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Abstract

By introducing categories or operators the
concept or an associative H-space is generalized.
Each such category gives rise to a structure on a
space X ir it can be made to act on it. To each
category ,Q of' operators a category W,Q- or operators
is associated which gives rise to a Q-structure
up to higher homotopies and all possible coherence
conditions. After introducing the notion or a
structure map and or homotopies or structure maps
the category or W,Q--spaces and homotopy classes
or structure maps is set up and studied. 'I'he theory
is applied to prove a classirication theorem.
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INTRODUCTION

The concept of an H-space, i.e. a space X with base
point e and a multiplication map m: X x X ~ X such that
e is a homotopy identity, arose as a generalization of
that of a topologica1 group. It turned out to be of great

importance in homotopy theory, especially in the study of
extraordinary cohomology theories.

Generally speaking most of the techniques which apply
to topological groups cannot be applied to H-sp.aces be-
ca use of their lack of structure. From the homotopy theore-
tic point of view the distinguishing feature is the asso-
ciativity (and commutativity) of the multiplication ra-
ther than the existence of a continuous inverse.[for
example see [1], Satz 8.2 and 8.3]. Since many spaces of
interest have no natural monoid or commutative monoid

Istructure, such as the loop space nx or the stable ortho-
gonal group, this led to an extensive study of H-spaces
which almost have the structure of a topological monoid
or a commutative topological monoid such as homotopy
associative, homotopy commutative, strongly homotopy
commutative [7] H-spaces, and ~ -spaces [5]. In the
last two cases, part of the structure consists of higher
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homotopies and coherence conditions, and important con-

structions like the classi~ying space construction turn

out to hold ~or them.

A problem in the theory o~ H-spaces with additional

structure has been to ~ind the right concept o~ maps bet-

ween them. The notion o~ a homomorphism, i.e. a ma~ that

preserves the multiplication and the coherence conditions,
turned out to be too restrictive, while a notion o~ a map

that commutes with the multiplication up to homotopy was

too weak ~or many applications. The complexity o~ struc-

tures with higher homotopies and coherence conditions

made it so ~ar impossible to ~ind a satis~actory de~ini-

tion o~ maps between such spaces, while Sugawara [7]

succeeded in doing this ~or monoids. A study o~ the cate-

gory o~ topological monoida and homotopy classes o~ such

maps can be ~ound in [8].
I

The purpose o~ this thesis is to develop a satis~ac-

tory theory - ~rom the view o~ homotopy theory - o~ spa-

ces with homotopy-associative (and homot opy -commu ta.td.ve )

multiplicatio~ and all possible higher homotopies and

coherence conditions and o~ structure maps between such

spaces. A suitable de~inition o~ homotopy between such

maps makes these spaces and the homotopy classes o~ struc-
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tare maps between them into a category. We adopt follow-
ing as test propositions:

(A) If X is a space in the category and Y is homotopy
equivalent to X then Y is in the category.

(B) A structure map over a homotopy equiva~ence is an iso-
morphism in the category.

To avoid the difficulties arising from the complexity
of the topological models used to define the higher homo-
topies (for example of an Aoo-space, such as the well known
Stasheff pentagon), we approach the problem in a complete-
ly new way, which in addition provides us withresults for
a much wider range of "structure" spaces than just Aoo-spa-
ces or homotopy-commutative Aoo-spaces with suitable higher
coherence conditions. Rather than speaking of a particu-
lar space with a given structure we introduce categories
of operators which "act" on spaces and thus induce a
structure on them. Such a category ~ basically consists
of objects 0,1,2,3, ••• , a topological structure on each
morphism set such that composition is continuous, a con-
tinuous bifunctor ~: B x B ~ B such that m ~ n = m + n.- - -
An action of ~ on a space X associates with each morphism
f: m ~ n a map a(f): xm ~ Xn continuously in f and such
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that ~(f e g) = ~(f) x ~(g) and u is functorial. For
example the category consisting of exactly one morphism
n ~ 1 for each n gives rise to a topological monoid
structure. With each catAr;ory ]2 of operators we asso--ciate another category W~of operators which gives rise
to a structure that is a ]2 -structure up to higher homo-
topies and all possible coherence conditions of which-the morphism spaces keep track. WB has a universal pro-
perty such that a space with a W(WB)--structure can be-given a VI]2-structure. This universal property is the key
for the development of our theory.

A slight generalization of the concept of categories
of operators gives rise to the definition of structure
maps.

In order to avoid spurious difficulties in our topo-
logical constructions we work in the category CG of
compactly generated Hausdorff spaces. For details see [6].
Two of the properties of CG which we frequently use
without mentioning are full adjointness and the fact that
the product of two quotient spaces is the quotient of the
product.

This thesis is part of a joint work with my supervisor,
Dr. J. M. Boardman, who applied the theory represented here
to obtain results about the stable groups 0, SO, F, SF,
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u, SU, PL, SPL, Top, STop etc. and their classifying spa-
ces. A summary of this joint work is included at the end
of this thesis.

In the first chapter we give the definition of cate-
gories of operators and list a few examples. In the second
chapter we construct the category w~ for each category ~
of operators and discuss its basic properties. Chapter III
deals with the concept of structure maps and we set up the-category of W~-spaces and homotopy classes of structure
maps. It includes the proofs for the test theorems. In-Chapter IV we study spaces with W~-structures and state
a classification theorem.

Example 4 in §1 and the results of the second section
of Chapter IV are entirely due to Dr. J.M. Boardman and
we restrict ourselves to sketching the proofs.
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CHAPTER I: DEFINITIONS AND EXAMPLES
J 1 CAT1~GORI1:.;SOB' OPERATORS

All our topological constructions will be in the
category of compactly generated Hausdorff space e., This
maaus that we only need to check that the identification
spaces constructed are Hausdorff. The rest is automatic.

Let N be the set of all sequences in n generators
O, ••• ,n-1 including the empty sequence. N is a free mo-
noid under juxtaposition.

Define a left action of S(k), the symmetric group
in k letters, on the sequences of length k by

~(i1,···,ik) = (i~-1(1),···,i~-1(k»

~ES(k) •
We have two variants of categories of operators:

with or without permutations.

Definition 1.1: In a category B of operators on n object
generators
(a) the objects are elements of N
(b) the morphisms from ~ to b form a (compactly

generated) topological space ~(~,£)and com-
position is continuous

(c) we are given a strictly associative, continuous
bifunctor ffi: ~ x ~ ~ ~ such that ~ ffi £ = ~
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(d) ir B has permutations we are also given a mor-
phism ~: ~ ~ ~~ ror each ~ES(k) and each sequence
~ or length k such that
(L) ~'Tj = ~oTj
(ii) ir ~ES(k) is the identity, then t = 1a

(iii) if ~ES(m) and TjES(k) then t m ~ = ~ m Tj,
where ~ ~ TjES(m+k) is the usual sum per-
mutation

(iv) given r morphisms 0,. in B such that source
l. -

o,i is a sequence or length m. and target
l.

0,. one or length n. , and ~ES(r), then we
l. l.

have
~(n1 ,•••,nr)o (0.1$••·$C1r)
= (o,~-1(1 )$••• $(L~-1(r) )o=~""(m-1-'-·-.-.,-m-r"'T)
where ~(n ,•••,n )Es(n1+ •••+n ) is derined

1 r r
as rollows:
Le t n1 +,•••+~-1 +1 = i ~ n1 +•••+Ilk' 1 > O.

~(k)-1
Then ~(n1,·.·,nr)(i) = 1+ ~j=1 ~-1(j).

Notation: For ~ES(k) we denote the induced marphisms ~
simply by ~.
We call a category or operators on n object generators
an MnT-category if it has no permutations and an
MnTP-category if it has.
Unless otherwise stated we denote sequences of length
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1 by small Latin letters and general sequences by
underlined small Latin letters. For morphisms we
use the letters a, ~, y and for permutations the
letters ~, ~, ~. Categories are denoted by under-
lined capital Latin letters.

Definition 1.2: Let ~ be an M~-(M~P) category and ~
an MmT(resp.MmTP)-category. An MT(resp.MTP)-func-
tor 6: ~ ~ ~ from ~ to ~ is a functor such that
(i) 6 maps object generators into object generators,

i.e. it maps sequences of length 1 into sequen-
ces of length 1

(ii) 6 preserves sums, t ;e, 6(~ e]2) = 6~ e 6]2 and
6(a e ~) = 6a e o~

(iii) 6: ~(~,]2) ~ ~(~,b) is continuous
(iv) if ~ and ~ have permutations, then 6 preserves

permutations, i.e. 6(~) = ~
If A and B are categories on the same object gene-- -
rators and 6 in addition preserves generators, i.e.
6(a) = a, then 6 is called an MnT(resp. MnTP)_
functor.

Note that (iv) is equivalent to saying that 6 is
equivariant, i.e. 6(ao~) = 6(a)o~.
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Example 1: End(X ,•••,X ) :forbased spaces X1, •••,X
1 n n

is an MnTP-category. End (X1,•••,Xn)(~'~) is the s~ace
o~ all based maps X~ ~ ~ (see [6],chapter 5), where
X!!= x. x•••xX. i~ a = (i1,•••,ik). The runctor e is

J.1 J.k-

just x. The permutations are the obvious shu~~les.

Definition 1.3: An M~ (resp. M~P)-category~s said to
~ on (X1,•••,Xn) if we are given aD M~ (reap.
M~P)-functor ~ ~ End(X1, •••,xn).
If an MiT (resp. M1TP)-category ~ acts on X we call
X a ~-space.

Example 2: !, an M1T-category: Denote the unique sequence
of length m by m. !(m,n) is the space o~ all order pre-
serving f'unctlons (1,•••,m) ~ (1,•••,n) with the discrete;
topology. There is exactly one ~unction A : n ~ 1 for

n - -
each n. An A-space is ~ topological monoid (in CG, the
category o~ compactly generated Hausdor~~ spaces).

Example 3: §, an M1TP-category: Again denote the unique
sequence o~ length m by m. §(m,n) is the set o~ all ~unc-
tiona (1,•••,m) ~ (1,•••,n) with the discrete topology.
The permutations are the ordinary permutations
(1,•••,m) ~ (1,•••,m). An §-space is an abelian topolo-
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gical monoid. Such a space X is known to have the homo-
topy type of a pr-oduct,of Eilenberg-Mac Lane spaces, if
X is a connected CW-camplex. (The proof of this is rough-
ly as follows: Let Gn denote the nth homotopy group of X,
and M(Q,n) the Moore space with G as n-th homology group.
For each n construct a map fn: M(Gn,n) ~ X which induces an
isomorphism of the n-th homotopy groups. The abellhan
monoid structure on X enables one to construct maps of
the infinite symmetric products SP(M(Gn,n)) into X from
the fn's. These give rise to a map of the restricted
product TISP(M(G ,n)) into X. SP(M(G ,n)) is of the samen n n
homotopy type as the Eilenberg-Mac Lane complex K(Gn,n),
and the constructed map gives the required homotopy equi-
valence. For details see [3]).

Definition 1.4: An M~P-category ~ is in norma1 form if
(a) each morphism is expressible as

a. = (0.1ED••• EDo.k)o~

~here ~ is a morphism into an object generator
for each i, 1 ~ i ~ k, and ~ a permutation

(b) this expressioa is unique up to following equi-
valence
(0.1°~1$ ••• $ o.ko~k)o~

= (0.1$···ED o.k)o[ (~1ED••• $ ~k)o~]
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where ~i and ~ are permutations
(c) The morphism spaces of ~ have the quotient

topology of the appropriate disjoint unions
of product spaces of morphisms into a generator
under the relation (b).

Analogously for M~-categories to be in normal form
we demand that each morphism is uniquely expressible
as a sum of morphisms into a generator and that the
morphism spaces have the appropriate disjoint union
topology of product spaces of morphisms into a gene-
rator.

The importance of categories in normal form is clear
from

Theorem 1.5: Given an arbitrary MnTP (resp. M~)-category
12 there exists another MI'1rrP(resp. MI'1rr)-category.Q
in norma~ form and an MI'1rrP(resp. MnT)-functor
y: Q ~ ~ satisfying .Q(~,b) = 12(~,b), and YIQ(~,b)
is the identity • .Q and yare unique up to isomor-
phism. (Recall: b denotes an object generator)

Proof: Put Q(~,b) = 12( ~,b) as required. Construct the
spaces of morphisms into larger sequences according to
condition 1.4 (c): For ~ = (i1, •••,ik) and £ = (j1, •••,jl)



- 12 -

let V(~,b) = U Q(~,j1 )xQ(£2,j2)x •••xQ(£1,jl)x{~1 taken
over all parti tions of the sequence ~ $ •••$ £1 =
(i~-1(1), •••,i~-1(k» into connected subsequences and all
permutations ~ES(k). V(~,~)has the disjoint union topo-
logy of the products and hence is in CG.

Introduce the relation 1.4 (b) into V(~,~):

(U10T)1,.··,(1l°T)1;~)...(a1,···,(1l;(T)1$···$ T)l)o~)
where (1i is the element ai of ~ considered as element of
Q, and T)i a permutation in S(source ai).

Let Q(~,~)= V(~,h)/-. Q(~,b) is Hausd~ff and hence
in CG. Composition with permutations is forced on us by
1.4 (b)-and 1.1 (d): Let T)Ea(l) and ~ES(k) then
T)o(a1,•••,al;~) = (UT)-1(1),•••,(1T)-1(1);T)(r1,•••,rl)o~)

(a1,···,al;~)o~ = (a1,···,al;~o~)
where r is the length of source (1 •p p

Denoting (a1,••.,al;~)by (a1$•••$ al)o~ we have de-
fined a continuous associative sum in Q.

To define compositio~, note that it suffices to de-
fine it for aO[~1$..•$ ~nJ, where a is a morphism into
a generator, and to check associativity and the existence
of a unit just for these elements since we have taken
care of the permutations already. Denote composition in
~ by * and in Q by o. Define
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(lO[i31E9···E9i3nJ = 0.*(f318•••E9 f3n)
Since composition and sum in ~ are continuous and since
this definition respects the identirications, this compo-
sition is wel~ derined and continuous. It is associative
and has 1. E9•••E91. as identity for (j , ••• ,j ).

J1 In 1 n

By construction E9 is a Bifunctor. The per mutations
are represented by an element or the form (sum of identi-
ties)o~. By construction g is in normal form.

Define the functor y: g ~ ~ by

y[(a1E9.·.E9ak)o~1 = (a.1E9.··E9al)*~
Since E9 is a bifunctor the relation 1.4 (b) holds in any
M~P-category. Hence y is well defined. It is continuous,
and preserves sums, permutations and identities. From the
derinition or composition it is clear that y is a functor.
Hence it is an M~rP-functor.
The construction for M~-categories is completely analo-
gous, but simpler. J]

We rerer to the construction or morphism spaces into
longer sequences once the ones into generators and their
compositions with permutations are given as the normal
form construction.

Corollary 1.6: Let 12 be an M~P (resp. MnT)-category and
g the associated category in normal formo If ~ acts
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on (X ,•.•,X ) then we ean canonically make Q1 n
act on (Xi'··· ,Xn)·

This ef'f'ects:a welcome simplif'ication in the theory. Of'
our examples, 2 and 3 are in normal f'orm, but 1 is not.

Example 4: (This example is due to J. M. Boardman)
~n' an M1TP-category operating on the n-th loop space
nlly = X. The space nlly is the space of'all maps
(InllDIn) ~ (x,«), where 0 is the basepoint of'Y, In is
the standard n-cube, and DIn its boundary. A point aE~n(~,i)

orJ.e.,.~l
where ~ is the uni~ue se~uence of'length k, is ancollec-
tion u of'k n-cubes I~ linearly embedded in In with their
a xes parallel. to those of'In, having disjoint interiors.
It acts on nlly as f'ollows: Given (f'1,•••,f'k) E xk, i.e.
maps f'i: In ~ Y, we conatruct the ma~

OJ(f'1,•••,f'k): Xn ~ Y
nby using 1'i on the little cube Ii and the zero map out-

side the little cubes. We topologize 9n(k,l) as a sub-
space of'R2kn. The permutations permute the coordinates
of'ik. ~(~,£)is now obtained by the normal f'orm con-
s.truction.

We observe that £(~,1)is (n-2)-connected. We will
make use of'this f'act in Chapter IV.
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Example 5: Let ~ be an M1TP (resp. M1T)-category in normal
rorm and Q a topological category with n objects O, ••• ,n-1
(in a topological category the marphism sets are topolo-
gical spaces and composition is continuous). Then & and
Q give rise to an M~P (resp. MnT)-category ~*Q.Denote
the unique sequence of length m in ] by mo A morphism
f'r-om ~ = (i1, •••,ik) to j is a (k+1)-tuple ([3j:f1,••• ,rk)
with [3E ~(~,i)and rp E Q(ip,j). ~*Q(¢,j) = ~(¢,i)where
¢ denotes the empty sequence. Denote the morphisms or
~*~(¢,j) by ([3j¢j). Give ~*Q(~,j) the product topology
of ~(~,i)x C(i1,j) x ••• x Q(ik,j). Derine composition
with permutations on the right by

~ E S(k).

Derine the morphisms into longer sequences by the normal
rorm construction. Composition is given by
([3jr1,·· .,rk)0(x1ED •••ED,~)

= ([30([31ED•••ED [3k);f1 0 g11 '•••,r10 g1p1 '•••,rk0 gk1 '•••,t:k0 gkPk)

where xi = ([3i;g.1,••• ,gou ), with the convention that]. ].~i

r ° O¢j drops out.
].

The composition is continuous and since it is induced
by the compositions in ~ and Q it is associative.
(1k;1i ,•••,1i ) serves as identity and ED is a birunctor
- 1 k
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by construction. Hence ;§:'''Cis an IvIll.rP-category.
Note intuitively that if we denote ([3;1 .,•••,1 .)

J J

have (~;f1, ••• ,fk) =
by

(~;j) and (1i;f) by f, we

(~;j)o(f1$···$ fk)·
Observe that if (B(1,i), 1i) and (Q(k,k), 1k) are

NDR-:pairs, 1 ~ k ~ n , then the (;§*C(!1,ll, 1a) are NDR-
pairs too for all se~uences !1. This follows from the
fact that (B""C(j,j), 1 .) is a NDR-pair for all j, 1 ~ j ~ n

- - J
and ;§*C is in normal form. See also [6; Lemma 7.3].

We have n canonica~ MTP-inclusion functors
L : B ~ B:;;C
p - --

given by LpC([31$•••~ f3k)o~] = [([31;p) ID••• $ ([3k;P)]o~
and a topological (i.e. continuous) inclusion functor

A: C ~ 12';:Q

given by A(f) = f.
All ~ctors embed the respective categories as closed

(in the topological sense) subcategories in B:;;Q. Hence
their images have the relative topology in 12*Q.

The construction in the MiT-case is completely ana-
logous.

For illustration: If £ is the category of Example 2
then an action of ~*Q induces a functor from Q into the
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category of topological monoids. ]]

Let Is be the category with n objects O, •••,n-1 and-n
exactly one morphism between any two objects.

Lemma 1.7: Arzy M~P (M~)-category 12 in normal form is
augmented over S*Is (resp. A*Is ) by a (necessarily)

- --xl - --xl

unique M~P (M~)-functor 0: 12 -+ .§.*l§.n(~*ISn)

Proof: There exists exactly one morphism from ~ = (i1, ••,ik)
to j in §*~ uni~uely represented by (Ak;(i1,j), •••,(ik,j))
where Ak is the unique function (1, •••,k) -+ (1) in S and
(i,j) the unique morphism from i to j in Is • This deter----n
mines 0 uniquely on 12(~,j). Using the normal. form of 12
we get a necessarily unique extension of 0 to 12. That 0
is a functor follows again from the fact that there is
exactly one morphism from ~ to j in §*!!n. ]]
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CHAPTER II: THE UNIVERSAL CONSTRUCTION

Unless otherw ise stated we only consider categories
in normal form from now on.

The concept of monoid is not a good one from the point
of view of homotopy theory, because the existence of a
monoid structure on a space is not a homotopy invariant.
For example, the loo~ apace fiX has no natural monoid
structure, although it is a deformation retract of a na-
tural monoid. Similarly for other categories of operators.
For this reason we look for a "universal" structure.

Suppose given an M~P (M~)-category £l. We want to
construct a "universal" M~P (M~)-category U with the
:following pr-opertLee e

(U1) There exists an M~P (M~)-runctor e: g ~ £l, the
standard augmentation of £l, and a collection I. of
equivariant maps \(not functors) I.: laC!!, b)~.!I(!!,b)
for all sequences ~ and all generators b, the
standard section of £l, such that
eo I. 112(~,b) = 1 IB(!!,b)
r.oe IQ(~,b) ~ 1 IQ(!!,b) equivariantly (if] has
permutation~ and fibrewise

(U2) (Q, e, I.) is universal with respect to (Ui), i.e.
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given an M~P (M~)-category Q, a~M~P (M~)-

functor o:Q ~ ~ and a collection 0 of equivariant

maps 0: B(~,b) ~ Q(~,b) for all sequences ~ and
all generators b such that

0°0 112(.§!;,b) = 1 I12(.§!;,b)
0°0 IQ(~,b) • 1 IQ(~,b) equivariantly and fibre-

wise, then there exists an M~P (M~)-functor

v: !!. ~ Q such that 00 v = 8.

Notation: A collection of maps 0 as given in (U2) such

that 0°0 I~(£,b) = 1 IJi(~,b) is called a (equiva-
riant)section of o.
A functor 0 which has a section 0 satisfying the

requirements of (U2) is called fibre homotopically

trivial.

We are going to give' a construction W which associates

with each M~P (M~)-category ~ such that (B(b,b),1b)

is a NDR-pair for qll generators b , an M~P (MnT)-category

W& together with an augmentation eB:W12 ~ & and a section

LB: 12 ~ W12 such that the triple (W~, eB, LB) satisfies

(U1). Furthermore for any M~P (M~)-category ~ we can,
find a triple (~"',eB' L-a ) such that W~ ...exists and

(WBH,eBoeBH,LBoLBH) satisfies (U1) and (U2).
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§ 2 THE CONSTRUCTION W

Since the construction for the M!\r-case is completely
analogous to the one for the M!\rP-case, rather more simple
in fact, we restrict ourselves to the MTP-case.

Let ~ be an M~P-category such that (~(b,b), ib) is
a NDR-pair for all generators b. To obtain the universal
property we start off the free M~P-category in the dis-
crete topology over ~. We then topologize the morphism
sets and attach"cells" to them to obtain the property (ui ),

We form a bar construction by considering words
[aol ••• lakJ where ~O, each ai is a morphism in~, and the
composite aOo •••oak exists in~.

Definition 2.1: The category WO~ has as morphisms from
~ to:2 those words [aol ••• I~J for which aOo •••oak
is a morphism in B from a to b subject to the follow-

~ --
ing relations and their consequences:
(a) [a $ ~J = [a 6 111 6 ~J = [1 $ ~Ia $ 1J
(b) [1] is an identity
(c) [al~] = [ao~J, [~I~J = [~o~J (if ~ has permu-

tations~ •
Composi tion in ViOl? is by juxtaposition.
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Let us give an alternative pictorial description of
W°]2. A morphism in W°]2(.:a,b)is represented by a pair
(e,~)where ~ E S(r), r being the length of .:a,and e a
finite tree in the plane with directed edgea, labelled
by O,•••,n-i, repetition is allowed, except that some
edges do not join two vertices (see picture below). There
is just one, called the ~, labelled by b, that leaves a
vertex and goes nowhere, and exactly r twigs labelled by
i~-1(1 ),•••,i~-1(r) if .:a= (i1, •••ir), that come from no-
where. The other edges are called links and join two ver-
tices. Each vertex has exactly one outgoing edge and the
vertex is labelled by a morphism in B(E,q) where q is the
label of the outgoing edge and E = (j1, •••,jk) where k is

the number of incoming edges
and j1, •••,jk their labels
from left to right.

v Call the tree with no vertex
J

(i1,i2,i3,i4)~(j)
consisting of a labelled edge
only, a trivial tree.

The relation can new be described as follows:

(2.2) any vertex labelled by 1b E ]2(b,b) may be suppressed

(2.3) if we obtain the tree e by substituting a vertex
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a E ~(£,q) or the tree ~ by the vertex ao~, where
~ is a permutation, permute the incoming edges or
a and the subtrees or ~ sitting on them in such a
rashion that the ~(i)-th incoming edge or a is the
i-th incoming edge or ao~, then

(q> , ~) ,., (e, ~-1 (ri' •••,rk) 0 ~)

where r. is the number or twigs or the subtree or
1

q> over the i-th incoming edge or a.

Derine composition with permutations on the right by
(e,~)o~= (e,~o~)

Now the sets W012(.§;,E.)can be obtained by the normal f'or-m
co;nstruction. Amorphism or W012(.§;,:Q)with §. = (i1, •••,ir)
and:Q = (j1, •••,js) is represented by a pair (e,~)where
~ E S(r) and e is an ordered collection or s such trees,
ca lIed a copse, the twigs or this collection being labelled

\

by i~-1(1 ),•••,i~-1(r) in order (always rrom lert to right)
and the roots by j ,•••,j , again subject to the relation

1 s
(2.2) and a generalized version or (2.3): Let q> be the
copse obtained rrom the copse e by changing the tree the

twigs or which are labelled by i~-1(t+1 ),•••,i~-1(t+q)
according to (2.3), and let e E Set) and e' E S(r-t-q)
be the identities, then
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(6 ,~ ) IV (<p,(e $ TJ-1 (r1 '•••,rq) $ e ")0 ~ )

Composition 6o<p of copses 6,<p is obtained by attaching
the roots of <p to the twigs of 6 (see picture below).
Since the roots of <p are labelled in the same way as the
twigs of 6, 6O<p is a well defined ccp.se , The sum 6 $ ljf

of the two cop.ses 6 and ljf is obtained by putting them
side by side, thr trees of'6 f'ollowed by the trees of' 'it.
If'

i, ti,
i~ \0( l l}~ l, Ll. r

6 <p ljf

then

Ly' i7 .j:'r

6O<p 6 $ ljf

Let ~ E S(r) and let <pbe a copse with r trees. ~et
~.<p be the copse with the j-th tree being the ~-1(j)_th
tree of <pe Sum and comp oed tion in 1N°la are now given by

(6,~) $ (<p,TJ)= (6 $ <p,~$ TJ)
(6,~)o(<p,TJ) = (6o(~.<p),~(r1, ••• ,rk)oTJ)

where r is the number of twigs of the q-th tree in <peq
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If the edges of two copses are labelled in the same
way they are said to have the same ~. Give the set of
all copses of one type the product topology of their vertex
spaces, and give the set of all copses with a given source
and target the union topology of the union of all types
with the given source and target. The trivial copses, i.e.
the copses cons Ls t.Lng of trivial trees only, are their own
open and closed components. Composition of copses is con-
t.Lnuoue, associative and the the trivial copses act as
identities. $ is continuous, associative, and a bifunctor.
Hence, disregarding all relations , the copses over ~
form an MnT-category, if we just consider the copses and
leave the permutations out. Disregarding all relations,
the spaces of all pairs (the topology is induced by the
copse component) form an MnTP-category. Including the re-
lations they give rise to the rCTP-category WOE.~ -

In the MnT-case "ye would continue to work wi th the
category of copses over ~, while the M~P-case requires
the slightly more complicated category of pairs.

Let CL and !3 be vertices of a copse e joint by the j-th
incoming edge of CL. Let CL and !3 have n resp. m incoming
edges. Shrinking the link between CL and !3 means substi-
tuting the subtreeof e consisting of CL and !3 and their
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and their edges by a vertex y = aO(1 ffi ~ ffi 1) with m+n-1
incoming edges (see picture).

shrinking
~) ) ) ) ) ) ) ) ) ) I )

Let T~(~,Q)= {(e,~)1 ~ E S(k), where k = length~,
e a copse with target £ and source ~~ (the source of eis
given by the labels of its twigs)l topologized by the topolo-
gy inherited from the copses. Each type of copses: wi th
target Q and source some n~, n E S(k), determines an open
and closed subset of Ta(~,£), called a component.

Index the edges of a copse by O,1r.,k, ••. starting
from the root of the first tree and going up the most left
sequence of edges .•Continue going upwards the next sequence
of edges to the right, and continue (see picture). Call

\

this the standard indexing.

o



Let TpB(~,Q)"c T~(§.,h) be the subspace of those ele-
ments the copses of which have exactly p links. Since
Tp~(~,h) is a collection of components of T~(~,h) it is
closed in T]2(~,Q) and hence has the relative topology.

If i indexes the i-th link of the copse e in the stan-
dard indexing and die is the copse obtained from e by
shrinking the i-th link, the correspondence

defines a continuous map, called a face map,
di: K ~ Tp-1]2(§.,h)

where K is a component such that the i-th edge is a link.
Let sie be the copse obtained from the copse e by in-

serting the vertex 1c in the i-th edge where c is the label
of this edge. The correspondence

(e,~) -4 (sie,~)
defines a continuous map" called a degeneracy map,

si: Tp]2(~,Q) ~ Tp+1]2(~,h)
Call x E Tp]2(~,Q) degenerate if it is in the image of
some degeneracy map.

Following identities hold whenever the maps involved
are defined:
(2.4) djodi = diodj+1 j ;?; i
(2.5) sj+1 0 si = siosj j ~ i
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(2.6) djos i 1 j i, i+1= =

(2.7) iodj dj+1°si i < js =

= da, si+1 i ~ j

For the time being we restrict ourselves to the case
where £ = b, i.e. £ is a seQuence of length 1.

Lemma 2.8: Each x E Tp](~,b) can be written uniquely as
k kx = s m o •••os 1y

where k1 < ••• < k and y is not degenerate.
m

Proof: y is uniquely determined by deleting all vertices
labelled by an identity from the tree of x. Hence x is
obtained from y by inserting identities, i.e. by applying
degeneracy maps. By (2.5) we can choose them uniQuely in
the required fashion. ]]

Let r = (R,M,Q) be ,a gadget consis ting of a topologi-
cal monoid M with multiplication * and unit e, a closed
right"ideal" R and a closed left "ideal!! Q, i.e. closed
subspaces Rand Q of M such that R*M c R and M*Q c Q,
satisfying
Axiom M1: (i) There exist no inverses in M, i.e. if

x*y = e then x = y = e.
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(ii) There exist ro E R and to E Q such that
r * t is a right identity in Q and a lefto 0

identity in R.And ro * to ~ e.
(iii) (M, e) is a NDR-pair.

Put u = r *t • Then u*u = u. Hence without loss ofo 0
generality we can assume that ro = to = u. Since R*M c R
and M*Qc Q, R*Q eRn Q. Also if x ERn Q, then
x = x*u E R*Q, and hence R n Q c R*Q.

Example 2.9: Let M be the unit interval with the multipli-
cation t1*t2 = max(t1,t2)· Then e is 0 E I. Take Q = R = 1EI,
a nd u = 1. Then (M1) is satisfied.

More examples will come in some later section.
Define maps si: MP ~ MP-1 and di: MP ~ MP+1, called

~ and degeneracy maps, by
siC to' •••'tp_1) = (to' .,••,ti-1 ,ti*ti+1 ,ti+2,···, tp_1 )
di(to' •••,tp-1) = (t0' •••, ti-1 ,e,ti '•••,tp-1 ~.
The maps satisfy following identi ties:

(2.4' ) diodj = dj+1 0 di j ~ i

(2.5') sio sj+1 sjo si j ~ i=

(2.6' ) siodj = 1 j = i, i+1

(2.7') djo si siodj+1 i < j=
= si+1 0 d j i ~ j



- 29 -

Call 0 E MP degenera~e if it is in the image of some
degeneracy map.

L 2 1 0 E h 1>. E MP can beerruna • : ac v J,V}.

1 11o = d n o •••od 0

expressed uniquely as

where 11 < ••• < In and ois not degenerate.

Proof: 0 is uniquely determined by deleting the coordi-
nates e of 0 = (t1, •••,tp). 0 is then obtained from 0
by applying degeneracy maps. (2.4') allows us to choose
them in the required fashion. ]]

Let (e,i;) E Tp(!i,b). To each l.ink of e we assign an
element of M, to each twig an element of Q, and to the
root an element of R. In the case of a trivial tree root
and twig coincide and we assign to it an el.ement of R n Q.
The elements of Tp(§;,b),together with all possible assign-
ments of this form give rise to a topological space
cp,§r(~,b) = Tp,§(§.,b) x (R x MP x Qk), where k = length .:a,
p ~ O. Let T-1B(b,b) be the space consisting of the trivial
tree with the edge labelled by b. Define C_1,§r(~,b) = ¢

if §;~ band C_1,§r(b,b) = T-1,§(b,b) x (R n Q) = R n ~.
For convenience we denote CpBr (.§;,b) simply by Cp (~,b).
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Let V (a,b) ~ V Br(a,b) be the dis;oint unionp_ p_ _ oJ

V (a,b) = C (a,b) U Co(a,b) U ••• U C (a,b)
p - -1 - - P -

and V(~,b) = V~(~,b) the disjoin$ union of all Cp(~,b),
p = -1,0,1, .... The Cp(~,b)IS are in CG, and hence the
Vp(~,b)'S and V(~,b) are in CG because they are Hausdorff

[6; Lemma 9.2].
Introduce the following relations in V(~,b):

(2.11) Each x E Cp(~,b) is given by a pair (e,~)E Tp(~,b)
with an element of M assigned to each edge. Let
Y E Cp(~,b) be obtained from x by changing (e,~)
to (CP,I1) according to relation (2.3). The elements
of M assigned to each edge of cp are given by carry-
ing the elements of M assigned to the edges of e
along during the permutation of edges which defines

cp. Then x ,...Y •

(2.12) (dix,e) '" (x,die) , i indexes a link. in x = (e,~)
(2.13) (six,a) ,..(x,sia)

where (x,diO), (x,sia) E Gp (~,b).

N.ote that if i indexe s a link then (dix,e) E Gp_1 (~,b)
iff (x,die) E Gp(~,b), and (six,a) E Gp+1(~,b) iff
(x,sia) E Gp(~,b) since R is a right ideal and Q a left

ideal of M.
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Call a point (x,o) E Cp(~,b) degenerate if x or ° are
degenerate.

Lemma 2.14: Each (x,o) E V(~,b) is related under (2.12)
and (2.13) to a unique non-degenerate point.

k k
Proof: Let x = s m o ••• os 1y be the unique expression for
x given in Lemma 2.8. Define a function A by

k1 kmA(X,O) = (y,s o ••• os 0)
1 1

= d n o •••od 1a as unique-Define a function p by setting °
ly given in Lemma 2.10. Define

11 Inp(x,o) = (d o •••od x,a).
By Axiom M1 (ii), e E M cannot be assigned to a root or
a twig since M does noi have ~ inverses. Hence l1, •••,ln
index links in x and d 1o •••= d nx is defined.

Ap(X,O) is not degenerate since a is not degenerate
and hence since M does n~t have inverses sia is not dege-
nerate for any i.

It is easily seen that AP(x1,o1) = AP(x2,o2) if
(x1,o1) and (x2,o2) are related under (2.12) and (2.13).
Since AP is the identity on non-degenerate pOints,
Ap(X,O) is independent of the choice of (x,o) in its equi-
valence class. ]]
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Let vV(,!!,b) = W]¥ (~,b) be obtained from vC,!!,b) by
factoring out the relations (2.11), (2.12), and (2.13),
and !(~,b) by factoring out the relations (2.12) and
(2.13) only. Let Ep(,!!,b)= ~ (Vp(~,b)), where
~: V(~,b) ~ ~(,!!,b)is the projection, and let ~p = ~Iv .- p

Lemma 2.15: (a) ~~r(~,b) and !§r(~,b) are in eG.
(b) ~r(,!!,b) has the limit tpology from

~_1~r(~,b) c•••c ~p~r(~,b) c.••

(c) (~p~r (~,b), ~-1 ~r (~,b)) and
(~r(,!!,b), ~r(~,b)) are NDR-pairs for all

:po
(d) (illF(b,b), 1b) are NDR-pairs if (RnQ,r *t )o 0

is a NDR-pair.

Since we are re~uired to prove aimilar statements to
those of Lemma 2.15 in the further development of our theo-
ry we analyse the general problem before we prove 2.15.

de are given a space X which is a disjoint union of
spaces Xo U X1U X2 v ••• and an equivalence relation ~ on
X. Let Y = X/~ and Yn = (XO u •••v Xn)/~ ,and let
~ • (X U ••• U X ) ~ Y be the projection. Put
"ri" 0 n n
DXn = tx E Xn' There exists Y E Xi' i < n, such that y ~ xl.

'Ne suppose:
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(1) ~ satis~ies: if x, y E Xn - DXn and x ~ y then x = y.
(2) DXn is a ~inite union o~ closed subspaces Fr and we

are given continuous maps ~r: F ~ X. such that
r 1r

x ~ ~ (x) ~or all x E F and i < n ~or all r.r r r
(3) ~: DX ~ Y 1 given by ~IF = ~ 1°~ is well de~ined.n n- r n- r
Then Y is obtained ~rom Y 1 by attaching X to Y 1 byn n- n n-
the attaching maD ~: DX ~ Y 1 ' and Y is the direct~ n n-

1imit of Yo c Y1 c... •

NOYiTwe assume further:
(4) (X , DX ) are NDR-pairs ~or all nand Y ,X are in CGn non

~or all n.
Then by induction (Y ,Y 1) are NDR-pairs ~or all nn n-
[6; Lenuna8.5] and hence Y is in CG and (Y, Y ) are NDR-

n

:pairs~OI'all n [6; Theorem 9.4 and Lemma 9.2J.

Proo~ o~ Lenuna2.15: Let Xp = Cp(~,b) and ~ the equivalence
relation generated 'by (2.12) and (2.13). Hence Y = W (A,b).

p -:p-
DX is the space of all degenerate points o~ X , i ep l' ••

o~ those points (x,o) == (e,~,6)where a vertex o~ e is
labelled by an identity or a coordinate of ° has the value
e. By Lemma 2.14 two non-degenerate points cannot be rela-
ted, and hence (1) holds.
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Let F. and G. be the (closed) subspaces of DX con-
1 1 P

sisting of'those points (x,o), x = (e,l;), where the vertex
on top of the i-th link of e is labelled by an identi ty
resp. the i-th coordinate of 0 has the value e. The maps
fi: Fi -+ Xp_1 and gi: Gi -+ Xp_1 ' given by

fi(X,o) = (y,sio) and gi(x,o) = (diX,a)
iwhere y and a are the unique ~lements such that x = s Y

i t' (. i iand ° = d a, are con lnuous Slnce sand dare conti-
nuous and since x -+ y and 0 -+ a are given by projections).
f: DX -+ Y l' given by flF; = ~ 1of. and fiG. = ~ 1°g·]_) p- -'- -p- 1 1 -_p- 1

is well defined by Lemma 2.14. Hence (2) and (3) hold.
Since X is the disjoint union of products arising

p
from the different types of trees, and since (M, e) and
(~(b,b), 1b) are NDR-pairs for all generators b, (X , DX )P P
is an NDR-pair for all p [6; Lemma 7.3]. Hence (4) holds.

Observe that Xo = Yo and we will show later that
ro*to E R * Q = ~_1(b,b) c ~(b,b) will serve as identity.
Hence Lemma 2.15 follows from our general consideration.
For part (d) use [6; Lemma 7.2]. ]J

Lemma 2.16: If (x,o) ~ (y,a) under (2.11) , then
Ap(X,O) ~ Ap(y,a) under (2.11), where AP is the
function constructed in the proof of Lemma 2.14 •
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Proof: Picturing each element as a pair (e,l;) with ele-
ments of M assigned to each edge, the proof is immediate
since (2.11) commutes with the shrinking of links and the
deleting of vertices labelled by an identity. ]]

Corollary 2.11: W~r(~,b) = ~r(~,b)/- , where - is the
equivalence relation generated by (2.11) applied to
non-degenerate points only. ]]

C~rollary 2.18: W~r(~,b) has the limit topology from
W Br(a,b) = W Br(a,b)/(2.11) and is in CG.p- - -p--

Proof: W(~,b) is Hausdorff since W(~,b) is. Hence it is
in CG. If q: Y!(~, b) -+ Yl(~, b) 'is the projection then
q-1oq(~(~,b)) = Ep(~,b). The corollary now follows from
[6;Theorem 9.5]. ]]

Let (x,o) = (e,l;,o) E Cp(~,b) be a representative of an
element in W(~,b). Define composition with permutations on
the right by

(e,l;,o)o~ = (e,l;o~,o)
This defines a continuous composition with permutations
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Define the spaces of morphisms into longer sequences
by the normal form construction. We ean give an alterna-
tive description along the lines of copses. Vie have reduced
our cons~ction to trees because the trivial copses
would have made the argument somewhat unclean. Let §, =
(i1 '•••,ik) and 12.= (j1,···,jl)· Let T-1 (§,,§,)denote the
one point space of the trivial copse from §, to la· To each
link of e in (e,~)E Tp(§,,12.)assign an element of M, to
each twig an element of Q, and to each root an element of
R, thus constructing spaces Cp (§"E). In case e contains a.

trivial tree, assign to its only edge an element of R n Q.

Introduce in
V(§,,12,)= C_1(§,,12,)U Co(§,'12.)U C1(§,,£) U •••

the product relations from (2.12) and (2.13) and denote
the quotient of V(§,,12.)under these relations by ~(§,,12.).
Applying our previous con~iderations to each tree indivi-
dually we again find that each element of !(§"Q) is unique-
ly represented by a non-degenerate triple (e,~,6).Here
(e,~) is called degenerate if e contains a degenerate tree,
while the definition for 0 being degenerate is the old one.
Let

where the equivalence relation is generated as follows:
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Let 6 = 61ffi•••ffi61 such that 6i is a non-degenerate tree •
.An element of M is assigned to each edge of 6., thus giving

1.

rise to a representative (6i,unit,oi) of !(~,ji). Let
(<p . , I;.,0.) ,.. (6., uni t,°.) unde r (2.11). Then

1. 1. 1. 1. 1.

(2.19) (6,~,o1x •••x 01) ,..(<P1ffi··.ffi<Pl,(I;1EB•••ffi1;1)o~,o1x ••x0J!
Relation (2.19) can be formulated for any triple (6,1;,0) E

Cp(,§!,:Q)and as in the previous case W'(,§!,b) is obtained
from V(a,b) by factoring out the relations (2.12), (2.13),
and (2.19).

Lemma 2.20: WBr(,§!,:Q)'"W']r(g,Q)

Proof: Let x = (6 ,~ ,0 ) E V(a ,j ). Definep p p p -p p
h: W(~,Q)~ d'(~,Q) and k: W'(§,Q) ~ W(~,Q)

by h{x1,· ••,xn;f;l = {61$···[) 6n, (~1@ •••EB ~n)o~,o1 x •••xon1
k{61ED•••EI) en,~,o1 x •••X?nJ

= {( 61 'uni t,°1 ),•••,(6n'uni t,On) ;~ 1
Where { 1 denotes the equivalence class. hand k are well
defined and since they are continuous on representatives
they are continuous. They are inverse to each others. ]]

As a consequence of the lemma we find that
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is given by
[e,~,o}$ t~,~,o} = [ e ffi ~,~ ffi ~,o x o} .

$ is continuous since ~N(§;,£) is obtained by the norma 1
form construction.

Because of the normal form construction it suffices to
define composition for {e,unit,olo{~,~,ol and prove the asso-
ciativity for this case. [e,unit,olo[~,~,ol is represented
by the :pair (eo~,~) to each link, root, 01" twig of which
coming from e or ~ we assign the value of M which it had
in e or ~, a nd to each new link. of which we assign the
product in M of the elements assigned to the original twig
in e with the element assigned to the original root in ~.
Since the multiplication in M is associative, composition
factors through (2.12), (2.13), and from the intuitive
idea of a tree it is clear that it factors through (2.19).
Since the multiplication tn M and the composition of copses
are continuous and associative, the composition in Vi is
continuous and associa tive. The tri:ple consisting of the
copse of trivial trees with labelled edgea i1, ••• ,ik '

the unit permutation, and the element u = r * t assignedo 0
to each tree acts as identity. And from the intuitive idea
of copses it follows that $ is a bifunctor (this also
follows from the fact that W is obtained by the normal
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form construction and that the definition of composition
is extended to the whole of W using the normal form). Hence

Theorem 2.21: WBr is an MnTP-category in normal form. ]]

Suppose the links of (e,unit) E Tp(~,b) are indexed by
< i in the; standard inde xing. Le t

p i i
e(e,unit) = d 1o ••• 0d Pe

which determines a uni~ue element in~, namely the ~abel
i i

of the uni~ue vertex of d 1o ••• 0d Pe • Putting e(e,unit)
= 1b E ~ if e is the trivial tree from b to b, the corres-
pondence

e [e1EB•••EBe~'1; , 0 1 = [e(e1 ' uni t) EB•••EB e (e~'uni t )]0 1;

defines a continuous map from W(~,:QJ to 12(.§;,:Q). Here as
always in future [ 1 denotes the e~uivalence class of the
element in que stIon , Since' the shrinking process is basic-
ly composition in~, it is associative. Hence, since tri-
vial trees are mapped to the corresponding identities, e
is an object preserving continuous functor. By definition
it preserves sums and permutations. Hence it is an M~P-
functor. Since the definition of e is independent of r

we denote it by eB• 'de call it the standard augmentation
of 12.
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Remark 2.22: Let ], Q, ~ be an M~P- , M~P- , MkTP_
category res~ectively, and let y: ] -+ ..Q and
0: Q -+ ~ be MTP-functors. Then y and 0 determine
canonical MTP-functors Wyand Wo such that
eooWy = yO€B ' similarly for 0, and W(ooy) = WooWy •
(You construct 'Ny by applying y to the vertex labels
of each copse).

Definition 2.23: A OW-M!l,.rP-category~ is an M!\rP-category
such that the morphism apace s are OVv-complexes,
composition and sum are skeletal, and the identities
are vertices.

Theorem 2.24: If ] is a OW-M!\rP-category and r = (R,M,Q)
satisfies in addition to Axiom M1 following condi-
tions: M is a C\Y-complex, Rand Q are subcomplexes
of M, ro,to,and e are vertices, and the multiplica-
tion is skeletal. Then W12r is a CW-M!\rP-category.

Proof: Since the morphism spaces of ] are CW-complexes,
W]I' exists. Since products in CG of OW-complexes are
OW-complexes, Cp(~,b) is a CW-complex for each 1'. Hence
Y!o(~,b) r-esp , :t!_1(.<1,b)are CW-comple:ates. Tp(~,b) has the
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product cell structure from Uq [(llr~(~r,br» x (~q)]'
the vertex labels of its trees. Since the identities in
~ are vertices the degenerate points of Tp(.§.,b)form a
subcomplex. Analogously the degenerate points of MP form
a subcomplex. Hence DCp(g,b) is.a

1

Let (x,o) E DCp(g,b), ° = d s
i i jt j

Y = d 10 ••• 0 d Sx = so .••0 s 1z ,

sUbcomplef of Cp(g,b).
o 0 d 1A• • • u ,

as given by the Lemmas
2.8 and 2.10, and suppose that x is in the q-skeleton of
Tp(g,b) and ° in the r-skeleton of R x MP xQk. Then 0 is
in the r-skeleton of H x :viD-SxQk since e is a vertex and
y is in the q-skeleton of Tp-s(,§.,b)aince composition in
~ is skeletal. Since the identities of B are vertices, z
is in the q-skeleton of Tp-s-t(,§.,b), and since multipli-

j j
cation in M is skeletal, s 1o ••• os to is in the r-skeleton
of H x MP-s-tx cl~·.Hence the attaching maps of Lemma 2.15

I

are skeletal and hence :d(,§.,b)is a C'N-complex.
Composition with permutations is cellular in ~. Hence

the relation (2.11) induces a cellular identification in
lI(g,b), and therefore W(g, b) is a CW-complex. Composi tion
with permutations on the right is cellular since it is so
in V(g, b). ThereforeYIj(!,12)is a CW-complex. $ is skeletal
because VV(,§.,Q) is obtained by the normal form construction.
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Composition is skeletal since it is induced by inclusions

o~ ~actors into a nroduct. Since r * t is a vertex, the~ 0 0

identities are vertices. ]]
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§ 3 THE CONTRACTABILITY OF WBr OVER B

Define the standard section L: ~ -+ w~r of the standard
augmentation (see p.39) by

L(~) = fe,unit,ol , ~ a morphism into a generator
where (8,6) is the tree with exactly one vertex which is
labelled by ~, and to assigned to each twig and ro to the
root (see picture).

" is equivariant and since

_\_r *ti 0 0

it preserves identities.

Now suppose that r satisfies following additional
axiom:

Axiom M2: There exists a homotopy mt: M -+ M such that
mt(v1) * mt(v2) = mt(v1 * v2)

for all t E I
mo = idM and m1(v) = e for all v EM •
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Putting u = ro = to = ro * to (see p.28), mt induces
homotopies It: R ~ Rand kt: Q ~ Q given by It(X) = u*mt(x),
and kt(X) = mt(x) * u. Then 10 = id R ' ko = idQ '
11(x) = u = r0 ' and k1(y) = u = to for all x E Rand y E Q.
Furthermore It(X) * mt(v) = It(X * v) and mt(v)*kt(y)=kt(V*y)
for all t E I , V E !vI , X ER, and y E Q. Ift e:eleUtioft \1f'C

have It(X) * ktCY) - It(X * y) kt(X* y).

Note that the monoid of example 2.9 satisfies Axiom M2
with the homotopy mt(v) = t.v , V E M = I , with the ordi-
nary multiplication on the right of the equation.

Theorem 3.1: If r satisfies the Axi6ms M1 and M2, then
BB: w~r~ B is fibre homotopically trivial (see p.19

for the definition).

Proof: We have to construct equivariant fibrewise homoto-
pies Ht: LOBI W(~,b) ~ idl W(~,b).

Define ht: R x MP x Qk ~ R x MP x Qk by
ht(X,V1,···,vp'Y1'···'Yk)

= (It(x),mt(v1 ),•••,mt(vp),kt(Y1),•••,kt(Yk))
for each p and k. The ht'S induce homotopies
lit= (1 x ht): Cp(~,b) = Tp(~,b) x (R x MP x Qk) ~ Cp(~,b),
for each p ~ O. For p = -1 define lit:c_1(a,a) ~ C_1(a,a)
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1(. til ~(X)r,.1ol

by lit(X) = It(X). (Recall that 0_1 (a,a) = R n Q). The
collection or the Ht'S induces a homotopy

Ht: V(~,b) ~ V(g,b) •
lit ractors automatically through relation (2.11). Since
mt(e) = e for all t it factors through (2.12) and because
or M2 and the properties or It and kt it factors through
(2.13). Hence it induces an equivariant and fibrewise
homotopy

Ht: W(g,b) ~ W(g,b)
such that Ho = idl W(~,b) and Hi = Loel W(~,b) (by the
properties or It and kt and the conditions on mo and m1 ).]]

Lemma 3.2: Under the assumptions or Theorem 2.24,
e ] W]I'(g,1?,)and LI a(~,b) are skeletal.

Proof: e is induced by the urojection
i'

Cp(~,b) = Tp(~,b) x (R x MP x Qk) ~ Tp(.@;,b)
rollowed by the shrinking or all links. Hence since com-
position in a is skeletal, e is skeletal. Since L is in-
duced by the identity ](~,b) ~ T~(~,b), where T~(~,b) is
the subspace or T1(~,b) or all pairs of the form (e,unit),
it is skeletal. ]]

We now give some rurther examples or systems r = (R,M,Q).
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Example 3.3: Let M be the unit interval with multipli-
cation t1 * t2 = t1.t2 • Then e = 1. Take Q = R = (0)
and u = r = t = O. Then M1 is satisfied.o 0

M2 cannot be satisfied since mt(O.v) ~ mt(O).mt(v)
necessarily sine mt = 1 is required for all t E I •

Example 3.4: Let M be an arbitrary topological monoid
with an idempotent u ~. e. Put R = u * M and Q = M * u,
ro = to = u. Then this data satisfies Mi.

Example 3.5: Let K be the free tpological monoid over I,
the unit interval, (K is the reduced product space Iro in
the sense of James), i.e.

K = IO U Ii U I2 U •••/-

where the equivalence relation is given by

(t1 '•••,t . l' 0,t. ,•••I,t ) - (t1, •••,t. l' t. ,••• ,t ) •1- 1 n 1- 1 n
Hence (0) = IO is the identity in K.

Let J be the monoid obtained from K by introducing the
relation

(t1 '•••,ti-1 ,1,ti+1 '•••'\) "" (1, ti+1 '•••,tn ) ,
i.e. 1 E I acts as a right zero. In particular it is an
idempotent. Clearly J is a monoid.
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Let ~n = Ii U 12 U •••U rn and In = ~(Ln) where
~: L = ~~m Ln ~ J is the projection. J1 = L1 • Let
_In = {et ,•••,t ) E rnl t. = 0 some i, or t. = 1 some j > 1}

1 n J. J
n+1J is obtained rrom In by attaching r by an attach-n+1

ing map r :rn+1 ~ In ' and In and J are in CG (It isn+1 -
easy to veriry that the conditions (1),•••,(4) or p. 33
hold with Xp = IP and DXr = IP).

Since the attaching maps are skeletal, J is a C~i{-com-
plex.
Claim: In_1
Proof': In =

is a strong deformation retract or J •n
"r In •.All faces of In become attached

n
to In-1 with exception of the face t1 = 1. Hence the defor-

nmation retraction of r to the other races induces a deror-
mation retraction of In to In-1 •

The multiplication of K induces the monoid structure
in J. Since J is in CG and since it has an idempotent
dirrerent rrom the identity it gives rise to a system
satisfying M1 (see Example 3.4). Although J is contrac-
tible we cannot find a derormation satisfying M2, since
any such deformation must be relative to u = 1 E r1 and
to 0 E ri, the identity in J.

Nevertheless the monoid J will be of some importance
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later on. For note that ir A c X is a strong derormation
retract and Pt: X ~ X is a derorming homotopy such that
Po = idX and Pi = iOp where i:A ~ X is the inclusion and
p: X ~ A the retraction, then the correspondence

(ti,.··,tn) ~ Pt o ••• oPt
1 n

derines a continuous map or J into the space or maps from
X to X.
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§ 4 THE UNIVERSAL PROPERTY

From now on we restrict ourselves to the system r

given in Example 2.9, and denote fer thisease vmr simply
by W12. Since Rand Q. are just points in this case we
neglect them and consider 0 in (e,~,o) E Cp(~,b) simply
as a p-tuple of points in I.

Defini tion 4.1: x E vV12(~,Q) is called indecomposable if
it cannot be written as a composition x = yoz such
that y and z are not permutations. (Note that any
identity is a permutation).

Lemma 4.2:(a) [e,~,ol with (e,~,o) E Cp(~,b) non-degenerate
and 0 = (t1, •••,tp) is decomposable iff
p ~ 1 and ti = 1 for some i.

I

(b) {e,~,ol with (e,~,o) E Cp(~'~) non-degene-
rate and 0 = (t1, •••,tp) is decomposable iff
p ~ 1 and t. = 1 for some i.

1

Proof:(a) Suppose {e,~,ol is decomposable,

[e ,~,01 = {1jf1'~1 ,01 1 0 {1jf2'~2,021
with (1jfi'~i,oi)'i = 1,2 , non-degenerate and not trivial.
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Then ~1°(W2'~2,02) is not degenerate and not trivial, and
since max(1,1) = 1, 'A.p[(w1,unit,01 )o(~1(W2'~2,02))] has
aD least one link to which 1 E I is assigned. ('A.pis the
function defined in Lemma 2.14).

Conversely suppose that there is a link in e to which
1 E I has been assigned, the i-th link in the standard
indexing, say. Let W' be the subtree of e sitting on the
i-th link, and suppose that W' has q_twigs. Let q> be the tree
obtained from e by deleting W', and suppose the twigs of
q> indexed by j < i are labelled by i~-1(1 ),•••,i~-1(s) ,
then the twigs indexed by j > i are labelled by i~-1 (s+q_+1)'
•••,i~-1(k)' if ~ = (i1, ••,ik). Assign to the links of
q> and W' the values in I inherited from e. Let

w = 1~-1 (1 )ED•••$ 1~-1 (s)$ W'$ 11;-1(s+9.+1)$•••ED 1~::-1(k )
where 1b is the trivial tree with labelled edge b. Then
(q>,unit) and (w,l;) with the yalues of I assigned to their
links determine not trivia1 and not degenerate elements
(q>,unit,01) and (w,I;,02) such that

te,~,ol = ~q>,unit,011 0 ~w,~,021 •
(b) follows from (a) by applying (a) to each tree. ]]

We refer to the process of "cutting up" a tree into
two composable ones by cutting off the i-th link as
chopping the i-th link •
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Lemma 4.3: Each element x E W~(g,£)which is not a permu-
tation can be decomposed into indecomposable ele-
ments x = x O ••• OX • This decomposition is uni~ue

1 p
up to the e~uivalence generated by

( a ) xi 0 ••• 0 (xi E9 1 ) 0 (1 E9 xi +1 ) 0 ••• °xp
= x1

o ••• o(x! E9 x! i)o ••• ox1 1+ P
= Xi ° ..• ° (1 E9 xi +1 )° (xi E9 1 )° ... °xp

(b) x o ••• o(x.o~)o ••• ox1 1 P
= Xi 0 ••• oXi o~oxi+1 0 ••• oxp

= xi° ... °Xi0 (~o xi+1 )° ... °Xp
where ~ is a permutation.

Proof: Represent x by a non-degenerate triple (e,~,6)
= (e,unit,6)o~ • This representative is uni~ue up to the
relation (2.19). Chop each link. of e to which 1 E I is
assigned. This decomposes tl'"\isrepresentative into non-
degenerate elements each of which represents an indecompo-
sable element in W~. There are exactly three choices in-

volved:
(1) the order in which we chop the Lf.nks ,

(2) the choice of the ]?srticular non-degenerate represen-
tative,

(3) in the chopping process the permutation ~ can be broken
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up into a block permutation (as defined on p. 7) and
another one such that the block permutation can be
associated with the copse on the left.

Relation (a) takes care of (1), whf.Le relation (b) takes
care of (2) and (3). ]]

Let VvP12be the IvIIlrrP-subcategory of WB genera ted by
all W B(a,b), p fixed.(Note that W B is not even a cate-p- - p-
gory). Let Vp(,§,,::l2.)be the subspace of V(,§.,::l2.)of all those
elements x such that ix} = ix11o ••• 0tJSnl, INhere ixJ de-
notes the equivalence class of x, i.e. its image in WB-'
whe re each tree in xk has at most plinKs, 1 ::;::;k :;:;m ,
Observe that we do not require that x is non-degenerate.
VP(,§.,h) is closed in V(,§.,Q).

Let 'J\:P:vP -t WP,12be given by 'J\:P= 'J\: I vP , where
'J\::V -t W12 is the projection. 'Let YJ.P,12be the inverse image
of W:P12under the projection 2£.: !ill -t Ha induced by the
relation (2.19), and ~ its restriction to !Pa. ~B(,§.,b)
is obtained from llo12('§', b) by attaching C1 (,§.,b), ••• ,Cp (,§" b)
in order. Consequently EP12(,§.,b)is obtained from ~°,12(,§.,b)
by attaching VPC.§.,b) n C1(~,b), ••• ,VP(~,b) n Cq(,§.,b),•••
in order with q = 1,2,3, •••

For each type Cl of trees in T:p(~,b) and each ~ES(length.§.)
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we have a component Ma,p(~,b) = [TIk~(~k,j~)] x (~a).De-
note the subspace of degenerate points of Tp(~,b) by
Tp(~,b) and let C~(~,b) = Tp(~,b)xIP u Tp(~,b)xaIP ,where
alP denotes the boundary of the cube IP• Set
Qa,p(~,b) = Ma,p(~,b)xIP , and Q~,p(~,b) = Qa,p(~,b)nC~(~,b).
C~(~,b) is the closed subspace of Cp(~' b) consisting of
the degenerate or decomposable points.

We have characteristic maps
An,p: (Qa,p(.§;,b),Q~,p(~,b)) ~ (WP~(~,b), WP-112(~,b))

which by Lemma 2.16 induce characteristic maps
X. : (Q (a,b), Q' (a,b)) ~ (WPB(a,b), WP-1B(a,b)).a,p a,p - a,p - - - - -

Let 12 be a subcategory of V'v~, and let D c Qa,p a,p
be the subset o:fall those elements x such that ~(x) E 12.
We assume that Da,p is closed in Qu,p (and hence has the
relative topology) and that if x E 12, x = yOz, then y
and z are in Q.

Definition 4.4: Let 12 and Q be topological categories and
'Po' 'P1: ~ ~ C continuous :functors such that
'Po(A) = 'P1(A) :for all objects A in 12. Call 'Po and
'P1homotopic if there exist continuous :functors
et: 12~ Q for all tEl such that @t(A) = 'Po(A)
:for all tEl and for all objects A in B, e = 'P

- 0 0'
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@1 = cp 1 ' and @: ~(A1' A2) x I ~ Q( cp 0(A1 ),cp 0(A2))
given by @(a,t) = @t(a) is continuous. @t is called
a homotopy of funciQ.!:§..If cp 0' CP1 are MTP-functors
then @t is called a homotopy of MTP-functors if @t
is an MTP-functor for each tEl •

Lemma 4.5: Let Q be an M~P-category and 12 a subcategory
of ''NB as given above. Let 0t: 12 ~ C be a homotopy
of functors preserving objects, sums and permutations
(Q need not be an M~P-category).

(1) Given a homotopy of M~P-functors Yl-1 :WP-1~ ~ Q

and equivariant maps f : Q (a,b)xI ~ Q(~,b)a'P a,p-
for all a, b, and a such that
(t ) y~-1 I W

p-1~ ()12 = °t I WP-1 ~ ()12

(ii) fa,pl Da,p(~,b)x(t) = 0to(Xa,pl Da,p(~,b»)
\

fa,pl ~,p(~,b)x(t) = y~-1o(xa,pl Q~,p(~,b»
(iii) ~ (x,t) factors through the relationa,p

(2.11) for each tEl.
If x is a trivial tree representing the
identity of b, then f 1(x,t) = 1b•a,-

Then ther e exists a unique homotopy of M!1.rP-
functors Yl: Wp~ ~ Q extending y~-1 such that
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Y~ I viPlan D = <\ I WPla n 12. and y~o (Xa"p IQ(1,p(.§:"b))
= r I Q (a,b)x(t).(1,p (1,p-

(2) Given homotopies of' n yPo WPla ~ .QM TP-f'unctors to
f'or all p such that y~1 WP-1la p-1 and= Yt

yPI WP12 n D = 0tl WP12. n 12. then there exists at
uniQue homotopy of'M~P-f'unctors Yt: W£i ~ .Q such
that Y tl WP£i = Y~ and Y t I 12. = 0t •

Proof': Let {e1ffi ••• $ en'~'01x •••xonl E WPla(.§:"b)be indecom-
posable. Def'ine
y~{e1$···$ en,~,01x •••xonl
= [y~(e1,unit,01) $•••ffi y~(en,unit,On)]o~

with y~{ek,unit,okl = y~-1{ek,unit,okl if' (ek,unit,ok) E

VP-1 (.§:,k' bk)

= f'a"p(ek,unit,ok;t) if' (ek,unit,ok) E

Qrv (a, b) •v..,p -

This def'inition of y~ on indecomposables is forced
upon us by the condition that y~ is an MnTP-functor satis-
f'ying the extension conditions of the lemma. Because of (i),
(ii), and (iii) y~ is well defined and compatible with 0.
It is continuous since sum and composition in C are con-
tinuous. Extend yP to the whole of ViPB by

t
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Y~(X1o •••oxn) = Yl(x1 )o•••oy~(xn)
where the xi's are indecomposables. By definition Y~ pre-
serves sums and permutations. Since indecomposables in ~
are indecomposable s in Wp~ YPt extends o. Since the f 'sa,p
are e~uivariant, factor through (2.11), and preserve iden-
tities for p = -1, y~ is a well defined functor by Lemma 4.3.
Again this extension is forced upon us to make Yl into a
functor.

Y~ is continuous since the maps from [VP(~'Q)nCq(~'Q)]xI
to Q which induce Y~ are defined by projecting closed
subspaces of VP(~,h)n Cn(~'Q)to some product of such

-a,

spaces of lower filtration q (factoring out vertices la-
belled by identities and links to which 1 E I has been
assigned) and folIo-wing by product maps involving f anda,p
Yl-1o~P • Different positions of identities in the copses
and different assignments of elements 1 E I require diffe-

I

rent projections, but since fa,p extends y~-10Xa,pIQa,p(~,b)
they coincide on their intersections.

Since Wa has the limit topology from the WPa's the
second part is immediate. ]]

Remark: By taking the functor homotopies to be the trivial
ones we obtain the same results for M~P-functors
(delete t and I wherever they occur).



- 57 -

Theorem 4.6 (The universal property):
Given a commutative diagram

D

~-~
WB G

e 1- Y !~
-----+Q

of M~P-categories ~, Q, ~ and a subcategory ~ of
W~, M~P-functors Y,Il, the standard aUg1iien:ta:thm,e:;:eB,
the inclusion functor p, and a homotopy of functors
0t preserving objects, sums, and permutations for
each tEl.
Assume:
(1) If x E Q is a composition in W~, x = yoz, then

y and z are in Q.
Da (a,b) is closed in Qa (a,b) (see p 53), and,p - ,p -
each connected component of D (a,b) containinga,p -
a point x ¢ ~,p(~,b) is open and closed in

Qa,p(.!a,b)
(2) For each generator b there exists a closed

neighbourhood Zb of 1b in ~(b,b) such that
(Zb' 1b U fr Zb) is a NDR-pair (fr = frontier),
and Y(Zb) = 1b E Q(b,b)

(3) ~ is fibre homotopically trivial.



- 58 -

Then
11. WB ~ G suchI: There exists an M TP-f'unctor Y .o·

that !-Loy= "(oc;and yOp= ° .
0 0 0

II: Given any two M~P-functors v
0' v1 : Vi12 ~ Q:. such

that !-L°Yo= !-L°Y1= "(oc;and Yoop = 00' y10p = °1'
then there exists a homotopy~of M~P-functors
between Yo and Y1 extending 0t' ctkd$#J,.l:ha,j )<o))~=roe.

For the proof of Theorem 4.6 another filtration (really
double filtration, and we induct over the sum of both) of
vV12 seems to be more sui table than the one used in Lemma 4.5.

Co(b,b) ~ B(b,b), and we can assume wlog that Zb C

Du,o(b,b) if the latter is not emptyp since Du,o(b,b) is
open and closed.

Let Yb = Zb - (1b U fr Zb). Let FpVB(~,£) be the sub-
space of V12(~,£) of those ele~ents x such that
{xl = {x1lo •••o{xCll and {xil is a sum {Y1l $••• $ {YJi:l of

ue«.morphisms into a generator for each i such that {yllYlL:3in
Q or Yl has s links and t vertices labelled by elements
in the Yb'S with s+t ~ p. FpV12(~,£) is closed in ~(~,£).
FpW12 = ?C(FpV12) is an MnTP-subcategory of W12 containing D
since it is closed under composition and sum and since it
contains all permutations. We denote the M~P-subcategoi'Y
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of W12 generated by 12. and the identities by F_1W12.
Let D- be the union of all those connected componentsa,p

of D n(.§"b)0., .I:"
which contain an element x E Q' (.§"b). Then

a,p
by assumpti on (1) D~,p (.§"b) is a product D~,p (L,b )xIP •
Let Pa,P,k(.§"b) be the subspace of Ma,p(.§"b) - D~,p(~,b)
of all those pairs (e,~)such that at least k - P vertices
of e are labelled by elements in the Zb's and at most k - P
ones by elements in the (Y~1jS.Denote the closed subspace
of those points of P k(.§"b) with less than k-p verticesa,p,
labelled by elements in the Yb's by p' k(~,b). Note thata,p,
for k=O, p' (a b) = d unless p=-1 and _a = b, when ita,p,o -' )U

contains the representative of 1b•
Let R k(~,b) = P k(~,b)xIP anda,p, a,p,

R' k(~,b) cosists exactly of those points of R k(a,b)a,p, a,p, -
\

that are equivalemt to a point in Pk-1 V12(~, b). VIe have
characteristic maps x = X I Ra,p,k a,p a,p,k
X T1 k: (Ra.n k(~,b), Ra' u k(~,b») -+ (Fk>1B(a,b), Fk_1W12(~,b)o.,.t!, '.1:'" .,~, - -

In a completely analogous way to Lemma L~.5 we can prove

Lemma 4.1: Let .Q be an M~P-category, Q. a subcategory of
WB satisfying the requirements of Theorem 4.6, and
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at: £ ~ Q a homoto~y of functors preserving objects
sums and permutations. Then
(1) 0t determines a unique M~P-functor y~1 :F_1W~ ~ Q

extending Qt.
(2) Given a homotopy of MnTP-functors yk-1 :F WB ~ C

t k-1 - -
k ~ 0, and eg_uivariant maps fa k:Ra k(,§;,b)xI,D, ,D,
~ Q(,§;,b)for all a,p,k,,§;,band such that
f klR' k(~,b)x(t) = y~-1oXa . klR' (a b)a,p, a,Ll",Ll, a n k _,,.);',
fa,P,k(x,t) factors through relation (2.11) for

each t ,

Then there exists a unique homotopy of MnTP_
f tIt F "I'E C t dO k-1unc ors y t: kl'l_~ _ ex en ang y t and the maps

f k 'a,p,
(3) Given a sequence of homotopies of M~P-functors

k F 1~rE C h t·,t k I '''E k-1 ry t: k/v_ ~ _ sue "" y t Fk_1 Ji_ = Yt or all
k and y~1 extends at' then there exists a unique
nM TP-functor Yt: W]a ~ Q extending 0t and such

tho.t Y t I FkVia == Y~ • ]]

Proof of Theorem 4.6: 'Ne are going to prove the statements
I and II simultaneously.

J>.. nod t ° v-1 ( -1 ). F 'lIE GVo r-e sp , t e e rnu.ne 0 r-e sp , Vt • _1'1_ ~ _.
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Inductively suppose that we have defined
,,~-1 (z-esp , y~-1): Fk-1 W12 -+ g; such that ).L0,,~-1,().Lov~-1 )

I k-1 ( k-1) IF'" i ( i) f 1= "(oe Fk-1 W12 and Vo ' Vt iVI12 = "0' Vt or ali < k ,

We have to define maps fa,p,k: Ra,P,k(§;,b) -+ g;(§;,b)

(resp. RN k(§;,b)xI -+ Q(§;,b» satisfying the requirements'"",p,
of Lemma 4.7 for t=O (resp. for all tEl), and such that
).LOf = ,,(oeox • The Theorem then follows froma,p,k a,p,k
Lemma 4.7 (2) and (3).

Since we work with fixed CL, p, k, §;, and b during the
construction of any particular map f we denotea,p,k
R k(§;,b), P k(a,b), g;(§;,b),f k' and x k simplyCL,p, a.,p, - a,p, CL,p,
by R, P, G, f, and x.

Let 0 be the equivariant section of ).Land H: oO)J.IG~ idG
the equivariant fibrewise homotopy given by assumption (3).
Consider IP as a cone on alP, i.e. IP = t(d,u)1 d E alP,
u E I, (d1,O) - (d2,O) for d1; d2 E oIP1. Identify alP c IP

with alP xi.
nCase I: The homotopy Ft: P x aI~ x I -+ G given by

Ft(x,d,u) = H(v~-1ox(X,d), u) for P > ° factors through
the cone point since Ft(x,d,O) = oo~o,,~-1ox(X,d)
= oo,,(oeox(x,d) which is independent of d E alP. Hence Ft
induces a map

F: R = P x IP -+ G
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such that FI P x alP = yk-1oxl p x ~IP. Since H is an
o

e~uivariant fibre wise homotopy, F is equivariant and
~oF(x,d,u) is independent of u. Hence
~oF(x,d,u) = ~oF(x,d,O) = ~oaoyoeox(x,d) = yOeox(x,d).
Suppose (x',d') - (x,d) under (2.11), then F'(x,d,u)
= F'(x',d',u). Hence F(x,d,u) = F(x',d',u) and since each
permutation of coordinates of (d,u), now considered as a
p-tuple, is induced by the same permutation of the p-tuple
d E alP, F factors through the relation (2.11).
For p=O define F: R ~ G by F(x) = aoyoeox(x).

Case II: Define F': P x (aIPxI U IPxaI) x I ~ G by
F'(x,u,t) = H(g(x,u), t)

where g(x,u) = YtOx(x,u')
= Y ox(x, u' )e

if u = (u',t) E aIPxI
if u = (u',e) E IPxaI, e=O,1

Using the same argument as above we obtain a map
F: R x I ~ G

which factors through the relation (2.11) and which satis-
fies: FI P x alP x I = yk-1oxl P x alP x It

FI P x lP x e y oxl P x IPe
~oF(r,t) = yoeox(r) for all (r,t) E R x I

If pi ....rlJ r serves cU I (~".IJ) ~ClU(.se ~e"t. 'Ill::. '1>. ()!~
P is the union of the closed product spaces of

=

M (a,b) - D~ n(a,b) with exactly k-p factors being somea,p - '""ot:' -

of the neighbourhoods Zb and the other factors being
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B(~k,bk) if ~k ~ bk or the closure of ~(b,b) - Zb. The
intersection of two summands of P is by definition in p' •

Af'ter reshuffling the factors each summand is of the form
Zb x Zb x •••x Zb x X. We denote it by Z x X. Let Y c Z

1 2 k-p
be the closed subspace of those points with at least one
coordinate in some (1b U fr Zb). (Z,y) is a NDR-pair by
assumption (2) and [6; Lemma 7.3]. Note that(Z x X)o p'= YxX.
k-1 ( k-1 ) . pYo resp. Yt determlne l' on a subspace of ZxXxI
(resp. ZxXxIPxI) and to prove the theorem it now suffices
to extend l' over each individual summand ZxXxIP of R such
that the required identities hold.
Case I: By induction l' is determined on R' and hence on

ZxXxaIP u YxXxIP in any reshuffled summand ZxXxIP•
Case II: l' is determined on R'xI u RxaI and hence on

ZxXxaIP U YxXxIPxI U ZxXxIPxaI = ZxXxaIP+1 U YxXxIP+1

The maps F (we delete the shuffling maps) satisfy for
(z,x) E Z x X

resp.
F Iz x X x aIP = 1'1 Z x X x aIP

FI Z x X x aIP+1 = 1'1 Z x X x aIP+1

since aIP (resp. aIP+1) are identified with the level 1 in
the cone sIP (re sp• IP+1 ).

We restrict ourselves to case I for the rest of the
proof since case II differs from it only in the number of
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cube coordinates. Otherwise the proofs are from now on the
same.

K(y,x,s,t) == H(f(y,x,s), t) with (y,x,s) E YxXxIP
defines a homotopy K: YxXxIPxI ~ G such that

K:

such that K(y,x,s,1) = f(y,x,s) , K(y,x,s,O) == oo~of(y,x,s)
= ooyo80'X(Y,x,s) which is independent of s, Since f factors
trough (2.11) by induction ~Tpothesis and since f and H
are equivariant, K is equivariant, factors through (2.11),
and ~oK(y,x,s,t) is independent of't. K induces a homoto-
py

L: Y x X x IP x I ~ G
such that L: FI YxXxIP ~ fl YxXxIP reI YxXxoIP by defini-
tion of F (see picture next page). L is equivariant and
factors through (2.11) since K does. Furthermore
~OL(y,x, s,t) = ~oL(y,x, s,1) == ~of'(y,x,s).
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Define a map
N: YxXx1px1 u ZxXxo1px1 U ZxXx1pxO ~ G

by- NI YxXx1Px1 = L
NI ZxXxo1px1 = constant on fl ZxXxo1p

NI ZxXx1pxO = FI ZxXx1p
Then ~oN(z,x,s,t) = y080X(Z,X,s) which is independent of
s E 11'.N is equivariant and factors through (2.11) since
F, f, andL do.

(Zx1p, Yx1p U Zxo11')is a NDR-pair [6; Lemma 7.3]. Hence
[6; Theorem 7.1] there exists a retraction
r': Zx1px1 ~ Yx1px1 u Zxo1px1 u Zx1pxO

which extends to a retraction

given by r(z,x,s,t) = (z',x,s',t') where (z',s',t')=r'(z,s,t)
(lIev(, we a.c~lJqll~ r-e?/'/IYe, l.LaJ y-l (-6 sfJlf(Uteir,c ,'f.( 1:,£ f' c<J()rol,'IA.~ ie~ of 1", Ltll<l4-tl, 7.18

r· 1,2,1~ g,:s He>i.5 .sLows l4( jX,"sJekc..e. cl sucL. D(.1.t ... ') )
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Define fl ZxXxIP = Norl ZxXxIPx1. Then f extends
fl YxXxIP u ZxXxoIP and
!J.0f(z,x,s)= !J.°Nor(z,x,s,1) = !J.°N(z',x,s' ,1') with
(z',s',1 ') = r' (z,s,1 ). Hence

!J.0f(z,x,s)= y080X(Z',x,s')
which is independent of s' E IP• 80X(Z,X,s) is an expression
in the coordinates of z and x involving composition and
sum in]2. 80X(Z',x,s') can be obtained from this expression
by substituting the coordinates of Z by the corresponding
ones of z', since only one type of tree is involved. Each
coordinate of Z and its corresponding one of z' are in the
same neighbourhood Zb. Since y is an M~P-functor it pre-
serves the expressions for 80X(Z,X,s) and 80X(Z',x,s'),
and since y(Zb) = 1b we obtain y08oX(Z,X,s) = y080X(Z',x,s').
Hence !J.0f(z,x,s)= y080X(Z,X,s).

Since the retraction r effects vertices of the trees
involvea which lie in some ~(b,b) on which the trivial
permutation group operates and no others, N°r is equiva-
riant and factors through (2.11). Hence so does f. ]]

Lemma 4.8: Suppose that in addition to the assumptions of
Theorem 4.6 we ar-e given homotopies

for some ~, b such that
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't'.§..,b(X,t) = 0t(LBx) if I.BXE Q (see p.43 for the

def'ini tion of I.B)

't'b, b (1b,t) = 1b if 't'b, b is defined I f~r a./I i~J

~0't' b(x,t) = y(x) whenever it is defined.
2;"

Then there exists a homotopy of M~P-functors

Yt: Wl1-+ G such that ytOP = 0t ' ~oYt = yOe: , and

ytOLB(x) = 't',§.,b(x,t) for x E ~(,§.,b);f r,S,b is d4i.,eJ

Proof: 'I'he -r de t.ermd.ne some of' the f' k's for D=O,§.,b a,p,
and k=O,1 compatibly with the boundary conditions. The

Lemma now follows f'rom Theopem 4.6. ]]

Theorem 4 •.2,: Let Q be a subcategory of' W,Jasatisfying 4.6 (1),

Q an M~p-c&tegory, ~: Q -+ ,Jaa fibre homotopically

trivial M~p-functor, and et: Q -+ Q a homotopy of

functorspre~erving objects SUTI1S and permutations

and such that ~o(\ = 8Bop where p: Q -+ 'iv'l1 is the

inclusi0n functor. Suppose the identities of' Bare

Ls o'l.ated , Then there exists a homotopy of' M~P-f'unc-

tors Yt:'J,Ja -+ Q. such that ytOP = 0t and IJ.°Yt = GB •

J>o q~J~ CO"'f/"",j;b1t w,',t.. dore~p ~ a..kJ. sa.Jis.f~;"d ;.0".: = la I [-:0)1 NRa be ~vel( ilf C1.~va.l(ce.

Proof': Since 1b E ,Ja(b,b) is isolated, (](b,b), 1b) is a

NDR-paip. Hence W;§exists. Apply Theorem L]..6 with Zb = (1b),

y = i dB ' and B = .Q ]]
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Lemma 1+.10: Given any Ivi~P-category ~ (in normal form),
then there exists an II~P-category !a- (in normal
form) such that
(1) Clr(b,b), 1b) is aNDR-pair f'or- all generators b.
(2) There exists a fibre homotopically trivial MnTP_

functor 8 I • B- ~~.B'
(3) Each 1b E I?-Cb,b) has

such that (Zb' 1b u fr
(4) 8' (Z ) = 1b E a(b,b) .B b

a closed neighbourhood Zb
Zb) is a NDR-pair.

Proof: Let lr·Cb,b) = ~(b,b) u II"" where 12Cb,b) :3 1b ""1 E I,

and 12-C,§i,b)= aC,§i,b)for ,§i~ b. Composition with permuta-
tions on the right is the one in a. .:sC(,§i,:£)is now obtained'
by the normal form construction. Define composition as
follows: Let ~ be a morphism into a generator,~ not con-
tained in one of ~he attached whiskers, let oB and $B be
the composition and sum in a. Then

~OCa1$···$ak) = ~oBCa1 $B···$Bak)
where al.'is a morphism into a generator, a! = a. if a. isl. l. l.
not contained in one of the attached whiskers, and ai = 1b,

I c B-Cb,b).
For ~ = t E I c B-(b,b) define
~Oa = ~ if a is not contained in one of the attached

whiskers,
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and ~oa = max(t,u) if a = u E I c ~-(b,b) •

The composition is well defined, continuous and asso-

ciative. 0 E I serves as identity. By construction $ is a

bifunctor. Hence ~- is an M~P~category.

Clearly (1) is satisfied and with Zb = I c B-(b,b)

(3) holds. Define

s': B'" -+ B
B - -

by siCa) = a if is not contained in an attached whisker,

and 8~(a) = 1b if a E I c ]"'(b,b). Extend 8E to the whole

of B- using its normal form (this is possible sinceeB is

equivariant where it is defined already).

The section ~~: ~ -+ ] ... is given by L~(a) = a. Then

L~Os~I]-(~,b) ~ idl~-(~,b) equivariantly and fibrewise by

shrinking the whiskers to 1 E I, and 8~OL~I](~,b) = idIB(~,b)

Condition (4)follows from the definition of sE • ]]

Remark 4.11: Of course, it would have sufficed to attach

a whisker only to those morphism spaces ](b,b) for

which 1b is not isolated to obtain a category with

the properties required in Lemma 4.10.

Notation: Denote 8~08B- and LB-OL~ by sE resp. ~E ' where
sB-and LB-are the standard augmentation and standard
section of ]-.
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Theorem 4.12: Given any M~P-category (resp. MnT-category)
~, then the triple (W]"', e:s, I-:B) satis:fy the condi-
tions (U1) and (U2) o:fp. 18 •

Proo:f: eB is :fibre homotopically trivial with a section
Hence (U1) holds. (U2) :follows :from Theorem 4.6 withI. ~.

E =- ]"',Q = ], and y = eE • ]]

Theorem 4.13: Let ~ be an M~P-category such tha t WE
exists. Then there exists an M~P-:functor 0: WE -4 W~ ...
such that eE = e:soo i:f:f~ has isolated identities.

Proo:f: I:f~ has isolated identities then 0 exists by
Theorem L~.9 •

Recall that I.E preserves identities. eB...oo°I.E de:fines a
section of eE, which preserves identities. Since
eEl ~"'(b,b) is given by the identity outside the attached
whisker this section can only be continuous i:f the identity
1b in ~(b,b) is isolated. ]]
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Remark 4.14: (1) In the case that ~ has isolated identities
it is easy to define 0: W~ -+ W~ ...with-
out referring to Theorem 4.9 by construct-
ing a functor ~ -+ ~- and using Remark 2.22

(2) A similar theorem can be stated for the
category obtained from B by attaching a
whisker to those morphism spaces ~(b,b)
only for which 1b is not isolated.

(3) Theorem 4.13 shows that Theorem 4.6 is
false without some condition like 4.6 (2).

Lemma 4.15:Let G be a discrete topological group, X and Y
G-spaces with a free G-action, Y a CW-complex and
assume that G acts freely on the cells of Y (i.e. if
g I 1, g E G, then x and gx always lie in different
cells). Let'p: X -+ Y be an equivariant map and
s: Y -+ X a section (not necessarily equivariant) of
p such that there exists a fibrewise homotopy
H: idX Cot. sO.p • 'rhen there exists an eg_uivariant sec-
tion 't': Y it X and an equivariant homotopy T: idX c: 't"°P
which is fibrewise.

Proof: We construct a "regular" neighbourhood Vn of the
n-skeleton yn of Y which is invariant under the action of
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oG and such that the part Q of Vn over an open n-cell e
odoes not intersect gQ. over ge if g -J 1, g E G. We then con-

struct a map u: Vn ~ I which is 1 outside Vn-1'0 on r,
and satisfies u(gx) = u(x). The section is then constructed
by induction over the skeletons of Y. Assume we have con-
structed 't"1: V ~ X. We extend it to V using s onn- n-1 n
those points x with u(x) = 1 and H('t"n_1(x), u(x)) on the
others. The equivariant deformation is constructed analo-
gously. Now the details:

Let Z = Y/G and ~: Y ~ Z the projection. Since the
action of G on Y is free on cells Z is a C1iV'-complex,such
that ~ is cellular. Consider each cell en as cone over
its boundary, en = {(x,i) E enx[0,2]I(x1,2)~ (x2,2), x1,x2Eenl
Let V be any subset of Z. He are going to construct a
"regular" neighbourhood H(V) of V. Let zg be the g-skeleton
of Z. Define

u (V) = Zg n V for q ~ pp,g
Define U (V) c zg for q> p inductively byp,g

U o Xe g = X r ('V -1 U n eCl) xp, g a ~ ,.. p , g-1 a
where X is the characteristic map. eg a

OJ

[0,1]1
.gg-cell and eo., its

boundary. Let

oLet e be an n-cell of Z. Any two lifts of N(e), where
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o
e denotes the interior of e, cannot intersect each others

o
for the two lifts of e itself are disjoint since the action

of G is free on cells.

Claim: N(UpVp) = Up N(Vp)

This follows immediately from the definition.

Claim: N(V n W) = N(V) n N(W)
He first prove that U key) Cl U (w) = U (V n w) for p~ g.p, g,k g,k

For k ~ p: U k (V) n U (Vi) = V n Zk n "'IV n Zkp, q,k
= U k(V n ''IV)g,
= U key) n 1;1g,

For p < k ~ q we get inductively:

UP,k(V)nUg,k(w)nxe~ = x[(X-1Up,k_1 (v)ne~)x[ 0,1 Jlnwnxe~

= x[ (X-1Up,k_1 (v)ne~)x[O,1 ]nx-1wne~}

= X[ (X-1 (Up,k_1 (v)nw)ne~)x[O,1]}

= X{(x-1 (Uq,k_1 (vnw))ne~)x[O,1]}

= U k(VnW)nxekg, CL
Again by induction we obtain for k > q:

U k(v)nu k(W)nXekp, g, CL

=X {{X-1Up,k_1 (v)ne~)x[0,1 ]}nxt(x-1Uq,k_1 (w)ne~)x[0,1])

= X{(X-1(Up,k_1 (v)nUg,k_1 (w) )ne~)x[ 0,1 Jl

=x{(x-1Ug,k_1(vnw)ne~)x[0'1]}

= U k(vnw)nxek.q, CL
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Now N(V)nN(W)

k
U kCZ ,p,

U cZl'1,1

and

= Up,k up,k(VnW)
= N(VnVJ) •

Hence in particular N(~~)n N(~~) = ¢ for a t~
Vie furthermore define a set M(Zn) for each n.

M(Zn) = U ....1 M (zn), where M (zn) = M(Zn)()Z'1is defined'1""n+ Cl '1
inductively by Mn+1(Zn) = zn, and given a k-cell e~, k> n+1,
then

Mk(Zn)nxe~ = x{(X-1~'1c_1(Zn)ne~)x[o,1n .
The difference between M(Zn) and N(Zn) is that the "collar"
part over the points of N(Zn) which lie in the (n+1)-ske-
leton has been omitted in M(Zn). It follows from the
construction that N(Zn) = M(Zn) u U N(~n).a a,

Let p~ = p-1(~-1(N(Zn») and ~ = p-1(yn), let
pyll= ~-1(N(Zn». Xn and PXn are in CG since they are
closed. We are going to define e'1uivariant sections
~ " pyn ~ PXn of plpxn and e'1uivariant fibrewise homotopiesn"

Tn: idpXn ~ ~no(plpxn).

For each eO E ZO choose a lift l(N(ea,°» in y. Define0,



- 75 -

~Oll(N(e~)) = sl~(N(e~»
Since N(e~) n N(e~) = ¢ for 0, I !3 this is well defined. Now

oextend it to the whole of PY by
-r (x ) = -r (x').l; l;EGo 0

(wewrite the action of G on the right), where x = x'.l; ,

x' E some 0,. Since the action is free this is
well defined. Define

T (x,t) = H(x',t).l;o
if x = x'.l; and p(x') E 1(N(e~)), some 0,. To is well defined
eg_uivariant and fibrewise. Since I' is an eq_uivariantmap
~o is a section, and To: i~XO ~ ~oo(plpxo).

SUDpose inductively that ~n-1: pyn-1 ~ pXn~ and
Tn_1: idpXn-1 ~.~n-10 (IJ Ipr-1) have been defined. Define
a map u: N(Zn-1) ~ I as t'o'l Lows ; Let (x,t) E x(enx[O,1])
c u 1 (Zn-1). Set u(x,t) = t. Extend u inductively byn- ,n
u(y,t) = u(y) forl(y,t)EX{(x-1Un_1,k_1 (Zn-1)ne~)x[o,1]}
c U 1 k(Zn-1), k > n • u is well defined and continuous.n- ,
Extend u to u: N(Zn) ~ I by u(x) = 1 for x E N(Zn) _ N(Zn-1).

( ) ( n-1)Since u x = 1 for x E frNCZl1)NZ this is well defined.
Notice that u(x) = 0 iff'x E M(Zl1-1).For each n-cell
e~E Zn choose a lift l(N(e~). Define

t sex) U07C(X)= 1
~n(x) =

H(~n_1(x), U07C(X» ° ~ uo7C(X)< 1
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X E I(:N(e~)). 't'n is well defined and continuous since it

is independent of a on possible intersections

I(N(e~)) () I(N(e~)). Sinae furthermore 7t-1M(Zn-i )()UCl7t-iN(~~)

= ¢,any two lifts of N(~n) are disjoint, the action of G'

is free on cells, and 't'nl7t-iM(Zn-1 )()UClI(N(e~))

= 't' ...17t-1M(Zn-1)nU I(N(en)) we can extend 't'n over then-'I Cl a

whole of pyll by

't'n(x) = 't'n(x').~

eonif x=x'.~ , x' E 1 N(eCl)) , some Cl, ~ E G.
Hand Tn_i define a product homotopy which is fibrewise

\~
._----~------.sr'"'0p = SOpo -r 10p

H('t'n_i0P(x),ti) n-

H(Tn_1
(x,t2),t1) ,

H(x.t )
id

Hence there exists a homotopy K 1: PXn-1xlxI r-in- ~ P

which is fibrewise, such that

Kn_1(x, 0, t2) = Tn_1(x, t2)

Kn_1(x,i ,t2) = H(x,t2)

Kn_1(x, t1 ' 0 ) = x

Kn_1ex, t1 ,1 ) = He't'n_1op(x), t1 ) •
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Define

T (x, t) =n
H(x,t)
Kn_1(X, uo~op(x), t)

uo~op(x) = 1
o ~ uo~op(x) < 1

X E p-11(N(e~)). Then Tn is well defined, continuous, and
fibrewise, and since T (x,t) = T 1 (x,t) for XE p-10~-1M(Zn-1)

n n-

we can extend Tn over the whole of PXnxI by

T (x' .E;, t) = T (x', t).E;n n
for x' E p-107l:-11(N(~n) , some a, , E; E G. Then

Cl

Tn: idpXn e! 'tnopl PXn equivariantly and fibrewise.
Finally define 't:Y ~ X and T: XxI ~ X by -r I yn = -r I ynn

and TI XnxI = Tnl XnxI. Claerly 't is a continuous equiva-
riant section of p. Since we work in CG, T is continuous if
it is continuous on each compact subset of'XxI. Each com-
pact subset of XxI is contained in a product CxI where C
is a compact subset of'X. D(C) is compact and.hence it is
contained in some r. Hence CxI is contained in XnxI on
which T is continuous. ]]

Proposition 4.16: Given a C'.7-M~P-category 12 such that
composition with permutatmons is free on the cells
of the morphism spaces of 12. Let Q be an M~P-cate-
gory and y:Q ~ 12 an M~P-functor such that there
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exist map s s: B(a,b) ~ Q(g" b) satisfying
yosl a(g"b) = idB(~,b) and fibrewise homotopies
H: soyl Q(~,b) ~ idC(a b). Then y is fibre homotopi-- -'
cally trivial.

Proof: Put Y = U~ES(k)&( a,b) and X = U~ES(k)Q(~,b) for
each sequence ~ = (i1,•••,ik). Now apply Lemma 4.15 to X
and Y. We only have to make sure that the constructed new
maps and homotopies map the morphism spaces of a resp. Q

into the corresponding morphism spaces of C. Since sand
H respect the morphism spaces a quick investigation of the
proof of Lemma 4.15 shows that ~ and T do too. ]]
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CHAPTER III: STRUCTURE MAPS
§5 GENERALIZED HOMOTOPY B-MAPS

Suppose the category WE of operators acts on the spaces
X and Y, we want to give an appropriate definition of
morphism between them. In fact there are various possibil-
itieso

Definition 5.1: Let li be an M1TP (resp M1T)-category and
(X, ~), (Y, ~) be B-spaces, i.e. spaces in CG and
we are given actions ~: B ~ End X and ~: B ~ End Yo
A map f: X ~ Y is called a B-homomorphism if for each
x E B(~, ~), where ~ is the unique sequence of length
k, ~o c.(x ) = ~(x) 0 :Fl.

We are more interested. in a definition in which f merely
commutes with the action up to coherent homotopies. This is

\

more complicated and appears to be new.
Let ~ be the "linear" category wi th objects 0, •••, n

and one morphism i ~ j whenever i ~ jo

Definition 502: Suppose (X, y) and (Y, 0) are WB -spaces
A map f: X ~ Y is a ~eneralized homotopy B-map if
we are given an action p: WeB * L1) ~ End (X, Y) that
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induces the given WB-actions on X and Y and the given
map f: X ~ Y (for the definition of B * Li see p.15)

Later on we give a more precise definition of a general-
ized homotopy ~-mapo

If we attempt to construct the category of ~-spaces
and geneealized homotopy ~-maps we find that it is not
possible. The composite of two generalized homotopy B -maps
is not defined, except up to a homotopy, which is itself
defined onillyup to a homotopy, which is •••••• Instead
we form a semisimplicial complex GMap ~, whose n-simplexeS
are actions of WeB * L ) on (n + i)-tuples of spaces.- n

Lemma 5.3: Let B, C be M1TP-categories in normal form and
y: B ~ an M1TP-functoro Let D and ! be topological
categories with objects 0, •••, n and 0, .0., m

\

respectively, and 0: g ~ ! a continuous functor. Then
there exists a unique MTP-fUnctor

v = y * 0: B * D ~ C * F- - - -
such that the following diagram commutes for all
p, 0 ~ p ~ n

L,
B -=p~_~

L·O(p)
e ------+

> ~ jyD - !2.

A
10

Q * ! F-
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(For ~ and A see p.16)
1>

Proof: On object generators v is given by V(i) = o(i).
Adopting the intuitive descriptinn of p.16 the morphisms

in ~ * ~ from ~ = (i1, •••, ik) to b are given by a

pair «(3; b) 0 f where (3 E B(k., 1), 0£. is the unique
sequence of length k in ~) and f is a k-foilidsum f1E9••• E9flt
of morphisms f E D(i ,b). Defineq - q

v[(I3; b) 0 f] = (y(I3); o(b)) 0 o(f)

equivariant. Hence we can extena it to the whole of ~ * ~
using the normal form. This automatically makes v commute

with sums and permutations. Since y and 0 are functors,

v preserves identities, and it follows immediately from the

definition that v preserves compositions. Hence it is an

MTP-functoro

v(l3, b) = v 0 Lb(l3)

(y«(3); O(b)) = ~o(b) 0 y(l3)

Hence v 0 ~b((3) = ~0 (b) 0 Y ( 13) •

v(f) = v 0 A(f) f E ~(i, j)

= A 0 o(f)
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Hence v[(~; b) 0 f] = v(~; b) 0 v(f)

= (y(~); o(b)) 0 O(f)
from which the commutativity of the diagram respectively

the uniqueness of v follow. ]]

Each monotonically increasing map f: (0, •••, n)~(O, ••,m)

gives rise to a unique functor !: Ln ~ Lm such that

!(i) = fi for all objects i E Ln. Since f is monotonically

increasing, !(i, j) = (fi, fj) is defined, where i ~ j and

(i, j): i ~ j is the unique map from i to j.

Let fi: (0, ..., n - 1) ~ (0, •••, n ) and gi: (0, •••,n+1)

~ (0, ..., n) i = 0, •••, n, be given by

fi(j) { j o ~ j < i
=

j + 1 i ~ j ~ n

gi(j) { j - 1 i < j ~ n + 1
=

j 0 ~ j ~ i

i.e. i E (0, ..., n) is not in the image of fi and its

counter image under i consists of two pointsg

By Lemma 5.3 we have induced functors
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ai 1 :'; fi: B >~ L ~ J1 '" L= ','
n-i n

i
1 *

i . B * L B :\, L.§. = £. ~. n+i n
sa tisf'ying f'c.l Low Lng iden ti ties:

ai 0 j-1 Q_j 0 g_ig_ =
j-1 0 i si 0 .~js .§. =
j

0 .'2.i Qi 0 j-1,s, = .§.

i < j

i < j

i < j

i = j, j + 1= 1

= Qi -1 0 .§.j i > j + 1

By Remar-k 2.22 the same identities hold f'cr H(£i) = ai

and T,I(.§.i) = si

Let
ai: End(X , ••• , i.,..., X ) ~ End(X , ••• , X ),o 1 non

where 11"," means "delete", be the inclusion functor and

i_, d(Xs : hl1 , ••• ,o x . l' X., X., X. 1' ••• ' Xn) ~]hd (X , ••• , Xn )1- 1 1 1+ 0
be the J}rojection functor induced by the iden ti ty on the

mapping spaces. They are MTP-f'unctors.. Let
I

p: WeB * L ) ~ End(X , ••• , X )- non

be an Mn+iTP-f'unctor. Then P induces unique f'unctors Pi

and P2 such that the f'ollowing diagrams comrnute:
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i
WeB * L 1) s W(12.* Ln)- n+

lplp1 si
End(Xo, Xi' Xi' ~) End(Xo' •••, Xn)..., o •• ,

oi
WeB * Ln_1) w(12. * L )

1P2 lp
n

oi,.
End(Xo, •••, Xi' ... , ~) End(Xo' ..., ~)

Pi and P2 are understood to be the actions P 0 si and

P 0 oi.

Hence GMap12.indeed is a semi simplicial complex, the

n-simplexes of which are the actions of WeB * L ) on- n

(n + i)-tuples of spaces and the face and degeneracy

operators are induced by composition with oi respectively is 0

Definition 5.2*: Let (X, y) and (Y, 0) be 'f@-spaces. A pair

(f, p), where f: X ~ Y is a map and p: WeB * L1)

End (X, Y) an action, is called a generalized homotopy
B-map if
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01 0a
'NB = WeB * L ) WeB * Li) Wc;§. * Lo) =W;§.- - 0

1 y lp 01
01 00EndX End(X, Y) End Y

commutes and

p 0 L o A( 0, 1) = f

where L: B lie L ~ WeB * L1) is the standard section- 1

and A: L1 ~;§. * L the inclusion functor.1

Definition 5.~: A semi simplicial complexK. satisfies the

restricted Kan extension condition if given n

(n-i)-simplexes 0i' i E (0, ..., n), i ~k, where

° ~k ~ n, k ~ 0, 1 fixed, such that
\

aj-1 ai OJ o ~ i < j ~n, i,j ~ k°i =

then there exists an n-simplex ° such that
ia 0= 0i' i ~k. (i.e. it satisfies the Kan extension

condition with the restriction that the omitted face

is not the first or the last).
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Theorem 5.5: The semi simplicial complex GMap B- satisfies
the restricted lean extension condition.

Before we start proving this theorem let us give a
descripti0n of the trees representing the elements of WeB
which is simpler than the description in the general case. 'de

make use of the fact that there is exactly one morphism from
ito j in L if i ~ j. In the general case we Labelle d then
vertices by morphisms ([3, j) 0 (fiEl}••• $fk) of 12 * Ln into
generator, the incoming edges by source (fi ),•••, source (fk),
and the o~tgoing edge by target (fi )=•••=target (fk) = j.

Since in Ln the morphisms fi are uniquely determined by their

i3: !:. ~ i in B

morPhisml

I

source and target it suffices to label the vertices by a
of B into a generator'. A typical vertex now looks like

.
J

of course, we again have elements of I assigned to each link.
Note that in this representation a vertex labelled by i may
only be suppr-essed if the incoming and outgoing edge ar-e

labelled by the same object generator.
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Proof of Theorem 5.$: Given k ~ 0, n, ° ~ k ~ n, and for
'"all i E (0, ••• , n), an action Pl':W(~-* L 1)~End(X , •• , X., •• ,Xln- 0 1 n

such tba t

p. 0 0 j-1 = p. 0 ai
1 J o ~ i < j ~ n, t , j ~ k

We have to construct an action p: W(B-*Ln) ~ End(Xo'··.' Xn)
isuch tbat P 0 0 = Pi.

For this we construct an action of a Mn+1TP-subcategory
of W(B-(jI L ) on (X , ••• , X ) which extends the actions of thenon
p.'s and which is fibre homotopically trivial over J2 * L.
1 n

'Ne t re n apply the Universal Theorem.

The elements of ai(W(B-* L » are represented by trees- n-1
none of the edges of which has tre label i. On those elements'

P has to be given by p. for i ~ k because of the condition that
1

P 0 ai = Pl'. Since p. 0 aj-1 = p. 0 ai, ° ~ i < j ~n,
1 J

i, j ~ k, Pi and Pj agree on the elements in
• • I

al(Vv(B-* L » () aJ(Vv(B"'* L ». Hence P is well defined on- n-1 - n...1
all elements of ai(W(B"'* L ) for each i E( 0, ••• , n), i ~ k ,

- 11 - 1
This, of course, determines P on all those elements of

W(B-* L ) that are composi tions of sums of elements in tIen
aiW(J2-~;'Ln_1

), i E (0, ••• , n), i ~ k ,

Let Q be the Mn+1TP-subca tegory of W(J2-* Ln) generated
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by oi~N(~-* Ln_1) i E (0,•••, n), i f. k. By our consideration
above the Pi define an action

~: C ~ End(X ,•••,
- 0

~(aiW(B-* L 1) = p .•- n- 1
by

If'a r-epr-e serrti.ng tree e of'a morphism of'.Q into a generator
has all object generators 0, •••, n as labels f'or its edges,6
contains a collection of edges to which 1 E I is assigned
(twigs may be included) and which separate e into a tree cp

and a conse of'trees ~ such that there exist i, j f. k such-- Cl Cl
that none of the edges of cp and ~Clare labelled by i
respectively j •Cl

Note that the subspace of the representing trees of the
elements in Q is closed in the space of the representing t.r-e es
of'the elements of 'd(B-. L ). Furthermore if x E Q is

n

indecomposable in C then it is Lnde composabLe in W(B-*L )- \ - n'
for if yoz E Q is such that none of the edges of its represent-
ing tree is labelled by i then none of the edges of the
representing trees of y and z is labelled by i and hence y

and z are in Q. Since with {6, ~, oj all elements {cp, ~, oj

are in Q where cp is a tree of the same type as e, Q satisfies
the re g_uirements for the catl?gOl~YD in Theorem L~.6.
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The standar-d augmerrt at Lon 8 == 8B- .v-r-
t'~'t..lJ._- n r-e duc ed to C

augments Q over ~ * Ln· Define a section 0: B-* L ~ Q of- n

8 I Q by oIQ(~, b) = standard section if 0 ~ ~ == (i1,··, ik)

or b ~ n , oCr); (ii' n }, ••• , (i1{, n ) ) == ie, unit, bS
where e is the tree wi th the vertex at the root Labe Li.e cl by

p, the q-th incoming edge labelled by i if i /. 0, and by
Cl Cl

i + 1 if i == 0, vertice s labelled by 0 E I c .eN(i, i) on
Cl q

tOD of the q.-t.h ec1c),e if it is Lab eLl,e d 'by i + 1 and the ir
Cl

Lnc oming edges labelled by o. Assign 1 E I to each LLnk ,

oCl); (0, n), ( 2 , n), (1, n)) ==

h

The standard deformation (see 1l.L~4) gives the required

deformation. of Q(.§;., b) 1;'.1ith b f. n , into the section.
\

The equivariant fibrevdse deforma t Lous of .Q(~, n ) into the

section are given in steps. \le fiI'3t ehr i.nk all links

label2.ec1 by 0, ..-e then Lltj:vi,uce ...1c:;~.·T ve r t I ce s 0 (1'ec0.11 that

o E I c B- (1 _'1) is the un i t ) on tc) ef each t.vig LabeLl.e d-- -'
by O. Cl1an~;e the Lao eLs ef the cl-eIs' cn:.:ated lin.l{s to 1 and

La'beL the ne',' t:ibs o. "e get 1 E I assigned to t.he ne li~.cs

by a defor'mation and then ».e sll:ciYlicall linl:s t.ha t are not
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a lle:I 1 ink. }i'OI' each def'cJ'lllS.t i.on vie have to make sure tha t

. _._ rt
111 ~.

iII (;',1[:,11e de tail s :

.' .1'1'1 ~"1(u . ) et u o. -ll)\\:'Il 0 ri, 1' ••• , u_.= _.*. -1 ' ••• , G__ • _
U 1) I .:) :P

'where ti = t if ui is a s s i.rue d to a liiL:: Labe L'Led b:;r 0 and

t. = i otheI'·'!ise. Hi is ,;ll-dei'LIed, continuous, e qui.vurLan t
1

and fiLjI'e,Iisc. If all t , 0 ~ i ~ n cccur D.S labels of lin,{s

in G t.he n in the c c.Ll.e ctLon ut' ed,;es to wh i ch 1 E I hasiJecn

b eg izinLng ef tile _[)rl.of', n..ne 01' tho e d.jc s may be Labe L'l ed Tiy O.

'T1 Cile.i.1Ce this defe:c';;;a ti on 3 tays in C. Dencte 1.
0
_ by C

1
• .:....ach

eLeme.nt of C1 can 'be J_'c_9J:esentc::d i)y a t.ree n one of the edges

O. '.!.'llC sl!,-ice of those tI'8CS is cl088(L If .te s t i ck a vertex

laiJelle cl l)y 0 I B~ ( 1 \ tc~p ef each t':i ef these treeE c I., _, i) en s

labell eel »s 0 , CilUil. e the la >el 0:": the rle'/ll~/ created link frcm

o to 1, and a ss i gn to it tile value 0 E I, end La'be L the Liies

( 3'.';e
" \

JJlC'CUl'e ),

, i 'I,L., j,i 0 is c11;:)11;;';:':; d to. J.' o a s s i.gnc d tc
tile new 1 Lnks.

ov e r-

{t.
iJ
I
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The next homotopy only affects the uew'Iy create d 1inks.

Define
H~fe,c;,oJ = {e,c;,H~(O)J w i t.h H~(U, ••• , uI)=(;nax(t1,u-'1 ), •• ,

max( t,~, ur) ) vh e re t. = t if u. is assigned to an outgoing
J:.) .J 1. 1.

edge of' a vertex the incoming edge of' vrn.ch is labelled by 0

(such a ve r t.ex, ef' c curse, is 1abeLl.e d -by 0). 3ince tile

multij)licatioll t1 :~ t2 = max(t1, t2) is associative, H~ is

viell-defilled. It cle arly is continuous, e '=luivariant and

flbl'ewLie. By the same consiclera tiGll as above, H~ stays in
r)

C. Denote lit C1 by C2•

Finally def'ine H~[e,c;,oJ = le,~,H~(6)) ~ith
"2'

H~(U1' ••• ' up) = (t1.u., ... , tp.up)' ',iherie ti = 1 if' ui is

as ci gned to an outgoing edge ef a vertex the Lnc oud.n g edge

of "/llich is labelled by 0 in the representation chosen above.

ti = t ot.he r-wi ae , li~ is (!ell-dei'ined, continuous, equivariant
\

and :i_'il;r'e'.rise. JL.lCe H~fe,~,63iS a cocposition of' an element

r-epr-esent ed by a tree the edges of which are not labelled by

0, and an element which is a sum of elements LB-(O; (0, 1 )),

(L~_iS the standard section), H~ stays in Q. H~(C2(~' b)) =
o (~ - * Ln (Q, b)).

Hence Q is f'ibre homotopically trivially augmented over
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B-* L and hence over & * Ln. Now apply Theorem 4.6 with
- n

C = B * L , G = ~- - n -, = Q, 0 = idQ. and Y= 8'~ * Ln'
= (~ * L )-. ]]nwhich is possible since B-';:Ln

~aI'k 5.6: If' B has isolated identities we get the same
result f'or GMap & using the Theorem 4.9 instead of'LI-.6

Re~..5.. •.z: If' n = 2 let (1', P2): (X, 0.0) -+ (Y, 0.1) and
(g, po): (Y, 0.1) -+ (z, 0.2) be generalized homotopy
~-- maps. Then there exists an extension p: W(12.-*L2) -+

End (X, Y, Z) such tba t P 0 00 = PO' P 0 02 = P2 and
P 0 01 0 LB-;i:L 0 11..(0, 1) = gof'. (This follo'7s f'rom

- 1
Lemma 4.8 choosing '1:" : If* L2 (0, 2) -+ .Q(O, 2) to be

o
o

and the value 1
assigned to the link)

'1:"([3; (0, 2)) =

2.

The same holds f'or generalized homotopy 12.-mapsif'12.
has isolated identities.

For most purposes the concept of' a generalized homotopy
12.-maphas undesirable complications arising f'rom the existence
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of mixed maps, such as X x Y -+ Y. For this reason vie dis-
continue to study them, although the Theorem 5.5 provides
us with a good starting point for the development of the theory.

To be able to give some other definition for structure
maps we have to introduce a new type of category of operators.
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~6 !~EDUCE:OCA'fEGOHIES OF OPERATOR.S.

Defini t:tQn_6,.i;_A 1:§_ducedM~P-ca tegory 12 has as ob jects
finite sequences ~ = (i1, ••• , ik) of integers 0, •••, n-1
such that i1= ••• = ik, the empty sequence is included.
The mor-phLsm s between two objects form a topological
space in CG and composition is continuous. We are given
a multiplicative structure $ on ~ such that

(ii' ••., im) e (j1'···' jk) = (i1,··, im, j1,••, jl~)
whenever i1= ••• =im = ji= ••• =jk. It induces a strictly
associative map of the corresponding morphism spaces and
behaves like a functor whenever it is defined, i.e.

=

Furthermore we Efre given permutations satisflling the
conditions (d) of Definiticn 1.1.
Analogously vie can define reduce d Mllrf-categories

n nEach M TP-category ~ gives rise to a reduc@d M TP-category
the subcategory of ~ consisting of all objects (i1,··, ik)RB-,

of 12 such that i1= •••= ik and all morphisms between such
ob jects. Note that for n = 1 the definition of an M1TP-category
and a reduced M1TP-ca tegory coincide.
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Definition 6.2: A reduced MTP-functor betwee. a reduced
JilTP-category ~ and a reduced JilTP-category Q is a
continuous functor mapping object gnerators into
object generators and preserving sums and perautatioBS.
If it in addition preserves object generators if
m = n, it is called a reduced ~P-fuactor.

If y: B ...C is an MTP-functortheD. its restriction- -
y: R~ -+ RQ is a reducetiMTP-f'unctor.

We say that a reduced ~P-category ~ acts on (Xo'.~n-1)
if we are given a reduced MTP-f'unctor

y : B ... RElld (X , ••• , X 1)
- 0 n-

In order to develop a theory for actions of reduced
~P-categories we are going to prove a universal theorem
equivalent to 4.6 for RWB. Clearly the notion of a fibre
homotopically trivial augmentation holds for reduced ~P-
categories too, as well as the notion of a section.

Le..a 6.3: Each element X E R~(~, £) can be decomposed into
indecomposable elements (in the sense of Definition
4.1), X = X1° •••oxp. This decomposition is unique up
to the equivalence generated by
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t

(a) x1o •••o(xi e 1)°(1 e xi+1)0 ••• oxp
= x1° • • •°(xi e xi+1)0 ••• 0 Xp
= X1° . • •0 (1 e xi.+1)0 (xi e 1 )0 ••• °xp

(b) x1° .•• 0 (xi o~)°xi+1° ••• 0 xp
= x 0 0 x o?::'oX 0 ° JC.....1 ••• i <0 i+1 ••• p

= x1o •••oxio(~ oxi+1)o •••oxp
where ~ is a permutation.

Proof: In view of Lemma 4.2 an element x E RWB(~, 2) is
decomposable in R~(~, b) iff there exists a collection of

edges in a non-degenerate representing copse labelled by
the same object generator and the values 1 E I assigned to
them which separate the copse into two copses (here we again
suppose that 1 is assigned to the twigs and the roots.
"Separate" means that each complete edge path runs through
exactly one edge o~ this collection). Chop all edges of
any such collection (chopping a twig or a root gives rise
to a trivial tree) to obtain indecomposable elements. As
in Lemma 4.3 there are three choices involved which are
taken care of by the relations (~) and (b):

(1) the order in which we chop these collections
(2) the choice of the particular non-degenerate

representative
(3) the choice of the position of permutations ]]



- 97 -

Since a morphism in R~ can be decomposable in v~ even
if it is indecomposable in RW~, we have to refine the
filtration RWP~ of RWli: For any ~P-category B, for which
the construction iN is defined, let RWP, q~ be the subcategory
of RWP~ generated by RWP-1~ and all those elements
x = {6,~,olsuch that (6,~)E Tp~(~, b) and 0 E IP has a
collection f3of p-q coordinates with value 1. Denote the
(closed) subspace of Qa.,p(~,b) consisting of these
representatives (6,~,o)by Qc.p ~ (~, b). More precisely, ,.." q

speaking, ~,P,f3,q is the subspace of Qa.,pof those elements·
(6,~) such that to a chosen collection f3of p-q links of
6 the value 1 has been assigned. Note that if the collection
~ separates the tree 6 into a tree and a copse representing

\

elements in RV~ (we might have to add s~e twigs to the
collection)then each element in Q represents aa.,p,f3,q
composi tion. Let Q' = Q if f3is a collectiona.,p,f3,q a.,p,f3,q
that separates 6 into a tree and a copse representing
elements in Rv~. Otherwise let Q~ ~ c Q be the....,p,.."q a.,p,f3,q
(closed) subspace of those representatives (6,~,o)that are
either degenerate or 1 E I has been assigned to more limks
of 6 than just to the ones in the collection f3. Q'c,p ,f3,q
consists of all those elements of Q that are related~,P,f3,q
to some element of lower filtration p or q, or that represent
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composites of elements, that can be represented by elements
of some lower filtration p. If (6,~,O)- Qa,p,~,O(~,b)
then 0 .(1, ..• ,1). Henee Qa,p,~,o a,p, ,

Let 12 be a subcategory of RV@ such that Da,p (g"b) is
closed in Qa,p(.!!'b) for all a,p,g"b (see p.53) and such
that if x E 12 is a composition x = y 0 z with y,z E Rw,§
then y and z are in D. Let D A (g" b) =a,p,,",,q
Da,p(~,b) n Qa,p,~,q(g"b).

Lemma 4.5 can now be stated fer reduced M~P-categories
and in view of Lemma 6.3 the proof goes over:

Lemma 6.4: Let Q be a reduced nP-category and 12 a
subcategory of Rv~ as given above. Let 0t: Q ~ Q
be a homotopy of functors preserving objects, sums and
permutations.
(1) Given a homotopy of reduced ~P-functors

_~,q-1 :RWP,q-1B ~ C
It - -

and equivariant maps
t: :Q (a, b)xI ~a,p,~,q a,p,~,q-
for all ~,~, g"b such that

C(a, b)- -
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(a) vp,q-1 IRWP,q-1B n D = 0 IRWP,q-1B n D
It - - t --

= 0to(Xa,pIDa,p,~,q(~' b))
f IQ' (a b)x(t)u,p,~,q u,p,~,q-'
- vP' q-1 0 (X IQ' (ab) )- It a,b a,p,~,q-'

(c) f A (X, t) factors through the relationa,p,..."q
(2.11) for each tEl.
If x is a trivial tree representing the identity
of b, then fa,_1,~,O(x) = 1b•

Then there exists a unique homotopy of reduced
M~P-functors

vP' q: RWP, qB -+ CIt --
extending y~' q-1 and 0tIQ n RWP, q12such that

Y~'~Xa,pIQa,p,~,q(~' b)
= fa,p,~,qIQa,p,~,q(~' b)x(t).

If q-1=p we can substitute (P,q-1) by (p+1,O)

(2) Given homotopies of reduced M~P-functors y~,q:
RWP, q12-+ C for all p and q such tha.t
y~' qImvP' qB n RWs, t12= y ~'tImvP' qB n RWs, t~
and yP,qlmvP,qB n D = 0 IRWP,qB n D then there

t - - t --'

~xists a unique homotopy of reduced ~P-functors
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Yt: RWB ~ Q extending 0t such that
Yt IRWP ,qJ2= Yl' q• ]]

In the same manner we can state and prove the analogue
of Lemma 4.7 with a refinement of the filtration ~ in the

~ Lspaces Ra.p k. R k A De the (closed) subspace of" a.,p, ,.....,q
R k of those elements (e,~,o)such that 1 E I has beena.,p,
assigned to a collection 13 of p-q links of e. If the
collection 13 separates the tree e then put R' =a.,p,k,l3,
R k A • Otherwise let R' k A consist of thosea.,p, ,.....,q a.,p, ,.....,q
elements that are re18ted to some element of lower filtration
p,k, (see p.59) or that have 1 E I assigned to more than
just the links of the collection 13. We refrain from
stating the analogue of Lemma 4.7.

Theorem 6.5 (The universal property):
Given a commutative diagram

RJ2-----~Q
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of reduced M~P-categories R~, R~, 0, ~, where ~
is an ~P-category, and a subcategory ~ of ~,
reduced M~P-functors y,~, the standard augmentation
€ = €B' the inclusion functor p and a homotopy of
functors 0t preserving objects, sums and permutations
for each tel.
Assume
(1) If x E Q is a composition in R~, x = yOz, then

y and z are in Q)Da,p(~' b) is closed in Qa,p(~,b),
and each connected component of Da,p,l3,q(~,b)
containing a point x ¢ Q~,P,I3,q(~,b) is open and
closed in ~ ~ (~,b)a.,p,,",,q

(2) ~ and y and ~ satisfy the conditions (2) and (3)
\

of Theorem 4.6
Then
I: There exists a reduced M~P-functor VO:R~1.B~ ~

such that ~ovo=Y°€ andvOop = °0
II: Given any two reduced M~P-functors vO,v1 :RWB ~~

such that ~ovO = ~ov1 = yo€ and vOop = °0,
v10p = °1, then there exists a homotopy of reduced
M~P-functors Vt:RV~ ~ ~ between Vo and v1 such
that vtOp = 0ta.lttlto t?t=yot.
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Proof: The proof proceeds on the same lines as the proof
of Theorem 4.6. We again construct compatible functors
vok,q: Fk,qRi~ ~ ~ extending 00' respectively
vtk,q:Fk,qRw,§~ Q extending 0t. We restrict ourselves to
proving I. The proof of II is similar. The differences
have been described in the proof of Theorem 4.6.

vo-1,q and vt-1,q are uniquely determined by 00
respectively 0t.

Suppose inductively that we have defined
v P,q-1: F RVrn~ G such that° p,q-1 - -

v P,q-1 IF RWB = v r,s for r = p and s<n-1Or,s - ° ~
or r<p and

tJ.0y P,q-1 =o
Recall that v p,po
equivariant maps

f = fa,p,k,~q: R = Ra,p,k,~,q (~, b) ~ Q(~J~
-w4,'ck t~doy Hrou~1t (.l.II)

(We omit the indices whenever there is no danger of confusio~

"("elF 1RWB•p,q- -
induces yoP+1,0. We have to define

Satisfying
fiR' (~, b) = v p, q-1°x IR ' (a b)° a,p,k-'

and
tJ.°f = yOeOx IRa,p,k

If'yP,q-1 does not determine f on the whole of
R = PxI~, i.e. if R~', (recall Ra,p,k = Pa,p,kxIP.Hence
'}>,. 'PoI,r,k. 'i2O(lf, k,~ ::: 'Po<.",1.. x rj )w~er( I~ c; If is lL~ to..tCZ w;l:l.. I:L·,." (e~ea.J,.. i ,'..ill.
co lI«..c""·oll(. .)
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P P~,p,k) then it determines it exactly on PxOIguP'xI~
Now we can proceed in exacLly the same way as in the
proof of Theorem 4.6 using Ii instead of IP• ]]

Remark 6.6: The analogues of the Lemma 4.8, the Theorems
4.9, 4.12, and the Proposition 4.16 hold for reduced
~P-categories and reduced M~P-funcotors.
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§7 HOMOTOPY B-MAPS

To simplify the notation we denote the sequences in
RW(B*L ) of length m in the ge.nerators 0, 1, or 2 by

- n
S, st, m" respectively. We hardly ever deal with !a*Ln
where n>2.

Definition 7.1: Let ~ be a category of operators and
(X,y), (Y, 0) W~-spaces. A pair (f,p), where f:X~Y
is a map and P:RW(~*L1) ~ REnd(X,Y) a reduced
2M TP-functor, is called a homotopy B-map between

(X,y) and (y,o) if

01 00
W~ = RW(B*L )' RW(B*L ) RW(la*Lo) = WB- 0 fp 1 1ly

01 00
EndX REnd(X,y) EndY

commutes (where ai is the restriction of the face
operator ai to the restricted subcategories) and

pOLB*L 0 A(0,1) = f
- 1

where LB*L1 is the reduction of the standard section
to R(la*L1) and A:L1 ~ R(~*L1) is the canonical
inclusion functor.
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Remark: Although we will distinguish between an ~P-category
B and its reduced subcategory R~ we use the same
symbol for an M~P-functor and its restriction to the
reduced subcategory.

Definition 7.2: Let (f, p), (g, x): (X, y) -+ (Y, 6) be
homotopy ~-maps. We call (f, p) and (g, x) homotopic
and write (f, p) = (g, x) if there exists a homotopy

2of reduced M TP-functors At: RW(~*Li) -+ REnd(X,Y)
such t:tat Aa = p and Ai = x,a.ltd. }.tDd°". d) 1.tDd1»T (01' all i€I

Analogously define "homotopic" for generalized
homotopy ~-maps.

A generalized homotopy ~-map (f,p): (X,y) -+ (Y,6)
canonically induces a homotopy ~-map (f,p'): (X,y) -+ (Y,6)
by restricting the functor p: W(~*Li) -+ End(X,Y) to the
reduced M2TP-subcategory RW(B*Li).

Theorem 7.3: Let (f,p): (X,y) -+ (y,6) be a homotopy B=map.
Then p induces an action v: W(~-*Li) -+ End(X,y) such
that (f,v): (X,y) -+ (y,6) is a genera~ized homotopy
~--map. Furthermore if (f,p) is the canonical
homotopy ~--map obtained from a generalized homotopy
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~--map (f,p'): (X,y) ~ (Y,O), then (f,y) ~ (f,p').

Proof: RW(~-*L1) generates an M2TP-subcategory Q of
W(~-*L1)' i.e. each morphism of .Q. is a composition of swas
of elements in RVV(B-*L1) and of permutations. Let
y= x1 (B ••• e ~ be an element in Q, xi E RW(B-:jIL1). Define
~(x1e •••exp) = p(x1) x ••• x p(xp) and ~(~) = ~, where ~
is a permutation. Extend ~ to an action of Q by

~(Y1 o•••oYn) = ~(Y1) 0 ••• 0 ~(Yn)
where Yi is a sum of morphisms in RW(~-* L1).

e = eB-*L IQ augments C over ~-*L1. We will show that
- 1e is fibre homotopically trivial and then we will apply the

•

Universal Tre orem.
Note that Q (B,'1) = W(~-*L1 )(B,1), Q(B,1') =

W(~-*L1 )(l);, 1') and Q(a' ,1') = W(~-:jIL1)(a',1'). Hence the
standard section and the standard deformation guarantee that
e is fibre homotopically trivial on these morphism spaces.
So we can restrict our attntion to Q(~,1') where
~ = (~,•••, ik) with 0, 1 E!.. As in §5 we use the
simplified descri~tion for the trees.

Define a section 0: B-*L1(!.,1') ~ Q(!.,1') by
o
o

1
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The value 1 is assigned to each link. More precisely
a(~;(i1,1 ),•••,(ik,1» = {e,unit,ol where e is the tree
with the vertex at the root labelled by ~, all incomini
and outgoing edges labelled by 1. If i = 0, then on topq
of the q-th incoming edge sits a vertex labelled by 0 (the
identity of ~N), and its incoming edge is labelle d by O.

Each representing tree of Q(~,1') has a collection
of edges to which 1 E I is assigned, and which decompose
the tree into a tree all twigs of which are labelled by 1,
and a copse all the twigs of each individual tree of which
are labelled by 0 or 1 only. Conversely each tree with
such a collection of edges represe.ts an element i. Q.

Define the equivariant fibrewise defor.ation i.to the
section in steps:
Hi{e,~,ol = {e,~,Hi(O)} with Hi(u1, •••,~)=(t1 .u1,··,tp.up)
where ti = t if ui is assigned to a link labelled by 0,
aDd ti = 1 otherwise. Since each link in the separating
collection of e is labelled by 1, this hOJlloto::gystays in
Q. It certainly is well defined, continuous, equivariant,
and fibrewise. Each element in H1Q(~'1') can be represellted
by a tree such that only its twigs are labelled by 0, and
its vertices at the bottom of twiiS labelled by 0 are
labelled by 0 (the identity in ~N).Now define
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H~le,~,6} = {e,~,H~(6)1 with Hi(u1, ••,up)=(aax(t1,u1), •••,
max (tp'up )),

where ti = t if ui is assigned to a link that is preceded
by a twig labelled by 0 in our chosen representation, and
ti = 0 otherwise. Since the multiplication .ap "max" is
associative, H~ is well defined.It is continuous, equiva-
riant, and fibrewise. Since links to which the value 1 is

2assigned are not affected, Ht stays in Q. Each element of
H~ 0 H~(Q(~'1'))is a co.position yoz, where y E

11,if iq = 1,W(,la-*L1)(~',1') and z = x1$. • .ED X:k with x =q
or

:1°
x = {e,unit,IO} with e =q if iq = 0.

Hence z is uni~elY, determined by ~. If Kt is the stan-
dard deformation of W(B-*L1 )(~',1')into the standard
section, then the deforaation H~ , given by
H~(YoZ) = Kt(Y)oz, deforms H~ 0 H1(Q(~'1'))into the given
section.

Let ~ be the subcategory aOw~- u a1w~- of W(~-.L1).
~ satisfies the reqirements of the Universal Theore••
Define x: ~ ~ Q to be the inclusion. Define

'T: = a: ~-.L1 (1,1') ~ Q(1,1').
By the,Universal Theorem and Lemma 4.8 we obtain an
2M TP-functor ~: W(~-.L1) ~ Q extending x , and such that
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e' °eOx = eB-*L ' and~*L1 - 1
and e- see p. 69). Hence

(f,~ox): (X,y) ~

= f. (For e'

(Y,o)
gives the required generalized ho.otopy ~--.ap.

Now suppose that p has been obtained by restricting
pt: W(~-*L1) ~ End(X,Y). Let A: Q ~ W(~-*L1) be the inclu-
sion functor. Then ~ = p'oA since o' is am )(2TP-functor.
By definition e = e A d h ~, O~Oy-!-*L ° ,an ence ~B*L ~ ~ -

- 1 - 1

eB*L oeB-*L °AoX = eB*L. Let 0t: Q ~ W(~-*L1) be the
- 1 - 1 - 1

inclusion functor for all t. Then by Theore. 4.6 II there
exiats a hoaotopy of M2TP-functors Ft: W(~-*L1) ~ W(~-*L1)
extending 0t' and such that FO = AOX and F1 = id • p'oFt
gives the required hOJaotibpy(f,~ox) ~ (f,p'). ]]

Re.ark 7.4:
(1) Since Jaorphis.s that are indecomposable in Q

can be decomposable in W(~-*L1) we cannot
expect that the reduce. action p i.duces a
canonical action v: W(~-*L1) ~ End(X,y).

(2) Theore. 7.3 can be proved for actions
p: RW(~-*Ln) ~ REnd(XO' •••'Xn) with n arbitrary •

.But since the obtained Mn+1TP-functor
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v: W(~N.Ln) ~ End(Xo' •••'Xn)
is not canonically induced by p it is not very
interesting.

(3) An analogue theorem holds for homotopy ~-maps
if ~ has isolated identities. Just replace ~N
by ~.

Definition and Lemma 7.5: Let f: (X,v) ~ (Y,~) be a W~-ho-
moaorphis. (see Definition 5.1). The induced homo-
toPY B-map f. = (f,f.): (X,v) ~ (Y,~) is defined by
(1) f.loow~ = ~ ,f.1 o1w~ = v
(2) f.1 RW(~*L1)(~,i') is given by the composite

RW(~*L1 )(~,i') ~O W~(B,i) ~ End X ~ REnd(X,Y)
• v fO-

where SO is the degeneracy f'unctor,a.kd(fo-)~::'''''df0'r
1!X"'~ X"(we '-'-ev lJe", H~ J.O(je.1tt ~rt; tJl.···"f' II~Ktt'~~ la [).Conversely each homotopy ~-.ap (f,x): (X,v) ~ (Y,~)

such that x satisfies (2) is induced by a WB-ho.o-
morphis ••

Proof: f. is continuous, by the aor.ality of RW(~.L1) well
defined, and preserves sums, permutations, and identities.
Since sO and v are functors we only have to show that co.-
posi tiQn of x e RW(~.L1 )(B',i') with y e RW(~.L1 )(!!,!;')
is pre served:
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° °(VOs (x)) 0 (VOs (y))
= f ° v(x) 0 (V,OSO(y))
=f(x) 0 f ° (vosO(y))

•

Conversely given a homotopy ~-.ap (f,x) such that x satis-
fies (2). Then xOLB*L °A(O,1) = f, and sOoLB*L °A(O,1) = 1

- 1 - 1
e W~. Hence for x e 'N11 CCI.tS;~~e.'(eJ e.l/A.beJJed ;11 ~lJt~~.l,)~ ~OO(' d1:

X(Xo(LB*L °A(O,1) e... e LB*L °A(O,1 ))) = f 0 v(X) «I 1X
- 1 - 1 = x(X) 0 t: 0 1X

Hence f 0 v(x) = ~(x) ° f •
This also follows from the tree representation. ]]

Clearly composi,tes of ~-holllolllorphisJl.sare ~-ho.o.or-
phisms. Neither do we have any problems in defining com-
posites of W~-homomorphisms with homotopy ~-.aps:

Definition and Lemma 7.6: Let (f,p): (X,~) ~ (Y,v) be a

homotopy B-map and g: (y,v) ~ (Z,A) a W~-ho.o.or-
phism. Then there exists a canonical composite
homotopy B-map gO(f,p) = (gOf,x): (X,p) ~ (Z,A)
defined by
xl aOw~ = A ,
xl RW(~*L1 )(~,1')is defined by x(x) = gop(x) •



- 112 -

Proof: Again we have to show that x is a functor. Since
p extends ~ it suffices to show that x preserves compo-
sitions of x E aOWB with y E RW(~.L1)(B'~'):
x(xoy) = gop(x)op{y) = A(X)ogop(y) = x(x)ox(y). ]]

Re.ark: Analogously we can define compositions (f,p)oh
where h: (W,o) ~ (X,~) is a W~-homo.orphis ••

Again we run into trouble if we attempt to construct
the category of W~-spaces and homotopy ~-maps, for as in
the case of the generalized homotopy B-.aps the composite
is only defined up to a homotopy, which is itself defined
only.up to a homotopy, which is ••• • To get around this
difficulty we again fora a se.i simplicial complex Map~,
the a-simplexes of which are actions of RW(~.Ln) on
(n+1)-tuples of spaces. The face and degeneracy operators
are induced by the compositions

i
Poa : mV(B*L ) --~ RW(B*L )- n-1 - n

ipos : RW(B*L ) --4 RW(B*L )- n+1 - n

--------+REnd(XO,···,Xn)

-----+ REnd(XO'··· ,Xn)
(co.pare p. 84).

Theore~ 7.1: The semi simplicial complex Map~- satisfies
the restricted Kan extension condition.
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If ~ has isolated identities, then Map~ satisfies
the restricted Kan extension condition.

The proof is exactly the same as the one of Theorem 5.5
with the exception that we use RW(~-.Ln) instead of
W(~-.Ln) and Theorem 6.5 instead of Theorem 4.12. ]]

The Remark 5.7 applies to the reduced case too.

Definition 7.8: Let (fi,Pi): (X,~) ~ (Y,v) , i = 0,1, be
homotopy B-maps. Then we call (fo'PO) and (f1,P1)
s-homotopic and write (fo'PO) ~ (f1,P1) if there
exists a reduced M3TP-functor 0: RW(~.L2)~REnd(X,y,y)
such that Ooo~ = Po ' 0001 = P1 ' and 0000 = 1y. •

The condition 0000 = (1y). is equivalent to saying
that 0000 is degenerate. It is easy to show that a homo-
topy ~-map is degenerate iff it is the homotopy ~-.ap
induced by the identity.

Lemma 7.9: Let (f,p): (X,~) ~ (Y,v)be a ho.otopy ~.ap,
g: (Y,v)~ (Z,A) a W~-hamomorphis., (gof,x):(X,p)~(z,A)
their canonical composite. Then there exists an action
0: RW(~.L2) ~ REnd(X,y,Z) such that 0001 = x,
0000 = g. , and 0002 = P •
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Proof: Define 0 as follows:
01 02RW(B*L ) = p

- 1
01 OORW(~*L1) = g.
o 1 RW(~.L2 )(~,1") = ')(0 si •

o is continuous, well defined, preserves suas, permutations,
and identities. It satisfies the statement of the Lemma.
It remains to show that 0 is a functor, and for this it
suffices to show that 0 preserves compositions of
x EOORW(~*L1) with Y E O~W(~.L1):
o(xo y) = ')(( s1(x) 0 ')( ( s1(y) )

= 'A.(sO(x» 0 g 0 p(y)
= g 0 v(sO(x» 0 o(y)
= o(x) 0 o(y) • ]]

Re.ark: We can prove an analogous lemma for compositions
(fOh,~) or (f,p) with a W~-homo.orphism
h: (W,w) -+ (X,~) •

Clearly "~,,is an equivalence relation. From TheoreJil.7.7
and Lemma 7.9 we can immediately deduce that "!:Ittt is an

. ~:'2~~.dor;t ~"'-~<lrsequivalence relation ". For reflexivity follows fro.
Lemma 7.~,while symmetry and transitivity follow from
Theorem 7.7 and a trivial version of Lemma 7.9 by con-
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sidering the following 3-siaplexes: All maps are supposed
to be homotopy ~--maps or homotopy ~-maps and ~ has iso-
lated identities.

3

g/t1~1~:~
1i,....

I

I symmetry: The bottom is given by the homotopy
(f,p) ~ (g,x). The front and the right hand side are
given by reflexivity (i.e. by Lemma 7.9). Since the
second face is missing we can fill in the 3-simplex by
Theorem 7.7. The resulting left hand sides provides us
with a homotopy (g,x) ~ (f,p) •

II transitivity: The homotopies (f,p) ~ (g,x) and
(g,x) ~ (h,A) give the bottom and the front. The right
hand side is given by reflexivity. Since the second face
is missing the 3-simplex can be filled by Theorem 7.7.
The resulting left hand side provides us with a homotopy
(f,p) ~ (h,A) •

Definition 7.10: Let (f,p): (X,~) ~ (Y,v) and
(g,a): (Y,v) ~ (Z,A) be homotopy ~-maps. Then the
homotopy ~-map (h,~): (X,~) ~ (Z,A) is called a ~
~osite of (f,p) with (g,a) if there exists an actiom
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1'1:RW(~*L2) -+REnd(X,Y,Z) such that 1'1000= a,
1'1°01= ~, 1'1°02= P •

Leaaa 7.11: Let (f,p): (X,~) -+ (y,v) and (g,o): (y,v)-+ (Z,A)
be homotopy ~N-maps. Then there exists a composite
of (f,p) with (g,o) a.d it is unique up to s-hoaotopy.
If ~ is an M1TP-category with isolated identities
then the same holds if we substitute ~N by ~.

Proof: The first part follows from Theore. 7.7. Now
suppose that (hi'~i): (X,~) -+ (Z,A) are two composites
of (f,p) with (g,o), i = 0,1. Let 1'Ii:RW(~N*L2)-+REnd(X,y,Z)
be the actions defining them. Consider the following
3-si.plex:

The bottoa and the left hand side are given by the actions
I'll and 1'12•By Lemma 7.9 there exists an action determining
the right hand side. Since the first face is .issing we
can apply Theorem 7.7 and fill in the 3-simplex. The re-
sulting front face gives the required s-homotopy. ]]
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Lemma 7.12: Let (f,p), (h,x): (X,~) ~ (Y,v) be homotopy
~--maps. Then (f,p) ~ (h,x) iff there exists an

oaction 0: RW(~-.L2) ~ REnd(X,X,y) such that 0°0 = p ,
0001 = x , 0002 =(1X)•• (Recall that s-homotopy
is defined by an action RW(~-*L2) ~ REnd(X,y,y»o
If ~ is an M1TP-category with isolated identities
then the same holds if we substitute ~- by ~.

Proof: The canonical composites (f,p)0(1X). and
(1y).0(f,p) are equal. Fro. Lemma 7.9 and the uniqueness
of composition of homotopy ~--maps it follows that
(f,p) ~ (h,x) iff (h,x) ~ (1y).0(f,P) , i.e. (h,x) is a
(not canonical) composite of (1y). with (f,p), and hence
a composite of (f,P')with (1X). , which proves the Le_a
one way. The converse follows in the same manner. ]]

Lemma 7.13: Let (f,p), (h,x): (x,~)~ (Y,v) be s-hoaotopic
homotopy ~--.aps and (g,~): (Y,v)~ (Z,A) ,
(k,y): (W,w)~ (X,~) homotopy ~--maps. Then
(g,~)o(f,p) ~ (g,~)o(h,x) and (f,p)o(k,y) ~ (h,x)o(k,y
If ~ is an M1TP-category with isolated identities,
then the same holds if we replace ~- by ~.

Proof: By Lemma 7.12 we have an action
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0: RW(~-.L2) ~ REnd(X,X,Y) such that ooaQ = p , ooa1 =
and ooa2 = (1x) •• In the following 3-simplexes

3

+grf'
?<1~
Q--------i.,__---2

h

x ,

I II

in I the bottom is given by 0, the front and the right
face by composition (Lemma 7.11), in II the bottom and
the left face are given by composition, the right face
by the given s-homotopy. Now apply Theorem 7.7. The re-
sulting left face of I and front face of II give the
required s-homotopies. ]]

\

Theorem7.14: The W~--spaces and s-homotopy classes of
haaotopy ~--maps for. a category.
If ~ is an M1TP-category with isolated identities
then the W~-spaces and s-homotopy classes of haaoto-
py ~-maps fora a category.

Proof: By Lemaa 7.11 and Lemaa 7.13 we have a well defined
co.position. By Lemma 7.9 the W~--ho.aaorphis.s
(1X).:· (X,J.I.)-+ (X,J.I.)provide the identities. Associativity
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is obtained from Theorem 7.7 by considering the following
3-simplex:

ho (gof) 1 h

VN
o gof 2

The bottom face defines gof, the front defines ho(gof),
the right face defines hog. Since the second face is
.issing we can fill in this 3-simplex. We find that the
representative (composition is unique up to s-homotopy)
for ho(gof) represe~ts (hog)of , too. ]]

We next discuss the connection between the two defini-
tions of homotopy between structure maps (see Definition 7.2
and 7.8). For this we first have to side track and study
"equivariant" NDR-pairs of spaces of representing trees.

Definition 7.15: Call a subspace A of M = Ma,p(~,b),
(see p. 53), an eguivariant NDR, if the maps u:M ~ I
and h: MxI ~ M representing A as a NDR in M (see
[6;Definition 6.2]) satisfy:
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u(x) = u(y) if x - y under (2.3)
u(xo~) = u(x) , where ~ is a permutation.
h(x,t) - h(y,t) under (2.3) if x - y under (2.3)
h(xo~,t) = h(x,t)o~ , where ~ is a permutation.

By taking a radial map and a radial deformation
v: In ~ I and j: InxI ~ In, (radial from the point
(t,••.,t)), we can represent ~In as a NDR in In in such a
manner that v and j are symmetric in the n coordinates

nof I •
Now suppose we are given an equivariant NDR A in

M = Ma,p(~,b) represented by u and h.

\

Lemma 7.16: Axln U Mxoln can be represented as NDR in Mxln

by maps w: Mxln ~ I and k: MxlnxI ~ Mxln such that
(A) w(e,~,o) = w(~,~,a) if (e,~,o) - (~,~,a) under

(2.11)
w(e,~,o) = w(e,unit,O)

(B) k(e,~,O,t) - k(~,~,~,t) under (2.11) if
(e,~,o) - (~,~,~) under (2.11)

k(e,~,O,t) = k(e,un1t,6,t)o~ •

Proof: Define w(e,~,o) = u(e,~).v(O). Fro. the definition
of u and v (A) follows immediately.
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Def'ine
k(e,~,O,t) = (e,~,o) if'(e,~) e A, and 0 e oIn

= [h(e,~,t), j[o,(u(e,~)/v(O».t]]
if'v(O) ~ u(e,~) and v(O) > 0

= [h[e,~,(v(O)/u(e,~».t], j(O,t)]
if'u(e,~) ~ v(O) and u(e,~) > 0 •

By [6; Theorem 6.3], k is continuous. It f'ollows directly
f'rom the def'inition that it satisf'ies the condition (B). ]]

Re.ark 7.17: Let K c In be a NDR such that the representing
maps v': In ~ I and j': InxI ~ In are symmetric in
certain subsets Ui of'the n coordinates of'In. Then
by the same construction MxK U Axln can be represen-

I nted as a NDR in MxI by maps satis:fying (A) and (B)
of'Lemma 7.16,1f' the coordinates of'In in Mxln are
only permuted inside the Ui under the relation (2.11).

Lemma 7.18: Let K and M and A be as in Remark 7.17, and
suppose (2.11) permutes the coordinates of In in

n nMxI inside the subsets Ui of'the coordinates of'I
only. Then there exists a retraction

r: MxInxI ~ MxInxO U (MxK u Axln)xI
such that
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(A) Let x = (e,~,6), y = (~,~,a),r(x,t) = (x',t'),
r(y,t) = (y',t"). If'x,..y under (2.11), then
t' = t" and x' ,..s ' unde r (2.11).

(B) r(e,~,6,t) = r(e,unit,6,t)o~ •

Proof': r is def'ined by
r(e,l;,6,t) = (e,~,6,t) if't = 0 and (e,~,O)eMxKu AxIn

= [k(e,~,6,1), 1[t,w(e,~,6)/s(t)]]
if'set) ~ w(e,~,o) and set) > 0

= [k[e,~,o,s(t)/w(e,~,o)], 1(t,1)]
if'w(e,~,o) ~ set) and w(e,~,o) > 0 ,

where s: I ~ I and 1: IxI ~ I are def'ined by set) = t/2
and 1(t1,t2) = (1-t2).t1. wand k are the maps of'Lemma 7.16.
By [6; Theorem 6.3]~ r is continuous. ]]

Let ~ be an ~P-category such that (~(b,b), 1b) is
a NDR-pair f'or all object generators b. Let Q be a sub-
category of'RW~ satisfying:
(1) If'x E Q is a composite in RW], x = yoz, then y and

z are in Q.
(2) Suppose Da,p(~,b) contains trees that do not represent

de~omposable elements of' Q, then Da,p(~,b) is a pro-
duct, Da,p(~,b) = D'xIP, and D' u M~,p(~,b)c Ma,p(~,b)
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is an equivariant NDR, where M~,p(~,b) c Ma,p(~,b) is
the subspace of those trees that contain a vertex
labelled by an identity.

Lemma 7.19: Given an action PO: RW~ ~ REnd(Xo'.·.'Xn_1)
and a homotopy of functors 0t: Q ~ REnd(Xo' •••'Xn_1)
preserving objects, sums, and permutations, such
that POl Q = 00 • Then there exists a homotopy of
reduced M~p-fUnctors Pt: RW~~· REnd(Xo' •••'Xn_1)
extending Po and 0t •

Proof: By Lemma 6.4 we have to construct ho.otopies of
reduced M~P-functors Y~' q:RWP,q~ ~ ! , where

! = REnd(Xo' •••'Xn~1)' such that y~+r,q+s extends y~,q ,

r,s> 0, and such that y~,q is ca.patible with 0t. Far

this we have to construct maps
f ~: Q ~ (a,b)~ !(~,b)a,p,!-',q a,p,!-"q-

satisfying the requirements of Leama 6.4 •
Since (~(b,b), 1b) is a NDR-pair for all object gene-

rators, and since the trivial group of permutations acts
on it, M~,p(~,b) c Ma,p(~,b) is an equi~ariant NDR. (We
know that it is a NDR. The representing .aps are induced
by those of the NDR-pairs (~(b,b), 1b). Hence it trivially
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is an equivariant NDR-pair).
Induction start: For p = -1, y~1,q is uniquely determined

since RW-1,q~ consists of identities only.
Induction step from (p,q-1) to (p,q): We drop indices
whenever there is no danger of confusion.

Suppose Q = Q f3 1= Q'. Then f = f p f3 q isa.,p, ,q a.,, ,
ained on (MxoI~ u MtxI~)xI by ~,q-1, where I~ c IP

deter-

is the
cube determined by the collection f3 of links in the trees
of M. f furthermore is given on QxO = MxI~O (co.pare
p. 97) by PO. If D = D n Q contains ~ element whicha.,p
is not in Q', then D = D'xI~ , and D' u M' is an equiva-
riant NDR in M. f is determined on D'xI~I by tit·Denote

fl {[MxoI~ u (M'u D')xI~]xI u QxO} by g. Define
f: QxI ~ ~ by f = gor, where

r: QxI = MxI~I ~ [MxOI~ u (M'u Dt)xI~]xI u MxIlx0
is the retraction of Lemma 7.18. Since r is equivariant
and factors through (2.11) for each fixed t, f = gor
satisfies the requirements of Lemma 6.4 •

Lemma 7.20: Let (gi,Pi): (X,~) ~ (Y,v), i = 0,1 , be hoao-
topy ~-maps such that (go'po) ~ (g1'P1). If
(~(1,1),11) is a NDR-pair, then (iO'PO) ~ (&1,Pi).
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Proof: Let xt:(go'Po) ~ (g1'P1) be the given homotopy of
reduced M2TP-functors. Let Q be the reduced M3TP-subcate-
gory of RW(~*L2) generated by 01RW(~.L1)' i = 0,1,2 • By
Le..a 7.9 there exists an action 00: RW(~.L2) ~ REnd(X,y,Y)

such that 00°0
0 = (1y). , 00°01 = Po ' 00°0

2 = PO. Define
0t: Q ~ REnd(X,Y,Y) by
0tIOORW(~.L1) = (1y). for all t E I
°tI01RW(~.L1) = xt
0tI02RW(~.L1) = Po for all t E I •

0t is a well defined hQmotopy of functors sinc~ PO' xt'
and (1y). extend the actions ~ and V. Q satisfies the
requirements of Lemma 7.19. Hence there exists a ho.otopy
at: RW(~.L2) ~ REnd(X,Y,y) of reduced M3TP-functors
extending 0t and 00• 01 defines the required s-homotopy. ]]

Theorem 7.21: Let (go'po): (X,~) ~ (Y,v) be a ho.otopy
~-map and g1: X ~ Y a map ho.otqpic to gO. If
t~(1,1),11) is a NDR-pair, then g1 can be .ade into
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a ho.otopy ~-.ap (g1,P1): (X,~) ~ (Y,v) such that
(go'PO) ~ (g1' P 1) and hence (go'po) ~ (g1'P1) •

Proof: Let gt be the homotopy between go and g1. Let ~
be the subcategory of RW(~*L1) consisting of the identities
11 and 11,and of the aorphis. j = LB*L (1;(0,1)) only.

- 1
Define a homotopy of functors 5t: ~ ~ REnd(X,y) by
5t(j) = gt· Since (~(1,1), 11)is a NDR-pair, ~ satisfies
the requirements of Lemaa 7.19. Hence there exists a

2ho.otqpy of reduced M TP-functors Pt: RW(~*L1) ~ REnd(X,y)
extending Po and 5t• Since p10LB*L °A(O,1) = g1 ' Pt is a

- 1
homotqpy (go'po) ~ (g1,P1) • ]]
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§ 8 HOMOTOPY EQUIVALENCES AND HOMOTOPY TYPE

The aim of this chapter is to prove the following
two theorems:

Theorem 8.1: Let ~ be an M1TP-category with isolated iden-
tities. Let (f,p): (X,a) ~ (Y,~)be a homotopy ~-map
and f: X ~ Y a homotopy equivalence. Then (f,p) is
a s-homotopy equivalence, i.e. it is an isomorphism
in the category of WB-spaces and s-homotopy classes
of homotopy ~-maps.

Theorem 8.2: Let (X,a) be a ~--space and f: X ~ Y a
Ihomotopy equivalence. Then Y can be made into a

W~--space (Y,~)and f into a s-homotopy equivalence
(f,p): (X,a) ~ (Y,~).
If ~ is an M1TP-category with isolated identities,
the same holds if we replace ~-by ~.

By using the mapping cylinder these theorems reduce
to proving the statements for strong deformation retracts,
and this can be reduced in the case of Theorem 8.1 to
proving that it holds if f is the identity.
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In the proof that homotopy B-maps are s-homotopy-
equivalences it is often easier to work with the category
RW(~*Is1) rather than the category RW(~*L2). Recall that
IS1 is the category with two objects and exactly one mor-
phism between any two objects. We again can use the sim-
plified description for the trees representing the ele.ents
of RW(~*IS1)' (see p. 86).

The inclusion functors di: LO ~ IS1 ' i = 0,1 , given
by dO(O) = 1, and d1(0) = 0, induce inclusion functors

oi = W(1 * di): W~ = W(~*Lo) ~ RW(~*IS1).
As in §5 each action p: RW(~.Is1) ~ REnd(Xo'X1) induces
actions Pi such that

W~ ------ --,> RW(B*Is )

Pi 1 :: 1 :
End Xj·--·-·-------.----....--- --0>- REnd(Xo'X1)

co..utes for i I j , i,j = 0,1 •
The inclusion functors u,v: L1 ~ IS1 given by

u(O) = 1, U(1) = 0, and v(i) = i, i = 0,1 , induce in-
clusion functors



- 129 -

Le.. a 8.3: Any action p: RW(~*Is1) ~ REnd(X,y) induces
actions

v: RW(~*L2) ~ REnd(X,Y,X) and
IJ.: RW(~*L2) ~ REnd(Y,X,Y)

such that
voaO = pOW(1 * u) 1J.0aO= poW( 1 * v)
voa1 = poa1osO lJ.oa1 = poaOosO
voa2 = pOW(1 * v) lJ.oa2 = pOW(1 * u).
In.particular, ;~At: L,~ ~.Jilf ~.J.. Az: ISI~ ~*I5t c.tre the CQ.Kf)14tCaliflc/P5IO¥6)

vOaOOLB*L oA1(0,1) = pOLB*Is oA2(1,0)
1 1

2voa OLB*L1
0A1 (0,1) = POLB*IS1 oA2(0,1).

Hence the actions voaO and voa2 determine ho.otopy
~-aaps that are s-homotopy inverse to each others.

Proof: Define functors k,l: L2 ~ IS1 by
k(i) = ° i = 0,2 lei) = 1 i = 0,2

= 1 i = 1 = ° i = 1
k and 1 induce reduced MTP-functors )(= W(1*k) aad
A = W(1 * 1) fro. RW(~=IIL2)to RW(~*Is1 ) which satisfy
)(00° = w( 1 * (ko,t0» = w( 1 * u)
)(001 = W(1 =II(ko:,1» = w( 1 * (!1oaO» = a10sO
xoa2 = W(1 =II(kO!2» =W(1 =IIv) •

For! and ~ see p. 82. Similarly for A we obtai.
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• ]]

Le•• a 8.4: Suppose ~ has isolated identities. Let
(1X'V): (X,~) ~ (X,A)be a homotopy ~-.ap. Then
(1x,v) is as-homotopy equivale1ce.

Proof: Let Q' be the reduced M2TP-subcategOry of RW(~.IS1)
generated under e and co.position by all those ele.ents
the representing trees e of which are either of the follow-
ing foras:
(A) In each complete directed edge path of e the label of

the edges changes at .ost once, and then fro.1 to o.
I

(B) e is of the for. 001
1

(As in §5 and §6 the pictures give the labelli:ag of the
edges and a21 the value of I assigned to the.).

The space of representing trees of Q' is closed in
the space of the representing trees of RW(~.IS1). I.tro-
duce a relation among the trees of Q' by

°t1 to
1t

t1(R) ... or ...:,1 1t1 I
I
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and its consequences (i.e. if aDY such sequence of edges
occurs in a tree representing an element of Q', and if
1 E I is assigned to its incoming and outgoi.g edge, then
this tree may be reduced under (R». Let Q be the reduce4
2M TP-quotient category of Q' obtained by factoring out

these relations. Using the general construction of p. 33
it is easy to show that the morphism spaces of Q are in CG.

Define an action ~: Q ~ REnd(X,X) as follows: Each
.o~hism of Q can be represented as a co.positio. of suas
of elements which are represented by trees of the fora (A)

or (B), or which are perautations. Define
~{a,~,oJ = 1X if a is of the fora (B)

= v{a,~,oJ if a is of the fora (A).
This determines ~ ~iqUelY on Q. Since v{a,UAit,IOl =
if , ~ is compatible with the relation (R).

eB*Is IQ' induces an augaentation functor
1

e: Q ~ R(~*IS1)
Clai.: e is fibre hOBotopically trivial.
Proof: Call the vertices with the labels

"

and

a g-vertex. resp. a. f-vertex. and denote the. by sl resp.
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ff • Then (R) aeans gOf = 1, fog = 1, wher~ f and g are
the elements of Q represented by a tree consisting of an
f-vertex, resp. a g-vertex only.

The standard section LB*Is induces a section
1

a: R(~*IS1 )(B',l) ~ Q(~',1)•
(As usually B and at denote the sequences of length n in
the generator 0 resp. 1).

For the other aorphisa spaces we construct a different
section. For (~;(O,1 ),•••,(0,1)) e R(~.IS1 )(B,1') define
a(~;(O,1 ),•••,(0,1)) = {e,unit,O}, where e is the tree
with exactly three vertices on each (directed) edge path,
labelled by 1, ~, 1 in order, the edges change their label
after each vertex, and the value 1 is assigned to each
link:

Similarly defiRe the sectio. on R(~*IS1 )(~,1)by such
a tree, deleting the g-vertex at the root:

o
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and on R(~*Is1)(B',1') by deleting the g-vertices at the
twigs:

1

We have four kinds of trees, naaely those represent-
ing lIlorphismsa -+ 1', !o' -+ 1, ~ -+ 1, !!;' -+ 1'. Usin.g (R)
we can choose the representatives such that each repre-
sents a composition of elements of the first two kinds.
Replace
a.: B: -+ 1 by ...n na.or 0 g :

13:a' -+ l' by 130 t= g: !O' -+ l' -+ 1 -+ l' •

We furthermore repl&ce a.:B -+ l' by
gOfoa.~~ogn: B -+ B' -+ a -+ l' -+ 1 -+ l'

Let Y be the space of those represe.ting trees. Since
the identities in ~ are isolated, we can assume that no.e
of the representatives in Y can be reduced under the re-
lation (2.13). In addition we can assuae that sequences

g

t:
g

do not occur in any tree in Y, unless this tree
consists of this sequence only.

We ~re now going to construct the equivariant, t:ibrewise
det:ormation of C = Q(a,1') into the section. The det:or.a-
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tion of the other morphis. spaces is constructed a.alo-
gously and therefore is omitted.

Filter 0 as follows: F.O consists of all those ele-
ments that ca~ be represented by a point in Y which has
at Bost • g-vertices on any edge path. Then the lowest
filtration is two, and each element of F20 can be repre-
sented by a tree

g gel
/

B
yg 6
t

such that B is a subtree that does not have any g-vertex.
Deform F20 into the'section by mapping the values ti of the
links in B to u.t. at the time u, 1 ~ u ~ O. At tiae 0

1

the tree represents an element in the section.
We now want to deform F 0 strongly into F 10. Oon-n n-

sider a typical representative of F 0 (in Y):n

= 8
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Here B is a tree which does not contain a g-vertex, and
each A. Gees not have more thaa n-1 g-vertices in any

~

edge path (we consider the g-vertices below the Ai as a
part of the.). Let N be the space of the trees of the
for. B, and Mi the space of the trees of the for. Ai'
i = 1, •••,r • Index the Ai by 1, •••,r in such a manner
that A1' •••'~ contain an edge path with n-1 g-vertices
while ~+1, •••,Ar do not. Index the twig of B on which
Ai sits by i. Let M = M1 x •••x Mr •

e can only represent an element of lower filtration
if aa f-vertex is at a twig of B indexed (not labelled)
by i E (1,•••,k), or if we have link combinations

or

which do not include a twig, i. A1' •••'~. t is the
value to the particular incoming or outgoing edge of
the f-vertex. Call such a liak combimation a critical
sequence with value t, if it is part of a (directed)
edge path through n-1 g-vertices in some Ai' aad if it
does Bot contain a twig.

Let Mi', i = 1, •••,k , be the (closed) subspace of
.

Mi of those trees that contain a critical sequence i. each
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edge path that runs through n-1 g-vertices. Let ~ be a
subsequence or (1,•••,k). Let N~ be the (closed) sub-
space or those trees of N that have an f-vertex on the

bottom of the i-th twig for all i E ~, but .ot for
i E (1,•••,k) -~.

If a tree e of Z = N x M represents an element of
lower filtration, then e is in some N~xR1x •••xRkx~+1x ••xMr'
where Ri = Mi if i E ~ and Ri = Mi' if i ~~.

We are now going to defor. Z i.to the subspace or
those trees representil1g an element of lower filtratioll..
We do that by a triple inductioa: (A) oa the auaber k or
trees Ai that contain .-1 g-vertices i. SORe edge pa th,
(B) on the length of ~, and (C) on the total nuaber of

\critical sequences in the Ai. Notice that if ~ and £ are
subsequences of (1,•••,k) such that none is coatained in
the other, and e E N~ and ~ E N£ are related uader (2.12),
then both are relate4 to a tree V E N~n£ .Heace they are
dealt with in an earlier induction step. Si.ilar arguaents
apply to the other induction sta ges.

Start (A): For k = 0, e (see two pages ago) represents
an element of lower filtration.

Inducti~n step (A): Suppose we have constructed the defor-
.a tion for k-1 •
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We ~irst construct a strong de~oraation retraction
i.to the subspace o~ those elements that are either of
lower filtration, or that can be represented by a tree in
Ni x M, where i = (1,•••,k), or by a tree such that less
than k o~ the Ai's contai. a sequence through n-1 g-ver-
tices.
Start (B): ~ = ¢. Let S = (u1,•••,up) be the collection
of values assigaed to the links of the tree B labelled by
1, which lie on an edge path starting in a tree Ai'
i e (1, ••• ,k).

Start (0): Let q be the total nuaber of critical sequences
in A1' •••'~. Let q = O. Define H to be the deforaation
which changes the value ui E S to t.ui at the time t,

\

1 ~ t ~ 0 .Then H is well defined and coapa tible with
the previous induction steps. H1 is the identity.
Induction step (0): Suppose q> O. Let 1= (t1,•••,tq)
be the collection of values assigned to the incaaing, resp.
outgoing edges o~ the ~-vertices of the q critical se-
quences in question, (i.e. the values o~ the critical se-
quences). Note that

~
g counts as two critical sequences and that
~
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we neglect the values assigned to the links that start
or end in a g-vertex (they are always 1).

H is by induction defined oa all trees e for which
!_E oIq• For •• the lower faces e is related to a tree
with q-1 critical sequences, and on the upper faces one
of the critical sequences can be reduced by the relation

~efO(1I( AI,xH ;..,~o N.i.~M,~"'(1}""k),cOK1.f'tlibJd l4It'ilt
(R). Since our aim is to get o~t of N¢ x M keeping the
l~t Jelc("""o.lt·oll.~ o{ J~e "l~e.,. sjoQces N!,,~
ele.eBts of N~ ~ M fixed fop ~ ~ ¢, we want to co~struct
a strong deformation retractio.

IP+q -+ IPxolq u .Q.xlq

where .Q.= (0,•••,0) E IP • Since this deforaatio. retrac-
tion has to be compatible with relation (2.11) we want it
to be symmetric in the coordinates of IP and Iq (recall
p is the number af coordinates of 11). We construct such
a deformation later on in the proof.

Induction step (B): Length ~ = ••

Again we induct on q. Let ~ = (v1' •••,v.) be the
collection of values that are assigned to the outgoing
edges of the a f-vertices at the bottom of the twigs of
the tree B indexed by the elements of ~. Let !and 11 be
as above.
Start (0): q = 0. H is defined exactly on all those trees
e for which ~ E ala. On the lower faces e is related to a
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tree on which H has been de~ined by induction step
(B,.-1), and on the upper ones to a tree on which H has
been de~ined by induction step (A,k-1). Again we want to
de~ine a strong de~or.ation retractio., this time ~or

IP+. ~ IPxaIm U QxI·
which is symmetric in the coordinates of IP and Im.
Induction step (C): Suppose q > O. Then H has been de~ined
exactly for! E aIq or ~ E aI-, and hence ~or (!,y) E aIq+a.
Hence again we want a strong de~ormation retraction

IP+q+m ~ IPxaIq+m U QxIq+·
which is symmetric in the coordinates o~ IP, Iq, and Ia•

This defines H on the whole o~ N x M.HO(N x M) con-
sists of trees that,are related to a tree in Ni x M, where
i = (1,•••,k). We are now going to construct a strong de-
~ormation retraction o~ Ni x M into the closed subspace o~
all those elements which represent an element in C o~
lower ~iltration and such taat this deforaation extends
the de~ormation given by induction step (A,k-1).

Let ~ and 1be as be~ore.
Start (C): Denote the new deformation by K. By induction
(A), K has been de~ined on those trees for which ~ is in

man upper face of I • Hence we want a sy..etric strong
de~or.ation retraction
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Im -+ UIJR

m mwhere UI is the collection of upper faces of I •
Induction step (0): Suppose q > o. Then K is determined
on those trees e for which 1E oIq or ~ E UI·. Hence we
want a strong deformation retraction

Im+q -+ Imxolq u Ulmxlq

which is symmetric in the coordinates of la and Iq.

Since all deformations constructed are well defined,
continuous, equivariant and fibrewiae, the claia is proved
if we can find the required deforaations

Fs: IP+r -+ Qxlr u IPxolr

Gs: IP+r -+ IPxolr u UIPxlr
I

Let !!= (u1'•••,~ ), ~ = (v1 ' • • • , vr)' 0 ~ ui' v j ~ 1 ,
i = 1,•••,P , j = 1,•••,r • Let
t(s)=t(s,!!,~)= min[s, max(u1/(2-u1 ),•••,Up/(2-up)),n(v1 ), ••• ,

n(vr)]
where s E I and

n(v. ) = vi/(i-vi) if vi < i-
J.

= 1 if vi = 1
(1-vi)/(vi4) if vi > 1= '2 •

Note that t(s,!!,~) is continuous in.s, :9;, and ~ •
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Now define:
Fs(:!;!,:I)= {max[ 0,u1 +t(s). (u1-2)], •••,.ax[ 0,up +t( s). (up-2)],

lIS(v1 ),•••,ms(vr)l
where

ms(vi) = max[O,vi+t(s).(vi-i)]
= min[1,vi+t(s).(vi-t)]

if' vi E'; i
if vi > i.

Define
q(s)=q(s,:!;!,]J=min[ s, (1-U1 )/(2-u1 ),•••,(1-Up )/(2-Up) ,ne v1 ),

•••,n(v )],
r

where s E I and n(v) as above. Note that q is continuous
in s, :!:!, :I. Define
Gs(:!:!':!) = {min[1 ,q(s).(2-u1 )+u1],•••,min[1 ,q(S).(2-~)+Up]'

lIls (v 1 ), • • • ,BlS(v r)J ,

where ms(v) is defined as above, substitute only t(s) by
q(s).

Fs' and Gs satisfy our requirements on the deformations.

Let Q be the subcategory of RW(~*IS1) generated by all
those elements that can be represented by a tree of fora
(A). Since the projection Q' ~ Q is one-one on the trees
of this fora, there exists an inclusion functor
6: Q ~ Q. Now apply the reduced version of Theorem 4.9.
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We obtain a reduced M2TP-functor
p: RW(12*IS1) ...Q

extending O. By the choice of the section we have
~opoLB*Is °A(i,j) = 1x for all i,j = 0,1 • Hence ~op

1
provides us with an action which in view of Lemma 8.3
gives the required result. ] ]

Lemma 8.5: Let 12,Q be M1TP-categories and ~ a topologi-
cal categor,y with n objects. Let y: 12'"Q be a fibre
homotopically trivial M1TP-functor. Then
y*1: 12*~'"Q*~ is fibre homotopically trivial.

The proof is immediate. ]]

Lemma 8.6: Let A be a strong deformation retract of X.
i PA ...X ...A , pOi = 1A, and Ht: 1X ~ iop rel A. If

(A,~) is a W12--space, then X can be .ade into a
W12--space.(X,~) and p and i into s-homotopy equiva-
lences (p,'Jt):(X,I3)...(A,~) , (i,y): (A,~) ...(X,I3)
which are inverse to each other.
If 12is an M1TP-category with isolated identities
the same holds if we replace !: by 12 •
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Proof: For the time being put! = W~-. For each b E !(m,B)
the action n induces a map b = ion(b)op :

•

(We write p instead of pm as long as it is clear what we
mean). bOa = boa, because poi = 1A ' but unfortunately
1= iop f. 1X. This can be corrected by bringing in the
homotopy Ht. Using this data we define a category ~ which
acts on REnd(X,A).

Let J be the monoid of Example 3.5, denote the multi-
plication in J by III and 1 e J1 by u, Using J we are going
to construct an M1TP-category Q , which in addition with
M gives rise to the category ~.

Let Q(B,l) = !(~,i) x In , where In is the n-fold
product of J, n f. 1. Define Q(i,l) = (!(l,l)xJ u J)/-
where the equivalence relation is generated by

(1,u*w) ...(u*w)
with 1 e M(l,l) being the identity of M. Since the attach-
ing map f: u*J 4 !(i,l)xJ given by f(u*w) = (1,u*w) is
continuous and since (J, u*J) is a NDR-pair, Q(l,l) is in
OG. (Recall: u*J is the image of the upper faces of the
cubes In ander the attaching maps In 4 J 1 and hence isn-
a subcomplex of the OW-complex J).



- 144 -

Define an action of Sen) on Q(B,i) as follows: Let
a E !(B,i) and (v1,•••,vn) E In , ~ E Sen), n> 1. Then

(a;v1,···,vn)o~ = (ao~;v~(1),···,v~(n» •
Define Q now by the normal form construction.

Composition in Q is given as follows, motivated by the
action on REnd(X,A), see below:
Let (b;V1, •••,vn) E g(a,1)xJn, (X1 $•••$ Xn)o~ E Q(~'B)

miwith xi = (bi;wi) E !(~i'1)xJ , or xi = ui E J c Q(l,l),
i = 1, •••,n • Then
(C1) (b;V1, ••• ,vn) 0 [(X1 EJh •• $ xn)o~]

= [bo(b1 '$•••$ bn' );w1'x•••wn']o~
where (b.',w. ') = (b.,wi) if xi = (b.,w.) and

11111

(bi',wi') = (1;vi*ui) if xi = ui•
IIf v E J c Q(1,1) and W E J, then define

(C2) VO(b;V1,···,vn) = (b;V1,· ••,vn)
vow = v*w

This definition factors through the relation i.posed on
!(1,1)xJ u J and hence is well defined. Since it is in-
duced by the compositions in ! and in J it is continuous
and associative. 0 e J1 c J serves as identity. Hence by
the normal form construction, Q is an M1TP-category.
Let g be the reduced M2TPAcategory given by
g(!!,B) = Q(BhB), G(!!' ,a') = !(!!,a), g(!!' ,.!J = !(!!,a),
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and g,(!!,1')= Q(!!,l) for ID I. 1, and g,(1,1') = M(l,l)xJ
c Q(l,l). Define the remaining morphism spaces by a re-
duced version of the normal form construction.

To define composition in g,we embed M into Q by
b ~ (b;O,•••,O)

b e 1(~,1). Since
(b;0,••,0)o[(c1;0, ••,0)e•••e(cn;0' ••'0)]o~

,

= (bo(c1e•••e cn)o~;o, •••,o)
the composition in M is "induced" by the one in Q. Hence
composition in Q can now be defined to be the one in Q,
and hence is associative and continuous and has identities.
Note that (1 ;0,•••,0) serves as identity in Q(1',1'). It
remains to check that for a e Q(S,l'), b e Q(~',a), and
c e Q(a,l), aob and'cob are in the subcategory! of Q.
But this follows immediately fro. (C1) and (C2).

Define an action ~: Q ~ REnd(X,A) as follows:
~(b;v1' •••'Vn) = ioa(b)opo(Ry x •••x Hv) for

1 n

(b;V1,·.·,vn) e Q(~,l)
= Hv for v e J c Q(1,1)
= a(b)opo(Hv x •••x H ) for

1 vn

~(v)

~(b;O,.>••,O) =
(b;V1, ••• ,Vn) e Q(a,1')

t:or (bi 0,•••,a ) eQ (B ' ,1' )

f~ (bio,•••,a) e Q(a',l)=
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where Hv = Ht1o •••oHtn if v = (t1,•••,tn) e J.
2Since ~ is in normal fora as reduced M TP-categor,y, ~

is uniquely determined on the whole of ~. It is continuous
and by definition preserves sums and permutations. Since
HO = iX' and By°i = i, and poi = 1A it preserves identities
and compositions.

Define an augmentation x: ~ ~ R(!*IS1) by
x(bjV1, •••,vn) = (bj(i,j), •••,(i,j» if (bjVi, •••,vn)e~(~,b)
with ~ = (i,•••,i) and b = j, and
xCv) = (1;(0,0» if v e J c G(1,1).
x is well defined because of the normal form of ~. It is
continuous, and from the definition of composition in Q

it follows immediately that x is a reduced M2TP.functor.,
Define a section 0 of x by
(b;(i,j), ••,(i,j» = (b;u,••,u) e ~(~,j), ~ = (i,••,i),

(i,j) /: (1,0),(1,1).
= (b;O,••,O) e ~(~,j), ~ = (i,.~),

(i,j) = (1,0),(1,1).
We have shown (p.47) that I = J1 is a strong defor-

mation retract of J. Hence u e J1 is a strong defor.atioB
retract of J. Applying the product of the deforaation of
J to Q(~,1)and the identity deformation to M(B,i) , we
obtain an equivariant fibrewise deformation of ~ into
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a(R(!*IS1 )). Hence x is fibre haaotopically trivial.
Now resubstitute ! by ~-. Since

B = BB * 1: R(W~-*IS1) ~ R(~*IS1) is fibre homotopically
trivial by Lemma 8.5, BOX: ~ ~ R(~*IS1) is fibre ho.oto-
pically trivial.

Let r: W~- ~ ~ be the embedding given by
W~-(n,m)~ ~(Bt,m').Let ~ be the subcategory of RW(~-*IS1)
given by oOW~-. Define 0: ~ ~ ~ to be the e.bedding r.
o and D satisfy the requirements of Theorem 6.5. Define
't1: R(B"'*Is1)(1,1') ~ ~(1,1') , 't2: R(~-*IS1)(1' ,1)~ ~(1' ,1)
by 't1(b;(°,1)) = a(LB...bj(°,1 ))

't2(bj(1,O)) = a(LB ...bj(1,O))
where LB...is the standard section. By the Theore. 6.5

\ 2there exists a reduced M TP-functor p: RW(~-*IS1) ~ ~
extending 0 and such that
~op.LB-*Is °A(O,1) = pOiop = p and

1

~OpOLB-*Is °1(1,0) = i
1

where LB-*Is is the standard section and A: IS1 ~ R(~-*IS1)
1

the camonical inclusion.
By lemma 8.3 the lemma is proved putting ~ = ~opoo1

y = ~opoW(1 * u), ~ = ~opoW(1 * v). ]]
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Lemaa 8.7: Let A be a strong deformation retract of X.

A i ~X - p > A, poi = 1A' and suppose Ht: 1X et iop
reI A satisfies H ° H - H ( ) ()t1 t2 - max t1,t2 • If X,~ is
a WBN-space then A can be made into a W~--space
(A,n) and p and i into s-homotopy equivalences
(p,~): (X,~) ~ (A,n) and (i,y): (A,n) ~ (X,~) inverse
to each other.

Proof: Put M = ~~-. The action ~ induces a aap

for each x E M(B,m). Although this time 1= 1A, we have
ioy ~ XO;Y • We again correct this by bringing in the homo-
topy Ht. The condition on the homotopy Ht provides us with

\the condition we need fOD the degenerate trees.
Let L(~,b) be the subspace of all those representing

trees (e,~,o)of RW(M*IS1)(~,b) such that all links of e
are labelled by 1, and e is not a trivial tree. If any

edge of e is labelled by 0, then it is either the root
or a twig. L(~,b) is closed in the space of the represen-
tatives of RW(M.Is1)(~,b). Hence introducing the relations
(2.11), (2.12), (2.13) in L(~,b) we obtain a space ~(~,b)
in CG. The composition with perautations on the right is
the one induced from the composition of the representing
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trees with permutations. By applying the reduced version
of the normal form construction we obtain morphism spaces
into longer se~uences. Define composition in ~ as follows:
Use the ordinary tree composition but assign the value 1
to the newly created links iff these are labelled by 1.
If they are labelled by 0, shrink the new links (see p. 25)
to obtain a representative in L. This composition is well
defined, continuous, and associative since the composi-
tion in M is. Again the trees

:l1 and 1111 y

serve as identities. It follows from the tree representa-
tion that E9 is bifunctorial whenever it is defined (see
also Lemma 2.20). Hence ~ is a reduced M2TP-category.

Define an action y: ~ ~ REnd(X,A) as follows: Given
a representative (e,~,o)of am element in ~. Replace each
vertex v labelled by b E M by HtO~(b), where t is the
value of the link below v. If v is at the root simply
replace it by ~(b). Shrinking all links as defined on
p. 25, using x instead of $, we obtain aaps

where n is the number of twigs and m the nUllber of roots
in. e •
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For exam:ple

with the values
b

d

a

Def"ine
v{e,~,c5} = :pmolll(a,~,c5) if" {e,~,c5} e rH!!,!!')

= :pmom(a,~,c5)oin if" {e ~ c5} eG(n' .')- - ,_
= m(e,~,c5)oin i:f {a ~ c5}e Q(~' ,!!)
= m(a,~,c5) if" {e ~ c5}e Q(a,!!)

Since ~ and H are continuous, m is continuous. m f"actors
through the relations since ~ is an M1TP-:runctor, HO = 1X'
and Ht10Ht2 = Bmax(t1~t2). Hence v is well def"ined and
continuous. Since ~ is an M1TP-f"unctor v :preserves sums
and :permutations, and since :poi = 1A it :preserves iden-
tities. From the def"inition of"com:position in Q it f"ollows
immediately that v is a functor because H1 = io:p.

The standard augmentation eM*IS1
induces an augmen-

tation functor x: Q ~ R(M*Is1). The standard section
L induces a section of x and the standard def"orma-M*Is1
tion of"RW(!*Is1) induces a def"ormation of"Q into the
section. Hence x is :fibre homoto:pically trivial.
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Resubstitute WBN for M. Since
e = eB*1 : R(W~N*IS1) ~ R(~*IS1)-is fibre hamotopically trivial (Lemma 8.5), so is eOx •

Let Q = 01W~N C RW(~N.IS1). Define 0: Q ~ ~ as follows:
For x e 01W~N(n,1) let o(x) = LWB~(X) e ~(n,1). Extend
o over 01W~N using the nor.al fo;'. It follows i..ediately
that 0 is an MTP-functor. ~ and 0 satisfy the requirements
of the Universal Theorem. Now define

'1:1:R(~N.ls1) (1,1') ~ ~(1,1') and
'1:2:R(~N*IS1)(1' ,1) ~ ~(1' ,1) by

'1:1(b;(O,1» = l("~Nb;(O,1 »,unit,IOl

'1:2(b;(1,O» = t("~Nb;(1,O»,unit,IOl •
'1:1and '1:2satisfy the require.ents of Lemma 4.8. Hence

\

there exists a functor P:RW(~-.IS1) ~ ~ extending 0 and
such that
VOPOL~-.IS1 °A(O,1) = P and VOPOL~-.IS1 °A(1,O) = i •

From the tree representation and the choice of 01 01W~~

it follows that vopoo1 = ~ • Let a = vopooO. Then by
Lemma 8.3, putting Y = vopOW( 1 • u) and '1t= vopoW( 1 • v),
we obtain homotopy ~--maps (p,'1t):(X,~) ~ (A,a) and
(i,Y): (A,a) ~ (X,~),which are s-homotopy equivalences
inverse to each other. ]]
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Remark: If ~ is an M1TP-category with isolated identities
then Lemma 8.7 holds also if we replace ~" by ~.

Proof of the Theorems 8.1 and 8.2:
Let (X,a) be a W~"-space (or a W~-space and ~ has isolated
identities), and f: X ~ Y be a homotopy equivalence. Let
M be the mapping cylinder of f, M = (XxI u Y)/[(x,1)-fx] •
Let i: X ~ M and j: Y ~ M be the natural inclusions, and
p: M ~ Y the natural projection. Define H: 1M ~ jOp by

~(x,t) = (x,max(u,t»
Hu(y) = y

Then Hu oH = H ( ). Since r is a hoaotopy equiva-1 u2 max u1,u2
lence, i(X) is a strong deformation retract of M (see

I (p,x)
(M,a*)~·------------------(y,a**)

(j, 'II)

Appendix). In the following diagram
(r,p)

(x,«) -----!-----~ (x, e )

(k,O) (i,y)

let k: M ~ X be the retraction, a* the W~N-structure in-
duced on M by a and (k,O), (i,y) the s-homotopy equiva-
lences given by Lemma 8.6. Let a** be the W~--structure
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induced on Y by ~* and (p,x), (j,v) the s-homotopy
equivalences given by Lemma 8.7. The composite
(p,x)o(i,y) ~ (poi,X) = (f,X) is a s-homotopy equivalence

(f,X): (X,~) -+ (Y,~.*) ,

which proves Theorem 8.2 •
Now suppose f is given as a homotopy ~-map (f,p) and

the identities of ~ are isolated. Since p ~ fOk, and since
(f,p)o(k,6) is a ho.otopy ~-map, there exists an action
A such that (p,A) ~ (f,p)o(k,O) by Theorem 7.21. Define
(1y'~) to be the composite (p,A)o(j,v). By Lemma 8.4
there exists a s-homotopy inverse (1y,oo) of (1y,~). Now
(f,P)o(k,6)o(j,v)o(1y'w) ~ (p,A)o(j,v)o(1y'w)

~ (1y,~)o(1y'w)
(1y).

(k,6)o(j,V)o(1y,w)o(f,p)
~ (k,O)o(j,V)o(1y,W)o(f,P)o(k,O)o(i,y)
~ (k,O)o(j,v)o(1y,w)o(P,A)o(i,y)
~ (k,O)o(j,V)o(1y,w)o(p,A)o(j,v)o(p,x)o(i,y)
~ (k,O)o(j,v)o(p,x)o(i,y)
~ (k,O)o(i,y)
~ (1A). •

Hence (k,O)o(j,v)o(1y'w) is a s-ho.otopy inverse of (f,p).]]
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C1i:APrER IV: STRUCTURE THEORY

§ 9 STRUCTURE THEORY I

Throughout this chapter we assuae that ~ is an M1T_
category (so without permutations), such thatt (12(1,1), 11)
is a NDR-pair. We choose an M1T-category instead of an
M1TP-category, because the proofs are then slightly
si.pler. A refinement of the aethods used in this chapter
and the use of equivariaRt NDR's as studied in §7 should
give the same results for categories with permutations.

Again we denote the sequences of length n in the
object generators 0 or 1 of'RW(12*L1) by B, r-esp, B'.·
Denote RW(J2*L1)(~,1t) by C.' and regard ~ e.bedded in
RW(~*L1) by dO and a1" so that composition of elements of
RW(12*L1) with elements of W12makes sense.

For each W12-space (X,y) we are going to construct
a W12-space UX, a 12-space MX, which is a quotient of UX,
and a 12-space NX, which is a subspace of both UX and MX.
All three spaces have the same haaotopy type as X. In
addition UX and MX satisfy certain universal properties
with regard to homotqpy 12-maps.

Let ~ e W12(B,~)g and (X,y) be a W12-space. We denote
y(~)(x,; ••,x ) by ~.(x ,•••,x ) or simply by ~ •.! •1 n 1 n
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Let Kp,q = Tp(~,1')xIPxxq , where Tp = Tp(~*L1) ,
(see p. 26). Let K be the disjoint union K = U· OK ,P -p q= -l;>, q
and let K be the disjoint union K = U~=_1Kp •

Introduce an equivalence relation on K by
(9.1) (a ,0,lE)"" (cp ,0,lE) if'{a ,o} = {cp ,o} , where tJtl denotes

the equivalence class of'x in RW(~*L1)g i.e. if'
(a ,0i , (cp ,0) under (2.12) and (2.13). « 2.11) does
not apply).

(9.2) Suppose a in (a,o) has the value 1 assigned to a
link labelled by O. Let (cp 1 ,(1) and (cp 2,02) be ob-
tained by chopping this link (see p. 50). Then
(a ,0,lE) .... (CP1,01 ,t cP 2,021 ·lE) •

In (9.2) it suf'f'iyesto restrict our attention to
non-degenerate elements (a,o). Hence af'terhaving f'actored
out (9.1), the relation (9.2) reads:

where c E Cm' and 13 E W~(B'!!) •

Let ux = K/- , ~: K ~ UX the projection,
and ~p = ~I U:1Ki • Note that UOX = KO •

Call (a,O,lE) degenerate if'
(A1) (a,o) is degener~te (see p. 31)
(A2) the value 1 E I is assigned to a link of'a labelled

U X = ~(Up K )P -1 i

by 0 •
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Denote the closed subspace of the degenerate points
of ~,q by D~,q and of Kp by DKp. DKp consists of exact-
ly those pOints of Kp that are related to a point in saae
Kr with r < p. Note that if x,y e Kp - DKp' x - y, then
x = y.
Clai.: Each (e,O,~)E Kp is related to a unique non-dege-

nerate point.
Proof: Let A be the function associating with (e,o)a
unique non-degenerate ~lated point (Lemaa 2.14). From
the tree representation it follows that (e,o) can be
decomposed uniquely into (~1,01)o(~2,02)' such that the
value 1 is not assigned to any link in ~1 labelled by O.
Define p(e,o,~)= (~1,01'{~2,021.~)• The correspondence

I(e,o,~)~ p(A(e,O),~)associates with each element of
~,q a related non-degenerate one. It preserves non-dege-
nerate elements and factors through the relations (9.1)
and (9.2), which proves the clai••

Let Y c K be the (closed) subspace of all thosep,q p,q
points (e,o,~),for which (e,o) is degenerate. Let
Z~,p,q c Tp(S,i')xIP be the subspa ce of all those trees
of one type for which the value 1 is assigned to a par-
ticular link labelled by O. Chopping this link induces
a projection x: Z ~ Z' x Z" • DK is a~,p,q ~,p,q ~,p,q p,q
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finite union of spaces Y and Z • By Le..a 2.15 wep,q a.,p,q
have continuous maps f: Yp,q ~ Up_1X for all p and q.
Since

Z p qXxq xxi ~ Z' xZ" xXq 1xactiona., , a.,p,q a.,p,q
'Jt

Z, x ({ZIt }. Xq) p-1).U Xa.,p,q a.,p,q p-1
is continuous, the conditions (1), (2), (3) of p. 33 are
satisfied. Sin~ (I, 01), (I, 0), and (~(1,1),11) are
NDR-pairs, (K , DK ) and hence (K , DK ) are NDR-pairs.p,q p,q p p
Hence by the construction of p. 33 we obtain

Leama 9.3: (a) UX, UpX are in CG, P=0,1,2, •••
(b) UX is the direct limit of UOX c U1X c •••

(c) (UX, UpX), (Up+1X, UpX) are NDR-pairs for
all p ~ 0 • ]]

To construct MX, we introduce a further relation ill.
K. which is independent of (9.1) and (9.2). Hence MX is
a quotient of ux.
(9.4) Suppose e in (e,o) has the value 1 assigned to a
collection of links labelled by 1, which separates the
tree e into a tree ~ the edges of which are labelled by
1 only, and into a copse t . Let (e',o') be the pair
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obtained from (6,6)by shrinking (see p. 25) all links
in ~ • Then (6,6,~)- (6',6',~).

For example, suppose that in the following picture
the links on the separating line have the value 1 assigned
to the., while the values of the links above the line are
the same. Then the elements (e,6,~)and (~,o,~)are related
under (9.4).

o to
t

o

6
o

~ =

1

Let MX = K/- , 00: K.~ MX be the projection,
M X = W(UP1K.) and 00 = 001 UP1Ki • Note that MOX = KO •P - J. pI -

Call (6,6,~)degenerate, if it satisfies (A1) or (A2)
of p. 155, or if
(A3) the value 1 is assigned to a separating collection

of links labelled by 1, and chopping these links
decomposes (6,6) into a tree at least one link and
a copse.

Let RK be the subspace of the degenera te pointsp,q
of Kp,q , and RKp of those of Kp. RKp consists of eXactly
those points of Kp , that are related to a point in so.e
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Kr ' r < p. Notice that if x,y E Kp - RKp and x - y, then
x = y.

Suppose (6,6) is degenerate under (A3). From the tree
representation it follows, that we can deco.pose (6,6)
into (~1,01)o(~2,62)sUCh that the edges of ~1 are labelled
by 1 only, and (~2,62) is not degenerate under (A3). Let
(6,0)* be the pair obtained by substituting the values
of the links in 6 which caae froa ~1 by O. Then (6,0)*
is not degenerate under (A3). The correspondence
(6,6,A) ~ p(A[(6,O)*],A) associates with each ele.ent of
Kp a unique non-degenerate related one. Let Ca,p,q be the
subspace of Tp(g,l')xIP consisting of one type of trees,
such that the value 1 is assigned to a separating collec-
tion of links labelled by 1 such that the tree below this
separating collection has at least one link. Let x e Ca,p,q.
The correspondence x~ x* as defined above, induces a
continuous aap g of C into some Tr(~,l')xlr with r < p.
Hence the composite Cl) 10 (gx1): Cn xXq ~ M 1Xisp- ~,p,q p-
continuous. By the consideration of p. 157 we furtheraore
have continuous aaps

y ~ M Xp,q p-1
Z ~ M X.a,p,q p-1

Since RK is a finite union of spaces Y , Z ,p,q p,q a,p,q
and Ca,p,q the conditions (1), (2), (3) of p.33 are satis-
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fied. Using [6; Le..a 7.3] again, we find that RKp,q is
a NDR in Kp • Hence by the construction of p.33 we get:,q

Le..a 9.5: (a)
(b)

(c)

MX, MpX are in CG, p = 0,1,2, •••
MX is the direct limit of MOX c M1X c •••

(MX, M X), (M 1X, M X) are NDR-pairs forp p+ p
all p ~ 0 • ]]

NX is the subspace of MX and UX represented by all
points (e,6,~)of K, such that all edges of e with excep-
tion of the root are labelled by O. On this set of repre-
sentatives the relations defining MX and UX coincide.
Hence, if ~: UX~ MX is the projection induced by the

\relation (9.4), ~I NX is the identity.
If (e,6,~)E Kp represents an element of NX, then so

does p(A(e,6),~).Furthermore if NKp is the subspace of
those elements in Kp that represent an eleaent of NX, then
DKp n NKp is a NDR in NKp• Hence NX is in CG.

Definition 9.6: Let (Z,6) be a ~-space. Then the W~-struc-
ture on Z given by 6oe~: ~ ~ EnciZ,is called the
w~-structure on Z induced by 6 •
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Leaaa 9.7: (a) UX is a W~-space (UX'X) and there exists
a homotopy ~-map (u,~): (X,y) ~ (UX,X) •

(b) MX is a ~-space (MX,x) and there exists a
homotopy ~~ap (m,v): (X,y) ~ (MX,x*),
where x* 1s the W~-structure on MX induced
by x •

(c) NX is a ~-space •
(d) ~: (UX,X) ~ (MX,x*) is a ~-homo.orphism •

Proof: We use the relation (9.2)*.
let Yi E Up.X be represented by (ci'~i) E

l.

(Recall that C_ = RW(~*L1)(~,1')). Define
a..(Y1'•••'Yn) = {a.o(c1$···$Cn),~x •••x'!"'JE U X-I.... P1+•••+Pn
Extend this definition ~o actions of a.'E W~(a,~) using
the normal fora of W~, and taking the m-fold product of
the above definition. Since (ux)n is filtered by

n P1 Pn..(UX) = u + +p _p(U X x•••x UA) and since the topo-
p P1 ,•• n-

logy of UX is the quotient topology from the disjoint
union of the cqxXq under (9.2)*, this defines a continuous
action X of W~ on UX. To define the action ~ :RW(~*L1 ) ~
REnd(X,UX) it suffices to define the action of elements
of Cm caapatibly with the action y on X and X on UX. Let
j3 E Cq. Define
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(3.(x1,···,xq) = {(3ix1,···,xql ·
Use the noraal ror. of RW(~*L1) to extend this definition
over the whole of RW(~*L1). It clearly is compatible with
the action x. For a E W~(B'~) and (3E em we have
«(30a).(x1,···,xn) = {(30a;x1,···,xnl

= {(3;a. (x1 ,•••,xn)J
= (3.(a. (x1 ' • • • , xn)) •

Hence ~ is a continuous functor. By definition it preserves
2sums. Hence it is a reduced M T-functor, extending y and x•

•
u = ~o"B*L 01\(0,1) is given by u(x) = hB*L (1 ;(O,1));xl.Note,_ 1 _ 1

that u: X ~ UX is an inclusion (u(X) is closed in UX).

(b) Since MX is a quotient of UX, it is also a quotient
of the disjoint union of the C xXq• Let (3

I q

let Yi E MPi X be represented by (ci'~i)E
E ~(B,l), and
C xxqi• Defineqi

the action x by
(3.(Y1'···'Yn) = l(,,~(3)o(c1$···$cn);~x •••x~l

where {xl as usually denotes the equivalence class of x.
Using the normal fora of ~, we can extend this definition
uniquely over the whole of ~. The relation (9.4) assures
that x is a functor. For if a E ]2(!!,j.,) and (3E ~(B,!l),
(3= (31$.·.$ (3. ' then (a°(3).(Y1'•••'Yn) is represented
by (e,O,~x •••x~n)' where e is the tree with the vertex
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at the root labelled by (ao~), the representing trees
A1, •••,Au or c1, •••,cn on its incoming edges, and the
value 1 assigned to each or these edges,

e =

while a.(I3.(Y1'•••'Yn)) is represented by (q>,o,~x ••• x~),

where q> is the tree with the vertex a at the root, the
vertices on top or its incoming edges labelled by
131,•••,13.' and the trees A1, •••,An sitting on the in-
coming edges or the 13.'Se

J.

q> =

The value 1 is assigned to the links ending in some l3i or
in a. By relation (9.4) we can shrink the links below the
vertices 13i.But then we obtain the representative ror
(aol3). (Y1' ···,Yn)·
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Since the filtration of MX induces the one of (MX)n,
x is an M1T-functor.

To construct the hOllotopy J2-aap (a,v): (X;y) ~ (MX,x *),
we have to extend the actions "( and ~ of 0 iWJ2c RW(J2*L1),
i = 0,1 , over the whole of RW(J2*L1). Let ~ E On. Define v
by

~ •(x1'•••,xn) = {~; x1 '•••,xnl
and extend this to an action of RW(J2*L1) using the noraa~
form. As in part (a) it follows that v extends,,( and x*,
and is functorial. Hence v is a reduced M2T-functor •
• = vO"B*L °A(0,1) is given by m(x) = {C,B*L (1;(0,1 ));xl.

- 1 - 1
Note that .: X ~ MX is an inclusion.

(c) The ~-structure A ,of NX is defined on representatives
as follows :Let a.E J2(l!,1),and let (6i'oi'~i) E KPi '

i = 1, •••,n, be representatives of elements in NX. Each
edge of 6i with exception of the root is labelled by O.
Let ~i be the label of the vertex at the root of 6i, and
let Ai1, •••,Aik. be the subtrees of 6i sitting on the

~

inco.ing edges of ~i. Let ~ be the tree with the vertex
at the root labelled by a.o(~1$•••$ ~n)' and the trees
A11, •••,Atk1, •••,An1, •••,Ankn sitting on its incoming

edges. Assign the values of the links of the 6i's to the
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links of ~ (the inco.ing edges of nO(~1$· ••e ~n) have
the values of the incoming edges of the ~i in 6i).

~ = Ank
n

Let (~,o)be the pair thus obtained. Define A by
a.(L61,01'.!.tl,•••,{6n,On,~1) = {~,o,~x •••x~nl •

Fro. the tree representation it is clear that A is an
MiT-functor.

(d) Let a e WB(B,1), and let Yi e UX be represented by
lB.

(ci'~i) e C•.xX 1. Then
1

a.(Y1 ,···,yn) '= [o.o(c1$···$ cn),~x •••x~J
Under relation (9.4) the representative
[o.o(c1$•••e cJ~ x•••x~n] of MX is related to
[(LBoeB(a»o(c1e •••$ cn);~x •••x~n]' which represents- -e~(a).({Y11' •••'{Ynl), where {Yi1 is the equivalence class
of Yi in MX. Hence, since W~ is in noraal for., ~ is a
W~-hoaoaorphi sa. ]]

Re.ark 9.8: (1) Fro. the tree representation it follows
i..ediately that the haaotopy ~-.ap
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(m,v):(X,y) ~ (MX,x*) is the canonical composite
or the W~-homo.orphis. ~ with the homotopy ~-.ap
(u,~): (X,y) ~ (UX,X).

(2) u(X) and .(X) are subspaces of NX. Hence u and
m factor into X c NX c UX and X c NX c MX. The
images of u and m in NX agree.

(3) We can construct W~-ho.amorphisms (UX,X)~ (NX,A*),
where A* is the WB-structure on NX induced by A,
and a ~-ho.omorphism (MX,x) ~ (NX,A). Since we
do not use them we refrain from giving the defi-
nitions.

Theorem 9.9:
(a) Each homotopy ~-map (f,p): (X,y) ~ (Y,O) factors

uniquely as (f,p) = UfO(u,~), where
Uf: (UX,X) ~ (Y,O) is a W~-homomorphis. and
Ufo(u,~) the canonical composite. Further, Uf
is a continuous function of (f,p).

(b) Let (z,n) be a ~-space and n* the v~-structure
on Z induced by n. Then each homotopy ~-map
(f,p): (X,y) ~ (Z,n*) factors uniquely as
(f,p) = Mfo(a,v), where Kf: (MX,x) ~ (Z,n) is a
'~-.omomorphis. (and hence a W~-ho.omorphis.
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(MX,x*) ~ (Z,~*)) and Mfo(m,v) the canonical
composite. Furthermore, Mf is a continuous func-
tion of (f,P)•

Proof: p induces maps f : C xXn ~ Y, which in turn deter-n n

mine maps ~,p: Tp(a,l' )xIPxXn xxi cnxxn f • Y , where
n

X is the characteristic map for Tp(~,l')xIP. ~ is induced
by the identities Tp(a,l')xIPxxn = ~,n. Hence if Uf with
the required prqperties exists, then Uf must be induced
by the collection of the hp's, h n: K n ~ Y. Sincen, -n,,t:' p,

p is a functor, hn,p respects the relations (9.1) and
(9.2). Hence it indeed induces a map Uf: UX ~ Y, and the
part (a) is proved if we can show, that Uf is a W~-homo-
morphism: Let ~ E W~(~,l)be represented by (e,o) in
Tp(B,l)xIP, and yJ.'E UX by (~i'0J.·'~i)E K i 1Pi,qi' = , ••• ,n •
Then
Uf[~.(Y1,···,yn)]
= ~,r[ (e,o)o[(~1,01)G)••·G)(~n,on)];~x•••x~n] some r,.
= fm({e,ol°[{~1 ,o11G)···G){~n,onl];.e.., x•••x~n)
= {e,ol.[f~ ({~1,011;~)x •••xf~({~n,onl'.!n)] since f.

is induced by an action
= ~.(Uf(Y1)x •••xUf(Yn)) •
From the definition it is obvious that Uf is a continuous
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(b) p induces maps
maps h : K =--p,n p,n

fn: cnxxn ~ Z, which in turn induce
Tp(,n,i' )xIPxXn ~ cnxxn f )Z. If Mf

n

exists it must be induced by the collection of maps ~,n.
Since Z is a ~-space and p an action, hp,n respects (9.2)
and (9.4). By definition it respects (9.1). Hence the
collection of the h n indeed induces a map.Mf: MX ~ Z.p,
It remains to show that Mf is a ~-homomorphism. Let
~ E ~(a,l),and let Yi E MX be represented by (~i,oi'~i) in
K . 1 ThPi'~' ~ = ,.••,n. en
Mf[~ •(y1'•••,Yn)]
= hr .[LB(~;(1,1 »o[(~1,01 )ED•••ED(~n,On)]'~xooox~], -
= f:ll.(L~o[{~1'011ED•••e{~n,onl],~x •••x~n)
= (e~OL~(~».(f<L, {~1,01'~ lx•••xfqn{~n,on'.!nl) since fm is

induced by an action and Z has the induced W~-struc-
ture

= ~.(Mf(Y1 )x•••xMf(Yn»·
From the definition it is clear that Mf is a continuous
function in (f,p) • ]]

Theore:ll.9.10: X is a deformation retract of NI (strongly).
NX is a strong deformation retract of UX.
NX is a strong deformation retract of MX.
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Proof: X c NX is the subspace of KO = UOX = MOX c NX of
all triples (e,ro,x), where

e = :r
Recall that each element of NX is represented by a triple
(e,~,~) such that each edge of e is labelled by ° with
exception of the root. Using the relation (9.1) we can
choose the representatives such that the vertex at the
root of e is labe&led by 1 E ~(1,1). (Substitute the
vertex at the root by the subtree

a is the label of the
vertex at the root of e

1

and assign the value d,to the new link between the verti-
ces labelled by a and 1. Hence

The strong deformation retraction is induced by a defor-
mation of the space of these representatives: Define
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Ht(U1' •••'~) = (max(t1,u1),···,max(tp'up»' where ti = t
if ui is assigned to a link ending in the vertex at the
root, and ti = 0 otherwise. Since links with the value 1
are not affected Ht preserves the relation (9.2). Since
the Ilultiplication "max" on I is associative, Ht also
preserves the relation (9.1). H1{e,o,~1 can be represented
by a triple (~,o,~)such that (~,o)represents a compo-
sition (LB*L (1;(0,1 »)oz. Hence by the relation (9.2),

- 1
H1{e,o,~1 E X. Note that throughout the deformation the
elements of X stay fixed.

Define the strong deformation retraction of UX into
NX by
Ht{e,o,~l = {e,Ht(o),~l with Ht(U1, •••,up)=(t1.u1, ••,tp.up)
where ti = t if ui is 'assigned to a link labelled by 1,
and ti = 1 otherwise. Since links labelled by 0 are not
affected, (9.2) is preserved, and it follows immediately
that (9.1) is preserved. Notice that Ht keeps the elements
of NX fixed since only the roots of their representing
trees are labelled by 1. HO{e,o,~l E NX •

The deformation retraction of MX into NX is more co.-
plicated. Filter MX as follows: FnMX is the subspace of
MX of those elements that can be represented by a triple
(e,o,~) such that at .ost n links of e are labelled by 1.



- 171 -

Notice that the suba~ace of the representing elements of
FnMX is closed in the space of the representing elements
of MX. FOMX = NX. We are now going to define a strong
deformation retraction of FnMX into Fn_1MX.

Consider a typical representative (e,O,~)of FnMX with

e =
1

The roots of A1 '••• ,A:tc can be labelled by 0 or 1. Index
A1' •••'~ such that A1, •••,Ar have their roots labelled
by 1 and Ar+1' •••'~ by O. Index the incoming edges of
~ by the indices of the trees sitting on them. We con-

I

sider one type of trees only.
Let Pi be the space of the trees of the type of Ai.

Let Pi be the subspace of those trees Ai of Pi such that
the value 1 is assigned to a collection of links of Ai
labelled by 1, which separates Ai into a tree each edge
of which is labelled by 1 and a copse. Since (Ip 1) is a
NDR-pair, Pi is a NDR in Pi. Let Qc P1x •••xPr = P be the
subspace of all those copses A18) ••• e~ such that the
value 0 is assigned to a link labelled by 1, or a vertex
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with label 1 E ~(1,1)has the inco.ing and outgoing edge
labelled by 1. Since (I, 0) and (~(1,1),11) are NDR-
pairs, so is (p, Q).

Let! = (t1,•••,tr) be the collection of values
assigned to the incoming edges of ~ indexed by 1,•••,r.
Case I: r ~ k. Then (e,6,~)represents an element of

( ) r r rFn_1MX iff A1e •••eAr E Q or ! E LI where LI c I is
the collection of lower faces of Ir. Hence we want a strong
deformation retraction

r r rP1x •••xPkxI ~ QxPr+1x•••xPkxI u P1x •••xPkxLI
Since QxPr+1x •••xPk c P1x •••xPk is a NDR and since Llr

is a strong deformation retract of Ir, such a deformation
retraction exists by [6; Theorem 6.3].

CaseII: r = k. Then (8,6,~)represents an element of
F 1MX iff one of the following conditions holds:n-
(1) A = Aie•••~ c Q

(2) ! E Llk
(3) for each i either ti = 1, ti E!, or Ai E Pi. But at

least one Ai is in Pi for some i.
(4) ~ = 1

Construct the deformation H of F MX into F 1MX byn n-
induction on the nuaber of trees in A = A1e •••~ that
are in some Pi. Let pq be the subspace of P of those
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copses, such that at least q of their trees are in some
~el1.ce) it Ae _k Ht!k ePi. Then each: eleaeft'6of p-,'represents an element of

lower filtration.
Suppose inductively that H has been defined on all

elellents te,o,.!}, for which the subcopse A is contained
in pq+1.

Let A e pq; wloi A e Pix •••~P~)tPq+1x•••xPk' which we
denote by R. H has been defined on {a,o,.!} iff
(5) A1$ •••~ e Q
(6) Ai e Pi for SOBe i ~ 1, •••,q
(7) ! e Llk u {(t1, •••,tk) e Ik I

we denote by GIk,for ~..o
e t' .t. € L1k w'ltjc~ ve <til'll'''\. Jef,to!( ha CI ~

(8) a. = 1 <I

Let B;= ~(ls,i) and B' = ¢ if k ~ 1, B' = (1
1
) if k = 1 •

Let R' c R be the subspace of all those copses A satis-
tyi~ (5) or (6).Since (I, 0), (I, oI), and (~(1,1),11)
are NDR-pairs, so are (R, RI) and (B, B') and hence
(RxB, RxB' u R'xB). We want a defor.ation retraction

RxBxlk ~ (R'xB u RxB')xlk u RxBxGlk •
By ~; Theorem 6.3) it suffices to show that there exists
a deformation retraction

Ik ~ Glk.
If q ~ 0; then Glk = Oxik-1 u IxG'Ik-1, where
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G t Ik-1 = Lrc-1 u {( t2,•••,\:) e Ik-1 I tq+1=•••=tk=1} •
(Ik-1, GtIk-1) is a NDR-pair. Since 0 is a deformation
retraction of I, there exists a deforaation retraction
Ik ~ GIk for q ~ o.

In view of condition (3), GIk reduces to LIk if q = 0,
and LIk is a deformation retraxt of Ik. ]]

Corollary 9.11: UX and MX have the saae homotopy type as X.

Corollary 9.12: If ~ is an M1T-category with isolated
identities, and (X,y) a W~-space, then

(u,~):(X,y) ~ (UX,X) and
(.,v): (X,y) ~ (MX,x*)

are s-homotopy equivalences.

This follows from Theorem 9.10 and Theorem 8.1 ]]

Corollary 9.13: Let ~ be the M1T-category of Exaaple 2,
p.9. Then any W~-space is of the same ho.otopy type
as a topological aonoid.

The last result has been known to J.F. Adaas and
J.D. Stash~ff (unpublished)g but their topoloiical aonoid
see.s to be different fro. our monoid MX.
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§10 STRUCTURE THEORY II

The results of this chapter are entirely due to
Dr J.M. Boardman. We enclose them to give some indication
of applications of the theory we have developed.

Definition 10.1: A space X is called an E-space if it is
given an E-structure, which consists of an M1TP_
category ~, acting on X, for which ~(D,1) is
contractible for all n.

Main Theorem 10.2: A CW-collplex X admits an E-structure
with ~O(X) a group, if and only if it is an infinite
loop space.

Sketch proof.
X is an infinite loop space if and only if there is
a sequence of spaces Xn and homotopy equivlences
Xn ~ ~+1 for n ~ 0, with X = XO. Careful use of
mapping cylinders and telescopes enables us to find
a space Y homotopy-equivalent to X, and spaces

••• such that
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Example 4(P.14) shows that the space Y = flDynadmits
a category of operators ~, which becomes highly connected
for n large. Moreover, we can include ~ in ~+1as a
subcategory of operators, so that the union Un9n acts on
Y. This is an E-structure on Y. By Theorem 8.2, given
a category ~ acting on Y, we can make ~-act on X, and
this is another E-structure on X.

Conversely, suppose we are given an E-structure on X.
In t~is direction the theorem reduces to the following
theorem, as inducDion step:

Theorem 10.3: Given an E-space X, where X is a CW-comp1ex,
for which ~o(X) is a group (by means of the E-structur~
then there exists a "classifying space" BX such that
X ~ flBX, and BX is an E-space, and BX is a CW-comp1ex.

The first step is the construction of a good category
to act on E-spaces. What we need is a category ~-, in
which each space ~(n,1) is a contractible CW-complex on
whiCh the symmetric group Sn acts freely and ce11u1ar1y.

We now return to the given E-structure on X, and
deduce from it by Theorem 4.9 an action of W~ on X, where
! is the category of Example 2, p.9. Then WA also acts
on x". We now use the relative universal property many times.
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For each point a E ~(~, g) we construct a homotopy A-map
fa:Xm ~ X, n continuous in a. These must behave properly
with respect to products e and permutations. However, we
cannot compose homotopy !-maps. Whenever a and ~ are
composable, we construct a 2-simplex of the semi simplicial
complex Map! with faces fa' f~ and f~a. This corresponds
to an "edge" of ~-. Similarly for higher-dimensional
simplexes, although the details become vastly more
complicated. Vlhatwe now have is a kind of E-space in the
"categcrv" of WA-spaces.

The next step is to reduce all the W!-actions to
!-actions, the homotopy A-maps to ~-homomorphisms, etc.
The main tool far achieving this is Theorem 9.9 and
Corollary 9.11 which first replaces X by the universal
monoid MX, and continues with the help of the restricted
Kan extension condition. Much complication is caused by
the fact that the natural map M(XxY) ~ MXxMY is only a
homotopy equivalence, so that homotopy inverses have to be

chosen. Now monoid homomorphisms can be composed, which
enables us to replace the semi-simplicial gadget by an
E-space in the category of monoids, in which all the actions
are monoid homomorphisms.
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Finally we apply a suitable classifying space functor
B, and define EX = BMX. The most convenient is Milgram's
functor [4], because it has the property B(MX)n = (BMX)n.
Thus BX becomes an E-space, as required. Further, it is
a CW-complex. Milgram [4] proves that flBMX ~ MX which with
MX ~ X (Corollary 9.13) shows that flEX~ X, provided that
~O(X) is a group.

Of course the theorem can be strengthened in all the
obvious ways. The homotopy equivalence between the given
E-space and the constructed infinite loop space can be
made into an equivalence of E-spaces. Also we can consider
higher-dimensional "simplexes" of E-actions, in the spirit
of Map~, and prove results about these.
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APPENDIX

The following lemaa has been stated b7 A. Dold
[1; Satz 3.6]. A proof of the dual situation can be found
in [2; Theorem 6.1}. The le..a holds under slightly

<weaker conditions.

Lemaa (Dold): Given cofibrations i, it and a ho.otopy
equivalence :f

A/~
X :f Y

such that fOi = it. Then we can choose a homotopy
\

inverse 1''' and homotopies Dt: X -+ X, Dt t: Y -+ Y,
such that Dt: f"0:f et idX reI iA, and Dtt: :f°f" et idy
reI i'A.

Proof: Let f' be any homotopy inverse of :f,and F: XXI -+ X
a ho.otopy between ftof and idX• Since
FO(ix1)1 AxO = :f'ofoi = f'oit, and since it has the HEP
(ho.otopy extension property), there exists an extension
o:fFO(ix1) over YxI, i.e. a .ap G: YxI -+ X such that
GO = GI YxO' = :ft, and GO(i'x1) = FO(ix1). Let
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r" = G1 = GI Yx1 • Since f"CI!ft, it is a homotopy equi-
valence. f"oi' = F1°i = i. Hence fItis a .ap "under" A.
Let H: Xx[a,2] ~ X be given by

{
G(fx, 1-t)

H(x,t) =
F(x, t-1) 1 <; t <; 2 •

Since G(fix, 1-t) = G(i'x, 1-t) = F(ix, 1-t), we have
HO(ix1) = FO(ix1) - FO(ix1), (on the right side we have

at.;t<1

the addition of hoaotopies). Hence there exists a ho.o-
top)"K': Ax[a,2]x[a,1] ~ X such that K': Hoi Cl! (constant on :I)

rel «a) u (2», i.e.
t2r-----------------------------~

const i

coas t i

K' const i

Ho (ix1 ) 1i.-+-~--~----~~------~--ri,~~~----~FO(ix1) f'ofoi FO(ix1 r t1
= f'oi'

K'(a,a,t2) = ia
K'(a,2,t2) = ia
K'(a,t1,a) = H(ia, t1)
K'(a,t1,1) = ia •

Ax[a,2] Xx[a,2] has the HEP. Hence there existsix1
a map K: Xx[a,2]x[a,1] ~ X, such that KO(ix1x1) = K' and
KI Xx[ O,2]xa = H. Now define D: Xx[ a,4] ~ X by
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K(x,O,t)
D(x,t) = K(x,t-1,1)

K(x,2,4-t)

° < t < 1

1<t<;3
3 < t <;4

Then D(ia,t) = ia, since we .ove along the "boundary"
parts of K' which are constant on i.
D(x,O) = K(x,O,O) = H(x,O) = f"of
D(x,4) = K(x,2,O) = H(x,2) = idX•
Hence D: f"of CIf idx rel iA...

Apply the procedure to f" to obtain a ho.otopy inverse
g and a homotopy L: gOf" CIf idy rel i'A. Let D' be follow-
ing combined homotopy:
fOf" Cl (gof")o(fof") = gO(f"of)of" CIf gOf" Cl id___ •

-Lofof" gODOf" L ~
Since fof"oi' = fOi = i'l,and gOf"oi' = gOi = i' j this
co.bined homotopy is a hamot~y rel i'A. ]]

iCorollaty: Let A c X be a cofibration which is a ho.otopy
equivalence. Then there exists a retraction p: X ~ A
and a ho.ot~y Ht: iop Cl i~ rel iA, i.e. iA ls a
strong deformation retract of X.

Proof: Use the previous Le..a with f = i, i = idA' and
i' = i. ]]
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The following is a summary of joint
work with my supervisor, Dr J.M. Boardman.
We enclose it here to illustrate the
position of the theory in a more general
context.



HOHOTO}"lY-EVERYTHING_H-SPACES
by

J.M. Boardman and R.M. Vogt M~rch. 1968

An H-space is a space X with basepoint e and ]IlultiJ?-l_!-9_g.tion
map m: X2 = X x X-··~ X, such thnt e is a homotopy identity -
the maps x ~~ m(x,e) and x ~~ m(e,x) are homotopic to the
identi ty map 1 of X. (We t ake all maps and homotopies in the
based sense. vVe use the k-topologies (i.e. compactly generated)
throughout in order to avoid spurious topological difficulties.
Then fUnction spaces have a canonical topology, obtained from the
compact-open topology.) We call X a m9J:LoJ...9.if e is a strict
identity and m is associative.

In the literature there are various kinds of H-space:
homotopy-associative, homotopy-eommutative, strongly homotopy-
commutative [4], and A -spaces [3]. In the last two cases, part

00

of the structure consists of higher £~h.erenc~ conditions and
homotopies. In this note we introduce in §2 the concept of
homotop~~verything H-space, in which all possible coherence
conditions hold; we abbreviate this to J:D-sPll~' 'J1!e also define
." . R4J.!J-maps,ln <$ • Our two main theorems are Theorem A, which is the
structure theorem for E-spaces, and Theorem C, which shows that
many familiar spaces such as BPL are in fact E-spaces. We sketch
few of the proofs. 'Full details will appear elsGwhere? in due course.
Many of the results are folk theory.
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A space X is called an infinitiL.J..Q.9l2.".Eill8.ceif there is a
sequence of spaces X. and homotopy equivalences X. !!:! .nX. 1

1. 1. 1.+

for i ~ 0, such that X = XO•

Theorem 1-1.

A CW-complex X admits an E-space structure with 7t 0 (X) a group,
if and only if. it is an infinite loop space. (Any multiplication
on X induces a multiplication on'1to(X)). Every E-sp2ce X has a
"classifying space" BX which is also an E-space •
.1.:.. Th~ll;;.;;c;.::..;h:.:;i.:.:n;.;::;.e
Here we develop a machine for constructing nl~erous E-spnces.

We consider the category 1. of real inner-product spaces of
countable (algebraic) dimension, and linear isometric maps between
them. As examples we have W, with orthonormal base {e1,e2,e3, .0.1,

and its subspaces .Rn with base {e1,e2, •••,en}' for n fini te • Every
such space is isomorphic to one of these; in particular ~ $ R~ ~ ~

I

We topologize l..(A,B),the set of all isometric linear maps from
A to B, by first giving A and B the fin~~e topology, which makes A
the topological direct limit of its finite-d.imensional subspacos.
(The obvious metric topology on l(A,B) is not acceptable.)
&~~ The space 1.(A,~) is contractible.
,troof This result is El consequence of two eusy homotopies:

(a) i1 !!:! i2: A -.-~ A$ A"
(b) i1 !!:! a: If ---7 11' $ 11', where a is cm isomorphism.

To obtain (b), we first construct a homotopy 1 !!:! f: IfA') ~ If',
Where f is defined by fen = 02n' by applying the GI'um-3chmidt
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orthogonalization process to the obvious linear homotopy f'tgiven
by f'te = (1 - t)e + te2 0 Then we compose with an isomorphismn n n
a: ~ ~ ~ $ ~ chosen to make aof' = i1 0

Now f'ix g: A ~ Ir, and let h: A ~ go be a typical linear
isometric embedding. We construct a contraction homotopy

-1Qt of'l.(JI.,:Ef» 0 For the f'irst half', we take QOh = h = a oQ.oh,
Qth = £1-1 oi1 oh, and use homotopy (b). For the second half' we
rewrite Q~h = a-1oi1oh = a-10(h$ g)oi1' take Q1h = a-10(h $ g)oi2'

( ) -1 .and use homotopy a. But <11h= a _oJ.2og, which is independent of h.

Thus I(A,go) is contractible.
Assume we have a f'unctor T def'ined on the category 1, taking

topological spaces as values, and a continuous natural tro.nsformation
cu ILed 'Whitney sum w: TA x TB -7 T (A ED B), such that

(a) Tf is continuous in f'E l(A,B),
(b) TEO consists of one po,int (which will serve as basepoint

of' TA for all A),
(c) w preserves associativity, commutativity, nnd unit

for x and $,
(d) T~ is the direct limit of the spaces TEn for n finite.

l.h,.!2gremB
TIr is an E-space. If T ia Qloo monoid-vQluod (c.~. grouD-

~alued), the resulting classifYing space BTJf' agrees with that given
by Theorem 11.0



As a (non-canonical)multiplication on T!f', we take
TIr x Tlf w / T (go EElIf"') Tf) TIf',
where f: It'" EElIt'" -~ If' is some linear isometric embedding. It~..... ~

is homotopy-commutative, beco.use if s: If') EElIt'" = .If' E& J.f is the
map interchanging factors, f ~ fos by the Lemma, and then
Tf ~ TfoTs by the axioms. Similarly, homotopy-associntivity
reduees to the existence of a homotopy

fo(fEEl"1) !:>! fo(1 EElf): If ED J:f' EElIf'--"7 Jf'.
It is fairly clear that the Lemma will provide all the coherence
homotopies we could possibly desire.

In the examples we give below, we define TA and w explicitly
only for finite:-dimensional A, and note that axiom (d) allows us
to extend the defini tion to Ii and hence to the whole of 1,0 In
each case the maps Tf are obvious, in view of the inner-product
structure.
Examples
1. TA = Q(A), the orthogonal group of A. Then TRn = QCn) and TJf' = Q.
2. TA = QCA ® Q), the uni tc:ry group of tho comp Lex vector space A ® Q.

Then TEn = Q(n) and TIf = u.
3. TA = BQ(A), a suitable classifying space of the group Q(A).
Then TEn = BQ(n) and TIf' = BO. Some care is needed in the choice
of BQ(A), if we are to obto.in a '~Thitney sum map. We could take the
Grassma.nnian of all k-planes in A ® If, where k = dimA.



"':'5 -

4. TA = F(A), the space of based homotopy equivalences of the
sphere SA. Here, SA is the one-point compactification Au 00 of A,
wi th 00 as basepoint. The Whitney sum is the smash prodlb.ct,since
SA A sB = ShBB. Then F(~) = Fo

There is also a semisimplicial analogue, in which T takes
semisimplicial complexes as values, and l(A,B) is replaced by its
singular complex.
5. TA = Top(A). A k-simplex of Top(A) is a fibre-preserving
homeomorphism of Ax 11k over 11k, where 111{is the standard k-simplex.
Then TRn = Top(n), and T~ = Top.
6. The semis implicial analogues of examples 1 - L~.

7. The orientation-preserving versions of the other examples,
namely SQ, SQ, BSQ, SF, STop.
8. TA = PL(A), defined as Top(A) but allowing only piecewise linear

\

khomeomorphisms of Ax 11 • This fails, because the only singular
simplexes of l(A,B) that map PL(A) into PL(B) are the constant ones~
Thus the homotopies requird for Theorem B are not allowed. Instead
we must revise the machine, which turns out to be rather complicated.
Suffice it to say that for a k-simplex of P(A,B) we take a pair (~,f),
where ~ is a p sL, sub-bundle of the product bundle B x 11k over 11k,
and f: ~ El) (A x 11k) = B x 11k is a p .1. fibre-homeomorphism that
extends the inclusion of~.
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Further, there are obvious natural transformations Q(A) ---7F(A),

etc. The only ono. that causes difficulty is the construction of

Cl suitable map Q(A) ~ PL(A), which is extremely awkward (compare §4).

Theorem C Wehave E-spaces

Q, SQ, F, SF, Q, SQ, PL, SPL, Top, STop, r = IIPL/Q", F/PL, et c , ,

and all their iterated classifying spaces. The natural maps between

these are all E-maps, including Q ---t PL and PL ---}r 0

~. __C_~egories~of operators

There are two variants: ~~h or ~t~~ permutations.

Definition In a ~~egor~' ~ of QPe~ators

(a) the objects are 0,1,2, ••• ;

(b) the morphisms from m to n form a topological s~ac~ ~(m,n),

and composition is continuous;

(c) we are given Cl strictly aosociative continuous functor
I

(£): B x ~ --) B such that m (£) n = m + n,

(d) if B has permutations, we nrc also given for each n a

homomorphism S(n) ._._) :§.(n,n), where S(n) is the symmetric group on

n letters. We neglect any symbol for it.

In the case with permutations we demand two further condi tions ~

(L) if?t E S(m) and P E S(n), then TC EDP lies in S(m + n)

and is the usual sum permutation;
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(ii) given any r morphisms (1 • :
~ m. --1 n. and 7i. E S(r), we~ ~

have

7i.(D)O(<11 $ 0,2 $ •••$ o,r) = 7C(0,1 $ 0,2 ED••• ED O'r)o7C(m),

where m = ~m., n = ~n., 7C acts on 0'1 $ (12$ ••0$ 0, by permuting~ ~ r
the factors, and the per-mutat Lon 7Cen) E Sen) is obtained from 7C

by "thickening" - we replace i E {1, 2, .0. , r} by a block of ni
elements, and let 7i. permute these blocks.

All functors between such categories are required to preserve the

objects, the functor $, the topology, and the permutations (if any).

J0camples

1. En9.X' for a apace X with basepoint. If:ndX(m,n) is the space of

all (based) maps x" --) Xn, where x" is the nth power of Xe The

functor $ is just x , This example has pe r-mut.at ions •

~finition A category ~ of operators Q;_9ts_()ll..X if we are given

Q functor B ~ ~ns1x. We t,hen ca'l L X a B-lmace.

2. :A. ACm,n ) is the set of aI L order-preser~ing maps

{1 ,2, ••• ,m} -..) {1 ,2, ••• ,nl. There is one map A.n! n ----71 for

each n. Then an A-space is 0. monoid.

3 • .§.. For S(m,n) we take the set of ill maps {1,2, ••• ,m}--7{1,2, ••• nJ

~his includes permutations. Then an S-space is an abelian monoid.

eUch a space X is known to have the homotopy type of a product of

~ilenberg-MacLane spaces, if X is a connected CW-complex.
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Defini tion A space X is called an 1=._~paceif' it is gi ven an

E-structure, which consists of' a category 12 of' operators vd th

permutations, acting on X, for which B(n,1) is contractible for

all n , ('ric do not single out any canonical category B0)

4. 1.Def'ine l(m,n) _ 1 «~)m, (~)n) as in §1. By the Lemma

in §1, I(m,1) is contractible, so that any I-space, such as T~,

is an E-space. Hence part of' Theorem B.

5. Sn' n category of operators on the nth loop space nDy = X.

The space n Dy is the space of all mnps (In,o In) ~ (Y,0), where 0

is the basepoint of Y, In is the stand2rd n-cube, and oIn its

boundary. A point a E gn (k , 1) is a col Lc ct Lon Q, of k n-cubes I~ .

linearly embedded in In with their axes parallel to those of In,.

having disjoint interiors. It acts on nl~ as follows: given

(f1,f2, ••• ,fk) E xk, i.e. maps fi: In __ -;y, we construct the map

a(f1 ,f2, ••• ,fk): In -,7 Y by using fi on the little cube I~ and

the zero map outside the little cubes. \70 topologize gn (k , 1) as
21rna subspace of R ~. To def'ine 2n(k,r) f'or general r, we use r range

cubes instead of one. '!Ye observe that S1.n (k , 1) is (n - 2) -connected,

so th2t as n tends to 00, Theorem A becomes plausible.

We say that 0. category B of oper at or-s is in_~tS!ldar_g.for.!!!if

there exists a (necessarily unf.que' augmentation functor ~ --::::;A if

B is without permutntions (J2 ~ S if B has permutations), such
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that every morphism 0, in B over A. m $ A. $ •00$ A. : m -~ r
1 m2 r

is uniq_uely expressible in the form 0,1$ 0,2$ ••0$ Q'r' wher-e
o,i: mi ~ 1, and we have the appr-cpr-Late product topology.
The importance of cntegor-Les in st andar-d form is t.hrrtgiven an
arbitrary category of operators B there is another category Bt

in standard form and a functor B'---~B satisfying B'(n,1) = B(n,1)0
Hence if B acts on X, we can canonically make ~' act on Xo This
effects a welcome simplification in the theory. Of our examples,
2,3, and 5 are in standard form, but 1 and 4 are not •
.3.... The bar construq,_tion
The concept of monoid is not a good nne from the point of view
of homotopy theory, becQuse the existence of a monoid structure
on a space is not 0. homotopy invariant. For example, the loop
space nx has no natural monoid structure, although it is a
deformation retract of a natural monoido Similarly for other
categories of operators. \

Suppose given a category B of oper2tors, in standard form.
We form a bar construction, by considering words [0,010,11.0.lo,k]'
where k ~ 0, each o,i is a morphism in B, and the composite
0,0°0,10 •• ooo,kexists in B;
Qefini_t_ion The category W°I! has as morphisms from m to n those
Words [0,010,11••• lo,k] for which the composite 0,0°0,1o•••oo,k is a
lllol"ph1sm in g from m to n, subject to the following relations and
their consequences~

[0,$ 13] = [0, ED 1 11 ED 13] = [1 ED 13I0,EEl11 ],
[1] is an identity,
[0,1?t]= [0,,071:],[71:113]= [71:013]if B has permutations 71:
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Composition in WOB is by juxtaposition.
To f'orm the category lilB,we take f'oreach morphism x in

WOli a cube C(x) of'suitable dimension, having x as one vertex,
and identif'y the f'aces not containing x with certain cubes C(xi)
of'lower dimension, where xi runs through the wor-ds f'ormed f'rom
x by one "nmnLgumat.Lorr'", (We give an alternative description
be Low , ) The categories W°l?, and WB inherit obvious identif'ication
topologies. For composition we have C(x)oC(y) c C(xoy) as a f'ace,
and $: C(x) x C(y) ~ C(x $ y). The Q..1l;&.m~Iltation8: Wli~ B is
def'ined by 8C(X) = 8X, and 8[0.,010,11•••100kJ = 0.,0°°'10•••00,1c.

In particular, the f'amiliar pentagon in W~(4,1) is now
subdivided into 5 squares.

Let us give an alternative pictorial description of'WOB and
WE, in the case without permutations (f'orsimplicity). A morphism
in WOB(n,1) is represe:p.tedby a f'inite tree with directed edges,
excopt that some edges do not join two vertices (soe pictures).
There is just one, called the £Q21, that leaves a vertex and goes
nowhere; there are exactly n tw~.B.§.that corne from nowhere; the
other edges are called limcs and join two verticos~ Each vertex
has a label 0,E B(r,1), where r is the number of'incoming edges,
and has exactly one outgoing ecfige. The only relation ic thct a.

vertex labelled with 1 E B(1,1) may be suppressed.
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A morphism in WOB(m,n) is an ordered collection of n such trees,
called Et copse. Composition Xoy is obtained by attaching the
roots of y in order to the twigs in x.

To describe a morphism in C(x) c WB we simply assign Cl real
number t. to each link of the copse x , (0 ~ t. ~ 1), and add the. ]. ].

relations:
(i) When we suppress a vertex labelled 1, if it separates

links with values t and u, we give the new link thQ.t appears the
value max(t,u).

(ii) A link with value ° joining a to f3 may be shrunk to form
a new copse having one fewer vertex; the vertices a and f3 are
amD.lgamated to form y, which is obtained from 0, and f3 by using
the composition in B.
Vfuen we compose copses, we assign the value 1 to each new lin1e
that appears. Consistency is assured by the tree differential
calculus. Putting copaes side by side describes the functor (9.
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To make the following theorems tr-ue, we need to replace B
by a slightly different category B o.ugnented over B, whicD is
obtained from B by growing n whisker on B(1,1) rooted at 1, and
taking the outer end as a new identity morphism. However, we
cnn replace B by 12. in all the results if we know th2t the identity
1 E B(1, 1) is isolated.

We call an augmentation functor 6: C --) B f1.bre:homot...Ql~dcallx
trivial if for eo.ch n there exists 3. section X~ B(n,1) ---f Q(n,1)
and a fibrewise homotopy Xo6 ~ 1, S (n)-eq_uivur-Larrt Ly if Band C
have permutations.

Theorem D
(c) s : W"§--7 B " is f'Lbr-e=homotcpLcaLl.y trivial.
(b) Given o.ny category of operators C augmented over e by a

fibre-homotopically trirrio.laugmentation, there exists a functor
-F: V~--7 C that lifts 8 (not uniquely).
The superiority of our definition is clear from:

Theoreu
Suppose X and Y have the same homoto1JY type, and WB acts on X.

Then we CnD. make YlB act on Y.
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bu Ma12sbetween H-spaces

Suppose the category of' operators 'NBacts on the spaces X and Y.

We need an nppropriate def'ini tion of' morphism between them. In

t'ac t there are two. If' the mnp f: X~ Y commutes strictly with

the actions, we call f a WB-homomorphisffi. We nrc more interested

in the appropriate definition in which f merely commutes with the

actions up to coherent homotopiesj this is more complico.ted and

appears to be new.

Let Ln be the "Ltne ar-" cn.tegory with objects aO' a1 ' 0 •• ,an

o.nd one morphism a.-) C', j whenever i E;; j • We can generalise the
1

bur construction in §3 to form wC§. x Ln) , a cntegory which we make

act on (n + 1)-tuples of spaces, (XO,X1, • •• ,Xn)· (In B x I, El:) is-n
no longer n f'unctor, so that the first relntion makes sense only

inside eacb copy B x ai ~f B.)

~..f.:Lnj.ti..Q!! We say the map f': X-----) Y is Cl. homotopy B-m@ if' we are

given an action of' ;V(B x L1) on the pair (X,Y) that induces the

given 'YB-structures on X and Y and the given map f: X----7 Y.

Similarly we say t.hnt c". map f ~ X-7 Y between :';-spacos is an

E-mnp if there exis ts some sui table category of cpere.tors C on the

pnir (x,y) thnt induces the given E-structures on X and Y, such that

f lies in C(X,Y), and each apace C(x",Y) is con:tractible. ::.Te call
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two E-structures on X ~uJ_va~t if the identity mQP between the
two str-rct.uree admits an E-structure 0

l'heor~
Let X and Y be WB-spaces, and f~ X ---1Y a homotopy B-map

which is also El homotopy equivalence. Then any homotopy inverse
g: Y--7 X can be made into a homotopy B-map.
Example Under suit.abLe semisimplicial interpretations we have
inclusions i: Q (n) C PD(n) and PL(n) c PD(n)o As is well known,
PL(n) is a deformation retract of PD(n), with a retraction
p: PD(n) --) PL(n), say. The only other fact we need is tho.tPD(n).
admits an action of Q(n) on the left &nd of PL(n) on the right.
Then it is obvious that poi: Q(n)~PL(u) is a homot.opyhomomor-
phism (in the usual sense)~ take x,y E Q(n), then

p(xoy) ~ p(x.py) ~ p(px.py) = pXopy.
In fact it can be shown from the above information that poi admits
the structure of homotopy ~-map.

~lhenwe attempt to construct the category of 'NB-spaces and
homotopy B-maps, we find th8t it is not possible. The composite
of two homotopy B-maps is not defined unless one of them is induced
from a \VB-homomorphism, except up to a homotopy, which is itself
defined only up to a homotopy, which is itself derined only up to
a homotopy, which is ••• Instead we form a semisimplicial complex
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K, whose n-simplexes are actions of W(B xL) on (n + 1)-tuples of-n
~pD.ees.

!heorem_Q
This complex K satisfies the restrictcd Knn extension condition

(in which the omitted fRce is not~.llowed to be the first or lnst).
This result provides 211 we need for composition.up to

homotopy, etc.
h_ Structure __:~..h..~~9~
We cons idcr I{T,l!.-spaces,wi th A <.1S in §2. ;f{e first note t.ho.t if X
and Yare WA-spaces, so are X x Y flnd the powers xn. The followin~
theorem is essentially due to Adams.

Theorem H
Given D. WA-space X, there is a universal monoid l,lX with D.- \

homotopy .6-map i: X~ MX, such t.hu t any W~-mD.p f~ X~ Y to D.

monoid Y factors uniquely ns goi, where g: MX-~)Y is 8. mono id
homomorphism, Moreover, if X is 8. CVV-complex the map i is a
homotopy equivalence.

We know [2] that MX has n classifying space mia:, which is
functorial, connected, and sntisfies MX ~ .QBMX provided 7C0 (lV!X)is
a group. Further, we ho.ve B(G x H) ~ BG x BH. In one direction,
the main theorem A follows from the more detnilEd theorem, by

putting BX = BMX.
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Theorem J

Let X be a E-space, so that in particular it supports a

W~-structure by Theorem D. Then the classif'ying spa.ce BMXis an

E-spnce 0 If' Y is another E-space and f': X--j Y an E-map, then

f' admits a homotopy A-map sturcture, and we f'ind an E-map

BMf': BMX--+ BIIIY(not well de r ined} ,

Consider the E-spaces Xn. We can make cach operator

a.: x" ~ X into a homotopy A-map. This induces by Theorem H 0.

monoid homomorphism Ma.: (LDC)nC:! MXn~ MX, and hence

BMa.: (mrx)n ~ BJ,DC. Along these lines we construct an E-structure

on B1vDC,which makes it an E-spo.ce. The details are considerable.

h._~Q2h9mology t.heories

Assume that the CW-complex Y is an E-space such that 'JI: 0 (Y) is a

group; then by Theorem A, Y is an inf'inite loop space. Explicitly,

put Yn = Bny = B(Bn-1y) by Theorem A and Y = nlly, f'or n ~ 0;-n
then VIehave homotopy equivalences Yn C:! nYn+1 f'or all intege rs n,

and we C2ll def'ine a graded cohomology theory [1] by setting

tn(X,A) = [X/A,Yn],

the set of' homotopy classes of' based maps f'rom X/A to Yn' f'or any

mIT-pair (x, A). The coef'f'icient groups are tho groups tnp, where

P is a point 0 Her.e they ar-e zero f'or n > o. Let us cn.LL such a

theory connective.
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Th.§oI'~mK
Every connective graded additive cohomology theory t on

CW-pairs arises from some E-space Y, which is uniquely defined
up to homotopy equivalence of E-spaces.

In particular the E-space £ x Bn gives rise to the connective
K-theory cK. This is more usually obtained by appealing to Bott
periodicity and killing off the unwanted coefficient groups. In
other cases we cnnnot appeal to Bott periodicity, for example
De~~nition We define connective p.l. K-theory by using the E-space
~ x BPL: for n > 0 we put

CK~L(X,A) = [X/A, Bn(£ x BPL)].
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