taking the standard

inclusion of ¢ in s" and mapping
sm’q”1). Clearly, this is well-defined and a

Sp - (Sm-Sq) by an

element of xp(

homomorphism. We have the commutative diagram

m ¥ m
Ip,a fp,q
}‘\ T(P
Sm-q—1
xp( )

m m-1
. x s®') as follows. Clearly
We define S: HL, o = p+q( ’

m .
homotopy links in g® gre the same as in R~. Now, given

(f,g): (sP,s?) » R™, such that £(s®)g(s?) = ¢, we define

S(f,g): sPxs? - s py
£(x) - gly)

H(x) - gl

s(f,g)(x,¥) =
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This gives a well-defined inap ﬁLg’q - [prsq, sm'1], But,

from the Puppe sequence

» sPys? 5 gPys? o 5PAs? o Sp+1qu*1 -

we get the exact sequence

(57 yor_ (8™ o[ 8Px8%, 87 Jam (57 Jem (s771).

gB=1
P+1( )®“q+1 P+q
As p, q € m-3, the first and last terms are zero, thus

P+q(Sm 1) o [sPxs?, s~ 1] is an isomorphism. (Note that
[bpxaq, S '1] is a group, for [x, g™ 1] is a group if

dimX <2m-4, when X is a CiW-complex.) This defines S.
Lemma 4 S is a homomorphism.

Proof: Leta, B € HLg qQ’ and choose good position
’

representatives for them. In our addition construction

Dy _ h d -
fa+B(aD+) = u, thus fa+B factors through a wedge of p-spheres.
e have the commutative diagram

s ' -4
SpASq %’M\g 4 S

! 1
(bpvbp)A(bquq) {(SPASq)v(SPASq)V(SpASq)V(SpASq);,

h is defined by the S construction, hence hl{(SPAS )v(bPAsq);

is null homotopic. Therefore, up to homotopy, b(a+B) is

determined by hl{(sgAsg)v(sgAsg)} = S(a)vs(B). Therefore

S(a+8) = 8(a) + S(B). This completes the proof of the lemma.

Lemma 2 S@: =% (Sm a-1) > (Sm 1) equals (-1)4%Y, where

%9 genotes q-fold suspension.
Proof: This is trivial if p+q < m-1. If p+q = m-1, then

“p+q(3m'1) = Z, and 1t suffices to show that S¢ takes
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generator to generator, as S¢ is a homomorphism. Let u

. e
dencte the orientation preserving generator of Wp+q(5 1).

Consider the standard s2 ¢ s™, and choose a "nice" embedding
of a complementary Sm-q-1 to represent ¢(w), with the
orientation induced from the standard choice of

orientations of 5% and s™. (See Fig.1)

P is the point of intersection of the disc spanning

sm-2-1 ith s P is a point of g1

, and is a regular
point of Se(u), and has inverse image one point of
gB-2-1 99  the point QxP. Therefore the degree of Se(p) is
+4. In fact the degree of So(p) is (-1)%. This is because
of the minus sign in the formula for S. This proves the
lemma if p+q = m-1.
Now we consider the case when p+q > m-1. Let a € wp(sm‘q‘1),
and choose a representative of ¢(a) which maps S® onto

the "nice" s® 271 or the first part of the proof. Then we

have the commutative diagram,



Pagl  —Selg)  gnet
asl \ / s¢(/,.)

Sm—q-‘l/\ ga

Now aad = zqa, thus So(a) = (-1)q2qa. (When q is odd,
Se()2% = -3% as 2% is a suspension.) This completes

the proof that S¢(a) = (_1)q2qa.
The following commutative diagram sums up the work so

far,

n N 3 Jmn=1
L i Htg’ a 3 7(P"'g.(b )

Psq
x\ oT ()%
n (877

Theorem ¢: KP(Sm-q—1) - HLS a is an isomorphism if
?

e ————
DP+2q < 2m-4, and an epimorphism if p+2q = 2m-3.

P . q . m—q-1 m—1 3 3 r h 5 s
roof b xp(S ) - xp+q(s ) is an isomorphism if

P+2q € 2m-4. Therefore ¢ is a monomorphism if p+2q € 2m-l.

¢ is epi if, given any element a of Hpg’q there is a

representative (f,g) of a, where g is the standard

inclusion. Take a PL representative of o. By a general

Dosition argument, s®p(sP) is (m-p-2)-connected. Now,

from [18, Chapter 8] any map s » M®, where M is (m-p-2)-
-connected, is homotopic to an embedding if d+1 € m-p-2,
where d = 2g-m. Thus we can homotop g to an embedding in
the complement of £(s?), if p+2q € 2m-3. By geeman's

Unknotting Theorem, [2&, Chapter 4], we can ambient
isotop g to the standard inclusion. Therefore ¢ is epi

if p+2q < 2m-3, proving the required result.
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CHAPTER II

A NOTE ON PIECEWISE-LINEAR IMMERSIONS

Let V, X be piecewise-linear(PL) manifolds and TV,
TX denote their tangent micro-bundles. Let Im(V,X) denote
the space of PL immersions of V in X and R(TV,TX) the

space of bundle monomorphisms of TV in TX. In [8], Haefliger

" “

and Poenaru defined topologies for these spaces, by making
them into semi-simplicial complexes, and showed that they
were weakly homotopy equivalent. The work of Rourke and
Sanderson, M8] and [19J, has shown that block bundles are
more natural tools for use in the PL category than
micro-bundles. The purpose of this note is to prove the
corresponding result to [8], using block bundles instead
of micro-bundles. To do this, we have to define a new
\topdlogy"on Im(V,X). A result of Haefliger's, [}, $9.2],
shows that the new space has the same number of

components as the old, but, in general, the higher
homotopy groups will not be the same. The proofs follow
those of [8] and use the main result of [®]. I am gratefrul

to B. J. Sanderson for suggesting this work and for much

helpful advice.
30, Definitions

All the work isin the PL category. Ak, Ik denote the
standard k-simplex and k-cube respectively.

Let V, X be PL manifolds.
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Def.1 A submanifold VP of X™9 is locally flat if, given
a point x of V, there is a neighbourhood, N, of x in X and
a homeomorphism (N, N1V) - (R?*Q, r%),
Def.2 Amap f: V- X is an embeddiag 1if £ is a homeomorphism
onto a locally flat submanifold of X.

Def.3 A map £f: V- X is an immersion if f is locally an

embedding.
Def.4 A map f: Aka - AkxX is block preserving if

£=1 (0xX) = oxV for any face, o,of AF.

We make the same definition if we replace A by Ik.

Def.5 A concordance of two embeddings ( immersions)

£, g: V> X is a block preserving embedding ( immersion)
F: VxI -» XxI such that Fo=f and Fi=g.

If such an F exists, f and g are said to be
concordant.

The definition and some of the theory of block
bundles will be assumed. If £ is a block bundle over a
polyhedron K and L is a subpolyhedron of K, then E|L
denotes the restriction of £ to L.

Let &n, nn+q be block bundles over simplicial
complexes K, L respectively.

Def.6 A map f£: (E(Z), K) » (E(n), L), such that flK is
simplicial, is @ plock bundle map if, for any simplex, o,
of K, there are charts ¢, V¥ for E|o, n|fo such that the

following diagram commutes.
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8(glo) 3 E(nlfo)
pl= =ly

OxIn fx?. fOxIn+q'

i is the natural inclusion map " o B9,
Def,7 If & is a block bundle over K and L is another
polyhedron, then ExL denotes x*g where n: KxL » X is
projection.
Def.8 Two block bundle maps I, g: E|K » n|L are homotopic

if there is a block bundle map F: &xI - mxI such that

F|KxI is block preserving, and Fo=f, Fi=g.
Def.9 Let £f: V - X be an immersion. Then we define the
homotopy class of df: TV - TX as follows. The map
fxf: VxV =+ XxX induces a map of the tangent micro-block
bundles of V and X. As the natural map ggq - qu(u) is a
homotopy equivalence, see [14], this dBfines a homotopy
class of block bundle maps TV -» TX, e choose a map from
this homotopy class and call it df. As we only ever want
the homotopy class of df, no ambiguity occurs.

It is obvious that if f is concordant to g then d4f
is homotopic to dg.
:l. The semi-simplicial complexes Im(V,X), PI1(V3X), R(TV,TX).

We use Im rather than Im, to distinguish our space

from that used in [5].
Im(V, X) ( BL(V, X)) has, as k-simplices, block

preservi.g immersions ( embeddings) ARV o AkxX, such that
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8%x0 - 25X is fibrewise over A. ( From now on, all
" M&W‘VM R
manifolds will have a base poinqﬂ) Both have the obvious

boundary maps.

R(TV, TX) has, as k-simplices, block bundle maps
AkxTV -+ TX. It also has the obvious boundarymaps.

As with ELq, see [18], these complexes have no
degeneracies, but, from results of [19], we see that this

does not matter for our purposes. All three complexes

satisfy the Kan condition as Ak = AkxI. Thus we can define

their homotopygroups. %o (Im(V, X)) is the set of concordance
classes of immersionsof V in X.

Given a block preserving immersion f: Aka - Akxx,
define £': AxVxV » XxX by £'(t,u,v) = ( xf(t,u), xf(t,v)),

where x: AkxX -+ X is projection. As in Def.9 this defi.es

ar: A%V - Tx up to homotopy. By an induction on k, we can

choose representatives so as to define a semi-simplicial

map 4: Im(V, X) » R(TV, TX). d is unique up to homotopy.
The main theorem of this paper is

Theorem d: Im(V, X) - R(TV, TX) is a weak homotopy

equivalence, (w.h.e.), if dimX > dimV.

A w.h.e., is a map inducing bijections on %o and

isomorphisms of all homotopy groups of corresponding

components.
The scheme of the proof is the same as in [8] . Thus

we must prove the following three lemmas.
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Lemma 4 d: Im(I", X) - R(TI", TX) is a w.h.e.

Lemma 2 If V' is a submanifold of V, then the restriction

map R(TV, TX) -» R(TV', TX) is a fibration.
Lemma 3 If V' is a locally flat submanifold of V, then
the restriction map Im(V, X) - Im(V', X) is a fibration if
dimX > dimV, or dimX = dimV and every component of V has
non-empty boundary and every component of V-V' meets this
boundary,

Remark The condition of Lemma 3 is equivalent to

requiring that V equals V' union handles of index strictly

less than dimX.

A~Fava

The proof for the case when V is compact now follows
by an induction on the number of handles in some handle
decomposition of V, and Lemma 41 provides the starting
Point. The induction uses the exact sequences of the
fibrations of Lemmas 2 and 3. This is justified by the

results of [14]. We can now extend to the general case

by using the results of [1§].

22.  Proof of the main theorem

Lemma 1 is proved exactly as in [8] using the
€quivalence of block bundles and micro-block bundles.

Lemma 2 The restriction map R(TV, TX) - R(TV', TX) is a

fibration.
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Proof: PFactor the map, in the obvious way, as follows;

R(Tvy TX) 8 R(TV|V', TX) ¥ R(TV', TX).
It suffices to show that both ¢ and ¥ are fibrations.
Let IxIDxV'UOxIPxV = P. ¢ is a fibration if, given a
block bundle map IthxTVIP -» TX, we can extend to a
block bundle map IxIPxTV - TX. But IxI™xV deformaticn
retracts onto P. Thus we can use the covering homotopy
property for block bundles to obtain the required

extension. Therefore ¢ is a fibration.

To show ¥ is a fibration we first prove the

following
Sub-lemma Let m < n, 1™ ¢ 1™ be the standard inclusion.

Then the restriction map P1(I®, I"*2) - p1(I7, 1"*%) is g

fibration.
Remark P1(I%, 1%*%) is called Vieq,n’ the BL Stiefel

’
manifold, by Rourke and Sanderson in [18, Part 3].
Proof of sub-lemma: Given a block preserving embedding

f: IthxImUOthxIn - IthxIn+q, we want to extend f to an
embedding IxIRI® - IthxIn+q. Let nn-m be the standard

trivial normal bundle of the standard inclusion

hx I of

Ithm c 1812, Let v? denote the restriction to OxI
the normal block bundle of £(0xIPxI™) c OxI™I™*Q, mpen
™ev is the normal block buudle of £(0xIMxI®) c oxIPcIR+Q,

N+q-
From results of [18], We can chocse " 9™ 4o o 40
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normal block bundle of f(IthxIm) c IthxIn+q so that
él(OthxIm) = n@v. Again, by a result of [1B], this implies

R

Z 2 (mev)xI 2 (nxI)e(vxI). nxI defines the required

embedding of IxIPxI™ in IxIPxIP*%. This completes the proof
of the sub-lemma.

To prove § is a fibration, we must show that, given a
block bundle map Othx(TVIV')UIthxTV' + TX, we can extend
to a block bundle map of Ithx(TVIV'). Triangulate IxIfxV!
and IthxX so that the base map is simplicial. How
Subdivide our triangulation of IxI™V' so that it collapses
Simplicially to 0xIPV'. We can now apply our sub-lemma to
extend as required simplex by simplex, using the fact that

block bundles over simplices are trivial. This completes

the proof of Lemma 2.

Lemma 3 The restriction map Im(V, X) - Im(V', X) is a
fibration if dimX > dimV, or dimX = dimV and every component
of V has non-empty boundary and every component of V-v'

lmeets this boundary.
Proof: we first note that it suffices to demonstrate the
CHP for I'. For suppose we have CHP for I1, and suppose
glven a block preserving immersion OthxVUIthxV' - IthxX.
We use our hypothesis applied to the restriction map
lg(lhxv, IhxX) - lg(Ith', Ihxx) to obtain an immersion of

IthxV in IthxX with all the required properties.
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Now suppose given a block preserving immersion

F: OxVUIxV' - IxX. By [8, §7], an immersion f: VR 5 xB+a
has g regular neighbourhood. i.e. there is an abstract

regular neighbourhood 2% of V and a commutative diagram,

v 3 4
f\ lo
xn+q

Where i is inclusion and ¢ is an immersion. Using the same
method as in the proof of the sub-lemma of Lemma 2, we see
that F can be extended to a block preserving immersion
F's OxVJIx - IxX, where N is a regular neighbourhood of
V' in Vv,

Let N' be a regular neighbourhood of N in V, and let
04 be a regular neighbourhood of FSIN': N' - X such that

ON' c 90. We have the commutative diagram
Nt 3
F&l\\N lo
X
where i1 is inclusion and ¢ is an immersion. There exists

€ > 0, and an embedding j such that the following diagram

Commutes
[0,e]xN 4  IxQ

F'I\\\\$ L1xe

IxX
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where j|(0xN) = i|N. By the uniqueness theorem for collars,

(28, Chapter 5], there is an ambient isctopy H of Ixf such
that Hy =1, Hyj = 1xi and H | (0xjIx00) = 1. The map
(1x@)HT (41x1): [0,e]xN' » IxX is an immersion which
extends F' and equals 1xF{ on [0,e]x0N'. Thus we can
extend F' to an immersion of [0,e]xN'UIxN in IxX, and can
extend this at once to an immersion of [0,e]xVjIxN. Now
there is a homeomorphism of IxV with [0,e]xVJIxN, fixead

on OxVjIxV'. Thus we can extend F to an immersion G: IxV - IxX,

but G is not necessarily block preserving.

Now, keeping OxVUIxV' fixed, homotop G to G', where

G'(4xV) ¢ (4xX). Cover this homotopy by a micro-bundle

homotopy of dG to obtain a new micro-bundle map

®: T(IxV) -» T(IxX) covering G'. (We use micro-bundles for

this part of the proof as we want to quote the result of [8].)
Restricting & to T(IxV)|(1xV) we have 9=2]: TVoe! » Txoe!

dGet when we restrict to T(IxV)|(41xV'). As the
natural mep Ki(viiq,n) - ﬂi(vifq+1,n+1
if i € n, see [§], we can bundle homotop ¢ to @1 = Ve,

Where ¢ =
) is an isomorphism

keeping our maps fixed on the base and over (1xV'). Now

apply the relative form of the main theorem of [§] to the

bundile map y: TV -» TX. e can homotop G'[(1xV) to an
immersion, keeping (1xV') fixed. Extend this homotopy and

apply the theorem agaim to homotop the new map to an



17.

immersion of IxV in IxX which 18 plock preserviag and

extends ¥ as required. This completes the proof of the
main theorem., The relative form of the theorem is an
immediate consequence DY using a Five Lemma argument

applied to the exact sequences of the restricticn

fibrations.

Remark The proof in [8] of the fipration lemma for

immersion spaces caniot be adapted to this case &5 it uses
the covering iscotcpy theorem of Hudscn and Zeeman, and the

fact that a subcube of & Cube of embeddings 1s itself a

cube of embeddings. The covering concerdance theorem 1S
a slice knot in

false in codimension two by the example Of

33 mbeddings which is not

, and a subcube of a cube of e
e 1is meaningless.
esult is that the natural

fibre-wise over the cub

Remark One conseguence of this T
ma .5 an isomorphism. For both
px (PL )~ Kn(ELn+1) is

groups are isomorphic to the set of regular homotopy

+1  ppis isomorphism

.n . ¢!
classes of immersions of 5 xI 1B S

can also be proved directly using the praid of the triple

§8 of this thesis.

(BL PL o) ). See Chapter 3,

=n+1’ ““n+i’ 0l
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CHAPTER III

OPEN AND CLOSED DISC BUNDLES

In this paper, we are concerned with the relationship
between R” and D" fibre bundles in the piecewise-linear (FL)
category, and n-plane vector bundles. In [2 ], w. Browder showed
that the theories of R™ and D" bundles (the open and closed bundles
of the title) are not equivalent for all n, though no example of
an R” bundle which is not a D" bundle is known, We prove that the
theories of all three types of bundle are equivalent in the case
n = 2, by proving that the groups of the bundles are homotopy
equivalent. This has also been proved by Akiba [!], by a different
proof', The case n = 1 is trivial,

The paper falls into four sections, §0 contains the definitions
and basic results and the statement of the main theorem. §1 contains
some useful lemmas., In §2, we prove the main theorem, §3 contains a
proof that the natural map ﬂn(PLn+l) - "n(P-En» 1') is am isomorphism

ard some easy deductions from this fact., After it was written,
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I discovered that much of the material in %0 appears in (14].

30. Definitions and Basic Results

All manifolds, homeomorphisms and embeddings will be PL.
n—
RD is Zuclidean\space, o denotes the origin of R®

unless otherwise stated. D° is the standard n-cube

[-1,1]" ¢ R®. s™1 is the boundary of D%, also denoted by oD".
I is the unit interval [0,1]. A" is the standard n-simplex
embeddedin R®. The vertices are numbered 0 up to n so that

the 0 vertex lies at the orbgin and the r vertex lies on the
rth axis, unit distance from the origin. For m < n, we
have standard embeddings R® ¢ Rn, D" < Dn, AR < An, as the
first m coordinates of Rn, all of which coumute with the
inclusions just defined, and respect the ordering of the
vertices of AT and A™.

¢ denotes the empty set. # denotes the topological
space with one point. If Y is a topological subspace of X,

then denotes the closure of Y in X. If X is a manifold

Mo |

then denotes X-0X.

Let Y be a submanifold of the manifold X.
Def. 0.1 HY(X) is defined to be the semi-simplicial (s.s.)
complex whose k-simplices are homeomorphisms AkxX - Akxx
which commute with projection onto Ak, and such that the
restriction to Aka is the identity. It has the obvious

boundary and degeneracy maps.
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If X is orientable, SI{Y(X) denotes the subcomplex of Hy (X) of
orientation preserving homeomorphisms. If Y = ¢, we write H(X)
and SH(X).

HY(X) is a Kan complex, see [22], hence we can define its
homotopy groups. We can now state the main result of the paper,

Theorem 2.1
0,, H (D2) , Hb(Rz) are all homotopy equivalent,

H (0", Ho(Rn) are usually denoted by PLn(I), PLn(R) respectively,
See [/8). They are the groups of D" and " bundles, respectively, in
the PL category, SW Longllor I} 2 ]

Jmpcped, 0 denctes the{group of isometries of R keeping the
origin fixed, We have maps 0n - EO (Dn) - Ho (Rn)o The second map is
defined in a natural way by choosing a homeomorphism of ™ with Bn
once and for all, The first map is not naturally well-defined, but
belongs to a well-defined homotopy class of maps. To obtain this
homotopy class, we define a s.,s, complex PDn. There is a natural
map 0n - Pnn and a natural map Ho (Dn) - PDn which is a homotopy
equivalence, The homotopy inverse of cthe second map defines the required
homotopy class by composition with the first. For details, see [/5],

Remark 1 On’ mo(Dn) s H (Rn) all have two components and these two

are homotopy equivalenty, Thus we need only
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consider the identity components.
Remark 2 Tt is trivial to prove that $0,, si_(p'),

SHO(R1) are all contractible.

For the following definitions suppose y? is g

submanifold of Xm, and i: ¥ - X the inclusion map.

Def. 0.2 Y™ is a locally flat submenifcld of X™ ir, given
Yy € Y, there is a neighbourhcod N of y in X and a
homeomorphism (W, N1Y) -» (D™, D), the standard ball pair.
From now on, all submanifolds will be locally flat.
By Zeeman's Theorem on unknotting ball pairs, [2#, Chapter L],
this condition is automatically satisfied if m > n+3.
Let Z be a submanifold of Y.
Def. 0.3 EZ(Yn, X™) is defined to be the s.s. complex
whose k-simplices are embeddings f: Aka - AkxX which
commute with projection onto Ak and such that
(1) £1(8%xz) = (1x1)](a%x2),
(11) £~ (aFxox) = aFxi™1(ox),
(iii) given (t,y) € Aka, there is a closed
neighbourhcod U of t in Ak, a closed neighbourhcod V of
¥y in Y, and an embedding a: UxVxD®™® o a¥xX such that the
image of o is a closed neighbourhood of f£(t,y) in aBx

and the following diagram commutes, where %, x' are

Projections ontc the first factor.



Ux(Vxo) 5 UX(VXDm-n) 3u

lc la le
AF <y ? AkxX 3' rk .
Remark Condition (iii) is a local flatness condition, ang,
again by Zeeman's theorem on unknotting of ball pairs, is
automatically satisfied if m >n+3.

EZ(Y,X) has the obvious boundary and degeneracy maps.

If 2 = ¢, we write E(Y,X). EZ(Y,X) also satisfies the Kan

condition and thus we can do homotopy theory with it. In

particular we will maxe use of the following

Theorem 0.4 Let f: K- L be a map of connected Kan

complexes such that 43 xi(K) - wi(L) is an isomorphism
for i > 1. Then f is a homotopy equivalence.

The following theorem of Hudscn, see [13], and its

Corollary will play an important part in the proofs.

Given f: Aka - AkxX, a k-simplex of EZ(Y,X), we

write £, for f|: tx¥ - txX.
Def. 0.5 Y" is an allowsble submanifold of X if i~ (ox)

is a (n-{)-submanifold of Y or is empty.
This condition is trivially satisfied if 90X is empty.

Theorem 0.6 (Hudson) If Y is an allowable submanifold of

X and f: Aka - AkxX is a k-simplex of Ei’1(ax)(Y’X)’ then

there is h: AKxX - AKxX, a k-simplex of Hyy(X), such that

h(1xfo) = £ and ho = 1y
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Corollary 0.7 If Y is an allowable submanifold of X, then

the restriction map H (x) » E : (Y,X) is a fibration.
GX i"'1 \ax)

Prccf: Suppose given G: Ikxx -+ I™xX given by a map

1 o H X(X), and F: IxI¥xY - IxI¥xX given by a map

IxI® » E (Y,X) such that F(0,T,y) = G F(o, ,¥ ) where

1~V (ax)
and * is a vertex of I

. k ) ]
By Thecrem 0. 6, there 1s H: IxI"xX - IxI¥xX given by

a map IxI® - HaX(X) such that F(t,T,y) = Hy Flo,*,y)

where t € I, T € I . Consider H': IxI KX » IxI kK x

= -1 3 . H' is given by a
defined by H = Ht THO,TGT- 1s g y a map

t,T
ko, Hyy(X), H = G, and P(t,7,y) = Hy, F(o,#,5). This

completes the proof of the Corollary.
tion map H(X) - H(0X) is also a

IxI

Remark The restric

fibration, as the analogue of Theorem 0.6 holds when Y=90X.

For let f: Akan - Akan be given by a map Ak - H(aX). of

course this map is null-homotopic and the null-homotopy

Ak AE IxdX » AFxIxdX such that

xI »H(0X) gives us n:

h(1xfo) = £, ho = 1 and n|(8¥x1x0X) = 1. By the Collaring

Theopem for boundaries of manifolds, sSe€e [28, Chapter 5],

which says that oX has a neighbourhood in X homecmorphic

to 9XxI, we see that h extends to h': p¥xx » 8¥xX defined

to be the identity outside 0XxI, and h' satisfies the

conditions of Thecrem 0.6.

The existence of compatible collars, see [28] again,
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implies that if Y is an allowable submanifold of X, then

the restriction asap HY(X) -» H'_1(6X)(6X) is also a
1,

fibration.
We can now generalise Corollary 0.7 to the following

statement: If i is a union of components of o0X and
N = 177(11), then the restriction map H.(X) - E(Y,X) is a

fibration.
For examples of all the types of fibration

mentioned here, see Diagram 2 in 31.

21 __Preliminary Lemmas

We will need the following lemmas.

Lemma 1.4 S (Dn) ~ #, for -1<m<n, where D"'1 denotes

H

% jon™
the empty set.
Proof: e use the Alexander trick as follows.

Let h: Akan - Akan represent an element of

ko™ o 1xa¥

N . n
e (8 o(D?)). We want to define H: IxA xD? to

D™ JoD .
be a homotopy of h to the identity homeomorphism.

N . R4k
Bmbed Ixa¥xD® in RxiR¥xg® = R in the standard

Way to give us a linear structure.
k . n
Define H! o(IxaExD?) » o(Ixa*xD™) by h'[(0x4*xD")=n,

h' is the identity on the rest. These are compatible

as hlo(a¥xDP) = 1.
Define u € IxA¥xD® to be the point (3,x,0), where x

¢ k .n
is an interior point of A¥X. Then IxA%xD™ 2 u»o(Ixa¥xD"),

k n .
Where * denotes join. Triangulate d(IxA™xD") so that h' is
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simplicial. now define H(u) = u and comvlete the
definition of H by first defining ﬁfto be extended

k

linearly to u%( the zero skeleton of o(IxA an), and then

extended linearly to all of IxAkan, by working up the
skeletons, Clearly H is a homeomorphism. Alsc H is the
identity on 4xAXxD™UIx0a¥xDMIxa¥xoD™ by definition.
¥Finally, by the linearity of the construction, H
commutes with projection onto IxAk and is the identity

on IxAkxDm as required. This completes the proof.

Corollary 1.2 sH (D7) = sH . (s"7"), for -0<m<n, where
D S

s~ adenotes the empty set.

Proof: Consider the exact sequence of the fibration

H (D®) » sH _(D") - SH (s™1), and use the fact

that the spaces are connected. See [1$, Chapter 8].

Corollary 4. The standard component of E m(Dm,Dn) is
oD

contractible.
The standard component means the component of 1, the

standard inclusion Y - X.

Proof: Consider the exact sequence of the fibratiocn
H L0 > E (D) > & _(D",0"), and apply Lemma 1.1
D™ joD oD oD
to the total space and fibre.
Lemma 1.4 (Hirsch) If K is a simplicial complex, then
HKXG(Kx[o,ag) o *,

Proof: see [If].
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Lemma 4.5 SH(D®) = SH(R®) if and only if
H (P x1) = ».

n-1
8 x0
Proof: We define a restriction map sE(D") » E(D",x®), by

restricting our attention to [-4,4]™ ¢ D®. Consider the

commutative diagram of fibrations,

H (sP1x1) - sH(D®) - E(D",R")
s 140
l l =
H |, (s"7'x[0,) - SH(EY) -~ E(D",R")
S x0

From Lemma 1.4, we see that SH(R®) = SE(Dn,Rn). This
proves the result by considering the top exact sequence.
Remark SH(D™), sH(R™) are homotopy equivalent to SHO(Dn),
SHO(Rn) respectively. For consider the exact sequence of
the fibration SHO(Dn) - SH(D®) - E(o,R™). It is trivial
that, for any X, E(#,X) has the same homotopy groups as X.
Hence E(o,R") is contractible.

Lemna 1.6 SO = sH_(R") if and only if SO, = sH_ (D™,
Proof: Let o be a point of Sn, and ccnsider the following
commutative diagram of fibration exact sequences,

5w (30) o m(80,,) o m(sT) -

! d =

+ m (SH,(87))om, (SH(™)) - n(E(o,8") »

R

By the Five Lemmg,it follows that 30 SHO(Sn) if
and only if SOn+1 o SH(Sn). Now Corollary 1,2 says that

SH(s™) = SH(Dn+1), and we use the result of [H], whose
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» . " \n r n
proof we give below, that SH_(87) = SH(R™) to complete the
proof of Lemma 1.6.

There is a restriction map SHO(Sn) -+ SH(R™), as

s%-0 = R®. Let D" be a hemisphere of s™ with o ¢ Dn, and
consider the commutative diagram of fibrations below,

SH n(sn) - SHO(Sn) ~»  E(D",RD)

aat] l l-

Hsn-1 O(Sn—1X[0,d9) » sH(R") — E(D",R")
X
Now SH (s™) is isomorphic to SH (D™), which is
o D" oD Jo

contractible by Lemma 4.1. Therefore by the Five Lemma and

Lemma 1.4, we see that SHO(Sn) ~ SH(R™). This proof is in [H].

Now consider the following commutative diagram. Each

row and column is a fibration.

H (s"1) - B (s"I) = SH1(Sn) ~ SH(R™®)
S xoIUI 8% oljI

H (s"I) = H _ (S'xI) = sH(s®) = sH(D™)
sxoI S7xo

l ! !
By (I,8%I) = E(I,5"xI) 9 B(1,s")
Diagram 2
The left and middle vertical fibrations restrict
attention to oxI c S™xI, where o is a point of S". The three
horizontal fibrations restrict attentioh to 5% c sxI.

The map xr(Eo(I,San)) - xr(Sn) is zero. For take a
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representative a of an element of WP(EO(I,San)) and project
onto S". This defines the required null-homotopy, as
x(a]): aTx6 -+ ATxs®xI -» s is a point map.

All the spaces are connected except for the lower two
in the left hand coclumn.

e prove our results by considering the fibration
exact sequences obtained from the diagram and proving that
HSnxoUI(SnXI) and EO(I,San) are contractible for n =‘Xlor %,

WWe then apply our previous Lemmas.

32, The case n = 2

This section is dewoted to proving thefollowing

Theorem 2.4 0, H_(D?) = H_(R®).

2
Proof: S0, ~ SH_(D°). This is a trivial consequence of

Lemma 1.6 and the fact that SO, = SHO(R1) ~ %,

1
To complete the proof of the theorem it suffices to show

that H (S1xI) is contractible, by Lemma 1.5.

1
S'xo
Consider Diagram 2 in the case n = 1. H , (S1xI)
S ' xoIYI
. . 2 . "
is isomorphic to H 2(D ), by "cutting along I", and is

oD
therefore contractible, by Lemma 4.1. As sa(r!) is contractible,

we have H , (S1xI) o~ %,
S'xoJI
We now use

THeorem 2.2 The standard component of EaI{I,S1xI) is
contractible.

This implies that EO(I,S1xI) is contractible, as
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1 1 rel
the map #_(E (I, xI)) - #_(8") is zero for all r, Hence H (s™xI)
r‘o r Slxo
is contractible, This completes the proof of Theorem 2,1 apart from

the proof of Theorem 2.2.

Proof of Theorem 2.2

Define I_¢ stx1 by I, = (-o)x.
A representative of an element of ﬂk("EaI(‘"I,SlxI)) is an
embedding a: lkxI -»(kxslxl. We will show that a can be homotoped so
that a(&5%1)N(A" xI_) = ¢. Such an embedding is a representative of
‘Wk(EaI(I,Dz)) ,, as the closure of the complement of a regular
neighbourhood of I. in SlxI is homeomorphic to D2. This group is zero
by Corollary 1.3, as k»l. This provides us with a null~homotopy of «
in E‘aIQI,Dz) and hence clearly in E‘aI(I,SlxI), which completes the proof.,
The proof that we can suppose that a(&kxl)ﬂ(lk xI") = ¢ falls
into two lemmas..

Pirstly, we can suppose that, in every fibre, am‘ is a finite
number of points., We use the linear structure of &kx&l xlrdlk xnz = Rk+ 2.
Let » denote projection of Kk +2 onto a (i+l)=hyperplane perpendicular
to I . Then wa: Ek xI —*R)HL. By a smalll, level-preserving, isotopy of

-
a we can make wa non-degenerate, i.e. (va))—l(y) is a finite number of
points, To do this isotopy, work up the skeletons of a triangulation

of lkxI in which a is linear on each simplex, moving the barycentre

of each simplex and extending linearly.

We can now assign one of the numbers +1, -1, 0 to each point y

of u('kkxI)ﬂ(lkxI*). For y lies in a certain fibre and is an isolated
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point of anﬁ;. in that fibre. We assign ¥l to y if I crosses I‘
at y, the sign depending on the orientation, and we assign O to
Y if I does not cross I‘ at yo
ngggg As we are oconsidering the standard component of EaI(I’SlxI)’
the algebraic sum of these numbers in any fibre is zero,

For x in lk, define n_ to be the number of points in (Bﬂ;.)x
to which we assign + 1. If o is everywhere zero, we use
Lemma 2,2,1

If n is everywhere zero, we can homotop a so that

c(ﬂFxI)ﬂ(AkxI‘) = ¢

Proof: As n is everywhere zero, all the intersection points are
zero points., Consider a regular neighbourhood of I‘ in S;xI, which
does not meet oxI G:S}xI. This neighbourhood is separated into two
parts by I;, and each point of intersection is associated to one of
these parts- the stide of I‘;on which I lies in a small neighbourhood
of the pointe. Choose one side of I‘ and choose a small ambient
isotopy of the regular neighbourhood on this side which pulls
away from I.. Do this isotopy in every fibre simultaneoudly and
this will induce & homotopy of & as we do not disturb a on aAkxI, as
our regular neighbourhood does not meet oxI. Do the same on the other
side of I,. Now a(&kxl)ﬁ(ﬁkxl.)'= ¢

If n_ is not everywhere zero, we use Lemma 2,2,2 and induction
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to reduce ourselves to that case.
Lemma 2,2,2
If n_ is not everywhere zero, we can reduce max(nxl X in Ak) by
one,
Proof: Denote this number by n. We note that, for any point of Ak, the

property of having a signed point of intersection in the corresponding

k

fibre is an open property. To put it more precisely, if x in A" and

Y in (If\I‘)x is a +1 poing, there is a neighbour hood U of x in A.k and
a section s of the trivial line bundle UxI over U such that s(x) = y
and s(z) is a +1 point of (Ir\'[‘)z, for any point z in U. We say that

J persists over U, It may be convenient to denote s(z) by y also,

Define N = {x in Akll nx=n}. Then N is an open subset of a¥,
Note that N c ik. Also note that s of the last paragraph is unique
in a neighbourhood of a point x in N,

We remark that if x in N and y in (I!'\I‘)x is a signed
intersection point, then y persists over the compnnent C of N in which
X lies, For let U C Ak be the maximal connected open neighbourhood of x
over which y persists and suppose G ¢ U, Then (U-U)C % ¢. Suppose
z in (U-U)C. 48 z in C, n, =n, and all the signed intersection points
in the fibre over z persist over a neighbourhood V of z in C. But this
implies that if w in V, w § 2z, then n > mn, 8s y persists over w, which
contradicts the maximality of n,e Thus C c U,

Proposition 2.2.3 N is a subpolyhedron of a¥,

Proof: Let U = a(Akxx)n(AkxI‘) and triangulate everything
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So that a is simplicial, AkxI* is a subcomplex of Akxs1xl

which is g subcomplex of Rk+2, and so that the projection
map x: U » a¥K ig simplicial. Of course N c «U. If x e N,
then x lies in the interior of a unique simplex, TP, of our

triangulation of Ak. Now the inverse image under x of a

boint in Ak consists of a finite number of points. Therefore
ﬂ-1(TP) consists of a finite set of r-simplices, which
contains n simplices h each with the property that giHXxI*

is a signed point of intersection in the fibre over x. Using

the linear structure of Rk+2, we see that any interior point t

[«
¢f 0, is a crossing point in the fibre over x(t). Thus TeN,
and hence TP c ﬁ. Thus N is a union of closed simplices of

cur triangulation of Ak, as required.

Proposition 2.2.4 We can suppose there are no zerc points

of intersection in the fibre over any point of N.
Proof: Choose a real valued function ¢ on Ak, zero ocutside
N and positive but small on K. As in Lemma 2.2.1, we now
bush all the zero points away from I, in the obvious
direction, pushing a distance ¢(x) in the fibre over x. This
does not alter the value of n, for any point x e Ak. This is
obviocus outside N, and for points in N uses the fact that no
signed intersection point "turns into" a zero point over N.
Without loss of generality, we may suppose that N has

one component. For if not, we deal with each component in
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turn without disturbiag the others.
Choose x € N. As n_ + 0,and the number of -1 points

in the fibre over x equals the number of +1 points, we can

find two points y, y' € 1 such that ay is a +1 point, ay' is

a -1 point and af(y,y')} does nct meet I,. ( Without loss of

generality, we may supposé ¥ < y’.) y and y' persist over N

and are consecutive intersecticn points ( in I) in every

fibre. Now the two intervals spanned by aY, ay', one in al

A o o s
the other in I,, form an embedded b1 in 5 'xI. This uses

Prop. 2.2.4. This s spans an embedded D®. We now see that we

can find ' so that the interval (ay,oy') c I, also
Ve ¥

contains no intersection points. For the intersection points

in (ay,ay') occur in pairs of opposite sign, and a nested

set of intervals of this sort gives us anested set of

embedded 2-discs. We simply choose the pair of points

corresponding to the innermost 2-disc. It now follows that

o8
D dces not meet ol or Ig.

Usi.g this 2-disc, we could define an isotopy of
o|[y,y'] across the disc to the interval [ay,ay'] ¢ I,, and

extend to an isotopy of a|(xxI) by the identity cutside

[Y.y']. The idea of the proof is to show that we can do

this simultaneously in every fibre over a point of N.
y, y' determine unique sections s, s' of NxI % n,

which by continuity extend to unigue sections over N.
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Define z c N-N, by z = iz € Nl s(z) = s'(z) }.

Proposition 2.2.5H 7 is a subpolyhedron of M.
n the proof of Prop. 2.2.3. Let

Proof: Triangulate as 1

X € Z, then x lies in the interior of a unique r-simplex ©

of our triangulation of Ak, every point of which lies in N,

from the proof of Prop. 2.2.3. Hence, using the linear

structure of Rk+2, we see that every point of ¢ lies in Z.

This proves the proposition.

2.2.5 shows that thereis & regular neighbourhcod

-1
] such that ¢ (0)=0U,

Prop.

U of Z in N and a function @: U - (0,4

¢-1(1) = 2., As B(*,I) is contractible, we can suppose€ that,

for all points z € Z, s(z) is the midpoint of I..

o . .
Choose an embedded 2-disc in S1xI, which meets I, in a

{1-disc in its boundary containing the midpoint of I,. Chcose

a pseudo-radial contraction of this 2-disc over itself to

the midpoint of I,. We can arrange that, with respect to this

choice, o is standard over U. This means that if u € U and

¢(u) = t, then aul[y,y'] looks like part of the boundary of

our 2-disc at level t of our contraction. For every point

u € U, we can define an isotopy, @&s required at the bottom of

P.33, py using our contraction. This gives the identity

isotopy over Z. Our problem is to extend our-isotopy of

a|UxI over the rest of N.

o 1h
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Triangulate N with U as a subcomplex. 3uppose we have
eXtended cver the r-skeleton of N-U and let of*! < F-§. To
€ach point of om'1 we have associated a proper embedding
D' - D2 = S1xI - a one sided neighbourhood of I,, and to
€ach point of aor+1 we have associated an embedding of a
2-disc whose boundary is an arc in I, together with D1. As
2

r
o™ s contractible, we can put our embeddings ol 5 p

Standarg over o, 90 now gives us an element of WP(E6D2(D2,D2))2
Clearly E ,(0°,0%) = H ,(D®), which is contractible by
D oD

o
Lemma 1.1. Thus we can put our 2-discs standard over dc and

extend in the obvious way to get an embedded 2-disc for
e€very point of o. Thus we can indeed extend our isotopy of
o|UxI to an isotopy of a|FxI, which in every fibre does as
Tequired at the bottom of P. 33. It is easy to extend to an
isotopy of o which is the identity outside a small
Neighbcurhood of N. This ensures that no new intersections
are introduced and that we do not disturb any other
Components of N in the case when N is not connected.

We now have that in every fibre over a point of N,
o{(y,y']} < I,. We must push a| [y,y'] slightly off I, in
the obvious direction, keeping y,y' fixed. We have now

dchieved the result of Lemma 2.2.2, which completes the

Droof of Theorem 2.2.
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)z x (BL .’

n'==n+i .

53. xn(PLnt1

This section is devoted to proving the following

theorem and deducing some corollaries.

Th. i
eorem 3.4 The natural map xn(PLn+1) - Kn(PLﬂ+1) is an

isomorphism.

) .
emark It is well known that the natural map Wn(PLn+q) - ﬂn(ELn+q)§

is an isomorphism, if q > 2. See (8].

Proof: the proof will require the following three theorems.

Theorem 8.2 (Hsiang, Levine, Sczarba)

mbedded in R™HE

A homotopy n-sphere smoothly € has a

trivial normal bundle, if k 3> n-2.

Proof: See [12].
1 _ tne set of regular homotopy

Theorem 3.3 =« _(SO_ ) & FCI_ =
n' n+# n

classes of smooth immersions of San in R
using the immersion

n+1.

Proof: By standard obstruction theory,

theorem of Hirsch.

Theorem R.4 (Haefliger, Wall)

o 1.
xn(PLn+1) = FI‘In = the sét of regular homotopy classes

of smooth immersions of S‘IllxR in R™', where a ranges over all

smoothings of S".

Proof: By standard obstruction theory, using the immersion

theorem of Haefliger and Poenaru, [8], we see that

~ 1
x Pt -
n(PL 1) ~ FBI! = the set of regular homotopy classes of

PL immersions of SPxR in rR2*1 . The Cairns-Hirsch Product
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1

Theorem gives us an isomorphism between FBIn and FPIl. For

the details of this argument, see [%].
We now consider the homotopy exact sequences of the

We use the isomorphism

Pairs (PLn+1’°n+1) and (2&n+1’0n+1)'

xn(ELq’Oq) = rg = the set of concordance classes of smooth

embeddings of homotopy n-spheres in Rn+q, which are PD

Unknotted. See [18].
Theorem 8.2 can be interpreted as saying that the

bou j r if -2,
ndary map xn(qu,oq) - xn_1(0q) is zero, if q > n
Thus the natural map xn(oq) - xn(ggq) is mono, if q > n—,

and h PL ).
ence so is the map xn(Oq) - Wn( q)

We have the pair of short exact sequences

1
0 » x(0,,.) » x (PB ) 4 x (PL .0 )~ 0
0 - xn(on+1) i xn(gén+1) Ja Wn(ELn+1’On+1) - 0.

Jai; can be identified with the natural map F'I) » T_ by

leans of the commutative diagram
j213 ~ ph+
xn(PLn+1) = xn(ELn+1,On+1) = Ta
Fri} - r
n n
and this map is onto, as every homotopy n-sphere is a
X-manifold, by a theorem of Adams, and hence immerses in

codimension one. Hence, by commutativity, iu is onto.

Now suppose that iu(x) = 0, and hence iuji(y) = 0,
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2
s

4

for some y € x_(PL 1). From the above remark about jzi3’ we
n' Tn+

see that y lies in the image of the natural map
FCI; - FTI'. But this map can be identified with the
n

n T -t o 3 .
atural map xn(on+1) N ';cn(PI..m_Jl ), by Theorems 3.3 and .4

Hence x = 0, and 1u is an isomorphism. The result now

follows by the Five Lemma.

2D js tpivial

Corollary {4 Any normal open tube on s c s

as a bundle.

We now quote the following theorem of Hirsch.

Theorem 3.5 The natural map %, (PL,,0 ) > I is onto if

k 2 n-1.
An easy consequence of this theorem is

Corollary 2 The natural map ﬂn(PLn) - Kn(ELn) is onto, if n2l,

b S L

Proof: We use the homotopy exact sequences of the pairs

~J n~
(PL,,0_ ) end (BL_,0_) and the fact that I = I = x,(PL),0,),

if n > L,
Now consider the two homotopy exact sequences
q
K, (89 & m (PL ) » 7 (PL, T) = %, (57)

lo ) ) lo

qa a sYeal .
Kppq (ST)@AD - wn(ggq) -+ (PLq+1) » = (5%)eal

Bor the definition of Ag, see [18]. We only use the fact

that A& = 0, if n < 2g-3. It is now easy to prove our

remaining Corollaries.

C ~ .
Corollary 3 x (PL ,I) 2 = (BL,, ,), for all n
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C .
$Qrollary 4 xn(PLn+1I) - xn(PL +1) is onto, for all n.
Proof: This is xnown for n = 2 and 3. Use the above for
n >y,
C Y
orollary 5 xn(PLn+1I> - xn(PLn+1) is onto, and hence

every PL manifold has a tangent disc bundle.
Corollary 6 Open normal bundles exist and are unique for

embeddings of M® in an.
Closed normal bundles exist for embeddings of M- in an.
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CHAPTER IV

THE. SPACE OF HOMBOMORPHISMS OF A 2-MANIFOLD
Let MZ be a compact, connected, piecewise-linear (PL) 2-manifold,
A4 let o be 4 point of j_nt(lz). If N is a subset of Mz, then HN(MZ)

denoteg the space of PL homeomorphisms of M2 which leave points of N
i# ¥2 15 not 8 or P%, then the identity

f .
ixed. This paper proves that,

omponent (and hence each component) of H .w(llz) is contractible. If

2 (Hz) has the homotopy

W 45 5% or P2, then the identity component of H_ 5

tpe of 5 circle,
The analogous results to the above in the smooth category have been
Proved for orientable 2-manifolds by Barden, using results of Eells and

Earie (4} and Cerf [3]. In the topological category, the analogous
Tesult has been proved by Hamstrom [10]s

In §0, we prove some use ful results and state the main theorem, In

S, we give a proof of the main theorem assuming Theorem 2.1 which is

Proveq ip 82, In 83, we consider the relationship between the spaces
Houm(ﬁ). Han(”)’ H‘;(l() and H(M).

@Lsmﬂe useful results
We use the definitions and notation of §0

of Chapter III. In addition,

2 k)
P denctes tne projective plane, K is the Klein bottle P #P, Moeb, is the

Uoeb iy, band and T is the torus s]',‘sl, ( # denotes connected sum.) The main

theorenm is



.
Theorem 1,1
(1) Ir Mz is a compact, connected 2-manifold, not 52 or P2,
#
and & is a point of M2, then H;LBM(MZ) has

contractible identity component,
(i1) The identity components of H_(5°) and H’(PZ) are
homotopy equivalent to the circle Sl.
We will need the following results.
EEEEE_Q;& If M is the Moebius band, then HaM(M) is contractible,
Proofs It is easy to show that Hiu(M) is connected., To prove that
all the higher homotopy groups are zero, apply the methods of Chapter IIT,

Lemma 0,2 If M is a connected manifold and & is a point of ﬁ, then the
image of the natural map f: rl(H(M))-» ul(E(c,ﬁ)) = vl(M) is central in
7, (M),
Proof Let a represent an element of wl(H(M)) and B: (I,8I) - (M,s)
represent £([a]) in Iifn). Let y: (I,0I) » (M,e) represent an element of
71(3) al so,

Consider the composite map
g IxI ¥ nad IxM 3 M, where (1xv)(x,y) = (x, ¥y), and % is projection
onto the second factor. Note that g| (Ix{i}) = B and g| ({1}xI) = v, where
i=0o0r1i, Thus g€ defines a homotopy between SY and yYB. Therefore
(81ly] = [v)(B] for a1 [¥] in % (W) and hemoe [g] is central in v, (N).
Lemma 0, 3 If M is a compact, connected 2-manifold, not P2, K, T,
SlxI or Moeb, then 11(M) has trivial centre.

Proof; See [5],



§lg Proof of The Main Theorem

This section will be devoted to a proof of

Thedrem 1,1
(1) rr MZ is a compact, connected 2-manifold, not 82 or P2,

and # is a point of §2, then H‘wu(Mz) has contractible
identity component.
(i) The identity components of H, (32) and H.(Pz) are

homotopy equivalent to the circle Sl.

Remark 1,2 If M % ¢, it follows that the identity components of

H o) and H, (M) are homotopy equivalent, by considering the fibration
Ho (M) = Hy\ () = E(ﬁﬁ)-
T (B(o, 1)) = m (W) = 0 if k > 2, and the map 7 (H,, (1)) — 7, (E(s, 1))
Can be seen to be zero by choosing a path in M from & to a point of 3N,
The crucial step in the proof of khis theorem is

Theorem 2,1

r 4 is @ compact, connected 2-manifold, not 8%r P2,
Sl c ;(2 is essential, and & is a point of sl: then E,gg:"z)
has contractible identity component.
Proof of Theorem 1.1(i) assuming Theorem 2.1
I is s compact, connected 2-manifold, then
'y ¥ (32 # tT # pP) - k disjoint open 2-discs, where t, p are non-
Negative integers denoting repeated oconnected sum, From the relation

T#PxPM#P#P, we see that if M is non-orientable, then M = pP-k holes,

Where p 3 1, Of course, if M is orientable, then M = (szut'r)_k holes, (In
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the orientable case, t is called the genus of M, and in the
non-orijentable case, p is the genus.) We proceed by induction on t in

the orientable case or p in the non-orientable case and reduce the case

P = 1 to the orientable case.

If M is orientable and t = 0, k = 1, we apply Lemma 1.1 of

Chapter III., If k » 2, we apply Theorem 1.3 below, This starts the

induction,
Theorem 1,3
H;La(slxl - r holes), r3 0, has contractible identity component,
The induction step itself is as follows. Let M be a compact

2-manif01d, not 32 or P2. Then M = tT - k holes, t 21, or MepP - k holes,

2 .
P » 1, In the orientable case, choose s* ¢ ¥° to be a transverse oircle
2

of a torus, In the non-orientsble case, when p 3 2, ohoose S° C M~ to be

the attaching circle of a Moebius band, and in the case p = 1, when

M ¥ Moeb - (k-1) holes, choose s! to be the centre circle of M, In all
Cases, if we out M along Sl we obtain a connected manifold N or two

Connected manifolds N, , Né of smaller genus thah M.

Now, in all cases, Sl is essential in M, hence we can apply

Theorem 2,1, Consider the fibration

1 2
E S M )
Hyyst (0 = H (0 -~ E (57, ¥)
From Theorem 2,1, we see that the 'deptigy components of

. 7 w8 o .
Haqul(M) and H‘uau(l() are homotopy equivalent. ButiHaMl(M)adHaN(N),M rsomophis,

Where Nis the manifold ( possibly not connected) obtained by cutting M

along 81. As each component of N has non-~empty boundary, Remark 1,2
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implies that, if & is an interior point of a component C of N, then
the identity components of H, c(c) and H:UC(C) are homotpy equivalent.
Now our induction assumption implies that the identity component of
H‘WC(C) is contractible. Hence the identity component of Ho\)aM(M) is

Sontractible, This completes the induction step and hence the proof

°f Theorem 1,1(1i).
Proof of Theorem 1.3

Dencte (SlxI) - r holes by F_. The proof is by induction on r.
The cage r = 0 is proved by using Remark 1,2 and the results of

Chapter III.
The induction step is as follows, Consider the fibrations

(A) H‘ (pr) - Han (Fr) - E(O, %‘r-‘), where #, o are distinct

points of Fr R

2 © -
(B) HtUDa.B (Fr) - H' (Fr) - Eo(D , ¥ ), where 0 in D C Fr - %

As in Remark 1,2, it follows from our jnduction hypothrsis and

A ,
( ) that the identity component of HgUow (Fr) is ocontractible.

2 £ .
Now there is a map a: EO(DZ,Rz) N Eo(D , B - &) obtained by
Choosing a neighbourhood of p2 in §r - « homeomorphic to R", a is a

k
hOmotopy equivalence, For let f: Akxpz - & xFr represent an element of

v 2
"k(Eo(Dz, F - «)). By contracting each D~ over itself keeping o fixed,
We can pull the image under f into a "small" neighbourhood of o and

henoa, a priori, into 112 c Fr -~ &, Thus @, is onto, Similarly o, is a

monomorphism, and therefore an isomorphism.
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Now the identity components of EO(DZ,RZ) and HO(RZ) are
homotopy equivalent. See P.26, line 6. As the identity component of
HO(RZ) is homotopy equivalent to a circle, Theorem 2,1 of Chapter III,
it follows that the identity component of EO(D2, ;r - @) is homotopy
equivalent to S'. Hence (B) implies that the identity component of

H i = i
w2 (F,) 18 contractible, But H, y2  (F) = H . (F ). This

completes the induction step and hence the proof of Theorem 1,3,

Proof of Theorem 1,1(ii)

2
If Mis Sz, the result follows as q_(s ) = H(Rz) « Sl° See the
proof of Lemma 1,6 in Chapter III, and Theorem 2.1 of that chapter,
If Mis P2, consider the fibration
2 2 2 2
H ,(P%) - H (P°) » E, (0%,P°),

2D -

Wwhere ¢ in D° c P°,

Now H 2(P2) = Hé(Moeb) which is contractible by Lemma 0,1, Also
E_(p%,p? ; st
o (D7, P7) has identity component homotopy equivalent to 87, by the same

argument as in the proof of Theorem l.3. The result now follows,

§2.
This section is devoted to proving

Theorem 2,1
]
Ir “2 is a compact 2-manifold, not 82 or P2, S1 - M2 is essential,

and & jis a piont of 81 , then E‘ (Sl,llz) has contractible identity

Component,
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Proof; This is simidar to the proof of Theorem 2.2 in Chapter III,

Let a: a%xg® — a5 represent an element of ﬂk(E‘(Sl,lz) , k21,

We prove that a is null homotopioc.
Choose a regular neighbourhood V of st in Mz, (V will ve
1
homeomorphic to slx]: or Moeb) and consider ax(S )NaV, where x in Ak

and a_ denotes a”x}xs;'. We now proceed as follows:
(1) Homotp a so that ax(sl)nav consists of a finite number of points,

for all x in Ak.

(i1) Homotop a to remove all the crossing points in this intersection,

for all x in &%,

(iiii) We are left with an embedding f§: Akxsl - &ka and, by using a
collar of 3V in V, we can push § away from dV so that ﬁx(sl)nav = ¢, Now
P represents an element of nrk(E‘ (Sl,V), where S© is the central circle

of V, and we apply Theorem 2,2 or 2,3 to show that f is null homotopic

and hence so is a,

Theorem 2,2
Ir Slx{-}} = Sl c SlxI and » in Sl, then the identity component

of E (sl,slxx) is contractible.

Theorem 2, 3
2 1 l2 1
If M~ is Moeb, S8 C is the central circle, and & in S, then

the identity component of E. (S»l,ll2 ) is contractible,

Proof of Theorem 2.2
From the results of Chapter III and Remark 1.2 it follows that

the identity component of Hqy xaM(SIxI) is contractible, where » in
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1
S"xI, Now consider the fibration

1 1
(SlxI) - E'(S , 8°xI),

H
SlxaILB ILe

As the fibre is isomorphic to H ;
S xaI

1
('x1) = H
1 Slx
(SlxI) 2, the result follows,

Proof of Theorem 2.3
From Lemms 0,1 and Remark 1.2 it follows that the identity

le., Now consider the fibration

Component of H m‘(M) is contractib

a
1
H o () » Hy, M) - E(5,¥.
awsl M
By “Outting aloang Sl”, it is clear th

i (81"1) whioh has contractible identity component,

at Ehe fibre is isomorphic to

The result

Slxa I

now follows,

To complete the proof of Theorem 2.1, We must show that steps

(i) and (ii) at the beginming of this section can be carried out.

We carry out step (i) by arguing as follows. aV is either one

circle or two oarcles, In either case, a component C of 9V has a

Cylinder slx:[ as regular neighbourhood in M, Let m denote projection

sl"I - I: By a smell homotopy ofa fixed outside a small neighbourhood

of “-l(Aka), we oan arrange that 7o 13 non-degenerate on a

'l(Aka). ET- (ﬂa)_l(x) is a finite number of

heighbourhood W of a
ult follows immediagely.

points, if x in a(W)., The required res
1 :
Now consider Step (ii). The points of ax(S YoV fall into two

®lasges - crossing points and non-crossing points. Let n_ be the number
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of orossing points in the fibre over x, and define n = xma,x{nxl X in A
If n = 0, we apply Step (iii) and what follows of the above work to
complete the proof that a is null homotopic. If n # 0, we apply the
following lemma and induction to reduce ourselves to the case n = 0,
Lemma 2,4
e —————

If n(a) > 0, there is a homotopy of e to @', where a' has the

property that a;:(sl)n V is a finite number of points, and such that

n(a') < n(a).

Proof:  We defime N = {x in 4| n_= n]. Choose x in N. s in
Chapter III, all the orossing points over x persist over the component
of N in which x lies, We may suppose N is connected.,

As N § 4%, ¥ - N is non-empty. Thus there szl pair of orossing
points y, y' over x which coalesce at some poimthf N-w

If p, q are points of 81, not s, denote by [p,q] the arc of Sl with
endpoints p and q which does not contain #, Then we may suppose that
[y,y'] contains no other crossing points.

The points ay, my' im 3V determine two arcs A and B with them as
endpoints, and Auely,y'], Baly,y'] are both circles embedded in M2, Tt
can be seen, by considering the situation in a neighbourhood of z, that
one of these two circles bounds a 2-disc embedded in M2. (The possibility
that both circles bound & 2-disc is eliminated later,) :

As in Chapter III, our problem reduces to the following,

Divide the boundary of the 2-disc D2 into two arcs P,Q. Let
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E(Dz,u > V) denote the space o embeddings aof % in M - V such that
p%rav = P, and let E(Q,M - V) denote the space of embeddings of Q (=1)
in M - ¥ such that QVV = 8. Then we have to show that the natural
map A: E(Dz, M—%) - E(Q, u-t{r) induces an epimorphism of all homotopy
groups, (If M—\"; is disconnected, We shall restrict attention to one
Component, )

Now A is a fibration and the fibre is EQ(DZ, M-{f)., All the components
& the fibre are isomorphic to HQ(DZ) , which is contractible by applying
the Alexander trick twice., Hence A‘ is an isomorphism of all homotopy
groups except possibly 7.

Consider » (EQ(DZ, u—{f)). Suppose this has two distinct elements
0

With representatives £ and g say. Either £(P) = g(P) ar £(P)Ug(P) is a

2 2
component T of aV. If £(P) = g(P), then £(D°) = g(D") and £ and g are
isotopic by the Alexander trick, Therefore f (P)Ug(P) = T, and
f(DZ)nG(Dz) = Q. Now f(Dz)Ug(Dz) is a 2~disc with boundery T. It follows
(<]
that the component of M - V of which T is a boundary component must be
& 2-disc, If V is a cylinder, then sl is inessential as it boumds a
. 2
2-disc, If V is a Moebius band, then M is the projective plane P", As
both these cases are excluded in our hypotheses, we see that A.. is an

isomorphism on all homotopy groups. The result of Lemma 2.k follows,
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$3. The spaces H.w(u), Ha(u), H‘(M), H(M)e

In this section, we consider the relationships between the above

four spaces of homeomorphisms of a 2-manifold M,where #¢M, and
calculate their homotopy groups. Of course, we have a commutative

S8quare of inclusion maps

H, 5 (M) g H, ()
n I
H, (¥) % H(M) .

The following theorem contains the main results of the section.
Theorem 3,1
() If M is a compact, connected 2-manifold, not 32, Pz, K, T, S'xI,
Moeb or D2, then a, B, Y, & are all homotopy equivalences on

identity components, Hence all four spaces have contractible

components,

(b) non-closed manifolds
If M= D2, « and & are both homotopy equivalences. A1l

(1)
homotopy groups of all four spaces are zero, except for
= (e (0°)) = = (H(0%)) = z.
(1i) ®f M = Mosb, Y aii § are homotopy equivalences on identity

components. vi(H(Moeb)) =0, 1 » 2 and ﬂl(H(Moeb)) z 2,

The natural map Z 2 al(H(Moeb)) - ﬂl(E(O, Moeb)) = 2 is

multiplication by 2.
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(iii) If M= SlxI, vy and 6 are homotopy equivalences on

1 v el
identity components, The natural map vi(H(S xI)) - B(S xI)

is an isomorphism, i » 1.
(o) Slosed manifolds : § and | are automatically isomorphisms.

(i) If M =T, the natural map wi(H(T)) - 'i(T) is an isomorphism,

i»1,
(1) 1f M=K, 7, (H(K)) = 0, & > 2 and = (H(K)) = z.
(iii) 1Fr M = P2, the natural map ﬂi(H(Pz)) - Wi(Pz) is an

2 2
isomorphism if i » 3, wZ(H(P )) = 0 and wl(H(P ) = Zye

(1v)  1¢ u = 8%, n(s®) = o0

Remark  The results for D° and 82 are contained in Chapter III, §1,

The rest of the section is devoted to proving the above results,

We consider the maps a, B, ¥, 6 in turn.

Themga

[+]
Consider the fibration B () 3 H(¥) - E(o, M) = M,
If M4 8% o pz, 11(]4) = 0 for i 3 2. Thus a_: rri(H‘(M)) ~ ﬂi(H(M))

2
s an isomorphism if i » 2mdu#82m‘f’o
Lemmas 0.2 and 0,3 imply that, if M % P, K, T, 8'xI or Mosb, then

the map =, (H(M)) - =, (¥) is sero.
Hence, if M # 82,P2, K, T, SlxI or Moeb, it follows that a is a

homotopy equivalence on identity components.

The mp g

If oM = ¢, B is trivially an isomorphism, so we consider the caae

oM = Clu"'w'n where each Gi is a circle. Let o ¢ Cl’ eand consider the
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fibration
]
H, (1) 875 - Ko, ).
As wi(Sl) =0, 422 A ni(HO(M)) - ti(H(M)) is an isomorphism

if 1 » 2,
1
Lemmas 0,2 and 0.3 imply that, if M # S'xI or Moeb, then the

composite map
i
®

() ~ 3, (0,) = 2, )

is zero. ( i: C, - M is the inclusion map.) Now i, is a monomorphism

unless M = D2. Hence, if M # SlxI, Moeb or D2, it follows that g' is a

homotopy equivalence an identity components,
Now consider the fibration

Hcl(u) - HO(M) - Ho(Cl).
The identity component of HO(G.l) is isomorphic to HaI(I) which is

contractible by the Alexander trick. Thus H, (M) and H_(M) have
1

homotopy eqixivalent identity components.

It now follows by induction, that f is a homotopy equivalence on

identity components, if M #% SlxI, Moeb or D,

The map y
If 9M = ¢, ¥ is trivially an isomorphism, 30 we consider the ocase

aM = C u...ucn, where each Ci is a circle, Let o € Cl and oonsider the

1
fibration

y'
H‘UO(M) X H‘(M) -+ E(o, cl)

| R *
As above, Y!: ti(H.UO(M)) - ﬂi(H‘(M)) is an isomorphism if i » 2,

Now consider the composite map
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g wl(H.(M)) - wl(Cl) - wl(u -9).
The method of proof of Lemma 0.2 shows that the image of g is central
in 11(M - ¢)., But Lemma 0.3 shows that vl(M - &), which is isomorphic
[2]
to vl(l - 1’32), has trivial centre if M - B2 $ s'xT or Moeb, i.e, if

M 4 0%,
As before, it now follows by induction that Y is a homotopy equivalence

on identdty components if M # D2.

The map ')

Remark 1,2 shows that § is a homotopy equivalence on identity

components if M § ¢,
2

The exceptional cases: SlxI, Moeb, T, K, P,
sl 1 1l g 1
(a) If M = §xI, the natural map H(S'xI) » E(e, S'xI) =8 is a

homotopy equivalence of identity components.
As ¥ is a homotopy equivalence, it is certainly true that

H.(slxx) has contractible identity component. Now consider the fibration
H.‘(SlxI) - H(S'I) - (s, s'x) = st

It is obvious that the map 111(H(31x1)) - wl(Sl) is onto, The

result now follows,

(v) If M= T, paragraph (a) applies.

(c) If M = Moeb, ﬂi(H(Moeb)) =0if i3> 2, u’l(H(Moeb)) = 2, and the

natural map 2 & 11(‘Moeb)) -7 (E(c,Mgeb)) ¥ Z is multiplicatiom by 2,
As vV is a homotopy equivalence, it is certadnly true that H‘(Moeb)
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has contractible identity component. Now consider the fibration
H, (Mosb) — H(Noeb) ~ E(s, uSeb) = st
It is immediate that 1i(H(loeb)) =0if i » 2,

Consider the commutative diagram

. (H(MoeD)) 5 7 (e, Moeb) = = (Moeb) = Z
l T
11(6Moeb) ¥ 2

2 = ffﬂ(alkeb)) -

The right hand map is multiplication by 2, thus the image of f

lies in 2Z, But 2 is clearly in the image of f, The result follovs as

f is a monomorphism,
(@) 1r M=K, 7, (H(K)) = 0, i > 2 and 7, (H(K)) = 2z
The first part of the statement is clear from consideration of

the fibration
H, (K) -+ H(K) - E(, K) = K,
and the facts that H, (K) has contractible i entity compoment and

7. (K) = 0if i> 2
From the well-known presentation of K as a sqmagre with edges

identifisd, Fig.l, it follows that wl(K) is the free group on two
-1 -1
= a .

generators a, b with the relation abab~L = 1, i.e. bab
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Lemma 3,2
The centre of the group G = {a,b : bab-l = a-l} is generated by b2

and has infinite arder,

Proof: Certainly b2 is in the centre of B, as b2 commutes with a and b,
- “le. - ]l - ]\
It commutes with a becsuse B2ab 2 = b(bab )b 1 bt =(bab 1) 1. a.

Note that a and b both have infinite order, as the infinite

-1, b2=1andahas

dihedral group D(») has the relations pab™ = a

et a?-1withb o

?

infinite order, and Z+Z, has the relations bab

infinite order,
r s
Now any element of G can be written in the form a'b by using the

relation ab = ba'l. Suppose a'b® is central in G. Then

a’b% = ba'b>,

- - -r
Therefore a'b = ba® = a’ = ba'b 1. (bab l)r =a = r=0, as a has

infinite order.
-1 -1 2
Now b is not central in G, a8 &b = ba =) a = bab =a =»a =1,

This completes the proof of the lemma,

Now consider the map f: 11(H(K)) - rl(K), which is &
monomorphism as 11(H. (K)) = 0, The image of f is central in ™ (K), by
Lemma 0.2, But 7.-;2 is in the image of f. For consider the isotopy
obtained by sliding K over itself parallel to the b generator of
homotopy., "If we go twice round", we end up with the identity

homeomorphism of K, so we have defined an element of m (H(K)) whose

image in 7, (K) is clearly bZ, Therefore m (H(K)) = 2.
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(e) If M= P2, the natural map ﬂi(H(PZ)) - ti(Pz) is an
Lsomorphism if 1 » 3, 7,(H(PY)) = 0 and m (H(P?)) = 2,
Consider the fibration
H (F%) ~ H(P®) -+ E(s P°) = P°,
As ﬂi(H‘(Pz)) =0 if i » 2, the first result follows if i » 3,

Consider the homotopy exact sequence

C) 0 7, (H(P)) - 7,(P) » # (H (P)) » 7, (H(P)) » m  (P) » w_(H _(P)) »
= (H(P)).

We will prove that the map m (P) » wo(H‘ (P)) is a monomorphism,
and that the map 2 ¥ 12(P) - vl(H.(P)) z 2 is multiplication by 2, This
will prove that wz(H(P)) = 0 and 11(H(P)) = Zye
Lema 305

The map ul(P) - ﬂo(H‘ (P)) is a monomorphism,
Proof' uo(H(P)) =1 and wo(H‘ (P)) = Z,. hs wl(P) = Z,, the exactness

of C) gives the required result.
To see that mo(H(P)) = 1, teke a homeomorphism h of P, Ambient

isotop h to leave a point @ fixed and then so that a 2-disc containing e
in its interior is mapped onto itself, If the map is orientation
preserving, we can isotop h to be fixed on the disc, by the Alexander
trick, We would then be lef't with a homeomorphism of Moeb fixed on the
boundary, which must be isotopic to the identity. If h reverses the

orientation of the disc, do an isotopy of Riwhich takes & round an

orientation reversing path,
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This proof also shows that ﬂo(H‘ (P)) = Z,.

Lemna 3.4
The map Z & vz(P) - wl(H‘(P)) = 2 is multiplication by 2,

Proof: Let n: s? 5 p? be the standard projection and o' = w-l(c).

Consider the diagram

=

™ (B(pt, Foe))= 2
xZTwl‘

Loa @ s2)ez & my(n,,(59) B n (506t 5%000))s 2

Z = vz(P) - ™ (H‘ (P))
gTw‘;
2= 1r2(82)
Note that f is multiplication by 2., See Chapter III, §l.
&€ is an isomorphism because of the fibration
HoUo'(Sz) 8 HO(SZ) -+ E(o', Sz-o) =,
h is an jisomorphism as it is clearly onto.

Finally k is multiplication by 2. To see this, consider the

diagram ‘
m () 3 w (5 (0%F%) B = (g (0%R%) & = (4 (2%))
k] Pl

2
vl(E(pt.Pz-d & 7, (E(pt, R° )

The maps are all natural maps obtained by choosing an embedding
(32,0) = (Pz,t). l,m,n are all isomorphisms, See the proof of Theorem

1.1(ii) and Chapter III, §1. p is also an isomorphism. q is multiplication

by2. The lemma now follows,
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