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Abstract

By introducing categories of operators the
concept of an associative H-space is generalized.
Each such category gives rise to a structure on a
space X if it can be made to act on it. To each
category C of operators a category WC™ of operators
is associated which gives rise to a C-structure
up to higher homotopies and all possible coherence
conditions. After introducing the notion of a
structure map and of homotopies of structure maps
the category of WC~-spaces and homotopy classes
of structure maps is set up and studied. The theory

1s applied to prove a classification theorem.
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INTRODUCTION

The concept of an H-space, i.e. a space X with base
point e and a multiplication map m: X x X » X such that
e is a homotopy identity, arose as a generalization of
that of a topological group. It turned out to be of great

importance in homotopy theory, especially in the study of
extraordinary cohomology theories.

Generally speaking most of the techniques which apply
to topological groups cannot be applied to H-spaces be-
ca use of their lack of structure. From the homotopy theore-
tic point of view the distinguishing feature is the asso-
ciativity (and commutativity) of the multiplication ra-
ther than the existence of a continuous inverse.[for
example see [1], Satz 8.2 and 8.3]. Since many spaces of
interest have no natural monoid or commutative monoid
structure, such as the loop space 1IX or the stable ortho-
gonal group, this led to an extensive study of H-spaces
which almost have the structure of a topological monoid
or a commutative topological monoid such as homotopy
associative, homotopy commutative, strongly homotopy
commutative [7] H-spaces, and Ao —spaces [5]. In the

last two cases, part of the structure consists of higher



homotopies and coherence conditions, and important con-
structions like the classifying space construction turn
out to hold for them.

A problem in the theory of H-spaces with additional
structure has been to find the right concept of maps bet-
ween them. The notion of a homomorphism, i.e. a map that
preserves the multiplication and the coherence conditions,
turned out to be too restrictive, while a notion of a map
that commutes with the multiplication up to homotopy was
too weak for many applications. The complexity of struc-
tures with higher homotopies and coherence conditions
made it so far impossible to find a satisfactory defini-
tion of maps between such spaces, while Sugawara (7]
succeeded in doing this for monoids. A study of the cate-
gory of topological monoids and homotopy classes of such
maps can be found in [8].

The purpose of this thesis is to develop a satisfac-
tory theory - from the view of homotopy theory - of spa-
ces with homotopy-associative (and homotopy-commutative)
multiplication and all possible higher homotopies and
coherence conditions and of structure maps between such
spaces. A suitable definition of homotopy between such

maps makes these spaces and the homotopy classes of struc-
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ture maps between them into a category. We adopt follow-

ing as test propositions:

(A) If X is a space in the category and Y is homotopy

equivalent to X then Y is in the category.

(B) A structure map over a homotopy equivalence is an iso-

morphism in the category.

To avoid the difficulties arising from the complexity
of the topological models used to define the higher homo-
topies (for example of an Agp-space, such as the well known
Stasheff pentagon), we approach the problem in a complete-~
ly new way, which in addition provides us withresults for
a much wider range of "structure" spaces than just Agp-spa-
ces or homotopy-commutative Agp-spaces with suitable higher
coherence conditions. Rather than speaking of a particu-
lar space with a given structure we introduce categories
of operators which "aét" on spaces and thus induce a
structure on them. Such a category B basically consists
of objects 0,1,2,3,... , a topological structure on each
morphism set such that composition is continuous, a con-
tinuous bifunctor @: B x B~ B such that me@ n = m + n.

An action of B on a space X associates with each morphism

f: m> n amap a(f): x> x® continuously in f and such
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that a(f @ g) = o(f) x a(g) and o is functorial. For
example the category consisting of exactly one morphism
n -1 for each n gives rise to a topological monoid
structure. With each category B of operators we asso-
ciate another category Wﬁof operators which gives rise
to a structure that is a B -structure up to higher homo-
topies and all possible coherence conditions of which
the morphism spaces keep track. Wﬁ has a universal pro-
perty such that a space with a W(Wﬁ)"-structure can be
given a Wﬁ—structure. This universal property is the key
for the development of our theory.

A slight generalization of the concept of categories
of operators gives rise to the definition of structure
maps.

In order to avoid spurious difficulties in our topo-
logical constructions\we work in the category CG of
compactly generated Hausdorff spaces. For details see [6].
Two of the properties of CG which we frequently use
without mentioning are full adjointness and the fact that
the product of two quotient spaces is the quotient of the
product.

This thesis is part of a Jjoint work with my supervisor,
Dr, J. M. Boardman, who applied the theory represented here

to obtain results about the stable groups 0, SO, ¥, SF,
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U, Ssu, PL, SPL, Top, STop ete. and their classifying spa-
ces. A summary of this joint work is included at the end

of this thesis.

In the first chapter we give the definition of cate-
gories of operators and list a few examples. In the second
chapter we construct the category WE for each category B
of operators and discuss its basic properties. Chapter III
deals with the concept of structure maps and we set up the
category of Wé—spaces and homotopy classes of structure
maps. It includes the proofs for the test theorems. In
Chapter IV we study spaces with Wﬁ—structures and state
a classification theoremn.

Example L4 in §1 and the results of the second section
of Chapter IV are entirely due to Dr. J.M. Boardman and

we restrict ourselves to sketching the proofs.

)
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CHAPTER I: DEFINITIONS AND EXAMPLES

> 41 CATiSGORINS OF OPERATORS

All our topological constructions will be in the
category of compactly generated Hausdorff spaces. This
means that we only need to check that the identification
spaces constructed are Hausdorff, The rest is automatic.

Let N be the set of all sequences in n generators
0y...,n-1 including the empty sequence. N is a free mo-
noid under juxtaposition.

Define a left action of S(k), the symmetric group
in k letters, on the sequences of length k by

E(1y5e0esiy) = (ia—1(1),...,i€—1(k))
£es(k).

We have two variants of categories of operators:

with or without permutations.

Definition 1.1: In a category B of operators on n object

generators

(a) the objects are elements of N

(b) the morphisms from a to b form a (compactly
generated) topological space B(a,b) and com-
position is continuous

(¢) we are given a strictly associative, continuous

bifunctor ¢ B x B+ B such that a ® b = ab
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(d) if B has permutations we are also given a mor-
phism €: g -~ £a for each E€S(k) and each sequence
a of length k such that
(i) € = Eon
(ii1) if £eS(k) is the identity, then E = 19

(1ii) if £eS(m) and nmesS(k) then Z @M = £ @ 1,
where £ @ neS(m+k) is the usual sum per-
mutation

(iv) given r morphisms oy in B such that source

0y is a sequence of length m and target
a; one of length n,, and £eS(r), then we

have

E(n1,...,nr7°(a1@...®ar)

= (a:g'-1 (1 )@...@GE-’I (r))°E(m1,...,mr7

whe re a(n1,...,nr)es(n1+...+nr) is defined
as follows:

Let n1+‘...+nk_1+l = 1< n +...+nk, 1> 0.

1
Then E(n1,...,nr)(i) = 1+ Zé(k)-1ng—1(j) .

J=1
Notation: For EeS(k) we denote the induced merphisms &
simply by &.
We call a catégory of operators on n object generators
an MnT—category if it has no permutations and an
MnTP-category if it has.

Unless otherwise stated we denote sequences of length



1 by small Latin letters and general sequences by
underlined small Latin letters. For morphisms we
use the letters a, B, vy and for permutations the
letters £, n, . Categories are denoted by under-

lined capital Latin letters,

Definition 1.2: Let A be an M'T-(M"TP) category and B

an M (resp.M TP)-category. An MT(resp.MTP)-func-

tor 6: A+ B from A to B is a functor such that

(i) & maps object generators into object generators,
i.e., it maps sequences of length 1 into sequen-
ces of length 1

(ii) 6 preserves sums, i.e. (2 ®b) = 6a @ &b and
8(a ® B) = b6a @ OB

(iii) 6: A(a,b) - B(a,b) is continuous

(iv) if A and B have permutations, then & preserves
permutations, i.e. 6(&) = &

If A and B are categories on the same object gene-~

rators and 6 in addition preserves generators, i.e.

6(a) = a, then & is called an M'T(resp. MPTP)-

functor.

Note that (iv) is equivalent to saying that & is

equivariant, i.e. 6(a°g) = 6(a)°k.
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Example 1: End(X1,...,Xn) for based spaces X,,...,X,
is an MPTP-category. End (X1,...,Xn)(g,g) is the space
of all based maps X - X (see [6],chapter 5), where

X = X. x...Xx.
a i, i

just x. The permutations are the obvious shuffles.

if a = (11""’ik)’ The functor & is

Definition 1.3%: An M™T (resp. M™TP)-categoryBis said to
act on (X1,...,Xn) if we are given am MPT (resp.
¥™TP)-functor B ~ End(X,,...,% ).

If an M'T (resp. M1TP)-category B acts on X we call

X a B-space.

Example 2: A, an M1T-category: Denote the unique sequence
of length m by m. A(m,n) is the space of all order pre-
serving functions (41,...,m) @ (41,...,n) with the discrete
topology. There is exactly one function A, : m - 1 for
each n. An A-space is a topological monoid (in C@, the

category of compactly generated Hausdorff spaces).

Example %: S, an M1TP—category: Again denote the unique
sequence of length m by m. S(m,n) is the set of all func-
tions (15.ee,m) » (41,...,n) with the discrete topology.
The permutations are the ordinary permutations

(1ys0eom) > (1500.,m). An S-space is an abelian topolo-
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gical monoid. Such a space X is known to have the homo-
topy type of a product of Eilenberg-Mac Lane spaces, if
X is a connected CW-complex. (The proof of this is rough-
ly as follows: Let Gn denote the nth homotopy group of X,
and M(G,n) the Moore space with G as n-th homology group.
For each n construct a map f : M(Gn,n) - X which induces an
isomorphism of thé n-th homotopy groups. The sbelhan
monoid structure on X enables one to construct maps of
the infinite symmetric products SP(M(G,n)) into X from
the fn's. These give rise to a map of the restricted
product HnSP(M(Gn,n)) into X. SP(M(Gn,n)) is of the same
homotopy type as the Eilenberg-Mac Lane complex K(Gn,n),

and the constructed map gives the required homotopy equi-

valence. For details see [3]).

Definition 1.L4: An M™'P-category B is in pormal form if

(a) each morphism is expressible as
e = (a1e...9 ak)og
where 0y is a morphism into an object generator
for each i, 1 € 1 < k, and £ a permutation

(b) this expression is unique up to following equi-

valence
(051 °n1®o ) .@ akonk)og

= (a,0...0 o )el(ne...0 nk)°aq

-
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where ni and & are permutations

(c) The morphism spaces of B have the quotient
topology of the appropriate disjoint unions
of product spaces of morphisms into a generator

under the relation (b).

Analogously for MnT-categories to be in normal form
we demand that each morphism is uniquely expressible
as a sum of morphisms into a generator and that the
morphism spaces have the appropriate disjoint union
topology of product spaces of morphisms into a gene-

rator.

The importance of categories in normal form is clear

from

Theorem 1.5: Given an arbitrary MPDp (resp. MnT)—category

B there exists another M"TP (resp. M™T)-category c
in normal form and an MUTP (resp. M™T)~functor

¥: C - B satisfying C(a,b) = B(a,b), and Ylg(éab)

is the identity. C and ¥ are unique up to isomor-

phism. (Recall: b denotes an object generator)

Proof: Put C(a,b) = B( a,b) as required. Construct the
spaces of morphisms into larger sequences according to



-12 -

let V(a,b) = U 9(91,j1)xg(gz,jz)x...xg(gl,jl)x{g} taken
over all partitions of the sequence 21@...9 g =
(ig—1(1),...,ig—1(k)) into connected subsequences and all
permutations E€S(k). V(a,b) has the disjoint union topo-
logy of the products and hence is in CG.

Introduce the relation 1.4 (b) into V(a,b):

(T, 0M, 50 ees@1°M38) 7 (3500050 5(n 00000 1y )E)
where Ei is the element oy of B considered as element of
C, and m; a permutation in S(source ai).

Let C(a,b) = V(a,b)/~. C(a,b) is Hausdrff and hence
in CG., Composition with permutations is forced on us by
1.4 (b) and 1.1 (d): Let neS(1l) and ZeS(k) then
no('oT1,...,'ch;E) = (En—1(,l),...,En-’l(1);n(r1,...,r1)°g)
(@5 0ees@ 3E)08 = (Tysene,y3E02)
where rp is the length of source a_.

Denoting (51,...,51;5) by (5}@...@ Eﬁ)oa we have de-
fined a continuous associative sum in C.

To define composition, note that it suffices to de-
fine it for EO[E}@---Q Eﬁ], where q is a morphism into
a generator, and to check associativity and the existence
of a unit just for these elements since we have taken
care of the permutations already. Denote composition in

B by * and in C by °. Define
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o B B - # oo 0

G‘O[B.l@"'@ Bn] a (BJIO @ an

Since composition and sum in B are continuous and since
this definition respects the identifications, this compo-
sition is well defined and continuous. It is associative

and has 1, @...® 1. as identity for (J, yeeey]. ).
) iy 1 n

By construction @ is a Bifunctor. The per mutations
are represented by an element of the form (sum of identi-
ties)ef. By construction C is in normal form.

Define the functor y: C -+ B by
Y[(E%e...& Ek)°€] = (a1®...@ak)*g
Since @ is a bifunctor the relation 1.4 (b) holds in any
MnTP—category. Hence ¥ is well defined. It is continuous,
and preserves sums, permutations and identities. From the
definition of composition it is clear that y is a functor.
Hence it is an M 'TP-functor.

The construction for MnT—categories is completely analo-

gous, but simpler. ]]

We refer to the construction of morphism spaces into
longer sequences once the ones into generators and their

compositions with permutations are given as the normal

form construction.

Corollary 1.6: Let B be an uTp (resp. MnT)-category and

C the associated category in normal form, If B acts
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on (X1""’Xn) then we ean canonically make C

act on (X1"”’Xn)'

This effects a welcome simplification in the theory. Of

our examples, 2 and 3 are in normal form, but 1 is not,.

Example l: (This example is due to J. M. Boardman)
Qn’ an M1TP—category operating on the n~th loop space
2% = X. The space o™ is the space of all maps
(1®,01™) » (Y,0), where o is the basepoint of Y, I® is
the standard n-cube, and dI" its boundary. A point aeq (k,1)
where k is the unique sequence of length k, is ;?zgalec—
tion a of k n-~cubes I? linearly embedded in I™ with their
a xes parallel to those of In, having disjoint interiors.
It acts on 0°Y as follows: Given (f1"”’fk) IS Xk, i.e.
maps fi: o Y, we construct the map

a(f1,...,fk): N
by using £, on the little cube 1? and the zero map out-
'side the 1ittle cubes. We topologize Qn(g,l) as a sub-
space of R2kn. The permutations permute the coordinates
of X, @(k,r) is now obtained by the normal form con-
struction.

We observe that Q(k,1) is (n-2)-connected. We will
make use of this fact in Chapter IV.
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Example H5: Let B be an M1TP (resp. M1T)-category in normal
form and C a topological category with n objects 0,...,n-
(in a topological category the merphism sets are topolo-
gical spaces and composition is continuous). Then B and

C give rise to an MPTP (resp. M"T)-category B*C. Denote
the unique sequence of length m in B by m. A morphism
from a = (i1,...,ik) to j is a (k+1)-tuple (B;f&,...,fk)
with B € B(k,1) and £, € 8(i.,J). B*C(#,J) = B(#,1) where
@ denotes the empty sequence. Denote the morphisms of
B*C(#,j) vy (B;@3). Give B*C(a,j) the product topology

of B(k,1) x 9(11,3) XoooX Q(ik,j). Define composition
with permutations on the right by

(B;f1,---,fk)°i = (B°E;f5(1):---,fg(k)), £ € s(k).
Define the morphisms into longer sequences by the normal
form construction. Composition is given by
(B3E4seeesT)o(x 0. 00 X))

= (BO(B1$000® Bk);f1°g11 9 ...,f1°g1p1 s e ..,fk°gk1 90 o’fkogkpk)

where X; = (Bi;gi1"“’gipi)’ with the convention that
f10¢j drops out.
The composition is continuous and since it is induced

by the compositions in B and C it is associative.

(1k;1i ,...,1ik) serves as identity and @ is a bifunctor
L
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by construction. Hence B*C is an MnTP—category.

Note intuitively that if we denote (6;13,---,13) by
(B3j) and (11;f) by f, we have (B;f1,...,fk) =
(Bsd)o(f @0 Ty ).

Observe that if (B(1,1), 11) and (C(k,k), 1k) are
NDR-pairs, 1 < k¥ € n, then thé-(g*g(g,gl, 1a) are NDR-
pairs too for all sequences a. This follows-from the
fact that (B*C(3,J), 13) is a NDR-pair for all j, 1 < j< n
and B*C is in normal form. See also [6; Lemma 7.3].

We have n canonical MTP-inclusion functors

v, B BAC
given by npf(Bq@--.e: B )ogl = [(B,5p) @..o0 (B s5p)]°E
and a topological (i.e. continuous) inclusion functor
At C > B¥C
given by A(f) = f.

A1l functors embed the respective categories as closed

(in the topological seﬁse) subcategories in B*C. Hence

their images have the relative topology in B*C.

The construction in the M1T-case is completely ana-

logous.,.

FPor illustration: If A is the category of Example 2

then an action of A*C induces a functor from G into the
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category of topological monoids . ]]

Let lﬁn be the category with n objects 0,...,0~1 and

exactly one morphism between any two objects.

Lemma 1.7: Any MPTP (MPT)-category B in normal form is
* * i
augmented over S*Is (resp. A*Is ) by a (necessarily)
unique MPTP (MPT)-functor 6: B - S*1s (é*lgn)
Proof: There exists exactly one morphism from a = (11""ik)
to j in S*Is uniquely represented by (lk;(i1,j),...,(ik,j))
where A, is the unique function (150eesk) » (1) in S and
(i,J) the unique morphism from i to j in Is . This deter-
mines & uniquely on B(a,Jj). Using the normal form of B
we get a necessarily unique extension of & to B. That &

is a functor follows again from the fact that there is

exactly one morphism from a to j in S*Is . ]]

\
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CHAPTER II: THE UNIVERSAL CONSTRUCTION

Unless otherw ise stated we only consider categories

in normal form from now on.

The concept of monoid is not a good one from the point
of view of homotopy theory, because the existence of a
monoid structure on a space is not a homotopy invariant.
For example, the loop space X has no natural monoid
structure, although it is a deformation retract of a na-
tural monoid. Similarly for other categories of operators.
For this reason we look for a "universal" structure.

Suppose  given an uirp (MnT)—category B. We want to
construct a "universal" MPTP (M"T)-category U with the
following properties:

(U1) There exists an M"TP (M"T)-functor e: U » B, the

standard augmentation of B, and a collection t of

equivariant maps (not functors) u: B(a,b)-U(a,D)
for all seqguences a and all generators b, the

standard section of B, such that

gL |§(.§,’b) =1 I_]é(évb)
toe |U(g,b) & 4 [u(a,b) equivariantly (if B has
permutationg and fibrewise

(u2) (U, &, t) is universal with respect to (U1), i.e.
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given an M'TP (M'T)-category C, an MPTP (M%)~
functor 6:C -+ B and a collection 0 of equivariant
maps o: B(a,b) » C(a,b) for all sequences g and
all generators b such that

600 |B(a,b) =1 [B(2,D)

o°6 |c(a,b) = 1 |C(a,b) equivariantly and fibre-
wise, then there exists an M'TP (M"T)-functor

v: U ~» C such that 6°v = €.

Notation: A collection of maps o as given in (U2) such
that 6°0 |B(a,b) =1 i@ﬂg,b) is called a (equiva-
riant)section of . |
A functor & which has a section ¢ satisfying the

requirements of (U2) is called fibre homotopically

trivial.

We are going to give a construction W which associates
with each M"TP (MT)-category B such that (B(b,0),1,)
is a NDR-pair for gll generators b, an MnTP (MnT)-category
WB together with an augmentation eB:W§ -+ B and a section
byt B -+ WB such that the triple (WB, e LB) satisfies
(U1). Purthermore for any M°TP (M™T)-category B we can

1

find a triple (g",eB, Lé ) such that WB™ exists and

(WB™,epoep~,tlot o) satisfies (U1) and (U2).
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$ 2 THE CONSTRUCTION W

Since the construction for the MnT—case is completely
analogous to the one for the MnTP-case, rather more simple
in fact, we restrict ourselves to the MTP-case.

Let B be an MnTP-category such that (B(b,b), 1b) is
a NDR-pair for all generators b. To obtain the universal
property we start off the free MnTP—category in the dis-
crete topology over B. We then topologize the morphism
sete and attach'"cells" to them to obtain the property (U4).

We form a bar construction by considering words

[aol... ak] where k>0, each ay is a morphism in B, and the

composite a,°...°q, exists in B.

0 k

Definition 2.4: The category WO§ has as morphisms from

2 to b those words [aol...lakJ for which a

OOOOOOI

0 k

is a morphism in B from a2 to b subject to the follow-
ing relations and their consequences:

(a) [acegl =[ce1/1epl =[1e8laao1]

(b) [1] is an identity

(c) [alg] = [aeg], [£]g] = [g°8] (if B has permu-

tations).

Composition in W0§ is by Juxtaposition.
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Let us give an alternative pictorial description of
WOQ. A morphism in Wog(g,b) is represented by a pair
(6,8) where £ € S(r), r being the length of a, and 6 a
finite tree in the plane with directed edges, labelled
by 0yese9n-1, repetition is allowed, except that some
edges do not join two vertices (see picture below). There
is just one, called the root, labelled by b, that leaves g
vertex and goes nowhere, and exactly r twigs labelled by
ig—1(1),...,i€—1(r) if a = (11,...ir), that come from no-
where, The other edges are called links and Join two ver-—
tices. Each vertex has exactly one outgoing edge and the
vertex is labelled by a morphism in B(p,q) where g is the
label of the outgoing edge and p = (31,...,jk) where k is
the number of incoming edges
and j1""’jk their labels
from left to right.

Call the tree with no vertex

consisting of a labelled edge

(11 312913’ ll—l-)_’(a)

only, a trivial tree.

The relation can naw be described as follows:
(2.2) any vertex labelled by 1, € B(b,b) may be suppressed

(2.3) if we obtain the tree 6 by substituting a vertex



- 22 -

o € B(p,q) of the tree ¢ by the vertex aem, where
N is a permutation, permute the incoming edges of
o and the subtrees of ¢ sitting on them in such a
fashion that the n(i)-th incoming edge of a is the
i-th incoming edge of o°mn, then

(®,8) ~ (8,n7" (2, 500057y )°F)
where ri is the number of twigs of the subtree of

¢ over the i-th incoming edge of a.

Define composition with permutations on the right by
(6,8)°% = (6,8°%)

Now the sets Wog(g,g) can be obtained by the normal form
construction. A morphism of Wog(g,h) with a = (i1,...,ir)
and b = (31,...,38) is represented by a pair (6,£) where
£ € 5(r) and 6 is an ordered collection of s such trees,
ca lled a copse, the twigs of this collection being labelled
Y Lg=lyyreeesig=(y) in order (always from left to right)
and the roots by j1,...,js, again subject to the relation
(2.2) and a generalized version of (2.3): Let ¢ be the
copse obtained from the copse 6 by changing the tree the
twigs of which are labelled by 15—1(t+1)""’ig-1(t+q)
according to (2.3), and let e € S(t) and e' € S(r-t—q)

be the identities, then
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(6,€) ~ (@,(e @ 17 (2,,.00s2) @ €')°F)

Composition 6°¢ of copses 6,9 is obtained by attaching
the roots of ¢ to the twigs of 6 (see picture below).
Since the roots of ¢ are labelled in the same way as the
twigs of 6, 6°¢9 is a well defined copse. The sum 6 & ¥
of the two copses 6 and ¥ is obtained by putting them
side by side, thr trees of 6 followed by the trees of V.
If

Let £ € S(r) and let ¢ be a copse with r trees. let
£.9 be the copse with the j-th tree being the £ (j)-th
tree of ¢. Sum and composition in WO§ are now given by

(6,€) ® (¢,m) = (6 @ 9, ® 1)
(6,€)°(9,m) (6°(£.9),&(r, 5e0esry)om)

where rq is the number of twigs of the g-th tree in ¢.
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If the edges of two copses are labelled in the same
way they are said to have.the same type. Give the set of
all copses of one type the product topology of their vertex
spaces, and give the set of all copses with a given source
and target the union topology of the union of all types
with the given source and target. The trivial copses, i.e.
the copses consisting of trivial trees only, are their own
open and closed components. Composition of copses is cone=
tinuous, associative and the the trivial copses act as
identities. @ is continuous, associative, and a bifunctor.
Hence, disregarding all relations , the copses over B
form an MnT—category, if we just consider the copses and
leave the permutations out. Disregarding all relations,
the spaces of all pairs (the topology is induced by the
copse component) form an MnTP—category. Including the re-
lations they give rise to the M TP-category w8,

In the M 'T-case we would continue to work with the
category of copses over B, while the M TP-case requires
the slightly more complicated category of pairs.

Let o and B be vertices of a copse 6 joint by the j-th
incoming edge of a. Let o and 8 have n resp. m incoming
edges., Shrinking the link between o and B means substi-

tuting the subtreeof 0 consisting of o and 8 and their
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and their edges by a vertex vy =ca°(1 @ B & 1) with m+n—|

incoming edges (see picture).

shrinking
s o oy e e o e

Let TB(a,b) = {(6,&)] & € s(k), where k = length a,
© a copse with target b and source Ea (the source of 6is
given by the labels of its twigs)§ topologized by the topolo-
gy inherited from the copses. Each type of copses with
target b and source some Mg, Mm € S(k), determines an open
and closed subset of TB(a,b), called a component.

Index the edges of a copse by 0,4 payk,... starting
from the root of the first tree and going up the most left
sequence of edges. Continue going upwards the next sequence

of edges to the right, and continue (see picture). Call

this the standard indexing.
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Let TpB(a,b) c TB(a,b) be the subspace of those ele-
ments the copses of which have exactly p links. Siﬁce
TpB(2,0) is a collection of components of TB(a,b) it is
closed in Tg(g,g) and hence has the relative topology.

If i indexes the i-th link of the copse 6 in the stan-
dard indexing and diG is the copse obtained from 6 by
shrinking the i-th link, the correspondence

(6,8) ~ (da'e,z), (6,2) € TpB(2,k),
defines a continuous map, called a face map,

a': K > Tp-13(2,b)
where XK is a component such that the i-th edge is a link,

Let siG be the copse obtained from the copse 6 by in~
serting the vertex 10 in the i-th edge where c is the label
of this edge. The correspondence

(6,8) ~ (s%6,£)

defines a continuous map, called a degeneracy map,

s*: TpB(a,b) » Tp+1B(2,b)

Call x € TpB(a,b) degenerate if it is in the image of

some degeneracy map.

Following identities}hold whenever the maps involved

are defined:

(2.4) adeal = gteqd*t  j 5 4

(2.5) sItlogl = glogd 53 1
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(2.6) dJ°Sl = 1 j=1i, i+
(2.7) stoad = adtles? 1 < j
= adog® 1>

For the time Dbeing we restrict ourselves to the case

where b = b, i.e. b is a sequence of length 1.

Lemma 2,8: Each x € TpB(a,b) Ean be written uniquely as
k
x=s5 Mo, .08 'y

where k1 <eoef km and y is not degenerate.

Proof: y is uniquely determined by deleting all vertices
labelled by an identity from the tree of x. Hence x is
obtained from y by inserting identities, i.e. by applying
degeneracy maps. By (2.5) we can choose them uniquely in

the required fashion. ]]

Let T = (R,M,Q) be a gadget consisting of a topologi-
cal monoid M with multiplication * and unit e, a closed
right'ideal" R and a closed left "ideal" Q, i.e. closed
subspaces R and Q@ of M such that R*M c R and M*Q < Q,
satisfying
Axiom M{: (i) There exist no inverses in M, i.,e. if

x#*y = e then X = y = e.
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(ii) There exist r € R and t_ € Q such that
r, % to is a right identity in Q@ and a left
identity in R. And T % to Z e.

(iii) (M, e) is a NDR-pair.

Put u = ro*to' Then u#*u = u. Hence without loss of
generality we can assume that r = t_ = u. Since R*M c R
and M*Q < Q, R*¥Q ¢ R N Q. Also if x € R n Q, then

X = x*%u € R*Q, and hence R N @ < R*Q,

Example 2,9: Let M be the unit interval with the multipli-

cation t1*t2 = max(t1,t2). Then e is 0 € I. Take @ = R = 1€l,

andu=1. Then (M) is satisfied.
More examples will come in some later section.
i - i
Define maps s-: MNP - w21 ang at: wP o MP+1, called

face and degeneracy maps, by

i _ %
S (to""’tp—1) = (to’.‘..’ti—ﬂ’ti ti+1,ti+2’...’tp—1)

i
d (to"“’tp—'l) = (to,...,ti—1’e’ti ’loo,tp_1)o

The maps satisfy following identities:

(2.4') atead = aI*loq? jei
(2.5") stogdtl - gdog? j=z i
(2.6') stead =1 jo= i, i+
(2.7') adest = sltogd* i<

= si+1°dj iz 3
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Call 6 € MP degenerage if it is in the image of some

degeneracy map.

Lemma 2,40: Each 0 € MP can be expreesed unigquely as

1 1
6 = d n oo.ood 16

whe re 11 <,.e¥< 1n and 0ls not degenerate.

Proof: 0 is uniquely determined by deleting the coordi-
nates e of O = (t1,...,tp). 6 is then obtained from o
by applying degeneracy maps. (2.&') allows us to choose

them in the required fashion. 1]

Let (6,£) € Tp(a,b). To each link of 6 we assign an
element of M, to each twig an element of Q, and to the
root an element of R. In the case of a trivial tree root
and twig coincide and we assign to it an element of R n Q.
The elements of Tp(a,b). together with all possible assign-
ments of this form give rise to a topological space
Cpﬁr(g,b) = TpB(a,b) x (R x MP x Qk), where k = length g,
p > 0. Let T-1B(b,b) be the space consisting of the trivial
| tree with the edge labelled by b. Define C_1§I(g,b) =g
if g # b and C_,BI(b,b) = T-1B(,D) x (RN Q) =R n .

For convenience we denote Cp@r(g,b) simply by Cp(é:b)-
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Let Vp(g,b) = vpgr(g,b) be the disjoint union
Vb(g,b) = C_1(g,b) U Co(g,b) Ues U Cp(g,b)
and V(a,b) = VB(a,b) the disjoin union of all Cp(g,b),
D = ~4,0,45... « The Cp(g,b)'s are in CG, and hence the
Vp(g,b)'s and V(g,b)vare in CG because they are Hausdorff
[6; Lemma 9.2].

Introduce the following relations in V(ag,b):

(2.11) Bach x € cp(g,b) is given by a pair (6,£) € Tp(a,b)
with an element of M assigned to each edge. Let
y € Cp(g,b) be obtained from x by changing (6,£)
to (@,m) according to relation (2.3). The elements
of M assigned to each edge of ¢ are given by carry-
ing the elements of M assigned to the edges of ©
along during the permutation of edges which defines
¢. Then X ~ Y .

(2.12) (dix,é) ~ (x,dié) y i indexes a link in x = (6,&)

(2.13) (six,0) ~ (x,870)
where (x,dié), (X,Sia) € Cp(g,b).

Note that if i indexes a link then (dix,é) € Cp-4(§’b)

iff (X,dié) e Cp(g,b), and (Six,a) e Cp+1(§,b) iff

(x,sia) € Cp(g,b) since R is a right ideal and Q a left

ideal of M.
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Call a point (x,8) € Cp(g,b) degenerate if x or & are

degenerate.

a 2,1l: Bach (x,0) € V(a,b) is related under (2.42)

and (2.13) to a unique non-degenerate point.

km k1

Proof: Let x = s °...°s 'y be the unique expression for

X given in Lemma 2.8. Defiine a function A by
k k

rMzx,08) = (y,8 T o,..08 5)
1 1

Define a function p by setting & = d ®o.,.0d 15 as unique-

ly given in Lemma 2.10. Define

l1 ln
p(X,é) = (d. O...Od X’a)o

By Axiom M4 (ii), e € M cannot be assigned to a root or
a twig since M does noi have aﬁy inverses. Hence 11""’1n
index links in x and d '°...°d "x is defined.

A (x,06) is not degenerate since o is not degenerate
and hence since M does not have inverses sia is not dege-
nerate for any i.

It is easily seen that Xp(x1,61) = xp(xz,az) if
(xa,61) and (x2,62) are related under (2.12) and (2.13).
Since Ap is the identity on non-degenerate points,

Ao (x,6) is independent of the choice of (%,6) in its equi-

valence class. ]]
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Let W(a,b) = WBL'(a,b) be obtained from V(a,b) by
factoring out the relations (2.11), (2.12), and (2.13),
and W(a,b) by factoring out the relations (2.12) and
(2.13) only. Let ﬂp(g,b) =K (Vb(g,b)), where

x: V(a,b) » W(a,b) is the projection, and let X, = gIVp.

Lemma 2.15: (a) ﬂpﬁr(é,b) and WBlr'(a,b) are in CG.
(v) WBr'(a,b) has the limit tpology from
i_ B (8,0) C.nnC LB (a,D) co..
(c) (ﬂpgr(?:.’b)’ %_1§P(29b)) and
(wBr(a,b), W Bl'(a,b)) are NDR-pairs for all
D.
(a) (WBr(b,b), 1,,) are NDR-pairs if (RnQ,r *t )

is a NDR-pair.

3ince we are required to prove similar statements to
those of Lemma 2.15 in the further development of our theo-—
ry we analyse the general problem before we prove 2.45.

e are given a space X which is a disjoint union of
spaces Xy U X1U X, Ueee and an equivalence relation ~ on
X. Let Y = X/~ and Y_ = (¥ V.-V X))/~ , and let
Tt (Xou eee U Xn) - Y be the projection. Put

DX, = {x € X | There exists ¥ € X;, 1 < n, such that y ~ x}.

Wle suppose:
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(1) ~ satisfies: if %, y € X, - DX and x ~ y then x = y.
(2) DX is a finite union of closed subspaces F, and we
are given continuous maps fr: Fr - Xi such that
r
X ~ fr<x> for all x € F,, and i, < n for all r.

r
(3) £: DX ~» Y, , given by £|F = m , of is well defined.

n—1

Then Y is obtained from Y by attaching X. to Y by
n n n n

-1
the attaching map f: DXn - Yn—

-1
4 and Y is the direct
limit of YO (o Y1 Coee o
Now we assume further:
(L) (Xn, DXn) are NDR-pairs for all n and Y _, X are in CG
for all n.
Then by induction (Yn, Yn—1) are NDR-pairs for all n
[6; Lemma 8.5] and hence Y is in CG and (Y, Y ) are WDR-

pairs for all n [6; Theorem 9.4 and Lemma 9.2].

Proof of Lemma 2.15: Let Xp = Cp(éyb) and ~ the equivalence

relation generated hy (2.12) and (2.13). Hence Y, = ﬂp(g,b)
DXp is the space of all degenerate points of Xp, i.e.

of those points (x,8) = (6,£,0) where a vertex of 6 is
labelled by an identity or a coordinate of & hss the value
e, By Lemma 2.14 two non-degenerate points cannot be rela-

ted, and hence (1) holds.
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Let F, and G, be the (closed) subspaces of DXp con-
sisting of those points (x,8), x = (6,&), where the vertex
on top of the i-th link of © is labelled by an identity
resp. the i-th coordinate of O has the value e. The maps

and gi: Gi - X

-1 ? given by

f.: F, » X
1 1 p-1

fi(x,é) = (y,sié) and gi(x,é) = (dix,a)
where y and o are the unique elements such that x = siy
and & = dia, are continuous (since st ana ab are conti-
nuous and since x = y and & » 0 are given by projections).
£: DX, = Y, given by £IP; = 5, ,°f; and £l6; = x,_4°8;
is well defined by Lemma 2.1lL. Hence (2) and (3) hold.

Since XP is the disjoint union of products arising
from the different types of trees, and since (M, e) and
(B(b,b), 1b) are NDR-pairs for all generators b, (Xp, DXP)
is an WDR-pair for all p [6; Lemma 7.3]. Hence (4) holds .

Observe that Xo = YO and we will show later that
r*t, €R * Q= ﬂ_ﬂ(b,b) c W(b,b) will serve as identity.
Hence Lemma 2.15 follows from our general consideration.

For part (d) use [6; Lemma 7.2]. 1]

Lemma 2.16: If (%x,8) ~ (y,9) under (2.441) , then

Ao (%,8) ~ Ap(y,0) under (2.141), where Ap is the

function constructed in the proof of Lemma 2.1L4 .
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Proof: Picturing each element as a pair (6,&) with ele-
ments of M assigned to each edge, the proof is immediate
since (2.11) commutes with the shrinking of links and the

deleting of vertices labelled by an identity. ]

Corollary 2.17: WBI'(a,b) = WBl'(a,b)/~ , where ~ is the

equivalence relation generated by (2.11) applied to

non-degenerate points only. ]]

Corollary 2.18: WBI'(a,b) has the limit topology from

wpgr(g,b) = ﬂpgf(g,b)/(2.11) and is in CG.

Proof: W(a,b) is Hausdorff since W(a,b) is. Hence it is
in CG. If q: w(a,b) - W(a,b) is the projection then
q—1°q(ﬂp(§_,b)) = ﬂp(g,b). The corollary now follows from
[6;Theorem 9.5]. 1]

Let (x,8) = (6,,0) € Cp(g,b) be a representative of an
element in W(g,b). Define composition with permutations on
the right by

(0,8,0)0% = (6,8°%,6)
This defines a continuous composition with permutations

in W(a,b).
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Define the spaces of morphisms into longer sequences
by the normal form construction. We can give an alterna-
tive description along the lines of copses. We have reduced
our construction to trees because the trivial copses
would have made the argument somewhat unclean. Let g =
(11""’ik) and b = (31,...,31). Let T-1(a,a) denote the
one point space of the trivial copse from a to a. To each
link of 6 in (6,£) € Tp(a,b) assign an element of M, to
each twig an element of Q, and to each root an element of
R, thus constructing spaces Cp(g,h). In case 6 contains a.
trivial tree, assign to its only edge an element of R n Q.
Introduce in

V(a,b) = C_,(a,b) v C,(a,b) v C,(a,b) v...
the product relations from (2.12) and (2.,13) and denote
the quotient of V(a,b) under these relations by W(a,b).
Applying our previous congiderations to each tree indivi-
dually we again find that each element of W(a,b) is unique-
1y represented by a non-degenerate triple (6,£,6). Here
(06,€) is called degenerate if 6 contains a degenerate tree,
while the definition for & being degenerate is the o0ld one.
Let
W'(a,b) = W(a,b)/~

where the equivalence relation is generated as follows:
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Let 6 = 0,0...0 &, such that 61 is a non-degenerate tree.

1
An element of M is assigned to each edge of 61, thus giving
rise to a representative (6i,unit,6i) of ﬂ(g,ji). Let

(@985,05) ~ (6i,unit,éi) under (2.11). Then

(2.19) (6,2’;,61x...x 61) ~ (@169...@(91,(5,1@...@ El)°é,61x..x61)
Relation (2.19) can be formulated for any triple (6,£,0) €
Cp(g,p) and as in the previous case W'(a,b) is obtained

from V(a,b) by factoring out the relations (2.12), (2.13),
and (2.19).

Lemma 2.20: WBl'(a,b) £ W'Bl(a,b)

H .= ¥) o) eV j . i
Proof: Let %, ( p,ép, p) (gp,ap) Define
h: W(a,b) » #'(a,b) and Xk: W'(a,b) - W(a,b)
by h{X1""’Xn;E)} = 561®"'® en’(€1®...® En)°g,61x...xén}

k{6,0...0 8 8,0, xu..x0 ]

1
= {(6,,unit,8, )y...,(0,,unit,8 );&}

Where § } denotes the equivalence class. h and X are well

defined and since they are continuous on representatives

they are continuous. They are inverse to each others. 1]

As a consequence of the lemma we find that

® : Wa,b) x W(g,d) » W(a e e e )
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is given by

{6,£,6} @ {¢,m,0} ={ 6 ® ¢,& ® 1,6 x o} .
@ is continuous since W(g,h) is obtained by the norma 1
form construction.

Because of the normal form construction it suffices to
define composition for {6,unit,6}°{¢,n,a} and prove the asso-
ciativity for this case. {06,unit,d}°{p,n,8} is represented
by the pair (6°¢,m) to each link, root, or twig of which
coming from 6 or ¢ we assign the value of M which it had
in ® or ¢, a nd to each new link of which we assign the
product in M of the elements assigned to the original twig
in 6 with the element assigned to the original root in ¢.
Since the multiplication in M is associative, composition
factors through (2.12), (2.13), and from the intuitive
idea of a tree it is clear that it factors through (2.19).
Since the multiplication in M and the composition of copses
are continuous and associative, the composition in W is
continuous and associa tive. The triple consisting of the
copse of trivial trees with labelled edges,i1,...,ik ’
the unit permutation, and the element u = T * to assigned
to each tree acts as identity. And from the intuitive idea
of copses it follows that @ is a bifunctor (this also

follows from the fact that W is obtained by the normal
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form construction and that the definition of composition

is extended to the whole of W using the normal form). Hence

Theorem 2,24: WBI is an M TP-category in normal form. 1]

Suppose the links of (6,unit) € Tp(a,b) are indexed by
11 € see < ip in the sgandard %ndexing. Let
e(0,unit) = a 1o...od Pe
which determines a unigue element in B, namely the label
of the unigue vertex of dl1°...°dlp6 . Putting e(6,unit)
= 1b € B if © is the trivial tree from b to b, the corres-
pondence

ef{o @...eeq,g,é} = [e(6,,unit) o...0 e(eq,unit)]og

1
defines a continuous map from W(a,b) to B(a,b). Here as
always in future { } denotes the equivalence class of the
element in question. Since the shrinking process is basic-
ly composition in B, it is associative., Hence, since tri-
vial trees are mapped to the corresponding identities, €
is an object preserving continuous functor. By definition
it preserves sums and permutations, Hence it is an MoTP-

functor. Since the definition of & is independent of T

we denote it by SB' ‘We call it the standard asugmentation

of B.
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Remark 2.22: Let B, C, D be an M'TP- , MPTP- , W rP-

category respectively, and let y: B - G and

6: C - D be MTP-functors. Then vy and 6 determine
canonical MTP-functors Wy and Wé such that

eq°Wy = y°ey , similarly for 6, and W(doy) = WooWy .
(You construct ¥y by applying Y to the vertex labels

of each copse).

Definition 2.23: A CW—MnTP—cathory B is an MnTP—category

such that the morphism spaces are CW-complexes,
composition and sum are skeletal, and the identities

are vertices.

Theorem 2,24: If B is a CW-M TP-category and T = (R,M,Q)

satisfies in addition to AXiom M1 following condi-
tions: M is a CW-compleX, R and @ are subcomplexes

of M, ro,to,and e are vertices, and the multiplica-

tion is skeletal. Then WET is a CW-M"TP-category.

Proof: Since the morphism spaces of B are CW-complexes,
WBI' exists. Since products in CG of CW-complexes are
CW-complexes, Cp(g,b) is a CW-complex for each p. Hence

ﬂo(g,b) resp. ﬂ_1(g,b) are CW-complezes. Tp(a,b) has the
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product cell structure from U%»[(Hr @(gr,br)) X (Eq)],

the vertex labels of its trees. Since the identities in
B are vertices the degenerate points of Tp(a,b) form a
subcomplex. Analogously the degenerate points of P form

a subcomplex. Hence DCp(g,b) is a subcomplex of Cp(g,b).
i i
Let (x,0) e DC_(g,b), & = 4 So ,..0ald
i i Jj J
y=d1°0-o°d— SX=St°--ooS

’

1z , as given by the Lemmas

2.8 and 2.410, and suppose that x is in the g-skeleton of

To(a,b) and & in the r-skeleton of R x M® x@ . Then o is

in the r—skeleton of R x MY ™°

X Qk since e is a vertex and
y is in the g-skeleton of Tp-s(2,b) since composition in
B is skeletal. Since the identities of B are vertices, z
is in the g-skeleton of Tpfs—t(g,b}, and since multipli-
cation in M is skeletal, sJ1°...°tha is in the r-skeleton
of R x MPTSTY, Qk. Hence the attaching maps of Lemma 2.15
are skeletal and hence ﬂ(g;b) is a Cii-complex.
Composition with permutations is cellular in B. Hence
the relation (2.11) induces a cellular identification in
i(a,b), and therefore W(a,b) is a CW-complex. Composition
with permutations on the right is cellular since it is so

in V(a,b). ThereforeW(a,b) is 2 CW-complex. @ is skeletal

because W(a,b) is obtained by the normal form construction.
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Composition is skeletal since it is induced by inclusions
of factors into a product. Since T, % to is a vertex, the

identities are vertices. 1]
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8§ 3 THE CONTRACTABILITY OF WBLI' OVER B

Define the standard section t: B - WBI' of the standard

augmentation (see p.39) by

v(p) = {6,unit,d} , B a morphism into a generator
where (6,8) is the tree with exactly one vertex which is
labelled by B8, and to assigned to each twig and L to the

root (see picture).

¢t is equivariant and since

t
o

~ *
1 PO to

r
o

it preserves identities,

Now suppose that I' satisfies following additional

axiom:

Axiom M2: There exists a homotopy my 3 M -» M such that
mt.(’v1) * mt(VZ) = mt(vjl * Vz)
mt(e) = e for all t € I

° y and m1(v) =e forallveM .
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Putting u = v = t = r  * t_ (see p.28), m, induces

homotopies 1,: R » R and k.t @~ Q given by 1t(x) = u*mt(x),

and kt(x) = mt(x) * u, Then 1 _ = id oo, kg = idQ ,

r, » and k1(y) =u=t_ forall x€Randy € Q.

11(X) =u
Furthermore 1t(x) * mt(v) = 1t(x # v) and mt(v)*kt(y)=kt(v*y)

for alltel, veM, xeR, and y € Q. Inredditien—we

o at,

T T = .
Note that the monoid of example 2.9 satisfies Axiom M2
with the homotopy mt(v) =t.v, veM=1I, with the ordi-

nary multiplication on the right of the equation.

Theorem 3%.4{: If I satisfies the Axibms M1 and M2, then

€gt WBI' » B is fibre homotopically trivial (see p.19

for the definition).

Proof: We have to construct equivariant fibrewise homoto-~
\

pies H.: vee| W(a,b) = ia| W(a,b).

Define hiy: R x W x 2R x M x F by

ht(x’v.] E B ',vp’y1 | B "yk)
= (1t(x)’mt(v1 )’ s ’mt(vp)’kt(y1 )’ LI ’kt(yk))

for each p and k. The h,'s induee homotopies

£
Hy = (1 x By)s C(a,b) = Ta(a,d) x (R x W° x @) » c,(2s®),

for each p 2 0. For p = - define Et: 0_1(é,a) - C_1(a,a)
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by gt(x) = }Eéx%. (Recall that C_1(a,a) =R N Q). The
collection of the Et's induces a homotopy

Hy: V(ab) » V(ab)
H, factors automatically through relation (2.11). Since
mt(e) = e for all t it factors through (2.12) and because
of M2 and the properties of 1t and kt it factors through
(2.43). Hence it induces an equivariant and fibrewise
homotopy

Hy: W(a,b) = W(a,b)
such that H_ = id| w(a,b) and H, = voe| W(a,b) (by the

1

properties of 1, and k. and the conditions on m_ and m1).]]

t
Lemma 3.2: Under the assumptions of Theorem 2.24,

e| WBI'(a,b) and | B(a,b) are skeletal.

Proof: e is induced by the projection

Cp(g,b) = Tp(a,b) x (R x WP x Qk) - Tp(a,b)
followed by the shrinking of all links. Hence since com~
position in B is skeletal, € is skeletal. Since ¢ is in-
duced by the identity B(a,b) - T;(g,b), where T;(g,b) is
the subspace of T™ (a,b) of all pairs of the form (6,unit),
it is skeletal. 1]

We now give some further examples of systems I' = (R,M,Q).
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Example 3.3: Let M be the unit interval with multipli-

cation t, * t, = t,.t, . Then e = 1. Take Q =R = (0)
and u = r, = to = 0. Then M1 is satisfied.
M2 cannot be satisfied since mt(O.v) P4 mt(O).mt(v)

necessarily sine my =1 is required for all t € I .

Example 3.4: Let M be an arbitrary topological monoid
with an idempotent u Z e. Put R =u % M and Q@ = M * u,
ry = to = u, Then this data satisfies M1.

Example 3.H: Let K be the free tpological monoid over I,

the unit interval, (X is the reduced product space Ig in
the sense of James), i.e.

k=1"uv1' vty .../~
where the equivalence relation is given by

(t1,ooo,ti_1’O,ti,ooo"tn) ~ (t1,..o,ti_1,ti,ooo,tn) .

Hence (0) = 10

is the identity in K.
Let J be the monoid obtained from K by introducing the
relation
(t1,oo-,ti-1,1 ,ti-{-""...,tn_) ~ (1,ti+1,ooo’tn) 9

i.e. 1 € I acts as a right zero. In particular it is an

idempotent. Clearly J is a monoid,



_}_!_7 -

- 1l 2 n _
Let Ly, = I U I”U...uTI" andJ = w(Ln) where

:t L = lﬁm Ln - J is the projection. J1 = L1 . Let

= {(t1,...,tn) e 1 t, = 0 some i, or tj =1 some j > 1}
1

n

H A

J is obtained from Jn by attaching In+

N+ by an attach-

:£n+1

ing map T, > I and J_ and J are in CG (It is

1
easy to verify that the conditions (1),...,(4) of p. 33
hold with X = 1¥ ana DX, = 2).

Since the attaching maps are skeletal, J is a CiW-com-
plex.
Claim: J. _, is a strong deformation retract of e

Proof': Jn = J,_

n

J uf 17 . All faces of In become attached

n
to d, _

with exception of the face t, = 1. Hence the defor-

1 1
mation retraction of In to the other faces induces a defor-

mation retraction of Jn to Jn-1'

The multiplication of K induces the monoid structure

v

in J. Since J is in CG and since it has an idempotent
different from the identlty it gives rise to a system
satisfying M1 (see Example 3.4). Although J is contrac-
tible we cannot find a deformation satisfying M2, since

any such deformation must be relative tou =1 e IJl and

to 0 € I', the identity in J.

Nevertheless the monoid J will be of some importance
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later on. For note that if A ¢ X is a strong deformation
retract and pt: X - X is a deforming homotopy such that
D, = idX and D, = iep where itA - X is the inclusion and
p: X » A the retraction, then the correspondence

(t,5eeest ) = D, ©eee®p
1 n t,] tn

defines a continuous map of J into the space of maps from

X to X.
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$ 4 THE UNIVERSAL PROPERTY

Prom now on we restrict ourselves to the system T
given in Example 2.9, and denote fer this case WBI' simply
by WB. Since R and Q are just points in this case we
neglect them and consider & in (6,%,8) Cp(g,b) simply

as a p-tuple of points in I.

Definition L.1: x € WB(a,b) is called indecomposable if

it cannot be written as a composition x = y°z such
that y and z are not permutations. (Note that any

identity is a permutation).

Lemma L,2:(a) {6,8,06} with (0,8,08) Cp(g,b) non-degenerate
and & = (t1,...,tp) is decomposable iff
p=>1and t; = 1 for some 1i.

(b) {6,E£,06} with (6,6,6) € Cp(g,p) non-degene-
rate and & = (t1,...,tp) is decomposable iff

P > 1 and ti =1 for some i.

Proof:(a) Suppvose {6,£,56] is decomposable,
{6,&,6; = i‘|‘1’€1,‘51; ° {1112’52962;

with (wi,gi,éi), i =1,2 , non-degenerate and not trivial.
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Then €1°(w2,62,62) is not degenerate and not trivial, and
since max(1,1) =1, Ml(¥,,unit,s,)°(&5(¥,,8,,06,))] has
at least one link to which 1 € I is assigned. (Ap is the
function defined in Lemma 2.4L4).
Conversely suppose that there is a link in © to which

4 € I has been assigned, the i~th link in the standard
indexing, say. Let ¥' be the subtree of 6 sitting on the
i-th link, and suppose that ¥' has g twigs. Let ¢ be the tree
obtained from 6 by deleting ¥', and suppose the twigs of
¢ indexed by Jj < 1 are labelled by 15_1(1)""’i5—1(s) ,
then the twigs indexed by J > i are labelled by ig—1(S+Q+1),
...,i€-1(k), if a = (11""ik)‘ Assign to the links of
¢ and ¥' the values in I inherited from 6. Let

VoA ()0t 1T (6)® VIO e (shqua )8, 8 1T (k)
where 1b is the trivial tree with labelled edge b. Then
(pounit) and (Y¥,&) with the values of I assigned to their
links determine not trivial and not degenerate elements
(@,unit,61) and (w,g,éz) such that

{6,8,0] = {o,unit,0,} © {¥,£,5,] .

(b) follows from (a) by applying (a) to each tree. 1]

We refer to the process of "cutting up" a tree into
two composable ones by cutting off the i-th link as

chopping the i-th link .
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Lemma U4.3: Each element x € WB(a,b) which is not a permu-
tation can be decomposed into indecomposable ele-
ments X = X1°...°Xp. This decomposition is unigque
up to the egquivalence generated by

(a) x1°...°(xi @ 1)°(1 o Xi+1)°...°xp

- ' 1
= X1°"’°(Xi o xi+1)°...°xp
= x,°...o(1 @ %] 00 (% @ 1)0..oxy

(v) x1°...°(xi°€)°...°xp

=Xo...° 00 OX' o..OOX
4 x5 & i+1

= X1°...°xi°(5°xi+1)°...°xp

where £ is a permutation.

Proof: Represent x by a non-degenerate triple (6,£,0)

= (6,unit,5)ef . This representative is unique up to the

relation (2.419). Chop each link of © to which 1 € I is

assigned. This decomposes this representative into non-

degenerate elements each of which represents an indecompo-

sable element in WB, There are exactly three choices in-

volved:

(1) the order in which we chop the links,

(2) the choice of the particular non-degenerate represen-
tative,

(3) in the chopping process the permutation £ can be broken
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up into a block permutation (as defined on p. 7) and
another one such that the block permutation can be
associated with the copse on the left.

Relation (a) takes care of (1), while relation (b) takes

care of (2) and (3). 1]

Let ng be the M"TP-subcategory of WB generated by
all ng(g,b), p fixed.(Note that ng is not even a cate-
gory). Let VP(a,b) be the subspace of V(g,b) of all those
elements x such that {x] = {x1}°...°{xm} , where {x} de-
notes the equivalence class of x, i.e. its image in VB,
where each tree in Xy has at most p linKs, 1 € k < m.
Observe that we do not require that =x 1s non-degenerate.
v?(a,b) is closed in V(a,b)-

Let xP: VP - WPE be given by «° = x| V° , where
xs V - WB is the projection.'Let ﬂpg be the inverse image
of WPE under the projection &: WB - WB induced Dby the
relation (2.19), and x¥ its restriction to WPB. i B(2,b)
is obtained from ﬂog(g,b) by attaching 01(§,b),...,Cp(g,b)
in order. Consequently W'B(g,b) is obtained from WB(a,b)
by attaching Vp(g,b) N C1(g,b),...,vp(§,b) n Cq(g,b),...

in order with q =1,2,3,...

For each type a of trees in Tp(a,b) and each EeS(lengtha)
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we have a component Ma’p(g,b) = [Hkg(gk’jk)] x (Ea). De-
note the subspace of degenerate points of Tp(a,b) by
TH(a,b) and let Cﬁ(g,b) = Tﬁ(g,b)xlp u Tp(a,b)xdI¥ ,where
TP denotes the boundary of the cube Ip. Set
. D 1 _ t
Qa,p(é’b) = Ma’p(ﬁyb)XI , and Qa’p(éyb) = QQ’P(Q’b)nCp(ﬁyb)-
Cé(g,b) is the closed subspace of Cp(g,b) consisting of
the degenerate or decomposable points,
We have characteristic maps
x, ot (4 p(ab)s @ (:0)) > (B°B(a,0), W27 B(a,b))
which by Lemma 2.16 induce characteristic maps
° ] ';'p "p-1
Xa,p' (Qa,p(ﬂyb), Qa’p(ﬁ’b)) - (N E(Q!b)’ W E(ﬂ’b))-
Let D be a subcategory of WB, and let DOL

2D
be the subset of all those elements x such that =n(x) € D.

C
QQ’P

We assume that D is closed in Q (and henece has the
QyD GyD
relative topology) and that if x € D, x = y°z, then y

and z are in D.

Definition L.4: Let B and C be topological categories and

Por Pyt B » C continuous functors such that

¢O(A) = @1(A) for all objects A in B. Call ¢, and
Py homotopic if there exist continuous functors
®,: B~ C for all t € I such that ©,(A) = @O(A)

for all t € I and for all objects A in B, ® = o
= fo) fe} ’
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@, =, » and ©: B(A,A)) x T > Clo (4,),0,(4)))
given by ©(a,t) = ®t(a) is continuous. @, is called

a homotopy of functors. If ? oo @1 are MTP-functors

then ®t is called a homotopy of MTP-functors if ®t

is an MTP-functor for each t € I .

Lemma U.5: Let G be an MPTP-category and D a subcategory

of WB as given above. Let Ot: D - C be a homotopy
of functors preserving objects, sums and permutations

(D need not be an M TP-category ).

(1) Given a homotopy of M TP-functors Yp—1:Wp—1§ =Y
and equivariant maps fa’p: Qa,p(g,b)xl -+ ¢(a,b)
for all a, b, and a such that
(1) 2 w>TBn D=0, wWB D

(11) £5 o1 Dy, pl@®)x(8) = b0 (xy o1 Dy 1 (250))

£ ot a.b t D1 1
o,pl Q,p(22)x(8) = riTlelx, L1 ey (a,0))
(iii) £, p(x,t) factors through the relation
’

(2.41) for each t € 1I.

If x is a trivial tree representing the

id i b =

identity of b, then fa’_1(x,t) = 1y
Then there exists a unique homotopy of MPTP-

functors Y%: WPB -» C extending 21 such that
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p "p —-— Vp p !
vil WB 0 D=6, WBn D and yiolx, 19, (2D))

Sz, 1 e (a)x(b).
(2) @iven homotopies of M“TP-functors Y%: WPB - c
for all p such that Yt* WP 1B = Y% =1 and

vl WPB 0 D = ol WPB N D then there exists a
unique homotopy of M TP-functors Yi* WB ~» G such

that v | WPB = Y% amd v,| D =06, .

Proof: Let {61@...@ en,a,61x...x6n} € ng(g,b) be indecom-

posable., Define

Y€{61®"°® 6 ’g’é X...Xé }

1
= [Y$(61,unlt O,) ®eood Yt(en:unlt o )] g

R , n =1 . . .
with Y%{@k,unlt,ék} =T {Gk,unlt,ék} if (ek,unlt,bk) e

VP (gya7y)

i

a’p(ek,unlt o, 3t) if (Gk,unlt 5 ) e

Qa p(ﬂab)-

This definition of Y% on indecomposables is forced
upon us by the condition that Yg is an M TP-functor satis—
fying the extension conditions of the lemma. Because of (i),
(ii), and (1ii) Yﬁ is well defined and compatible with O.

It is continuous since sum and composition in C are con-

b
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Y%(X '-°X)_Yt(x) oo Yt(X)
where the X5 's are indecomposables. By definition Yt pre—

serves sums and permutations. Since indecomposables in D

are indecomposables in JpB Y% extends 6. Since the f D 's
’
are equivariant, factor through (2.11), and preserve iden-

tities for p = -1, Yg is a well defined functor by Lemma l.3.

Again this extension is forced upon us to make Y% into a
functor.

Y% is continuous since the maps from [Vp(g,g)ncq(g,g)]xl
to C which induce Y% are defined by projecting closed
subspaces of Vp(g,g) N Cq(g,p) to some product of such
spaces of lower filtration g (factoring out vertices la-
belled by identities and links to which 1 € I has been
assigned) and following by product maps involving fOL D and

H
p 107[p

Yt . Different positions of identities in the copses

and different assignments of elements 4 € I require diffe-

rent projections, but since T ext s 2 -1

proj ) o,p OXtends vg ey 19, o (2,b)
they coincide on their intersections.

Since WB has the 1imit topology from the WPB's the

second part is immediate. 1]

Remark: By taking the functor homotopies to be the trivial
ones we obtain the same results for MnTP—functors

(delete t and I wherever they occur).
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Theorem 4.6 (The universal property):

Given a commutative diagram

D
s DN
WB G
€ l Y 1”
B——— ¢

of MnTP—categories B, G, G and a subcategory D of
WB, MTP-functors y,u, the standard augménmatignla;sB,
the inclusion functor p, and a homotopy of functors
6t preserving objects, sums, and permutations for
each t € I.
Assume:
(1) If x € D is a composition in WB, x = y°z, then
y and z are in D.
DQ,P(g,b) is closed in Qq’p(g,b) (see p 53), and
each connected component of Da,p(g,b) containing
a point x & Q&,P(g,b) is open and closed in
Qa’p(g,b)
(2) For each generator b there exists a closed
neighbourhood Z

of 1, in B(b,b) such that

b
(Zys 1, U Fr Z,) is a NDR-pair (fr = frontier),
nd -

a Y(Zb) = 1-b € g(b’b)

(3) p is fibre homotopically trivial.
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Then
: There exists an M TP-functor vy WB - G such
that pev = yog and g;p: 60 .
II: Given any two MOTP-functors L v1: WB - G such
that pov = u°v1 = y°g and v.,oP = 60, V1°p = 61’
then there exists a homotqpygof M2 TP-functors

between Vo and v, extending Gt’ akd Suth f/ﬂlt‘/(o%:‘(oe,

1
For the proof of Theorem L.6 another filtration (really
double filtration, and we induct over the sum of both) of
WB seems to be more suitable then the one used in Lemma L.5.
Co(b,b) = B(b,b), and we can assume wlog that Z, C
D. (b,b) if the latter is not empty, since D (b,Db) is
Q,0 Q,0
open and closed.
Let Y, = 2, - (1b v fr zb). Let FPVB(Q,Q) be the sub-
space of VB(a,b) of those elements x such that

{x} = iX1}°...°{xq} and {x;

} is a sum {y1} Do o® iyk} of

k
morphisms into a generator for each i such that {yl} is in

D ory, has s links and t vertices labelled by elements
in the Y,'s with s+t < p. FPVQ(Q,Q) is closed in VB(a,b).
F B = ﬂ(FpVQ) is an MPTP-subcategory of WB containing D

gsince it is closed under composition and sum and since it

contains all permutstions. We denote the MnTP—subcategorv
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of WB generated by D and the identities by F_1W§.

Let D; D be the union of all those connected components
H

of D, p(g,b) which contain an element x € Q' (a,b). Then
]
Uy D

by assumption (1) DT _(a,b) is a product D' _(a_,b)xIP.

QP "™ QUyp "

1 t
Let Pa’p’k(g,b) be the subspace of Ma’p(g,b) - Dq,p(g,b)
of all those pairs (6,£) such that at least k - p vertices
of © are labelled by elements in the Zb's and at most k - p
ones by elements in thefigg& Denote the closed subspace
of those points of P(1 D k(g,b) with less than k-p vertices
s 2
labelled by elements in the Yb's by P! (a,b). Note that
a,p,k*=

for k=0, P' (2,b) = £ unless p=—1 and a = b, when it

QyD,y O
contains the representative of 1b'

- D
Let Ra’p,k(g,b) = Pa,p’k(g,b)xl and

D
R! (a,b) = P (a,b) x oIF v Py o,x(8sP) x P,

UyDskK GyDyK

R! (a,b) cosists exactly of those points of R

WyDyk ,p,k(ﬁ’b)

that are equivalemt to a point in Fk_1V§(§,b). Wle have
characteristic maps x

= Xq,pl Ra

O,DskK s,k

: ! TeT =
%o,p,k’ (Ra’p’k(g,b), Ra,p,k(é’b)) > (P ia(a,D), Fk—1W§(§,b)

In a completely analogous way to Lemma 4.5 we can prove

Lemma 4.7: Let C be an MnTP—category, D a subcategory of

WB satisfying the requirements of Theorem 4.6, and
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6t: D » C a homotopy of functors preserving objects

sums and permutations. Then

etermines a unique —-functor y, :F ,WB -~
(1) 6, determi ique M™TP-functor yj :F_WB - C

1 —
extending ét.

k-1

(2) Given a homotopy of M TP-functors Yy P _ WB-~ G

k~ =" =

k > 0, and equivariant maps f_ R (a,b)xI

,P,k:
-+ C(a,b) for all a,p,k,a,b and such that
X1
R! b)x(t) = ° R'
l Q’p,k(é: )x(t) Ty xa,p’kl Q,p,k(é’b)

(x,t) factors through relation (2.14) for

Qy,DykK

fa’P3k

b
a,D,k

each t.

Then there exists a unique homotopy of MTP-

1

functors Y%: F, B » G extending Y%h and the maps

fa’P’k.
(3) Given a sequence of homotopies of M TP-functors

e 0B - C such that Y?I P,_ ,WB = Ylé—1 for all

1

k1

k and Y; extends 0., then there exists a unique

MMTP-functor Yt WB - C extending Gt and such

. k
that Ytl F B =7y » 1]

Proof of Theorem lL,6: We are going to prove the statements

I and II simultaneously.

. —1 - A
6, resp. 64 determine v, (resp. vt1): F_,WB - G.

=1
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Inductively suppose that we have defined

- ke~ k-1
k—1J§ - G such that povg 1,(u°vt )

k-1 K~ T R : |
cq VB and v s (V ) F,WB = v_,(vy) for all i < k.

k1 k-1
v, (resp. vy ): F

= Y°8I F

We have to define maps f R (a,b) » G(a,b)

QyDykK” TO,D,K

(resp. R, D k(_a_,b)xI -+ G(a,b)) satisfying the requirements
PR

of Lemma 4,7 for t=0 (resp. for all t € I), and such that

potf x = YoE°x% . The Theorem then follows from

QyDs GLyPyk
Lemma 4.7 (2) and (3).

Since we work with fixed a, p, k, 4, and b during the

construction of any particular map fa D,k we denote
E g ]

Ra’p’k(é’b)’ PGQP’k(g’b)’ g(é’b)’ f&,p,k’ and x@ P,k Simply

’

by R, P, G, £, and x«.

Let o be the equivariant section of p and H: coul|G = id,

the equivariant fibrewise homotopy given by assumption (3).

Consider I as a cone on o1F, i.e. IP = f(d,u)] a e o1® ,

A}

uel, (4,,0) ~ (d,,0) for d,, d, e oIP}. Identify o1? < 1P

1? "2

with oI x 1.

Case I: The homotopy F': P x dIP x 1 o @ given Dby
F'(x,d,u) = H(v§_1°x(x,d), u) for p > 0 factors through
the cone point since F'(x%,d,0) = o°m°v§—10x(x,d)

= ooyegox(x,d) which is independent of d € dIY. Hence F'
induces a map

F:R=Px IP 5 ¢
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§"1°xl P x 93I°, Since H is an

such that F| P x oIF = v
eguivariant fibre wise homotopy, F is equivariant and
ueF(x,d,u) is independent of u. Hence

poF(x,d,u) = poF(x,d,0) = poooyoeox(x,d) = yoeox(x,d).
Suppose (x',d') ~ (x,d) under (2.11), then F'(x,d,u)

= F'(x',d',u). Hence F(x,d,u) = F(x',d',u) and since each
permutation of coordinates of (d,u), now considered as a
p~tuple, is induced by the same permutation of the p-tuple
d € oIP, P factors through the relation (2.11).

For p=0 define F: R » G by F(x) = o°yoegox(x).

Case II: Define F': P x (0IPxI U IPx0I) x I » G by

F'(x,u,t) = H(g(xyu): t)

where g(x,u) = vt°x(x,u') if u (u',t) oIPx«I

veox(x,u') if u = (u',e) € IPxdI, e=0,1

Using the same argument as above we obtain a map

\

F: R xI -» G

which factors through the relation (2.11) and which satis-
fies: F| P x oI® x I = vilox| P x o1? x I

Fl PxI®? x e = veex| Px 1P, e=0,1

peF(r,t) = yegox(r) for all (r,t) e R x I
I P= o, Fserves as { (wsp.{,) because thew ®'= P«IIF

P is the union of the closed product spaces of

M , (a,b) - D&’P(Q’b) with exactly k-p factors being some

of the neighbourhoods Zy, and the other factors being
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g(gk,bk) if & P4 b, or the closure of B(b,b) - Zy+ The
intersection of two summands of P is by definition in P'.
After reshuffling the factors each summand is of the form

& X Zb XeooX Zb x X. We denote it by 2 x X. Let Y c 2

fo)
be1the ilosed su%;gace of those points with at least one
coordinate in some (1b u fr Zb)‘ (Z,Y) is a NDR-pair by
assumption (2) and [6; Lemma 7.3]. Note that(Z x X)n P'= ¥YxX.
vﬁ-1 (resp. v%—1) determine f on a subspace of ZxXxIP
(résp. ZxXxIPxI) and to prove the theorem it now suffices
to extend f over each individual summand ZxXxIP of R such
that the required identities hold.
Case I: By induction f is determined on R' and hence on

ZxXxAIP U YxXxI¥ in any reshuffled summand  ZxXxI.
Case II: f is determined on R'xI U Rxd0I and hence on

ZxXxdTP U YxXxIPxI U ZxXxIPxdT = ZxXxdIP*! y vxxx1P*!
The maps F (we delete the shufYling maps) satisfy for
(z,x) € 2 x X .

F |2 x Xx3IP =7f] 2 x X x o1®

resp. Fl 72 x X x 012" = £| 2z x X x 12"
since oI® (resp. aIp+1) are identified with the level 1 in
the cones IP (resp., 12*1),
We restrict ourselves to case I for the rest of the

proof since case II differs from it only in the number of
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cube coordinates. Otherwise the proofs are from now on the

same .
K(y,%X,8,t) = H(f(¥y,%,8), t) with (y,%,8) € YxXxI¥

defines a homotopy K: YxXxIPxI - @G such that

\, , (=
K: Sy SN X%3), o) (2,%,s)€ZxXx0I%

////”}Zan&BIP

such that K(y,x,s,1) = £(y,%,8) , K(y,%,8,0) = copuof(y,x,s)
= o°y°e°x(y,X,s) which is independent of s. Since f factors
trough (2.11) by induction hypothesis and since f and H

are equivariant, K is equivariant, factors through (2.41),

\

and p°K(y,x,s,t) is independent of t. K induces a homoto-

DY
L: Yx X xIP x I = @

such that L: F| YxXxIP & f| ¥xXxI¥ rel YxXxoIP by defini-
tion of F (see picture next page). L is equivariant and
factors through (2.11) since X does. Furtheemore

MoL(Y:X’S’t) = M°L(Y:X,S’1) = U'ofhhxas)-
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/
— A H({(z%,5), 0)

[

Define a map
N: YxXxIPXI U ZxXxOIPxI U ZxXxIPx0 - @
by N| ¥xXxIPxI = L
N| ZxXxdIPxI = constant on £] ZxXxdI®
N| ZxXxIPx0 = F| ZxXxIP
Then woN(z,x,s,t) = y°e°x(z,x,s) which is independent of
< e TP, N is equivariant and factors through (2.11) since
P, £, and L do. \
(2xIP, YxIP U 2ZxdIP) is a NDR-pair [6; Lemma 7.3]. Hence
[6; Theorem 7.1] there exists a retraction
p's ZxIPxI - YxIPxI u 2ZxdIPxI u ZxIPx0
which extends to a retraction
r: IxXxIPxI - YxXxIPxI v ZxXx PxI v ZxXxI¥%0
given by r(z,%,s,t) = (z',x,s',t"') where (z',s',t")=r"(z,s,t)

(Heve we acéyq//a requive thad ¥ SJWl«eln‘c iu the Iacooro/:‘ua Les a[ TP Lewuma 713
p-121pf Lhis thesis shows Lhe poislence °‘( sicok au v’) }

-
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Define f| ZxXxIP? = Nor| ZxXxIPx1. Then f extends
£| YxXxIP U ZxXxdI® and
pef(z,x,s) = puoNor(z,x,8,1) = uoN(z',x,s',1"') with
(z'ys8%,1")

wef(z,x,s) = yeeox(z',x,8")

Il

r'(z,s,1). Hence

which is independent of s' e I®. e°x(z,x,s) is an expression
in the coordinates of z and x involving composition and

sum in B. eox(z',%,8') can be obtained from this expression
by substituting the coordinates of z by the corresponding
ones of z', since only one type of tree is involved. Each
coordinate of z and its corresponding one of z' are in the

same neighbourhood Z,. Since ¥ is an MnTP—functor it pre-

b
serves the expressions for e°x(z,x,s) and eox(z',x,s'),
and since Y(Zb) = 1, we obtain yoeon(z,x,8) = yoeox(z',x,s").
Hence pof(z,X,s) = yoe°x(z,X,s).

Since the retraction r effects vertices of the trees
involved which lie in some B(Db,b) on which the trivial

permutation group operates and no others, Nor is equiva-

riant and factors through (2.11). Hence so does f. 1]

Lemma L..8: Suppose that in addition to the assumptions of
Theorem L.6 we ars given homotopies
Ta,p B(8,0)xI ~» G(a,b)

for some a, b such that
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ngb(x’t) = 8, (1% ) if uxe D (see p.L3 for the
definition of tg)
Tb’b(1bﬂ)= 1, if Tp,b 1P defined ,forall feI
weT, b(x,t) = v(x) whenever it is defined.
=

Then there exists a homotopy of M TP-functors

vt: WB -» G such that vt°p = ét s MOV = yee , and

vtoLB(x) = Tg,b(x,t) for x € Q(g,b)4’t&bisd4ﬁml
Proof: The T determine some of the f 's for p=0
- 8,0 QLyP,k
and k=0,1 compatibly with the boundary conditions. The

Lemma now follows from Theorem L4.6. 1]

Theorem L.9: Let D be a subcategory of WB satisfying L.6 (1),

G an MnTP—category, w: G - B a fibre homotopically
trivial MPTP-functor, and O, DG a homotopy of

functors reserving objects sums and permutations

i

and such that ped ex°P where p: D - WB is the

t
inclusion functor. Suppose the identities of B are
isolated. Then there exists a homotopy of M TP ~func—
tors v, WB~ G such that v,°o = 0o, and pov, = &g .

P, aud vy compa bible widh 4, respo & and salis{viua ol = &y, =0yt ay be giveu ik advace.

Proof: Since 1, € B(b,b) is isolated, (B(b,b), 1b) is a

NDR-pair. Hence B exists. Apply Theorem 4.6 with Z, = (1b),

Yy = idg , and B = G . 1]
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Lemma L.,410: Given any WM TP~category B (in normal form),
then there exists an MnTP—category B~ (in normal
form) such that
(1) (B™(b,b), 1b) is a NDR-pair for all generators b.
(2) There exists a fibre homotopically trivial i
fmmumsé

¢t B - B.
(3) Each 1, € 3" (b,b) has a closed neighbourhood Z

b

such that (zb, 1., v fr zb) is a NDR-pair.

b
(i) 84(2,) = 1, € B(b,D)

Proof: Let B”(b,b) = B(b,b) u I/~ where B(Db,b) = ~1 eI,

T
and B”(a,b) = B(a,b) for a # b. Composition with permuta-
tions on the right is the one in B. B~(a,b) is now obtained
by the normal form construction. Define composition as
followss Let B be a morphism into a generator,pf not con-
tained in one of phe attached whiskers, let OB and @. be

B
the composition and sum in B. Then

B°(a1@...@ak) = B°B(a; D+ «Dply )
where Qi is a morphism into a generator, ai = ai if ai is
not contained in one of the attached whiskers, and ai = 1b’
ifa; eI c B™(b,b).
For p = t € I c B”(b,b) define
Bec, = ¢ if o is not contained in one of the attached

whiskers,
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and p° = max(t,u) if ¢« = ue I c B*(b,b) .

The composition is well defined, continuous and asso-
ciative. 0 € I serves as identity. By construction @ is a
bifunctor. Hence B~ is an MnTP*category.

Clearly (1) is satisfied and with Z,=1c B~ (b,D)

(3) holds. Define

eqt B" =+ B

1
B -—
by eé(a) = o if is not contained in an attached whisker,

and aé(a) if o € I < B"(b,b). Extend e to the whole

=1y B
of B” using 1Its normal form (this is possible sincegé is
equivariant where it is defined already).

The section Lé: B - B~ is given by Lé(@) = 0. Then
Lé°sél§“(g,b) ~ 14|B~(a,b) equivariantly and fibrewise by
shrinking the whiskers to 1 € I, and eé°cél§(g,b) = id|B(a,b)

Condition (4) follows from the definition of sﬁ . 1]

A

Remark L.11: Of course, it would have sufficed to attach

a whisker only to those morphism spaces B(b,b) for
which 1b is not isolated +to obtain a category with

the properties required in Lemma 4.410.

3 . ] [o) 1] ~
Notation: Benote 8BOSB" and L g~ LB by €3

eB~and L g~are the standard augmentation and standard

section of B~.

resp. Lg s Where
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Theorem iL.412: Given any MnTP—category (resp. MnT—category)

B, then the triple (WB~, sg, L%) satisfy the condi-
tions (U4) and (U2) of p. 18 .

~

Proof: €3 is fibre homotopically trivial with a section
Lg. Hence (U1) holds. (U2) follows from Theorem L.6 with
_B_=§~,_Q=13_,andY=8}'3. 1]

Theorem L4.413: Let B be an M TP-category such tha t WB

exists. Then there exists an M TP-~functor o: WB » WB~

such that ep = a£°o iff B has isolated identities.

Proof: If B has isolated identities then o exists by
Theorem L.9 .

Suppose 0 exists. €} 0 £€..°2 0° t_ =¢e_° (., = id

B B B B B~ B
WB ——5—> WE"
8B ‘]‘[ LB 8B~ \ (.B.-
< °3 -V .
B ) > B

Recall that Ly Preserves identities, aB~°o°nB

section of 8&, which preserves identities. Since

defines g

eél B"(b,b) is given by the identity outside the attached
whisker this section can only be continuous if the identity

1, in B(b,b) is isolated. 1]
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Remark L.1h4: (1) In the case that B has isolated identities

it is easy to define o: WB - WB™ with-
out referring to Theorem L.9 by construct-
ing a functor B - B~ and using Remark 2.22

(2) A similar theorem can be stated for the
category obtained from B by attaching a
whisker to those morphism spaces B(b,b)
only for which 1b is not isolated.

(3) Theorem L4.13 shows that Theorem L.6 is

false without some condition like L.6 (2).

Lemma L.,15:Let G be a discrete topological group, X and Y

G-spaces with a free G-action, Y a CW-complex and
assume that G acts freely on the cells of Y (i.e. if
g#£1, g € G, then x and gx always lie in different
cells). Let'p: X » Y be an equivariant map and

st Y > X a section (not necessarily equivariant) of
p such that there exists a fibrewise homotopy

H: idX ~ s9p ., Then there exists an equivariant sec-

tion T: Y # X and an equivariant homotopy T: id, =~ t°p

X
which is fibrewise.

Proof: We construct a "regular" neighbourhood V. of the
— n

n-skeleton Yn of Y which is invariant under the action of
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o
G and such that the part Q of Vn over an open n-cell e
[«]
does not intersect gQ over ge if g #1, g € G. We then con-

1,0 on Yn,

and satisfies u(gx) = u(x). The section is then constructed

struct a map u: Vn - I which is 4 outside Vn-

by induction over the skeletons of Y. Assume we have con-—
structed Tn_1: Vn—1 -» X. We extend it to Vn using s on
those points x with u(x) = 4 and H(Tn_1(x), u(x)) on the
others. The equivariant deformation is constructed analo-
gously. Now the details:

Let Z2 = Y/G and ®: Y -+ Z the projection. Since the
action of G on Y is free on cells Z is a CW-complex, such
that ® is cellular. Consider each cell e™ as cone over
its boundary, e” = {(x,i) e énx[0,2]](x1,2)~ (25,2), x1,xzeén}
Let V be any subset of Z. We are going to construct a
"regular" neighbourhood N(V) of V. Let z% be the g-skeleton
of Z. Define )

Up’q(V) =z%n v for g<p

Define Up Cl(V) c 29 for ¢>p inductively by
b
a ~
U n ye* =
pya” X% = xEx Uy oy

where x is the characteristic map, eg a g-cell and éa its

n ég) x [0:1];

boundary. Let

UP(V) = uq Up’q(v) and N(V) = Up UP(V).

Let e be an n-cell of Z. Any two 1ifts of N(e), where
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g denotes the interior of e, cannot intersect each others
for the two lifts of g itself are disjoint since the action
of G is free on cells.

Claim: N(U V_ ) = U, N(V_,

Claim: N(U,V.) = U, 8(V))

This follows immediately from the definition.

Claim: N(V n W) = N(V) n N(V)

We first prove that Up,k(V) n Uq,k(w) = Uq’k(V n W) for p< q.

k k

For k< p: U_ (V) nU_ (W) =Vnz nWnz
p: Uy o (V) n U, o (i)

n

Uq,k(v n w)

U V) n W
q’k( )
For p < ¥ € q we get inductively:

- ok i k
)L (71U, g (VINEG)x[ 0,1 JJniinge

a

. k
1t
Up’k(v)nuq’k(J)nxeOL

-1 °k -4,k
xi(x Up’k_1(V)nea)x[0,1]nx 1Wnea}

X (7 (U gy (VWINEE)x[ 0,11

o= x0Ty (V) InéE)x[ 0,11

|1}

k

Uq’k(vmni)nxeOL

Again by induction we obtain for k > qg:

k
V)nU Win
=x {070y o (Dné5)x[0,1 Boxd (x710, o (#0)néF)x[0,1 13
Dyk~1 a ’ N\ A q,k—1 a ’
- - -k
=l (O, e (VD (0))060)x[ 0,413

=x{ (x"u (VW)né¥)x[0,1 1}
gy k-1 . a
= Uq,k(VnW)nxea .
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Now N{(V)nN(W) (w))

1}

(Up x Up, k(V))ﬂ(Uq 1 Ug,1
= Uy, q,x,10p,x(VINT, 5 (1))

k
U V)nU W since U cZ and
UP’Q:k( P’k( ) ka( )) Dyk ’

1
U cZ
asl

Uy,x Up, 1 VniT)

N(VaW)

Hence in particular N(en)n N(e ) = & for a #8 .

We furthermore define a set M(Z") for each n.

M(z™) = U Mq(Zn), where Mq(Zn) = M(z™)nz% is defined

gzn+1

inductively by M (Zn) = Zn, and given a k-cell eg, k> n#,

n+1
then

M (ZM)0xeg = %L (7, (208 )x[ 0,113
The difference between M(Zn) and N(Zn) is that the "collar"
part over the points of N(Z") which lie in the (n+ )-ske-
leton has been omitted in M(z™). It follows from the
construction that N(z") = M(z") u UN(eD).
Let PX* = p~ N (x~ (w(z™))) and ¥ = p~ 1 (¥®), let

PY® = 7 (W(z2™)). X® and PX™ are in CG since they are
closed. We are going to define equivariant sections

0’ PY® - PX® of p|PX® and equivariant fibrewise homotopies

T
T ¢ id

o n
0 pxB ™ Tn°(p|PX ).

For each eg e 2° choose a 1lift 1(N(eg)) in Y. Define
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T _l1(w(ed)) = si1(W(eg))
Since N(eg)r\N(eg) = @ for o £ B this is well defined. Now
extend it to the whole of pY° by

'co(x) = fco(x').& Ee G
(wewrite the action of G on the right), where x = x'.E ,
x' e l(N(eS)) some a. Since the action is free this is
well defined. Define

To(x,t) = H(x',t).E

if x = x'.E and p(x') e 1(N(e2)), some a. T_ is well defined
equivariant and fibrewise. Since p is an equivariant map
T, is a section, and T _: idpy0 = TO°(pIPXO).

Suppose inductivelythat <, _, * pY™ L px™ ana

Tn~1: idpyn-1 = Tn_1°(plPXn—1) have been defined. Define

a map us N(Zn—1) -+ I as follows: Let (x,t) e x(&™[0,1])
cu,_, (2%71). set u(x,t) = t. Bxtend u inductively by
»
- A\ _k
u(y,t) = u(y) for (v, t)ex{ (x7 U, 4, (2% nel)x[0,113
b4

?

cU k>n . uis well defined and continuous.

. n n r n—1
Extend u to us N(27) - I by u(x) =41 for x € N(Z ) - N(Z "),

Since u(x) = 1 for x e er(Zn)N(Zn—1) this is well defined.

Notice that u(x) = 0 iff x M(Zn-1). For each n-cell

n.e Zn

a

choose a 1ift 1(N(e,)). Define

s(x) uen(x) = 1
'E‘n(X) =
H(Tn_1(X), uen(x)) 0 < uem(x) < 4
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X € l(N(eE)). T, is well defined and continuous since it
is independent of o on possible intersections

1(N(e?))r\1(N(eg)). Sinee furthermore w_1M(Zn—1)nUaﬂ_ﬂN(32)

= f,any two 1lifts of N(&®) are disjoint, the action of G-
is free on cells, and Tnlw—1M(Zn-1)nUa1(N(e2))
=T Iﬂ—1M(Zn_1)ﬂU 1(N(e?)) w e can extend T_ over the

n—4 ; a a n
whole of PY® by

_ '
Tn(X) = Tn(X ) .E

if x=x'.E , x' € l(N(gg)) , some a, & € G.

H and Tn-1 define a product homotopy which is fibrewise

t

2
o on }

S OP - SOpOrC OP
H(7,_,°p(x),1,) T .

>

Tn_1 (X’ t2) / H(Tn_1 (X’ tg)’ t/‘ ) 1 sOPOTn-1 (X’ t2)=S°P(X)

iq H(X3t+) > + >t

Hence there exists a homotopy K _, ! PX* 1 1xI » P
which is fibrewise, such that
Kn_1(x,o,t2) = T4 (x,t5)

Kpq(x,1,1,)
X

n_Jl (X’t1’1) = H(Tn_1op(x)’t1) hd
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Define

H(X,t) U-°'IE°p(X) = 1
Tn(X, t) =
Kn_1(X: uexep(x), t) 0 < uemep(x) < 1

X e p—11(N(eg)). Then T is well defined, continuous, and

1 n-9 )

fibrewise, and since Tn(x,t) = Tn_1(x,t) for xep °w—1M(Z

we can extend Tn over the whole of PanI by

Tn(x'.E, t) = Tn(x', t).E

4

for x' € p~ °x'11(N(32) , some o , £ € G. Then

. n . . . .
Tn: ldPXn =3 Tn°p| PX" equivariantly and fibrewise.

Finally define ©: Y » X and T: XxI -» X by 7| Y* = T | ¥
and T| X*«I = Tnl X'xI. Claerly T is a continuous equiva- |
- riant section of p. Since we work in CG, T is continuous if
it is continuous on each compact subset of XxI. Bach com-
pact subset of XxI is contained in a product CxI where C
is a compact subset of X. p(C) is compact and hence it is

contained in some Yn. Hence CxI is contained in anI on

which T is continuous. 1]

Proposition L4.16: Given a CW-M"TP-category B such that

composition with permutations is free on the cells
of the morphism spaces of B. Let C be an MnTP-cate—

gory and y:C - B an MTP-functor such that there
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exist maps s: B(a,b) » C(a,b) satisfying

o - : .
ves| B(a,b) = ldB(g,b) and fibrewise homotopies

H: soy| g(a,b) = tdg(a,b)*

Then v is fibre homotopi-

cally trivial.

Proof: Put Y = Uges(k)g( a,b) and X = Uges(k)g(g’b) for
each sequence a = (11""’ik)' Now apply Lemma L4.15 to X
and Y. We only have to make sure that the constructed new
maps and homotopies map the morphism spaces of B resp. C
into the corresponding morphism spaces of C. Since s and
H respect the morphism spaces a guick investigation of the

proof of Lemma 4.15 shows that T and T do too. 1]
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CHAPTER III: STRUCTURE MAPS

$5 GENERALIZED HOMOTOPY B-MAPS

Suppose the category WB of operators acts on the spaces
X and Y, we want to give an appropriate definition of
morphism between them. In fact there aré various possibil-

ities,

Definition 5.1: Let B be an M1TP (resp M1T)-category and

(X, a), (Y, B) be B-spaces, i.e., spaces in CG and

we are given actions a:! B - End X and 8: B - End Y.

A map £f: X - Y is called a B-homomorphism if for each

x € B(n, m), where k is the unique sequence of 1ength.
k, £° a(x) = B(x) ° £,

We are more interested in a definition in which f merely
commutes with the gction up to coherent homotopies. This is
more complicated and appears to be new.

Let L, be the "linear" category with objects 0, eeey N

and one morphism i - j whenever i < j,

Definition 5.2: Suppose (X, y) and (Y, &) are WB -spaces

A map f: X - Y is a generalized homotopy B-map if

we are given an action p: W(B * L1) - End (X, Y) that
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induces the given WB-actions on X and Y and the given

map f: X » Y (for the definition of B * L, see P.15)

Later on we give a more precise definition of a general-
ized homotopy B-map.

If we attempt to construct the category of WB-spaces
and genepalized homotopy B-maps we find that it is not
possible. The composite of two generalized homotopy B -maps
is not defined, except up to a homotopy, which is itself
defined ondy up to a homotopy, which is ..... . Instead
we form a semisimplicial complex GMap B, whose n-simplexes
are actions of W(B * Ln) on (n + 1)-tuples of spaces.

1

Lemma 5.5: Let B, C be M TP-categories in normal form and

—

y: B 2C an M TP-functor. Let D and F be topological
categories With objects 0, e«eey n and 0y s0., m
respectively, and 6: D - F a continuous functor. Then
there exists a unique MTP-functor
V=y*08:B*D~-C*F

such that the following diagram commutes for all

D, 0 < ps<n
L A
B P, B*D¢ D
L.
6(p) A
g ~ C * Fer P
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(For LP and A see p.16)

Proof: On object generators v is given by v(i) = 5(i).

Adopting the intuitive description of p.16 the morphisms

in B * D from a = (11, ey ik) to b are given by a

pair (B; b) © £ where B € B(k, 1), (k is the unique

sequence of length k in B) and f is a k-fodd sum f,®... o1},

1
of morphisms fq € Q(iq, b). Define

v[(B; ) ° £] = (v(B); &(b)) ° &(f)
where 6(f1e cee ef#) = 0f,® ... @5f; « v is continuous and
equivariant. Hence we can extend it to the whole of B * D
using the narmal form. This automatically makes v commute

with sums and permutations. Since y and 6 are functors,

v preserves identities, and it follows immediately from the

\

definition that v preserves compositions. Hence it is an

MTP-functor.

v(B, ) = v ° 1, (B)

(r(B); (b)) = tg(py ° ¥(B)
Hence v © 1,(B) = tg(py © ¥(B).

v(f)

1

v ° A(F) f e D(i, j)

= 4 ° 5(r)
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Hence v[(B; b) ° £] = v(B; b) ° v(f)

(v(B); o(b)) ° &(f)

i

from which the commutativity of the diagram respectively

the uniqueness of v follow. 1]

Each monotonically increasing map f£: (0, ee., n)=*(0,..,m)
gives rise to a unique functor £: L - L  such that
£(i) = £fi for all objects i € L, Since f is monotonically
increasing, f£(i, j) = (fi, £j) is defined, where i < j and
(i, 3): i = J is the unique map from i to j.
i

Let £7: (0y eeey n =4) = (0, eve, n) and g (0, «c.,n+t)

-+ (0y «ee, n) i =20, «o., n, be given by

; J 0<j«<i
fl(a')={
j+1 i<j<n
. J -1 i<js<n+1
1,
g(a)={
J 0<j<i

ieee i € (0y eeoy n) is not in the image of ! and its
counter image under gl consists of two points

By Lemma 5.3 we have induced functors
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i o i . % 0
o' =1 *g£:1B*L , »B*L
i i .
-— % . £ 9
g =1 B Ly BY 4y

satisfying following ildentities:

ot o 99 2 9l e gt 1<
g9 o gt = gt o g i<y
sle gt =t e g i<
=1 1=17, 3 +1
= Qi"1o§j i>3+1
By Remark 2.22 the same identities hold far W(Qi) = ai
and ‘a’u’(gi) = st
Let

i n} ~r > -, kvl -
a H bnd(Ao’ooo, Xi’..o’ J{n) - Lnd(xo’-.o, J{n),
where "<" means '"delete", Dbe the inclusion functor and

i ER - 4

s ¢ mnd(Xo,..., Ai_1, Xio Xys ki+4,...,Xn)4£hd(Xo,..., Xn)
be the yrojection functor induced by the identity on the
mapping spaces. They are MTP-functors, Let

p: W(B * Ln) - End(xo,..., xn)

1

be an MY TP—functor. Then p induces unique functors P,

and Po such that the following diagrams commute:
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) 8 > W(B * Ln)

> A

End(X_, oeey Xis Xip ooey xn) End(Xo, ceey xn)

o
% > ¥
w(B Ln_1) W(B Ln)
P P
2 .
l ~ al
End(X_ s oo Xis eoes xn) > End(X_, «e.y xn)

p1 and P, are understood to be the actions p ° st and
p o ot,

Hence GMapB indeed is a semi simplicial complex, the
n-simplexes of which are the actions of W(B * Ln) on

(n + 1)-tuples of spaces and the face and degeneracy

operators are induced by composition with di respectively Slo

Definition 5.2*: Let (X, v) and (Y, &) be WB-spaces. A pair

(f, p), where £: X » Y is a map and p: W(B * L1) -

End (X, Y) an action, is called a generalized homotopy

B-map if
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1 0
o 3
WB = W(B * Lo)———'—->W(§ * L1)<-——————W(§ * Lo) = WB
l Y lp 61
a! 30
EndX > End(X, Y) < End Y

commutes and
P oo A(0,1)="F

where t: B * L, - W(B * L1) is the standard section

1

and A: L1 > B * LJl the inclusion functor.

Definition 5.L: A semi simplicial complex K. satisfies the

restricted Kan extension condition if given n

(n-1)-simplexes o;5 1 € (0, «eey n), 1 £k, where
0 <k <n,k #O0, 1 fixed, such that
39 6. = 5 C. 0<i<j<n, i,j# k
then there exists an n-simplex o such that
070 = 04, 1 k. (i.e. it satisfies the Kan extension

condition with the restriction that the omitted face

is not the first or the last).
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Theorem 5.5: The semi simplicial complex GMap B™ satisfies

the restricted Xan extension condition.

Before we start proving this theorem let us give a

G

descriptiocn of the trees representing the elements of W(§ W Ln)

which is simpler than the description in the general case. Vg
make use of the fact that there is exactly one morphism from

i to Jj in Ln if i € j. In the general case we labelled the
vertices by morphisms (B, j) ° (f1® ces @fk) of B * L into
generator, the incoming edges by source (f1),..., source (fk),
and the outgoing edge by target (f1)=...=target (fk) = J.

Since in Ln the morphisms fi are uniquely determined by their

source and target it suffices to label the vertices by a morphism?

of B into a generator. A typical vertex now looks like

of course, we again have elements of I assigned to each link.
Note that in this representation a vertex labelled by 1 may
only be suppressed if the incoming and outgoing edge are

labelled by the same object generator.

;
i
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Proof of Theorem 5.5: Given k Z 0, n, 0 € k < n, and for

all i € (0y..., n), an action pi:W(Q"* Ln_1)»End(Xo,.., Xi""Xgé

such that !
p; © 0971 = oy ° ot 0<i<j<n, i, j£x

We have to construct an action p: W(ﬁf*Ln) - End(XO,..., Xn)

such that p © ai = Py

1TP—su'bcategory

For this we construct an action of a M"'
of W(B~# Ln) on (xo,..., xn) which extends the actions of the
pi's and which is fibre homotopically trivial over B * Ln'

‘e then apply the Universal Theorem.

The elements of ai(w(g"* Ln-1)> are represented By trees
none of the edges of which has the label i. On those elements-
p has to be given by p; for i # k because of the condition that
p o ot = p;- Since p, © 031 = P ° ai, 0<i<gj<n, |
i, J £k, p; and py agree on the elements in
ai(w(g“* Ln—1)) 0 aj(w(g“# Ln_1)). Hence p is well defined on
all elements of 6i(W(§"* L, ﬁ)) for each i €(0,+¢., n), i £ k.
This, of course, determines p on all those elements of
(B~ # Ln) that are compositions of sums of elements in the
ohu(gm* L)y 1€ (0,000, n), 1 £k

n+4

Let C be the M TP-subcategory of W(B™* L ) generated



- 38 -

vy oYW (B~* Lo4) i€ (0,..., n), 1 #k. By our consideration
above the Ps define an action
n: C - End(XO,..., Xn)
vy n(ot(p~* Lyq) = Py-
If a representing tree 0 of a morphism of C into a generator
has'all object generators 0,..., n as labels for its edges, 0
contains a collection of edges to which 1 € I is assigned
(twigs may be included) and which separate 8 into a tree ¢
and a coovuse of trees wq such that there exist i, jq # k such
that none of the edges of ¢ and wq are labelled by i
respectively jq.
Note that the subspace of the representing trees of the
elements in C is closed in the space of the representing trees
of the elements of W(B™* L ). Furthermore if x e C is
indecomposable in C then it is indecomposable in W(g“*‘Ln),
for if y°z € C is such that none of the edges of its represent-
ing tree is labelled by i then none of the edges of the
representing trees of y and z is labelled by i and hence y
and z are in C. Since with {0, &, 0} all elements {¢, &, O}

are in C where ¢ 1s a trec of the same type as 0, C satisfies

the requirements for the category D in Theorem L.6.
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The stendard augmnentation & =

"BT#L, reduced to o]
augments ¢ over 3 * L . Define a ssction o: B™* L - G of

e | ¢ vy olC(a, b) = stendard section if 0 &a = (i1,.., ik)

i

or b £ n. o(p; (11, N)y eees (ik’ n)) {6, unit , 0}

where 6 is the tree with the vertez at the root labelied by
B, the ¢-th incoming edge labelled by iq if iq £ 0, and by
i,+1 101, = 0, vertices labelled by 0 & I « B™(4, 1) on
top of the q-th edce if it is labelled by i(l + 1 and their

incoming edges labelled by 0. Assign 4 € I to each link.

o(ps (0, 1‘1), (2, n), (1, n))’-‘

The standard deformation (sce p.lli) gives the required
deformation of C(a, b) with b # n, into the secticn.

The equivariant Fiprewise deformatiocus of Cla, n) into the
section are given in steps. e Tirst shrink all links
1abelled by 0, we thea iatrocuce acwy vertices O (recall that
0 el cB™(l,i)is the uanit) on toy f cach twig labelled
by 0. Change the legbels cf the nevly created links to 1 and
label the new twigs 0. e zet 1 € I ossigned to the new linis

by a defcrmation and then we shrime all links thet are not



a new link. For each defcermmation we have to make sure that
e stay 1 C.

Wow the detalls:
S DR VP | , _ N
fl.tEU,CJ,OE = i@,g,i;t((‘\))j ‘I.L’bll I;t<ll/l,..., up)—(t.‘ ou_jl’ooo,bl)oklp)
whepe t. = ¢ if Uy is assigued to a lin: lavelled by 0 and

1=

A

t. = 1 otherwvise. H' is . :ll-defiaed, continuous, equivariant
and fibrevise. If all i, 0 € 1 € 1 ccecur as labels of linzs
in © tiaen in the ccllecticn of edies to which 4 € I Lhas been
assigaed and vhileh decoupose (0,5,0) as menticned at the
beginaing f tae prcof, ncne of the ed.cs may be lavelled Ty 0.

4
deace thils deferrzation stays in C. Leacte Hbg by C wach

1 L

@

ol walch with excepticn, may be, of scme twiss is lebelled by

U. ‘The spuce of those trees 1s clos

[

W

b

ie I e stick a vertex

loavelled by 0 € I ¢ B"{1, 1) wa teo of each torin of thoge trees
A

lavelled by 0, clwin e the lawel of the newly created linlt from

0 to 1,and es=slyn to it the value 0 € I, «nd label the twirs

over the uew vertlces by {,7c cbteln o related recoresentative

0 assigned tc

s i."ir’ JA0  is -
tue new 1inlkcs.




The next homotopy only afiects the newly created links.

Define

2 . 2 - 2

H5{6,£,0} = {6,8,H5(6)1 with Hi(useee, u_)={max(t, su, Jyeey

€ t t o) 1 |

max(t_, u7)) vhere ti =t if u, is assiygned to an cutgolag
P L

edge of a vertex the incoming edge of which is labelled by 0

(such a vertex, of ccurse, is lsgbelled by 0). since the
e . . . . s 2 .

multiplication t1 # t2 = max(t1, t2) is asscciative, Ht is

well-deflned. It clearly is coatinucus, eguivariant and

. . = . o s . 2 .

fivrewise. DBy the same consideration as above, ht stays in

C. Deaote Mt C1 Dy 02.

[N

Finally define H7{0,£,0} = i@,g,H3 o)l ith

'r_"3 e ' M TrR e - i i
“t<u1""’ up) = (tﬂ.u.,..., t +G, ) ihere ty; =1 if u, is

D i

ascilpgned to an outgoing edye of a vertex the incowing edge
of winich is labelled by 0 in the representation chosen sbove.

t. = t otherwise. I

i is well-defilned, continucus, equivariant

%{6,@,6§is a corposition of an element

~ct\N

and iibrevise. wince H
represented by a tree the edges of which are not labelled by
. 0, and an element which is a sum of elements LB~(0; (0, 1)),
(LB~iS the standard section), Hg stays in C. H%(Cz(g, b)) =
o(8™* 1_(a, b)). |

Hence C is fibre homotopically trivially augmented over




- 92 -

BT* Ln and hence over B # Ln. Now apply Theorem L.6 with

L)

E=§~>kLn’ g:E*Ln,Qzng,6=idcandY=8§*Ln,

|
—
[Ge
3%
t
5
h
1
| S
——

which is possible since B™#* Ln =

Remark 5.6: If B has isclated identities we get the same

result for GMap B using the Theorem 4.9 instead of 4.6

Remark 5.7: If n = 2 let (f, p2): (X, ao) - (Y, a1) and
(g, po): (v, a1) - (z, az) be generalized homotopy
B”- maps. Then there exists an extension p: W(B™* L2) -

End(X, Y, Z) such that p © o0 = Pgr P ° % = P, and

o ° ol ¢ bg~sr, © A(0, 1) = g © £. (This follows from
= 1

Lemma 4.8 choosing T : B™* L, (0, 2) » ¢(0, 2) to be

0 ,
0
©(B; (0, 2)) = t and the value 1
: B assigned to the link)

2

The same holds for generalized homotopy B-maps if B

has isoclated ideantities.

For most purposes the concept of a generalized homotopy

B-map has undesirable complications arising from the existence
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of mixed maps, such as X x ¥ - Y. For this reason we dis-~

continue to study them, although the Theoren 5.5 provides

us with a good starting point'for the development of the theory.
To be @ble to give some other definition for structure

maps we have to introduce a new type of category of operators.,
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36 REDUCED CATEGORIES COF CPERATCRS

Definition 6.1: A reduced U TP-category B has as objects
finite sequences @ = (11,..., ik) of integers 0,..., n-1
S'llCh tmt 11-_- se e = 11{’
The morphisms between two c¢bjects form a topological

the empty scquence is included.

space in CG and composition is continuocus. We are given
a multiplicative structure ® on B such that
(igpeees 1) @ (Gyoeees ) = (4yreesipydpoees Jy)
whenever i1= ...=im = ji= oo =jk. It induces a strictly
associative map of the corresponding morphism spaces and
behaves like a functor whenever it is defined, i.e.
Bev)e (B'eox') =(BeB') @& (v °ox")

g @1y = 1

asb
Furthermore we gre given permutations satisfuing the
conditions (d) of Definiticn 1.1.

Analogously we can define reduced MnT—categories

Bach MnTP-category B gives rise to a reduced MnTP—category
RB, the subcategory of B consisting of all objects (i1,.., ik
of B such that i1= cee= ik and all morphisms between such
objects. Note that for n = 1 the definition of an M1TP—category

and & reduced M1TP—category coincide.

>
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Definition 6.2: A reduced MTP-functor betweemn a reduced

HnTP—category B and a reduced MnTP—category Cis a
continuous functor mapping object gnerators into
object generators and preserving sums and permutatiéns.
If it in addition preserves object generators if

m=n, it is called a reduced MnTP-functor.

If v: B+ C is an MTP-functor: them its restriction
y¢ RB + RC is a reduced MTP-functor.

We say that a reduced M TP-category B acts om (Xo”’xn-1>
if we are given a reduced MTP-functor
T: B+ REnd(X ,...,X _,)

In order to develop a theory for actiomas of reduced
MnTP-categories we are going to prove a universal theorem
equivalent to 4.6 for RWB. Clearly the notion of a fibre
homotopically trivial augmentation holds for reduced MPTP-

categories too, as well as the notion of a section.

Lemma 6.3: Each element x € RWB(a, b) can be decomposed into

indecomposable elements (in the sense of Definition
Loat), x = x1°...°xp. This decomposition is unique up

to the equivalence generated by
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L {
!
(a) X1°...°(Xi691)°(1 €BXi+1)°...°XP

— t 1
= X1°...°(Xi D Xi+1 )°...°Xp

— !
- x1°...°(1 & th_+1)°(xi ® 1)°...°xp

(b) x1°...°(xi °E,)°xi+1°...°xp

- 0.‘.0 .° © . °ooo°
X1 =1 & i xb

= X1° ...°Xi°(€ °Xi+1 )OQOoOXP

where £ is a permutation.

Proof: 1In view of Lemma 4.2 an element x € RWB(a, b) is
decomposable in RWB(a, b) iff there exists a collection of
edges in a non-degenerate representing copse labelled by
the same object generator and the values 1 € I assigned to
them which separate the copse into two copses (here we again
suppose that 1 is assigned to the twigs and the roots.
"Separate" means that each complete edge path runs through
exactly one edge of this collection). Chop all edges of
any such collection (chopping a twig or a root gives rise
to a trivial tree) to obtain indecomposable elements. As
in Lemma 4.3 there are three choices involved which are
taken care of by the relations (a) and (b):

(4) the order in which we chop these collections

(2) the choice of the particular non-degenerate
representative

(3) the choice of the position of permutations 1]
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Since a morphism in RWB can be decomposable in WB even
if it is indecomposable in RWB, we have to refine the
filtration RWPQ of RWB: For any MnTP—category B, for which
the construction W is defined, let pr’q§ be the subcategory
of RWPB generated by RWP-1§ and all those elements
x = {6,£,6} such that (6,£) € TpB(a, b) and 6 € I® has a
collection B of p-q coordinates with value 1. Denote the
(closed) subspace of Qa,p(é’b) consisting of these

representatives (6,£,56) by Q (a, b). More precisely

a,PsB,4
speaking, Qu is the subspace of Qu of those elements-

sDsB»q ° P
(6,€) such that to a chosen collection B of p-q links of
6 the value 1 has been assigned. Note that if the collectiomn
B separates the trqe © into a tree and a copse representing
elements in RWB (we might have to add some twigs to the
collection)then each element in Qa,p,ﬁ,q
composition. Let Q&,P’ﬁyq = QG,P,B,Q if B is a collection

that separates O into a tree and a copse representing

represents a

elements in RWB. Otherwise let @’ be the

QyDsByq c QG,P;B,Q
(closed) subspace of those representatives (6,£,86) that are

either degenerate or 1 € I has been assigned to more limks

of 6 than just to the ones in the collection B. Q!
ap B8, Q

consists of all those elements of Qa D,B,a that are related
: b4 ’ b4

to some element of lower filtration p or q, or that represent
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composites of elements, that can be represented by elements

of some lower filtration p. If{By£,8)&Q (8,b)

TQyPyB,y 0t

_ At
AyDyBy QyPyPy

pR20p _ pup—1o
Let D be a subcategory of RWB such that D_ p(g_,b) is
H
closed in Q p(g, b) for all a,p,a,b (see p.53) and such
’
that if x € D is a composition x =y ° z with y,z € RWB
t and i . tD a, b) =
hen y z are in D. Le a,p,B,q(—’ )
D a,b) n b).
Q’P(—’ ) Qaypyﬁtq(g’ )
Lemma 4.5 can now be stated far reduced MnTP—categories

and in view of Lemma 6.3 the proof goes over:

Lemma 6.4: Let C be a reduced MnTP-category and D a
subcategory of RWB as given above. Let 6t: D-C
be a homotopy of functors preserving objects, sums and
permutations.
(1) Given a homotopy of reduced M TP-functors
Y.%q-‘l :RWP2 315 . ¢

and equivariant maps

by :
G,DyB,Qq QﬁoP’B’q

for all ¢,B, a,b such that

(a, b)xI » Cc(a, b)
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(a) Y%’q-1 lpr’q-1§ N P. = thpr’q—1§ o P_

ID

(b) £ QyD,B,a

a,D,B,Q (Q’ b)X(t)

= 6t°(xa PIDQ9P95’Q(§’ b))
(2, b)x(t)
L e q(a )

(x, t) factors through the relation

f 1
QyD, B IQ Qy,DsBsQq

= Yﬁ’q 1°(x 19

(e) £, 5,8,

(2.14) for each t € 1I.

If x is a trivial tree representing the identity
of b, then f
b4

a,~1,8,00%) =1y
Then there exists a unique homotopy of reduced .

MnTP-functors
Yg,q: pr’qg -+ C

L}

extending Yg,q—1 and 8.|D n RWP?9B such that

P’qo
Xa,p!%,p,8,q(8 P)

= To,0,8,a %,p,8,q(8 P)x(t).

If g-1=p we can substitute (p,q-1) by (p+1,0)

(2) Given homotopies of reduced M TP-functors Y%,q:

RWp’qB -+ C for all p and q such that
v2r ¢|RwP?* % n RWS »ty - :’tIRWP’qg n rwS* 'y
and 3’ %rWP* 98 n D = 6, IRWP*%B n D, then there

éxists a unique homotopy of reduced MnTP-functors
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Yy¢ RWB - C extending 6t such that
v IRWP? 9B = 279, 1]

In the seame manner we can state and prove the analogue

of Lemma 4.7 with a refinement of the filtrationl; in the

&k b
spaces Ra,p,k‘ Ra,p,k,B,q e the (closed) subspace of
R, D,k of those elements (06,£,8) such that 1 € I has been
P&

assigned to a collection B of p-g links of 6. If the

collection B separates the tree 6 then put R' =
a,D,k,B,

. Otherwise let R! consist of those
a,P,k,B,q © a,P,k,B,Q

elements that are relgted to some element of lower filtrationm

R

p,k, (see p.59) or that have 1 € I assigned to more than
just the links of the collection B. We refrain from

stating the analogue of Lemma 4.7.

Theorem 6.5 (The universal property):

Given a commutative diagram
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of reduced M“TP-categories RWB, RB, C, G, where B

is an MnTP—category, and a subcategory D of WB,
reduced M™TP-functors Y,u, the standard augmentation
€ = €ps the inclusion functor p and a homotopy of
functors 6t preserving objects, sums and permutations
for each t € I.

Assume

(1) If x € D is a composition in RWB, x = y°z, then

y and z are in D,D_ _(a, b) is closed in Q (g,b),

)a,p

and each ted tof D
ach connected component o GyPsBsa

(a,b) is open and

(é’b)

containin t !
a g a point x £ Qg 0,058,

closed in G (a,b)

WyDyByQq
(2) B and v and p satisfy the conditions (2) and (3)

of Theorem L.6
Then

I: There exists a reduced M'TP-functor VyiRWE - G

such that u°v0=y°8and“v0°p = 60

II: Given any two reduced M"TP-functors vo,v1:RW§ -G

such that wevy = u°v1 = y°e and v, °p = O

0 0’
v1°p=:61, then there exists a homotopy of reduced
MPTP-functors Vi :RWB » G between v, and vy such

that Vt°p = btakd/u"l)t='r°2.
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Proof: The proof proceeds on the same lines as the proof

of Theorem L.6. We again construct compatible functors

v k’q: F_ RWB - G extending &6,, respectively
0 k,g = - 0

k,q,
vt 'Fk,qR

proving I. The proof of II is similar . The differences

WB - G extending 0,. We restrict ourselves to

have been described in the proof of Theorem L4.6.
v0—1’q and vt—1’q are uniquely determined by 6,

respectively &

t.
Suppose inductively that we have defined
y 2221, R RWB - @ such that
0 P,a-1 = =

p’q,-1 - I',S -
Vo IFr,SRWQ = v, for r = p and s<g-1

or r<p and

P> q-1 ;
°v = yoe|F RWB.
"o IP5, g4 F2

Recall that vOP’P induces v0p+1’0. We have to define

equivarient maps

R = (29 b) - g.(g".)b)

£f =7 : R_
a,Pyk,8q ay,Pyk,B,q
Wl'u'ch (-QC‘LOY l:Lrong ¢2.11)

(We omit the indices whenever there is no danger of confusion

satisfying
t — D, q-1 '
£IR'(a,2) = v, %y, p, kIR (2:P)
and |
of = 0 g0 R
s e xatpyk

1 vP? 21 Goes not determine £ on the whole of
= P Iq i ] . i ! = p
R xIg, i.e if RAR', (recall Ra,p,k Pa,p,kXI .Hence
P’?“)P'k' Q“,P;k,ﬂ = ‘Pa,p,k x I; ,wLer( I;c IP is Al ‘[«ge with f;xf ‘lor ea . ( ivdle
collechow §.)
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it::it:::E$ then it determines it exactly on PxdIduptx1d
Q,D, B p

Now we can proceed in exaclly the same way as in the

proof of Theorem 4.6 using Ig instead of I®, 1]

Remark 6.6: The analogues of the Lemma 4.8, the Theorems
4.9, L4.12, and the Proposition L.16 hold for reduced
MnTP-categories and reduced MPTP-funcotors.
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$7 HOMOTOPY B-MAPS

To simplify the notation we denote the sequences in
RW(Q*Ln) of length m in the generators 0, 1, or 2 by
m, n', n" respectively. We hardly ever deal with B*L

where n>2.

Definition 7.41¢ Let B be a category of operators and
(X,v)y, (Y, 6) WB-spaces. A pair (f,p), where f:X>Y
is a map and p:RW(E*L1) -+ REnd(X,Y) a reduced
MQTP—functor, is called a homotopy B-map between
(X,y) and (Y,0) if

1 0
d 9
WB = RW(B*L,)—> RW(B*L, ) «———RW(B*L,) = WB
Y e
a" a0
EndX 3REnd(X,Y)< EndYy

commutes (where al is the restriction of the face
operator o1 to the restricted subcategories) and
p°n§*L1 °© A(0,4) = F

where ‘§*L1 is the reduction of the standard section

to R(Q*L1) and A:L, - R(Q*L1) is the canonical

1
inclusion functor.
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Remark: Although we will distinguish between an MnTP-category
B and its reduced subcategory RB we use the same
symbol for an MPTP-functor and its restriction to the

reduced subcategory.

Definition 7.2: Let(f, p), (g, x): (X, v) » (¥, &) be
homotopy B-maps. We call (f, p) and (g, ») homotopic
and write (£, p) = (g, ) 1if there exists a homotopy
of reduced M°TP-functors A RW(B*L, ) - REnd(X,Y)
such that Ay = pand A, = x,awd 2;09%= &, Xpedt=y forall 461
Analogously define "homotopic" for generalized

homotopy B-maps.

A generalized homotopy B-map (f,p): (X,y) - (Y,d)
canonically induces a homotopy B-map (f,p'): (X,y) -» (Y,5)
by restricting the functor p: W(Q*L1) -+ End(X,Y) to the
reduced MZTP-subcat'egory RW(B*L1 ).

Theorem 7.3: Let (f,p): (X,v) - (Y,8) be a homotopy B=map.
Then p induces an action v: W(g"*L1) -+ End(X,Y) such
that (f,v): (X,y) - (Y,0) is a generadized homotopy
B~-map. Furthermore if (f,p) is the canonical

homotopy B~-map obtained from a generalized homotopy
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B -map (f,p'): (X,v) -+ (Y,6), then (f,v) = (f,p').

Proof: RW(Q"*L1) generates an M°TP-subcategory G of
W(Q”*Lq), i.e. each morphism of C is a composition of sums
of elements in RW(Qf*L1) and of permutations. Let

_ . - .
V=X @...0 X be an element in G, x; € RW(B L1). Define
n(x1@...exp) = p(x1) XoooX p(xp) and n(E) = £, where &

is a permutation. Extend m to an action of C by

n(yy °eeeoyy) =y, ) °ene nlyy,)

where y; is a sum of morphisms in RW(B™* L1).

g = e§~*L1lg augments C over B"*L,. We will show that
e is fibre homotopically trivial and then we will apply the
Universal The orem.

Note that C (n,1) = w(g"*L1)(g,j_), c(n,1') =
w(B™*L, )(ms 1') and C(n',1') = W(B"*L,Xz',1"). Hence the
standard section and the standard deformation guarantee that
¢ is fibre homotopically trivial on these morphism spaces.
So we can restrict our attntion to C(g,1') where
a= (:1l,..., ik) with 0, 1 € a. As in §5 we use the

simplified description for the trees.

Define a section o: B"*L1(g,1') - C(a,1') vy

(B3 (1491)50eey (ips1))=
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The value 1 is assigned to each link. More precisely
0(63(11,1),...,(ik,1)) = {6,unit,d} where 6 is the tree
with the vertex at the root labelled by B, all incoming
and outgoing edges labelled by 1. If iq = 0, then on top
of the gq-th incoming edge sits a vertex labelled by 0 (the
identity of B~), and its incoming edge is labelle 4 by 0.
Each representing tree of C(a,1') has a collection
of edges to which 1 € I is assigned, and which decompose
the tree into a tree all twigs of which are labelled by 1,
and a copse all the twigs of each imdividual tree of which
are labelled by 0 or 1 only. Conversely each tree with
such a collection of edges represemts an element in (.
Define the equivariant fibrewise deformation into the

\

section in steps:

Hl{e,a,oi = ie,g,Hl(o)} with Hl(u1,...,up)=(t1. greertpeus)

where ti =t if u, is assigned to a link labelled by 0,

i
and t1 = 1 otherwise. Since es&ch link in the separating
collection of 6 is labelled by 1, this homotopy stays in

C. It certainly is well defined, continuous, equivariant,
and fibrewise. Each element in H%g(g,l') can be represented
by a tree such that only its twigs are labelled by 0, and
its vertices at the bottom of twigs labelled by 0 are

labelled by 0 (the identity in B~). Now defime
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HS16,E,0) = {0,8,H;(6)] with Ho(u,,..,u )=(max(t,,u,),--.,
nax(tp,up)),

where ti =t if u, is assigned to a link that is preceded
by a twig labelled by 0 in our chosen representation, and
t; = 0 otherwise. Simce the multiplication map "max" is

associative, Hi is well defined.It is continuous, equiva-
riant, and fibrewise. Since links to which the value 1 is
assigned are not affected, Hi stays in C. Each element of

Hf ° Hg(g(g,l')) is a composition y°z, where y e

~ ] [ 1 . — . — -
W(B *L1)(L_: »1') and z = X,®...0 X, With X, = 11, if 1q =1,
or 0
x, = fo,unit, 1%} with 6 = 0 if 1 = 0.
1

Hence z is uniquely\determined by a. If Kt is the stan-

dard deformation of W(g“*L1)(g',1') into the standard

section, then the deformation H% s 8lven by

Hz(y°z) = Kt(y)°z, deforms H>

;e H (S(a,1')) into the given

section.

Let D be the subcategory a°

W~ u o'WB~ of W(B™sL, ).
D satisfies the regirements of the Universal Theorem.
Define x¢ D -» C to be the inclusion. Define

T = 0: B™L (1,1') » C(4,1")-

By the Universal Theorem and Lemma 4.8 we obtain an

MZTP-functor pe W(Q“*L1) + C extending x , and such that
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' — -
eg*L1°e°x = SE*L1

and €~ see p. 69). Hence
(f,ﬂ°X)= (X’Y) -+ (Yvé)

gives the required generalized homotopy B™-map.

, and n°x°LB~*L1°A(0,1) = £. (For ¢'

Now suppose that p has been obtained by restricting
p': W(Q“*L1) - End(X,Y). Let A2 C » W(g“*L1) be the inclu-
sion functor. Then m = p'eA since p' is am M°TP-functor.

By definition € = ¢ A
v §‘*L1° , and hence eé*L1°s°x =

1°s§~*L1°l°x = eﬁ*L1. Let 6,: D - W(g”*L1) be the

inclusion functor for all t. Themn by Theorem 4.6 II there

1

exiats a homotopy of M°TP-functors Fy: W(g“*L1) - W(g‘*L1)

extending 0,, and such that F;, = A°x and F, = id . p'eF

gives the required homotopy (f,mox) 2 (f,p'). 1]

t

Remark 7.U:
(1) Since morphisms that are indecomposable in [¢]
can be decomposable in W(g'*L1) we cannot
expect that the reducedt action p imduces a

canonical actiom v: W(Q“*L1) - End(X,Y).

(2) Theorem 7.3 can be proved for actions

p: Rw(g"*Ln) - REnd(Xo,...,Xn) with n arbitrary.

n+4

. But since the obtained M TP-functor
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v: W(B™*L_ ) - End(ZXy,...,X;)
is not canonically induced by p it is not very

interesting.

(3) An analogue theorem holds for homotopy B-maps
if B has isolated identities. Just replace B~

by B.

Definition and Lemma 7.5: Let £: (X,v) » (Y,u) be a WB-ho-

momorphism (see Definition 5.1). The induced homo-

topy B-map £, = (£,f,): (X,v) » (Y,u) is defined by
(1) £,00%B =y ,z,l o'wB = v
(2) £l RW(Q*L1)(Q,1') is given by the composite

RW(B*L, )(n,1') ~, WB(m,1) - End X - REnd(X,Y)
== 0 T v fo-

where s® is the degeneracy functor,aud ({o—)‘a=\c"°g for
3: X" X*(we ch?ueqila shorden {"= (x...x‘, nhimes, fo f)
Conversely each homotopy B-map (f,xj: (X,v) » (Y,u)
such that x satisfies (2) is induced by a WB-homo-

morphism.

Proof: f, 1s continuous, by the mormality of RW(Q*L1) well
defined, and preserves sums, permutations, and identities.
Since so and v are functors we only have to show that com-
positien of X € Rw(gmL1 J(n',1') with y € RW(_B_*L1 )(m,n')

is preserved:
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£ o (vos(x)) o (ves'(y))
£ o v(x) o (ves'(y))
p(x) o o (ves'(y))

= £,(x) o £,(y) .

£ (x°oy)

]

Conversely given a homotopy B-map (f,x) such that x satis-

fies (2). Then xotp,  °A(0,1) = £, and s%u . °A(0,1) = 1

= ="M

€ WB. Hence for x e WB 'coug;cl(ém'd cwhedded i RW(BaL,) l? 3%sr 9.

x(xo(nB,L1°A(o,1) B @ ;B*L1°A(o,1))) £ov(x) e 1y

x(x) o £ o 1%
Hence f © v(x) = p(x) o £ .

This also follows from the tree representation. 1]

Clearly composites of B-homomorphisms are B-homomor-
phisms. Neither do we have any problems in defining com-

posites of WB-homomorphisms with homotopy B-maps:

Definition and Lemma 7.6: Let (f,p): (X,u) - (Y,v) be a
homotopy B-map and g: (Y,v) » (Z,\) a WB-homomor-
phism. Then there exists a canonical composite
homotopy B-map ge(f,p) = (gof,x): (X,n) = (Z,\)
defined by
x| 8%B =2 , x| oWB=yu

% | RW(Q*L1)(Q,1') is defined by x(x) = gop(x) .
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Proof: Again we have to show that x is a functor. Since
p extends pu it suffices to show that x preserves compo-
sitions of x € o%WB with y € RW(BSL, )(m,m'):

x(xoy) = gop(x)°op(y) = A(x)ogep(y) = n(x)ox(y) . ]1

Remark: Analogously we can define compositions (f,p)°h

where h: (W,0) » (X,n) is a WB-homomorphism.

Again we run into trouble if we attempt to comstruct
the category of WB-spaces and homotopy B-maps, for as in
the case of the generalized homotopy B-maps the composite
is only defined up to a homotopy, which is itself defined
only .up to a homotopy, which is ... . To get aroumnd this
difficulty we again\form a semi simplicial complex MapB,
the n-simplexes of which are actions of RW(Q*LR) on
(n+1 )-tuples of spaces. The face and degeneracy operators
are induced by the compositionms
poai: Rw(g*Ln_,t) Q——aRVJ(g*Ln) ————-;REnd(XO,...,Xn)

i
poes 2 RW(Q*LnH ) ——— RW(B*L_ ) ———— REnd(Xy...,X )

(compare p. 84).

Theorem 7.7: The semi simplicial complex MapB~ satisfies

the restricted Kan extension condition.
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If B has isolated identities, then MapB satisfies

the restricted Kan extension condition.

The proof is exactly the same as the one of Theorem 5.5
with the exception that we use Rw(g“*Ln) instead of

W(g“*Ln) and Theorem 6.5 instead of Theorem L.12. ]]
The Remark 5.7 applies to the reduced case too.

Definition 7.8: Let (fi,pi): (X,u) » (Y,v) , i = 0,1, De
homotopy B-maps. Then we call (fo,po) and (f1,p1)
s-homotopic and write (fo,po) u:(f1,p1) if there

exists a peduced MOTP-functor o: RW(Q*LZ)—»REnd(X,Y,Y)

2 0
such that ceo" = po ’ o°a1 = p1 , and c°9 = 1Y* .

The condition c0d’ = (1Y)* is equivalent to saying
that o°00 is degenerate. It is easy to show that a homo-
topy B-map is degenerate iff it is the homotopy B-map
induced by the identity.

Lemma 7.9z Let (f,p): (X,u) » (Y,v) be a homotopy B-map,
g: (Y,v) » (Z,\) a WB-homomorphism, (g°of,x):(X,u)»(Z,7)
* their canonical composite. Then there exists an action
o: RW(B*L,) - REnd(X,Y,Z) such that o°d' = x,

O°00 = g* 9 and 0002 = p .
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Proof: Define ¢ as follows:

ol o“RW(EPL,) =

o o°mm(sL, )

Ex
o| RW(B*L,)(ms1") = xes' .
o is continuous, well defined, preserves sums, permutations,
and identities., It satisfies the statement of the Lemma.
It remains to show that ¢ is a functor, and for this it
suffices to show that o preserves compositioms of
X eaon(g*L1) with y € 62RW(§*L1):
x(s'(x)) o x(s'(y))
A(s%(x)) ° g ° p(y)
g ° v(s%(x)) ° o(y)
o(x) ° o(y) . 1]

o(xey)

Remark: We can prove an analogous lemma for compositions
(feh,%) of (f,p) with a WB-homomorphism
(W,w) - (X:P-) .
Clearly "s" is an equivalence relation. From Theorem 7.7
and Lemma 7.9 we can immediately deduce that "=" is an
o/homoi B™ wmaps
equivalence relation ° %or reflexiV1ty follows from

Lemma 7.9, while symmetry and transitivity follow from

Theorem 7.7 and a trivial version of Lemma 7.9 by con-



- 115 -

sidering the following 3-simplexes: All maps are supposed

to be homotopy B”-maps or homotopy B-maps and B has iso-

lated identities. m 3
3 - b i1
1
I g *1 1

I symmetry: The bottom is given by the homotopy
(f4p) = (gy%x). The front and the right hand side are
given by reflexivity (i.e. by Lemma 7.9). Since the
second face is missing we can fill in the 3-simplex by
Theorem 7.7. The resulting left hand sides provides us
with a homotopy (g,x) = (£f,p) .

II transitivity: The homotopies (f,p) ~ (g,x) and
(gyx) = (hyA) give the bottom and the fromt. The right
hand side is given by reflexivity. Since the second face
is missing the 3-simplex can be filled by Theorem 7.7.
The resulting left hand side provides us with a homotopy
(£,p) = (h,N) .

Definition 7.10: Let (f,p): (X,u) = (Y,v) and
(g,0): (Y,v) » (2Z,\) be homotopy B-maps. Then the
homotopy B-map (h,%): (X,u) + (Z,A) is called a com-
posite of (f,p) with (g,0) if there exists an actiom
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n: RW(B*L,) + REnd(X,Y,2) such that 103’ = o,
2
nod’ =%, MO =9p .

Lemma 7.11: Let (£,p): (X,n) » (Y,v) and (gy0): (Y,v)= (Z,\)
be homotopy B”-maps. Then there exists a composite
of (£f,p) with (g,0) and it is umique up to s-homotopy.
If B is an M1TP-category with isolated identities
then the same holds if we substitute B~ by B.

Proof: The first part follows from Theorem 7.7. Now
suppose that (hi,gi): (X,u) » (2,\) are two composites

of (f,p) with (g,0), i = 0,1. Let ni:Rw(_Z_B_"*Lz)-)REnd(X,Y,Z)
be the actions defining them. Comnsider the following
3-simplex: .

3
/g
hH 1
1
A/\g*\
0 h2> 2

The bottom and the left hand side are given by the actions
'n1 and Mo By Lemma 7.9 there exists an action determining
the right hand side. Since the first face 1s missing we
can apply Theorem 7.7 and £ill in the 3-simplex. The re-

sulting front face gives the required s-homotopy. 1]
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Lemma 7.12: Let (£,p), (h,x): (X,n) » (Y,v) be homotopy
B~-maps. Then (f,p) = (h,x) iff there exists an

action 0: RW(B™$L,) - REnd(X,X,Y) such that 003? = p ,

g0

= A o°a2 =(1X)*° (Recall that s-homotopy
is defined by an action Rw(g“*Lz) -+ REnd(X,Y,Y)).
If B is an M TP-category with isolated identities

then the same holds if we substitute B™ by B.

Proof: The canonical composites (f,p)°(1x)* and
(1Y)*°(f’p) are equal. From Lemms 7.9 and the uniqueness
of composition of homotopy B”-maps 1t follows that

(£,0) = (byx) iff (h,%) = (1,),°(£50) , i.e. (Byx) 15 a

(not canonical) composite of (4 with (f£,p), and hence

v)s
a composite of (f,p) with (1X)* , which proves the Lemma

one way. The converse follows in the same manner. 1]

Lemma 7.13: Let (f,p), (h,x): (X,un) » (Y,v) be s-homotopic
homotopy B™-maps and (g,%Z): (Y,v) - (Z,\) ,
(kyvy): (Wyw) » (X,u) homotopy B~-maps. Then
(g,8)°(£5p) = (gy2)°(hyx) and (£,p)o(k,y) = (hyx)o(k,y
If B is an M TP-category with isoclated identities,

then the same holds if we replace B™ by B.

Proof: By Lemma 7.12 we have an action
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o: RW(B™*L,) » REnd(X,X,Y) such that 003’ = p , 000! = x ,

and 0°3° = (1X)*‘ In the following 3-simplexes

I 3 II
AN
1'
QN
o > 2

in I the bottom is given by o, the front and the right
face by composition (Lemma 7.11), in II the bottom and
the left face are given by composition, the right face
by the given s-homotopy. Now apply Theorem 7.7. The re-
sulting left face of I and front face of II give the
required s-homotop%es. 1]

Theorem7.14: The WB™-spaces and s-homotopy classes of

homotopy B™-maps form a category.
If B is an M1TP-category with isolated identities
then the WB-spaces and s-homotopy classes of homoto-

py B-maps form a category.

Proof: By Lemma 7.14 and Lemma 7.13 we have a well defined
composition. By Lemma 7.9 the WB™-homomorphisms
(1X)‘:’(X,u) - (X,u) provide the identities. Associativity
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is obtained from Theorem 7.7 by considering the following

3-simplex:
3
hig
ho(gef) 1 h
/{ ?)\
0 FTr 2

The bottom face defines gef, the front defines h°(g°f),
the right face defines hog. Since the second face is

missing we can fill in this 3-simplex. We find that the
representative (composition is unique up to s-homotopy)

for he(gef) represents (heg)ef , too. 1]

We next discuss the connection between the two defini-
tions of homotopy between structure maps (see Definition 7.2
and 7.8). For this we first have to side track and study

"equivariant" NDR-pairs of spaces of representing trees.

Definition 7.15: Call a subspace A of M = M_ p(g_,b),
b4

(see p. 53), an equivariant NDR, if the maps u:M - I

and h: MxI - M representing A as a NDR in M (see

[6;Definition 6.2]) satisfy :
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u(x) = u(y) if x ~ y under (2.3)
u(x°g) = u(x) , where £ is a permutation.
h(x,t) ~ n(y,t) under (2.3) if x ~ y under (2.3)

h(x°E,t) = h(x,t)°E , where £ is a permutation.

By taking a radial map and a radial deformation
v: I 5 I and j: II » I®, (radial from the point
($5.++9%)), we can represent 1™ as a NDR in I® in such a
manner that v and j are symmetric in the n coordinates
of 17,

Now suppose we are given an equivariant NDR A in

M

M, p(g.,b) represented by u and h.
1

Lemma 7.16: AI® U ﬁxaln can be represented as NDR in Mx I
by maps w: MxI® » I and k: MxIPxI -+ MxI" such that
(A) w(6,£,6) = w(o,n,0) if (6,&,5) ~ (9,m,9) under
(2.11)

w(6,E,0) = w(6,unit,d)
(B) k(6,E,6,t) ~ k(p,n,0,t) under (2.11) if
(0,E,8) ~ (@ym,0) under (2.11)
k(0,E,08,t) = k(6,unit,d,t)er .

Proof: Define w(6,£,6) = u(6,£).v(6). From the definition
of u and v (A) follows immediately.
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Define
(6,£,8) if (6,£) € A, and 6 € oI"
[n(e,&,t), 3[6,(u(6,8)/v(8)).t]]

if v(06) = u(6,€) and v(6) > 0
[nl6,&,(v(8)/u(6,£)).t], 3(5,t)]

if u(6,) > v(6) and u(6,g) > 0 .

k(6,€,8,t)

By [6; Theorem 6.3], k is continuous. It follows directly
from the definition that it satisfies the condition (B). ]]

Remark /7.1/: Let K c 1% be a NDR such that the representing
maps v': I® > I and j's I%I -+ I® are symmetric in
certain subsets Ui of the n coordinates of I®, Then
by the same construction MxK u,AxIn can be represen-
ted as a NDR in MxI® by maps satisfying (A) and (B)
of Lemma 7.16,if the coordinates of I in MxI® are

only permuted inside the U; under the relation (2.11).

Lemma 7.18: Let X and M and A be as in Remark 7.17, and

suppose (2.11) permutes the coordinates of I® in
MxI® inside the subsets Ui of the coordinates of I®
only. Then there exists a retraction
r: MxI™XI - MxI™%0 u (MxK u AxI™)xI
'éuch that
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(8) Let x = (6,8,8), ¥ = (9ymy0), r(x,%) = (x',%'),
r(y,t) = (y',t"). If x ~ y under (2.11), then
t' = t" and x' ~ y' under (2.11).

(B) r(6,£,56,t) = r(6,unit,d,t)°& .

Proof: r is defined by
r(0,8,6,t) = (6,,6,t) if t = 0 and (6,E,8)eMxEKu AxI"
[x(e,2,6,1), 1[t,w(0,&,8)/s(t)]]

if s(t) > w(6,£,8) and s(t) > 0
[x[6,2,06,8(t)/w(6,E,8)], 1(t,1)]

if w(6,£,06) > s(t) and w(6,,8) > 0 ,

where s: I » I and 1: IxI -» I are defined by s(t) = t/2
and l(t1,t2) = (1—t2).t1. w and k are the maps of Lemma 7.16.

By [6; Theorem 6.3], r is continuocus. 1]

Let B be an MPTP-category such that (B(b,b), 1b) is
a NDR-pair for all object generators b. Let D be a sub-
category of RWB satisfying:
(1) If x € D is a composite in RWB, x = y°z, then y and
z are in D.
(2) Suppose DG’P(g,b) contains trees that do not represent
decomposable elements of D, then Da’p(g,b) is a pro-

h - DtuTP t t
duct, Da’p(g,b) = D'xI*, and D' v MG’P(g,b)c:Ma,p(g,b)
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is an equivariant NDR, where M' _(a,b) ¢ M _(a,b) is
PR GyP
the subspace of those trees that contain a vertex

labelled by an identity.

Lemma 7.19: Given an action p,: RWB - REnd(Xo,...,Xn_1)
and a homotopy of functors s;: D - REnd(XO,...,Xn_1)
preserving objects, sums, and permutations, such

o Then there exists a homotopy of

)

that pol D=5,

reduced M TP-functors p,: RWB + REnd(Xg,...,X, _,

extending Py and Oy o

Proof: By Lemma 6.4 we have to construct homotopies of

reduced M TP-functors Yg’qtpr’qg -+ E , where

E = REnd(XO,..., ‘. ), such that Yp+r,q+s extends Yp,q ’

n-1 t t
r,s > 0, and such that Yg,q is compatible with &,. For
this we have to construct maps
T s b B b
Qy,P,yByq Qﬁ,P’B’q_(g" ) > _(i_i,, )

satisfying the requirements of Lemma 6.4 .

Since (B(b,b), 1b) is a NDR-pair for all object gene-—
rators, and since the trivial group of permutations acts
on it, M' (a,b) ¢ M__(a,b) is an equivariant NDR. (We

a,p a,p
know that it is a NDR. The representing maps are induced

by those of the NDR-pairs (B(b,b), 1b). Hence it trivially
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is an equivariant NDR-pair).
Induction start: For p = -1, 721’q is uniquely determined

-1,q§ consists of identities only.

since RW
Induction step from (p,g-1) to (p,q): We drop indices

whenever there is no danger of confusion.

= ', = is deter-
Suppose Q QU"P’B’Q ;é < Then £ foupyﬁsq
mined on (anlg U M'xlg)xl vy 3’9, where I3 c 1P is the

cube determined by the collection B of links in the trees
of M. £ furthermore is given on Qx0 = MngxO (compare
p. 97) by Pge If D =D p N Q contains an element which

H

is not in Q', then D = D'xlg , and D' U M' is an equiva-

riant NDR in M. f is determined on D'ngxI by 6. Denote

£ i[anIg u (M'u D')ng]xI U Qx0} by g. Define
£f: QxI » E by £ = gor, where

p: QxI = MxI%I o [MxoIf U (M'U D')xIFIxI U MxIgx0
is the retraction of Lemma 7.18. Since r is equivariant
and factors through (2.14) for each fixed t, f = g°r

satisfies the requirements of Lemma 6.4 .

Lemma 7.20: Let (gi’pi): (Xyu) = (Y,v), i = 0,1 , be homo-

topy B-maps such that (go,po) = (g1,p1). If
- (B(1,1)5 1)) 1s a NDR-pair, then (gg,pq) = (g,40,).
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Proof: Let xt:(go,po) = (g1,p1) be the given homotopy of

3

reduced M2TP-functors. Let D be the reduced M"TP-subcate-

gory of RW(Q*LZ) generated by aiRw(g*L1), i=0,1,2, By

Lemma 7.9 there exists an action o.: RW(Q*LZ) - REnd(X,Y,Y)

0

0

such that oo°a = (1Y)* ’ oo°a1 =Py o oo°62 = Pge Define

6,: D~ REnd(X,Y,Y) by
6t|a°Rw(§*L1) = (1y)y for all t eI

1 % -
6, 10"RW(B L1) = Xy

6t|62RW(§*L1) = 0, for all t e I .

1
90//}/// \\\\*\\iiY)*
0 —> 2
t

L4

\

ét is a well defined himotopy of functors since Por Xy»
and (1y)s extend the actions p and v. D satisfies the
requirements of Lemma 7.19. Hence there exists a homotopy
o RW(B*L,) - REnd(X,Y,Y) of reduced MTP-functors

extending dy and Oge o, defines the required s-homotopy. 1]

Theorem 7.21: Let (go,po): (X,u) » (Y,v) be a homotopy
B-map and g1: X » Y a map homotopic to go. It
(B(1,1), 11) is a NDR-pair, then g, can be made into
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a homotopy B-map (g1,p1): (Xyp) » (Y,v) such that

(8gspg) = (gy» p ,) and hence (gy,pq) = (g,50,) -

Proof: Let g4 be the homotopy between g and g1. Let D
be the subcategory of RW(Q*L1) consisting of the identities
1 and 1y and of the morphism j = LQ*L1(1;(0,1)) only.

Define a homotopy of functors &,: D - REnd(X,Y) by

8,(3) = g, Since (B(1,1), 11) is a NDR-pair, D satisfies
the requirements of Lemma 7.19. Hence there exists a
homotopy of reduced M°TP-functors p,: RW(BSL,) - REnd(X,Y)

extending p, and 6,. Since p,°tpyy °A(0,1) = g » Py 18 a
=

homotopy (g9s0() = (g,sp,) - 1]

\
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§ 8 HOMOTOPY EQUIVALENCES AND HOMOTOPY TYPE

The aim of this chapter is to prove the following

two theorems:

Theorem 8.4: Let B be an M1TP-category with isolated iden-
tities. Let (f,p): (X,a) » (Y,8) be a homotopy B-map
and f: X - Y a homotopy equivalence. Then (f,p) is
a s-homotopy equivalence, i.e. it is an isomorphism
in the category of WB-spaces and s-homotopy classes

of homotopy B-maps.

Theorem 8.2: Let (X,0) be a WB~-space and £f: X+ Y a

homotopy equivélence. Then Y can be made into a
WB~-space (Y,B) and £ into a s-homotopy equivalence
(fyp): (X,a) » (Y,8).

If B is an M1TP—category with isolated identities,
the same holds if we replace B™by B.

By using the mapping cylinder these theorems reduce
to proeing the statements for strong deformation retracts,
and this can be reduced in the case of Theorem 8.4 to

proving that it holds if f is the identity.
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In the proof that homotopy B-maps are s-homotopy
equivalences it is often easier to work with the category
RW(Q*IS1) rather than the category RW(Q*Lz). Recall that
Is1 is the category with two objects and exactly ome mor-
phism between any two objects. We again can use the sim-
plified description for the trees representing the elements
of RW(Q*IS1), (see p. 86).

The inclusion functors di: L0 - Is1 s 1 = 0,14 , given
by do(O) =1, and d1(0) = 0, induce inclusion functors

ol = w(1 * al): ws = W(B*L)) + RW(BIs, ).

As in §5 each action p: RW(Q*IS1) -+ REnd(XO,X1) induces

actions Py such that

>-RW(§*IS1)

l— B
o p
1 i J/

End X, 9 s REnd(X,X, )

commutes for i £ j , i,3 = 0,1 .

The inclusion functors u,v: L1 - Is1 given by
u(0) =1, u(1) = 0, and v(i) = i, 1 = 0,4 , induce in-
clusion functors

W(1 * u), W1 * v): RW(B*L, ) - RW(B*Is, )
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Lemma 8.3: Any action p: RW(Q*IS1) - REnd(X,Y) induces

actions

Ve RW(Q*L2) - REnd(X,Y,X) and

e Rw(g*Lz) - REnd(Y,X,Y)
such that
vea® = pow(1 # u) poo’ = pew(4 * v)
ved! = p°a1°so u°a1 = p°60°s0
vod? = pow(4 * v) u°62 = poW(1 * u).

In particular, ;‘s Ay L, Bxl, aud Ay: Is, > Bxls, @re the cauouical i"c’”""‘c”’r’)

0
ved °uB*L1°A1(0,1) = °A,(1,0)

potB*Is1

2
ved °LB*L1°A1(0,1) potB*Is1°A2(0,1).

Hence the actions v°ao and v°62 determine homotopy

B-maps that are s-homotopy inverse to each others.

Proof: Define functors k,1: L2 - Is1 by
k(i) =0 i = 0,2 1(i) =1 i=0,2
= 1 i =1 =0 i=1 o

k and 1 induce reduced MTP-functors x = W(1*k) and

A =WH1 *1) from Rw(g*Lz) to Rw(g*1s1) which satisfy

xo0? = wW(1 * (kogo)) =W(4 * u)
x0d! = w(1 * (xog')) = w(1 * (£1ogl)) = ales?
x0d2 = w(1 * (kogz)) =W(1 *v) .

For £ énd g see p. 82, Similarly for A we obtain
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ra? = W4 * v), Aead! = 3% g0 , red2 = W(4 * u) . Now

define v = p°% , U = pOoA . 1]

Lemma 8.4: Suppose B has isolated identities. Let
(1X,v): (X,u) = (Xy7) be a homotopy B-map. Then

(1X,v) is a s-homotopy equivalence.

Proof: Let C' be the reduced M°

TP-subcategory of RW(§*151)

generated under @ and composition by all those elements

the representing trees 6 of which are either of the follow-

ing forms:

(A) In each complete directed edge path of 6 the label of
the edges changes at most once, and them from 1 to 0.

(B) 6 is of the form 0
1

o4

(As in §5 and §6 the pictures give the labellimg of the
edges and not the value of I assigned to them).

The space of representing trees of C' is closed inm
the space of the representing trees of RW(§*181). Intro-

duce a relation among the trees of C' by

0§ 1*
1 1
(R) ﬂ 1 ~ 0 0{ ~ #1
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and its consequences (i.e. if any such sequence of edges
occurs in a tree representing an element of C', and if
1 € I is assigned to its incoming and outgoing edge, then
this tree may be reduced under (R)). Let C be the reduced
M2TP-quotient category of C' obtained by factoring out
these relations. Using the general construction of p. 33
it is easy to show that the morphism spaces of C are in CG.
Define an action m: C - REnd(X,X) as follows: Each
morphism of C can be represeanted as & composition of sums
of elements which are represented by trees of the form (A)

or (B), or which are permutations. Define

Nn{6,&,6} = 1x 1f © is of the form (B)

v{0,E,6} if © is of the form (A).
This determines m uniquely on C. Since v{G,unit,Io} = 1X

if 1
6 = . 1 » M is compatible with the relation (R).

Ep#Ts IC' induces an augmentation functor
1
gs C - R(Q*Is1)

Claim: € is fibre homotopically trivial.

Proof: Call the vertices with the 1abe}s

0y 4
;1 and §1
1 0

a g-vertex, resp. an f-vertex, and denote them by gi resp.
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f% . Then (R) means gof = 41, fog = 1, where f and g are
the elements of C represented by a tree consisting of an
f-vertex, resp. a g-vertex only.

The standard section °B*Is1 induces a section
o: R(B*Is,)(n',1) » C(a's1) .
(As usually n and n' denote the sequences of length n in
the generator 0 resp. 1).

For the other morphism spaces we construct a different
section. For (B;(0,1)y.0.,(0,1)) € R(g*1s1)(g,1') define
o(B;(0s1)seees(0,1)) = {6,unit,6}, where 6 is the tree
with exactly three vertices on each (directed) edge path,
labelled by 1, B, 1 in order, the edges change their label

after each vertex, and the value 1 is assigned to each

link:

Similarly defime the sectiom on R(Q*Is1)(g,1) by such

a tree, deleting the g-vertex at the root:
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and on R(Q*Is1)(g',1') by deleting the g-vertices at the

twigs:

We have four kinds of trees, namely those represent-
ing morphisms o » 1', n' »+ 41, a—+ 1, a' - 1'. Using (R)
we can choose the representatives such that each repre-
sents a composition of elements of the first two kinds.
Replace

a: n- 1 by a,°fn°gn:

B

- a'»>n-1
p: a'-»>1' by Be fegian'>1"'+1-1".
We furthermore replace a: n - ' by
gefeasfog s n> ' s a1 > 1~ 1

Let Y be the space of those represeating trees. Since
the identities in B are isolated, we can assume that none
of the representatives in Y can be reduced under the re-

lation (2.13). In addition we can assume that sequences

£ do not occur in any tree in Y, unless this tree
g consists of this sequence only.
We are now going to construct the equivariant, fibrewise

deformation of C = C(n,1') into the section. The deforma-
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tion of the other morphism spaces is constructed amalo-
gously and therefore is omitted.

Filter C as follows: FnC consists of all those ele~-
ments that cam be represented by a point in Y which has
at most m g-vertices on any edge path. Then the lowest

filtration is two, and each element of F20 can be repre-

sented by a tree

g g g g,i

e

B

}

such that B 1s a subtree that does not have any g-vertex.

O

Deform cm into the 'section by mapping the values ty of the
links in B to u.ti at the time u, 1 2 u 2> 0. At time 0
the tree represents an element in the sectionm.

We now want to deform FnC strongly into Fn C. Con-

-
sider a typical representative of F C (in Y):

A A

A3 A,

2

L)
i}
e )}

B
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Here B is a tree which does not comtain a g-vertex, and
each Ai dees not have more than n-1 g-vertices in any

edge path (we consider the g-vertices below the Ai as a

part of them). Let N be the space of the trees of the
form B, and Mi the space of the trees of the form Ai’
1 =15¢eeyr . Index the Ai DY 15¢+., in such a manner

that Aﬁ""’Ak contain an edge path with n-1 g-vertices

while Ak+1""’Ar do not. Index the twig of B on which

A SitS by i. Let M = M XeoeoeoX M o

1 r
6 can only represent an element of lower filtratiom

i

if an f-vertex is at a twig of B indexed (not labelled)

by i € (1y«ee9k), or if we have link combinations

td i
if " op g
e tff

which do mot include a twig, im Ayseeesh . t is the
value to the particular incoming or outgoing edge of
the f-vertex. Call such a limk combimation a critical
sequence with value t, if it is part of a (directed)
edge path through n-4 g-vertices in some Ai’ and if it
does not contain a twig.

Let Mi', i =1ye.0,k 5 be the (closed) subspace of

Mi of'fhose trees that contain a critical sequence in each
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edge path that runs through n-1 g-vertices. Let g be a

subsequence of (1,...,k). Let Ngs be the (closed) sub-

space of those trees of N that have an f-vertex on the
bottom of the i-th twig for all i € g, but mot for

i€ (1yeeerk) - 8.

If a tree 6 of Z = N x M represents an element of

lower filtration, then 6 is in some Nng1x...kaka+1x..xMr,
{1 = Mi' if 1 £ s.
We are now going to deform Z imto the subspace of

where Ry = My if i e s and R

those trees representing an element of lower filtrationm.
We do that by a triple inductiom: (A) omn the mumber k of
trees Ai that contain -1 g-vertices im some edge pa th,
(B) on the length of s, and (C) on the total number of
critical sequences in the Ay Notice that if s and r are
subsequences of (4,...,k) such that none is comtained in
the other, and 6 € Ns and ¢ € Nr are related uader (2.12),
then both are related to a tree y € Nsnr . Hence they are
dealt with in am earlier induction step. Similar arguments

apply to the other induction sta ges.

Start (A): Por kX = 0, 6 (see two pages ago) represents

an element of lower filtration.

Induction step (A): Suppose we have constructed the defor-

mation for k-1.
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We first construct a strong deformation retraction
into the subspace of those elements that are either of
lower filtration, or that can be represented by a tree in
Ni x M, where 1 = (4,...,k), or by a tree such that less
than k of the Ai's contain a sequence through n-1 g-ver-
tices.

Start (B): 8 = #. Let u = (u1,...,up) be the collection
of values assigned to the links of the tree B labelled by
1, which lie on an edge path starting in a tree Ai’

ie (1yeee5k).

Start (C): Let q be the total number of critical sequences
in A

1
which changes the value u;, € u to t.u, at the time t,

"“’Ak' Let g = 0. Define H to be the deformation

1 2 t2 0. Then H is well defined and compatible with

the previous induction steps. H, is the identity.

1
Induction step (C): Suppose g > 0. Let t = (t1,...,tq)

be the collection of values assigned to the incoming, resp.
outgoing edges of the f-vertices of the q critical se-
quences in question, (i.e. the values of the critical se-

quences). Note that

t

£
% counts as two critical sequences and that

to
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we neglect the values assigned to the links that start
or end in a g-vertex (they are always 1).

H is by induction defined omn all trees 6 for which
t e dI%. For em the lower faces 6 is related to a tree
with g-1 critical sequences, and on the upper faces one

of the critical sequences can be reduced by the relation

deform NgxM indo MixM , L=(1,.., k) com Fibly il
(R). Since our aim is to ge%—eu%—ef—ﬂz—x—ﬁ—keeptng—tgg
elements—ofNs M fixed for e £ ¥

the deformations of fhe other spaces NgxM
, we want to comstruct

a strong deformation retraction

IP*e o, 1Pya1? y ox1¢
where 0 = (0,...,0) € IP? . Since this deformation retrac-
tion has to be compatible with relation (2.44) we want it
to be symmetric in the coordinates of 1P and 12 (recall
p is the number af coordinates of g). We construct such

a deformation later on in the proof.

Induction step (B): Length g = m.

Again we induct on g. Let ¥ = (71,...,vl) be the
collection of values that are assigned to the outgoing
edges of the m f£-vertices at the bottom of the twigs of
the tree B indexed by the elements of s. Let t and u be
as above.

Start (C): ¢ = 0. H is defined exactly on all those trees

© for which Y € oI®. On the lower faces 6 is related to a



- 139 -

tree on which H has been defined by imduction step
(B,m-1), and on the upper omes to a tree on which H has
been defined by induction step (A,k-1). Again we want to
define a strong deformation retractiom, this time for
P L 1Pee1™ u oxI™
which is symmetric in the coordinates of 1° ana 1".
Induction step (C): Suppose q > 0. Then H has been defined
exactly for t e o012 or v e oI™®, and hence for (t,v) € o1 dt™,
Hence again we want a strong deformation retraction
PRI, P a1 %R y ox1d™R

which is symmetric in the coordinates of Ip, Iq, and I,

This defines H on the whole of N x M.-HO(N x M) con-
sists of trees that are related to a tree in Ni x M, where
i= (1,...,k). We are now going to construct a strong de-
formation retraction of Ni x M into the closed subspace of
all those elements which represent an element in C of
lower filtration and such that this deformation extends
the deformation given by induction step (4,k-1).

Let v and t be as before.

Start (C): Denote the new deformation by K. By imductiomn
(A), K has been defined on those trees for which ¥ is in
an upper face of Im. Hence we want a symmetric strong

deformation retraction



where UIm is the collection of upper faces of Im.
Induction step (C): Suppose g > 0. Then K is determined
on those trees © for which t € o1% or Y e UI". Hence we
want a strong deformation retraction

%+ 5 1%o01% v Ur"x1t

which is symmetric in the coordinates of Il and Iq.

Since all deformations comstructed are well defined,
continuous, equivariant and fibrewise, the claim is proved
if we can find the required deformations

Fo: 12T o 0u1” u 1Pxo1”

G.: IP*T o 1P.01% U UTPxIT

Let u = (u1,...,up), v = (v1,...,vr), 0<uy, v. <1,

J
1 = 1,e00yp ’,j = 15e00, . Let

t(s)=t(s,u,¥)= min[s, maX(u1/(2—u1),---,up/(2-up)).n(v1),---,
n(v,)]

where s € I and

I

n(vi) vi/(%-vi) 1f v, <
1 if vy =

(1-vi)/(vi—%) ir v, >

L]
— N}

[V

Note that t(s,u,¥) is continuous in s, u, and ¥ .



-1l -

Now define:
Fs(g,z) = {max[o,u1+t(s).(u1-2)],...,nax[o,up+t(s).(up-2)],

ms(v1),...,ms(vr)}

where

ms(vi) max[o,v1+t(s).(vi—£)] if v, < %

il

min[1,vi+t(s).(vi—%)] if vy > *.

Define
Q(S)-'-'Q.(S,E’.Y.): min[s,(1—u1 )/(2"111 )seees(4 "‘up)/(2"up)9n(v1 )s
.-o’n(vr)]’
where 8 € I and n(v) as above. Note that q is continuous
in s, u, ¥. Define
Gs(}_l_,!) = {min[1 ,Q(S)-(z"u1 )+u1 1,...,min[1 :Q(s)-(z—llp)+up]9
\ ms(v1 )"")ms(vr)}’
where ms(v) is defined as above, substitute omly t(s) by
a(s).

FS, and GS satisfy our requirements on the deformations.

Let D be the subcategory of RW(Q*IS1) generated by all
those elements that cean be represented by a tree of form
(A). Since the projection C' -+ C is one-one on the trees
of this form, there exists an inclusion functor

8: D~ C. Now apply the reduced version of Theorem 4.9.
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We obtain a reduced M°TP-functor
p: RW(§*131) -+ C
extending 6. By the choice of the section we have

n°p°LB*IS1°A(i,j) =1y for all i,j = 0,1 . Hence n°p

provides us with an action which in view of Lemma 8.3

gives the required result. 1]

Lemma 8.5: Let B, C be M1TP-categories and D a topologi-
cal category with n objects. Let v¢ B » C be a fibre
homotopically trivial M'TP-functor. Then

Y*{: B*D -» C¥D is fibre homotopically trivial.

The proof is immediate. 1]

\

Lemnma 8.6: Let A be a strong deformation retract of X.

i

b
A->X-> A, pei = 1A’ and H ~ jep rel A. If

t* 1x
(A,a) is a WB"-space, then X can be made into a
WB~-space (X,8) and p and i into s-homotopy equiva-
lences (p,x): (X,B) » (A,a) , (i,v): (A,a) = (X,B)
which are inverse to each other.

If B is an M TP-category with isolated identities
the same holds if we replace B~ by B .
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Proof: For the time being put M = WB~. For each b € M(m,n)

the action a induces & map b = i°a(b)ep :

p BN a(b) a2 1

(We write p instead of pm as long as it is clear what we
mean). b°a = b © a , because p°i = 1, » but unfortunately
1 = i°p # 1x. This can be corrected by bringing in the
homotopy Ht‘ Using this data we define abcategory G which
acts on REnd(X,A).

Let J be the monoid of Example 3.5, denote the multi-

plication in J by # and 1 € J, by u. Using J we are going

1
to construct an M1TP—category C , which in addition with
M gives rise to the category G.

Let C(n,1) = M(m,1) x J° , where J® is the n-fold
product of J, n £ 1. Define C(1,1) = (M(4,1)xT u J)/~
where the equivalence relation is generated by

(1 usw) ~ (usw)
with 1 € M(1,1) being the identity of M. Since the attach-
ing map f: u*J - M(1,1)xJ given by f(usw) = (1,usw) is
continuous and since (J, u*J) is a NDR-pair, C(4,1) is in
CG. (Recall: u*J is the image of the upper faces of the

cubes In under the attaching maps % - Jn— and hence is

1
a subcomplex of the CW-complex J).
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Define an action of S(n) on C(m,1) as follows: Let

a € M(n,1) and (v1,...,vn) e J®, e s(n), n>1. Then
(a;v1,...,vn)°g = (a°€;v€(1),...,v€(n)) .

Define C now by the normal form construction.

Composition in C is given as follows, motivated by the
action on REnd(X,A), see below :
Let (D57, 5.00,7,) € ¥(n,1)xI", (x, ®-..0 x )°& € C(m,1n)
with x; = (bi;wi) € M(gi,l)mei, or x; = €Jc C(151)»
i=1,.s.9n . Then
(¢1) (Bsv,5..0,v) ° [(x, @...0 x,)°E]

= [b°(b1'e...® bn');w1'x...wn']°€

t — - r
where (bi W, ') = (bi,wi) if x; = (bi’wi) and

i
1 | - . -
(bi Wy ) = (1,vi*ui) if x;, = u;.
If ve J c C(41,1) and w € J, then define
(02) V°(b;v1,o..,vn) = (b;V1,-..,Vn)
VoW = V*w
This definition factors through the relation imposed on
M(4,1)xJ v J and hence is well defined. Since it is in-

duced by the compositions in M and in J it is continuous

and associative. 0 € J1 c J serves as identity. Hence by

the normal form construction, C is an M1TP—category.

Let @ be the reduced MZTP*category given by

¢(m,n) = C(m,n), &m',n') = ¥(m,n), G&(m',n) = ¥(m,n),
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and G(m,1') = S(m,1) for m £ 1, and G(1,1') = M(1,1)xJ
c C(1,1). Define the remaining morphism spaces by a re-
duced version of the normal form construction.

To define composition in G we embed M into C by

P - (b30,ee.,0) ,

b € M(n,1). Since
(b;O,..,0)°[(c1;0,..,0)9...e(cn;0,..,0)]°g
= (b°(c1e...e cn)°g;0,...,0)
the composition in M is "induced" by the one in C. Hence
composition in G can now be defined to be the ome in G,
and hence is associative and continuous and has ildentities.
Note that (1;0,...,0) serves as identity in G(1',1'). It
remains to check that for a € G(n,1'), b € G(m',n), and
c € G(n,1), a°b and'cob are in the subcategory M of C.
But this follows immediately from (C1) amd (C2).

Define an action m: G -+ REnd(X,A) as follows:

ica(b)epe(H, x...x Hy ) for
1 n

n(b;v1,...,vn)

(b3vy9.0257,) € G(a,s1)
H forvedc G(1,1)

n(v)

n(b;v1,...,vn) cc(b)°p°(Hv1 Xeoox H_ ) for

n
(b;v1,...,vn) e G(n,1"')
a(b) for (b;0,...,0) eG(a',1")

n(b;o',ohoo,O)

ica(b) far (b3;0,...,0) € Q(Q'9l)



- 146 -

where H_ = Ht1°...°th 1f Vv = (tys.005t) € J.

Since G is in normal form as reduced MZTP—category, n
is uniquely determined on the whole of G. It is continuous
and by definition preserves sums and permutations. Since

H0 = 1X’ and Hv°i = 1, and p°i = 1, it preserves identities

A
and compositions.

Define an augmentation x: G - R(E*Is1) by
®(D3V,y9e0esVy) = (p3(i93)seees(iyg)) if (b;v1,...,vn)e§(g,b)
with g = (1,...,1) and b = j, and
x(v) = (1;(0,0)) if ve J c G(4,1).

% is well defined because of the normal form of G. It is

continuous, and from the definition of eomposition in C

it follows immediately that » 1is a reduced MZTPafunctor.

Define a section ¢ of x by

(05(153)5.+5(1,3)) = (bsu,..,u) € G(a,3), 2 = (1,..,1),
(1,3) # (1,0),(1,1).

(0;0,..,0) € G(a,3), & = (i,.41),
(1,3) = (1,0),(1,1).

is a strong defor-

We have shown (p.47) that I = J,

mation retract of J. Hence u € J1 is a strong deformation
retract of J. Applying the product of the deformation of
J to C(a,1) and the identity deformation to M(m,1) , we

obtain an equivariant fibrewise deformation of G into
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o(R(M*Is1)). Hence x is fibre homotopically trivial.

Now resubstitute M by WB™. Since
e =6eg*1: R(W_B_"*Is1) - R(_B;*Is1) is fibre homotopically
trivial by Lemma 8.5, e°x: G - R(Q*Is1) is fibre homoto-
pically trivial.

Let r: WB™ -» G be the embedding given by
W3~ (n,m) » G(n',m'). Let D be the subcategory of RW(_]_B_“*IS1)
given by OOW__];". Define 6: D+ G to be the embedding r.
6 and D satisfy the requirements of Theorem 6.5. Define
Ty ¢ R(B™*Is, ){1,1") » &(L,1') » o2 R(B™*Is,)(1'51)~ G(1'51)
by 7, (05(0,1)) = o(pb;(0,1))

T5(05(1,0)) = 0(s5b5(1,0))

where tp~ is the standard section. By the Theorem 6.5
there exists a reduded M°TP-functor p: RW(EB™*Is,) - G
extending 6 and such that

n°p°03“*1s1°A(0,1) = p°i°p = p and

n°p°LB~*IS1°1(1’O) = i
where "B"‘*Is1 is she standard section and A: Is,| - R(lB_”*Is1)
the canonical inclusion.

By lemma 8.3 the lemma is proved putting B = 'n°p°a1

¥ = nopeW(1 * u), = = nop°oW(1 * v). 1]
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Lemma 8.7: Let A be a strong deformation retract of X.

A 1 N > A, p°i = 1A’ and suppose Ht: 1X « jep

rel A satisfies B H = H

° t,,t.). If (X,2) i
t, to max( 4282)e ,Z) is
a WB™-space then A can be made into a WB™-space
(A,a) and p and i into s-homotopy equivalences
(pyx): (X,2) » (A,a) and (i,v): (A,a) - (X,Z) inverse

to each other.

Proof: Put M = WB™. The action £ induces a map

a1,y _g(x) @ p @
for each x € M(n,m). Although this time 1 = 1,» We have
xoy £ x°y . We again correct this by bringing in the homo-
topy Ht' The condition on the homotopy Ht provides us with
the condition we neea for the degenerate trees.

Let L(a,b) be the subspace of all those representing
trees (6,£,5) of RW(M*IS1)(g,b) such that all links of ©
are labelled by {, and © is not a trivial tree. If any
edge of © is labelled by 0, then it is either the root
or a twig. L(a,b) is closed in the space of the represen-
tatives of RW(M‘IS1)(£,b). Hence introducing the relations
(2.14), (2.12), (2.13) in L(a,b) we obtain a space G(a,b)
in CG. The composition with permutations on the right is

the one induced from the composition of the representing
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trees with permutations. By applying the reduced version
of the normal form construction we obtain morphism spaces
into longer sequences. Define composition in @ as follows:
Use the ordinary tree composition but assign the value 1
to the newly created links iff these are labelled by 4.
If they are labelled by 0, shrink the new links (see p. 25)
to obtain a representative in L. This composition is well
defined, continuous, and associative since the composi-
tion in M is. Again the trees

0 1l

ol and 1?1
serve as identities, It follows from the tree representa-
tion that @ is bifunctorial whenever it is defined (see
also Lemma 2.20). Hence G is a reduced MQTP-category.

Define an action v: G -+ REnd(X,A) as follows: Given

a representative (6,£,6) of am element in G. Replace each
vertex v labelled by b € M by Ht°;(b), where t is the
value of the link below v. If v is at the root simply
replace it by Z(b). Shrinking all links as defined on

P. 25, using x instead of ®, we obtain maps
n(6,£,6): x2—& ,x0 » X2

where n is the number of twigs and m the number of roots

inoe .
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For example
b
with the values

gives rise to the map (‘;(d)°Ht3 °z(a)e[H, °%(b) x thoz;(c)]
1

Define

v{6,£,6} = pPom(6,£,6) if {6,&,6} € G(n,m')
= pPom(0,£,8)01™ ir {6 £ 8} ea(n',m')
= m(0,&,8)°1" ir {6 & 6} e G(a',m)
= m(6,£,0) ir {6 £ 6} € G(n,m)

Since £ and H are continuous, m is continuous. m factors

through the relations since Z is an M1TP-functor, H

R

and Ht1°Ht2 = Emax(t1?t2)° Hence v is well defined and

continuous. Since % is an M1TP-functor V preserves sums

and permutations, and since p°i = 1, it preserves iden-

A
tities. From the definition of composition in @ it follows

immediately that v is a functor because H1 = iop.

The standard augmentation e induces an augmen-

%
M Is1

tation functor x: G - R(E*Is1). The standard section

‘M*Is induces a section of ¥ and the standard deforma-
1

tion of RW(M*IS1) induces a deformation of G into the

section. Hence x is fibre homotopically trivial.



- 151 -

Resubstitute WB™ for M. Since
g = eﬁé1 : R(Wg“*1s1) - R(gﬂls1)
is fibre homotopically trivial (Lemma 8.5), so is e°x .
Let D = 0'WB™ c RW(B"*Is,). Definme 6: D~ @ as follows:
For x € a1wg“(g,1) let 6(x) = LWBf(x) € G(n,1). Extend
6 over 61W§“ using the nornal‘fo;;. It follows immediately
that 6 is an MTP-functor. D and & satisfy the requirements
of the Universal Theorem. Now define
Tyt R(E"*IS,‘ J(1,1') » &(1,1") and
To3 R(B™*Is,)(1'1) » &(0'51) by
%, (93(0,1)) = {(1p=05(0,1)),un1t, 1}

T5(05(1,0)) = {(1gab;(1,0)),unit, 1% .

7, and T satisff_the requirements of Lemma L4.8. Hence
there exists a functo; p:RW(Q“*Is1) -+ G extending 6 and
such that

vopoy _.. oA(0,1) = p and  vepou oA(1,0) =1 .
= 1

-
B Is1

From the tree representation and the choice of 6| 61W§f
it follows that v°p°a1 =4 . Let a = v0p°ao. Then by
Lemma 8.3, putting ¥ = vopoW(41 * u) and = = vopeW(4 * v),
we obtain homotopy B”-maps (p,%): (X,%) - (A,a) and
(1,v): (A,a) » (X,Z),which are s-homotopy equivalences

inverse to each other. 1]
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1

Remark: If B is an M TP-category with isolated identities

then Lemma 8.7 holds also if we replace B™ by B.

Proof of the Theorems 8.4 and 8.2:

Let (X,0) be a WB~-space (or a WB-space and B has isolated

identities), and f: X -+ Y be a homotopy equivalence. Let

M be the mapping cylinder of £, M = (XxI v Y)/[(x,1)~£x] .

Let i: X=» M and j: Y - M be the natural inclusions, and

p: M = Y the natural projection. Define H: 1M e j°p by
H,(x,t)
H,(y)

Then H._ °H = H

w, “u,  max(u,,u5)°

(x,max(u,t))

y

Since f is a homotopy equiva-

lence, i(X) is a strong deformation retract of M (see

Appendix). In the following diagram

(%,0) Erp) > (1,8)
\ A
(kyb) (i’Y) (1Y’w) (1Y’M)
y
(M’GL)< (p,X) >(¥’a**)

(3,v)

let k: M » X be the retraction, a* the WB"-structure in-
duced on M by o and (k,5), (i,y) the s-homotopy equiva-

lences given by Lemma 8.6. Let a** be the WB™-structure
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induced on Y by a* and (p,x), (j,v) the s-homotopy

equivalences given by Lemma 8.7. The composite

(pyn)e(i,y) = (poi,x) = (£,x) is a s-homotopy equivalence
(£,x): (X,a) » (Y,a%*) ,

which proves Theorem 8.2 .

Now suppose f is given as a homotopy B-map (f,p) and
the identities of B are isolated. Since p = fok, and since
(fyp)°(k,06) is a homotopy B-map, there exists an action
A such that (p,A) = (f,p)°(k,8) by Theorem 7.21. Define
(1Y,u) to be the composite (p,A)°(j,v). By Lemma 8.L
there exists a s-homotopy inverse (1y,w) of (1y,u). Now
(£,0)°(k,8)°(J,v)o(1y,0) = (pyA)°(3,v)°(1y50)

™ (1Y’M)°(1Y,(ﬂ)

! (1y) s
(1,0)0(3,¥)° (1420)°(£,p)
(16,8)°(35,9)° (1450)(£,0)° (i, 8)° (1,7)
(1,8)2(3,)° (15,000 (222 )o (1,7)
(k,8)°(3,v)°(1ysw)e(p,M)°(J,v)e(pyx)o(i,y)
(ky8)°(3,v)o(pyx)o(i,y)
(ky8)°(1,7)

= (1,)s -

R

R

R

R

R

Hence (k,6)°(j,v)°(1Y,w) is a s-homotopy inverse of (f,p).]]
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CHAPTER IV: STRUCTURE THEORY

§ 9 STRUCTURE THEORY I

Throughout this chapter we assume that B is an M1T—
category (so without permutations), such that (B(1,1), 11)
is a NDR-pair. We choose an M1T-category instead of an
M1TP-category, because the proofs are then slightly
simpler. A refinement of the methods used in this chapter
and the use of equivariant NDR's as studied in §7 should
give the same results for categories with permutations.

Again we denote the sequences of length n in the
object generators 0 or 41 of RW(g*L1) by n, resp. n'.
Denote RW(Q*L1)(E,1') by C_, and regard WB embedded in

0 and 615 so that composition of elements of

RW(_]_B_*L,l ) by 9
RW(Q*L1) with elements of WB makes sense.

For each WB-space (X,Y) we are going to construct
a WB-space UX, a B-space MX, which is a quotient of UX,
and a B-space NX, which is & subspace of both UX and MX.
All three spaces have the same homotopy type as X. In
addition UX and MX satisfy certain universal properties
with regard to homotopy B-maps.

Let B € WB(n,m), and (X,y) be a WB-space. We denote

Y(B)(x1,;..,xn) by B.(xﬁ,...,xn) or simply by B.X .
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Let K, = Tp(g,1' )xIPxX2 , where Tp = Tp(BAL, )
H
. . i@
(see p. 26). Let K, be the disjoint union K = UZ_ K, .

and let K be the disjoint union K = g=_1K? .

Introduce an equivalence relation on K by

(9+1) (8565X) ~ (psd,X) 1if {6,6} = {9,0} , where{x denotes
the equivalence class of x in RW(Q*L1), i.e. if
(036) ~ (py0) under (2.12) and (2.13). ((2.41) does
not apply).

(9.2) Suppose 6 in (6,6 ) has the value 1 assigned to a
link labelled by 0. Let (q)1,61) and (¢,s6,) be ob-
tained by chopping this link (see p. 50). Then
(0565%) ~ (p,98,,105s0,) X) -

In (9.2) it suffices to restrict our attention to
non-degenerate elements (0,56). Hence after having factored
out (9.1), the relation (9.2) reads:

(9.2)% (coB,x) ~ (c,B.X) ,

where c € C_, and g € WB(zn,m) .

Let UX = K/~ , ®: K -» UX the projection, U X = 'x(UI_),‘Ki)

D
and = = x| U,K, . Note that UX =K, .

P 0 0
Call (6,6,x) degenerate if
(A1) (6,86) is degenerate (see p. 31)
(A2) the value 1 € I is assigned to a 1link of 6 labelled

by 0 .
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Denote the closed subspace of the degenerate points
b d by DK_. DK consists of exact-
of Kp,q ¥y DKp,q and of Kp y D D onsists e
ly those points of KP that are related to a point in some

K, with r < p. Note that if x,y ei&p - DKP, X ~y, then

=y.

X
Claim: Each (6,8,x) e:Kp is related to a unique non-dege-
nerate point.
Proof: Let A be the function associating with (6,6) a
unique non-degenerate related point (Lemma 2.14). From
the tree representation it follows that (6,8) can be
decomposed uniquely into (¢1,61)°(¢2,62), such that the
value 1 is not assigned to any link in ¢1 labelled by O.
Define p(6,6,x) = (¢1,61,[¢2,62}.§) . The correspondence
(6,0,x) p(l(e,b),g)\associates with each element of
Kp’q a related non-degenerate one. It preserves non-dege-
nerate elements and factors through the relations (9.1)
and (9.2), which proves the claim.

Let Yp’q c Kp,q be the (closed) subspace of all those
points (6,06,x), for which (6,6) is degenerate. Let
Zg4,p,q © Tp(_q,j_')xIP be the subspa ce of all those trees
of one type for which the value 4 is assigned to a par-
ticular link labelled by 0. Chopping this link induces

a ro‘eétion x: 2 zZ! VAN . DK i
proJ @»Prq ~ “a,p,a X “a,pyq p,q ~° &
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fini £ « By Lemma 2.
inite union of spaces Yp,q and Za,p,q Y a 15 we

have continuous maps f: Y - U_ X for all p and q.
bsq p-1

Since
x4

xq 1 "
Zq,p, " > 20,p,0%%,p,q

2! x@@z' _ }. xq)iﬁkﬁ+up_1x

@yDPyd T G,yP,Qq
is continuous, the conditions (1), (2), (3) of p. 33 are

<x% _1xaction

>

satisfied. Sinee (I, 0I), (I, 0), and (B(1i,1), 11) are

— i DK d D - i o
NDR~pairs, (Kp,q, p,q) and hence (Kp, Kp) are NDR-pairs
Hence by the construction of p. 33 we obtain

Lelﬁa » H (a) UX’ pr are in CG" p=0,1’2,.oo

(b) UX is the direct limit of U.Xc U,X c ...

0 1

(e) (Ux, pr), (u_.,X, pr) are NDR-pairs for

p+1
allp=> 0. 1]

To construct MX, we introduce a further relation in.
K, which is independent of (9.4) and (9.2). Hence MX is
a quotient of UX.
(9.4) suppose 6 in (6,5) has the value 1 assigned to a
collection of links labelled by 1, which separates the
tree 6 into a tree ¢ the edges of which are labelled by
1 only, and into a copse ¢y . Let (6',5') be the pair
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obtained from (6,8) by shrinking (see p. 25) all links
in ¢ . Then (6,6,x) ~ (6',86',X).

For example, suppose that in the following picture
the links on the separating line have the value 41 assigned
to them, while the values of the links above the line are
the same. Then the elements (6,86,x) and (9,9,X) are related

under (9.4).

Let MX = K/~ , w: K - MX be the projection,

_ D _ D -
MPX = w(U_1Ki) and Wy, = o | U_1Ki . Note that M X = K, .

Call (6,86,x) degenerate, if it satisfies (&A1) or (A2)
of p. 155, or if
(A3) the value 1 is assigned to a separating collection
of links labelled by 1, and chopping these links
decomposes (6,5) into a tree at least one link and

a copse.

Let RKp q be the subspace of the degenera te points

14

a . i ‘
of Kp’q sy an RKP of those of Kp RKP consists of exactly

those poihts of Kp s that are related to a point in some
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Kr s I < D. Notice that if x,y € Kp - RKP and x ~ y, then
X =Y.

Suppose (6,5) is degenerate under (A3). From the tree
representation it follows, that we can decompose (6,5)
into (@1,61)°(¢2,62)such that the edges of ¢1 are labelled
by 1 only, and (cp2,62) is not degenerate under (A3). Let
(6,6)* be the pair obtained by substituting the values
of the links in 6 which come from ¢, by 0. Then (6,6)*
is mot degenerate under (A3). The correspondence
(6,0,x) » p(M[(6,06)*],x) associates with each element of
Kp a unique non-degenerate related one. Let Ca,p,q be the
subspace of Tp(g,l')xlp consisting of one type of trees,
such that the value 1 is assigned to a separating collec-
tion of links labelled by 1 such that the tree below this
separating collection has at least one link. Let x € Ca,p,q’
The correspondence x + x* as defined above, induces a
continuous map g of C into some Tr(g,l')xlr with r < p.
Hence the composite wp_1°(gx1): Ca,p,qfxq'* Mp_1X is
continuous. By the consideration of p. 157 we furthermore

have continuous maps

Y - M X

b,q jolog!
Z - N .
aQ,pyq P'1X
Since RK  is a finite union of spaces Y s & ’
b,a Pyq a,p,aq
and C the conditions (1), (2), (3) of p.33 are satis-

GyD,yq
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fied. Using [6; Lemma 7.3] again, we find that RKp’q is

a NDR in KP q° Hence by the construction of p.33 we get:
H

Lemma 9.5: (a) MX, MPX are in CG, P = 0,1,2,¢¢.

(b) MX is the direct limit of M X c M X c ...

0 1
(e) (MX, MpX), (Mp+1x, Mpx) are NDR-pairs for

allps> 0. 1]

NX is the subspace of MX and UX represented by all
points (0,6,%x) of K, such that all edges of 6 with excep-
tion of the root are labelled by 0. On this set of repre-
sentatives the relations defining MX and UX coincide.
Hence, if Z: UX » MX is the projection induced by the
relation (9.4), ¥| NX is the identity.

If (6,6,X) € Kp represents an element of NX, then so
does p(r(6,8),%). Furthermore if NKP is the subspace of
those elements in Kp that represent an element of NX, then

DKp n NKP is a NIR in NKP. Hence NX is in CG.

Definition 9.6: Let (Z,5) be a B-space. Then the WB-struc-

ture on Z given by 6°sB: WB - EndZ is called the

WB-structure on Z induced by 8 .
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Lemma 9.7: (a) UX is a WB-space (UX,yx) and there exists
a homotopy B-map (u,u): (X,v) - (UX,x) .
(b) MX is a B-space (MX,x) and there exists a
homotopy B-map (m,v): (X,v) = (MX,x*),
where x* 1s the WB-structure on MX induced
by % .
(¢) NX is a B-space .
(a) z: (UX,x) = (MX,x*) is a WB-homomorphism .
Proof: We use the relation (9.2)*. Let a € WB(m,1), and
!

let y; € UP-X be represented by (ci,gi) € clixx
1

(Recall that C_ = RW(}_B_*L1 )(m,1')). Define

9 i=1’oo’no

a.(y1,...,yn) = iao(c1eoooecn)’£1X.oox511; (=] Up1+...+an

Extend this definition to actions of o' € WB(n,m) using
the normal form of WB, and taking the m-fold product of
the above definition. Since (UX)® is filtered by

(ux)2 = U _
p p1 +,oo+pn—p

(UP1X XoooX Upnx) and since the topo-
logy of UX is the guotient topology from the disjoint
union of the cquq under (9.2)*, this defines a continuous
action X of WB on UX. To define the action p:RW(g*L1) -
REnd(X,UX) it suffices to define the action of elements

of C. compatibly with the action ¥ on X and X on UX. Let

€ C_. Defi
B q efine
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Bo(x1’ooo'xq) = {B;x1’ooo,xq} .

Use the normal form of RW(§*L1) to extend this definition
over the whole of RW(Q*L1). It clearly is compatible with
the action x. For a € WB(n,m) and g € C, We have
(Boa).(x1,...,xn) = iBoa;x1,oo',xn}

= iB;G..(X,‘,...,Xn)} by (9.2)*

= B-(Go(x,l"'-yxn)) .
Hence p is a continuous functor. By definition it preserves
sums. Hence it is a reduced M2T-functor, extending ¢y and y.

u = ”°"B*L1°A(°’1) is given by u(x) = &:.B,,L1(1 ;(0,1));x} .Note

that u: X » UX is an inclusion (u(X) is closed in UX).

(b) Since MX is a quotient of UX, it is also a quotient
of the disjoint union of the quXq. Let g € B(n,1) , and

. q
let y, € M,. X be represented by (c,;,X,)e C_ xX 1 | Define
3 € ¥p; 17& a

the action »x by

Be(¥yseeesyy) = &(LEB)°(01®---e Cp) X Xe oo xEy]
where {x] as usually denotes the equivalence class of Xx.
Using the normal form of B, we can extend this definition
uniquely over the whole of B. The relation (9.4) assures
that ® is a functor., For if a € B(m,1) and B € B(n,m),
B = 616...9 By » then (aoﬁ).(y1,...,yn) is represented

by (e,é,gax...xgn), where © is the tree with the vertex
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at the root labelled by (a°p), the representing trees
A1,...,An of c1,...,cn on its incoming edges, and the

value 41 assigned to each of these edges,

while a.(B.(y1,...,yn)) is represented by (¢,a,§ax...x§n),

where ¢ is the tree with the vertex o at the root, the
vertices on top of its incoming edges labelled by

51,...,61 , and the trees A1,...,A.Il sitting on the in-

coming edges of the Bi's.

4 Aoy A

The value 1 is assigned to the links ending in some Bi or
in a. By relation (9.4) we can shrink the links below the
vertices B, But then we obtain the representative for

(a®B)e(yyseeery)e
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Since the filtration of MX induces the ome of (MX)%,
®x is an M1T—functor.
To construct the homotopy B-map (m,v): (X,y)-» (MX,x*),

we have to extend the actions y and x» of ai

WB c RW(_@*L1 )s
i = 0,1 , over the whole of RW(_};*L,‘ ). Let B € C,. Define v
by
B.(x1,...,xn) = 36311,---,§J

and extend this to an action of RW(Q*L1) using the normal
form. As in part (a) it follows that v extends ¥ and x*,
and is functorial. Hence v is a reduced M2T-functor.
B = vOLE*L1°A(0,1) is given by m(x) = {sE,L1(1;(0.1));x3 .

Note that m: X - MX is an inclusion.

(¢c) The B-structure A .of NX is defined on representatives

as follows:Let o € B(n,1), and let (61,6.,x.) e K,
=\= 1’1 Dy

i=1,...9n, be representatives of elements in NX. Each

edge of ei with exception of the root is labelled by 0.

Let Bi be the label of the vertex at the root of 61, and
let Ai1""’Aiki be the subtrees of ei sitting on the

incoming edges of Bi. Let ¢ be the tree with the vertex
at the root labelled by 0,0(81@...69 Bn), and the trees

A11""’A1k1""’Ah1""’Ankn sitting on its incoming

edges. Assign the values of the links of the ©,'s to the

i
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links of ¢ (the incoming edges of a°(B1e...e Bn) have

the values of the incoming edges of the B, in ei).

A A A A A
i ik 11 1k nk
6, - 1 i P = 1
By a°([31e...eae,n

Let (¢,0) be the pair thus obtained. Define A by

G..(£61,61,§1;,-..,{6n n _n}) = {Q, ,_'1Xoo-xx }
From the tree representation it is clear that A is an

M1T—functor.

(d) Let a € WB(n,1), and let v, € UX be represented by

m,
(ci,§i) € C, xX 1. Then
i

a..(y.l ’ooo’yn) ‘= §a0(c1$...® Cn),gﬂx...x%}
Under relation (9.4) the representative
[a°(c1e...e ChZ xe..xX,] of MX is related to
[(L§°e§(a))°(c1e...e cn);§1x...x5n], which represents
eB(a).(iy1},...,{yn}), where {yi} is the equivalence class
of ¥y in MX. Hence, since WB is in normal form, ¢ is a

WB-homomorphism. 1]

Remark 9.8: (1) From the tree representation it follows
‘ immediately that the homotopy B-map



(2)

(3)
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(myv):(X,y) » (MX,x*) is the canonical composite
of the WB-homomorphism £ with the homotopy B-map
(uyp): (Xyv) = (UX,x).

u(X) and m(X) are subspaces of NX. Hence u and

m factor into X ¢ NX ¢ UX and X ¢ NX ¢ MX. The
images of u and m in NX agree.

We can construct WB-homomorphisms (UX,x)- (NX,A*),
where A* 1s the WB-structure on NX induced by A,
and a B-homomorphism (MX,x) - (NX,\A). Since we

do not use them we refrain from giving the defi-

nitions.

Theorem 9.9:

(a)

(b)

Each homotopy B-map (f,p): (X,v) - (Y,8) factors
uniquely as (f,p) = Ufo(u,u), where

uf: (UX,x) = (Y¥,8) is a WB-homomorphism and
Ufo(u,p) the canonical composite. Further, Uf

is a continuous function of (f,p).

Let (Z,m) be a B-space and M* the WB-structure
on Z induced by m. Then each homotopy B-map
(fyp): (X,x¥) » (Z2,m*) factors uniquely as

(f4p) = Mfo(m,v), where Mf: (MX,x) -» (2Z,n) is a

‘B-homomorphise (and hence a WB-homomorphism
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(MX,%*) » (Z,m*)) and Mfe(m,v) the canonical
composite, Furthermore, Mf is a continuous func-

tion of (f,p).

Proof: p induces maps fn: CnxXn -+ Y, which in turn deter-

. n n
mine maps hn,p' Tp(n,1' )xIPxX —=i CxX ——?ga'Y , where

x.is the characteristic map for Tp(g,l')xlp. p is induced
by the identities Tp(m,1')xIPxX" = K, o+ Hence if Uf with
the required properties exists, then Uf must be induced
by the collection of the hn’p's, hn,p‘ Kp,n -+ Y. Since
p is a functor, hn,p respects the relations (9.1) and
(9.2). Hence it indeed induces a map Uf: UX » Y, and the
part (a) is proved if we can show, that Uf is a WB-homo-
morphism: Let g € WB(m,1) be represented by (6,6) in
Tp(n,1)xIP, and Y € UX by (9;50;%;) € Kpi’qi L i=1,...,1 .
Then

Uf[ﬁ'(Y,‘:o-"Yn)]

hm’r[(e:6)°[<¢1:61)@...@(Qnoén)];x XeeoxX ] some r,m

£al{0,83° ({0, 50, }0. . c0fo,s6, 1 15K, xe 0 oxx)

f0,61 .[qu‘ ({cp,l ’61};1 )Xeooxf

({o06,}5% )] since £

9n

is induced by an action
B.(Uf(y1)x...fo(yn)) .

From thé definition it is obvious that Uf is & continuous
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function of (f,p).

(b) p induces maps £ CnxXn -+ Z, which in turn induce

. n n
maps hy K = Tp(m,1' )xIPxX" = C_xX -—Ezr>z. If Mf

exists it must be induced by the collection of maps hp,n'
Since Z is a B-space and p an action, hp,n respects (9.2)
and (9.4). By definition it respects (9.1). Hence the
collection of the hp,n indeed induces a map Mf: MX - Z.

It remains to show that Mf is a B-homomorphism. Let

B € B(n,1), and let ¥; € MX be represented by (@i,éi,gi) in

Kpi’Qi’ i= 19090 o Then

ME[B o (Fyreeesyy)]
by olep(B3(151))°0(0,58, )0...0(0 50, )],x x00xz ]

fn(c§ o[i¢1’61}9"’e{¢n’6n;]’5Hx"'x5n)
(e-_l;:.B(rs)).(fq1

induced by an action and Z has the induced WB-struc-

i¢1’61’ZH}x"'qun{Qn’bn’En}) since f_ is

ture
- B.(Mf(y1 )X...le(yn)).
From the definition it is clear that Mf is a continuous

function in (f,p) . 1]

Theorem 9.10: X is a deformation retract of NX (strongly).

NX is a strong deformation retract of UX.

NX is a strong deformation retract of MX.
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Proof:s X c NX is the subspace of K, = U X = M. X ¢ NX of
all triples (e,IO,x), where

Recall that each element of NX is represented by a triple
(6,6,5) such that each edge of 6 is labelled by 0 with
exception of the root. Using the relation (9.1) we can
choose the representatives such that the vertex at the
root of 6 is labezled by 1 € B(1,1). (Substitute the

vertex at the root by the subtree

a a is the label of the

1 vertex at the root of ©

and assign the value 0.to the new link between the verti-

ces labelled by g and 1. Hence

Aﬁ A2 A A, A A

1

f

The strong deformation retraction is induced by a defor-
mation of the space of these representatives: Define

Ht{:e,b,;&} = ie’Ht(b)’El with
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Ht(u1,...,up) = (nax(t1,u1),...,max(tp,up)), where t; = t

if u, 1s assigned to a link ending in the vertex at the

i
root, and ti = 0 otherwise. Since links with the value 1
are not affected Ht preserves the relation (9.2). Since
the multiplication "max" on I is associative, H, also
preserves the relation (9.1). H1{6,6,§} can be represented
by a triple (¢9,9,Xx) such that (p,d) represents a compo-

sition (vg,r (15(0,1)))°z. Hence by the relation (9.2),
27

H1{6,6,§} € X. Note that throughout the deformation the
elements of X stay fixed.

Define the strong deformation retraction of UX into
NX by
Ht{e,a,;} = {B,Ht(é),gi with Ht(uH,...,up)=(t1.u1,..,tp.up)
where t; = t if u, is 'assigned to a 1link labelled by 1,
and ti = 1 otherwise. Since links labelled by 0 are not
affected, (9.2) is preserved, and it follows immediately
that (9.1) is preserved. Notice that Ht keeps the elements
of NX fixed since only the roots of their representing
trees are labelled by 1. HO{e,o,;; e NX .

The deformation retraction of MX into NX is more com-
plicated. Filter MX as follows: FnMX is the subspace of
MX of those elements that can be represented by a triple

(6,0,x) such that at most n links of © are labelled by 4.
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Notice that the subspace of the representing elements of
FDMX is closed in the space of the representing elements

of MX. FOMX = NX. We are now going to define a strong

deformation retraction of anx into Fn_1MX.

Consider a typical representative (9,0,x) of F MX with

| e R ™

0 = a € _]_3.(3_,1)

The roots of A,1,...,Ak can be labelled by 0 or 1. Index

Aﬂ""’Ak such that Aﬂ”"’Ar have their roots labelled
by 1 and Ar+1"”’Ak by 0. Index the incoming edges of
o by the indices of the trees sitting on them. We con-
sider one type of trees only.

Let Pi be the space of the trees of the type of Ai'
Let Pi be the subspace of those trees Ai of Pi such that
the value 1 is assigned to a collection of links of Ai
labelled by 41, which separates Ai into a tree each edge
of which is labelled by 41 and a copse. Since (I, 1) is a

NDR-pair, P{ is a NIR in P;. Let Q < P1

subspace of all those copses A.,‘e...eAr such that the

x‘-.XPr = P be the

value 0 is assigned to a link labelled by 1, or a vertex



- 172 -

with label 1 € 3(1,1) has the incoming and outgoing edge
labelled by 1. Since (I, 0) and (B(1,1), 11) are NDR-
pairs, so is (P, Q).

Let t = (t1"“’tr) be the collection of values
assigned to the incoming edges of a indexed DY 15ee.yr
Case I: r £ k. Then (6,06,X) represents an element of
F,  MX iff (A@...0A.) € Q or t € LI” where LI c I” is
the collection of lower faces of Ir. Hence we want a strong

deformation retraction
r
P1x...kaxIr +  QxPp 4 XeeoxPxI uP1x...kaxLIr

Since QxPp,,X...xPp C P,x...xP, is a NDR and since L%

r+1 1

is a strong deformation retract of Ir, such a deformation
retraction exists by [6; Theorem 6.3].

Casell: r = k., Then (6,5,X) represents an element of
Fn_1MX iff one of the following conditions holds:

(1) A= Ao...08 cQ

(2) t e LIT

(3) for each i either ti =1, t; €L, or A e P!. But at

i i
least one A, is in Pi for some i.

i
(L) @ =1

Construct the deformation H of FnMX into Fn—1

induction on the number of trees in A = Aﬂe...eAk that

MX by

are in some Pi. Let P ve the subspace of P of those
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copses, such that at least g of their trees are in some
Bewce, i{ Ae then ©
Pi . Pk represents an element of

lower filtration.

Suppose inductively that H has been defined on all
elements {6,6,52, for which the subcopse A is contalned
in P31,

q. .
Let A e P*; wlog A e P1x...ququHx...ka, which we

denote by R. H has been defined on {6,8,x} iff

(5) Ay@...08, € Q

(6) A € P; for some 1 £ 1,...5q

(7) t e LIX y {(tyseensty) € IF |
we denote by GI ,{or1+a

(8) ;v:au* whitk we again deuote by 1% for q=0

Let B = B(k,{) and B' = g if k £ 1, B' = (11) if k

‘or *o

N2 e
tQ+1=...=tk=1} , Which

Let R' c R be the subspace of all those copses A satis-
fying (5) or (6). Since (I, 0), (I, oI), and (B(1,1), 1)
are NDR-pairs, so are (R, R') and (B, B') and hence

(RxB, RxB' U R'xB). We want a deformation retraction

RxBka -+ (R'xB u RxB')ka v RxBxGIF .

By [B; Theorem 6.3] it suffices to show that there exists

a deformation retraction

If q £ 0, then 6I¥ = 0xI®™ y 1xa'T¥!, where

=1



- 174 -

k-

k -
eI = LT U (e t) € TFTN b =aast ]

q+1
(¥, ¢'1®1) is a NDR-pair. Since 0 is a deformation
retraction of I, there exists a deformation retraction
1¥ 5 61¥ for q £ 0.

In view of condition (3), GI® reduces to LI® if q = 0,

and LIX is a deformation retraxt of IF. 1]
Corollary 9.4141: UX and MX have the same homotopy type as X.

Corollary 9.12: If B is an M1T-category with isolated
identities, and (X,y) a WB-space, then
(uyu)s (X,v) - (UX,x) and
(myv): (Xyy) » (MX,x*)

are s-homotopy equivalences.

This follows from Theorem 9.10 and Theorem 8.4  ]]

Corollary 9.13: Let A be the M1T—category of Example 2,
P.9. Then any WA-space is of the same homotopy type

as a topologlical monoid.

The last result has been known to J.F. Adams and
J.D. Stasheff (unpublished), but their topological monoid

seems to be different from our monoid MX.
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$10 STRUCTURE THEORY II

The results of this chapter are entirely due to
Dr J.M. Boardman. We enclose them to give some indication

of applications of the theory we have developed.

Definition 10.4: A space X 1s called an E-space if it is
given an E-structure, which consists of an M1TP-
category B, acting on X, for which B(n, 1) is

contractible for all n.

Main Theorem 10.2: A CW-complex X admits an E-structure

with '»:O(X) a group, if and only if it is an infinite

\

loop space.,

Sketch proof.
X is an infinite loop space if and only if there is
a sequence of spaces Xn and homotopy equivlences
Xn o .QXm_1 for n > 0, with X = XO. Careful use of
mapping cylinders and telescopes enables us to find

a space Y homotopy-equivalent to ¥, and spaces

Y1, Y2, «ees Such that

Y = QY1’ Y1 = ﬂYz, Y2 = QY3’ e
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Example L4(p.1l4) shows that the space Y = QnYn admits
a category of operators Qn’ which becomes highly connected
for n large. Moreover, we can include gn in gnﬂas a
subcategory of operators, so that the union Ungn acts on
Y. This is an E-structure on Y. By Theorem 8.2, given
a category B acting on Y, we can make WB"act on X, and
this is another E-structure on X.

Conversely, suppose we are given an E-structure on X.
In this direction the theorem reduces to the following

theorem, as induction step:

Theorem 10.3¢ Given an E-space X, where X is a CW-complex,
for which ﬁO(X) is a group (by means of the E-structure
then there exists a "classifying space" BX such that

X = OBX, and BX is an E-space, and BX is a CW-complex.

The first step is the construction of a good category
to act on E-spaces. What we need is a category WB™, in
which each space g(g, 1) is a contractible CW-complex on
which the symmetric group Sn acts freely and cellularly.

We now return to the given E-structure on X, and
deduce from it by Theorem 4.9 an action of WA on X, where
A is the'cétegory of Example 2, p.9. Then WA also acts

on X*. We now use the relative universal property many times.
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For each point a € B(m, n) we construct a homotopy A-map
fa:Xm -+ X, n continuous in a. These must behave properly
with respect to products & and permutations. However, we
cannot compose homotopy A-maps. Whenever a and B are
composable, we construct a 2-simplex of the semi simplicial
complex MapA with faces fa’ fB and fBa'

to an "edge" of WB~. Similarly for higher-dimensional

This corresponds

simplexes, although the details become vastly more
complicated. What we now have is a kind of E-space in the
"category" of WA-spaces.

The next step is to reduce all the WA-actions to
A-actions, the homotopy A-maps to érhomdmorphisms, etec.
The main tool for achieving this is Theorem 9.9 and
Corollary 9.11 which first replaces X by the universal
monoid MX, and continues with the help of the restricted
Kan extension condition. Much complication is caused by
the fact that the natural map M(XxY) - MXxMY is only a
homotopy equivalence, so that homotopy inverses have to be
chosen., Now monoid homomorphisms can be composed, which
enables us to replace the semi-simplicial gadget by an

E-space in the category of monoids, in which g11 the actions

are monoid homomorphisms.
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FPinally we apply a suitable classifying space functor
B, and define BX = BMX. The most convenient is Milgram's
functor [L], because it has the property B(MX)® = (BMX)".
Thus BX becomes an E-space, as required. PFurther, it is
a CW-complex. Milgram [4] proves that QBMX ~ MX which with
MX « X (Corollary 9.13) shows that 0BX « X, provided that
xo(x) is a group.

Of course the theorem can be strengthened in all the
obvious ways. The homotopy equivalence between the given
E-space and the constructed infinite loop space can be
made into an equivalence of E-spaces. Also we can consider
higher-dimensional "simplexes" of E-actions, in the spirit

of MapB, and prove results about these.

\
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APPENDIX

The following lemma has been stated by A. Dold
[1; Satz 3.6]. A proof of the dual situation can be found
in [2; Theorem 6.4]. The lemma holds under slightly

weaker ¢diditions.

Lemma (Dold): Given cofibrations i, i' and a homotopy

equivalence f

A
i:// \\\{;
X T 24

such that foi = i'. Then we can choose a homotopy

inverse f" and homotopies D;: X » X, Dt': Y- Y,
such that Dt: lof o idx rel iA, and Dt': fof" o idY
rel i'A.

Proof: Let f£' be any homotopy inverse of f, and F: XxI 4 X
& homotopy between f'ef and idy. Since

Fo(ix1)| Ax0 = f'ofei = f'0i', and since i' has the HEP
(homotopy extension property), there exists an extension
of Fo(ix1) over ¥xI, i.e. a map G: ¥YxI -+ X such that

Gy = G| ¥x0 = £', and Go(1'x1) = Fo(ix1). Let
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™" = G, = G| ¥x1 . Since f"« f', it is a homotopy equi-

valence. f'"oi' = F1°i = i. Hence f" is a map "under" A.
Let H: Xx[0,2] -+ X be given by
G(fx, 1-t) 0gtgi
H(x,t) =
F(x, t-1) 1€t<2 .
Since G(fix, 1-t) = @(i'x, 1-t) = F(ix, 1-t), we have
Ho(ix1) = Fo(ix1) - Fo(ix1), (on the right side we have
the addition of homotopies). Hence there exists a homo-~
topy K': Ax[0,2]x[0,4] - X such that K': H°i ~ (constant on i

rel ((0) u (2)), i.e.

{
t2‘_
comst 1
const 1 K' const 1
i " Ho(ix1) N
Fo(ix1) flofoi Fo(ix1) t1'
- f'oi'

K'(a,O,tz) = ia

K'(a,2,t ia

o)
K'(a,t1,0) = H(ia,t1)

K'(a,t1’1) - ia '
Ax[0,2]——§;Ta-Xx[0,2] has the HEP., Hence there exists

a map K: Xx[0,2]x[0,1] - X, such that Ke(ixix1) = K' and
K| Xx[0,2]x0 = H. Now define D: Xx[0,4] -+ X by
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K(x,0,1t) 0< t<1
D(x,t) = {K(x,t-1,1) 1 € t<3
K(x,2,4-t) 3t h

Then D(ia,t) = ia, since we move along the "boundary"
parts of K' which are constant on i.

D(x,0) = K(x,0,0) = H(x,0)
D(x,4) = K(x,2,0) = H(x,2)
Hence D: f"of « idy rel iA.

f"of

idx.

Apply the procedure to £f" to obtain a homotopy inverse
g and a homotopy L: gof" uidY rel i'A. Let D' be follow-
ing combined homotopy:

fof" ot (g°f")°(f°f") = go(f"of)cf" o~ g°f" -~ idY .
~Lofof" goDot" L

Since fef'"oi' = foi = i'%, and gof"ei' = goi = i'; this

combined homotopy is a homotopy rel i'A. 1]

i
Corollary: Let A c X be a cofibration which is a homotopy
equivalence. Then there exists a retraction p: X - A

and a homotopy Ht: iop e idx rel iA, i.e. iA is a

strong deformation retract of X.

Proof: Use the previous Lemma with £ = i, 1 = i@A, and

it = 1. . 1]
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The following is a summary of joint

work with my supervisor, Dr J.M. Boardman.
We enclose it here to illustrate the
position of the theory in a more general

context,



HOMOTOPY-EVERYTHING H-SPACLS

by
J.M. Boardman and R.M. Vogt March 1968

An H-space is a space X with basepoint e and multiplication

map m: X2 =X x X —> X, such that e is a homotopy identity -

the maps x ~ m(x,e) and x ~» m(e,x) are homotopic to the
identity map 1 of X. (We take all maps and homotopies in the
based sense. We use the k-topologies (i.c. compactly generated)
throughout in order to avoid spurious topological difficulties.
Then function spaces have a canonical topology, obtained from the
compact-open topology.) We call X a monoid if e is a strict
identity and m is associative.

In the literaturc there are various kinds of H-space:
homotopy-associative, homotopy-tommutative, strongly homotopy-
commutative [L], and A_-spaces [3]. In the last two cases, part
of the structurec consists of higher cohercnce conditions and .
homotopies. In this note we introduce in §2 the concept of

homotopy—everything H-space, in which all possible coherence

conditions hold; we abbreviate thié to Z-space. We also define
B-maps, in §4. Our two main theorems are Theorem A, which is the
Structure theorem for E-spaces, and Theorem C, which shows that

many familiar spaces such as BPL are in fact E-spaces. We sketch

few of the proofs. "Full details will appear e¢lsewhere, in due course.

Many of the results are folk theory.
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A space X is called an infinite loop space if there is a

sequence of spaces Xi and homotopy equivalences Xi o ﬂXi+1

for 1 2 0, such that X = XO.

Theorem A

A CW-complex X admits an E-space structure with.ﬂo(X) a group,
if and only if. it is an infinite loop space. (Any multiplication
on X induces a multiplication on.ﬂo(X)). Bvery E-space X has a

"elassifying space" BX which is also an E-space.
1. The machine

Herec we develop a machine for constructing numerous E-spaces.

We consider the category I of real inner-product spaces of
countable (algebraic) dimension, and lincar iscmetric maps between
them. As cxamples we have ', with orthonormal base {61,82,63,00.},
and its subspaces BP with base 581,62,.,.,en}, for n finite., Every
such space is isomorphic to one of these; in particular ° @ E° 2 E°
We topologize I(A,B), the set of all isometric linecar maps from
A to B, by first giving A and B the finite topology, which makes A
the topological direct limit of its finite-dimensional subspaccs.
(The obvious metric topology on I(A,B) is not acceptable.)

Lemma The space I(A,K°) is contractible.
Proof This result is a consegquencc of two eisy homotopies:

(a) ig ® iy A A® A

() 1, =~ a: F° - E° @ E°, where 2 is an isomorphism.
To obtain (b), we first construct a homotopy 1 = f: §° — K°,

Where f is defined by,fen = €5 by applying the Gram-3chmidt
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orthogonalization process to the obvious linear homotopy ft given
by fie = (1 - t)en + tey . Then we compose with an isomorphism

a: ¥

o]

114

E° @ K° chosen to make aof = iy
Now fix g: A —> K°, and let h: A —>X° be a typical linear

isometric embedding. We construct a contraction homotopy

Q, of I(A,K°). For the first half, we take Qph = h = a'1oaoh,

Q%h = a—1oi1oh, and use homotopy (b). For the second half we

J]

rewrite Q+h = a~ ol,oh = a_1o(h,® g)oi1, take Q,h = a—1o(h.® g)oi2,
2

and use homotopy (a). But Q1h = a"1912og, which is indepcndent of h,
Thus I(A,K°) is contractible.
Assume we have a functor T defined on the category I, taking

topological spaces as values, and a continuous natural transformation

called Whitney sum w: TA x TB——>T(A ® B), such that

(a) Tf is continuous in f € I(A,B),

(b) TBO consists of one pgint (which will serve as basepoint
of TA for all A),

(c) w preserves associativity, commutativity, and unit
for x and @,

(d) TE® is the direct limit of the spaces Tgn for n finite.

Theorem B
TE® is an E-space. If T is 2lso monoid-valucd (c.g. group-
valued), the resulting classifying space BTE® agrees with that given

by Theorem A.
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As a (non-canonical)multiplication on TE , we take
™" x TE® *TE‘T(R” & K°) —ﬁ——%TKo,
where f: F° ® F° —> K° is some linear isometric embedding. It
is homotopy-commutative, becouse if s: 7@ F° 2 ¥ @ K° is the
map interchanging factors, £ = fos by the Lemma, and then
Tf =~ TfoTs by the axioms. Similarly, homotopy-associutivity
reduces to the existence of a homotopy

fo(f@'1) ¥~ fe(Mo £): o ¥ e £— K.
It is fairly clear that the Lemma will provide all the cohercnce
homotopies we could possibly desire.

In the examples we give below, we define TA and w explicitly

only for finite-dimensional A, and notc that axiom (d) allows us

to extend the definition to ¥° and hence to the whole of I. In
each case the maps Tf are obvious, in view of the inner-product

\

structure.

Exomples

1., TA = Q(A), the orthogonal group of A. Then TR™ = 0(n) and TE® = 0
2. TA = Q(A ® g), the unitary group of the complex vector spuace A® C.
Then TR = U(n) and TE® = U.

3, TA = BQ(A), a suiteble classifying space of the group Q(A).

Then TR™ = BQ(n) and TE® = BQ. Some care is needed in the choice

of BQ(A), if we arec to obtain a "hitney sum map. We could take the

Grassmannian of all k-planes in A ® K°, where k = dimA.
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L, TA = F(A), the space of based homotopy equivalences of the

A

sphere SA. Here, S8 is the one-point compactification AU « of A,

with o as basepoint. The Whitney sum is the smash prodmct, since
st A gB = g®B, Then F(¥F) = F.

There is also o semisimplicial analogue, in which T taokes
semisimplicial complexes as values, and I(A,B) is replaced by its
singular complex,

5., TA = Top(A). A k-simplex of Top(A) is a fibre-preserving
homeomorphism of A x A K over Ak, where pE is the standard k-simplex.
Then TRT = Top(n), and TF® = Top.

6. The semisimplicial analogues of examples 1 - L.

7. The orientation-preserving versions of the other examples,

namely SQ, SU, BSQ, SF, STop.

8. TA = PL(A), defined as Top(A) but allowing only piecewise linear
homeomorphisms of A x Ak. This fails, because the only singular
simplexes of I(A,B) that map PL(A) into PL(B) are the constant ones!
Thus the homotopies requird for Theorem B are not allowed. Instead
we must revise the machine, which turns out to be rather complicated.
Suffice it to say that for a k-simplex of P(A,B) we take a pair (§,f),
where E is a p.l. sub-bundle of the product bundle B x A¥ over 2%,
and f: £ ® (A x %) 2 B x A¥ 15 a p.1. fibre-homeomorphism that

extends the inclusion of &.
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Further, there are obvious natural transformations Q(A) ——3F(A),
etc. The only onc that causes difficulty is the construction of

a suitable map Q(A) — PL(A), which is extremely awkward (compare §L).

Theorecm C We have E-spaces

Q, s8Q, F, SF, U, Sy, PL, SPL, Top, STop, I' = "PL/Q", F/PL, etc.,
and all their iterated classifying spaces. The natural maps between
these are all E-maps, including Q — PL and PL — T,

2. Categories of operators

There are two variants: wit without permutations.

s 2 o

Definition In a cstegory B of operators

(a) the objects are 0,1,2,.c4;

(b) the morphisms from m to n form a topological gpace B(m,n),
and composition is continuous;

(¢) we are given a strictly associative continuous functor
®: B x B—> B such that m ® n = m + n,

(d) if B has permutations, we are also given for each n a
homomorphism S(n) -—-> B(n,n), where S(n) is the symmetric group on

n letters. We neglect any symbol for it.

In the case with permutations we demand two further conditions:
(i) ifx € S(m) and p € S(n), then = ® p lies in S(m + n)

and is the usual sum permutation;
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(ii) given any r morphisms G,:my—>n; and % € S(r), we
have

W(E)O(0~'1®a’2@go.@ G,I') :7((&1$G’ eoo.@ OJP)O'}((E),

2
where m = Zmi, n= Zni, T acts on a, & a D,. D . by permuting

2
the factors, and the permutetion ®(n) € S(n) is obtoined from =
by "thickening" - we replace i € {1,2,.0. , T} by a block of ny
elements, and let ® permute these blocks.
All functors between such categories are required to preserve the
objects, the functor &, the topology, and the permutations (if any).
Examples
1. Endy,, for a space X with basepoint. gggx(m,n) is the space of

all (based) maps X" s X%, where X is the nth power of X. The

functor & is just x. This example has permutations.

Definition A category B of operators acts on X if we are given

a functor B — End.. We then call X a B-space.

2, A. A(m,n) is the set of all order-preserving maps

{1,2,.,. ,m}——~9{1,2,.°. ,n} . There is one map hn: n —->1 for

€ach n. Then an A-space is 2 monoid.

3. 8. For S(m,n) we take the set of gll maps {1,2,... ,m}—>{1,2,... n}
This includes permutations. Then an S-space is an abeclian monoid.

Such a space X is known to have the homotopy type of a product of

Eilen‘berg—MacLane gspaces, if X is a connected CW-complex.
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i i

Definition A space X is called an I-space if it is given an

E-structure, which consists of a category B of operators with

permutations, acting on X, for which g(n,1) is contractible for
all n. (e do not single out any canonical category Q.)

4o I. Define I(myn) =1 ((g”)m, (E?)n) as in §1. By the Lemma
in §1, I(m,1) is contractible, so that any I-space, such as TK",
is an %-space. Hence part of Theorem B,

5e gn, a cotegory of operators on the nth loop space oy - X,

The space Q7Y is the space of all maps (I™,0I") — (Y,0), where o

n

is the basepoint of ¥, I is the standard n-cube, and o1 its

boundary. A point o € gn(k,1) is a collection o of k n-cubes I?'
linearly embedded in I" with their axes parallel to those of In{
having disjoint interiors. It acts on Q'Y as follows: given
(f1,f2,... ,fk) S Xk, i.e, maps f;: 1" —3 Y, we construct the map
@(f1,f2,... ,fk): " —> Y by using f; on the little cube I? and
the zero map outside the little cubes. ‘e topologize gn(k,1) as

a subspace of szn

» To define gn(k,r) for gencral r, we use r range
cubes instead of one. We obscrve that gn(k,1) is (n - 2)-connected,
so thot as n tends to «, Theorem A becomes plausible.

We soy that a category B of operators is in standard form if

there exists a(necessarily unigue augmentation functor B——3A 1if

B is without permutations (§-~$ S if B has permutations), such
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that every morphism & in B over hnl o A Deoed® \_: Mm——>7r
= 1 m, r

is uniquely expressible in the form o, ® a5 D, P Gr, where

@i: mi-——>1, and we have the appronriate product topology.

The importance of cantegories in standard form is that given an
arbitrary coategory of operators B there is another category B!

in stendard form and a functor B'—>B satisfying B'(n,1) = B(n,1).
Hence if B acts on X, we can canonically make B' act on X. This
effects a welcome simplification in the theory. Of our examples,

2,3, and 5 are in standard form, but 41 and L4 are not.

3+ The bar construction

The concept of monoid is not a good one from the point of view
of homotopy theory, because the existence of a monoid structure
on a space is not a homotopy invariant. For example, the loop
space 1X has no natural monoid structure, although it is a
deformation retract of a natural monoid. Similarly for other
categories of operators.:'

Suppose given a category B of operators, in standard form.

(eF

We form a bar construction, by considering words [GO|@1 k]’

where k 2 0, each @i is a morphism in B, and the composite

Q'OOG’,' Ooo noa'k

P e .
Definition The category W B has as morphisms from m to n those

exists in B.

wWords [GO!G1 @k] for which the composite aooa1o,°.o@1 is a

e
Dorphism im B from m to n, subject to the following relations and

their consequences:
[ce gl =[ce 1]108] = (106 8lee],

[1] is an identity,

[a|x] = [aex], [x|B] = ["eB] if B has permutations =
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Composition in WO§ is by juxtaposition.
To form the category %WB, we take for each morphism x in

w©

B a cube C(x) of suitable dimension, having x as one vertex,
and identify the faces not containing x with certain cubes C(xi)
of lower dimension, where Xy TUns through the words formed from
x by one "amalgamation". (We give an altcrnative description
below.) The categories Wog and WB inherit obvious identification

topologies. For composition we have C(x)oC(y) ¢ C(xoy) as a face,

and ®: C(x) x C(y) & C(x® y). The gugmentation €: WB —>B is

defined by eC(x) = ex, and s[qO]a1].., ak] = G o0, 0,.,00

01 k*

In particular, the familiar pentagon in WA(L,1) is now
subdivided into 5 squares.

Let us give an alternative pictorial description of WOQ and
WB, in the case without permutations (for simplicity). A morphism
in Wog(n,1) is represented by a finite tree with directed edges,
except that some edges do not join two vertices (sce pictures).
There is just one, called the root, that leaves a vertcx and goes
nowhere; there are exactly n twigs that come from nowhere; the
other edges are called links and join two vertices. Each vertex
has a label @ € B(r,1), where r is the number of incoming edges,

and has exactly one outgoing edige. The only relation ic that

a

vertex lsbelled with 1 € B(41,1) may be suppressed.
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ft

-

3 —31

A morphism in Wog(m,n) is an ordered collection of n such trees,
called a copse. Composition xoy is obtained by attaching the
roots of y in order to the twigs in x.

To describe a morphism in C(x) WB we simply ussign a real
number t; to each link of the copse x, (o0 < t; < 1), and add the
relations:

(i) When we suppress a vertex lobelled 1, if it separates
links with values t and u, we give the new link that appears the
value max(t,u). \

(11) A link with value O joining @ to B may be shrunk to form
a new copse having one fewer vertex; the vertices & and B are

amnlgamated to form ¥, which is obtained from ¢ and B by using

the composition in B.
When we compose copses, we assign the value 1 to each new link
that appears. Consistency is assured by the tree differential

calculus. Putting copses side by side describes the functor @.



- 12 -

To make the following theorems true, we need to replace B
by a slightly different category é augnented over B, which is
obtained from B by growing a whisker on B(1,1) rooted at 1, and
taking the outer end as a new identity morphism. However, we
can replace E by B in all the results if we know that the identity
1 € B(1, 1) is isolated.

We call an augmentation functor 6: C —>B fibre-homotopically

trivial if for each n there exists a section X: B(n,1) —> C(n,1)
and a fibrewise homotopy Xe¢6 = 1, S(n)-ecquivariantly if B and C

have permutations.

Theorem D

(2) e: Wé-—~>§,: is fibre-homotopically trivial.

(b) Given any category of operators C augmented over B by a
fibre~homotopically triwial augmentation, there exists a functor
F: w_ﬁ_-——> C that 1lifts & (not uniquely).

The superiority of our definition is clear from:

Theorem B

Suppose X and Y have *he same homotoony type, and WB acts on X.

Then we can make VB act on Y.
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L, Maps between H-spaces

Suppose the category of operators WB acts on the spaces X and Y.
We need an apprropriate definition of morphism between them. In
fact there are two. If the map f: X —> Y commutes strictly with

the actions, we call f a ¥WB~homomorphism. We are more interested

in the appropriate definition in which f merely commutes with the
actions up to cohcrent homotopies; +this 1s more complicated and
appears to be new.

Let Ln be the "linear" category with objects Ans8yseoe 58

n
and one morphism a;—> aj whenever 1 € j. We can generalise the
bar construction in §3 to form W(§ X Ln), a category which we make‘
act on (n + 1)-tuples of spaces, (XO,X1,.,. ,Xn). (In B x L, ® is
no longer a functor, so that the first relation makes sense only

inside each copy B x a; of B.)

Definition We say the map f: X——> Y is a homotopy 3-map if we are

given an action of W(B x g1) on the pair (X,Y) that induces the
given WB-structures on X and Y and the given map f: X — Y,

Similarly we say that o map f: X

3 Y between i-spaces is an
Z-map if there exists some suitable catecgory of cperators C on the
poir (X,Y) that induces the given E-structures on X and Y, such that

f lies in C(X,Y), and each space c(x™,Y) is contractible. We call
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two E-structures on X eguivalent if the identity map between the

two strictures admits an E-structure,

Theorem F

Let X and Y be Wé—spaceé, and £f: X+—>Y a homotopy é—map
which is also a homotopy equivalence. Then any homotopy inverse
g: Y3 X can be made into a homotopy é_—map°
Example Under suitable semisimplicial interpretations we have
inclusions i: Q (n) ¢ PD(n) and PL(n) ¢ PD(n). As is well known,
PL(n) is a deformation rectract of PD(n), with a retraction
p: PD(n) —— PL(n), say. The only other fact we need is that PD(n)
admits an action of Q(n) on the left and of PL(n) on the right.
Then it is obvious that poi: Q(n) —> PL(n) is a homotopy homomor-
phism (in the usual sense): take x,y € Q(n), then

p(x.y) * p(x.py) ® p(px.py) = pPx.py.

In fact it can be shown from the gbove information that poi admits
the structure of homotopy A-map.

When we attempt to construct the category of WB-spaces and
homotopy B-maps, we find that it is not possible. The composite
of two homotopy B-maps is not defined unless one of them is induced
from a WB-homomorphism, except up to a homotopy, which is itself

defined only up to a homotopy, which is itself defined only up to

a homotopy, which is ... Instead we form a semisimplicial complex



-15 —

X
K, whose n-simplexes are actions of W(B x Ln) on (n + 1)-tuples of

spaces.

Theorem G
This complex K satisfies the restrictcd Kan extension condition
(in which the omitted fnce is not nllowed to be the first or last).
This result provides all we need for composition up to
homotopy, etc.

H5e Structure theory

We consider WA-spaces, with A as in §2. We first note that if X
and Y are WA-spaces, so are X x Y and the powers Xn. The following

theorem is essentially due to Adams.

Theorem H

Given a WA-space X, tpere is a universal monoid MX with a
homotopy A-map i: X— MX, such that any WA-map f: X—>Y to a
monoid Y factors uniguely as gei, where g: MX——Y is a monuid
homomorphism, Moreover, if X is a CW-complex the map i is a
homotopy equivalence.

We know [2] that MX has a classifying space BMX, which is
functorial, connected, and satisfies MX = QBMX provided.ﬂo(MX) is
a group. Further, we have B(G x H) £ BG x BH. In one direction,
the main theorem A follows from the more detailed theorem, by

putting BX = BMX,
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Theorem J

Let X be a E-space, 80 that in particular it supports a
WA-structure by Theorem D. Then the classifying space BMX 1s an
E-space. If Y is another E-space and f: X——> Y an E-map, then
f admits a homotopy A-map sturcture, and we find an Z-map
BMf: BMX—> BMY (not well defined).

Consider the E-spaces x®. We can make cach operator
G Xn———9~X into a homotopy A-map. This induces by Theorem H a
monoid homomorphism Ma: (MX)® = Mx™ — MX, and hence
BMa ¢ (BMX)n———9~BMX. Along these lines we construct an E-structure
on BMX, which makes it an E-space. The details are considerable.

6. Cohomology theories

Assume that the CW-complex Y is an E-space such that WO(Y) is a
group; then by Theorem A, Y is an infinite loop space. Explicitly,
put ¥ = B"Y = B(B"'Y) by Theorcm A and Y__ ="y, for n > 0;

\

then we have homotopy equivalences Yn ~ QY'n+1 for 2ll integers n,

and we can define a graded cohomology theory (1] vy setting
t4(X,4) = [x/4,7 ],

the sct of homotopy classes of based maps from X/A to Yn, for any

CW—pair (X,A). The coefficient groups are the groups tnP, where

P is a point. Here they are zero for n > 0. Let us call such a

theory connective,
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heorem K

Every connective graded additive cohomology theory t on
CW-pairs arises from some L-space Y, which is uniguely defined
up to homotopy equivalence of E-spaces.

In particular the E—space Z x BU gives rise to the connective
K-theory cK. This is more usually obtained by appcaling to Bott
periodicity and killing off the unwanted coefficient groups. In
other cases we cannot appeal to Bott periodicity, for example

Definition We define connective p.l. K-theory by using the E-space

Z x BPL: for n > O we put
cKpr (X,4) = [%/4, B™(z x BPL)].
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