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ABSTRAC'll

This thesis oonsists of four paper~ entitled

(i) Homotppy Links,
(i1) • Note on Pieoewise-linear Immersions,
(iii) Opea and Closed Diso BUDdIes,
(iv) The Space of Homeomorphisms of a 2-manifold.

In (i), we define homotopy links and oaloulate them in the

metastable range.
In (li), we prove the Haef'liger-Poenaru i.msersion theorem,

using blook bundles.
In (iii), we prove that 02 CI& PL2(I) CI& PL2•
In (iv), we prove that the space of PL homeomorphisms of' a

2-manifold, fixed on the boundary and an interior point, has
oontraotible identit,y oomponent unless the manifold is S2 or p2.
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1.

CHAPI'm I

HOMOTOPY LINKS
.A ~ is the oriented image of an embeddingof two spheres sP,

sq in the sphere i!. i'wo links are equivalent it' they are concordant

Oriented submanifolds of ff'. In [€], Haefliger showed that, under

sUitable conditions __ smooth or piecewise-linear (PL), and

Oodimension three _ these equivalenoe classes form a group Lm 0
p,q

A homotopy link: is a pair of maps of two spheres SP, sq into Sm

with disjoint images. Twohomotopylinks are equivalent if they are

homotopio through homotopy links. These equivalenoe classes also

form a group HLm , prOVidedwe are in the metastable range,
p,q

P+2q , 2m-4 or q+2p , 2m-4. These groups are the objeots of study in

this paper. Our theorem determines HLm. in this range. There is ap,q

natural homomorphism"': LIDJ -+ HLm. as oonoordanoe implies isotopy
p,q pj q

[17l implies homotopy. '" is not an isomorphism, in general, as any

link: with one linking olass zero has zero image under W/O It is

interes ting that t/I is no,. even an epimorphism, in general.

I am grateful to B. J. Sanderson for suggesting this idea •

.ie. Notation

K denotes the Hilbert spaoe of sequences (XI' ••• 'xi, ••• ) of real

numbers. Rn denotes Euolidean n-spaoe, and will



2.
be considered as the subset o~ H 0~ vectors such that °xi: ,
for i>n. Sn denotes the unit sphere in Rn+1. Dn denotes the
unit ball in Rn, and nn denotes the interior o~ Dn. lNe

: {~ESn I x1~01, and D~ = {~ESn I x1~01.de~ine Dn
+

Let T be the rotation o~ H whose restriction to R2 is
a rotation through ~, and which leaves ~ixed the orthogonal
coaplement of R2. Let "i be the symmetry o~ H with respect
to the hyperplane xi=o.

Define u = (0,0,1,0, •.•) and v = (0,0,-1,0, •.•). Both
are points of Sn, ~or all ~2.
§1. The group HL·- p,g

In the ~ollowing, we have p,q~m-3.
De~ine Xffi = { (~,g) I ~: sP ~ sm, g: sq ~ sm, ~(sP)ng(sq):ilp,q

Det'ine an equivalence relation p on X;,q by (~o,go)P(t'1,g1)
it'and only i~ there are homotopies t't:sP ~ Sm, gt: sq ~ S.
sUch that t't(sP)ngt(sq)=~.

Define HLm = xm Ip.p, q p, q
Wenote that, as f(SP) is compact and hence closed in sm,

we can homotop g to a PL map in the complement of t'(sP), by
dOing a small enough homotopy in Sm. Thus any element a ot'

HL;,q has a representative (~,g) in which both t' and g are
PL, and all such representatives are homotopic by PL
hOlllotoPies.

A representative (t',g)ot' a is in good position it'

(i) t' and g are PL,



(ii) f(nP) = u and g(Dq) = v,- -
(iii) f(&» c. ~ and g(Bq»)c DfD.+ + _.,. +

Cl alw~s has such a representative. Also two such representatives
or Cl are homotopio through good position representatives of a.. For,
let ,: #)(1'" ~xI. Gi s<lxI -+ ~xI be a PI,. homotopy between two good
Position representatives of a. Denote the point (-1,0,0,••,0) in n:
by W. FI{.1xr determines an element of 1Tl~sm) which is zero, as
m~3 by hypothesis. Therefore there is an ambient isotopy Ht of SmxI,
fixed on ~x~I and oommuting with projection onto I, such that HO is
the identity and HiF({wlxI) = 00. NowGl!w}xI determines an
element of .1(Sm-u) = .1(~) = 0, and hence there is an ambient
isotopy Ht of smxI, fixed on smx~ul)(I and oommuting with projection
onto I, such that HO is the identity and HlG({W jxI) = vxI. It is
now easy to arrange l(n:xI) = uxI and G(D~I) = vxI, and then to

arrange F(BPxI) c.smxI, G:(B~I) c ~xI.+ + + + mWe can now define the sum operation in HLp,q. Let II, 1# he

elements of HLm • Take good position representatives (f,g), (ft,gt)
p,q

of them. We define (F,G) byF"~::fl~, J'I~ :: !f"~I~,+ + + •
G;IDq SI: aJ nq .. GrIng,.:: Tg·Tlll~.

+ + - -
From the preceding work, (F,G) represents a well-defined

element of HLm whioh we denote by a+p. This addition is
p,q'

OOmmutative, assooiative and haa identity given by a pair of pOint



We now prove the existenoe of inverses if p+2q , 2m-4 or

q+2p , 2m-4. Let a be an element of HLJD.i , and let (f ,g) be a goodp,q

POsition representative of a. Consider (q2fU2,q2g~2)' which is also

in good position and represents p say. We define a+p using these

representatives to obtain a representative (f',gt) of a~. fl

extends to a map F: 01'+1 -+ Dm+l, by mapping the line segment

(x,a1xJ of' nP+l linearly onto the segment [fx,ulf'x] of Dm+l, f'or

x in _1) S G Dq+l Dmofot1nd~ • imilarly, g f extends to a map ,. -+., a

l!'(nP+l)cG(D<i+1)= ,p.

Nowconsider F: nP+1ll.-+ Dm+1-G(Dq+l).We can homotop F to an

embedding, keeping FISP fixed, by ~I ,Chapter 8J, if the

conneotivity of Dm+I_G(Dq+l) exoeeds (2pIII12:)-(m+I)+I.'Pi•e, if YYl ,..t, Ii..) L.-e f',n.i-, ~ p-I 'S ~ S p ~ ~ - '":f\S'~ It~ ~

(JJ1+1)-(q+ 1)-2 ~ 2p-m+2, i.e. if 2p+q' 2m-4.lBy Zeemant S ~ ~a-.tA. """""";5tI) f - ~ "l) ~.J-~ 2p-'~+-(~

Unknotting Theorem for ball pairs r~1"Chapter 4]" we can ambient if~f~ g ...-3.)1
isotop F to standard position F' s~. Nowsm_F'CsF).nf+I-F'(nP+

I
).

so it f'ollows that GI: sq -+ gm-,<sF) is null homotopic, as we

have Gt D_q+l-+ If+L-_F(JI+l:). This immediately implies that (ft ,g;")

is null homotopio and hence a~ = O. This completes the proof' that

Ht:"q is a group if' p+2q , 2m-4 or q+2p , 2m-4.



say. 'Nedefine 0.+13using these repres

to
map F: DP+1 -+

DP+1 linearly
x E uP. Similarly+
F(uP+1 )f1G

to a
of

and

0.+13=0.This completes the proof that

group.
------- •.• -~+

§2.

We have a natural map W: L;,q -+ HL~,q' as concordance
implies homotopy. , is a homomorphism. We liilsohave Iii

homomorphism A: LZ -+ ~ (Sm-q-1), which associliitesto ap,q p
link the homotopy class of sP in (Sm_sq) Qt sm-q-1. We
define ~: ~ (Sm-q-1) -+ HLm by taking the standliirdp p,q
inclusion of sq in Sm and mapping sP -+ (SM_Sq) by an
element of ~ (Sm-q-1). Cleliirly,this is well-defined and a

p
homomorphism. We have the commutative diagram

HLDlp,q
i~

~ (Sm-q-1)
p

We define s: HLm -+ ~ (SID-1) as follows. Clearly,p, q p+q
homotopy links in sm are the same as in RID.Now, given
(f,g): (sp,sq) -+ Rm, such that f(SP)ng(sq) = ~, we define
S(t,g): SPxSq -+ Sm-1 by

s(t,g)(x,y) = :rex) - g(y)
Ut(x) - g(y) II

•
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This gives a well-defined map IILm -+ [spxSq, SID-1].But,p,q
from the Puppe sequence

-+ SPvSq -+SPxsq -+ sp"sq -+ sp+1vsq+1 -+

we get the exact sequence
~ 1(s.-1)~ (sm-1)-+~ (Sm-1)-+[spxsq,sm-1]-+~(Sm-1)$~(Sm-1)p+ q+1 p+q P q •
As p, q ~ m-3, the first and last terms are zero, thus
~p+q(Sm-1) -+ (sPxSq, sm-1] is an isomorphism. (Note that
(SPxSq, Sm-1] is a group, for [X, sm-1] is a group if
dimX ~2Dl-4,when X is a CW-complex.) This defines S.
Lemma 1 S is a homomorphism.
Proof: Let a, B E HLID ,and choose good positionp,q
representatives for them. In our addition construction
fa+~(oD~) = u, thus fa+~ factors through a wedge of p-spheres.
We have the cornmutative diagram

sP"Sq S rot-t f sm-1

1 rh
(S~vS8)"(S~S~) = {(S~"S~)v(S~"S~)v(S~"S~)v(S~"S~)j.

h is defined by the S construction, hence hl{(S~"S~)v(S~"S~)l
is null homotopiC. Therefore, up to homotopy, S(a+~) is
determined by hl{(S~"S~)v(S~"S~)j = S(a)vS(~). Therefore
S(a+~) = Sea) + S(B). This completes the proof of the lemma.
Lemma 2 s~: ~ (sm-q-1) -+~ (sm-1) equals (-1)qzq, wherep p+q
zq denotes q-fold suspension.
Proof: This is trivial if p+q < m-1. If p+q = m-1, then
~p+q(sm-1) = Z, and it suffices to show that S~ takes



Pta, I.



6.
generator to generator, as S~ is a homomorphism. Let ~
denote the orientation preserving generator of ~p+q(Sm-1).
Consider the standa.rd sq c srn,and choose a "nice" embedding
of a complementary sm-q-1 to represent ~(~), with the
orientation induced from the standard choice of
orientations of sq and SID. (See Fig.1 )

P is the point of intersection of the disc spanning
sm-q-1 with sq. P is a point of sm-1, and is a regular
point of S~(~), and has inverse image one point of
sm-q-1xsq, the point QxP. Therefore the degree of S~(~) is
*1. In tact the degree of S~(~) is (-1)q. This is because
of the minus sign in the formula for S. This proves the
lemma it p+q = m-1.

Now we consider the case when p+q > m-1. Let n E ~p(Sm-q-1),
and choose a representative of ~(n) which maps sP onto
the "nice" sm-q-1 of'the f'irstpart of'the proof'. Then we
have the commutative diagram,
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sPl\sq Sce(<t) Sm-1

/,s<P~)
Sm-q-1"sq

Now 0.1\1 = Z%., thus S<p(a) = (-1) qzCla.. (When q is odd,
s<p(~)Z~ = -Z~ as Z~ is a suspension.) This completes
the proof that S<p(a) = (-1)qz~.

The following commutative diagram sums up the work so
f'ar,

!heorem

La .tp,g
A~

?t (Sm-q-1)
p

<p: ?t (Sm-q-1) ~ HLm isp p,q an isomorphism if
P+2q ~ 2.-4, and an epimorphism if p+2q = 2m-3.
Proof: zq:?t (Sm-q-1) ~?t (Sm-1) is an isomorphism if

P p+q
P+2q ~ 2.-4. Therefore <p is a monomorphism if p+2q' 2m-4.

m
<p is epi if, given any element 0. of HLp,q there is a

representative (f,g) of 0., where g is the standard
inclusion. Take a PL representative of a. By a general
posi tion argwaent, Sm_f(SP) is (m-p-2 )-connected. Now,
from [18, Chapter 8] any map sq ~ Mm, where M is (m-p-2)-
-connected, is homotopic to an embedding if d+1 ~ m-p-2,
Where d = 2q-m. Thus we can homotop g to an embedding in
the complement of f(SP), if p+2g' 2m-3. By leeman's
Unknotting Theorem, [1~,Chapter 4], we can ambient
isotop g to the standard inclusion. Therefore <p is epi
if p+2q ~ 2.-3, proving the required result.
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CHAPTER II

A NOTE ON PIECEWISE-LINEAR IMMERSIONS
Let V, X be piecewise-linear(PL) mani~olds and TV,

TX denote their tangent micro-bundles. Let Im(V,X) denote
the space o~ PL immersions o~ V in X and R(TV,TX) the
space o~ bundle monomorphisms of TV in TX. In [B], Haefliger

.,
and Poenaru defined topologies ~or these spaces, by making

..

them into semi-simplicial complexas, and showed that they
were weakly homotopy equivalent. The work of Rourke and
Sanderson, &~]and [1,1, has shown that block bundles are
more natural tools ~or use in the PL category than
micro-bundles. The purpose of this note is to prove the
corresponding result to [S], using block bundles instead
o~ micro-bundles. To do this, we have to define a new

r h

topOlogy on IJIl(V,X).A result of Haefliger's, [},;j9.2],

shows that the new space has the same number of
components as the old, but, in general, the higher
homotopy groups will not be the same. The proofs follow
those of [8] and use the main resul t of'[8]. I am grateful
to B. J. Sanderson for suggesting this work and for much
helpful advice.
§O. Derini tions

All the work ism the PL category. 6k, Ik denote the
standard k-simplex and k-cube respectively.

Let V, X be PL mani~olds.
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Def.1 A submanifold yn of Xn+q is locally flat if, given
a point x of V, there is a neighbourhood, N, of x in X and

. (,T NflV) ~ (Rn+q, Rn).a homeomorph~sm I~, ~
Def.2 A map f: V -+ X is an embeddLlg if f is a homeomorphism
onto a locally flat submanifold of X.
Def.} A aap f: V -+ X is an immersion if f is locally an
embedding.
Def.4 A map 1': ~kxV -+ ~kxX is block preserving if
f-1(oxX) = oxV for any face, 0,01' ~k.

Viemake the same def'inition if we replace ~k by Ik.
Def.5 A concordance of two embeddings ( iamersions)
f, g: V -+ X is a block preserving embedding ( immersion)
F: VxI -+ XxI such that Fo=f' and F1=g.

If such an F exists, f and g are said to be

concordan t•
The definition and some of'the theory of block

bundles will be assumed. If ~ is a block bundle over a
polyhedron K and L is a subpolyhedron of K, then ~IL
denotes the restriction of ~ to L.

Let ~n, ~n+q be block bundles over simplicial
complexes K, L respectively.
Def.6 A map f: (E(~), K) -+ (E(~), L), such that flK is
simplicial, is a "blockbundle map if, for any simplex, 0,

of K, there are charts ~, W for ~Io, ~Ifa such that the
following diagram commutes.



1o.
E(rdfo)

~11jl
-+fxl.

i is the natural inclusion map In -+ In+q•
Def.7 If ~ is a block bundle over K and L is another

*polyhedron, then ~xL denotes ~ ~ where ~: KxL -+ K is
projection.
De~.8 Two block bundle maps ~, g: ~IK -+ ~IL are homotopic
i~ there is a block bundle map F: ~xI -+ ~xI such that

FIKxI is block preserving, and Fo=f, F1=g.
Def.9 Let f: V -+ X be an immersion. Then we define the
homotopy class o~ ~: TV -+ TX as follows. The map
~xf: VxV -+ XxX induces a map of the tangent micro-block
bundles of V and X. As the natural map PLq -+ ~q(~) is a
homotopy equivalence, see [14], this ditines a homotopy
class of block bundle maps 'N -+ TX. We choose a map ~rom
this homotopy class and call it ~. As we only ever want
the homotopy class of ~, no ambiguity occurs.

It is obvious that if f is concordant to g then dt
is homotopic to dg.
41. The semi-simplicial complexes Im(V,X), Pl(V1X), R(TV,TX).

We use l!!! rather than 1m, to distinguish our space
~rom that used in [5].

1!(V, X) ( Pl(V, X» has, as k-simplices, block
preserviHg immersions ( embeddings) IJ.kxV-+ IJ.kxX,such that



11•
6kxo ~ 6kxX is fibrewise over 6k• ( From now on, all

~ e..o.eJZ~"~
manifolds will have a base poin1.) Both have the obvious
boundary map s•

E(TV, TX) has, as k-simplices, block bundle maps
6kxTV ~ TX. It also has the obvious boundarymaps.

As with PL , see [1a], these complexes have no-q

degeneracies, but, from results of [1~], we see that this
does not matter for our purposes. All three complexes
satisfy the Kan condition as 6k ~ AkxI. Thus we can define
their homotopygroups. ~o(Im(V, X» is the set of concordance
classes of immersionsof V in X.

Given a block preserving immersion f: 6kxV ~ 6kxX,
define f': 6kxVxV ~ XxX by f'(t,u,v) = ( ~(t,u), ~f(t,v»,
where 'It: [1kxX-+ X is projection. As in Def", 9 this defLLes
df: 6kxTV ~ TX up to homotopy. By an induction on k, we can
choose representatives so as to define a semi-simplicial
map d: !I(V, X) ~ g(TV, TX). d is unique up to homotopy.

The main theorem of this paper is
Theorem d: !I(V, X) ~ g(TV, TX) is a weak homotopy
equivalence, (w.h.e.), if dimX> dimV.

A w.h.e. is a map inducing bijections on ~o and
isomorphisms of all homotopy groups of corresponding
components.

The scheme of the proof is the same as in [8~ • Thus
we must prove the following three lemmas.
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Lemma 1 d: Im(In, X) ~ E(TIn, TX) is a w.h.e.
Lemma 2 If V' is a submanifold of V, then the restriction
map E(TV, TX) ~ E(TV', TX) is a fibration.
&emma 2 If V' is a locally flat submanifold of V, then
the restriction map lm(V, X) ~ Im(V', X) is a fibration if
dimX > dimV, or dimX = dimV and every component of V has
non-empty boundary and every component of V-V' meets this
boundary.
Rem~ The condition of Lemma 3 is equivalent to
requiring that V equals V' union handles of index strictly
less than dimX.

The proof for the case when V is compact now follows
by an induction on the number of handles in some handle
decomposition of V, and Lemma 1 provides the starting
point. The induction uses the exact sequences of the
fibrations of Lemmas 2 and 3. This is justified by the
resul ts of [1']. We can now extend to the gener-aj case
by using the results of [16].

i2. Proof of the main theorem
Lemma 1 is proved exactly as in [8] using the

equivalence of block bundles and micro-block bundles.
&emma 2 The restriction map E(TV, TX) ~ g(TV', TX) is a
fibration.
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Proo:f: Factor the map, in the obvious way, as :follows;
g(TV'. TX) ~ li(TV IV', TX) i E(TV', TX).

It su:ffices to show that both ~ and ~ are :fibrations.
Let IxIhxV'UOxlhxV = P. ~ is a :fibration if, given a
block bundle map IxlhxTVIP ~ TX, we can extend to a
block bundle map IxlhxTV ~ TX. But IxIhxV deformation
retracts onto P. Thus we can use the covering homotopy
property for block bundles to obtain the required
extension. Therefore ~ is a fibration.

To show ~ is a :fibration we first prove the
following
SUb-lemma Let m < n, 1m c In be the standard inclusion.
Then the restriction map PleIn, In+q) ~ PI(Im, In+q) is a

fibration.
~mark PleIn, In+q) is called V ,the PL Stiefel-- n+q,n --
manifold, by Rourke and Sanderson in [19-, Part 3].

Proo:f of SUb-lemma: Given a block preserving embedding
f: IxlhxlffiLJOxlhxln~ Ixlhxln+q, we want to extend f to an
embedding Ixlhxln ~ Ixlhxln+q. Let ~n-m be the standard
trivial normal bundle of the standard inclusion
Ihxlm c Ihxln. Let yq denote the restriction to OxIhxIm of
the normal block bundle of f( OXlhxln) c Oxlhxln+q. 'rhen
T)ey is the normal block bundle of f(Oxlhxlm) c Oxlhxln+q.
From results of [18], we· cap. cnoos e Z;;n+q-mto be the
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normal block bundle of f(1x1hx1m) c 1x1hx1n+q so that
~1(Ox1hx1m) = neve Again, by a result of [18], this implies
~ ~ (~v)x1 ~ (~xl)$(vx1). ~x1 defines the required
embedding of lxlhx1n in 1x1hxln+q. This completes the proof
of the sub-lemma.

To prove W is a fibration, we must show that, given a
block bundle map Ox1hx(TVlv')U1xlhxTV' ~ TX, we can extend
to a block bundle map of lxlhx(TVIV'). Triangulate IxlhxV'
and 1xlhxX so that the base map is simplicial. Now
subdivide our triangulation of IxlhxV' so that it collapses
simplicially to OxlhxV'. We can now apply our sUb-lemma to
extend as required simplex by simplex, using the fact that
block bundles over simplices are trivial. This completes
the proof of Lemma 2.
1emma 2 The restriction map lm(V, x) ~ lm(V', x) is a
fibration if dimX > dimV, or dimX = dimV and every component
of'V has non-empty boundary and every component of V-V'
meets this boundary.
Proof': We first note that it suffices to demonstrate the
CHP for l1. For suppose we have CHP for 11, and suppose
given a block preserving immersion Oxlhx~JlxlhxV' ~ IXlhxX.
We use our hypothesis applied to the restriction map
Im(lhxV, lhxX) ~ lm(lhxV', IhxX) to obtain an immerSion of
IXlhxv in Ixlhxx with all the required properties.
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Now suppose given a block preserving immersion

F: OxVUlxV I -+ lxX. By [B, §7], an immersion 1': vn -+ Xn+g
has a regular neighbourhood. i.e. there is an abstract
regular neighbourhood ng of V and a commutative diagram,

v" -! ng

f~ JCP
Xn+g

where i is inclusion and cp is an immersion. Using the same
method as in the proof of the sub-lemma of Lemma 2, we see
that F can be extended to a block preserving immersion
F I: OxVUlxN -+ lxX, where N is a regular neighbourhood of
V' in V.

Let N' be a regular neighbourhood of N in V, and let
ng be a regular neighbourhood of FJIN': N' -+ X such that
oN' c on. We have the commutative diagram

N' l n

Fd~ JCP
X

where i is inclusion and cp is an immersion. There exists
€ > 0, and an embedding j such that the following diagram
commutes

[0, eJ xN ..J
FII~

lxn

lxX
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where j I (Oxi~) = i IN. By the uniqueness theorem for collars,
[~~, Chapter 5], there is an ambient isotopy H of Ixfisuch
that Ho = 1, Hi j = 1xi and Ht I(OxnJjlxofi)= 1. The map
(1x<P)H;1(1xi): [O,e]xN' -+ IxX is an immersion which
extends F' and equals 1xFJ on [O,e]xoN'. Thus we can
extend F' to an immersion of [O,e]xN'UlxN in lxX, and can
extend this at once to an immersion of [O,e]xVlJlxN. now

there is a homeomorphism of lxV with [O,e]xVlJlxN, fixed
on OxVUlxV'. Thus we can extend F to an immersion G: lxV -+ lxX,
but G is not necessarily block preserving.

Now, keeping OxViJlxV'fixed, homotop G to G', where
G'(1xV) c (1xX). Cover this homotopy by a micro-bundle
homotopy of dG to obtain a new micro-bundle map
~: T(IxV) -+ T(IxX) covering G'• (We use micro-bundles for
this part of the proof as we want to quote the result of [B].~
Restricting ~ to T(lxV)I(1xV) we have <p=~I: TVee1 -+ TX$e1

Where <P= dG$1 when we restrict to T(IxV)I(1xV'). As the
PL) (PL )natural map ~i(Vn+q,n -+ ~i Vn+q+1,n+1 is an isomorphism

if i ~ n, see [8], we can bundle homotop <P to <Pi= we1,
keeping our maps fixed on the base and over (1xV'). Now
apply the relative form of the main theorem of [8] to the
bundle map w: TV -+ TX. 'de can homotop G I 1(1xV) to an
immersion, keeping (1xV') fixed. Extend this homotopy and
apPly the theorem agaim to homotop the new map to an
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immersion of IxV in IxX which is block preserviag and
extends Ii' as required. This completes the proof of the
main theorem. The relative form of the theorem is an
immedia te consequence by using a F'ive Lemma argument
applied to the exact sequences of the restriction

fibrations.
Remark The proof in [9] of the fillration lemma for
immersion spaces carulot be adapted to this case as it uses
the covering isotc,py theorem of Hudson and Zeeman, and the
fact that a subcube of a cube of embeddings is itself a
cube of embeddings. 'fhe covering concordance theorem is
false in codimension two by the example of a slice knot in

R3, and a sub cube of a cube of embeddings which is not

f' .lbre-wlse over the cube is meaningless.
Remark One consequence of this result is that the natural

map ~n(PLn+1) ~ ~n(~n+1) is an isomorphism. For both
groups are isomorphic to the set of regular homotopy
classes of immersions of snxI in sn+1. This isomorphism
can also be proved directly using the braid of the triple
(!:1n+1' PL

n
+
1
, 0n+1). See Chapter 3, §i of this thesis.
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CHAPTER III

OPEN AND CLOSED DISC BUNDLES

In this paper, we are concerned with the relationship

between Rn and Dnfibre bundles in the piecewise-linear (FL)

Oategoxy, and n-plane vector bundles. In [2}, W. Browdershowed

that the theories of Rn and Dnbundles (the open and closed bundles

ot the title) are not equivalent tor all n, though no example of

an Rn bundle whioh is not a Dnbundle is known.Weprove that the

theories of all three types of bundle are equivalent in the case

n = 2, by proving that the groups of the bundles are homotopy

equivalent. This has also been proved by Akiba [I], by a different

proof. The oase n = 1 is trivial.

The paper falls into tour seotions. §o contains the detinitions

and basio results and the statement ot the main theorem. §l contains

someusetul lemmas. In §2, we prove the main theorem. §3 contains a

proot that, the natural map 11 (pt 1) -+ 11 (pt 1) is 8ltl. isomorphismn n+ n ~
ani someeasy deductions trom this taot. After it was written,
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I discovered that much of the material in rJ 0 appears in [1'4].
§O. Definitions and Basic Results

All manifolds, homeomorphisms and embeddings will be PL.
n-

Rn is Euclidean\space, 0 denotes the origin of Rn
unless otherwise stated. Dn is the standard n-cube
[-1,1]n eRn. 8n-1 is the boundary of Dn, also denoted by oDn•
r is the unit interval [0,1]. 6n is the standard n-simplex
embeddedin Rn. The vertices are numbered 0 up to n so that
the 0 vertex lies at the ormgmn and the r vertex lies on the
rth axis, unit distance from the origin. Por m < n, we

. m n m n m nhave standard embedd1ngs R eR, D cD, 6 c 6 , as the
first m coordinates of Rn, all of which commute with the
inclusions just defined, and respect the ordering of the
vertices of 6m and 6n•

~ denotes the empty set •• denotes the topological
space with one point. If Y is a topological subspace of X,
then Y denotes the closure of Y in X. If X is a manifold

othen ~ denotes x-ax.
Let Y be a submanifold of the manifold X.

Qef. 0.1 Ry(X) is defined to be the semi-simplicial (s.s.)
complex whose k-simplices are homeomorphisms 6kxX ~ 6kxX

which commute with projection onto 6k, and such that the
restriction to 6kxY is the identity. It has the obvious
boundary and degeneracy maps.
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If X is orientab1e, SHy(X)denotes the subcomp1exof By (X) of

orientation preserving homeomorphisms.If Y = ~, we write H(X)

and SH(X).

By(x) is a Kan complex, see [~2.1~hence we oan define its

homotopy grcups. Wecan now state the main result of the paper.

Theorem 2.1

( 2 . 2O
2
, H D), H (R ) are all homotopy equivalentoo 0

m (nn), H (Rn) are usually denoted by pt (I),pt (R) respective~oo 0 n n

See [Ia10 They are the groups of Dn and B? bundles, respectively, in

the fL oategory.
s~~Jtt/J...

! 2 • " On denotes theigroup of isometries of in keeping the

origin fixei. Wehave maps ° -+ HI (Dn) -+ H (Rn). The second map isn 0 0
ru on

defined in a natural way by ohoosing a homeomorphismof R with D

once and for all. The first map is not naturally well-defined, but

belongs to a well-defined homotopy class of maps. To obtain this

homotopy class, we define a s.s. complex PD • There is a naturaln

map ° -+ Pn; and a natural mapH (Dn) -+ PD which is a homotopyn non
equivalenoe. The homotopy inverse of c:the seoond map defines the required

homotopy olass by oomposition with the first. For details, see [r~t.
aemark 1 0, lID" (Dn), H:(an) all have two components and these twon 0 0

are homotopy equivalent. Thus we need only
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consider tne identity components.
Remark 2 It is trivial to prove that SO SH (D1)

1 ' 0 '

SH (R1) are all contractible.o

For the following definitions suppose yn is a
submanifold of Xm, and i: Y ~ X the inclusion map.
Def. 0.2 yn is a locally flat submanifold of Xm if, given
y E Y, there is a neighbourhood N of y in X and a
homeomorphism (N, NTiY)~ (Dm, DU), tile standard ball pair.

From now on, all submanifolds will be locally flat.
By Zeeman's Theorem on unknotting ball pairs, [,$, Chapter 4],
this condition is automatically satisfied if m ~ n+3.

Let Z be a submanifold of Y.
~~.t:. 0.3 Ez(yn, Xm) is defined to be the s,a, complex
whose k-simplices are embeddings f: 6kxy ~ 6kxX which
commute with projection onto ~k and such that

(i) fl(6kxZ) = (1xi)I(6kxZ),
(ii) f-1(6kxoX) = 6kxi-1(oX),
(iii) given (t,y) E 6kxY, there is a closed

:neighbourhood U of t in ~k, a closed neighbourhuod V of
Y in Y, and an embeading a: UxVxDm-n ~ ~kxX such that the
image of a is a closed neighbourhood of f( t,y) in ~kxX
and the following diagram commutes, where 11:, ?C' are
projections onto the first factor.
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Ux(Vxo) S Ux(VxDm-n) ~ U

le la le
fj.KxY "1 fjkxX ~' fjk

Remark Condition (iii) is a local f'latness condition, and,
again by Zeeman's theorem on unknotting of'ball pairs, is
automatically satisf'ied if'm ~n+3.

EZ(Y'X) has the obvious boundary and degeneracy maps.
If Z = ¢, we write E(Y,X). Ez(Y,X) also satisf'ies the Kan
ccnd Ition and thus we can do homotopy theory wi th it. In
particular we will make use of the following
Theorem O.?t Let f: K ...L be a map of connected Kan
complexes such that f.: ~i(K) ...~i(L) is an isomorphism
for i ~ 1. Then f is a homotopy equivalence.

The following theorem of Hudson, see [13J, and its
Corollary will play an important part in the proof's.

Given f: fjkxY'" 6kxX, a k-simplex of'EZ(Y'X), we

write f't for fl: txY'" txX.
Def. 0.5 yn is an allowable submanifold of X if i-1(aX~

is a (n-1 )_submanif'old of aY or is empty.
This condition is trivially satisfied if'aX is empty.

lheorem 0.6 (Hudson) If Y is an allowable submanifold of'
X and f': fjkxY'" fjkxX is a k-simplex of'Ei-1(aX)(Y'X), then
there is h: fjkxX ...fjkxX, a k-simplex ef'HoX(X), such that

h( 1xfo) = f' and ha = 1X·
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Corollary 0.7 If y is an allowable submanifold of X, then
the restriction map Hax(X) -+E l' (v;x) is a fibration.

k i- lax)
Preof: Suppose given G: I xX -+ I xX given by a map
Ik -+Hax(X), and F: IxlkxY -+ IxlkxX given by a map
Ixlk -+E (Y,X) such that F(O,~,y) = G ~(o,*,y) where

k i -1 (ax) k -r.
't"eI and * is a vertex of I •

By Theorem 0.6, there is H: Ixlkxx -+ Ixlkxx given by

a map Ixlk -+Hax(X) such that
where tEl, ~ Elk. Consider
defined by H' = H H-1 G • H' is given by a mapt,~ t,~ o,~ ~.
Ixlk -+H~X(X), H' = G and F(t,'t",y)= Ht' F(o,*,y). This

u o,~ ~ ,'t"

F(t,'t",y)= Ht F(o,*,y),'t"
H': IxlkxX -+ IxlkxX

completes the proof of the Corollary.
Remark The restriction map H(X) -+H(aX) is also a
fibration, as the analogue of Theorem 0.6 holds when y=ax.
For let f: 6kxaX -+6kxoX be given by a map 6k -+H(aX). Of

course this map is null-homotopic and the null-homotopy
6kxI -+H(aX) gives us h: 6kxlxaX -+6kxlxaX such that
h(1xfo) = f, he = 1 and hi(6kx1xaX) = 1. By the Collaring
Theorem for boundaries of manifolds, see [2~, Chapter 5],

which says that ax has a neighbourhood in X homeomorphic
to aXxI, we see that h extends to h': 6kxX -+6kxX defined
to be the identity outside aXxI, and h' satisfies the
conditions of Theorem 0.6.

The existence of compatible collars, see [~~] again,
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implies that if Y is an allowable submanifold of X, then
the I'estriction .nap K_(X) -+ H -1 ' (ex) is also a

--Y i-"toX)
fibration.

Viecan now generalise Corollary 0.7 to the following
statement: If.i"::is a union of components of'oX and
N = i-1(M), then the restriction map HM(X) -+ EN(Y,X) is a
fibration.

For examples of all the types of'fibration
mentioned here, see Diagram 2 in §1 •
~1 Preliminary Lemmas

J/e will need the following lemmas.
~emma 1.1 SH ~" (Dn) ~ *, for -1~m<nt where n-1 denotes

n--uoJil
the empty set.
Proof': ',:leuse the Alexander trick as follows.

Let h: 6kxDll-+ hkxDn represent an element of
'Jtk(H (Dn». vYewant to define H: IxhkxDn -+ Ix6kxDn to

D~JoDn
be a homotopy of h to the identity homeomorphism.

E~bed IxhkxDn in R1xRkxRn ~ Rn+k+1 in the standard
way to give us a linear structure.

Define a! o(Ix6kxDll) -+ o(IxhkxDn) by h'I(OxhkxDn)=h,
h' is the identity on the rest. These are compatible
as hlo(hkxDn) = 1 •

Def'ineu E Ix6kxDll to be the point (i,x,o), where x
is an interior point of'6k• Then IX6kxDll~ U*O(Ix6kxDn),
where * denotes join. Triangulate o(Ix6kxDn) so that h' is



simplicial. now define H(u) = u and complete the

defini tion of H by firs t defining "It'tobe extended

linearly to u*( the zero skeleton of d(Ix~kxDn), and then
k nextended linearly to all of Ix~ xD , by working up the

skeletons. Clearly H is a homeomorphism. Also H is the

identity on 1xllkxDnUlxollkxDnulx~kxoDn by definition.

Finally, by the linearity of the construction, H

commutes with projection onto Ix~k and is the identity
k mon Ix~ xD as required. This completes the proof.

Corollary 1.2 SH (nn) ~ SH (sn-1) for -O~m<n, where
nID sID-1 '

8-1 denotes the empty set.

Proof: Consider the exact sequence of the fibration

H (Dn) ~ SH (Dn) ~ SH m_1(Sn-1), and use the fact
DIIl.uoDn am s

that the spaces are connected. See [~$,Chapter 8].
Corollary 1 .3 The standard component of E (Dm,Dn) is

oDm
contractible.

The standard component means the compnnent of i, the

standard inclusion Y ~ x.
Proof: Consider tne exact sequence of the fibration

H (Dn) ~ H n(Dn) ~ E (Dm,Dn), and apply Lemma 1.1
D~JoDn aD oDm

to the total space and fibre.

Lemma 1 .4 (Hirsch) If K is a simplicial complex, then

HKxO(Kx(O,e» ~ *
Proof: See [tiJ.
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Lemma 1 .5 SH(Dn) ~ SH(Rn) if and only if

H 1 (sn-1xI) ~ *.
Sn- xO

Proof: We define a restriction map SH(Dn) -+E(Dn,h~), by
restricting our attention to [_i,~]n c Dn. Consider the
commutative diagram of fibrations,

H (Sn-1xl) -+ SH(Dn) -+ E(Dn,Rn)
sn-1xo

1 1 J=
H (sn-1x ( 0,00» -+ SH(Rn) -+ E(Dn,Rn)
sn-1xO

From Lemma 1 .4, we see that SH(Rn) ~ SE(Dn ,Rn). This
proves the result by considering the top exact sequence.
Remark SH(nn), SH(Rn) are homotopy equivalent to SHo(Dn),
oH (Rn) respectively. For consider the exact sequence of

o
the fibration
that, for any X, E(*,X) has the same homotopy groups as X.
Hence E(o,Rn) is contractible.

Lemma 1.6 SO ~ SH(Rn) if and only if SO ~ SH (Dn+1)n ( n+1 ' •
Proof: Let 0 be a point of sn, and consider the following
commutative diagram of fibration exact sequences,

-+ ~r(SHo(Sn»-+~rCSH(Sn» -+~rCECO,Sn) -+
By the Five Lemm~,it follows that SOn ~ SHoCSn) if

and only if SOn+1 ~ SH(Sn). Now Corollary 1,2 says that
SH(Sn) ~ SH(Dn+1), and we use the result of (U], whose
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proof we give below, that SHo(Sn) ~ SH(Rn) to complete the
proof of Lemma 1 .6.

There is a restriction map SHo(Sn) ~ SH(Hn), as
= Rn. Let Dn be a hemisphere of Sn with 0 * nn, and

consider the commutative diagram of f'ibrations below,
SH (s") ~ SHo(Sn) ~ E(Dn,Rn)

dUnn
1 1 1=

H n-1 (sn-1x[O,~) ~ SH(Rn) ~ E(nn,Rn)
S xONow SH (Sn) is isomorphic to SH n (nn), which is

dUnn an Uo
contractible by Lemma 1.1. Therefore by the Five Lemma and
Lemma 1.4, we see that SHo(Sn) ~ SH(Rn). This proof is in [UR.

Now consider the following commutative diagram. Each
row and column is a fibration.

H (snxI) ~ H (snxI) ~ SH (Sn) ~ SH(Rn)
SnxaIUI SnxoUI 1

1 1 1

H (snxI) ~ H (snxI) ~ SH(Sn) ~ SH(nn+1 )
SnxdI snxo

1 1 1

EaI(I,SnxI) ~ E (I,SnxI) 9 E(1,sn)
0

niagram 2
The left and middle vertical fibrations restrict

attention to oxI c SnxI, where 0 is a point of Sn. The three
horizontal f'ibrations restrict attentioh to Snx1 c SnxI•

The map ~r(Eo(I,SnxI» ~ ~r(Sn) is zero. For take a
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representative a of an element of ~r(Eo(I,SnxI» and project
onto Sn. This defines the required null-homotopy, as
~(al): 6rx6 ~ 6rxSnxI ~ Sn is a point map.

All the spaces are connected except for the lower two
in the left hand column.

We prove our results by considering the fibration
exact sequences obtained from the diagram and proving that

n I ~HsnXOUI(S xl) and Eo(I,SnxI) are contractible for n = X or ~.
We then apply our previous Lemmas.
§2. The case n = 2

This section is devoted to proving thefollowing
Theorem 2.1 02~ H (D2) ~ H (R2).o 0

8Ho(D
2). This is a trivial consequence ofProof: 802 ~

Lemma 1.6 and the fact that SO ~ SH (Ri) ~ *.1 0
To complete the proof of the theorem it suffices to show

that H 1 (sixl) is contractible, by Lemma 1.5.
8 x oConsider Diagram 2 in the case n = 1. H 1 (SixI)

S xaIUI
is isomorphic to H 2(D2), by "cutting along I", and is

aD
therefore contractible, by Lemma 1.1. As SH(R1) is contractible,
we have H 1 (SixI) ~ *.

S xdJI
We now use

THeorem 2.2 The standard component of EaI~I,SixI) is
contractible.

This implies that Eo(I,sixI) is contractible, as
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the map .. (E (I,alxI» ..... (al) is zero for all r-, HenoeH 1 calxI)r 0 r a xO
is oontraotible. This oompletes the proof of Theorem2.1 apart from

the proof of Theorem2.2.

Proof of Theorem2.2

Define I cc: al xl by:rr = (-0 )xI •• c ..
A representative of an element of 1Tk(EolfI"alxI» is an

embedding a: "kxI ....lfxSlxI. Wewill show that a can be homotoped so

that aC&kxI)n(.-kxI ) = q,. auoh an embedding is a representative of..
11k(E'aI(I,D2» ,; as the olosure of the oomplementof a regular

neighbourhood of I in al xI is homeomorphioto D,2.This group is zerO!•
by Corollary 1.3,) as k~l. This provides us with a null-homotopy of a

in EaI(I"n
2) am hence olearly in EBr(I,alXI)" whioh oompletes the proof 0-

The proof that we can suppose that a~kx]}trt(~xI ..) = ~ falls

into two leIIBlla8o.

Pirstly" we oan suppose tha~, in every fibre, aDnl. is a finite

number of points. Weuse the linear struoture of .kx:lxJI~ .. 2 at· Rk+ 2.

Let. 1r denote projeotion of ~+t 2 onto a (k+l)-hyperplane perpendioular

to I•• Then 1nl: ~xI ....~+lL. By a sma1ll, level-preserving, isotopy of

a we can, make71anon-degenerate. i.e. (1ra)rl(y) is a finite number of

points .. To do this isotopy, work up the skeletons of a triangulation

of &kxI in whioh a is linear on each simplex, moving the baryoentre

of eaoh simplex and extending 1inear~.

We oan nowassign one of the numbers +1, -1, 0 to each point y

of ca(4kxI)n( ..kxI ). For y lies in a certain fibre ani is am isolated•



30.
point of aInI in that fibre. Weassign :t1 to Y if I crosses I• •
at y, the sign depending on the orientation, and we assign 0 to

y if I does not cross I at y ••
Remark .Aswe are oonsidering the standard oomponentof EaI(I.S1xI),

the algebraio sumof these numbers in aIzy'fibre is zero.

For x in .k, define n to be the number of points in (D1I )x • x
to whioh we assign + 1. If Jl. is everywhere zero, we use

x

Lemma2.2.1

It' n is everywhere zero, we can homotopa so thatx
a:(Akxr"'(AkxI.) = cp.

Proof: As n is everywhere zero, all the interseotion pOints arex
1

zero points. Consider a regular neighbourhood of I. in S xl, whioh

does not meet oxI c::: rxI. This neighbourhood is separated into two

parts by I , and eaoh point of interseotion is assooiated to one of•
these parts- the side of I on whioh I lies in a smaJ.1neighbourhood

*'
of the point. Choose one side of I and choose a small ambient•
isotopy of the regular neighbourhood on this side which pulls

aw8'3from I • Do this isotopy in every fililre simultaneou&l.yand• kthis wiLLinduoe a homotopyof G as we do not disturb a on 8Axl. as

our regular neighbourhood does not meet oxI. Do the same on the other

side of r • Now CI(&kxr)n(&kxI) = cp.• •
]f n is not everywhere zero, Weuse Lemma2.2~2 and induotionx
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to reduce ourselves to that case.

Leuma 2.2.2

If nx is not everywhere zero, we can reduce max(nx• x in Ak) by

one ,

Proof: Denote this numberby n, Wenote that, for any point of 6k, the

proper~ of haVing a signed point of intersection in the corresponding

f'ibre is an open proper~. To put it more precisely, if' x in Ak and

Y in (In!) is a +1 poi~, there is a neighbcur hood U of' x in Ak and
.. x

a section s of the trivial line bundle Ux1over U such that sex) = y

and s(z) is a +1 point of (In! ) , for any point z in UoWesay that..z
Y persists over U. It may be convenient to denote s(z) by y also.

Define N = {x in Akl n =n}. Then N is an. open subset of b,k0. . x

Note that If elk • .Also note that s of the last paragraph is unique

in a neighbourhood of a point x in No

Weremark that if x in N and y in (mr) is a signed.. x

interseotion point, then y persists over the oomponentC of N in whioh

x lies. For let U C Akbe the maximal oonneoted open neighbourhood of x

over whioh y persists and suppose C 4: U. Then (if-u)rc :1= <poSuppose

Z in (if-u)rc. As z in C:, n = n, and all the signed interseotion pointsz
in the fibre over z persist over a neighbourhood V of zinC. But this

implies that if w in V, w :1= z, then n > n , as y persists over w, whiohw z
oontradiots the maximalit,y of' n • Thus C c U.z
PrOPosition 2.2.3 N is a subpolyhedron of' Ak.

Proof': Let U • a(6kx1)n(Akx1 ) and triangulate everything..



32.
So that a is simplicial, 6kXI* is a subcomplex of 6kxS1xI
which is a subcomplex of Rk+2, and so that the projection
map 'It:U ...6k is simplicial. Of course if c 'ltU.If x E N,
then x lies in the interior of a unique simplex, ~r, of our
triangulation of 6k• Now the inverse image under 'Itof'a
point in 6k consists of a finite number of points. Therefore
'It-1(~r)consists of a finite set of r-simplices, which

0contains n simplices °i each with the property that °il'lxxI:jc
is a signed point of intersection in the fibre over x. Using
the linear structure of Rk+2, we see that any interior point t
er 0i 1s a crossing point in the fibre over 'It(t).Thus ;rCN,
and hence ~r C N. Thus if 1s a union of closed simplices of
vur triangulation of 6k, as required.
~roPosition 2.2.4 We can suppose there are no zero points
of intersection in the fibre over any point of N.
Proof: Choose a real valued function q> 0[1 6k, zero outside
Nand p osItive but small 011 N. As in Lemma 2.2.1, we now
push all the zero points away from 1* in the obvious
direction, pushing a distance cp(x) in the fibre over x. This
does not alter the value of'n for any point x E 6k• 'rhis isx
obvious outside N, and for points in H uses the f'act that no
signed intersection point "turns into" a zero point over N.

Without loss of generality, we may suppose that N has
one component. For if not, we deal with each component in
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turn wi thou t dis tUI'biHg the others.

Choose x E N. As nx * O,and the number of -1 points
in the fibre over x equals the number of +1 points, we can
find two points y, y' E I such that uy is a +1 point, ay' is
a -1 point and a{ (y,y')1 does nut meet I•• ( Without loss of
generality, we may suppose Y < y'.) y and y' persist over N
and are consecutive intersection points ( in I) in every
fibre. Now the two intervals spanned by ay, ay', one in 0.1

the other in I., form an embedded 81 in S1xI. This uses
Prop. 2.2.4. This 81 spans an embedded D2. We now see that we
can find y, y' so that the interval (ay,ay') c I. also
contains no intersection points. For the intersection points
in (ay,ay') occur in pairs of opposite sign, and a nested
set of intervals of this sort gives us anested set of
embedded 2-discs. We simply choose the pair of points
corresponding to the innermost 2-disc. It now follows that

no2 does not meet 0.1 or ,I._
UsL ...g this 2-disc, we could define an isotopy of

al[y,y'] across the disc to the interval [ay,ay'] c I., and
extend to an isotopy of o.l(xxI) by the identity outside
[y,y']. The idea of the proof is to show that we can do
this simultaneously in every fibre over a point Cif N.

y, y' determine unique sections s, s' of HxI l N,
which by continuity extend to unique sections over N.
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Define Z c N-N, by Z = {z E NI s(z) = s'(z) }.
~roposition 2.2.5 Z is a subpolyhedron of N.
Proof: Triangulate as in the proof of Prop. 2.2.3. Let
X E Z, then x lies in the interior of a unique r-simplex 0

of our triangulation of 6k, every point of which lies in N,
from the proof of Prop. 2.2.3. Hence, using the linear
structure of Rk+2, we see that every point of 0 lies in Z.

'rhis proves the proposition.
Prop. 2.2.5 shows that thereis a regular neighbourhcod

U of Z in N and a function~: U ~ [0,1] such that ~-1(O)=OU,
-1~ (1) = Z. As E(.,I) is contractible, we can suppose that,

for all points z E Z, s(z) is the midpoint of I*.
Choose an embedded 2-disc in S1xI, which meets I* in a

1-disc in its boundary containing the midpoint of I•• Cheose
a pseudo-radial contraction of this 2-disc over itself to
the midpoint of I•• We can arrange that, with respect to this
choice, Q is standard over U. This means that if u E U and
~(u) = t, then Q I[y,y'] looks like part of the boundary of

u
our 2-disc at level t of our contraction. For every point
U E U, we can define an isotopy, as required at the bottom of
P.33, by using our contraction. This gives the identity
isotopy over Z. OUr problem is to extend eua: isotopy of

alUxI over the rest of i.
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'rl'iangulate if wi th U as a subcomplex. Suppose we have

extended over the r-skeleton of IT-u and let or+1 E N'-U. To
each point of'or+1 we have associated a proper embedding
D1 ~ D2 = s1xI _ a one sided neighbourhood of 1*, and to
each point of'oor+1 we have associated an embedding of'a
2-disc whose boundary is an arc in 1* together with D1. As
r+1 . 1 2o 1S contractible, we can put our embeddings D ~ D

standard over o. 00 now gives us an element of ~ (E 2(D2,D2})~
r oD

Clearly E ~(D2,D2) ~ H 2(D2), which is contractible by
oD oD

Lemma 1.1. Thus we can put our 2-discs standard over 00 and
extend in the obvious way to get an embedded 2-disc f'or
every point of o. Thus we can indeed extend our isotopy of
alUxI to an isotopy of aiNxI, which in every fibre does as
required at the bottom of P. 33. It is easy to extend to an
isotopy of'a which is the identity outside a small
neighbourhood of'N'. This ensures that no new intersections
are introduced and that we do not disturb any other
components of'N' in the case when N is not connected.

We now have that in every f'ibre over a point of'N,
a{[y,y']l c I*. We must push al [y,y'] slightly off' 1* in
the obvious direction, keeping y,y' fixed. We have now
achieved the result of Lemma 2.2.2, which completes the
proof' of Theorem 2.2.



This section is devoted to proving the following
theorem and deducing some corollaries.
Theorem 3.1 The natural map ~n(PLn+1) ~ ~n(~+1) is an

isomorphism.
Remark It is well known that the natural map '11: (PL ) ~ '11: (PL )n n+q n --n+q
is an isomorphism, if q ~ 2. See [~].
Proof: the proof will require the following three theorems.
Theorem a.2 (Hsiang, Levine, Sczarba)

A homotopy n-sphere smoothly embedded in Rn+k has a
trivial normal bundle, if k ~ n-2.
Proof: See [Ii].
Theorem j.3 ~ (SO 1) ~ FCr1 = the set of regular homotopy

n n- n
classes of smooth immersions of SnxR in Rn+1.
Proof: By standard obstruction theory, using the immersion
theorem of Hirsch.
TheoremA.4 (Haefliger, Wall)

~ (PL 1) ~ FTr1 = the set of regular homotopy classesn n+ n
of smooth immersions of S~xR in Rn+1, where a ranges over all
smoothings of sn.
Proof: By standard obstruction theory, using the immersion
theorem of Haefliger and Poenaru, [8], we see that
~ (PL ) ~ FBI1 = the set of regular homotopy classes ofn n+1 n
PL immersions of SnxR in Rn+1. The Cairns-Hirsch Product
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Theorem gives us an isomorphism between FBI~ and FrI~. For
the details or this argument, see ['J.

We now consider the homotopy exact sequences or the
pairs (PL 1,e ) and (PL l' 0n+1 ). We use the isomorphismn+ n+1 --n+
~n(~q,Oq) ~ r~ = the set or concordance classes or smooth
embeddings or homotopy n-spheres in Rn+q, which are PD
unknotted. See [1&].

Theorem a.2 can be interpreted as saying that the
boundary map ~ (PL ,0 ) ~ ~ 1(0) is zero, ir q ~ n-2.n --q q n- q
Thus the natural map ?t (0 ) ~ ?t (PL ) is mono, ir q ~ n-1,n q n -q

and hence so is the map ?t (0 ) ~ ?t (PL ).n q n q
We have the pair or short exact sequences
o ~ ?tn(On+1) ~ ?tn(PEn+1) j1 ?tn(PLn+1,On+1)~ 0

l= li3 1i4
o ~ ?tn(On+1) ~ ?tn(~+1) 12 1tn(~n+1'On+1) ~ 0 •

jai3 can be identiried with the natural map FrI1 ~ r byn n

means or the commutative diagram
j2i3 ( 0) :::::=_~ ?tn~+1' n+1

l~

and this map is onto, as every homotopy n-sphere is a
~-manirold, by a theorem of'Adams, and hence immerses in
codimension one. Hence, by commutativity, i4 is onto.

Now suppose that i4(x) = 0, and hence i4j1(Y) = 0,
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ror some y E ~ (PL 1). From the above remark about j2i3' wen n+
see that y lies in the image of the natural map
FCr1 ~ Frr1 But this map can be identified with then n·
natural map ~ (0 1) -+ ?C (PL 1)' by Theorems 3..3 and !-.4.n n+ n n+
Hence x = 0, and 14 is an isomorphism. The result now
rOllows by the Five Lemma.
Corollary 1
as a bundle.

n 2n
Any normal open tube on S c S is trivial

We now quote the following theorem of Hirsch.
Theorem a~ The natural map ~n(PLk,ok) -+ rn is onto if

k ~ n-1.
An easy consequence of this theorem is

Qorolla!:U The natural man ?C (PL ) ~ ?Cn(-nPL) is onto, if ~4.
"" n n

Proof: We use the homotopy exact sequences of the pairs
(PL ,0 ) and (PL ,0 ) and the ract that rn ~ rn ~ ?C (PL ,0 ),n n --n n n n --n n
ir n > 4.

Now consider the two homotopy exact sequences
?t (PL )n q

l
?Cn+1(sq)eA~+1 ~ ~n(~q) -+ ?Cn(~q+1) -+ ?Cn(sq)eA~.

Bor the definition of'Aq, see [18]. We only use the f'act
n

that Aq = 0, if'n < 2q-3. It is now easy to prove our
n

remaining Corollaries.
Q,orollary 3



Corollary 4

~1
53.

~ (PL 1I) ~ ~ (PL 1) is onto, for all n.n n+ n --n+
Proof: This is known for n = 2 and 3. Use the above for
n ~ 4.
Corollary 5 ~ (PL 1I) ~ ~ (PL 1) is onto, and hencen n+ n n+
every PL manifold has a tangent disc bundle.
Qorollapy 6 Open normal bundles exist and are unique for
embeddings of Mn in Q2n.

Closed normal bundles exist for embeddings of Mn in Q2n.
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CHAPl'm IV

~ESPACE OF HOMEOMORPHISMS OF A 2-MANIFOLD
Let ~ be a oompact, conneoted, p1ecewiae-linear (Pt) 2-manifold,

and let _ be a point of inte~). 1£ N is a subset of Il, then, ~(.f)

denotes th 2e Spaoe of pt homeomorphismsof M whioh leave points of N
fixed Tb. 2 2 2• J.S paper proves that,. if)( is not S or P , then the identity

oomponent (and henoe eaoh oomponent) of H~(y2) is oontrao.tibleo If

1{21 2 2 2
8 S or P , then the identity oomponentof H.uJe14 ) has the homotopy

type of a oirole.

The analogous results to the above in the smooth category have been

Proved for orientable 2-manifolds by Barden, using results of Eells and

Eax-le [4] and O'erf (3]. In the topologioal oategory, the analogous

resUlt has been proved by Hamstrom[10].

In §O, we prove some use ful resul-ts and state the main theorem. In

§l, we give a proof of the main theorem assuming Theorem2.1 whioh is

ProVed in §2. In §3, we oonsider the relationship between the spaces

li.ua.(M), Hall(M), H•.ell) and H{M).

Ie· SOmeusatul results

we use the definitions and notation of §O of Chapter III. In addition,
p2 denotes the proJeotive plane, K is the Klein bottle P .. P, Moebo is the

I4oeb1usband and T is the torus S1,(8l• ( • denotes conneoted sumo) The main

theorem is
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Theorem1.1

(i) If .l is a oompaot, oonneoted 2-manifold, not S2 or p2,

and • is a point of rl-, then H,.u,y(lrf) has

oontraotible identit,y oomponent.

(ii) The identi t,y oomponents of H.(S2) and H.(p2) are
1homotopy equivalent to the cirole S 0

Wewill need the following r.sults ..

Lemma0.1 If u2 is the Moebiusband, then HoM(M)is oontraotible.

Proof': It is easy to show that ~(M) is conneo ted., To prove that

all the higher homotopy groups are zero, apply the methods of Chapter III.

Lemma0.2 If )(is a oonneoted manifold and • is a point of M, then the

image of the natural mapf: .1(H(M» ~ .1(E(.,M» ~ .1(14) is central in

111(14).

Proof: Let a represent an element of .1(H(M» and p: (I,oI) ~ (M,.)

represent feral) in !l(J). Let y: (I,or) ~ (M,.) represent an element of

71"1(M) also.

Consider the oomposite map

g: IxI ~ Ix)( l IxM! M, where (l)()')(x,y) = (x, yY), and 11 is projeotion

onto the seoond faotor. Note that gl(Ix{il) = p and gl({ilxI) = Y, where

i = 0 or 1. Thus g defines a homotopybetween py and yp. Therefore

[~J[y) = [y][p) for all [1") in 111(M) and heme [p] is oentral in 11'1(M).

~mma 0.3 If M is a oompaot, oonneoted 2-manif01d, not p2, K, T,
1

S xl or Moeb, then 11'1(M) has trivial oentre.

Proof: See (5].
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~l. Proof of The Main Theorem

This seotion will be devoted to a proof of
!hemrem 1.1

( )
_2 2 2i If M- is a oompaot, oonneoted 2-manifold, not S or P ,

u2 2and * is a point of M , then H*U3M(M ) has oontraotible
identit,y oomponent.

(ii) The identi ty oomponents of H (S2) and H (p2)
* *

homotopy equivalent to the oirole Sl.
are

!!mark 1.2 If 13M+ ~, it follows that the identity oomponents of

H*U3)(M) and HaM(M) are homotopy equivalent, by oonsidering the fibration
o

H.l.0.,(M)-+ HaM(M) -+ E(*~,M).
~ ~

7k(E(*,M» = "k(M) = 0 if k) 2, and the map "l(HaM(M» -+ "l(E(*,M»
Oan be seen to be zero by ohoosing a path in M from * to a point of 8Mo

The oruoial step in the proof of this theorem is
~eorem 2.1

222
I:f' M is a oompaot, oonneoted 2-manifold, not S or P ,
1 ~2 1 ,_1 2S c 14 is essential, and * is a point of S , then E.e:r,K )

has oontraotible identit,yoomponent.
~oof at Theorem 1.1(1) assuming Theorem 2.1

I:f' .I- is a oompaot,..oonneoted 2-manifold, then
2 2K er (S ..tT _ pp) - k disjoint open 2~isos, where t, p are non-

negative integers denoting repeatei oonneoted sum. From the relation
T • Per P dtP. P, we see that if M is non-orientable, then M erpP-k holes,
Where p ) 1. Of oourse, if M is or1entable, then M er (S2.tT)-k holes.(Ia
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the orientab1e case, t is called the genus or M, and in the
non-orientab1e case, p is the genus.) We proceed by induction on t in
the orientab1e case or p in the non-orientable case and reduce the case
P = 1 to the orientable case.

If M is orientable and t = 0, k = 1, we apply Lemma 1.1 of
Chapter III. If k ~ 2, we apply Theorem 1.3 below. This starts the
induction.
~eorem 1.3

1H.L8(8 xl - r holes), r~ 0, has contraotible identit,y component.
The induction step itsel:f'is as follows. Let M be a oompact

2-manifold, not 82 or p2. Then M ~ tT - k holes, t ~l, or ~pP - k holes,
1 2P ~ 1. In the orientable case, choose 8 C M to be a transverse Circle

1 2of a torus. In the non-orientSble case, when p ~ 2, choose 8 C M to be
the attaching cirole of a Moebius band, and in the case p = 1, when
M SlI Moeb - (k-1) 1holes, ohoose S to be the centre circle of M. In all

M along SJ- we obtain a connected.manifold N or twooases, if we out
oonneoted manifolds N , N of smaller genus than M.1 2

Now, in all oases, SJ- is essential in M, henoe we can apply
Theorem 2.1. Consider the fibration

From Theorem 2.1, we see that

where Nis the manifold ( possibly not oonneoted) obtained by cutting M
along Sl. As eaoh oomponent of N has non-empty boundary, Remark 1.2
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implies that, if • is an interior point of a oomponent C of N, then
the 1denti~ oomponents of HaG(e) and H.urc(e) are homotpy equivalent.
Now our induotion assumption implies that the identi~ oomponent of
H.~C(C) is oontraotible. Hence the identi~ compoIWlltof H*UOM(M) is
Contraotible. This completes the induotion step and hence the proof

of Theorem 1.1(i).
~oof of Theorem 1.3

Denote (SlXI) _ r holes by F • The proof is by induotion on r.
r

The Case r = 0 is proved by using Remark 1.2 and the results of
Chapter III.

The induotion step is as followS. Consider the fibrations
(A) H.

1
....... !!l(F ) ... H I .o )...E(o, i ...),where *, 0 are distinct

VV\JCI r *\JCI r r
pOints of :r ,

r
2 0 )

H*UD~ (F r) ...H*1...bI...0(lr) ... Eo(D , F ...,
2 :,

where 0 in D c F - .'.r(B)

As in Remark 1.2, it follows from our induction hypothrsis and
(A) that the identit,y oomponent of H I w~(F) is oontractible.

*\jVVV r

2 2 2 {'Now there is a map a: B (D ,R ) -+ E CD , F -.) obtained byo 0 r
Choosing a neighbourhood of 02 in 1 -. homeomorphic to R2. a is a

r
homot k 2 kopy equivalence. For let f: A xD -+.' XFr represent an element of
~ (B (02 ~ » 2ko' Fr - *' • B.Y oontraoting eaoh 0 over itself keeping 0 fixed,
We can pull the image ut.derf into a "small" neighbourhood of 0 and
henoe, a priori, into a2 c F - •• Thus ex is onto. Similarly a is a

r * *
monomorphism, and therefore an isomorphism.
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Now the identit,y oomponents of E (D2,R2) and H (R2) are
o 0

homotopy equivalent. See P.26, line 6. As the identit,y oomponent of
Ho(R2) is homotopy equivalent to a oirole, Theorem 2.1 of Chapter III,
it follows that the identit,y oomponent of E (D2, F -.) is homotopyo r
equivalent to ~ 0 Henoe (B) implies that the identity oomponent of

H.UD2...e(Fr) is contraotible. But H.UD2u;(Fr) i! H.U3(Fr+l). This
oompletes the induotion step and hence the proof of Theorem 1.3.
Proof of Theorem 1.1(11)

2 221If II is S , the result follows as H (~ ) III H(R ) III S 0 See the.\
proof of Lemma 106 in Chapter III, and Theorem 2.1 of that chapter.

If M is p2, oonsider the fibration
H 2(p2) ~ H (p2) ~ E (D2,p2),D··where. in D2 C p2.

Now H 2(p2) i! H (Moeb) which is contractible by Lemma 0.1. AlsoD a
E. (02,p2) has identi t,yoomponent homotopy equivalent to ~, by the same
argument as in the proof of Theorem 1.3. The result now follows.

This seotion is devoted to proving
Theorem 2.1

_2 2 2 1 ~
If Jr is a oompaot 2-manifold, not S or P , S c ~ is essential.

and • is a piont or ~, then E (sl,ll) has oontraotible identity•
oomponent.



Proof: This is similar to the proof of Theorem2.2 in Chapter III.

Let a: IJ.kxSl""*4kxtf represent an element of 1Tk(E.(SI ,142), k~l.

Weprove that a is null homotopio.

Choose a regular neighbourhood V of 51 in ,i, (Vwill be

to g1xI or Moeb) and consider a (Sl)n8V, where x in ,kx
homeomorphio

and ax denotes al {xlxS~. 'Ie nowproceed as follows:

(1) Homotpa so that a (Sl)n8V oonsists of a finite number of pOints,
X

for all x in ~.

(ii) Homotopa to remove all the crossing points in this interseotion,

for all x in Ilk.

( ~., k 1 k
ii~ 'Ie are left with an embeddingp: A xS -+ Ii xV and, by using a

1oollar of av in V, we can push f3 away from av so that f3x(S )n8V I: €/J. Now

p represents an element of 11 (E (SI, V), where SI is the oentral oirole
k •

of V, and we apply Theorem2.2 or 2.3 to show that f3 is null homotopio

and henoe so is a.

~eorem 2.,2

If SIx!!} = ~ c SlxI and • in SI, then the identity oomponent
...,&0 (1 1
UL E. S ,S xr) is oontractible.

Theorem2.3

If 142is Moab, SI c tf ia the oentral oirole, and _ in sI, then

the identit,y oomponent of E (Sl,~) is contraotible ••
Proof of Theorem 2.2

From the results of Chapter III and Remark1.2 it follow8 that
1the identity oomponent of Hs:1-xa:ru.:(SxI) is oontraotible, where. in
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1
S xl. Now consider the fibration

H_l l(SlXI) ~ H 1 (SIx!)
S-x8:n..s S X M

As the fibre is isoIOOrphio1:D H1 (SlxI)
S x81

1 1~ E (S , S xI).
*'

2, the result follows.

!!cor of Theorem2.3

From Lemma0.1 and Remark1.2 it follows that the identity

oomponentof H8~(M) 18 ~ontractible. Nowoonsider the fibration

HalL81 (II) ... HalUo (II) ... E. (Sl,II).

By "outting alcng Sl .., it is olear that ~e fibre is isomorphio to

HSl (SlxI) which has contractibl .. :identity component. The(Jresult
xaI

nowf 011OWS.

To complete the proof of Theorem2.1, we must show that steps

(i) and (as ) at the begimad.ngof this seotion oan be oarried rut.

Weoarry out step (i) by arguing as follows. av is either one

oircle or two oircles. In either case, a oomponentC of av has a

oyl:1nder SlxI as regular neighbourhood in K. Let .".denote projection

1 "S xI -+ I. By a small homotopy ofa. fixefl outside a SDlallneighbourhood

f -1 ko a (ta xC), we can arrange that 1Tais non-<iegenerate on a

neighbourhood Wof a-l(takxC). i.e. (1Ta)-l(x) is a finite number of

pOints, if x in a(W). The required result follOW'simmedia~ly.

Nowoonsider Step (i1). The points of a. (Sl)rtaV fall in to twox

olasses _ orossing paints and non-orossing points. Let nx be the number
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of orossing points in the fibre over x, and define n = max{nx! x in Akl.

If n = 0, we apply Step (iii) and what follows of the above work to

oomplete the proof that a is null homotopic. If n + 0, we apply the

f'ollowing lellllD&and induotion to reduoe ourselves to the case n = O.

Lemma2.4
If n(a) > 0, there is a homotopyof a to at, where at has the

property that at (Sl)n v: is a finite number of' points, and such that
x

neat) < n(a).

Proof: Wedefine N = [x in Ak! n = nj. Choose x in N. Aa .in
x

Chapter III, all the orossing pOints over x persist over the component

of N in whioh x lies. Wemay suppose N is connected,

Aa N + Ak, N - N is non-empty. Thus there is a pair of orossing
z

points y, r' over x whioh coalesce at somepoint! of N - N~

If p, q are points of Sl, nct e , denote by [p,q] the aro of Sl with

endpoints p and q whioh does not contain •• Thenwe may suppose that

[y,yt] oontains no other crossing pOints.

The pOints ay, Nt iD IV determine two aros .A. and Bwith them as

endpoints, and .A.Ux[y,y'], B..Ax[y,yt]are both oiroles Embeddedin 11-. It

can be seen, by oonsidering the situation in a neighbourhood of s , that
2one of' these two oiroles bounis a 2-diso embeddedin M• (The possibility

that both oiroles bount a 2-diso is eliminated later.) ,

Aa in Chapter Ill, our problem reduoes to the following.

Divide the boundary of the 2-disc D2 into two aros P,Q. Let
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E(D2,1I ;. V) denote the spaoe cL embeddings of D2 in M- V such that

~ D()lJV= P, and let E(Q,M_ V) denote the apace of embeddings or Q (~I)

in II - V such that Qn8V= aQ. Then we have to show that the natural
2 0 C>map..\: B(D , Il-V) -to E(Q, M-V) induces an epimorphism of all homotopy

ogrQ.1ps. (It' M-Vis disconnected, we shall restrict attention to one

compOnent.)
2 ~

Now..\ is a fibration am. the fibre is EQ(D , M-V). All the components

r:£ the fibre are isomorphio to HQ(D2), which is contractible by applying

the Alexander trick twice. Hence). is an isomorphism of all homotopy•
groups except poss jb 1y 11'I •

Consider 1I'o(EQ(D2,Il-V». Suppose this has two distinct elements

With representatives f and g say. Either f(P) = g(p) or f(P)Ug(p) is a

component T of avo J:t' rep) = g(p), then r(D2~ = g(D2) and f and g are

isotopiO by the Alexander triok. Therefore r(p)Ug(p) = T, and

f(D2)ng(D2) = Q. Nowf(D2)ug(D2) is a 2-diso with bounda~ T. It follows
o

that the oomponent of II - V of whim T is a boundary oomponent must be

a 2-diso. If V is a cylinder, then SJ- is inessential as it bouads a

2-diso. If V is a Moebius band, then It is the projeotive plane p2. As

both these oaees are excluded in our hypotheses, we see that-)' is an•
isomorphism on all homotopy groups. The resul t of Lemma2.4 follows.
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In this section, we oonsider the relationships between the above

four spaces of homeomorphismsof a 2-manifo1d lI,where .~M, and

oalcu1ate their homotopy groups. Of oourse, we have a oommutative

square of ino1usion maps

J;P
H(M) •

~he following theorem oontainS the main results of the seotion.

!heorem 3.1

(a)
2 2 1

a oompaot, conneoted 2-manifold, not S , P , K, T, S xl,

2D , then a, (j, 'Y. G are all homotopy equivalences enMoebor

identi~ components. Hence all four spaces have oontraotible

oomponents.

(b) non-closed manifolds

(i) If II • D2, a and G are both homotopy equivalenoes. All

homotopy groups of all four spaoes are zero, exoept for

_l(H.(D2» ~ ~l(H(D2» ~ z.
(i1) It' II • Moeb, 'Y aiId 8 are homotopy equi valenoes on identity

components. gi(H(Moeb» = 0, i ~2 and ~l(H(Moeb» ~ z.
The natural map Z!!! gl(H(Moeb» -+ ~l(E(., Moab» r1!! Z is

multiplioation by 2.
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(iii) If M= SlxI, Y and G are homotopy equivalences on

identl~ components. The natural map ui(H(8
lxI» ~ ~~81xI)

18 an is omorphiam, i ;. 1.

(0) olosed manifolds: p and y are automatioally isomorphisms.

(1) If M = T, the natural map ui (H(T» ~ "i (T) is an isomorphism,

i ;.1.
(ii)

(iii)

If' M = X, '"i (H(K» = 0, i ) 2 and ul (H(K» = Z.

If' M= p2, the natural map u. (H(p2» ....11'. (p2) is an
l. l.

2 ) ( ( 2isomorph18m j£ i ) 3, 1I'2(H(P) :; 0 and 11'1HP» = Z2.

2 2
If AI = 8 , H(8 ) DI 03.

results f'or D2 ald 82 are oontained in Chapter III, §l.

The rest of' the seotion is devoted to proving the above results.

We oonsider the maps a, p, y, G in turn.

!!_le map a
e

Consider the f'ibration H (M)~ H(M)~ E(.,M) Cl M••
If' M+ 82 or p2, f( (II) = 0 f'or i ;. 2. Thus a : 11'i(H(M» ~ 11'.(H(M»i.. l.

is an :is omorphism 1£ i ill 2 and Jl ~ 82 or p2.
1

LeJllllas 0.2 and 0• .3 imply that, if M:I:P, K, T, 8 xl or Moeb, then

the map 11'1(H(Il» ~ "'1(M) is flero.

+ 2 2 .aHenoe, if' M 8,P, K, T, :rxI or Moeb, it f'ollCJl'ls that a is a

homotopy equivalenoe on identit,y components.

!!;e Dap ~

Ii' all lIZ q" P is trivially an isolIt)rphism, so we oonsider the oase

aM = CIU••• l£n where eaoh Ci is a oircle. Let 0 e Cl' and consider the
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fibration

Ho(M)4'H(M) -+ E(_I Cl).

As fT.(Sl) = 0, i ~ 2, P': ir, (H (M» -+ 1r. (H(M» is an isomorphism
l. • l.0 l.

if' i ~2.

Lemmas 0.2 and 0.3 imply thatl if M:I: SlxI or Moeb, then the

composite map
i

271(H(M» -+ .1(°1) ......i! 111(M)

is zero. ( i: ° -+ M is the inclusion map.) NC7R i is a monoIJX)rphism
1 •

unless M• D2. Hence, j;f' M :I: SlxI, Moebor D2, it follC1N's that P' :is a

homotopy equivalence on identity components.

Now consider the fibration

HO (M) -+ H (M) -+ H (Cl).
100

The identity component of Ho(°1) is isomoI'JbLe to Har (I) which is

contractible by the Alexander triok. Thus HC (M) and H (M) have
1 0

homotop,y eqidvalent identit.y oomponents.

It mw follars by induction, that P :is a homotop,y equivalence on

:identity oomponents, if M + SlxI, Moeb or D2.

The map y

It al( • rp, y is trivially an isomorphism, so we oonsider the oase

aM = OlU••• UCn, where eaoh Oi is a oirole. Let 0 € Cl and oonsider the

:fibration

H.Uo (M) 2;' H. (M) -+ E(o. 01)

Aa above, Y;: "i CH~CM» -+ fTiCH.(M» is an isolJDrphism if i > 2.

Nowoonsider the 00mpoait e map
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g: "l(H.(ll» -+ "l(Cl) -+ "l(M-.).

The method of' proof' of Lemma0.2 shows that the image of g is oentral

in "1 (M - .). But Lemma0.3 shows that "1 (M - .,), which is isomorphio
'2 02i 1to "l(M - D), has trivial centre if PI - D 'f S xl or Moeb. i.e. if

)( + D2.

As bef'ore, it now f'ollows by induction that y is a homotopy equivalence

on identc1ty oomponents if M+ D2.

The map 8
Remark 1.2 shows that S is a homotopy equivalence on identity

oomponents if all • r;.
1 2!!!!_exoeptional oases: S xl, Moab, T, K, P •

(a) Ii" I( = :txI, the natural mapH(SlxI) -+ 1(., 1 0 1
S xl) • S is a

homotopy equivalenoe of identi~ oomponents.

As y is a homotopy equivalenoe, it is certainly true that

H.(SlXI) has oontractible identity componento Newconsider the f'ibration

H (SlXI) -+ H(SlxI) -+ 1(., Slx!) CIf Sl •.'
1 ( 1It is obvious that the map "1 (H(S xl» -+ "1 S ) :is onto. The

resul t now .follows.

(b) Ii" M= T, paragraph (a) applies.

(c) If 11= Moab, "i(H(Moeb» = 0 it' i > 2, "l(H(Moeb» = Z, and the
e

natural map Z Sf "1 (.Moeb» -+ "1 (E(.,Moeb» ~ Z is multiplicatiom by 2.

As y is a homotopy equivalence, it is certainly true that H (Moab)..



has oontractible identity component. Narr consider the fibration
Q 1

H (Iloeb) -+ H(lfoeb) -+ E(., Moeb) ~ S ••
It is immediate tha~ ~i(H(MOeb» = 0 if i ~ 2.

Consider the commutative diagram

"1 CH(Moeb»
f 11'1(E(., M~b) !! 11'1(Moeb) z-+ =

1 r
Z II ,,'(8Moeb» -+ "1 (8Moeb) = z

The right hard map is multiplication by 2, thus the image or f

lies in 2Z. But 2 is clearly :in the image of f. The result follORs as

f is a monomorphism.

(d) If If = K, 1I'i{H(K» = 0, i ~ 2 and "l{H{K» = Z.

The first part of the statement is clear from consideration of

the fibration

H (K) -+ H(K) -+ E(., K) Cl K,•
and the facts that H (K) has contractible jj. enti ty coaponent and•
"i(X) = 0 if i ~ 2.

Prom the well-knarrn presentation or K as a sQJIiIlr'8with edges

identif:iad, Fig.1, it :f'ol1twS that "1 (X) is the free group an two

generators a, b with the relation abab-1 = 1, i.e. bab-l = a-1•
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LeIllJla3.2

The oentre of the group G = la, b bab-1 = a-1 j is generated by b2

and has infinite crder.

Proof": Certainly b2 1.9 in the centre of S, as b2 oommuteswith a and b.

Note that a and b both have infinite oDder, as the infinite
-1 -1 2dihedral group D(oo) has the relations bab = a ,b = 1 and a has

-1 -1 2inf'inite order, and Z+Z2has the relations bab = a ,a = 1 with b of

lllt'inite order.
r. s

Nowaqy element of G can be written in the form a b by using the

relation ab = ba-I. Suppose arbS is oentral in G. Then

arbBb = barbs.

r. r r r -1 ( -l)r -rTherefore a b = ba ~ a = ba b = bab = a ~ r=0, as a has

int' ini t e order.
-1 -1 2N"" b is not central in G, as ab = ba ~ a = bab = a -:i> a = 1.

This oompletes the proof of the lemma.

Nowconsider the map1': 11'1(H(K» _. wi (K), whioh is a

monomorphismas "'1 (H. (K» = O. The image of l' is central in 11'1(K), by

Lemma0.2. But b2 is in the image of f. For oonsider the isotopy

ob tained by sliding Kover itself parallel to the b generator of

homotopy. ItIf we go twioe roundIt, we end up with the identity

homeomorphismof K, so we have defined an element of 11'l(H(K»whose

image in 11'1(K) is olearly b2• Therefore 11'l(H(K»= Z.
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2 (2 2If M= P , the natural map fT. H(P » ~ .... (p ) is an

~ ~
2 2isomorphism if i ~ 3, fT2(H(P» = 0 and fT1(H(P» = Z2.

(e)

Consider the fibration

H (p2) ~ H(p2) ~ E(4Ii,p2) CIt p2••
As 11. (H (p2» = 0 if i ~ 2, the first result follows jt' i ~ 3.~ .
Consider the homotopy exaot sequence

C) 0 ~ 1f2(H(P» ~ 1T2(P)~ 1T1(H. (p» ~ 1T1 (H(P» ~ fT1(p) ~ fTo(H.. (P» ~

fTo(H(P)).

Wewill prove that the map fT1(p) ~ fT (H (p) is a monomorphism,o •

and that the map Z ~ ..2(P) ~ fT1(H.(P» ~ Z is multip1ioation by 2. This

will prove that 1T2(H{P» = 0 and 1T1 (H{P» = Z2.

Lemma 3.3

The map 11 (p) ~ 1T (H (p» is a monomorphism.
1 0 •

Proof: 1To{H(P» = 1 and fTo(H.{P» = Z2. As "'1(p) = Z2' the exactness

of C) gives the required result.

To see that., (H(P» = 1, take a homeomorphismh of P. Ambiento

isotop h to leave a point. fixed and then so that a 2-diso oontaining •

in its interior is mapped onto itself. If the map is orientation

preserVing, we oan is otop h to be fixed on the diso, by the Alexander

triok. Wewould then be left with a homeomorphismof Moebfixed on the

boundary, whioh must be isotopio to the identity. Ii' h reverses the

orientation ce the disc, do an isotopy of l'Uwhioh takes. rcund an

orientation reversing path.
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This proof also shows that v (H (p» = Z2.o •

Lemma3.4-

The map Z !! 'lT2(P) -+ "1 (H.(P» !! Z is multiplication by 2.

Proo:f: Let 'IT: 82 -+ p2 be the standard projeotion and olb' = v-l(.).

Consider the diagram

!!;'IT., x2jlll.
Z!! 'lT2(8

2) S 'lTl(Ho(82»~ Z l Vl(Holb,(S2» ~ vl (E(pt,S
2-oUb,»!! Z

Note that f is multiplication by 2. See Chapter III, §l.

g is an isomorphism beoause of the fibration

2 Il 2 2HoU>'(S) -'f Ho(S) -+ E(o', 8 -0) I¥ ••

h is an isomorphism as it is clearly onto.

Finally k is multiplioation by 2. To see this, consider the

diagram

( 1 22m (2 2» n'lTlH.(p» ~ vl (E. (D ,P » ~ "i(E. D ,R +-

kl
2"i (E(pt, R ... )

The maps are alJ. natural maps obtained by choosing an embedding

(R2,.) C (p2,.). l,m,n are all isomorphisms. See the proo:f of Theorem

l.l(ii) and Chapter Ill, §l. p is also an isomorphisn. q is multiplication

by2. The lemmanowfollOlJs.
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