Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

On the enumeration of cross-sections and unstable vector bundles

Tools
- Tools
+ Tools

Robinson, Christopher Alan (1969) On the enumeration of cross-sections and unstable vector bundles. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Robinson_1969.pdf - Submitted Version - Requires a PDF viewer.

Download (2569Kb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1732885~S1

Request Changes to record.

Abstract

This thesis is an attempt to generalise the methods of two papers [9], [11] by James and Thomas on enumeration problems.

The first five sections consider the problem of enumerating the homotopy classes of cross-sections of a fibration F c X p B. In §l, we define certain groups no*(p) by stabilizing (in a suitable sense) the homotopy groups of the space of cross-sections of p. We obtain generalised 'difference classes' and 'obstruction classes' as elements of noo (p) and no -1 (p) respectively, and hence relate
these to the enumeration problem.

§2 develops the theory of modified Postnikov towers (MPT's) for fibrations in which the fundamental group of the base acts non-trivially. For this we need techniques for handling k-invariants with local coefficients, but the theory in other respects parallels that of Mahowald [13] and Thomas [23]. An existence theorem is proved in 2.10. §3 introduces the notion of 'stable modified Postnikov tower', which is a crude device to facilitate the setting
up of the spectral sequence in the following section. A stable MPT for a fibration kills the stable homotopy groups of the fibre, just as an MPT kills the unstable ones. The existence of stable towers follows from the possibility of 'de-looping' MPT's in the stable range (3.3). In §4 we set up a spectral sequence (4.19) which, in the simplest case, has the form E~,t ~ Ht(B;rrEsF) => rr: (p) where F is the s'th stable homotopy group of F. This is our main tool for calculating rr: (p) , and for enumerating cross-sections. An essentially similar approach to the enumeration problem has been used (independently) by J.F. lTcClendon [12]. Our spectral sequence appears to be a formalisation of the last section of [12].

In §5 we compute MPT's for the fibrations BOn --> BO. These extend the calculations of Mahowald [13] for BSOn --> BSO to the non-orientable case and to the next two homotopy groups of the fibre. Instead of giving the defining relations of the k-invariants, we display the corresponding differentials in our spectral sequence: these contain equivalent information. We apply the results of the computations to determine the number of regular homotopy classes of immersions of real projective n-space Pn in Euclidean space in dimensions near the stable range.

§6 considers the problem of determining the number of real k-plane bundles over a complex X which are stably equivalent to a given bundle. The methods here are developments of those of James and Thomas [9]. We generalise one of the theorems of [9] to nonorientable
bundles, and enumerate (n-l)- and (n-2)- dimensional normal bundles to Pn in certain cases.

Item Type: Thesis (PhD)
Subjects: Q Science > QA Mathematics
Library of Congress Subject Headings (LCSH): Combinatorial enumeration problems, Homotopy groups, Vector bundles
Official Date: 1969
Dates:
DateEvent
1969Submitted
Institution: University of Warwick
Theses Department: Mathematics Institute
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Epstein, D. B. A.
Extent: 110 leaves.
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us