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Coumarin derivatives as Anticoagulantso

Dicoumarol was first prepared in 1903, by the reaction of

formaldehyde and 4-hYdroxycoumarin1• Little interest was taken

in the compound, however, until 1940, when Link2 identified it
as the haemorrhagic agent in the spoiled sweet clover disease

of cattleo Li~ investigated the properties of the

anticoagulant in rabbits, along with a great many other

derivatives, in an attempt to find a relationship between

structure and activity for this type of compoundo Although he

had little success in his researches as far as structural

relationships were concerned, he discovered other useful

anticoaeulants, such as warfarin, pelantan and mlcoumar

(3-(<<-phenyl-~acetylethyl)-4-hydroxycoumarin, ethyl glyoxylate
dicoumarol and 3-(1'-phenylpropyl)-4-hydroxycoumarin respectively).

According to the acoepted theory of blood coagulation 4,5

prothrombin is converted to thrombin under the influence of
calcium ions and thromboplastin (effectively an enzyme for the

process). The thrombin thus produced reacts with fibrinogen

to produce the fibrin of coagulated blood. This process is

inhibited by dd.coumar-o'L, The study of this phenomenon has

relied on the analysis of blood and blood serum obtained from

animals fed on diets containing these anticoagulants. Examples

of the types of analysis involved are found in refs. 6-80
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The factors produced (or lacking) in the blood of the treated

animals are given names (such as Factor VII and the Christmas
factor) as the chemical constitution of the factors isdnknovln5o

A subject that has received considerable attention is
the relationship of coumarin anticoagulants to the natural and

synthetic forms of vitamin K9. It is well known that vitamin K

deficiency in mammals gives rise to hypothrombinaemia, and the

resulting hae)'morrhagic condition bears a very close resemblance

to that which is produced by the administration of coumarin

anticoagulantso Furthermore, the hae~morrhagia caused by

coumarins is rapidly cured by treatment of the animal with

vitamin K1, (2-methyl-3-phytyl-194-naphthaquinone), suggesting

that there exists between the coumarin and the vitamin an
10 11antagonism resembling that observed by ~ oods I between

sulphonamides and p-aminobenzoic acid, and havin~ a similar
origin, namely a structural similarity between the coumarin and

the essential bo~ metabolite vitamin Ko Since vitamin K is

required for the synthesis of prothrombin by the liver~ the

coumarin anticoagulants may act as competitive inhibitors
which prevent the utilization of the vitamin by one of the enzymes
involved in this synthesis 12,130

In addition to papers dealing with the clinical useof
coumarin anticoagulants, many papers have been published as the

result of preparations of new coumarin derivatives and their
testing for anticoagulant activit yo (See for instance refs. 14-17)
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A number of suggestions as to structure reactivity relationships

have been made, but no satisfactory formulation has ever been

presented. It seems that much more will have to be known about
the intimate mechanism of the blood clotting process before any

advances can be made along these lines. (For a general review
of the field see re£o 50)

structure of 4-hydroeYcoumarin derivativeso

4~hydroxycoumarin

The structure of 4-hydroxycoumarin has been well established.

Arndt 18 has shown that in solutions of 4-hydroxycoumarin, the

It.-hydroxycoumarin form (diagram IA) is in equilibrium with the

2-hydroxychromone form (diagram IB)

OH

~OyOH

~tJ .
I
o ~

Rapid methylation with diazomethane p~oduces predominately

4-methoxycoumarin, whereas in the case of a slow addition of
diazomethane a mixture is formed in which the content of

2-methoxychromone is higher than in the former caseo The
authors conclude that in the equilibrium state the 4-hydroxycoumarin

structure predominateso The formation of the chromone derivative

during slow methylation is explained by the fact that



2-hydroxychromone is a more acid tautomer, and consequently it

is methylated more easilyo Although the concentration of the

chromone tautomer in the mixture is low, the equilibrium

upset by the removal of one component is restored only slowlyo

The possibility of the contribution of the diketo structure
(2,4-diketochromone) has been ruled out by the work of Link19,
who showed by titration that an alcoholic solution of

4-hydroxycoumarin is almost 100% enolo (Assuming a possible
rate of enol-keto tautomerisation similar to that shown by

20ethyl acetoacetate 0)

Structure of dicoumarols and related worko
Link did not investigate the tautomerism of dicoumarol, and

wrote the structure in the logical coumarin form below21 •

(diagram II)

OH OH

II
Following on from Link's work Knobloch and co-workers 22,23

investigated the various tautomeric possibilities by comparing

the ioro and u.v. spectra of dicoumarol derivatives and
related compoundso In the paper by Knobloch Kakac and Macha22

they put forward the hypothesis that dicoumarols exist very
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largely in the chromone formo This conclusion is drawn from

the observation that peaks .in the uov. spectra of dicoumarols

may be ascribed to absorptions characteristic of both chromone
and coumarin, and that the pKa1 value of pelantan (ethyl

glyoxalate dicoumarol) is approximately 207 in 20.%ethanolo
The latter point, they say, proves the existence of a

hydroxychromone group, which is more acidic than a 4-hydroxycoumarin

group (they give the pKa value of 4-hydroxycoumarin in the same

solvent as 404.) The later paper by Knobloch and prochazka23

takes into account the i.ro spectra of these derivativeso hey

show that the maximum absorption in the carbonyl region of the
-1 -1ioro ( vmax C=O) for dicoumarol is 1660 cm ,and 1653 cm for

chromone (spectra in ethylene dichloride). On the other hand
')max C=O for simple coumarin derivatives is between 1700 and

-1
1720 om 0 They come to the conclusion that dicoumarol exists

in the dichromone structure belowo (Diagram III)

They also suggest from the O-H stretch area of ioro spectr-um that

the chromonyl hydroxyl groups are hydrogen bonded intramolecular~
to the chromonyl carbonyl groups of the other ringo
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Chmielewska24 has discuss.ed the tautomerism of dicoumarol, and

puts forward the suggestion that it exists as half coumarin and
half chromone. The basis for this suggestion was the view

that anticoagulant activity could be correlated with vitamin K
antagonism and the active form of a coumarin anticoagulant must
be a cyclic ketal as in diagram IT, A or B

H
0,

,,,
These can arise only from 3-substituted 4-hydroxycoumarins in

which the side chain has a carbonyl or a potential carbonyl in

position 2' or 3'0 The half chromone half coumarin structure

of dicoumarol would lead to the derived ketal in diagram V.

OH

v
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Chmielewska investigates the methylation reactions of dicoumarols,

and the methylation of the 4-hydroxycoumarin and c1icoumarol

analogues 4-hydroxy-6-methyl-~pyrone and 3,3-methylene-bis-4-
hydroxy-6-methyl- ._ yroneo The iara spectra of the 4,4'- and
2,4'-dimethyl ethers of dicoumarols in carbon tetrachloride are
iven, along with the s ectrum of 2-methoxychromone in this solvento

Whereas 2-methoxychromone has a band attributable to the carbonyl
-1group at 1659 em , the 4,2f-dimethyl ether does not have a band

in this area, and Chmielewska says that no explanation can be

offered for this behaviour. Followin, this work some of the

pro erties of 4-hydroxy-6-methyl-~pyrones have been investigated

(4-hydroxy-6-methyl~-pyrone is readily available from dehydracetio

acid, an ethyl aceto-acetate derivativea) The absence of the

1659 om-1 band from the speotra of the 4~2t-dimethyl ethers is

also investigatedo

The above work on the structure of dicoumarol is
unconvincingo The authors conclusions from limited data seem

highly questionable, and in consequence this investi ation was

re-opened with the additional advantage readily available from

Structure of other 4-hydroxycoumarin derivativesa
Link21 prepared a whole range of bridge substituted dicoumarol

derivatives, by treating 4-hydroxycoumarin with a variety of
aldehydes, including salicylaldehydea He disoovered that if

salicylaldehyde and 4-hydroxycoumarin were boiled under reflux
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for a short time, (about 10 minutes), then, on cooling, pale

yellow needles were precipitated from solutiono If boiling
was continued for a eriod of hours, then a colourless product

was precipitated. On the basis of elemental analysis, he
identified the yellow compound as 3-~-hydroxybenzylidene-2,4-
diketochroman (diagram VI)

V\

The colourless derivative he identified as the product of the

addi tion of 4-hydroxycoumarin to the benzylidene car on at om of
the above com ound , This Michael addition to the double bond

is followed by loss of water between the hydroxyl ~rou of one

of the 4-hydroxycoumarin residues, and the hydroxyl group of
the salicylaldehyde residueo Link concluded that all additions
of 4-hydroxycoumarin to aldehydes proceed by this route, first

addition of 4-hydroxycoumarin to the carbonyl group of the

aldehyde through the carbanion, followed by loss of water to give
a diketochroman, and subsequent Michael addition of another

molecule of 4-hydroxycoumarino

An investi~ation was carried out into the unusual class
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of compounds characterised by the diketochroman above, and many

other such derivatives were preparedo Their reactions were
studied and the spectra of these compounds along vdth those of

their derivatives have led to a rationalisation of their

sbrucuure , Similar derivatives were prepared using the

4-hydroxycoumarin analogue 4-hydroxy-6-methyl- -pyronoo

nother route for the preparation of 4-hydroxycoumarin

derivatives investigated by Link was the ichael addition of

4-hydroxycoumarin to the double bond of an ~ unsaturated ketone25o

(The first preparation of warfarin was in fact by the addition of

4-hydroxycoumarin to benzylacetone.) One such reaction

investigated by Link was the addition of 4-hydroxycoumarin to

mesi tyl oxide 26 0 Two products were obtained from this reaction,

one of which, an acidic product, soemed to be the normal Michael

addition product, and the other, a comparatively low molting point

solid soluble in heptane, had an analysis which showed it to be a
condensation product of 4-hydroxycoumarin and mesityl oxidso
The structures of these two products were re-investigated, both

by spectroscopy on the compounds themselves, and in the case of

the heptane soluble compound, spectroscopy of the reduction

product as wello

HYdrogen bonding and loRa spectrao
In moleculos containing hydroxyl groups hydrogen bonded to

carbonyl groups, two features may be observed in the ioro spectra

attributable to the hydrogen bondang , The frequency of the
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O-H stretch will be lower and the absorption band broader, and

the stretching frequency of the carbonyl group to which the
hydroxyl proton is hydro&en bonded will also be reduced. These
oints are well illustrated in the ioro spectra of the carboxylic

acid dimers, which have been extensively studied by Bratoz, Hadzi
27 28and Sheppard. Farmer has made a thorough study of the ior.

s ectra of substituted deuterated and non-deuterated

4-hydroxycoumarin derivatives, from rhich he concludes that al1

4-hydroxycoumarin derivatives are predominate~ in the coumarin
formo The results in this thesis are in agreement with his

findings (see Discussion Seotion) Analysis of i.r. s eotra are

made with reference to the work by Bellamy.29

One of the first a plications of n.m.r. spectroscopy was to

hydrocen bondin , in a stu~ of'the hydroxyl proton chemioal

shifts of alcohols(30-32)and phenols 33 in carbon tetrachloride

solution. The results showed that the greater the concentration
of alcohol or phenol the lower the chemioal shifts of the hydroxyl

The amount of hydro en bonding will increase with th
concentration, and will result in a sharing of the electron of

the hydrogen-bonded proton with another oxy en atom (apart from

the one to which it is bonded already), with a resulting

deshieldina of the nucleuso Analysis of nom.ro spectra are based

on the works by Roberts;34 and Pople, ~eider and Bernstein.35
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Tautomerism and nom oro spectra.

When a compound is a liquid, or dissolves in a suitable solvent to

ive an equilibrium mixture of two or more tautomers, nom.ro
s ectroscopy may provide an excellent method for studyin~ this
tautomerism. The most widely studied compound of this type has
been acetylacetoneo In the spectrum of pure liquid acetylacetone

it is possible to distinguish between peaks of both enol and keto

tautomers, and obtain an estimation of the ercenta es of these

forms present at equilibrium from the inte~rated areas of the eake.
The chemical shift of the hydro en bonded hydroxyl proton of the

enol form (-306t) was at the time the lowest recorded roton

chemical shift.36

The 8~ectrum of dimedone has een recorded by Cortes,37

and the s ectrum of 1,3 cyolohexanedione extensively studied by

Cyr and Reeveso38 From a stuQy of the nomoro spectrum f

1,3 cyclohexanedione over a ra e of'concentrations in chloroform

solution Cyr and Reeves have formulated an equilibrium for this

compound between 3 sp~e'cies,the keto form, the enol form and an
enol dimero (Unlike acetylacetone, this compound is sterical~
unable to form intramolecular hydrogen bonds). They found that

as the concentration of 1,3 cycloh~anedione increased, the

chemical shift of the hydroxyl proton deoreased, this decrease

being a measure of the increase in dimer concentration. By

extrapolating the ~raph of the reciprocal of the square root

of the 1,3 cyclohexanedione concentration against the chemical
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shift of the hydroxyl proton (which was found empirically to give
a straight line) they determined the chemical sbift of the
hydroxyl proton at infinite concentrationo The value they
obtained (-20321') was presumed to be the chemical shift of the
hydroxyl protons of the dimer 0

study of the noID.ro spectrum of
this compound at different temperatures has also allowed these
workers to estimate the equilibrium constants for the
interconversion of the species present in chloroform solutiono
other studies on the Tautomerism of Dimedonoo
The ior. and UoVo spectra of dimedone and m~ of its iimple
derivatives (such as enol ethers) have been studied by numerous
authors.39-42 Their researches have shown that in hydroxylic
solvents, such as water and alcohol, dimedone exists as almost

10 0 enol. In less polar solvents (such as dioxan and
chloroform) appreciablo amounts of keto form are in equilibrium

with the enol. In chloroform solution, for example, a doublot
-1of bands in the i.ro at 1710 em is attributable to the carbonyl

-1eroups of the keto form, and a broad band at 1600 cm is
attributable to the carbonyl group and double bond of the enol forma

Bellamy43 has investigated the ioro spectrum of
formaldehyde dimethone, and deduces an intramolecular~ hydrogen
bonded structure analogous to the one propounded in the
Discussion Section on the basis of nomor. spectrao
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Hydrogen bonding and pKa values 0

a) onobasic cidso

The presence of a hydrogen bond between a dissociating proton
and another group in a molecule has been put ~orward on several
occasions to explain anomalously high pKa ve.Lues, Sprengling44

has accurately determined the pKa values of 0- m- and p-
substituted hydroxymethyl phenols, and has shown that the pKa
values o~ the 0- substituted derivatives are some 0012 pKa units
higher than would be expected on the grounds of inductive effectso
Amoldl~5 has studied the pICavalues of various 2- substituted
1- naphthols, as compared with tho comparable 4- substituted
compounds, and concludes thatchelation results in acid weakening
in the case of 2- substitutiono The difficulty involved in this
kind of stuqy is that changing a parameter to include possible
hydrogen bonding necessitates ohange in other p~ameters (such as
inductive, mesomeric and steric effects, and solvation energies
of ions) and it is usually extremely difficult to differentiate
between the effectso The effects produced by hydrogen bonding
in mono-anions, described below, are more clearly defined, however.
b) Dibasic cids.
The ratio of the first to the second dissociation constant of a
symmetrical dicarboxylic acid is always greater than 4
(the statistical factor) and approaches 4 as the distance between
the carboxyl groups inc eases 46 e.go in the acids (CH2)n(COOH)2'
where n=1 the ratio of the dissociation constants (r) = 800;
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n = 2, r = 25; n = 4., r = 13i n = 7, r = 11.47

Kirkwood and Westheimer 48,49 have developed an electrostatic
theory to give pKa1 to pKa2 ratios of these acids in terms of
the interprotonic distance, and an effective dielectrio constant

which is a function of the size and shape of the moleculeo

Eberson50 has concluded from calculations on some simple short

chain dicarboxylic acids (including succinic acids and maleic acid)

that the Kirkwood and 1estheimer treatment alone is insufficient

to explain the high ratios of the first and second dissociation

constants, but that to ether with the assumption of an

intramolecularly hydrogen bonded mono-anion the theory is in

satisfactory a~reement with experimental data.

The pKa values of maleic acid are 2022 and 8082, as

compared with fumario acid (4037 and 6.19) 0 From Shahat's

crystallographic work51 it has been shown that the O-H-O distance

in crystalline maleic acid is rather short, 2.46Aoo This

distance is fairly close to that which would be expected for a
52symmetrical hydro~en bond, but nevertheless the bond distances

in the two carboxyl groups show quite conclusively that the
hydrogen atom is more firmly associated with one than the other.

Orge153 concludes from the i.ro spectra of maleic acid and its

mono-potassium salt that hydrogen bondinG in the mono-anion is

probably symmetricalo A parallel conclusion is reached for

phthalic acid and its mono-aniono Similar work by Eberson54

on the ior. spectra of some substituted succinic acids has shown

that hydrogen bonding occurs both in the neutral molecule and in
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tho mono-aniono Further evidence ~or such a structure is found

on comparin~ the strengths of the half esters of dicarboxylic acids

with the strengths of the corresponding ~ree acidso There is
considerable evidence that the polar effect of a carbalkoxy group
must be very similar to that o~ a carboxyl grou .55 Consequently,

in the absence of speci~ic interactions between the two funcnoZhal

groups, it would be expected that the ratio of the first ionization

constants of the dicarboxylic acid to that for the monoester of

that acid should have the value 2, corresponding to the statistical

value for the dicarboxylic aCido46 A number of acids show this

behaviour, e. 0 fumaric acid (200), succinic acid (2012), and
malonic acid (306)0 Other aoids for which hydrogen bonding has
been proposed exhibit considerably larger ratios, maleic acid (1006),
tetramethyl succinic acid (27), and diethyl malonic acid (32)0

Hydro en bonding of carboxylate anions to the protons of

phenolic hydroxyl groups in substituted benzoic acids may also

have a dramatic effect on Ka valueso The PKa values of salicylic

acid are 300 and 1303,56 the related 2,6-dihydroxybenzoic acid is So

stronger aoid (pKa 2030) com arable to phosphoric acid057 The

hydrogen bonded mono-anions of theseo /..0-
" C:' """

Io

acids are shown in dia ram VII
.0 ..-,~:O..

11·' .........c..' H
I

o

\1\ \
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Dicoumarols in Oxidative PhosphoEYlationo

The first investigation on this class of compounds was conducted
by Martius and NitZ-Litzow,58,59 who were interested in the

influence of vitamin K in oxidative phosphorylation, and knew of
the antiv'tamin K properties of the coumarin anticoagulantso

They found significant reductions in the P:O ratios of respirin«

rat liver mitochondria in the presence of small quantities of the

anticoagulants (in the order of 10-5 molar)o A rou h

correspondence was found between the knowneffectiveness of the

anticoagulant, and its activity in terms of tho concentration

necessary to have a 8i~ificant effect on the P:O ratioso

Dicoumarol (the most active anticoa ulant) was ef ective at the
-6lowest concentration; at a concentration of 5 x 10 molar the

P:O ratio was found to be 0089, as com ared with a control

experiment of 2036 (6 Q uncou lina on this basis)o The inhibitory
effect of dicoumarols was also noted, in terms of a alowini down of

the respiration rate, but no quantitative assessment was made of

this pr-operty , No mechanism of action was put forward by these

worker-a,

Mechanism of Uncouplingo
Although the actual mechanism of cou ling of mitochondrial electron

transport to the energy conservation reactions leading to the

synthesis of ATP is not known, a generally aocepted conce t

is available in terms of chemical reactionso It is generally

believed that durin the oxidation and reduction of a respiratory
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chain carrier (A), the carrier interacts with an unknow component
(I) to form a high energy compound (A"'l) 0 This high enerlY
compound reacts, by an unknown sequence of reaction, with ADP and
P. to form ATPo This sequence may be represented by the
1-

equations 1-3 below, where B is the electron carrier which accepts
electrons from 2· The uncoupler (U) is then sup osed to aot
by breaking down -I as in equation 4, by bindin with I
(reversibly, as in equation 5)0

AH2 + B + I = --I + BH2 (1)

A "'I + P. = + I......P (2)
1-

I-P + ADP = I + TP (3)

A--l + U A + U-l (4)=
U-I = U+ I (5)

Evidence for this type of sequence may be found in the work of
Chance 60,61, who studied the state of oxidation of respiratory
chain carriers spectro hotometrically in the presence of ADP and
uncouplerso
Mechanism of Inhibitiono
Althou,h it has been known for some time that uncouplers of
oxidative phosphorylation (including dicoumarol) inhibit
mitochondrial respiration, little attention has been paid to this
process until recently (within the last two years)o This is at
least partly attributable to the complexity of the uncoupler
ei'fect on mitochondrial respiration and other mitochondrial enzyme
activities, such as ATPase. Hemker,62 working on nitrophenols,
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has proposed that in hi~h concentrations the uncou lers bind I

(equation 5) to such an extent that it is no longer available

for reaction in equation 10 However, it has been shown that

the inhibitory effect of uncouplers may be relieved by greater

substrate concentration,63 which ilson has shown to be opposed

to the above mechanismo
64 (ccording to this mechanism, at

low substrate concentrations in state 3, where ADP and P. are in1

excess, there would be a lar~er steady-state concentration of I

and the addition of uncou ler would have little effect on the

respirationo At hi,h substrate concentrations the greater

electron flux would increase 2 conoentration, and the bindin,

of I by the uncoupler would have a more pronounced effeoto This

is contrary to the above observation)o Wilson64 has studied the

effect of succinate concentrations on the inhi ition of suocinate
oxidation at a fixed concentration of uncoupler, and shown from

Lineweaver-Burk plots that com etitive inhibition occurs between

substrate and uncoupler, probably at the primary dehydroienasc

The Lineweaver~Burk plots, though strai ht lines, do not

have the correct slope for simple competitive inhibition, and

Wilson concludes that the competitive inhibition is of a more

complex nature, possibly occurrin at more than one siteo

support for the proposed interaction of uncoupler and
dehydrogenase is found in the work of Jurtshuk,65 who observed

an inhibition of -hydroxybutyric dehydrogenase by dicoumarol
and 2,4-dinitrophenolo
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ilson has compared the uncouplin! and inhibiting

strengths of a series of uncou lers in terms of concentration,
and has found that there is no relationship between the two
effects on this basiso

66 . t dVan Dam has invest1ga e the effect of dicoumarol on

the respiration of rat liver mitochondria, both in the presence

and absence of P (State 3 and state 4 respiration respective~)o
The response to dicoumarol in state 4 is analogous to the type of

response found in this work, the rate of respiration passes

through a maximum at 5 x 10-6 molar dicoumarol, and the concentration

required for half inhibition is 1.5 x 10-5 molaro Van Dam studies

the state of oxidation of the respiratory chain carriers in State 3,
and finds that in the presence of sufficient dicoumarol to cause

inhibition, complete oxidation of the chain has occurredo This

is further evidence for the proposed influence of the uncou ler
at the level of the interaction of the substrate with the primary

dehydro~enaseo Any binding that occurs is reversible, as has been
shown by the addition of bovine serum albumin to inhibited

mitochondria, which leeches out the dicoumarol by binding on to

the albumin and restores the respiratory control of the
mitochondriao67

In this work a whole range of coumarin derivatives was

taken, and their activity studied at a fixed sUbstrate concentration,
in order to obtain detailed information on reactivity
relationships among this class of uncouplers.
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Hydrogen Bonding and pectrao
Chemical Shifts of Hydroxyl Protonso

s mentioned in tho introduction, the chemical shift of protons
has been used as a criterion of whether or not they are hydro~en
bondedo A simple comparison between the chemical shift of a
hydrogen bonded and a non hydrogen bonded roton is found on
comparison of the nom.r. spectra of ~ and -vanillin. The
chemical shift of the hydroxyl proton in ~-vanillin is -Oo77T,
and does not vary on dilution of the solutiono The chemical
shift of the hydroxyl proton in -vanillin is 2078 r in a 1.3 molar
solution, and changes to 3.45T on ten-fold dilution. In the case
of the 2-vanillin, the hydro en bonding is intramolecular, between
the proton of the hydroxyl erou , and the ad'acent carbonyl group,
and consequently dilution does not fect the d gree of hydrOGen
bcndd.ng , In the caso of -vanillin, on the other hand, th
hydro en bonding is interm lecular, and dilution reduces the
amount of hydrogen bondine as seen by an increase in the chemical
shift of the proton of the hydroxyl groupo Other carbonyl
oompounds of this sort in which intramol cular hydrogen bonds are
formed as 6-membered rings are as follows, methyl sali late
('OH' - 1~24), salicylaldehyde (tOH' - 1.19), methyl
acetyl-5-bromosalicylate (lOR' ....0.41), 1-formyl-2-hydroxynapathalene
(~OH' - 3020). 2, 3-dihydroxybenzaldehyde has both an
intramoleoularly hydrogen bonded proton (T, ....0.3) and a hydroxyl
proton for which no such bondin is possible (~, 306)0
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Two compounds o£ the acetylacetone type which have been
prepared are 3-£ormyl-4-hydroxycoumarin (where R=H in diagram VIII)

v ( ,
and 3-acetyl-4-hydro~coumarin, (where R = CH30) The chemical
shifts of the hydroxyl protons are - 2000 and - 8029rrespectivelyo
The difference in chemical shifts m~ be explained, in part at
least, by tho +1 effect of the met~l group inc easing the n sativa
charge of the acetyl carbonyl grou (and hence the strength of the
hydrogen bond) in the 3-acetyl as compared with the 3- or yl-4-
hydroxycoumarin. Similar structures and low chemical shifts
have been oncountered in 2-formyldimedone (LOH' - 5.60) and
dehydracetic acid (~OH' - 7.01)0 The n.m.ro spectra of
tricarbonyl compounds of this type are disoussed in detail by
M . d"l 68ere~ an 1 sson 0

Ef'i ect of'hydrogen bonding on i or. spectra.

The ef'f'ectof'hydrogen bonding discussed most fully here is its
influence on the i.ro frequencies of carbonyl groups. The
ioro frequency of the carbonyl group of £-vanillin in a molar

6 -1solution in chloroform is 1 58 em ,that of' -vanillin under the
-1 -1sarnocondition is 1686 cm ,some 28 cm highero Similar changes

in frequency have been observed for many of the compounds discussed
hereo The influence of hydrogen bonding on the O-H stretching
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frcquency has not been found of reat value in structural

elucidation, (accordingly only frequencies of strong b ds in the
area associated with carbonyl stretching frequencies,

1550 - 1800 cm-1, have been recorded in detail in the experimental

section) Q Bis-derivatives (e eg e dieoumarols, dimethones, etc,,)

all show a medium band at oao 3100 cm-i, vdth subsidiary m~ma

at ca. 2760 and 2630 cm-i, indioative of strong hydrogen bondingo27

The simple 3-substituted 4-hydroxyooumarins also show thcse bando,

but under conditions in which their i.r. spectra can bo recorded

(ioeo in the solid state, as a Nujol mull, or in dioxan or ethanol

solution) they may form strong intermolecular hydro5en bonds,

either with themselves or with the solvent"

N omor. Spectra of Dimedone Derivatives.

a) Dime done
The ioro spectrum of dimedone in chloroform shows the

presence of both enol and keto tautomers, though there is no way

of measuring accurately the percentaGe of these forms present in

the solution .. The nom oro spectrum of a solution of dimedone in

chloroform is, however~ quite simplc, (see experimental section)

and allows an estimate of the percentages of the tautomers by

comparison of the areas of the signals. The most suitable
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signals for this purpose were found to be those of the ~ and
6-methylene groups of the enol and keto fermso (AlthouBh the
~ and 6-methylene groups of the enol form are formally dif 'e ent,
one being adjacent to a carbonyl group, and the other being
adjacent to an enol hydroxyl erou , the chemical shifts of the
4- and 6-methylene protons are identicalo This is on account
of the rapid sxchange , which may be written dia ramatically as

belowo (IX)

b
3nSOH

l?H3 I
+ C '1

'3

o
(X

Several values of the percentages of keto and enol present aro
given in the experimental sectiono It is seen that oven in a

saturated solution in chloroform there is a predominance of
the keto f'orm,

Thc changes in the nomor. spectrum of dimedone in
deuterochloroform solution over a range of concentrations may
(as in Cyr and Reeves work with 1p3 cyclohexanedione) be
inter reted in terms of an equilibrium between keto, enol and

enol dimerso It was found empirically that a straight line
plot was obtained if the reciprocal of the concentration was
plotted against the chemical shift of the hydroxyl proton (diagram XL)



- ~ -
The value o~ the chemical sh~t at infinite concentration is
-2.24;, presumably the chemical shift of the protons of the enol

dimer. This value compares with the value of -1031T ~or the

hydroxyl protons of formaldehyde dimethone given belowo

(Cyr and Reeves value for the dimer of 1~3 cyclohexanedione (-20329

compares with the value of -1064tfound in this work for the

chemical sh~ts of the hydroxyl protons of 2,2'-methylene-bis-1,3-

cyclohexanedione.) The analysis o~ the n.m.ro spectrum of

dime done by the Mexican workers is at variance with the analysis

presented hereo They ascribe the signal of the 4- and 6-methYleno

protons of the enol form to the hydroxyl proton, and do not find

any signal corresponding with the one found here for the hydroxyl

protono How they arrived at their conclusions is not olearo

Nomoro spectrum of dimedone in othersolventso
The solvents used for this investigation were not deuteratedo

In consequence it was impossible to observe the signals of the
methylene groups of the enol and keto forms of dimedone, and

estimations of the percentage of tautomers were made by

integrations of the signals of the 5-methyl groups o~ the enol

and keto formso The results showed that in acetonitrile the

percentage o~ enol is a little lower than at the same concentration

in chloro~orm, and in dioxan very much higher. According to

studies on the ioro spectrUm of dimedone in dioxan69, dimedone
forms good hydrogen bonds with dioxan, a result that is borne out

by this investigationo In sodium deuteroxide solution it is
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possible to follow the slow exchange of the vinyl proton, by

integration of the spectrum after a known timeo The exchange was
K 0 -4-1found to be first order, 30 = 1,,1.5x 10 sec •

Nomoro spectra of aimethoneso

The spectra of formaldehyde dime thane shows that in this compound

both dimedone rings are in the enol f'orm , There is a unique

chemical shift for the 4- and 6-methylene protons at 7074L ,
oorresponding with the 7.70, value for the 4- and 6-methylene

groups of dime done enolo The hydroxyl protons have a chemical

shift of -1.31T, which does not vary as the solution is dilutedo

The conclusion drawn from this is that formaldehyde dimethone

exists in chloroform solution as the intramolecularly hydrogen

bonded structure in diagram X

x
The substitution of one of the protons in the methylene bridge

by a phenyl group is seen to affect the hydroxyl proton chemical

shifts as now two signals are found in this area, one at -1076"( ,

and the other at -0057, .. substitution of one of the methylene

protons by a methyl group has an even more dramatic effect, the

signals being found at -2076 l' and a very broad signal centred
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roughly on 004 r 0
The effect of the substituent is presumably

to interfere sterically with the hydrogen bonding, and the

symmetry of the moleculeo

Nqm.ro spectra of dimethone anhydrides.
In dimethone anhydrides the chemical shifts of the protons of

the methylene groups corresponding with the 4- and 6-methylene

groups of dimedone are no longer identicalo In formaldehyde

.dimethone anhydride, (1,8 (2H, 5H,)-dione-3,4,6,7-tetrahydro-3,3,6,6-

tetramethylxanthen) see diagram XI), the 4- and 5-methylene protons

have a chemical shift of 7.801', and the 2- and 7-methylene protons

have a chemical shift of 7.66~ • Similar chemical shifts are

found in acetaldehyde and cinnamaldehyde dimethone anhydrides.

XI
Substitution of one of the 9-methylene protons with a cinnamyl
residue is accompanied by a splitting of the signals of the 3- and

6-methyl groups in a similar manner to that described for
2-formylaimedone dimethone below. A similar splitting is not

seen in acetaldehyde dimethone anhydrideo Presumably the

9-methyl group is too small to give any resolvable splitting.
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N~mor~ SEectra of more complex dimedone derivatives.

a) 2-formyldimedone dimethone.

The dimethone of 2-formyldimedone consists of 3 dimedone residues

linked by the 2-position to a central carbon atom, with loss

of a molecule of water between 2 of the residues, as in diagram XII

II

o

The analysis of the chemical shifts of the methylene protons was

based upon the integrated areas of the peaks (as there are

2 residues of one type and one of another)o The analysis of the

methyl proton chemical shifts is based on the noIDoro spectrum of

salicylaldehyde dimethone given belowo

A, 9001 (OH);

E, 7072 (lJI);

B, C, 8099 (6H) and 8088 (6H); D, 7097 (2H);

F, 7064 (2H); G, 7052 (4H); I, 5.58 (1H);

J, -0003 (1H) 0
The spectrum shows that the methyl groups of the

octahydroxanthen moiety appear as a doublet. They are held in

a rigid conformation, and the presence of the third dime done

residue is sufficient to render them non equivalento The hydroxyl

proton has a negative chemical shift, suggestive of a small amount
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o£ hydrogen bonding. Molecular models of this type of compound
suggest that the steric requirements of hydrogen bonding are not

met as well as with the simple dimethones with two hydrogen bonds.

Salicylaldehyde dimethone (diagram XIII)
G-, .~ K J). . CHC~OOX), 3 AI C~3

# c.~ <, C 1=
l

o

:r

X III

A, 9024 (6H);· B,C, 9020 (3H), 9011 (3H); D, 8005 (2H)j

E, F,. 7069 (2H), 7061 (211); G, 7049 (2H); I, 5033 (1H),
J, 2.99 (3H, tight multiplet); K, -0042 (1H). (The individual
identity o£ E and F is in doubt, due to the proximity of these

peaks and their identical size)o
b) Dimedone addition product of 3-~-hydroxybenzylidene-2,

4-diketo-3, 4...dihydro-6-methyl-0l-pyrone (R = H in diagram XIV)
E H K H G

C~O' '0 ~ Cl'\3 C.

o

R T

X\V
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A, B, 8094 (3H), 8087 (3H)j C, 7094 (3H); D, 7074 (2H);

E, 7.67 (2H); F, 5006 (1H); ~,4.14 (1H); J, 2.96 (4H, tight
multiplet); K, -0.42 (1H). (The spectrum of the dimedone

addition product where R = OCH3 may be seen to correspond extremely

closely ,nth this spectrum - see Experimental Section).

The ior. and uov. spectra of Dimedone Derivatives.

The absorptions in the area of the i.r. associated with carbonyl

stretching frequencies is characterised for simple dimethones
-1by a broad band centred on 1600 cm (Spectrum in chloroform or

as Nujol mull). -1The lack of absorption at 1700 cm indicates

that these compounds exist as almost 10aPo enol, in keeping

with the hydrogen bonded structure above. The ior. spectra
-1of dimethone anhydrides show bands at 1660 and 1630 cm ; the

former may be attributed to the carbonyl groups (which are
unsaturated) and the latter to the double bonds. Dimethone

anhydrides have also distinctive peaks in the uov., at cao 233

and 292 mop. These characteristic peaks may be seen to have

an influence on the absorption of other more complex compounds

containing this grouping (2-formyldimedone dimethone, for

example).

The influence of hydrogen bonding may be seen on the
iQr. speotra of more complex dimethones. Salicylaldehyde

-1dimethone (diagram xrJ1 shows a band at 1648 om for the
hydrogen bonded carbonyl group~ and 2-formyldimedone dimethone

shows a similar band (at 1646 cm-1) for the hydrogen bonded
carbonyl group of the ectahydroxanthen residueo



- 32 --

structure of dicouroarol and other 4 hydroxycoumarin derivatives.

Structure of 4-hydroxycoumarin

The data collected here is entirely consistent with the

predominance of the 4-hydr~coumarin structure for all simple
3- substituted 4-hydroxycoumarins, both in solution and the solid

stateo Simple coumarin derivatives have distinctive uov. spectra,

with peaks at 303 - 314 m~, and 279 - 285 mp, and another peak or
shoulder at 269 - 276 mpo (See diagram XVI) They show this type

01' spectrum whether they are Q-alkylated or not. Unfortunately

4-hydroxycoumarin is extremely insoluble in chloroform, and no

assessment of the hydrogen bonding of this compound was possible

~ was possible in the case of dimedoneo

The structure of dicoumarolso
Knobloch's dichromone structure of dicouroarol is dismissed on the

following grounds:-
a) The frequency attributable to the chromone carbonyl group

in the i.r. spectra in chloroform solution of 2-methoxychromone,
3-methyl-2-methoxychromone, and the 2,2'-dimethyl ether of

dicournarol ...1is ca. 1630 cm Q (That of chromone itself is a little
1 ...11647 cm-)o This value is 30 cm lower thanhigher, at

~max C ; 0 dicoumarol, and any hydrogen bonding, either inter- or
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intramolecular, of the chromone carbonyl group would decrease,

rather than increase, the carbonyl frequency.

b) If dicoumarol were a dihydroxychromone, then on account

of the greater acidity of hydroxychromones as compared with

hydroxycoumarins, diazomethane would react with dicoumarol to

give largely the 2,2'-dimethyl ether. It has been found that

dicoumarol reacts to give mostly the 4, 4'-dimethyl ether. Only

a small quantity of the 2,2'-dimethyl ether could be obtained on

chromatographic separation of the products of this reaction.
c) The simple non hydrogen bonded chromone structure would

presumably have a u.v, spectrum like that of 2-methoxychromoneo

The uov. spectrum of dicoumarol is unlike that of 2-methoxychromone

or 4-hydroxycoumarin (se e diagram XVI) This fact also precludes

the sihmple dicoumarin structure drawn by Link (diagram II) •

d) Knobloch makes no attempt. to explain why the chromone
structure is energetically more favourable for dicoumarols than

it is for simple 4-hydroxycoumarinso
The conclusion reached is that dicoumarol is a dicoumarin

structure with hydrogen bonds between the hydroxyl groups of one

4-hydroxycoumarin residue and the carbonyl groups of the other,
as in diagram r.;

o
I_I. ~C ...
"·0' "'Q.

XV
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This model will explain the above points, and is supported by
the following factso

a) The spectrum of dicoumarol is essentially the same

whether taken with dicoumarol in the solid state (as Nujol mull

or KCl disc) or in solution (chloroform or dioxan)o

4-hydroxycoumarin has a :~maxC = 0 which varies from solvent to

solvento (~max C = 0 in dioxan, 1730; ~max C = O:chloroform

containing ~fo ethanol, 1695; max C = 0 as Nujol mull, 1700.)

b) 4-hydroxycoumarin is insoluble in any solvent with which

it cannot form strong intermolecular hydrogen bonds, but dicoumarol

is soluble in chloroform, and higher homologues of dicoumarol are

appreciably soluble in carbon tetrachloride.

c) The n.moro spectra of dicoumarols show protons with low
chemical shifts (7 dicoumarol, - 1.70)0OH In a similar way to

that described for dimethones, substitution of one of the protons

of the methylene group by a larger unit may interfere with the
hydrogen bondingo In this case however, the planar phenyl

group does not cause the chemical shifts of the two hydroxyl

protons to be different from one another, but the smaller

spherical methyl group does interfere with the hydrogen bonding

in this wayo SUbstitution in the para-position of the phenyl
group by the fairly b~ nitro-group, does cause a small

modification of the hydrogen bonding as seen in the nom.ro spectra.

Another feature of the nsm sr-, spectra of dicoumarols, is that the

5-protons of the 4-hydroxycoumarin residues have a lower chemical

shift than any of the other aromatic protons. This may be
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attributed to the increase in the electron density (or double bond

character) of the C - 0 bond of the 4-hydroxyl group, caused by

the hydrogen bondd.ng s This feature is seen in the n.m.r. spectra

of chromones, where there is a carbonyl group d- to the aromatic

ring. As would be expected none of the 4-methyl ethers of

coumarins show this property. It seems that all 4-hydroxycoumarin

residues in compounds where there is hydrogen bonding of the

hydroxyl group intramolecularly to the carbonyl group of another

residue show this feature (see' later for other examples) 0

a) The low pKa value of dicoumarols as compared with

4-hydroxycoumarin is not explained in terms of the more aoidic

hydroxychromone groups, but in terms of the stability of the
mono-anion. See later for discussion of these values.

e) A molecular model of this structure shows the sterio

feasibility of the hydrogen bonds.

(Note: Chmielewska failed to find a "chromone band" in the
i.r. spectrum of the 2,4.'-dimethyl ether of dicouroarol because

she expected a band at 1659, by analogy with the i.r. spectrum

of 2-methoxychromone as a Nujol mullo The 2,4'-dimethyl ether,

however, resembles 3-methyl-2-methoxychromone in that the
1 appears nt 1630 cm-1ior. frequency of the chromone carbony group ~

either in chloroform solution or as a Nujol mUll)o

Other features of the i.r. spectra of 4.hydro;ycoumarin derivatives.
,

As well as the features discussed above, some other reproduc~ble

charaoteristics have been observed in these spectra. All compounds
-1containing 4-hydroxycoumarin residues show a band at ea. 1569 em 0
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However when the 4-hydroxycoumarin residue condenses with the
hydroxyl group of another residue, as in the case in dicoumarol

+ -1epoxide, there is always a band in the spectrum at 1610 _ 1 cm •

Both these bands are associated with the double bonds of the

benzene rings of the coumarin residueso

The ior. frequency of the carbonyl group of a coumarin
-1residue not involved in hydrogen bonding is greater than 1710 cm 0

When the residue is involved in hydrogen bonding, either through

the hy~oxyl group or the carbonyl group, the frequency is less
than 1700 cm-1o Accordingly, it can be assumed that anY

intramolecular hydrogen bonding in 2-formyldimedone dicoumarol

occurs between the hydroxyl group of the 4-hydroxycoumarin residue

and the carbonyl group of the dimethone anhydride residue as shown

in diagram XVII

o C~O

o

CH3 (M3

XV, \
Ioro frequencies: 1728, 16690

Similar analyses may be made of the carbonyl stretching frequencies

of other coumarin derivatives prepared, the spectra of which are

given in the experimental sectiono
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Structure of other dicoumarols and related compounds

p-dimethylaminobenzaldehyde dicoumarol
This compound is unusual in being highly coloured, with a band

in the uov. at 497 mp. (~, 7000). Recrystallisation and
chromatography show the colour not to be due to any highly

coloured impurity. On addition of' either alkali or acid

to a solution of the compound in ethanol, the colour disappears.

The i.r. spectrum of a saturated solution of the compound in

chloroform shows that the absorptions are in line with those of

other dicoumarols, but the solubility in chloroform is insufficient

to allow an n.mor. spectrum to be taken in this solvento

The corresponding dimethone (a pale orange compound) has been

pnepared, and its n.m.r. spectrum does not indicate any divergence

in structure from that of any other dimethone preparedo

(The chemical shift of the hydroxyl protons are similar to those

observed for benzaldehyde dimethone)o In a neutral alcohol

solution of the dicoumarol, or in the solid state, it seems likely
that some protonation of the li-dimethyl group occurs by the proton

of one of the 4-hydroxycoumarin residues, and the colour may be

due to some type of charge transfer complex between ionic forms

present. The addition of acid or alkali will disturb the

proportion of any charged forms present, the former by protonation

of the N-dimethyl group, and the latter by removal of the hydroxyl

protons of the 4-hydroxycoumarin residueso



Pelantano

In this compound there is the possibility of hydrogen bonding
between the hydroxyl groups of the 4-hydroxycoumarin residues,

and the carbonyl of the carbethoxy group. However, there is no

evidence in the spectra of pelantan that this type of bonding occurso

Warfarino
The UoVo spectrum of this compound shows it to be essentially

a simple coumarin derivative • The Umax 0=0 (ioro spectrum as
....1Nujol mull) is 1688 cm. , and on account of this rather low value

for the stretching frequency of the carbo~l group of th~-aoetonyl

residue" the following hydrogen bonded structure seems likely.

(Diagram XVIII)

0........
H··

X\Jll\

The pKa value of warfarin (see later) provides further evidence

for this postulateo
4-hydrOxy-6-met~1~-pyrone derivativeso

The spectra of these derivatives are generally speaking rather

less .complex than the spectra of their 4-hydroxycoumarin analogueso

The UoVo spectra of 4-hydroxy-6-methyl~~pyrone and the bis
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derivatives studied all show a single maximum above 230 mp.
The ior. spectrum of'the simple ~-pyrone shows a >3max C=O of'

-11700 cm , and the i.r. spectra of'the bis-derivatives show
a "'max C=O of 1680 em-10 This relationship is similar to that
encountered with 4-hydroxycoumarin and dicoumarols. Unfortunately,
as has been found for 4-hydroxycoumarin, the ~-pyrone is highly

insoluble in chl..c§Dof'orm,and so again no examination of hydrogen

bonding in this solvent is possible. The n.moro spectra of the
bis~-pyrones shows bonding similar to that observed in dicoumarols,

with hydroxyl proton chemical shifts of around -1~o In the case
of'these" derivatives the substitution of a methyl group for a
proton of the methylene bridge of the f'ormaldehyde bis~-pyrone

does not interfere with the hydrogen bonding suff'iciently to make
the hydrogen bonds non-identical (as evidenced by the n.m.ro spectra)o

The following table shows the relationship between the type of bis-

derivative, the substituent on the bridge, and tho chemical shif't

of the hydroxyl protonso
Group Dimethone Dicoumarol Bis-pyrone

H -1031 -1.70 -0080

C6H5 -1076, -0057 -1043 -0.91
CH3 -2074, -0040 -2.24, -1 .44- -1.22

Hydrogen bonding does not seem to be as effective in bis-pyrones
as in dicoumarols or dimethones (using the criterion of negative

chemical shift as a guide to the strength of the bonding)o
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This is reflected in the vmax C=O for bis-pyrones being 20 cm-1

higher than the \)max C=O for df.coumar-oLs , The aromatic ring in
4-hydroxycoumarins evidently causes some steric restraint on the

~-pyrone ring which leads to more efficient hydrogen bonding in

dicoumarols as compared with bis-pyrones.

Other dicoumarol analogueso
The two 3,3'-methylene-bis-carbostyril derivatives prepared ~

show UoVo spectra very similar to dicoumarolo (The U.Vo spectrum

of 3,3'-met~lene-bis-4-hydroxycarbostyril is shown in diagram XVI).
The absorption in the carbonyl region of the i.r. is also very

similar to dicoumarol, again suggesting a dicoumarol type structure

for these compoundso The limited data on 3,3'-thio-bis-4-

hydroxycoumarin indicatives a similar structure for this compound.

The structure and Properties of the Mono-addition products of

£-hydro;ybenzaldehydes and 4-hydroxy-«-pyroneso

a) 2-£-hYdroxybenzylidene-2, 4,-diketochroman.
Link discussed the reaction of 4-hydroxycoumarin and salicylaldehyde

in terms of the reaction sequence below to give a product of structure
21 hea.(XIX() • His formulation was supported by analy~ data, and the

yellow colour of the compound, which he attributed to its highly

conjugated structure. (The hydrogen bond has been added after

study of the n.moro spectrum of'this compound ,T OH' - 10700

The drawing of the 8-membered ring is schematic, the benzylidene

phenyl group is not coplanar with the diketochroman residue)o
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Another mode of dehydration of the first formed addition

product xrx(C) would be to give structure XIX(B), which would
have the same elemental analysis as XIX(A)o However, structure

XIX(B), despite its more orthodox hydrogen bond as part of a

6-membered rather than an 8-membered ring, seems unlikely on

consideration of the spectrao The n.mor. spectrum shows a

proton with a chemical shift of 2000-":0 By analogy with the

nomoro spectra of other secondary carbinols, the secondary

carbinol proton of structure XIX(B) would be expected to show
a chemical shift of around 6T. The value of 2.00~ is,

however, in the region expected for the benzylidene proton of

structure XIX(A) 0
-1The i.r. spectrum shows a band at 1720 em ,

a. higher value than would be expected for the hydrogen bonded
carbonyl group in structure XIX(B), but not an unreasonable

value for the non-hydrogen bonded carbonyl group in structure XIX( )0

Acetyl derivativeo The above compound forms a stable mono-acetyl

derivative, the i.r. spectrum of which is rather informative,
-1 -1showing bands at 1763, 1719 and 1660 cm 0 The 1763 cm band

is typical of the carbonyl stretching frequency of an aromatic

acetoxy grouPd (see below)o

xx
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The diketochroman structure (XX) will explain this band and
the two other bands adequatelyo -1The band at 1719 cm

-1corresponds with the band at 1720 cm for the carbonyl group

of structure XIX(A). The 4-carbonyl group of structure XIX(A)

is hydrogen bonded, and does not show an absorption in the
-1ioro of above 1630 cm 0 However, the 4-carbonyl group in

the above structure (XX) is non-hydrogen bonded, and the
-1appearance of the new band at 1660 em on formation of the

acetyl compound is indicative of this changeo The nomoro

spectrum of the acetyl compound shows a single proton at 1072~,

corresponding with the benzylidene proton of structure XX, and

the UoVo spectrum does not show any influence of coumarin

chromaphoreso

Reduction On reduction, one mole of hydrogen is taken up to

give a coumarin derivative (as indicated by the U.Vo spectrum),

which forms in turn a diacetyl derivativeo The nomoro spectrum

of the diacetyl derivative shows there to be a methylene group,

and two met~l groups.
-1and 1750 cm •

The ior. spectrum shows bands at 1777

By analogy with 4-acetoxycoumarin, with a
-1 -1bQPd at 1790 om ,the 1777 cm bQnd could be due to the

carbonyl of a similar 4-acetoxy group, and by analogy with
-1methyl Q-phenacylsalicylate (1760 cm ), and E-acetoxybenzaldehyde

-1 -1dicoumarol epoxide (1760 cm ), the 1750 cm bQnd could be due

to the carbonyl group of an aromatic acetyl groupo The

evidence as presented here suggests the following reaction scheme,



"'44'"

(diagram XXI) starting from structure XIX( )

XXI

OH
01-1

The compound formed on reduction is 3-£-hydroxybenzyl-4~

hydro:xycoumarino

Conclusion The reactions of the mono- addition product of

4-hydroxycoumarin and salicylaldehyde, including its addition
reactions described below, show conc Lusd.veIy that it reacts

as if it were structure XIX(A)o The spectra of the molecule

itseJi' also strongly indicate structure XIX( ). A molecular

model of this compound shows the steric feasibility of the
hydrogen bond, the geomet~ of which is similar to that of the
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hydrogen bonds in dimethones and dicoumarols. It may be

noted that the alternative structure involving hydrogen bonding

with the 2-carbonyl group is ruled out, on the ground that if

this were the case then there would be no carbo~l with as

high f 1720 -1. th .a requency as cm ~n e ~oro The changes in

ioro spectrum involved on formation of the acetyl derivative

also preclude this structureo

Other diketochromanso

The reactions of the mono~addition product of £-vanillin and

4-hydroxycoumarin (addition of dimedone and acylation) indicate

a similar structure for this compoundo Spectroscopic changes

on formation of the acetyl. derivative are analogous to those

observed with the salicylaldehyde compoundo The 1-formyl-2-

hydroxynaphthalene-4-hydroxycoumarin mono-addition compound

was found to be inert to addition of dimedone or 4-hydroxycoumarin

in boiling ethanolo It did, however, form an acetyl compound

analogous to th~~described aboveo

4-hydroxy-6-methyl~-pyrone analogueso

1~~hydroxy-6-methyl-d-pyrone and salicylaldehyde undergo exactly

analogous reactions to those described above for 4-hydroxycoumarin

and salicylaldehydeo
On boiling under reflux a solution of equimolar

quantities of salicylaldehyde and 4-hydroxy-6-methyl~-pyrone

for a short time (about 10 minutes) and cooling, orange-yellow
crystals of the mono-addition compound separateo



spectrum of this compound shows the hydroxyl proton (7, - 5.69)
to be more tightly hydrogen bonded than the hydroxyl proton of

the 4-hydroxycoumarin analogue. The ior. spectrum shows a
-1band at 1728 em for the 4-carbonyl group. The structure

is XXII, where R=Ho

R
XX II

In contrast to the 4-hydroxycoumarin analogues, this compound

did not form an acetyl derivative under any of the conditions

tried (see Experimental Section)~ Presumably this is due to
steric hindrance by the 2-carbonyl group in the transition

state~ coupled with the loss of the energy of the hydrogen bond,

being a prohibitive factor in this case. The compound in

which R=OH in diagram XXII reacts readily with acetic anhydride

to give a mono-acetyl compound, which is clearly formed by

acylation of the 3-hydroxyl groupo (The n.moro spectrum shows

a hydrogen-bonded hydroxyl proton at -5.78~, and a signal for

the benzylidene proton at 1040'0 The UoVo spectrum is very

similar to those of the other compounds prepared of structure XXIlp

where R=H, OH, or OCH3.) The dimedone addition products of
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XXII, where R=H and OCH
3
, have been prepared, an analysis of' the

n.m.ro spectra of'these compounds is given on page 300
The reduction of XXII (R=H) f'ollows the same route as

that of'its 4-hydroxycoumarin analogue, one mole of'hydrogen
~V\Cj
i.e taken up to give 3-_£-hydroxybenzyl-4-hydroxy-6-methyl-ot-pyrone,

which forms a diacetyl derivativeo The nom or. spectrum of'the

diacetyl compound shows, inter alia, 3 methyl groups (though
owing to the proximity of these peaks and their equal areas it

is not possible to ascribe them individually) and a methylene

groupo
On boiling under reflux a solution of salicylaldehyde

and 4-hydroxy-6-methyl-<*-pyrone for a lone period (as described

in the Experimental Section) colourless crystals separatedo

The nomoro spectrum of this compound shows it to have an

analogous structure to the bis-derivative of 4-hydroxycoumarin

and salicylaldehydeQ (See Experimental Section).
The reaction of 4-hydroxycoumarin and mesityl oxideo

Link identified the two products of this reaction as an acidic

product (XXlIIA) and a heptane soluble product (XXIIIB)26

OH

CH3

CH3
CI1f}, 0'r~

Ci-I3

('YO
~C

1\o

A B

XX \ \ \
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A is formed by the Michael addition of a molecule of

4-hydroxycoumarin to the double bond, and B by condensation
of 4-hydroxycoumarin with the carbonyl group of mesityl oxideo
a) Acidic product 0 All the properties of this compound

studied, indicate that Link's structure is correcto The
...1i.ro spectrum shows a band at 1668 cm ,the highest wavelength

for a band in the carbonyl areaQ This corresponds with the

carbonyl group of the side chain, intramolecularly hydrogen

bonded with the hydroxyl group in a similar way to that

proposed for warfarino The U.Vo spectrum shows the compound

to be a coumarin derivativeo The compound is insoluble in

chloroform, but the n.mor. spectrum in trifluoro-acetic acid

corresponds with the compound the structure of which is shown

below 0 (XXIV) The methylene group appears as anAB patterno

The two 2'-methyl groups have chemical shifts of 8095 and

8.75~,and. the 4i-methyl group gives a signal at 8027;.

x x :V
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Link has shown that compounds of the general structure of

XXIII(A) form acetals when reacted with a solution of

hydrogen chloride in methano170o Presumably the compound

XXIII( ) has formed the hemi-acetal above on solution in

trifluoro-acetic acido

b) Heptane soluble producto The properties of this

compound show Linkvs structure to be incorrecto On the

basis of structure XXIII (B) there should be long range
coupling in the nomor. spectrum between the ~ -hydrogen atom

and the two ~-methyl groupso However, long range coupling

is observed between a proton and one methyl groupo The

chemical shift of the ~-methyl groups would be expected to

be around 708~, but it is rather higher than this at 805r 0

The iaro and u,v , spectra do not give a useful guide to the

structure, except to show that it is not a simple coumarino
On reduction of this compound with palladium on

charcoal only one mole of hydrogen is taken up, whereas a

compound of structure XXIII(B) would be expected to take up

2 moles. The product has the u,v , spectrum of a simple

coumarin derivativeo These facts, coupled with the

nomoro data above, has lead to the conclusion that Link's
formula XXIII(B) represents the first formed product, which
then undergoes an electrocyclic reaction to give structure XXV(A)
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013
Ii

o Ci-h

X
CH3 Ct-l'3

Reduction of XXV(A) then gives the coumarin Xl1r(B)

(3,4-(2' ,2',4'-trimethyl)-dihydropyranocoumarin)o The

n.moro spectrum of this derivative is analysed as follows:

8063 (3H), 8045 (3H), (2'-methyl groups); 8060 (3H, doublet,
The 3' methylene group

is part of an ~X system, where X is the 4' protono

HA' 70~ H_s~ 8035; J4'S' 1,309 c./seco JAX, 607 Co/seeo

JBX' 1000 co/seco X is a complex multiplet, (7015,) 0

Splittings are attributable to the 4'-methyl group as well

as the 2'-methylene groupo (The possibility that this

compound is 3,4-(2' ,4' ,4'-trimethyl)-dihydropyranocoumarin is

ruled out, on the ground that the 2'-proton in this structure

would have a chemical shift of around 67, as compared with
the 7015 r of'the 4' proton of the above structure 0 This in

turn precludes the possibility that the original 4-hydroxycoumarin-

mesityl oxide addition product is the 2~4~4'-trimethyl
pyranoccumard,n, rather than the 2'J 2~4'-trimethyl pyranocoumarin
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derivative) 0 Cyclisations of structures such as XXIII(B)

have been observed before. ~ -ionone, for example, is in
equilibrium with the~-pyran structure below71 (Diagram XXVI)

The equilibrium constant in ethylenetetrachloride solution
oat 18 has been found to be 40 In the case of the mesityl

oxide adduct above no indication of any equilibrium could be
found, either in its spectra or in its reactionso

Preparation and properties of IImixedll dicoumarolso

By a IImixed" dicoumarol is meant a compound containing a

4-hydroxycoumarin nucleus attached through the 3-position to

a carbon atom attached in turn to the 3-position of one of the

other enolic residues considered, (or in the case of dimedon0

attached to the 2-position)o Water may be lost between

either residue and the £-hydroxy group of an £-hydroxybenzaldehyde
residueo Three methods have been employed in the preparation

of these compoundso
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(1) The reaction o£ an aldehyde with a mixture o£

nucleophiles, followed by separation o£ the products.

(2) The addition of a suitable nucleophile to products

formed by the addition of one mole of 4-hydroxycoumarin to

one mole of an Q-hydroxybenzaldehyde (diketochromans).

(3) The use o£ 3ir,-piperidinomethyl-4-hydroxycoumarino

Route 1

An example of this route is the preparation o£ a series o£

compounds by Hellmann and Shroder,72 in which a substituted
1,3-cyclohexanedione derivative is linked through a methylene

bridge to the 3-position of 4-hydroxycoumarino The dimedone
compound was prepared via this route. (Diagram XXVII)

X",Y\\

This compound shows some interesting properties, which may be
summarised by saying that it is half a dicoumarol and half a
dimethoneo -1The ioro spectrum shows a band at 1660 em ,
typical of the 4-hydroxycoumarin residues in dd.coumar'oLs ,

The UoVo spectrum shows chromophores typical of both dicoumarol
and £ormaldehyde dimethoneo (The extinction coe£ficients at
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a eiven wavelength are approximately equal to the sum of half

the extinction co-efficients of dicoumarol and formaldehyde

dimethone at that wavelength). The n~m.ro spectrum shows the
following pointso

a) Two non-equivalent hydrogen bonded protons at -1010 and -20251.

b) The 5-proton of the 4-hydroxycoumarin residue again has a

lower chemical shift than the other 3 aromatic protons.

c) Unlike the simple dimethones, in which the 4- and

6-methylene groups show a unique chemical shift~}there are two

separate signals for the methylene groups. Presumably, as the

two tautomeric forms of the 4-hydroxycoumarin (the coumarin and

the chromone) are non equivalent, a certain amount of "bond fixing"

occurs in the dimedone residue to which it is hydrogen bonded.

Another interesting feature of this compound is its
dehydration. Under the mild conditions in which formaldehyde

udu90
dimethone will~dehydrate9the compound remains unreactive.
However, using a 12.50 solution of concentrated sulphuric acid

in methanol, under which conditions dicoumarol would not

dehydrate,73 dehydration does occur to give the anhydride XXVIII

~20l)~o
C~ W'3
XXV\\\
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Two features of the nom~ro spectrum of this compound might

be commented on hereo

a) Unlike the compound above, the 5-proton of the coumarin

residue does not have a chemical shift distinguishable from

those of the other 3 protons.

b) The asymmetry of the molecule is insufficient to cause

the two 5-methyl groups to show distinguishable chemical shiftso
-1The ioro spectrum shows a band at 1720 cm for the carbonyl

group of the coumarin residue, a band at 1660 cm-1 for the
-1carbonyl group of the dimedone residue, and a band at 1611 cm

for the aromatic ring of the cyclised coumarinylo
Route 2

Link treated 6-methyl-4-hydroxycoumarin with 3-£-hydroxybenzylidene~

2,4-diketochroman and obtained a product analogous to

salicylaldehyde dicoumaro121o The product had lost a molecule
of water between one of the 4-hydroxycoumarin residues and

the hydroxyl proton of the salicylaldehyde residueo

Link did not distinguish between the possibilitieso Presumably,

owing to the similarity of the two residues, it would be
extremely difficult to solve the problem without recourse
to mass spectrometryo Two of these addition derivatives
were prepared in this worko
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a) Dimedonc addition producto

A~ C~g'l CH3

II
oo

XXIX
The structure of this compound is shown very clearly to be as

above (XXIX), on consideration of its spectra. N.moro spectrum

analysis. A, B, 8097 (3H), 8087 (3H); C, 7065 (2H);

D, 7.42 (2H); E, 4095 (1H); F, 206 - 302 (6H, complex multiplet);
~, 107 - 109 (1H, complex multiplet); I, -0.10 (1H)0

The asymmetry of the molecule is sufficient to cause the rigidly

fixed met~l groups of the dimedone residue to be in different
chemical environments, and the chemioal shift of the 5-proton

of the 4-hydroxycoumarinyl residue is distinguishable from the
shifts of the other aromatic protons. The UoVo spectrum is

dominated by the 4-hydroxycoumarin chromaphores in acidic and
alkaline solutiono It will be seen later that the pKa of

this compound is 4038, a little higher than the pKa values

of the simple 3-substituted 4-hydroxycoumarins studied.
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b) The 4-hydroxycarbostyril addition producto
The compound is a colourless microcrystalline solid with a

high melting-point, which is extremely insoluble in all the

common solvents at room temperatureo Analysis asain confirms

that loss of water occurs after addition of the

4-hydroxycarbostyril in the normal manner, but unfortunately

the spectroscopic data is too confused to allow the mode of

dehydration to be establishedo

c) The 4-hydroxy-6-methYl-~-pyrone addition producto
This compound could not be prepared either by the addition of

4-hydroxy-6-methyl-~-pyrone to 3-benzylidene-2,4-diketochroman,
or by addition of 4-hydroxycoumarin to the salicylaldehyde-

4-hydroxy-6-methyl-~pyrone addition product. In view of the

stability of both salicylaldehyde dicoumarol and the

corresponding 4-hydroxy-6-methyl~pyrone compounds, this is
rather inexplicable.

Reactions of other diketochromans.

The dimedone adduct of the mono-addition product of
4-hydroxycoumarin and o-vanillin has also been characterised.

Route 3

3-~-piperidinomethyl-4-hydroxycoumarin was first prepared by
Link 74 by the Mannich reaction of 4-hydroxycoumarin,

piperidine and formaldehydeo The properties and structure of

this compound were studied by Abramovich and Gear75, who found
that quaternisation of the piperidine residue with methyl iodide
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gave a compound that would react with another 4-hydroxycoumarin
derivative to give a dicoumarolo Accordingly they prepared
dicoumarols in which one only of the two 4-hydroxycoumarin

residues was substituted in the aromatic ringo Mohlo and

Mentzner76 have used this compound to prepare the 4-hydroxy-6-

methyl~-pyrone compound XXX, which has also been prepared in
this work by this method.

xxx
In a similar way to the corresponding dime done derivative
(see above) the spectra show this molecule to have properties
of both dicoumarol and bis-4-hydroxy-~pyroneo The hydroxyl
protons have identical shifts (-1.09~), showing the similar

geometry of the coumarin and ~pyrone ring systemso
-1The ioro spectrum shows bands at 1679 and 1660 cm for the

hydrogen bonded carbonyl groups of the ot -pyronyl and
coumarinyl residues respectivezyo

Two new compounds have been prepared by this route,
where R=H and R=CH

3
in diagram XXXI
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o
'1--\ , G,

"'O~

XXXI

These compounds are insoluble in a~ suitable n.m.r. solvent for

the observation of hydrogen bonding, but the i.ro and U.Vo spectra

aeain indicate properties associated with both hydrogen-bonded

residueso

Discussion of PreEarative Methodso

Reaction of Dicoumarols
Dicoumarol is a very inert substance, and compatible with its

high melting point (288-2890), is comparatively insoluble in

organic solvents. Most of the reactions of dicoumarols which

have been studied involve the hydroxyl groups (e.g. acylation77,

phosPhOrYlation77, epoxidisation73, methylation, with
. 21 78diazomethane and dimethyl sulphate .) It is soluble in

alkali, and on boiling under reflux in alkali vall undergo

ring opening and decarboxylation, these reactions occurring

more or less selectively with one 4-hydroxycoumarin residue
initially, but with both residues on prolonged periods of boiling79o
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One reaction of dicoumarol that has not been reported is its

oxidation .. It is possible to conceive of a scheme in which

the methylene bridge is oxidised to give the diketochroman

structure XXXII. (Removal of a hydride anion from the bridge

methylene group by an oxidising agent, followed by the loss

of a proton from one of the 4-hydroxycoumarin residues).

This compound would probably be reactive in terms of Michael

addition at the benzylidene carbon atom in the same way as

is 3-~-hydroxybenzylidene-2,4-diketochroman. (XXllIA).

0(0
~c.

I
o

XXXII
Dicoumarol was fotmd however, to be inert to most oxidising
agents, with the exception of eerie ammonium nitrate J which

caused disruption of the coumarin rings to give a variety of

salicoyl degradation products.. The benzylidene proton in

benzaldehyde is unreactive to ~-bromosuccinimideo This may

well be on account of the steric hindrance by the hydrogen

bonded system between the 4-hydroxycoumarin residues to attack
by bromine atoms. Another factor in this case may be the

energetically unfavourable disruption of the hydrogen bonds

that would be caused in the product by the bu~ bromine atomo
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Acetone and 4-hydroxycoumarino

Under conditions in which 4-hydroxycoumarin will react with

aldehydes it is completely unreactive towards acetoneo

Attempts to prepare the dicoumarol derivative of acetone by

heating 4-hydroxycoumarin and acetone together in sealed tubes

at elevated temperatures, yielded only condensation products

of 4-hydroxycoumarin and mesityl oxide.

Methyl ethers.

Arndt's method of separation of 2-methoxychromone from
4-methoxycoumarin utilises the solubility of the former in

concentrated hydrochloric acid180 However, one extraction

with acid was found insufficient for complete separation, and

accordingly, the sample obtained from the extraction
(enriched in 2-methoxychromone) was separated by thin layer
chromatography. Using silica GF254 (which contains phosphor)

and ether as developing solvent, two clear and widely separated
bands could be seen under uov. light for the two methyl etherso

The more polar2-methoxychromone has the lower ~ value, and

the extraction of the silica corresponding to this band with

chloroform yielded pure 2-methoxychromone on eyo.poration of

the solverrt,

Chmielewska80 separated 3-methyl-2-methoxychromone from
an ether solution of a mixture of this compound and 3-methyl-4-
methoxycoumarin by adding perchloric acid, which fonns the
insoluble perchloric acid salt of the 3-methyl-2-methoxychromoneo
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A similar method of separation of these two methyl ethers to the

one described above was found conveniento This method has the

additional advantage of precluding any rearrangement that might

occur in the presence of the perchloric acido
From the reaction of dicoumarol with diazomethane,

Chmielewska obtained two dimethyl ethers, the 4,41- and the

4,2'. The possibility of there being any 2,2'-dimethyl ether

was not discussed24• However, careful chromatographic

separation of the products of this reaction show that a small

amount o~ 2,2'-ether is producedo The i.ro and U.Vo spectra

of this compound are, as expected, ve~ similar to thos~of

3-methyl-2-methoxychromone.
3-formyl-4-hydroxycoumarino

of this compoundo Ziegler uses the formylation of

Two methods are available in the literature for the preparation

4-hydroxycoumarin by li-methyl-!'i-phenylfDemamide in the presence

f h h h1 od 81o p osr orus oxyc or~ e ~ The use of the more readily

available IT, tl-dimethylformamide as formylating agent reduces

the yield considerably; (although a small quantity of product

was obtained here, some workers have failed to obtain any product

with this reo.ction ) 0 82 ~he method of Cecchi,83 in which

4-hyOroxycoumarin is condensed with formamide and the resulting

imine hydrolysed, was found to be satisfacto~.
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pKa value So

a) Monobasic acidso

oThe pKa value of 4-hydroxycoumarin is 4020 ± 0.02 at 21 •

Substitution of the 3-proton by a met~l group has little effect

on the pKa value, now 4.17± 00040 Substitution by a phenyl group,

however, reduces the pKa value to 3076, presumably due to the

stabilisation of the mono-anion by the sharing of the charge on

the oxygen atom on to the phenyl group as sh~vn in diagram XXXIII

H ~O'C~O

~C~
I
o e ek..

XXXIII

3- phenyl-~acetylethyl-4-hydroxycoumarin (warfarin) has a pKa
value of 5005, rather higher than those of the other 3- s bstituted

4-hydroxycoumarins investigated~ This value may be explained in

terms of a hydrogen bond between the 4-hydroxy group and the

carbonyl group of the acetonyl residue stabilising the neutral

molecule with respect to the anion in the same way as was

indicated for the hydrogen bonded monobasic acids in the
introductiono (See diagram XVIII)o The comparatively

hydrophobic side chain would also be expected to have an acid

weakening effect as compared with 4-hydroxycoumarin. The pKa

value of salicylaldehyde semidimethone-diootwarol (the dimedone

addition product of 3-£-hydroxybenzylidene-2,4-diketoohroman~
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(diagram XXIX) in which the nomor. spectrum indicates hydrogen

bonding ~or the hydroxyl group)is 4036, on~ slightly above the

value ~or 4-hydroxycoumarin; that o~ 3-~ormyl-4-hydroxycoumarin

dimethone is 4098. These increases in pKa value may be due

to hydrogen bonding in the neutral molecule, but in any event

the values are use~ul in as much as they provide ~urther

evidence that both compounds contain a 4-hydroxycoumarin rather

than a dimedone residueo

Both salicylaldehyde dimethone (diagram XIII) and
2-formyldimedone dimethone (diagram XII) contain dimedone

residues, the hydroxyl groups of which appear to be hydrogen

bondedo In both these cases a large enhancement of PKa value

over dimedone is shown, the former hav~ing a pKa of 6010, and
the latter a pKa o~ 6095, as compared with a pKa of 5005 for dimedoneo

b) Dibasic acidso
Dicoumarols and dimethones present a rather more complex pictureo

Superficial~ the presence o~ two hydrogen bonds mieht be

expected to give two pKa values higher than that of the

corre sponding "monomer" (4-hydroxycoumarin or dime done) • This

is ~ound to be the case ~or formaldehyde dimethone and

acetaldehyde dimethone, but ~or all the other bis derivatives
examined, one pKa value was found to be l~/er$ and one very much
higher than that of the "monomer" 0 All these results indicate

that, the mono-anion is very stable (ioeo easy dissociation to

give the mono-anion, followed by a difficult dissociation
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to give the di-anion:- PKa2 for these compounds is generally

5 pKa units or more greater than the pKa of the corresponding
"monome r") 0 This state of affairs may be compared with the
dissociation of maleic acid; pKa1, 2022, pKa2, 8082 described

in the Introduction as compared with} say) acetic acid (pKa 4.76)

or formic acid (pKa 3075). The neutral maleic acid molecule

may form an intramolecular hydrogen bond, but hydrogen bonding

in the mono-anion appears to be much more ideal in terms of

O-H-0 bond lengths. A similar phenomenon would explain the

pKa values of dicoumarols and dimethoneso The mono-anion

of dicoumarol is shown is diagram XXXIV. Various canonical

forms of this anion may be drawn and the negative charge may
be shared over both ringso Knobloch has pointed out that the
UoVo spectra of anions of 4-hydroxycoumarin residues indicate
a>chromone rather than a coumarin structure for the anions

(i.eo the negative charge resides mostly on the 2-carbonyl group).
so it would seem that much of the charge may be on the 2-carbonyl

groups in this case tooo

xxx IV
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Presumably, if it were assumed that no hydrogen bonding was
involved, then calculations on the basis of the Kirkwood~esheimer
treatment (in which the ratio of the two pKa values is inversely

proportional to the interprotonic distance) would on~ predict

a companitively small difference in the pKa values of

dicoumarols, in which the interprotonic distance is much larger

than in acids such as maleic and succinico

Mitochondrial Studieso

The compounds tried in this investigation may be divided into

three classes on th:2f basis of their effect on mitochondrial
respiration.

a) Those that uncouple, but do not inhibit, exemplified by
4-hydroxycoumarin~ the concentration versus rate of oxygen uptake

plot of which is given in diagram XXXVo

b) Those that uncouple at low concentrations, but inhibit at
comparatively higher concentrations (See XXXVI and XXXVII for

dicoumarol and £-methoxybenzaldehyde dicoumarol).

c) Inactive compoundso

A di~tinct structural difference is noted between compounds of
type a) and compounds of type b)o All compounds in group b)
may form intramolecular hydrogen bonds involving 8-membered rings,
none of those in group a) may do sOo An idealised rate plot for

a compound of group b) is given in diagram XXXVIIIo
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HE is the initial slope of the rate curve, and intersects the
line JK, which is an asymptote to the rate curve of a compound
of group a). (See line J'Kt in 4-hydroxycoumarin graph)

BG is a tanget to the rate curve at point C, defined by the
condition BC = CGo B is the point of intersection of the two
tangents .. The concentrations equivalent to points B,C, and E are

recorded under those headings for a range of derivatives in the

tables on p 122-3 .. Column is defined as maximum observed

rate with uncoupler (see (F») divided by the maximum rate obtained
with dicoumarolo

the slope of HB.
Column D is the ratio of the slope of BG to

It is a measurement of the effectiveness of

uncoupling and inhibition, as evidenced by small changes of rate

produced by vanishingly small additions of compound at points
H and Co The data in tables allows a rough reconstruction
of the rate plots for all the compounds cited"

Some of the points which may be deduced from the results
are inherent in the above description of the gra ho The maximum
rates produced by compounds of group a) are equal to within

experimental error, and are all greater than those observed for
compounds of group b) (see column ) Pre sumably,. if compounds
of group b) did not inhibit, their graphs would resemble those
of group a) compounds, and all give the same maximum rate .•
Accordingly~ the concentration E should give a direct comparison

with 4-hydroxycoumarin (concentration E' in diagram XXXVH±) of

their efficiency as uncouplers in terms of concentration"
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If the uncoupling is caused by binding with an enzyme, the

value E will be inversely proportioned to K , the binding constants

(see below) 0

It may be seen, then, that the results may be interpreted

in terms of a common mechanism for all these derivatives9

The results are in accord with the findings of ilson and Merz,

that dicoumarol acts at two independent sites, possibly the

phosphorylation and substrate binding to dehydrogenase sites that

they suggest 0
On this interpretation, compounds of group a)

are presumably unable to bind to the enzyme(s) that bind substrate.

It has been shown, as has been noted in the Introduction, that

the respiration response to dicoumarol may be eraaicated by
adding bovine serum albumin to the dicoumarol treated mitochondria.

It thus seems that interaction of dicoumarol with the mitoc~ondria

must involve reversible bindings with relevant enzymes, rather
than a reaction with some functional group of importance in the

phosphorylation sequenceo The results here are in agreement

.with this theory, the large range of concentrations needed for
maximal activity over the number of uncouplers and inhibitors

examined is suggestive of binding phenomena, rather than mole

for mole reactionso This suggestion is also consistent with

the stability of dicoumarol referred to earlier, the possibility
of easy oxidation of the protons of the methylene bridge, for

instance, has been shown to be unlikely.
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Further support ror an enzyme hypothesis may be seen

in diagram XLI, a graph of the rate or oxy,gen uptake at a fixed
concentration of dicoumarol (701 x 10-1 molar, the concentration

giving the maximum rate of respiration) against the concentration

of mitochrondrial protein. This linear plot is to be expeoted
if binding occurs to an enzyme, (E)) by uncoupler (S) and K '::>",) rE)

s-6Results shows that K > 10 molar, and the concentra.tion ofs

inhibitors (such as Piericidin A) which are thought to act in mole

ror mote reactions with specific "sites" in the phosphorylation
sequence act at concentrations in the order of 10-7 molar103o

The substrate used in the above experiments was a.mixture

of glutamate and malate, which is known to give three molecules
of ATP per mole equivalent of oxidisable compound in coupled
electron transport. Investigations using 0.0027 molar succinate
(which on the same basis as above gives two molecules of ATP)

indicate that dicoumarol has a similar action in this case.

Using equivalent values to those quoted in the tables, B = 0.35 ,
, These figures show that with succinate as

substrate dicoumarol is effective in smaller concentrations than

it is with glutamate and malate, and that inhibition is

comparatively more effective in this case; (D for glutamate and
malate is 2088)0
Structure-activity relationshipso

Apart from the division made earlier on the grounds or hydrogen

bonding, several other relationships may be seen from the tables

on p 122"'30 Comparison of the figures for methylene, ethylene,
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isopropylidene and benzylidene bis-4-hydroxycoumarins shows that

in this series increase in the size of the substituent on the

bridge carbon atom lowers the effectiveness of the compound in

terms of the concentration necessa~ to give the maximum observed
rate of respirationo Figures in column D indicate that this
increase in size has a greater effeot on binding at the site of
uncoupling than at the site of inhibitiono substitution in the
para-position of the phenyl group of benzaldehyde dicoumarol may

give compounds that are more or less active than the parent
compoundo Substitution by met~l, methoxy or chloro groups
(all of which groups mesomerically donate electrons to the~

system of the phenyl group) give compounds more active than

benzaldehyde dicoumarol, and in the case of ~-tolualdehyde
dicoumarol appreciably more active than dicoumarol itselfo

Substitution by the electXon vrithdrawing nitro group, the

phenolic hydroxyl group, or the basic dimethylamino group
reduces the activity of the dicoumarolo A rough correlation
between maximum observed rate;r (column A) and uncoupling

efficiency (inversely proportional to the figures in column E)
may also be seeno

It would be interesting to investigate the activi~ of
dicoumarols in which both the protons of the methylene bridge

of dicoumarol were replaced by other groupso ttempts to

prepare acetone dicoumarol failed (see Experimental Section) and
the only compound of this sort investigated was pyruvic acid
dicoumarol. This compound was found to be inactive, though this
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may be due to the carboxyl group rather than the ai-substitution.

Replacement of one of the 4-hydroxycoumarin residues

in dicoumarol by the analogous 4-hydroxy-6-methyl-~ ...pyrone

residue gives a compound which retains much of the activity of

dicoumarol. Replacement of both residues (as in ethylidene-bis-

4-hydroxy-6-methyl-~-pyrone) gives a compound that is inactiveo

In a similar way, 4-hydroxy ...6-methyl-~pyrone itself in inactiveo

The activi~ of 3_(o-hydroxybenzylidene)-2,4-diketochroman

may possibly be due to reaction to give salicylaldehyde dicoumarolo
Replacement of the pyran oxygen atom of 4-hydroxycoumarin

by an N~ group to give 4-hydroxycarbostyril does not greatly affect

the activity, whereas analogous replacement by an N-CH3 group to
give li-methyl-4-hydroxycarbostyril produces an inactive compoundo

Relationship with Activity as Anticoagulantso
Nitz - Litzow" s discovery of the activity as uncouplers in oxidative

phosphorylation of the well known anticoagulants of the coumarin

series has provided the o~ appraisal of any possibility of a link

between the two processesQ (See Introduction)o Dicoumarol, the

most active anticoagulant he tried~ was also the most effective

uncoupler, in terms of concentration. other similar relationships

have been noted hereo 82Arora et. al. have investigated the
anticoagulant activity of a series of ]-substituted benzaldehyde

dicoumarols in terms of their coagulation valency (an arbitrary
scale set to the value 100 for an inactive compound and 0 for

dicoumarol)o Their results are given in the table on P1220
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The close correspondence to the uncoupling activity is seen

by comparison with the figures in column Eo The only compound

in this series which is out of order when comparing the

activities of anticoagulation and uncoupling is

_E-hydroxybenzaldehyde dicoumarol, which was found to be inactive

as an uncoupler at the concentration showno A similar

investigation on a series of bridge substituted dicoumarols

by ~uminska and ECkstein84 has shown similar results in the case

of ~-nitro and -chloro substituted benzaldehyde dicoumarolso

The greater anticoagulant activity of methoxy as compared with

hydroxy substituted derivatives of 4-hydroxycoumarins and

dicoumarols, found by Arora and Mathur85, is also consistent

with the uncoupling activity found in this work, Although

there is no known reason to tie up the chemical processes

involved in blood coagulation and oxidative phosphorylation
(mostly through lack of information on the intimate mechanism

of the former process) these types of structure activity

relationships do indicate that there may well be some

connectiono
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Starting materials
Starting materials were normally commercially available~

Chloroform, for s ectroscopy, was purified by the method of
SbVogel.

Spectra

Nom.ro spectra were run on a Perkin-Elmer R~10. spectrometer,

and were run in deuterochloroform against tetramethylsilane

as standard, unless stated to the contrary. Chemical

shifts are recorded in't values.

lor. spectra were run on a Perkin-Elmer PoE. 237 spectrometer.

Frequencies are recorded in cm-1
U.vo s ectra were run on a Unicam S.P.BOO recording

spectrophotometer, and were run using absolute ethanol as
solvent unless stated to the corrtr-ery, Wavelengths are
recorded in my_

Spectra of Starting Materials

The followi~ spectra are referred to in the text
4-hydro?Cycoumarino Nomoro spectrum in trifluoro-acetic acid,

4001 (1H), 2.2 - 3~0 (4H, complex multiplet)

l.ro spectrum as Nujol mull, 1700, 1636, 1614, 15700
lor. spectrum in chloroform containing ~ ethanol, 1695,

1675, 1627, 1569. l.r. spectrum in dioxanL 1730, 1633,
1611, 15720 U.v. spectrum. ~max; 305 (8,500), 208 (10,900),

269 (9,400), 243 (3,200); sh; 318, 293, 257, 237, 232.

In alkali, ~max; 297, 288; sh; 276, 242, 2350
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Dicoumarolo Nomoro spectrum, 6046 (2H), 202 - 300
(6H, complex multiplet), 108 ~ 200 (2H, complex multiplet),
- 107 (2H)0 loro spectrum in chloro~orm, 1659, 1630, 1603,15730
loro speotrum in dioxan, 1659, 1627, 1599, 15690
Ioro speotrum as Nujol mull, 1655, 1630, 1602, 15690
Ioro spectrum as KCl disco 1655, 1630, 1600, 1570.
Uovo speotrum, >-max; 323 (16,900), 309 (23,100), 287 (20,500);
sh; 317, 297, 2760 In alkali, Amax; 315; sh; 292, 255, 2420
Pelantano (Ethyl glyoxylate dicoumarol)o
Nomoro spectrum, 8070 (3R, triplet.,J = 606 oo/seco), 5061
(2H, quartet, J = 606 c./seco), 4044 (1H), 200 - 2.6 (6H,
complex multiplet), 107 - 109 (2H, oomplex multiplet), ~ 1048 (2H)o
loro spectrum in chloro~orm, 1735, 1658, 1618, 1600, 1568.
Uovo speotrum, ~max; 310 (21,700), 283 (19,800); sh; 323, 2770
In alkali; ).max; 313; shj 294, 2420
Warfarino (3-(~-aoetonylbenzyl)-4-hydroxycoumarin)
N.mor. spectrum taken in sodium deuteroxide solution in
deuterium oxide, 7074 (3H), 7~14 (2H, doublet, J = 702 c./seco),
4092 (1H, triplet, J = 702 co/seco), 2.3 - 209 (7H, complex
multiplet), 108 - 200 (2H, complex multiplet)o
loro spectrum as Nujol mull, 1688, 1621, 15790
Usv , spectrum, I max; 307 (11,200),282 (12,900),271 (11,500);
sh; 320, 296, 2600 In alkali,l\max; 313; sh; 292, 2800

Dehydracetic acido Nomoro spectrum, 7073 (3R, doublet,
J = 007 c./seco)~ 7035 (3H), 4005 (1H, quarte~, J = 007 co/seoo),

- 7001 (1H)o loro spectrum in ohloro~orm, 1740, 1721, 1644,
1611~ 15600
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.M.£lhylsa.~icyla_~ N omoro spectrum, 6003 (3H), 200 - 303
(4rI,com lex multiplet), - 1024 (iH).
Salicylaldehyde. Nom.ro s ectrum, 2075 - 3.05 (2H, complex
multi let), 2.2 - 205 (2H, complex multi let), - 0010 (iH),
- 1019 (1H).
2-vanillino N.moro spectrum, 6020 (3H), 2.7 - 302
(}.T{, complex multiplet), 0020 (1H), - 0077 (1H).
loro spectrum in chloroform, 1658, 15870
~-vanillino Nomor. spectrum, concentration 103 mole/litre,
6.02 (3H), 2.78 (1H), 207 - 209 (1H, ortho to hydroxyl group,
com lex multiplet), 2.3 - 205 (2H, ortho to formyl group~
complex multiplet), 0.01 (iH)o On tenfold dilution the
chemical shift of the hydroxyl proton changes from 2078 to 30450
I.ro spectrum in chloroform, 1686, 16000
t-formrl-2-pydro3Ynaphthaleneo Nomoro spectrum, 102 - 300
(6H, complex multiplet), - 0079 (ill),- 3020 (1H) 0
~. 3-dihydr0eYbenzaldehyde. Nom.r. spectrum, 306 (1H),
206 - 301 (3H, complex multiplet), 0.07 (1H), - 003 (1H)
(concentration,1 mole/litre)o
DimedoneSl. The Nomoro spectrum in deuterochloroform is shown
in Diagram)(XIX,Thespectrum shows peaks for both diketo and
enol tautomers, and is analysed as followso
A, 8096, 5-methyl groups of keto formo
B, 8090, 5-methyl groups of enol formo

C, 7070, 4- and 6-methylene groups of enol formo

D, 7042, 4- and 6-methylene groups of keto formo
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E, 6060, 2-methylene group of keto form.
F, 4041, 2-vinyl proton of enol form.
G, 2062, hydroxyl group of enol form.
H, 2.54, H atom of chloroform impurity in deuterochloroformo

The assiGnments were made on the basis of the
integration of the signals in the spectrum, and on the ohange
in intensity of the signals with ohanging concentration as in
the experiment described belowo
Effect of concentration on the nom.ro spectrum of Dimedone,
On dilution of a solution of dimedone in deuterochloroform
(saturated at 300) two changes were observedo The value of
the chemical shift of the hydroxyl proton varied uniform~ over
the range of concentrations, being greater at high ooncentration,
and the percentage of keto and enol forms in the solution, as
measured.by the inte'grated areas of the signals, changed towards
a higher percentage of enol with increase in concentration of

dimedone 0 At a ooncentration of dimedone of 0.39 moles/litre
the percentage of enol was 4Q%, at 0024 moles/litre the
percentage of enol was 27%, and at 0014 molea/litre the
percentage of enol was 16%0 Diagram XL is a plot of the
chemical shift of the hydro~l proton against the reciprocal
of the concentration. At infinite concentration the value of
the chemical shift of the hydz'oxy.Lproton is - 20240
Percentage of tautomers in other solutions.
The peroentage of tautomers was estimated by comparison of
integration of the 5-methyl peaks of the enol and keto forms
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in 0025 molar solutions of dimedone in the following solvents
o

Methylene dichloride, 17,%enGlo Dioxan, 8q% enol. Aoetonitrile,
56% enol. (Dimed@ne was found to be too insoluble in carbon
tetrachloride to give a satisfactory spectrum). The solvents
used in this experiment were redistilled and dried over

molecular sieve, grade 3Ao

Spectrum in 2N sodium deuteroxide 0 Onzy peaks due to the enol

form were detected in this solvento 9.11 (6H), 7.87 (4H),
4.84 (1H)0 Tertiary butyl alcohol ( CH3 = 8.78) was used as
standard. The vinyl proton, with chemical shift 4084, was
found to exchange. A rate plot showed the reaction to be first

-4 -1to dimedone, k300 = 1.15 x 10 sec. •order with respect
Other s]!leQtrao

Ior. s,ectrum in chloroform, 1733, 1706, 1608, 1580.
I.~. spectrum as NujGl mull, 1'10, 1580.

tJ.... spectrum, ~max; 255 (17,700)0 In alkali, ).max; 278
(28,'00) •

Preparation of compounds.

3-metgyl-4-hydroxycoumarin.
This compound was lrepared from methyl salicylate

according to the method of Link.g7 It was recrystallised from
oethanol as colourless needles, molo 229-230 , after treatment

with animal charcoal. Calc. for C10HS03; C: 68.18.%;

H: 4058.% Found, C: 68037%, H: 4069%0 N..:qor.spectrum ill
trifluoro-acetic acid, 8020(3H), 202 - 3.0 (4H, Qomplex

multiplet)o I.r. spectrum as Nujol mull, 1668, 1630, 1613, 15660
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Ioro spectrum in dioxan, 1700, 1626, 1609, 15700
U.,Vo,spectrum, ~max; 306 (13,200),279 (13,600),268 (12,300);
sh; 320, 296, 258", In alkali, i\max; 311: sh: 292.
3-pheBYl-4-hydroxycoumarin",

This compound was also prepared by the method of Link.g1
The met~l Q-phenacylsalicylate was obtained from the crude

o 0reaction product by distillation at 1mm. b.po 202 , m.po 55 •
Yield 4j., theoreticalo Nomor. spectrum, 6023 (3H), 6.11 (aI),

108 - 200 (1H, complex multiplet), 204 - 300 (SH, complex
multiplet). Ioro spectrum in chloroform, 1760,1722,1680,
1610, 1587. The 3-phe~1-4-hydroxycoumarin was recrysta11ised
from ethanol as'colourless prisms, m.p. 264 - 2660, after
treatment with animal charcoalo Yield, 57.%theoreticalo
Calco for C'15H1003; Co 7506~; H:. 402Jflo Found: C: 75",29%;
H: 4049.%. Nomoro spectrum in trifluoro-acetic acid, 2",3- 301
(complex multiplet)", Ioro spectrum as Nujol mull, 1672,1622,
1611',1600. U.v ; spectrum, Amax; 312, 280, 270.
,\max; 308; sh; 287, 2430

L..-hydro:xycarbostyri1o

In alkali,

Sl9This compound was prepared by the method of Ziegler
N omor. spectrum in trifluoro-acetic acid, 3020 (11:r),

104 - 206 (3H complex multiplet)o Ior. spectrum as Nujol mull,
1660, 1632, 1608, 1595, 15600 u,v, spectrum, Amax; 315~ 279D

268; sh; 327, 300, 2600 In a1kalii >.ma.x;300, 2380
ll-metbyl-4-hydroxycarbostyri1.

~sThis com ound was also re'ared by the method of Ziegler.
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It was recrystallised from glaeial acetic acid as yellow needles,

omop. 256-260 , after treatment with animal charcoal. Cala. for
C10H90~; c: 68.56; H: 5018; N: 80000 Found, C: 68061;
H: 5049; N: 8.49. N.mor. in trifluoro-acetic acid, 6030 (3H),
3040 (iN), 108 - 2.~ (4H, complex multiplet). I.ro spectrum
as Nujol mull, 1643,1611,1578, 1555. U.v. spectrum in dioxan,
A max; 331 (16,600),317 (18,400),293 (16,000); sh; 280.
6-methYl-4-hydro3Y~-pYroneo

This ccmpound was prepared 'bythe method of Collie~~ The
erude product was washed with chloroform to remove any unreacted
dehydracetiQ acid, and recrystallised from water as colourles3

oneedles, mopo 178-189 0 Nomoro spectrum in trifluoro-aoetic
acid, 7~7 (3H), 3074 (iH, in 5-position), 3044 (iH, in 3-position)0
The signal at 3.74 was designated to the 5-~roton by reference to
the chemical shifts of the 5-protons of other 6-methyl-4-hydroxy-
-pyrones preparedo r,», spectrum as Nujol mull, 1!711,165.5,

1625, 1.5870 UoVo spectrum, Amax; 283 (6,600). In alkali,
A max; 278, 237.
Ghromone.

Chromone was prepared by the method of Schonoer, and SinaoqO

The ~-formylacetophenon. did not crystallise frem the reaction
mixture on acidification, and was extracted from the reaction
mixture with ether. It was obtained on evaporation of the ether
after washing with sodium hydro,en carbonate solution. It was
recrystallised from a mixture of benzene and light petroleum,

o t: 0b.,o 40 -wO 0 The n.m.r. spectrum ofUJ-formylacetophenone in
ohloroform
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shows that it exists in the cyclic structure below in this solvent.

CCOH

C/L(~ c.> H
" IIo 0

5018 (1H, hydroxyl proton), 3.98 (1H, tri let, J = 403 co/sec.),

)

108 - 2.9 (4H, complex multiplet) 0 7010 (2H, complex multiplet) 0

The last peak is a doublet (J = 403 co/seco) with further small

splittingso It is part of an X sys emwhere JAB is much

smaller than JAX which is almost equal to JBXo

ChromoneVIasrecrystallised from LI-Oo- 60° petroleum

°ether as pale yellow needles, m.po 52-53 0 N.moro spectrum in

carbon tetrachloride, 3062 (1H, ~ to carbonyl group, doublet,

J = 602 c./seco), 1099 (iE, doublet, J = 602 co/sec.), 201 - 205

(3H, complex multiplet) 107 - 109 (1H, complex multiplet) 0

Ioro spectrum in chloroform, 1647, 1619, 1601, 15690 UoVo spectrum,

A max; 303 (9,400),298 (7,800); sh ; 2400

Coumarino

Coumarin was prepared by the general method for the Perkin

reaction described in Organic Reactions ql , and purified by the

method of Buckles~'l It was obtained on recrystallisation from

aqueous methanol as colourless needles, mopo65-68°. Nom.ro

spectrum, 3047 (1H, oc to carbonyl group, doublet, J = 907 Co/seco),

2012 (1H" doublet, J =- 907 co/seco)" 203 - 208 (4H, complex

mUltiplet)o I.ro spectrum in chloroform, 1714, 1622, 1608, 1565.

DoVo spectrum, Ama..~; 312 (8,200),274 (16,200); sh; 283
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Preparation of Dicoumarols
Dicoumarols were prepared by boiling under reflux a one

and a half fold excess of the aldehyde in a 2q% alcoholic solution

of ll--hydroxycoumarin in ethanol, after the method of Link~' In

the case of £-vanillin dicoumarol the half product of the reaction

is preci itated initial~, but reacts further to give the bis- roduct~

For details, see Table p.~'L.

Nomor. spectra of Dicoumarolso

Acetaldehyde dicoumarol, 7097 (3H, doublet, J = 7 02 co/sec.)

5004 (1H, quartet, J ~ 702 co/seco) 200 - 2.6 (6H, complex

multiplet, 106 - 108 (2H, complex multiplet), - 1044 (1H), -

2<>24 (1H) 0

Propionaldehyde dicoumarol, 9000 OR, triplet, J = 7.5 co/sec.),

7051 (2H, complex multiplet), 5019 (iH, tri let, J = 804 c./seco),

2.0 - 207 (6H, complex mutli let), 1.7 - 109 (~I,complex multiplet),

- io~ (iR), - 2.66 (iH).
Benzaldehyde dicoumarol4 3094 (1R), 109 - 209 (13H, complex

multiplet), - 1.43 (2H) 0

Salicyaldehyde dicoumarolo Spectrum in trifluoro-acetic acid,

5017 (iH), 203 - 3.4 (12H, complex multiplet)o
£-vanillin dicoumarolo Spectrum in trifluoro-acetic acid, 6036 (3H),
4'098 (1H), 202 - 308 (11K, complex multi let)
~-hydro3Ybenaaldehyde dicoumarol mono-ethanolate, 8.76 (3H, tri let,

J = 702 oo/sec.), 7026 (2H, quartet, J = 702 co/seco) 3093 (iH),
202 - )03 (i0R, complex multiplet) i~8 - 200 (2H, complex multiplet),

- 1048 (2R)
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-vanillin dicoumarol,

complex multiplet), 202 - 208 (6H, complex multiplet), 1.8 -
200 (2H, complex multiplet), - 1044 (2H). Addition of deuterum

oxide and reintegration of the signals showed that the hydroxyl

roton of the ~-vanillin residue has a chemical shift of between

202 and 2080 (The deuterium exchange of all 3 hydroxyl protons

is rapid on shaking the chloroform solution with deuterium oxide)o

~-meth0eYbenzaldehyde dicoumaro14 6.22 (3H), 3098 (1H),
2.2 - 3.3 (10H, complex multiplet), 1.9 - 201 (2H, complex

multiplet), - 1.35 (2H)•
.l2-dimethylaminobenzaldehyde dicoumarolo Spectrum in trifluoro-

acetic acid, 6.56 (6R, doublet, J = 1002 col sec ,'}, 3065 (1H),
107 - 2.6 (12H, complex mUltiplet)o (The splitting of the signal
of the methyl grot~S is due to protonation on nitrogen by the

trifluoro-acetic acid)o
,f-:nitrobenzaldehyde dicoumarol. 3.90 (1H), 107 - 208 (1.2H,

complex multiplet), - 1035 (1H), - 1053 (1H)
.l2-tolualdehyde dicoumaro14 7067 (3H), 3.93 (1H), 2090 (5H),

2o~ - 208 (6H, complex multiplet), 108 - 201 (2H, complex multiplet)
- 1042 (2H)0 The signal at 2090 is due to the protons on the

aromatic ring of the tolualdehyde residue. It is an unresolved
tight multipleto

~-chlorobenzaldehyde dicoumarol, 3092 (1H), 202 - 300 (1OH,

complex multi let), 108 - 200 (2H, complex multiplet), - 1058 (1H),
siGnal for other hydroxyl proton very broad, centred on 0020

Dovo and I.re spectra of dicoumarols.
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The Uovo and Ior. spectra of dicoumarols are given in 'l'ablesp.<a5-b.
3. 3-thio-bis-4-hydroxycoumarino
repared by the method of Klosa;land recrystallised from

cyclohexanone as colourless needles mo • 311 (d)o

Found; C: 60095j H: 2093; s. 8092. Ioro spectrum as Nujol
mull, 1672,1610" 1599, 15470 u,v, s ectrum Amaxj 329,
317, 292; 3h; 280. In alkali" Amax; 299 p 277; sh; 2870
yruvic a.ciddicoumarol

4-hydroxycoumarin 0026 go, 0002 mole) was boiled under reflux
in glacia.l-acetic acid (50 mI.) with pyruvic acid (00e6 go" 0.1 mole)
for 45 minuteso After this time a mass of pink crystals had
separated, which were filtered at the pump, dried, and
recrystallised from cyclohexanone as colourless microcrystalline
material, m sp , 220o(d)0 Yield" 591&theoretical.C21H14 Os

Requires C: 63.96; 11:.30580 Found, C: 63096; H·I
Nomoro spectrum in sodium deuteroxide solution in deuterium oxide,
8.33 (3H), 109 - 209 (SH, oomplex multiplet). I.ra spectrum as
Nujol mull, 1722, 1661, 1629, 1603, 15560 (This spectrum is
very similar to the spectrum of pelantanic acid as described by

'2.3Knobloch )0 u,v, spectrum, >.ma.x; 310, 285, 274; shj 3220
38 3'-methylene-bis-6-bromo-4-hydroxycoumarin.

This compound was pre ared by the method of LinkoQ4

The methyl 5-bromosalicylate was repared by the following method.
Bromine (80 g., 1 mole) and methyl salicylate (77 go, 005 mole)
were boiled under reflux for 5 hours oarbon disulphide (800 mI.).



•:>
o
p
ro
~
e

P:l
o
H

~ 0') ....

cd '1S.. '" .. .. '" •
I"- 0". -:t coo .... 0 \0
0 0 0 ..::TI"- ..::TI"- 0
\0 \0 \0 \0 l.C\ \0 l.C\ \.0

e -e- ..... ..... ..... .... .... .... ....
'" .. ... '" ... ... '" '"+> N N 0 NCO NO 0

0 N N N 1"-0 \0 .... N
Q) \0 \0 \0 \0 \0 \0 '-0 \0
P. ..... ..... ..... .... .... ........ ....
ell .. • '" ... 0 .. '" .. .. '"0 0". 0". 0 .... 00". 0l.C\ 00 N ....
~ l.C\\O \0 r-- \0 I"- 0 .... (\JC\l \0 l"-
• \0 l.C\ \Ol.C\ \D l.C\ I"-\D 1"-\0 \0 l.C\
H ..... .... .... .... ........ .... ..- .... ..... .........

•
I>..
P

...
~

•
I>
o
P

........o COo I"-
.... N..
N\ o~ ~
N .........0".
..........0 ....o t<l
01"-..........
rr'I 0". t<l

..... (\J
....<:» t<'\

~ CO ...
~~~

.........o eoo I"-
l.C\ N.. ..

~ ..._. '"
(\J ........0\
<;» 0 0".ONoeo.... .....
rr'I~~
.~'-'" f'l"'\

~ I"- ...
El CO .cl

A(\JeIl

...
r--
l"-
N

.........oo
I"- ..

-:t '"eo CO
C\lC\l

rr'I..
0''''......cl
rr'lell

..

Q)ro
.2

~ ~
~

Q) r-I
rO 'Ii.& .2 E t'l

~ ~ Q
~ ~ ~ Q)

.& E Q

~r-I r-I r-I ;qcd Q)
~ ~

~
rO rl 0

.p r-I 0 r-I ·S ~Q cd OM cd
Q) +> P. N ;q cd E
~

Q) 0 s::
bl() F-t Q) cd I

Pi ~ ~ ~ CIl ~



C\!

o
l>
o
P
td

til

- 00 ...
(\l ... .....
0 ....:t c-. 1'1"'1 ....:t 1'1"'1

r- 0 0 0 0 0

'-D '-D '-D '-D '-D '-D

s r- ..... r- .... ..... .....

N " "
.. ... ... "

+l eo 0 0 0 0 0

o C\! C\! N N N N
ID '-D '-D '-D '-D '-D '-D

p., ..... ..... ..... ..... ..- ..-
III ... '" '"

" ... ...
0 oeo 00 .....0 oeo O(}'. o o-,

N \0 \0 '-0 eo '-D CO \.0 I"'- \01"'- \0 CO

• \0 t.n \.0 U'\ \.0 t.n '-0 Lf'\ \0 U'\ \.0 t.n

H ..- ..... ..- .... ..- ...- ...-r- r- ...- r- ...-

III

"p;:
o
H

o
>•p

....,.......
o
3-
'"N ....C\!,,-....eo_____0 I"'-

OC\!
0 ........- ......
1'1"'\..- Lf'\NN
.~..__" r<'\

~ eo ....
~~~

o

>o
p

, )

...,.......
ooo...
1"'-,,-....""""""'".__"OOO

000I"'-NI"'-I'I"'I
Q'\ 0. ... ~

....:t C\! eo o-, \0N ........N
• ~....__;...._",..._., f'4'"'\

~\.Ooeo ....
El0 0,\0 ..c:..-< 1'1"'1 N C\J III

...
,,-....
oo

"'"...o ....N __ I"'-_____01"'-
ON

...-C\J..- ......
1'1"'\o-, Lf'\

.... <:\1
><" 1'1"'\
(\l 0 ....

~~.g

,-..
ooo-,..
0'\ ._ •.._
...-,-..,-..1"'-.__"OON

001'1"'\I"'-(}'.Oo ........
1'1"'\1"'-1"'-1'1"'\...- .........
.~"""_"""_"r<'\
><
(\l 00· ..J. gj'~.g



- 87 -

On evaporation of the carben disul~hide and recrystallisation of
the crude produot from methanol, 100 gms of methYl

o5-bromosalicylate were obtained as colourless needles, mopo '1~62 0
Yield, 7Q% theoretical. N.m.r. spectrum in oarbon tetrachloride,
'013 C3H), 3027 (1H, doublet, J = 8.4 co/sec. for proton
£- to hydroxyl !roup), 2.59 (1H, doublet of doublets, J = 804 co/sec.

0'\ lZ+hO~C. o.sbov-.::) I
and J = 105 c./seco), for ,raton ~- to aeetyi ~roup), 2.21 (1H,

"" e\-ho'lU:::)'c.CJ'boV\~' .
doublet J = 105 ~o/sec., for proton s: to agety;l: group), ..0041 (1H)o
Methyl acetyl-5-bromosalicylate was recrystallised fram methanol
with the aid of'a careon dioxide acetone bath as colourless
needles, m.p. 31.5 - 32°0 Nomor. spectrum, 7.81 (3H), ~.23 (3H),
3013 (1H, doublet, J = 80' oo/seco for proton ~- to a~etyl group),
2.42 (1H, doublet of doublets, J = 806 co/sec. and 2.6 co/seco
for proton Z to aoetoxy ~roup), 1.96 (1H, doublet, J = 2.6 co/see.,
for proton ~ to acetoxy ,roup)o
The 3, 3'-methylene-bis-5-brQmo-4-hydroxycoumarin was recrystallised
twice from cyclohexanone and twice from ethanon-chloroform
mixtures as colQurless prisms, m.p. 310°Cd)o I.r. spectrum as
Nujol mull, 1655, 1'11, 1597, 15620
3. 3t-methylene-Dis-4-hydr0xYcarbost~ril.
This compound was prepared 'Iythe method of Ziegler ~S, ana.
recrystallised from benzyl alcohol as colourless needles, m.po
3'0 Cd). N.m.r. spectrum in sodium deuteroxide solution in
deuteriuo oxide, '006 (2H), 2.2 - 2.8 ('H, complex multi~let),
1.7 - 200 (2H, complex multi,let)o I.r. spectrum as Nujol mull,
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1660, 1609, 15600 UoVo spectrum, Xmax; 330, 316, 303, 292;
sh; 282. In alkali, ).max; 316; sh; 3030
3, 3t-meth;y;lene-bis-!-meth;z1-h-hydroxycarbostyrilo

95This compound was also prepared by the method of Ziegler•.
and recrystallised from dimethylformamide as pale yellow needles,
m.p.344o(d)o Nom.r. spectrum in trifluoro-acetic acid,
6.49 (6H), 6022 (2H), 200 - 300 (BH, complex multiplet).
lor. spectrum as Nujol mull, 1643, 1611, 1578, 15550
UoVo spectrum in dioxan, ~max; 331 (16,600),317 (18,400),
293 (16,000); sh; 2800
~meth;zlene-(3' ,4'-hydroxycoumariAY1)-dimedoneo
This compound was prepared by the method of Hellmann and

11'l.Shroder 0 N.m.ro spectrum, 8090 (6H), 7063 (2H, protons of
6-methylene group), 7056 (2H, protons of 4-methylene group),
6044 (2H, protons at'methylene bridge), 2.2 - 207 (3H, complex
multiplet), 1.8 - 200 (1H, complex multiplet), - 1.10 (iH),
- 2025 (1H)o I.r. spectrum in chloroform, 1657, 1628,1603,
15720 U.Vo spectrum, Xmax; 322 (8,600),308 (12,000),
269 (22,800); sh; 2850 In alkali, Amax; 2890
nh;zdride:- The above compound (0.100 go) was dissolved in ~

mixture of'methanol (7 mI.•) and concentrated sulphuric acid (1 ml.)
The whole was boiled under ref'luxfor 1 hour, and on cooling ~
white crystalline product separ-ated, 'l'heproduct was filtered
off, washed with water, and recrystallised from methanol as

ocolourless needles, mopo 235 - 237. Yield, 731$. theoretical.
C1aH1604 requires C: 72096, H: 5044. FOWld, c. 72050;
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H: 5058. N.m.r. s ectrum, 8082 (6H), 7062 (2H, protons of
6-methylene group), 7045 (2H, protons of 4-metl~lene group),
6.79 (211, protons of methylene bridge), 2.1 - 300 (lJI, com lex
multiplet)o lor. spectrum as Nujol mull, 1707, 1666, 1630:1
16090 Uoir. spectrum, Amax; 303 (7,000)" 256 (20,400);
sh; 337, 320, 292, 267, 24Bo
2-tl-Qiperidinomethyl-4-hydroxycoumarin
This compoID1dwas prepared by the method of Link7~o It

separated from the alcohol solution after addition of ether
as fine colourless plates, mopa 182(d)0 Yield 70.% theoreticalo

Nomoro spectrum in trifluoro-acetic acid, B03 - 9.1 (6R, complex
multiplet, protons of 3,-4- and 5-methylene groups of
pi eridino residue)' 607 - 709 (411, protons of 2- and 6-methylene
groups of piperidino residue) 6.25 (2...T.f, protons of methylene
bridge), 203 - 305 UH, complex multiplet) 0 The chemical shifts
of the 2- and. 6-methylene groups are downfield with respect to
the chemical shifts of the 3-, 4- and 5-methylene groups due to
protonation of the nitrogen atom by trifluoro-acetic acido

Ioro spectrum as Nujol mull, 1,671, 1610, 15BOo

Uovo s ectrum, ~max; 288 (12,700); sh; 294, 274, 242, 2340
In alkali, .Amax; 308; shj 291, 241. In acid, A max; 31,0,
~84, 273; sh; 323.
3-methylene-(3' ,4'-hydroxycoumarinyl)-4-h;Zdroxycarbost;rrilo
.3-!.-piperidinomethyl-4-hydroxycoumarin (00259 g.l1 0.001 mole)
was added to a mixture of ethanol (15 mlo) and methyl iodide
(1ml.)0 The resulting solution was boiled under reflux for
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2 minute'S., and finely ground 4-hydroxycarbostyril (6.161 e ,

00001 mole) added. The mixture was boiled under reflux for

a further 3 hours, and on cooling, the product filtered at the

puap, The product was recrystallised from benzyl alcohol as

colourless microcrystalline material, mo. 294 - 297°0

Yield, 5~&theoretical C25H1505Nrequires c. 73034; H: 3069,

N: 30420 Found, c. 73.05; H: 3.85; N: 30120

I.ro s ectrum as Nujol mull, 1660, 1629, 1605, 1573.

u,v, s' ectrum, ~max; 309, 287; sh] 322, 2770

~maxj 313; sh; 290, 2600

2-methylen~-{2t, 4' -hydroxycoumarinY-!)-N-~yl-4-BYdroxycarbostyril

In alkali,

This compoundwas prepare d by the method above, using ll-methyl-

4-hydroxycarbostyril (00175 go, 00001 mole) in place of the

~-hydroxycarbostyril. The product was recrystallised from
o

glacial acetic acid as colourless needles, mop. 229 - 232 0

Yield, 58.% theoretical. C20H150~ requires e: 68006;

H: 3091.; N: 40180 Found, c. 67090, H: 4023; N: 4046.

Nomor. spectrum in sodium deuteroxida solution in deuterium oxide,

6078 OH), 6030 (21-1),109 - 302 (8H, complex multiplet) 0

Ioro s ectrum as Nujol mull, 1660, 1631, 1608, 1572, 15500

U0v , s ectrum, A max; 308 (17,300), 289 (16,300); sh; 331,

323, 316~ 2750 Inalkali, }.max; 315$ sh; 292,257.

3-methylene-C3'. 4' -hydroxYcouma.rinyl)-4-hydroxy-6-methyl- OS-pyrone

This compoundwas prepared by the method of Molho and Mentzer./b

It was recrystallised from ethanol as colourless needles, mop.

188-19000
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Yield. 711 theoreticalo N.moro s ectrum, 7073 (3H), 6031 (2H),
3.94 (1H), 202 - 207 (3H, complex multiplet), 109 - 201 (1H,
oomplex mUltiplet)o - 2009 (2H). I.ro spectrum in chloroform,
1679, 1660, 1633, 1612, 1603, 1576. n,v, spectrum, A max; 307
(15,900),286 (16,100); sh; 322,274. In alkali, _.\max;
307; sh; 292, 280, 241.
Addition products of 4-hydroxycoumarin and mesityl oaide~
Two products are formed when 4-hydroxycoumarin is boiled under
reflux with mesit 1 oxide in ethanol solution. These products

'2.b·were prepared and separated by the method of Link.
a) Acidic product. Nomor. spectrum in trifluoro-acetic acid,
8095 (3H), 8075 (3H), 8027 (3H), 202 - 209 (4H, complex multiplet)o
Also on AB patternjwith H - 7078, 1), = 7016, JJJ3 = 1500 co/sec.

Ioro spectrum as Nujol mull, 1668, 1617, 15720 UoVo spectrum,
~max; 318 (7,500), 304 (11,300)$ 281 (13,300), 269 (12,100);
sh; 322, 3080
b) Heptane soluble producto NoIDor. spectrum, 8051 (6H),
7082 (3H, doublet, J = 106 co/seco), 4080 (1H, quartet,
J = 106 c~/seco), 202 - 300 (4H, complex multiplet).
Ioro spectrum in chloroform, 1703, 1651, 1611, 1605, 15520
n,v, spectrum, ~ma.xi 347 (7,600), 246 (10,650)0
Reduction of heptane soluble product:- This compound (1 go)

was shaken at room temperature (210) with 1030 palladium on charcoal
(00100 go)'in ethanol (20 mlo) under an atmosphere of hydrogeno
ithin 1 hour one molar equivalent of hydrogen was takenupo
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During a further 3 hours no further hydrogen was taken upo

The reaction mixture was filtered through Kieselguhr, and the

alcohol evaporated under vacuo leaving an oil. The oil, which

could not be crystallised from any of the solvent systems tried,

did not form a picrate when boiled under reflux with a saturated

solution of picric acid in ethanol. Nom.r. spec rum in carbon

tetrachloride, 8063 (3H), 8.45 (~{), 8060 (aH, doublet,
Methylene group and vicinal proton as ABX

system, HA at 7.92, H._s at 8.35, JAB = 1309 co/seco,

J
AX

=- 607 co/seco J
BX

= 10.0 co/seco 7.15 (1H, complex multiplet),

2.2 - 300 (3H, complex multiplet)o loro spectrum as liquid film,

1712, 1622, 15750 u.v, spectrum, A max; 317,304,281,270;

sh; 312, 293, 258, 2430
Diaz omethane
Diazomethane was prepared from ~-tolylsulphonylmethylnitrosamide,

as described in Organic Syntheseso~

Me byl ethers of 4-hydroxycoumarin

n excess of diazomethane was added to a suspension of 4-

hydroxycoumarin C3 g.) in ether (200 mlo) 0 After standing for

2 hours,4-methoxycoumarin (105 go) Vias precipi tatedo The

remaining solution was evaporated to dryness, and extracted 3

times with ice cold 2q% hydrochloric acid (10 mlo) The combined

hydrochloric acid extracts were treated with sodium carbonate,

extracted with ether, and washed with 2N sodium hydroxide solutiono
On evaporation of the ether, the remaining solid (00250 go) was

separated by thin layer chromatography on silica, GF 254Jusing dry
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ether as developine solvent, to give two fractions, one vdth
~, 006 (identified on extraction as ~-metho~coumarin) and the
other with ~ 0025 (identified on extraction as 2-methoxychromone).
00200 go of pure 2-methoxychromone (mopo 103-11-) were obtained by

this methodo
Spectra of ~-methoxycoumarin, n.mor. spectrum in carbon disulphide,
6000 (3H), ~0~6 (1H), 2.2 - 300 (4H, complex multiplet)o
Ior ..spectrum in chloroform, 1710, 1619, 1603, 15620
Ioro spectrum as Nujol mull, 1713, 1618, 1602, 15620
u.v. spectrum, )..max; 309 (8,000), 282 (10,900), 272 (11,600);
sh; 325, 3000
Spectra of 2-methoxychromone, nom oro spectrum, 6.05 (3H),

~o~1 (1H), 202 - 208 (3R, complex multiplet), 107 - 1.9 (1H,
oomplex multiplet). Ior. spectrum in chloroform, 1633, 1629, 1573.
I.ro spectrum in dioxan, 1651, 1627, 15730 I.r. spectrum in
ethanol, 1622, 15680 Ioro spectrum as Nujol mull, 1659, 1623,
1609,15710 Uovo spectrum, A max; 293 (5,500), 282 (5,900),
261 (8,300); sh; 2520
Methyl ethers of 3-methyl-4-hyd.roxycoumar~
The method of separation of the isomers was conducted as described
above for the methyl ethers of ~-hydroxycoumarino The 3-methyl-~-
methoxycoumarin did not crystallise from the ether on standing, and
was obtained on recrystallisation of the residue remaining after
the 2q% hydrochloric acid extractiono Colourless needles,
(mop. 43-440) were obtained on recrystallisation from light

o 0petroleum, bop. 40 -60 0 Using dry ether as developing solvent
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under the same condition as above, the mean ~ value of the
3-methyl-2-methoxychromone was 00330 It was obtained as
colourless needles, m.p. 82 - 84°, on extraction from the
chromatography plateo

Spectra of 3-methyl-4-methoxycoumarin, nom.ro spectrum in
carbon tetrachloride, 7087 (3H), 5.97 (3H), 202 - 2.9 (4H,
complex multiplet)o Ioro spectrum in chloroform, 1710, 1632,
1618,15780 Uov. spectrum, A max; 310 (7,800), 282 (10,500),

272 (11,400) 0

Spectra o~ 3-methyl-2-methoxychromone, n.m.ro spectrum in
carbon tetrachloride, 8012 (3H), 5087 (3H), 20J~- 208 OH,

complex multiplet), 1.7 - 109 (1H, complex multiplet).
Ioro spectrum in chloroform, 1630, 15650 Ioro spectrum as
Nujol mull, 1630, 157o,0 UoVo spectrum, 297 (8,400), 289 (8,400),

272 (7,500); sh; 2630
Dimethyl ethers of dicoumarol.
Dicoumarol (10200 g.) was treated with excess diazomethane (solution
in ether), and allowed to stand for 2 hourso On evaporation
of the ether, 1.274 g. of material were given. Separation on a
silica column with ether-heptane mixtures allowed the separation
of the 4, 4' -dimethyl ether(00606 g.), and the 4, 2' -dimethyl
ether (00314 go)o On extraction of the silica in the column
with methanol a further 0.070 g. of material was obtained, which
was separated on thin layer chromatography with silicaJusing ether
as developing solventJinto 3 bands. The band of lowest ~ (00025)
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was extracted, and on evaporation gave 0.006 go of a colourless
crystalline material, identified as the 2, 2' -dimethyl ether
by means of the spectra recorded beLow, Spectra of
4,4' - dimethyl ether, nomar. s ectrum, 5087 (6H), 5095 (2H),
2.2 - 209 (SH, complex multiplet)o Ioro spectrum in chloroform,
1725, 1630, 15790 UoV. spectrum, A max; 31ll- (23,600), 285
(21,300), 275 (19,400); shj 3230 Spectra of 4,2' -dimethyl
ether, nom~ro spectrum, 5083 (6H), 6008 (21-1), 202 - 2.8 (7H

complex multiplet) , 107 - 109 (1H, compLex multiplet) 0 (The
Ichemical shifts .ofthe 2 -methoxy and 4-methoxy eroups are not

separable using deuterochloroform as solvent.) Spectrum in
trifluoro-acetic acid, 6040 (2H), 6017 (3H), 5090 (3H),
202 - 208 (~I, complex multiplet) 107 - 1.9 (1H, complex multiplet)o
Ioro spectrum in chloroform, 1725, 1630, 1581, 15720
UoV. spectrum Amax; 310 (21,000), 285 (21,300),275 (19,400);
sh; 323. 2, 2' -dimethyl ether, i.r. spectrum in chloroform,
1627, 15650 U .Va spectrum, max; 289, 267..
Dicoumarol epoxide
This compound was prepared by the method of Link:3 It was twice
recrystallised from cyclohexanone, and gave colourless needleso

omopa 324 - 326 0 Nemor. spectrum in trifluoro-acetic acid,
7014 (21-1),2$2 - 2.8 (Brr, complex multiplet)o lore spectrum
as Nujol mull, 1711,1679, 1633, 16110 U.vo spectrwn in
dioXBln, ;'max; 310, 294, 264, 256; sh; 2750
4-Monomethyl ether of'Dicoumarolo
This compound was prepared from dicoumarol epoxide in the manner
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described by Link73 It was recrystallised from methanol as
ocolourless needles, mopo 172 - 174 0 N"mor. s:ectrum in

trifluoro-acetic acid, 6039 (~I), 6011 (3H)1 2.2 - 2.8 (eH,
complex multi let) 0 loro spectrum as Nujol mull, 1694, 1667,

1617, 15700 Ucv. s ectrum, >.. max·, 310 (17,900), 285 (19,400),

275 (17,100); sh; 3220 In alkali, Amax; 312, 285; shj zt«,

Benzaldehyde dicoumarol epoxide.
73Pre area by the method of' Linko liT .m.r. spectrum in trif'luoro~

a.cetic a.cid, 4095 (1H), 107 - 3.0 (13H, complex multiplet) 0

I.ro s ectrum as Nujol mull, 1730, 1719, 1669, 1610.

U oVo spectrum, A max; 289, 264, 248, 209; sh] 332, 317.

4-monomethyl ether of benzaldehyde dicoumarolo
This compound was prepared from the epoxide by the method

73described by Link for the 4-monomethyl ether of dicoumarolo On

heating, or attempting recrystallisation from alcohols, or

standing over a period of days, the compound reverted to the

epoxideo N.mor. spectrum in trifluoro-acetic acid 6025 (3H),

3083 (1H), 2.3 - 302 (13H, complex multiplet) •.

~-acetoxybenzaldehyde dicoumarol epoxideo
;e-hydroJCybenzaldehyde dicoumarol mono-ethanolate (00498 gOD

00001 mole)~ was dissovled in a 5 ~ solution of acetic anhydride

in pyridine (5 mI.)" On standing for 2 hours at room temperature

a colourless solid had separated, which was collected by

filtration, and recr.ystallised from a mixture of ethanol and

chloroform as a colourless prisms, m.p_ 35000 Yield, 7 ~
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theoreticalo C2?H2607 requires C: 71068; H: 3056.
Found, C: 71.55; H: 30700 N.mor. spectrum, 7077 (3H),
4081 (1H), 107 - 304(12H, complex mUltiplet)o I.r. s ectrum

in chloroform, 1760, 1735, 1669, 1611, 15830 DoVo spectrum,

305, (11,500), 291 (12,500), 26305 (20,300), 256 (20,000),
249 (21,900); sh; 334, 3170
~-acet0xY-£-methoxybenzaldehyde dicoumarol epoxide

~-vanillin dicournarol (00229 go, 0.0005 mole) was dissolved in

a 4~fo solution of acetic anhydride in pyridine (5 mlo)o On
standing for two days the solution was poured into watero A

white solid separated, which was filtered off, washed with waterp

and recrystallised from chloroform as colourless prisms,
281 2840.mopo -

Found, C: 69c>~.; H: 40210 Nomoro spect rua, 7079 (3H),
6019 (3H), 4.89 (1H), 302 - 303 (~{, complex multiplet),

204 - 208 (?H, complex multiplet), 108 - 201 (2H, complex

multiplet)" Ioro spectrum in chloroform, 1762, 1733, 1726,
1669,16110 u.v. spectrum, A max; 315 (15,500), 262 (24,700),
21f.7(26,00); shj 333, 307.
Dimethones.

Dimethones were prepared by boiling dime done under reflux in
50% aqueous ethanol with a one and a half fold excess of aldehyde.

They were recrystallised from aqueous etihannL, Yields. were
between 7 70 and 80% theoreticalo
Spectra of Dimethoneso

Formaldehyde dimethoneo Nom.r. s ectrum, 8092 (12H), 7074 (BR),



- 98 -

6.92 (2H), - 1..31 (2H). lor ..spectrum in chloro~orm, 1605 - 1585
(broad band)o lor. spectrum as Nujol mull, 1605 - 1585 (broad
band) , Usv , spectrum, Amax; 254 (30,000)0 In alkali, Am.ax;

285 (47,200) ..
Acetaldehyde dimethone. N.mor ..spectrum, 8.92 (12H)6 7 e79 (BH),

8048 (3H, doublet, J = 704 co/sec.) 5.77 (1H, quartet, J = 704 co/seco),

- 2..74 (1H)0 Other hydroxyl proton, very broad, centred around

..0.4.
Benzaldehyde dimethonoo Nomor. spectrum, 8085 (12H), 7463 (BH),

4056 (1H), 2083 (5H, centre of tight multiplet for protons on

phe~l group), - 0.57 (1H), - 1076 (1H)0
Salicylaldehyde dimethone. Nomoro spectrum, 9024 (6H), 9020 (3H)D

9.11 (3H), 8005 (2H), 7069 (2H), 7061 (2H), 7.49 (2H), 5.33 (1H),
2099 (4H, tight multiplet), - 0042 (1H)0 I.r. spectrum in

chkor-or'orm, 1650, 1597, 15830 tr,v, spectrum, ).max; 267 (15,900),
223 (14,900); sh; 2950 In alkali, Ama:x:; 285 (23,600);
sh ; 233.
~- dimethylaminobenzaldehyde dimethone.. Nomoro spectrum, 8.85 (12H),
7064 (6E, methyl protons of dimethylamino group), 7016 (8H), 4060 (1H)p
- 0076 (1H), - 1071 (1H)0
Dimethonengydrideso

When dimethones are dissolved in hot ethanol to which a small

quantity of concentrated hydrochloric acid has been added, loss of
water occurs between the two dimedone residues to give the ~dl1ide.
On cooling, the anhydride separates from the solution:7 The

followinB anhydrides, the n.mor. spectra of which are given below,
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were pr~pared in this way"
Formaldehyde dimethone a.nhydride0 N .moro spectrum in carbon
tetrachloride, 8.87 (12H), 7080 (4H), 7066 (4H), 6050 (2H)0

I.r. spectrum in chloroform, 1660, 16210
Acetaldehyde dimethone anhydride. N omor. spectrum, 8091
(3H, doublet, J = 6.9 co/seco), 8089 (12H), 7073 (~I), 7063 (4H),
6..32 1H, quartet, J = 609 co/seco) 0
Cinnanaldehyde dimethone anhydride.. Nom.ro spectrum in
trifluoro-acetic acid, 8090 (6H), 8079 (6H), 7051 (4ft), 7.35 (4.11),
507 (1H, doublet, J = 500 c./seco), 403 - 4.6 (1H, complex
multiplet), 205 - 301 (6H, complex multiplet).
2,2' - methylene-bis-1, 3-gylohexanedioneo

~ca
This compound was prepared by the method of King and Feltono
N.m.ro spectrum, 8004 (4H, quintet, J = 6.0 co/sec.), 7062
(8H, triplet...J = 600 co/seco) 6,,88(2H), -1064 (2H)o
lor. spectrum in chloroform, 1600 (broad)o I.ro spectrum as
Nujol mull, 1603 - 1573 (broad band) 0 Uovo spectrum, }.max;
263 (30,600); sh; 2920 In alkalij Ama.x; 282, sh; 3030
3, 3 - methylene-bis-4-hydro:xy-6-methyl- ex -pyrone
4_hydroxy-6-methyl-oc-pyrone (OQ504 go, 00004 mole) was dissolved.
in methanol (5 mlo) and formaldehyde added (as 45% w/v formalin$
1 ml ..) On standing for 7 days and dilution with water) colourless
needles were precipitated, which were filtered off and
recrystallised from aqueous methanol as colourless needles,
mopo 244-2450.. Yield, 67fothe'oreticalo .IDor"spectrum,
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lor. spectrum in chloro~orm, 1680, 1617, 15830 lor. spectrum
as Nujol mull, 1679, 1615, 15800 UaV .. spectrum, Xmax; 290
(15,200)0 In alkali, ).max; 288; sh; 2450

3,3-ethYlidene-bis-4-hydroxy-6-methyl~pyrone.

4-hydroxy-6-methyl~pyrone (0.504 go, 00004 mole) was dissolved

in 33% aqueous ethanol (j5 mlo) and a two ~old excess o~
acetaldehyde added. The mixture was boiled under reflux for
30 minutes, and the solvent removed under vacuoo The residue
Was recrystallised from aqueous methanol as colourless needles,

m sp , 147-148°0 Yield 41% theoreticalo G14H1406 requires
0; 60.43; H: 50070 Found, C: 60.19; H: 5002.

Nom.ro spectrum, 8030 (3R, doublet, J = 7~2 co/seco), 7075 (6H),

5~59 (1H, quartet, J = 702 co/sec.), 4.00 (2H), - 1022 (2H)o

roro spectrum in chloroform, 1681, 1517, 1573.

Amax; 290 (15,900)0 In alkali, ~max; 288.

3.3-benzylidene-bis-4-hydroxy-6-methYl-~pyrone

U.Vo spectrum,

This compound was prepared by the method above ~or the 3,3-ethylidene-

bis-4-hydroxy-6-methyl..q...pyrone, only using a two fold excess of

benzaldehyde in place of the acetaldehyde.. The product was

rec~stallised ~rom aqueous methanol as colourless prisms,
208 21000mopo - Yield, 3~~ theoreticalo

C: 67005; H: 4075. Found, G: 67015; H: 4.81 ..

N~mor. spectrum, 7071 (3H), 4019 (1H), 3091 (2H), 2072 (5H, tight
multiplet), - 0091 (2H)o I.r. spectrum in chloroform, 1683, 1616,
1572 .. I.ro spectrum as Nujol mull, 1680, 1623, 15750

UoVo spectrum, ~max; 290 (16,200).. In alkali, ~max; 2870
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3-aQetyl-4-hydroxycoumarin and 4-acetoxycoumarino
These oompounds were prepared from 4-hydro~coumarin and
acetyl chloride by the method of Arakawao~
3-acetyl-4-hydroxycoumarin was rec~stallised from ethanol as

oyellow needles, mo,. 134-135 • (The crystals sintered a~ 115°).
Nom.r. s ectrum, 7018 (3H), 107 - 2.7 (4H, complex multiplet),
- 8029 (1H)0 I.ro spectrum in chloroform, 1720, 1615 15490
I.r. spectrum as Nujol mull, 1720, 1615, 1549. UoVo spectrum,
~max; 325 (13,700), 302 (19,200); sn; 2900 In alkali,
}max; 300. UoV. spectrum in light petroleum, sop. 4-0-'0°
~max; 337 (13,700),326 (15,600),302 (18,700),289 (15,BOO)o
4--aceto~coumarin was rec~stallised from a mixture of benzene
and li~ht petroleum, bopo '0_80° as fine colourless needles,
mo,.105-10'0. N.m.r. spectrum, 7.50 (3H), 302' (1H),

I.r. spectrum in chloreform,
1790, 1728, 1628, 1610, 1572. U.Vo spectrum, Xmax; 310
(3,200), 270 (5,600); SA; 280.
3-formyl-4--hydroxycoumarino
This compound was prepared gy two methodso
a) The method of Ziegler and Ma.ie:JS'wasadapted, Ii, Ii-

dimethylformamide dried over m~lecular sieve, (grade 31) was used
in plaoe of the ~-methyl-~-phenylformamide, in equimolar
quantitieso The reaotion mixture was warmed and stirred£or.
2 hours, when 4.5 go of 4--hydro~coumarin separated, and were
removed by filtrationo On dilution of the filtrate with water,
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00500 go of 3-fo~1-4-hydroxycoumarin dicoumarol were
obtained as microcrystalline material, m sp ,> 330° •
On separating the 3-formyl-4-hydroxycoumarin by extraction
of the remaining solution with chloroform, and recrystallisation
the residue remaining after the evaporation of the chloroform
from cyclohexane, 3-formyl-4-hydroxycoumarin (00138 go) was
obtained as yellow needles, m.po 134-13600 Calc. for

c. 63016; H: 3018.. Found, C: 63049; H: 3..380
. <33The method of Checchio The 3-formyl-4-hydroxycoumarin was

recrystallised from cyclohexane as aboveo Calc. for
C10H604, C: 63016; H: 3.18" Found, C: 63041; H: 30360

N.m"ro spectrum, 1.7 - 207 (4H, complex multiplet), - 0.21 (1H),
- 2000 (1H) 0 Ioro spectrum in chloroform, 1733, 1641, 1628.
1568. UoVo spectrum, Ama.."C;304 (13,700); sh; 345,283,2700

In alkali, "max; 3010 Uvv , spectrum in light petroleum,
bop.400-600, A max; 348 (11,300),334 (12,400), 304 (16,100),
293 (12,600); sh; 3200

3-forsYl-4-hydr0xycoumarin dicoumarol.
This compound was obtained as above as a bi roduct in the
preparation of 3-f'o~1-4-hydroxycoumarin. N omor. spectrum in
trti'luoro-acetic acid, 4.96 (1H), 2.0 - 303 (12H, complex
multiplet) • I.r. spectrum as Nujol mull, 1728, 1694, 1669,
1610, 15700 U.Vo spectrum, >.max; 312, 268, 248; shj 335$
2400 In alkali, .>.max; 297,269$ 238; sh; 355,2470
a-forsrldimedoneo

100This compound was prepared by the method of Akehurst and Bartels-Keith
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Nomor. spectrum, 8088 (6H), 7061 (2H), 7040 (2H), 0020 (1H),
- 5060 (1H)0 I.ro spectrum in chloroform, 1671, 1630, 1589.
U.vo spectrum, Amax; 274, 23.3. In alkali, ).max; 272,
258; sh; ?430
2-formyldimedone dimethoneo

This compound was obtained as a biproduct from the reaction
100

above as described by Akehurst and Bartels-Keitho

N.m.ro spectrum, 9003 (6H), 8.99 (6H), 8088 (6H), 7097 (2H),
7072 (4H), 7.64 (2H), 7052 (4H), 5058 (1H), - 0003 (1H)q
I.ro spectrum in chloroform, 1660, 1643, 16190 U.Vo spectrum,
>.max; 236 (20,800); sh; 330, 3100 In alkali, A max;
282 (16,500), 238 (21,500); sh; 320, 2560
3-formyl-4-hydroxycoumarin dimethoneo

3-formyl-4-hydroxycoumarin (00190 go, 0.001 mole) was boiled
under reflux in 4 ,/0 aqueous ethanol (10 mlo) with dimedone
(a one and a half molar excess) for 10 minuteso The produot,
which separated on cooling, was recrystallised from ethanol as
a colourless microorystalline material, mopo 221 (cl)o

Yield, 6Q% theoretical. C26H2606 requires C: 71.87;
H: 60030 Found, C: 71051; H: 5089. Nomoro s ectrum,
8093 (6H)D 8087 (6H)~ 7067 (4H), 7.43 (4H)~ 5014 (1H),
202 - 208 (3H, oomplex multiplet), 107 - 109 (1H~ complex
multiplet), - 0058 (1H)o Iore s ectrum in chloroform,
1700, 1660, 1641~ 1623, 1573,. U.Vo spect.rum, Amax;
312 (14,800),286 (13,000),236 (19,700); sh; 270,2600
In alkali, "max; 308; sh; 290, 2.330
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2-formyldimedo e dicoumarol.
2-fo~ldimedone (00168 go, 00001 mole) was boiled under reflux
in ethanol (10 mI.) with '4-hydroxycoumarin (00324 go, 00002 mole)
for 2 hourso On cooling a solid separated, which was obtained
by filtration and recrystallised from ethanol as colourless
needles, mop. 257 Cd)o Yield, 45% theoretical,C2iH2007 requires
C: 71.04; H: 40420 FoundC: 71,,00; H: 4-390
N.mor. spectrum, 8087 (3H), 8082 (3H), 7057 (2H), 7024 (2H),

4094 (1H), 1.7 - 207 (8H, complex multiplet), - 0023 (1H)o
Ioro spectrum, 1728, 1669, 1657, 1622, 16101 15700

Uovo spectrum, >.max; 307 (16,300), 260 (23,t.·00);

269, 2520 In alkali, ~ max; 293, 259, 238; shj

sh; 328, 292,
360, 3050

2-~-hydr03lbenzYlidine- 2.4-diketochromano

2..1This compound was prepared by the method of Linko Calc. for
C1,6H1004' C: 72018; H: 3079. Found, C: 72005; H: 3077.0
N .m.r. spectrum, 2.2 - 3.2 (BR, com lex multi let), 2000 (1H),
- 1070 (1H)o Ioro s ectrum as Nujol mull$ 1720j 1630, 1610R

1592,15670 UoV. 5 ectrum, ~max; 326 (10,300),289 (13,800),
241 (8,300); sh j 2580 In alkali, ~max; 307, sh; 290, 2400
Acetyl derivative 0 3-.2-hydroxybenzylidene-2,4-diketochroman
(00266 g., 0,,001mole) was boiled under reflux in acetic
anhydri.d.e(5mI.) for 2 hours 0 The resulting solution was then
poured into water (100 mlo) and allowed to stando The
precipitate which formed was filtered off, and recrystallised
from aqueous ethanol as colourless risms, mop. 125-12600

Yield, 8~~ theoreticalo C1BH1205 requires c: 70013;
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H: 3092. Found, C: 70012; H: 30830 N om.ro spectrum,
7099 (3H), 202 - 208 (BR, complex multiplet), 1.72 (1H)o
Ioro s ectrum as ujol mull, 1763, 1719, 1660, 1616, 1602, 15620
u.v. spectrum, A max; 297 (16,600); sh; 337, 255, 2430
Dimedone addition product.. 3-..2-hydroxybenzylidene-2,4-diketochroman
(00266 go, 0.001 mole) was boiled under reflux in ethanol (15 mlo)
with dimedone (0..140 go, 00001 mole) for 20 hourso On cooling,
colourless needles separated, m, 0 252 (d). Yield, 6~
theoretical.. C~H2005 requires c: 74021; H: 50190
Found, C: 74.10; H: 50170 N.moro spectrum, 8097 (~{),

com lex multiplet), 1..7 - 109 (1H, complex multi let), - 0010 (1H)..
I er , spectrum as Nujol mull, 1672, 1640, 1625, 1609, 1583, 15690
I.ro spectrum in chloroform, 1711, 1646, 1623, 1572.
u.v. spectrum, A max; 308 (16,800),284 (16,lI-00), 273 (16,.500);
shj 323, 3200 In alkali, ~max; 303; sh; 2930
4-hydr03Ycarbostyril addition producto 3-,2-hydroxybenzyl-2,4-
diketochroman (00266 go, 00001 mole) was boiled under re lux in
ethanol (18 mlo) ith 4-hydroxycar ostyril 00161 go, 00001 mole)
for 24 hourso On cooling and filterin , an arnorhous solid was
obtained which ~as rec~stallised from benzyl alcohol as
colourless microcrystalline material, mop. 295 - 2970 C2~1505
requires C: 73034; H: 3069; No 30420 Found, c: 73005;
H: 3085; N: 30120 N.m.ro spectrum in trifluoro-acetic acid,
4073 (1H), 201 - 3.6 (12H, com lex multiplet) 0 I.ro s ectrum
as Nujol mull, 1689, 1634, 1646, 1611, 1590, 1577, 15600
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uovo spectrum, ~max;
In alkali, "max; 303;

318, 292, 267; sh; 335, 300, 2580
sh; 335, 318, 2550

3-(2-hyfu·oxy.3-methoxybenzylidene)-2,4-diketochromano
4-hydroxycoumarin (1062 go, Oq01 mole) and £-vanillin (1042 go,

0001 mole) were boiled under reflux in ethanol (20 mlo) for
10 minutes. A solid se arated on cooling, which was filtered
off and recrystallised from an ethanol-chloroform mixture as

feathery yellow needles, m" • 200 - 20100 Yield, 30;6 theoreticalo
C17012HS requires C: 68091; H: 40080 Found, Cr 69003;
H: 40190 The compound was insoluble in chloroform and
decom osed y trifluoro-acetic acido lor" spectrum as Nujol
mulll 17201 1631, 1614, 1597, 15790 UoVo spectrum, ~ma.x; 308"
288; shj 265" 2430 In alkaliJAmax; 308; shj 2910
cetyl derivative. The above compound (00592 go, 000002 mole)

was dissovled in 40% acetic anhydride-pyridine solution (10 mlo)
and allowed to stand for 3 minutes. ~he solution was poured
into water" and the precipitate collected by filtration, dr i.ed,
and twice recrystallised from ethanol as pale yellow needles,
mo 0 151-1520, after treatment with animal charcoal" Yield,
55% theoretical. C19H1406 requires C: 67045; H: 4016.
Foundg C: 66A97, H: 4.08. Nomoro spectrum, 8000 (3H)"
6008 (3H), 202 - 300 (?H, complex multi let). 1096 (1H)"
lor" spectrum as Nujol mull, 1758, 1742, 1672, 1613, 1580,
UoVo s ectrum, Amax; 310 (20,200)" 252 (151/100)0
Dimedone addition producto The above compound (00296 go, 00001 mole)
was boiled under reflux with dimedone (00140 go, 00001 mole) in
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ethanol (10 mlo) for 5 hourso On cooling, a colourless
precipitate formed, which was filtered off and recrystallised

from ethanol as colourless needles, mo. 2L.-7 (d). Yield

50//0theoreticalo C25H2206 requires c: 71076; H: 5.300
Found, c: 71016; H: 50090 N.mor ..s ectrum, B097 (3H), B.B8 (3H),

7065 (2H)" 7.34 (2H), 6011 OH), 4095 (1H),202 - 3.5 (6H, complex

multi let), 107 - 1.9 11H, com lex multiplet), - 100 (1H) ..

1.1'. spectrum in chloroform, 1704, 1608, 15750 lor. spectrum

as Nujol mull, 1672, 16L.-O, 1621, 1610, 1584. U ..v. spectrum,

~max; 312 (1B,400), 274 (17,500); sh; 328,300,2830

In alkali, Amax; 311; sh; 2800

.?-2'-hydroxy-11-naphthylidene-2,4-diketochroman

1-formyl-2-hydroxynaphthalene (3.44 g., 0.02 mole) and
4-hydroxycoumarin (3024 g., 0002 mole) were dissolved in ethanol

(50 mlo). The solution was boiled under reflux for 1 minute,

after which time the product began to separateo On cooling and

filtration, the yellow feathe~ crystals of the diketochroman

Yield, 75% theoretical.

C20H1204 requires c: 75.94; H: 3082. Found, C: 76001;
H: 40000 1.1'. spectrum as Nujol mull, 1702, 1624, 1597, 15670

U.v. spectrum,Amax; 357,319,257; sh; 32B, 280,264,2510

In alkali, ~max; 292, sh; 350, 309, 263, 257, 2500
cetyl derivativeo The above compound (0.632 go, 0.002 mole)

was suspended in pyridine (5 0110) and acetyl chloride ( 1mlo)

addedo After two hours the reaction mixture was poured into
water" c~stallisation of the acetyl compound occurring at once ..
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The product was recrystallised from cyclohexanone as yellow
oneedles, mopo 225-229. Yield, 6q% theoretical. C~1405

requires c: 73.74; H: 3094. Found, c: 73.57; H: 4.140
Nom.r. spectrum, 7.97 (3H), 1.5 - 2.7 (1OH, complex multiplet),
0086 (1H). Ior. spectrum as Nujol mull, 1760, 1722, 1663, 1604,
1561. u,v, spectrum, Amax; 380 (12,100),260 (15,900);
ah; 3330
Dimedone derivative. This diketochroman was found not to reaot
with dimedone to an a preciable extent under the same conditions
as those in which other diketochromans reactedo

2-(£-hydroxybenzylidene)-4-keto-6-methyl-3,4-dihydro-~-pyrone.
4-hydroxy-6-methyl~-pyrone (0.126 go, 0.001 mole) was boiled
under reflux in ethanol (10 mI.) with salicylaldehyde (0.112 g.,
0.001 mole) for 10 minuteso On standing, the product separated
as orange-yellow prisms, mo,o 149-150°. Yield, 7~ theoretical.
C1f1004 requires C:: 67.82; H: 4.380 Found, c. 67.43;
H: 4046. N.mor. s,ectrum, 7076 (3H), 3.05 (1H, 5-proton),
2.2 - 209 (4H, complex multiplet), 1043 (1H, benzylidene proton)
- 5069 (1H)0 I.r. spectrum in chloroform, 1728, 1608, 1590.
I.ro spectrum.aa Nujol mull, 1727, 1603, 1581. UoVo spectrum
Amax; 353 (13,900),301 (10,000); sh; 397, 335, 246.
In alkali, Amax; 361, 293; sh; 3250
~cetyl derivative. This compound did not give a stable acetyl
derivative when treated with ) boiling aoetio anhydride,
b) acetyl chloride in pyridine, c) aoetio anhydride in pyridine.
In all the reactions tried the compound remained unreaotive,
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though with acetyl chloride and pyridine an intractable tar
was obtained on standing for a long period at room temperature.
Dimedone derivative. The above compound (00115 ,., 000005 mole)
wa~ dissolved in hot ethanol (5 ml.) and boiled under reflux with
dimedone (00140 g., 00001 mole) for 6 hours. On cooling and
addition of water to the solution, a colourless material
separatedo This material was filtered off, and recr,ystallised

ofrom aqueous ethanol as colourless prisms, m.p. 241-~·3 e>
Yield, 51% theoreticalo C21H2005 requires C: 71058; H: 5072.
Found, c. 72020; H: 5097. Nom.ro spectrum, 8.94 (3H),

8.87 (3H), 7094 OH, 6-methyl group ofO(-pyrone residue), 7074 (2H),
7.67 (2H), 5006 (1H), 4.14 (1H, 5-proton of~-pyrone residue)p
2096 (4rI,tight multiplet), - 0.42 (1H)
4-!ydroxr-6-metAY1-~!YT0ne addition product.
4whydroxy-6-methyl-~,yrone (1026 ~., 0001 mole) and
salicylaldehyde (1.12 ,., 0.01 mole) were boiled under reflux in
ethanol (10 ml.) for two hourse> The resulting precipitate was
filtered off and recr,ystallised from benzyl alcohol as a colourless,
microcrystalline solid, m.,o 267 (d). Yieldi 8q% theoretical,
C1~1406 requires C: 67.4-5; H: 4.170 Found, C: 67.00;
H: 4-028. N.m.r. spectrum in trifluoro-acetic acid, 7.72 (3H),

complex multiplet). On formation of this compound a moleoule
of water is lost between the hydroxyl group of the salicylaldehyde
residue and the hydroxyl ~roup of one of the (){-pyronere.sd.dues,
(The same reaction occurs on formation of salicylaldehyde
diooumarol. )
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For this reason the n.moro spectrum shows the 5-proton and
5' -proton, the 6-methyl grou and the 6' -methyl group,
are in different chemioal environmentso I.ro spectrum as
Nujol mull, 1670, 1615, 1'572. u,v, spectrum.,Amax; 299, 260;
sh; 282, 274. In alkali, Amax; 380, 265; sh; 317, 305.
)-(2t-hYdro;v-3'-methoxybenzylidene)-4-keto-6-methyl-3,4-dihyaro '-pyrone.
4-hydroxy-6-met~l~-pyrone (00252 g., 0.002 mole) and £-vanillin,
(00284 g., 0.002 mole) were dissolved in 50% aqueous ethanol (10 mlo)
and allowed to stand for 24 hours. The'product, which had
separated, was filtered under suction and recrystallised from an

oethanol-chloroform mixture as yellow needles, mo,. 170-171 0

Yield, 71% theoretical. C14H1205 requires G: 64061; H: 4065.
Found, c: 64.46; H: 4.680 N.m.r. spectrum, 7076 (3H), 6.05 (3H),

2099 (1H, 5-proton of ex -pyrone ring), 2.80 OH, tight multi let)~
1042 (1H, benzylidene proton), - 5.73 (1H). lor. spectrum in
chloroform, 1728, 1600 (broad band) 0 U .Vo spectrum, ).ma.x; 345
(9,800),254 (5,100); sh; 397. In alkali,Amax; 359, 296;
sh; 254.
Dimedone addition product. The above compound (00260 Co, 00001 mole)
was boiled under reflux with dimedone (0.140 go~ 00001 mole) in
ethanol (10 ml.) for 24 hourso The resulting precipitate was
filtered off and recrystallised from an ethanol-chloroform
mixture, as colourless needles, n.,. 239-241°. N.moro spectrua~
8.99 (3H), 8.92 (3H), 7.94 (3H)~ 7070 (2H), 7.41 (2H), 6014
(3H, protons of methoxy grou,) 5009 (1H), 4.13 (1H)~ 209 - 302
(3H, complex multiplet), - 0041 (1H). UoVo spectrum, ~max;
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301 (14,600),280 (10,900)0 In alkali, A max; 302, 2820

j-(2,3-dihydr0?CYbenzYlldene)-2,4-diketo-3,4-dihio,.eI-«-pyroneo

4-hydroxy-6-methyl -,yr~ne (0.252 go, 00002 mole) was dissolved

in ethanol (10 mlo) and 2, 3-dihydroxybenzaldehyde (90276 go~

00002 mole) added. The product crystallised from the reaction

mixture after 2 days as yellow needles, mopo 229°(d)0

Yield, 51% theoreticalo G13H1005 requires C: 63041; H: 40090
Found, C: 63015; H: 30960 UoVo spectrum, >-.ma.x;351 (a,ooo),
2'1 (8,500); sh; 39'0 In alka.li, Ama:x; 357, 326, 287;

sh ; 238.
Acetyl derivative The agove compound (0.147 go, 000006 mole)

was boiled under reflux'in acetic anhydride (3 mlo) for 30

minutes. On cooling and decomposition of excess acetic
anhydride witk water, tae produat separated. It was o0lleoted

by filtration and rec~stalli8ed from an ethanol-chloroform

mixture as !tale yellow needles, lllo'o172-174°. Yield, 64%,
theoretical C15H1206 requires C: 62050; H: 40200
Found, C: 62045; R: 4.1'0 Nomoro spectrum, 7075 (3H),
7059 (3H), 3.04 (1H), 2.4 - 2.8 (3R, complex multiplet),

1:040 (1H), 5078 (1H) 0 I.r. spectrum in chloroform,

1776, 1746, 1617, 1591. U.v. spectrum, Ama.x; 352 (19,500),

270 (4,500); sh; 395" 360, 342, 305, 257. In alkall,Amax;

357, 325, 282; BA; 240.

Oxidation of 3-~-hydroxYbenzylidene-2.4-diketochromano
This oompound (00266 go, 00001 mole) was boiled under reflux in

ohloroform (10 mlo) with aotivated manganese dioxida (00087 ,.)
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for 3 hours ° Filtration of the rea~tion mixture thrQugh
Kieselguhr, and evaporation of the ~hloroform yielded starti~
material, m.po 173-174°0 Yield, 95% theoretieal
Reduction of 3-o-~yaro;ybenzylidene-214-diketoehroman.
~his compound (00512 1o, 00002 mole) was suspended with 10.%
palladium ~n charooal (00001 '0) in ethanel (20 ml.)o The
mixture was shaken under an atmos here of hydrogen for 24 hours,
by which time hydrogen uptake had ceased at 1 mole of hydro en
,er mcle of starting material, and the yellow colour of the
starti~ material had disappearedo The reaation mixture was

filtered tkrough Kiesel~uhr, and the alcohol evaporated to
yield a colourless producto The product was recrystallised
from aqueous ethanol as coleurless prisms, mop. 229-2310

H: 4051. FOJ1D..d, C: 71028;
mull, 1G60, 1620, 1604, 15730

H: 40500 I.r. spectrum as Nujol
Uov. spectrum, ~max; 323 (8,700),

309 (13,000), 284 (12,900), 273 (12,700); sh; 318, 297.
In alkali, ~ma.x; 313; SR; 292, 281, 242:.
Diacetyl derivatiTe" The above product (0.100 1:0) was boiled
under reflux for 1 hour in acetio anhydride (2 mlo) and the
reaction mixture poured into water. Th8 product, which
separated, was recrystallised from aqueous ethanol as eolourles8

°needles, m.,. 151-153 0 C2<fi160G requires C: 68.18;
H: 4.580 Found, C: '7077; H: 4058. N.moro speetrum,
70'5 OH), 70'4 (3H), 6011 (2H), 2.3 - 2.9 (411,comJllexmulti~let).
Ior. speatrum as Nujol muli, 1777, 1750, 1714, 1634, 1'11, 15770
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UoVe spectrum, A max:;313, (11,200),275 (18,200); shj 2830
ReductiQn of 3-~-hydroxybenzYlidene-2.4-diketo-3.4-dihydr0-~-pyrone9
This reductiGn was carried out in the same manner as that of the
3-~-hydrox.ybenzylidene-2,4-diketochroman above. 1 mole of
~drogen per mole of compound was taken up after 24 hourse The
produot was washed with ohloroform and recrystallised fr0IDaqueous

oethanol as colQurless ,lates, mo,o 173-177 0 G13H1204 requires
c: 67023; H: 5.210 Found, G: '7.53; H: 50440
I.r. spectrum as Nujol mull, 1665, 1633, 1609, 15'40
u,v. spectrum, "max; 291 (7,500); sh; 281, 2730 In alkali, ~ma.x;
283; sh; 292, 2750
Diacetyl derivativeo Prepared in an analQ~ous manner to the
diacetyl derivative above, it was obtained from aqueous ethanol
as cGlourless needles, m.p. 80-81°. Yield, 47.%theoreticalo
G1~1606 requires c: 64055; H: 5.10. Found, C: '4.11;
H: 5.21. N.m.r. spectrum, 7090 (3H), 7078 (3H), 7.70 (3H),
'.32 (2H), 4005 (1H), 20B - 2.9 (4H, complex multiplet)o
r,», spectrum in chloroform, 17'5, 1716, 1,654,15920
tr,v, spectrum, Ama:x; 297 (7,700)0
Oxidation of Dicoumarelo
DicoUDlarol was found to be inert to the following oxidisin agents
when suspended in contact with their aqueous solutions at room
temperature. a) Ferric chloride, b) thallic oxide,
c) alkaline potassium ferricyanideo

Dicoumarol (0.33' g., 00001 mole) was suspended in aeric ammonium
nitrate solution (total quantity of ceric ammonium nitrate
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e~uivalent to dieoumarol as 2 electron oxidising agent and tAli

mixturs stirred f'or 24 hcuz-s, On f'iltration, diQoumarol

(0.168 g., 0.0005 mole) was obtained. The solution was

extraeted with ether, and on eTa oration of the ether an oil

was given which had a amelI 0f' salicyl derivatives, but was not

a single compound.

Reaction at acetone and 4-hydroxycoumarino
4-~droxycoumarin and aoetone were heated together in a sealed

otube a.t 140 for 24 hours. The only compounds that could be

identified frem the resulting solution were unreacted

4...byd.roxycoumarin, and the addition products of 4-hydroxyaoumarin

and mesityl oxideo

Reaction of benzaldehyde dicoumarol ani H-bromosuocinimidet
No reaction occurred when benzalde~de dicoumarol was boiled under

reflux in carbon tetrachloride with an equivalent o£

n-bromosuccinimideo
Reaction of ethYl magnesium bromide and 3-acetyl-4-hydroxycoumarint

On hydrolysis of the products of the reaction of 2 equivalents ethyl

magnesium bromide and 3-acetyl-4-hydroxycoumarin in ether, only

starting material was obtainedo

Measurement of'Pka Valueso

The following tables of' data were prepared from spectra obtained

on a Carey UoVo recording spectrophotometer. Buffers were 0.1 molar,

and the temperature at whioh the investi,ation was carried out was

210. The metlt0J.dof oalculation was that described by Albert
rot

and Serjeanto Owing to the extreme insolubility of the dicoumarols
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in acidic solutions, pKa,values were obtained using a

0-0.1 O.D. slide wire.

Solubility of acetaldehyde dicoumarol.

Acetaldehyde dicoumarol was added to a series of buffers, and

the solid allowed to equilibrate with its solution in a
oconstant temperature bath at 21 • The buffers were 0.01 molar,

made up in 001 molar sodium chloride solutiono The solubility

was estimated spectrophotometrioally, using the wavelength

289 mu, an isosbestic point for the dissociation of the

molecule into its mono-aniono Using the method of
101

calculation of Albert and Serjeant an approximate pKa value

of 2.6 was obtainedo The solubility of the neutral molecule

was found to be 6 x 10-6 molar under these conditionso

Dicoumarol itself was found to be too insol ble for an

accurate determination of its pKa10 The value is probably

between 3~7 and 401 pKa unitso
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Biochemistry Sectiono

Mitochondria were prepared from fresh beef heart by the

Nagarse proteinase method.1 02 O:xygen uptake was followed

by means of a Clark Electrode coupled to a pen recordero

The medium used had the following composition. Tris base

(001 molar buffered to pH 7.6 by addition of hydrochloric

acid) sucrose (0025 mOlar), inorganic orthophosphate (0001 molar),

magnesium chloride (0.006 molar). Mitochondria were added

to the medium in the cell compartment (thermostated to 300)
with substrate (000027 molar glutamate and 000027 molar
malate in the cell) and on allowing time for the system to

settle (about 2 minutes) test substances were addedo

Changes in rate of oxygen uptake were determined from the
pen recorder traces. The respiratory control of the
mitochondria was found to be between 4 and 80 Protein was

estimated by the Biuret method.104 Graphs were plotted

of the concentration of uncoupler against the rate of

oxygen uptake, the concent r-atLon of oxygen per m.L, of

medium was taken to be 00465 pogo atoms, as given by
Haslam.105 Some of the graphs obtained are given in the

Dis ussion Sectiono
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Alkali soluble test compounds were added in sodium

hydroxide solution (minimum volume of 00002 molar sodium

hydroxide to give solubility, followed by dilution with
water to stated volumeo) 4-methoxycoumarin and

4-acetoxycoumarin were added in alcohol solution, a

correction being made for the small uncoupling effect of
the alcohol from "blank" runs ..

The activities of the compounds are recorded in the tables

overleaf, and the significance of the column headings are
described in the Discussion Section, (See Diagram XXXVIII)
Both 4-acetoxycoumarin and 4-methoxycoumarin were found to

show a small amount of uncoupling activity at relatively
large concentrationso

-45 x 10 molar 4-acetoxycoumarin
gave a rate of respiration 2~fo of the maximum rate induced

by dicoumarol, and 10-3 molar 4-methoxycoumarin gave a

rate of 30% on the same basiso
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Activity of Dicoumarolso

Parent carbonyl compound A. C D E CoVe

formaldehyde 1000 0.71 109 2088 0078 0

acetaldehyde 0075 0.92 201 2.11 102

propionaldehyde 0076 1062 205 1021 2..2

:e.....tolualdehyde 11)02 0..49 100 1096 0..54-

~-methoxybenzaldehyde 0097 0068 103 1..4-9 0 ..69 5

E-chlorobenzaldehyde 0087 0.086 104 1000 1.1 10

benzaldehyde 0065 106 208 0099 206 20

E-nitrobenzaldehyde 0..57 105 2.3 0078 209 20

E-dimethylaminobenzaldehyde 0473 200 307 1..23 3..1 35

E~hydroxybenzaldehyde Inactive at 10"'3 molar 25

,£-vanillin 0046 307 504 0..54 897

salioylaldehyde 0071 2.2 403 1000 306
ethyl glyoxylate 0..79 14 21 01184 20

pyruvic acid Inactive at 10-3 molar

C.Vo Coagulation valency, see page 70.
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Activit;y:of other comEounds testedo

Compound A B C D E

coum-pyr 1008 102 3.6 2090 103

acetaldehyde bis-«-pyrone Inactive at 10-3 molar

warfarin 0088 69 100 0 ..64 88

eoum-sal .. 0055 10 18 1",23 21

4~monomethyl ether of dicoumarol 0069 36 68 0..81 59

3-phenyl-4-hydroxycoumarin

85
56
115
60

4-hydroxycoumarin

3-methyl-4-hydroxycoumarin
4-hydroxyearbostyriD

~~methyl-4-hydroxycarbostyril
4~hydroxy-6-methyl~-pyrone

Inactive at 5 x 10",:,3molar
Inactive at 10-3 molar

coum-pyr, is 3-methylene~(31 ,4'-hydroxycoumariQYl)-4-hydroxy-

6-methyl~pyrone (diagram XXX)o

acetaldehyde bis~-pyrone, is 3,3f"'ethylidene bis-4-hydroxy-

6-methyl-~-pyroneo
coum-sal, is 3_£_hydroxybenzylidene-2,4-diketochromano
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SUMMARY.
'Pre'\J'~
LAnalysis o~ the icr. and UoVo spectra o~ dicouroarol (a power~ul

anticoagulant and uncoupler o~ oxidative phospho~lation) has
failed to establish the detailed structure of the moleculeo
In this thesis the ioro and UoVo spectra o~ dicoumarol and its

derivatives have been re~examined~ and with the additional data
available from namoro spectroscopy the structure of the molecule

has been found to be the hydrogen bonded structure below.

H, C
". 0:::- .

The pKa values of dicoumarols have been shmvn to be consistent

with this formulation.

Other compounds (such as dimethones and 4-hydroxy-6-methyl~~pyrones)

have been shown to have a similar structureo The tautomerism
of dime done has been investigated by nDmOr ..spectroscopy ~ and

interpreted in terms o~ an equilibrium between keto~ enol and

enol dimersl the last mentioned involving hydrogen bonding between
the hydroxyl protons and carbonyl groups of two enol tautomerso
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A number of coumarin derivatives have been added to respiring

beef heart mitochondria and variations in the rate of respiration

of the mitochondria with changing concentration of coumarin noted
o

On the basis of the mode of interaction of the compound and
the mitochondria, the compounds tested may be divided into three
olasses, a) those that uncouple and inhibit b) those that
only uncouple, and c) those that are ~nactiveo All compounds
in the class a) are capable of intramolecular hydrogen bonding
in which the hydrogen bonded hydroxyl proton and the carbonyl
group to which it is bonded form part of an 8-membered ringo

Those of the class b) are able to form only intermolecular
hydrogen bondso The mechanism of action of these compounds is
consistent with their action at two different sites in the
energy-linked oxidation reactions of respiring mitochondriao

A comparison of the activity of the compounds as uncouplers and
inhibitors of oxidative phospho~lation with their activity as
anticoagulants suggests there may well be a connection between

the two processes, though the present state of knowledge
does not permit any common mechanism to be put forwardo



COMPOUND INDEX
(Figures in parentheses refer to the Experimental Section).
3-£- Acetoxybenzal-4-acetoxycoumarin; 43, (112), XXI •
.!- Acetoxybenzaldehyde ciiooumarol epoxide; 43, (96).
3-£- Acetoxybenzal-4-acetoxy-6-methyl- -pyrone; 47, (113).
~ Acetoxycoumarin; 43, (101, 121)0
s: AcetoXY-,,2""'ID.ethoocybenzaldehydedicoumarol epoxide; (97).
3- Acetyl-4-hydroxycoumarin; 23, (101, 114) VIII.

~enzaldehyde diooumarol epoxide; (96).
3,3'~ Benzylidene-bis-4-hydroxy-6-methyl~-pyrone; 39, (100)0

Chromone; (79).
Coumarin; (80).

Dehydracetic acid, 23, (74).
Dicouroarols:

acetaldehyde; 34, 38, (81, 82, 85, 115, 117).
benzaldehyde; 34,59,68, (81, 82, 85, 114,117).
!-chlorQbenzaldehyde; 69,71, (82, 83,86)0
z-dimethylaminobenzaldehyde; 37, 69, (82, 83, 86).
ethyl glyoxalatej 2, 6, 38, (74, 117).
formaldehyde; 2, 5, 7, 17, 20, 32-35, 58, 64, 65-71,
(74, 113, 115, 117), II, III, XV, XVI, XXXVI.
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2-formyldimedone; 36, (104), XVIIo
3-formyl-J;..-hydroxycoumarln;(102).
!-hydroxybenzaldehyde; 71, (81, 82, 85)0
~-methoxybenzaldehyde; 65,69, (82, 83,86), XXXVII.
E-nitrobenzaldehyde; 34,69,71, (82,83, 86)0

propionaldehyde; 68, (81,82,85).
pyruvic acid; 69, (84).
salicylaldehyde; 9, (81, 82, 85) 0

!-tolualdehyde; 69, (82, 83, 86) •
o-vanillin· (S1, 82, 85) 0- ,
.!-vanillin; (82, 83, 86)•

Dicoumarol epoxide; 36, (95).
2,3- Dihydroxybenzaldehyde; 22, (75).
3- (2,3-Dihydroxybenzylidene)-4-keto-3,4-dihydro~-pyrone; 46, (111):

acetyl derivative, 4Q, (111).
Dimedone; 12-13,24-27, (75-77,118), IX, XXXIX, XL.
Dimethones:

acetaldehyde; 27,63, (97-98, 119).
benzaldehyde; 27, (97-98, 119)0
!-dimethylaminobenzaldehydei 37, (97-98).
formaldehyde; 12, 27,63, (97-98j 119), X.
2-formyldimedone; 29, 63, (103, 118), XII.
3-formyl-4-hydrGxyooumarin; 63, (103,116)0
salicylaldehyde, 30, 31, 63, (97-98,118), XIII.
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Dimethone anhydrides:
"acetaldehyde; 28, (98-99).
ainnamaldehyde; 28, (98-99)0
formaldehyde; 28,31, (98-99), IX.

Dimethyl ethers of dicoumarol: 8,33,61, (94).

3,31- Ethylidene-bis-4-hydroxy-6-methyl~-pyrone; 39,70, (100).

w- FormylacetophenQne; (79).
2- Formyldimedone; 23, (102).
3- Formyl-4-hydroxycoumarin; 23, 61, (101).
1- For~1-2-hydroxynaphthalene; 22, (75).

3-,2-Hydroxybenzal-4-hydrox:ycoumarin; 43, (112).
3-£- Hydroxybenzal-~-hydroxy-6-metnyl~-pyrone; 47, (113).
3-~- Hydroxybenzylidene-2,4-diketochroman; 9, 40-45, 70,

(111,114), VI, XIX:

acetyl derivative; 42-43, (104), XX:
dimedone addition ~roduct; 55, 62, (105, 116), XXI:
4-hydroxycarbostyril addition ~roduct; 56, (105).

3-(.2-Hydroxybenzylidene)-4-keto-6-methyl-3,4-dihydro~-pyronej

46, (108), XXII:
acetyl derivative; 46, (108):
dimedone addition product; 30, (109), XIVo
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4- Hydro:xycarbostyril; 70, (78).
4- Hydroxycoumarin; 4, 6, 24,32, 65, (73, 116), I, XVI, XXXV.
3-(2'- Hydroxy-3'-methoxybenzylidene)-2,4-diketochroman; 45, (106):

acetyl derivative; 45, (106):
dimedone addition product; 30, 45, (106), XIV.

3-(21- Hydroxy-3'-methoxybenzylidene)-4-keto-6-methyl-3,4-
dihydro~pyrcnej 46, (110):
dimedone addition product; 47, (110)0

4- Hydroxy-6-methyl-~pyrone; 8, 10, 38, 45, 70, (79).
3-(2'- Hydroxy-1"-naphthylidene)-2,4-diketochrQman; 45, (107):

acetyl derivative; 45, (107)0

2- Methoxychromone; 4, 6, 32, 60, (92).
4- Methoxycoumarin; 4, 60, (92, 121).
Methyl acetyl-5-bromosalieylate; 22, (87).
Methyl5-bromosalicylate; 22, (87).
3,3'- Methylene-bis-6~bromo-4-hydroxycoumarin; (84).

2,2'- Methylene-bis-1,3-cyclohexanedione; 26, (99).
3,3'- Methylene-bis-4-hydroxycarbostyril; 40, (87), XVI.
3,3'- Methylene-bis-4-hydroxy-6-methyl~-pyrone; 39, (99).
3,3'- Methylene-bis1[-methyl-4-hydroxycarbostyrilj 40, (68).
2- Methylene-(3' ,4'-hydroxycoumarinyl)-dimedone; 52, (88), XXVII:

anhydride; 53, (88), XXVIII.
3- Methylene-(3',41-hydroxycoumarinyl)-4-hydroxycarbostyril;

58, (89), X.XXL



....136 -

3- Methylene-(3' ,4f-hydroxycoumarinyl)-4-hydrGlxy-6-methyl- -pyrone;
57, 70, (90), xxx,

3- Methylen~-(3t,4t-hydroxycoumarinyl)-li-methyl-4-hydroxycarbostyriIj
58, (90), XXXIo

li- Methyl-4-hydroxycarbostyrilj 70, (78).
3- Methyl-4-hydroxycoumarin; 24,62, (77, 116).
3- Methyl-2-methoxychromone; 32,60, (93), XVI.

3- Methyl-4-methoxycoumarinj 60, (93).
Methyl Q-phenacylsalicylate; 43, (78).
Methyl salicylate; 22, (75).
4'...Monomethyl ether of da.coumar-o.L](95) 0

41- Monomethyl ether of benzaldehyaa dicoumarol; (96).

Pelantan: see ethyl glyoxalate dicoumarol.
3--Phenyl-4-hydroxycoumarinj 24, 62, (78, 116), XXXIII.

3'ii-Fiperidinomethyl-4-hydroxycoumarin; 56, (89).

Salicylaldehyde; 22, (75).

3,4-(2",2",4'- Trimethyl)-clihydropyranocoumarinj 50, (91), xs»;
2' ,2',4'· Trimethylpyranocoumarin; 10,49-51, XXV.
3,3'" Thio-bis-4-hydr0xycClumarinj 4D, (84).
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~- Vanillin; 22, 23, (75)0
~- Vanillin; 22, 23, (75).

Warfarin; 2, 10,38, 62, (74, 116), XVIII.
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