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ABSTRACT

The groups KOi are computed for real, complex and
guaternionic spaces. A study is made of wh i ch elements

n-iin ~nS can be represented by a map f such that
f(1:"x)= f(x) for a given involution 1:"on 8n, for i=0,1 ,2,3.

Certain elements in arbi tra:C'ilyhi gh stems are shown
not to be represented by any such map. A computation is
also made of the number of homotopy classes of
mult1plications on p3 and p7, this had been done for. p3

by Naylor but the method used here is much simpler.
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INTRODUCTION·

'I'he groups of' sta-ble eg_uivalence classes of vector
bundles on spaces have proved to be of considerable -
importance in algebraic topology-. They were introduced
in the late 1950's from ideas of'Grothendieck,Atiyah
and Hirzebruch. A study of these groups for projective
spaces led to the solution of the vector fields problem
by Adams and via the theorem of Hirsch to information
about immersions of projective spaces in Euclidean
s~aces by Atiyah and by Sanderson. Atiyah and Hirze8ruch
made generalized cohomology theories fl"om these groups
and this has led to their study from a homotopy point
of view by several authors.

-Ierewe compute the groups KOi for proj ectiv e space s.
This had already been done in some cases by Toda [29J
(for Rp8n), and of course by Adams [2] for i=O. Adams
used arguemen ts involving spectral sequence s, whe r-eas
Toda used direct .obstruction theory techniques together
wi th the Bott seq_LJ.en\ewhich lirik~~p the real and
complex E-theories. tn [5] Anderson considered tileBott
sequence and suggested that it could prove vel"Y useful
to oorr.pu te the KO groups of a space. We adopt this
approach as far as possible by using the spectral
sequence arguernents as little as possible, but they
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cannot be disl?ensed with completely (without using the
obstruction theory as in [29~, but this really amounts
to the same thing).

In 1944, J.H.C.'Uhitehead snowed that if a mal?
f : Sn 4 811-1 is essential and is such that f(x) = f(-x)

nfor every XES then n=3 mcdu .• We aPl?ly the Ie-theory of
projective spaces to extend thiS type of result to maps
'between sp~res wi th a dr-op of two in the dimension. We

"
can also say whether some elements discussed by Adams
in [3J can be represented by such maps. The behaviour
of elements in the 3-stem is discussed by studying the
cohomo t opy groups of proje ctive space s.

Recently Naylor computed t.he.......number of homotopy
classes of multiplications on p3. Using the cohomotopy
of projective spaces his result is proved in a simple

7fashion in Chapter III and also the similar result for P .
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Chapter I. THE K-THEORY OF PHOJECTlVE SPACES

§1 Preliminaries

In this section we give a r-evi.ew of a 'few concepts
from homotopy theory that we will need in this chapter.

All our topological spaces are provided with a fixed
base-point, usually denoted by o. All our maps and
homotopies preserve base-points. [X,YJ denotes the set: of
homotopy classes of maps from X to Y. If AcX then X/A
denotes the space obtained from X by identifying all the
points of A with the base-point. CX will denote the
reduced cone on X, i.e. the space XxI/Xxf1 l U oxI where

.I denotes the unit interval [0,1 J. SX will denote the
reduced suspension of X, i.e. the space cX/Xxlol. XvY
will denote the disjoint union of X and Y, with the two
base-points identified. There is an obvious inclusion
of XvY in the Cartesian Product X~Y ( whose base-point
is (0,0)) and the quotient space XxY/XvY is the smash
product XAY. We note that there are homeomorphisms
S1.AX -)0 SX and lAX -)0 ex. If f : X -)0 Y is any map, the
mapping cone of f, Cf is the space YUfCX = CXvY. with
identifications xxfoJ - fx. The mapping cylinder of f
is the space Mf= (XAI)vY with identifications xx(OJ - fx.
We see that there is an inclusion of X as XX(1 J and that
Mf/X = Cf •
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We say that a map f : A ~ X is a cofibration if,
given any homotopy gt A ~ Z and a map ha: X ~ Z such
that hOr = go' then there is a homotopy ht: X ~ Z such

that htf = gt •

Examples of coribrations are inclusions or cw complexes
and the inclusion of the end X in the mapping cylinder
Mr of any map f: X ~ Y. This latter example shows in
fact, that every map is a cofibration "up to homotopy"
i.e. given a map f: X ~ Y there is a commutative
diagram f

X Y

~ -:Mf
with i a cofibration and h a homotopy equivalence.

If f: A ~ X is a cofibration, the space X/fA is
called the cofibre of f. If f: X ~ Y is any map, the

\
cofibre of its eq~i~flent cofibra~i0n is (up to homotopy

\ ~"type) the mapping cone Cf •

Cofibrations (and hence maps) are studied by means
of the Puppe sequence [23J. This is constructed as
follows. Let f:X ~ Y be any map, we have an inclusimn
i: Y ~ Cf which is a cofibration, and a map p: ef ~ SX
onto the cofibre of i, by collapsing Y to the base-point.
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By iteratine; this procedure we get, following [23J,

an in:f.ini te sequence which up to homotopy can be wr t t t.eri
f i p sr Si Sp

X -+ Y -> ef -> SX -r SY -, sef -+ s2x ->

It is immed.iate from the definitj_on of a cor'Lbr-at t on

that for any space A~ the following induced seq_uence

... ~

Snj_ ::;
-+ [Sny,AJ -+ •••

of based

f;~
-> [X ,AJ

This seq_uence is a direct generalisation of the

cohomology exact seq_uence for a pair.

'I'he dual of a cofibration is the more familiar

fibration. There is an analogous PU:9pe seq_uence

• •• -rr ->

B , for a fioration

'JC : E -, B wi th fibre F. For any space X the following

induced sequence is an exact seq_uence of oased sets

... -, [X,nn+1B] -+ [X,n7]-t [x,n~J -t [x,n~J -t •••

•.• -t[X,fl.BJ -+ [X,F] -,[X,E] -t [X,B].

This se querice 1? a ,dtrect gene r-a.Lf.aatLon of the homotopy
- ,~ \
exact seq_uence of a\ribration. ~~

Anothe r- important case. of this latter Puppe seq_uence

is the Bott ae quenc e [11], obtained by looking at the

fibration 0 -+ O/U, where 0 and U are the s tabLe or t.hogonaL
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and unitary groups respectively. This fibration has fibre
D and the inclusimn of the fibre·is induced by the i clusion
Den) c 0(2n). By Bott periodicity O/D is homotopically

2equivalent to the space n BO, where Ba is the classi"fying
space for the stable orthogonal group. By interpreting
the Puppe sequence of' thd:sfibration in K-theory, we get
the sequence

r
••• -t KneX) n p n 1 0 n+1 .

-t KO (x) -t KO - ex) -t re ex) -t... :
Here KneX) is the Grot end i eck group. of complex vector
bundles on S-nX (n~O) and KOn(X) the corresponding
group of real vector bundles. r is the map induced by
the inclusion U c 0 and so is induced by forgetting the
complex structure on vector bundles.

By studying the Puppe sequence corresponding to the
fibration U -t ufo and using :theBott homotopy equivalence
BO x Z -t n(u/o) we get another Bott sequence

n c n n+2 _> n+1
••• -t KO (X) -t K (x) -t KO (x) KO (x) -t •••

and the map c is induced by complexification on vector
-bundles; by comparing these two sequences we see that

the boundary map 0 in the first sequence is (up to sign)
the map ~c : KOn-1 (X) -t Kn+1(X) where ~ : Kn-~(X) -t Kn+1(X)
is the Bott isomorphism.

This identif\cat~on of
will be i~p~tant

the bO~d~ry map in the first
in our c)i~ulations. This factsequence
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is brought out clearly in Atiyah's new a:p:proachto Bott
:periodicity and the Bott sequence[8J.

lie also need to know that the composition
rc : KOn(X) -> KOneX) is mul tiplication 'by . two. This
f'o'I l ow s immediately from the corres:ponding f'a c t about
vector spaces.

The reader will have noticed that we have disregarded
slgns·in this section. This is because we do not need to
know them in the applications.

In this section we shall calculate the grou:ps given
in table 2.1 nAll the groups shown are reduced. and P
denotes real projective n-dimensional space. A meaning
is given to the symbol KOipn for i> 0 by extending the
eightfold periodicity.

We note that some of these groups were already known.
o nKO P can be found in [2,Theorem 7.4J and the values of

KOip8n ., In [29] . I have learnt since doing this work
that the results of this section and of §3 have been
also done by Fujii [32J.
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T_A.BLE 2.1

i KOip8n+1 (.n> 0) KOip8n+2 KOlp8n+3 KOip8~+4

0 L24n+1 224n+2 Z24n+2. Z 4n+32

1 Z Z2 Z2+Z2 Z2

2 0
Z2 Z2+Z2 22

3 0 0 Z 0

4 Z u.n Z 4n Z 4n Z2' 2 2 2L.!·n+1

5 Z 0 0 0

6 2 2 Z2 22 2 2
7 6 Z Z+Z Z22 2 2

i KOip8n+5 KOip8n+6 KOip8n+7 KOip8n+B

0 Z24n+3 224n+3 Z Z2~·n+3 2~·n+4

1 Z 0 0 0

2 0 0 0 0

3 0 0 Z 0

4 24n+2 224n+3 Z Z24n+L~2 2~·n+3

5 Z Z2 z2+22 Z2
6 2 Z2 +Z2· Z +Z +Z 'z2+Z22 222
7 Z2 Z2 . Z+ 22 Z 2
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\'1 t' 1 ··rO n . ° nse assume ne resu ts on ll.. P and 1<:0 P proved by

Adams in [2J. We proceed by induction on the dimension n.

The induction step uses the Puppe sequence of the covering

map ~: Sn-1 ~ pn-1 whose cofibre is pn. This gives us

some infmrmation about Koipn • We supplement this
ninformation with the Batt sequence for the space P .

As mentioned in ~}1 this links up the real and the complex

K-theories. We also need to use the Atiyah-Hirzebruch

spectral sequence [9J, which links up the cohomology and

the K-theory of a space.

° n IWe remark that K P = 2[n/2J see [2,Theorem 7.3J.

We first calculate K1pn •

Proof

K1pn = Z if n is odd

= ° if n is even

When n = 1 this is true because p1 = 81

and K1S1 = KOSO = Z .

2.2 Lemma

Suppose that n is even and n > 0 then we have

the Puppe sequence

(Here as always we write the values of groups already

known, underneath)

Hence ~':'is a.monomor-pht sm and so K1pl1 = ° .
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row suppose that n is odd and n ;;?: 3, t1en we have the

Puppe sequence
KOpn-1 ~ KOSn-1 -t K1pn ~ K1pn-1

finite Z 0

Hence K1pn = Z •

The values of the groups KOip2 are as

Proof
shown in table 2.1 •

We are assuming (from [2]) that KOOp2 = ZL~~.

All the other groups follow trivially either from the
1 1Puppe sequence of the double covering map S -> S or

alternatively from the Atiyah-Hirzebruch spectral
sequence.

Note The re sul ts fmr p3 are an tmme dLa te conse que nee
of 2.3 and the fact that S2P3 ~ S2p2vS5 .

There now follows a series of lenunas, one for each
e tep in 0Jlr eight-fold induction togethe viith a few others
into which we have put the more difficult steps.

2~L~ Lemma The i 8n+2 .results for KO P lmply
Koip8n+3

those
for

Proof--- From the Puppe sequence
P8n+3-t -t S8n+3 -» •••

we see that we have the following exact sequences
K02p8n+2 -t K02S8n+2 -t K03p8n+3 ~ K03 p8n+2
Z 2

Z
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(0=)K03S8n+2 ~ K04p8n+3 ~ K04pen+2 ~ K04 8n+2(=0)
So 104 p8n+ 3 = K04p8n+2 = Z24n .

(0=) KOUs8n+2 ~ K05p8n+3 ~ K05p8n+2 (=0)
so K05p8n+3 =0 .

K05S8n+2

° 22
\ so K06p8n+3 = 22 •

K06p8n+2 ~ K06'S8n~2 ~ K07p8n+3 \.(K07p8n+2 ~
2

- \ \~, 2\ 2
and so K07p8n+3 = 2 or Z + 22 .

2

Z 2

K07S8n~2

°
However from the Bott sequence, we have

KOp8n+3 ~ KOOp8n+3 ~ K07p8n+3

Z24n+1 124n+2

7 8n+3hence KO ~ has 2-torion, so it is 2 + 22 •
Ko6p8n+3 ~ Ko5p8n+3~ K04p8n+ 3 ~ KOp8n+ 3 _>

L24n L24n+1
have that K06p8n+3 = °

nd so we Z 2 .
The map c in the last sequence was a monomorphism

and so by the discussion in §1 the map r in the following
sequence is an epimorphism

Now we see that r : K~p8n+3 ~ K03p8n+3
2 2

is multiplicatio

by two and then we deduce from the Bott sequence and the
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results that we have already that K02p8n+3 has four

elements. Similarly, we see that in the following sequence

the map c is an epimorphism and r a monomorphism
XOOp8n+3 ~ KOp8n+3 ~ K02p8n+3 ~ I01p8n+3 ~ K1p8n+3 ~ K03p8n+3
Z24n+1 Z24n . . z z

so K02p8n+3 ~ K01p8n+3

(1p8n+3 = Z and we have that the followinglOW

composition is multiplication by two

K01p8n+3 ~ K1p8n+3 ~ Ko1p8n+3
finite Z finite

and so it is also zero, therefore K01pBn+3 must have

exponent 2 and so it is 22 -I- 22 ..

We gave the proof of 2.4 in complete detail, however

in the following lemmas, we will omit routine procedure

with Puppe sequences.

2.5 Lemma i Bn+3 .The results for KO P lmply those
for KoipBn+4

Proof Immediately from the Puppe sequence we see that
Ko5p8n+4 = 0, Ko6p8n+4 = 22 and KO7p8n+l.j.= Z2

From the
K05p8n+4 ~

o

Batt sequence we have
K04p8n+4 ~ KOp8n+4 ~ K06p8n+4 ~

Z24n+2 Z2
4 8n+4 I'and so KO P = 24n+1

\
\
\.
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In the following sequence the mal?
K1pBn+L~ -T KO1pBn+L~ -T KO OpBn+4
o Zll.n+3

c is an epimorphis
~ KOpBn+L~

Z.2L~n+2

-T K02pBn+4 -T KO 1pBn.+L~ -T K1p8n+L~ (=0)

Hence Ko2pBn+4 ~ K01p8n+4 = Z2

Now in the Puppe seg_uence we have
K02pBn+4 -T K02p8n+3 -TK02S8n+3 -T K03pBn+4

Z2 Z2+Z2 Z2

-T K03p8n+3 -T K03S8n+3 -T K02p8n+4
Z Z 22

so K03J?)8n+4= 0 •

To do the next inductiom step it does not seem sufficient
to just look at the Bott and Puppe sequence s• We will work
out one of the differentials in the KO-theory spectral
sequence. The following is part of the induct:Lon

2.6 Lemma K03p8n+5 = 0

Proof The E2-term of the KO-theory spectral sequence

for pL~ is as follows
Z 0 Z2 0.. Z2,

Z2 Z2 . Z Z '~2 2
"

Z2 Z2 Z2 Z2 22
0 0 0 0 0

Z o Z2 0 Z2
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',,"eknow that K03p4 = 0, from 2.5 • Thi s group is
calculated from the ind·cated diagonal. T le only ifferential
that can kill the term E ;+1_ Z2 is d2· Hence'2
d2 E2,o 4 :...1 imilarly because K02p4 Z-> E' is non-zero. =2 2 2

must have that d2
. 2,-1 ELJ., -2 is Howeve rvIe E ~ non-zero.. 2 2

the differentials are stable cohomology o:perations, hence
the ~f t· 1 d E~'O ~ ~P+2,-1 . S 2 (hdi~ e~en la 2: 2 ~2 lS q P2 were P2
is reduction mod 2) and the differential

'"' .",:9, -1 EP+2, -2. S 2d2 . ~2 ~ 2 lS q •
1.Ie know by induction tha t K03p8n+L~ = 0 and so

IT03,8n+5 _ E8n+5,-2 _ ~8n+5,-2,,, p - 00 - E3 •
d R8n+3,-1 ~ E8n+5,-2 is S 22'u2 2 q

However the differential
H8n+ 3(Jp8n+5;22)

~ H8n+5(p8n+5'2 ), 2
which is an isomorphism by [26,page5] •

Hence E~n+5,-2 =0 •

2.7 Lemma i 8n+4 .The results for KO P lmply those
for Koip8n+5 .

Proof Immediately from the Puppe sequence we have that
K05p8n+5 Ko6p8n+5 7 8n+5

= Z, = 22 , KO P = 22 and
K02p8n+5 = O.

From the Bott sequence we see that
r : KOp8n+5 ~ Ko4p8n+5 and c : Ko1p8n+5 ~ K1p8n+5

are isomorphisms.
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2.8 Lemma The resul ts for I~o.ip8n+5LmpLy those f.or
~ 8n 6 6 6 "6 6KO.LP ,apart from KO P • KO P has four elements

Proof Immediately from the Puppe sequence we see
that K07p8n+6 = Z2" and Ko3p8n+6 = o.

From the Bott sequence we get

~ K07p8n+6 ~ Ko6p8n+6 ~
Z2

KOp8n+6

Z2L1.n+3

and so

_> KO Op8n+6 ~
Z24.n+3

_ 6 8n+6KO P has order four.

In the following themap c is
0pBn+6 ~ K01p8n+6 ~ KOOp8n+6

o Z24n+3

an isomorphism
KOp8n+6

22411+3

--O~ ~8n+6so K.t' =
K04p8~1+\ _> K03p8n+6

'\;" °

The map c in the following sequence is

multiplication by two

1(1p8n+6 K05p8n+6 K04p8n+6 c KOp8~1+6~ -t 4

0 Z il-n+3 Z 4n+32

so Ko5p8n+6 = Z2 ·



16.

It now remains to show that Ko6p8n+6 = Z2 + Z2 when n ~ 1 ,
we aLr-e ady know that it has order t'our-, KOp8n+6 = Z24n+ 3

and so if n ~ 1 the composition rc K06p8n+6 ~ K06p8n+6
is zero, which shows th~t K06p8n+6 = Z2 + Z2

\Ie do not seem to be able to show that K06p6 = Z2 + Z2
at this stage. So we assume only that it has order four and
~eturn later to show that it is in fact Z + Z- 2 2·

2.9 Lemma The results fCD.rKOip8n+6 imply those for
_;\__Oip8n+7 (aga: t f Ir06p7)agaln, apar rom ~ .

Proof Immediately from the Puppe sequence,
Ko1p8n+7 ~ K02p8n+7 = ° and K03p8n+7 = z .

From the Batt seq_uence We have
Ko2p8n+7 ~ KOp8n+7 -r+ Kol-l-p8n+7 ~ K03p8n+7

° Z24n+3 Z

c

from the Puppe sequence KOLJ'p8n+7 is fini te, hence it is Z 24n+ 3
r 0 8n+ 7 KOp8il+7 . . 1" . thh.O P ~ ~ lS an a somor-pra sm , so an e se que nc e

KOp8n+ 7 .: KOOp8n+ 7 ~ KO 7P8n+ 7 _> Kl p8n+ 7 ~ KO 1p8n+ 7
224n+ 3 Z24n+ 3 Z °

the map r is mu'l ti.p'Li.cet.Lcn by two and so K07p8n+7 = Z + Z2.

and

Also t118 maps r in the following seq_uence ar-e mul tip'lication
by two

K1p8n+ 7 ~ KO 7p8n+ 7 ~ Ko6p8n+ 7 ~ KOp8n+ 7
Z Z + 22 L24n+3

and so K06p8n+7 has order eight.
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From the Pu:ppe sequence we have
K03S~n+6 -? Ko4p8n+ 7 -? l(oLj·p8n+6_;.KoL~s8n+6_}Ko5p8...+7

o Z24n+ 3 Z2L~n+3 22
~ K05p8n+6 ~ K0588n+6 -? Ko6p8n+7 -? K06p8n+6

Z 2 order 8 order' )...j.

hence K05p8n+7 has order four, but
factors through K1p8n+7 = 2 and so

5 8n+7 5 8n 7re :KO P -? KO P +

K05p8n+7 = 22 + 22

For the purposes of the incluction,we will assume
6 8n+7only that KO P has order eight and return later to

th t K'06p7-_Z2 7 'Zshow a + ~2 T 2.

The results for KOip8n-'1 imply those
for KOip8n (n ~ 1) •

Proof Immedia tely from the Puppe sequence vie have
K01p8n ~ K02p8n = o.

From the Bott sequence
(O=)K1p8n -? K03p8n -? K02p8n(=O) so K03p8n = o.

K02p8n _> KOp8n -? I{OL!'p8n-? Ko3pBn

o Z24n \ \ 0 so KOI+p8n ~ Z24n

f IJ . K1p~, !1."05p8n_, YO' L~p8nIT.!. the 0 .ovnng sequence -rr -r ~~

o Z24n
~ KOp8n -? Ko6p8n -? KOSpBn ~ K1p8n

o the maD c is
5 8nmultiplication by two, so KO P . = Z2

order four.
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In tile sequence
Kip8n K07p8n ~ K06p8n ~ KOp8n r KOOp8n -,K07p8n ~ Kip8n-, ~

0 opder 4 Z24n Z24n °the map I' has ke r-nel ·at most Z2 so K07p8n has order two or
f'our but it is the col\:ernelof'r so Ko7p8n = Z2 ~

6 8n . 6 8n ° 8n /rc KO P ~ KO P factors through K p = L 2L1n

6 8nand as n ~ 1 it must be zero, so KO p = Z2 + Z2 .

2.11 Lemma The results for KOip8n imply those
for Oip8n+1 ( n ~ 1 ) .

Proof Immediately f'r-om the Puppe sequence we have that

In the Bott sequence we have
KOp8n+f r KOOpBn+1 ~ KO 7p8n+1 K1p8n+1 r KO1p8n+1~ -> ~

Z24n Z 4n+1 Z 22
and both the maps r must be monomorphisms, so K07p8n+1 = Z2 .

In the Puppe sequence we have

Ko5s8n ~ Ko6p8n+1 ~ Ko6p8n ~ Ko6s8n ~
° 22 + Z2 22

~ K07p8n ~ K07s8n ~ KOOpBn+1 ~
Z2 Z2 Z24n+1

r : ° 8n+1 4 8n~ .K P ~ KO P is an isomorphism , hence in
the sequence

\
~

\
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C
-t -t K06p8n+1 -t K05 8n+1

Z2
. " _, K1p8n+1

Z

c is multiplication by two and so Ko5pBn+1 = z

2.12 Lemma . i Bn+JIThe results for KO P imply those
co vOipBn+2lor Ll.. •

Proof Immediately from the Puppe sequence we have
K03p8n+2 = ° and K04p8n+2 = Z2LJ-n .

Prom the Batt sequence we have

KOp8n+2 r KOOp8n+2 -t KO 7p8n+2' -t K1p8n+2-t

Z24n+1 Z24n+2 °and the map r is a monomorphi sm , so K07p8n+2 = 22 .
-t K07p8n+2 -t K06p8n+2

Z2

r
-t KOp8n+2 -r+

Z24n+1

Similarly c
and K05p8n+2 =0

K01p8n+2 = Z2 and

K04p8n+2 -t KOp8n+2 is a

c : KOOpBn+2 -t KOpBn+2

K02p8n+2 = Z2

monomorphi sm

is qn epimorphism,

'Ne have now completed our induction and have proved all

the results in table 2.1, except for K06p6 and K06p7 •

\
~

\
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r r
TTOOpO 2 2
.l.\. = 2 + 2.

Proof ';/e look at the Atiyah-Hirzebr'uch KO-theory
spectral sequence for p6 There'is an exact sequence

0 -> -n6,-8 -}'K06p6 ->
_,2, -4

0j!j2 D2 . -}

22 22

NoV! in the spectral sequence for pS , K06pS ~ E~,-4

and in that for p9, K06p9 ~ E~,-4BY the naturality·
of the spectral sequence the inclusion map pS -} p9

2 -4 6 9induces an Lsomor'phlsm of E2' and so of KO P wi th
This isomorphism factors thr-oug and as

we already know that it has four elements, we ave the
result.

2. 14 Lerruna

Proof
where G4 is either Z4 or 22 + 22• The 22-summand

2 -4corresponds to E' in the spectral sequence.
2 we have

Also" from the Puppe sequence,/the short exact
sequence

Z +22 2
and frow the spectral sequence

o -> E;,-9 -} G4-}E~,-8 -}0 .

T_1e i.:;' -9 corresponds to the K0687 and so we have a diagram

'\

\
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0 -') E7,-9 -') G -')
~,6,-8

-') 02 ,4 l!.i2

t ~ t
0 -> ..,.,7,-9

-') Z2 -, 0 -} 0-'2

1,il:(;:..' ~ the top line c on es from the spectral seg_uence

01' -:7 and t e bottom from that for s7, the vertical

maps a- -e induced by t e cover-Lug S7 _> P7•

Hence G Z + z-4 = 2 2

~le now summarise a few of the resul ts of this

section t at we will need for the applications.

2.15. Proposi tiOl1

Let 'it : s" -> pn be the coveri g map,

then. the induced map 'it : KOipn -') KOiSn is zero when

ei ther n-i - 1 mod 8 and '\ -,£ 3 modl;

or n-i - 2 mod 8 and n 2 1. or 2 mod 4

Proof Implicit in the proofs of this section.

I
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~n this section, we u e very si~ilar methods to

those used in the previous section, to compute the
i n rgrouDs KO CP where CP~ is cOl1:plexprojective space of

peal di ension 2n. The resul ts are given in the f'ollowing

table. T e symbol rZ denotes the direct sum of I' copies
of the integers.

TABLE 3.1

= 0 for' i odd.

i KOiCp4n+J1 KOiCp4n+3

0 2nZ + Z 2n+122

-\ \ Z2 0I

~ \
2 ' ·2~1 2 ~+2Z

3 0 0

4 2nZ 2n+12 + Z 2

5 0 22

6 2n+12 2n+22

7 0 0
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"'ie note that vIe will not assume any of these results.

° nHoweve r some of them are known already. KO CP may be

found in 124, t.heor-em 3.9J. ':le will use the Bott sequence

and so will need to know the values of the groups KiCpn.

For i = 0, these can be foun in [10 or [24,theorem 3.10

and for Doth i = ° and 1 in [7J. However we reprove them

in the following

3.2 Lemma p;:OCpn= nZ and K1 er = 0.
, \ \\

~\
\"Proof We induct on n. The result is clearly true

when n = 1 because CP1 = 8
2 •

For the induction step we use the Puppe sequence

2n-1 n-1for the covering map 8 ~ CP whose mapping cone

(= 0) S OViS

that K1Cpn = ° , and

K1Cpn-1

o
KO,,2n-1u .

Z n-1Z 0'

SlOWS

r!e now start our induction, which has four step s,

It starts easily with Cp1.



We knoVl by induction that X02Cp4n+1 = 2n+12.
. Ltn I)in the KO-theory spectral sequence for CP +~

E~n+3,-(8n+1) = 0 and E~n+4,-(8n+2)= 22
2 ~n~? 8 j, (8 2)KO CP' .- = 2n+1 Z + E

oo
n+y-, - n+

50wever in the proof of 2.6 we showed that the differential

Proor
We work

d . ~8n+2,-(8n+1)
2 • .L:J2

2ste e SCJ. ,

imDly those3~4 Lemma

Pr-oof
Ko5cp4n+2
xo1cp4n+2

Fr-om the Puppe se que.nee we see that
= 0, Ko6cp4n+2 = 2n+12, K07Cp41+2= 0,

= 0 and K04Cp4n+2 = 2n+1~.
From the Bott sequence

KO1Cp4n+2 ~ KOOCp4n+2 ~ KOCpLm+2 -) K02Cp4n+2 _> KO'ICp4n+2
° ~n+2Z 2n~2 °

so KOOCpL!-n+2= 2n+:1Z
and similarly

K-1Cp4n+2 -) K03Cp4n+2 _) Ko2CpL!n+2 -) 1(0CpLI-n+2-) Ko4cp4n+2
° 2n+1 Z 4n+2Z 2n+1 Z

so Ko3cpl.!-n+2= o.
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3.5 Le~ The results :Lor KoiCp4n+2 imply those

co IrOiCp4n+3lor \. •

Prq_o:f Pr-om the Puppe sequence, we see tho. t

KO °ci~n+ 3 = 2n+1 2, KO1Cp4n+3 = 0, K02Cp4n+3 = 2n+22,

K03CpL1·n+3 = 0, Ko6Cp)_~n+3 = 2n+22 and KO7CpL~n+3 = o •
.Also, from

o 2 2n+122
4 8n~5 5~n+3 5 4n+2-> KO S ., --+ KO CP r-~ -> KO CP

. vie see

22

-'-' t TrC4Cp4n+3L11a l\. I =

o

2n+12 + 22

}~D+3However in the Bot t sequence for CP- ~ ,we have

\:0Cp4n+3 _> Ko5Cp4n+3 _> K0L1·Cp4n+3_> KOCp4n+3'-

o 2n+1 Z + 22

and so 1:(05C1,4n+3 = 22

4n+3Z

To co :plete the induction we first show that

K06C_p4n+4 -_ 2n+2'-' b . th t 1 . 3 3- . 6 Y uSlng e spec ro. sequence as In. ,

:~,:e:::"L pr-oc ee d as in 3.~· and. 3.5 . However as the proofs

5.:':';; identical, we omit them.

Again we summarize some of the r-esu I ts that vve will

need in the next chapter :
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3.6 Pr-op osLt Lon Let ~ denote the Ropf map from 83 to 82,
or a suspension of it. Then if r-i - 1 mod 8,

t -r~iSr-1 KOiSr'(l '. 1\..J . -> is an epimorphism
Z Z2

! Koisr KOiSr+1and Yl • -+ is an isomorphism
Z Zr, 2.:

{)L~ The p;£.2~KOiHpn
Hpn denotes quaternionic projective space of real

.
dimension 4n. In this section we prove the results
given in the following

i 0 1 2 3
KOi}Ip2n 2nZ 0 nZ2 nZ2
XOiHP2n+1 2n+1 Z 0 n+'122 u+1Z2

i 4 5 6 7

KOiRp2n 2nZ 0 nZ n222
KOiHp2n+1 2n+12 0 nZ2 nZ2

For i = o , these are given in .[2LI·,The orem 3.11 ]
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The following is\obvious ( compare 3.2 or [7,pagc80] )
° 'n \ 1 n"'\4.2 Le~ K HP~ = .nz and K HP ~'O.

We now prove the resul t s g' ven in LI-.1 by induction
on n , t.hey are true f'or n = 1 "because HP 1 =' S}-j·•

4 - I Th It f IToiHP2n-~,. 1 ih f.3 ~~ e resu SOl" .1.. amp y ; ose or
ToiH·p2n ( ....1 )1.. _ n :;;-.

Proof' The m2.pping cone of the projection map
3'::;:'1.-'1 -7 Hp2n-1 is Hp2n and f:ro~nthe Puppe sequence of t.h.ts
map we see that KOOHp2n = 2nZ, K01Hp2n = 0, K02Up2n= n22 '

3
,..,

-r f;Ipc:n .Z~\_'-'~ = n 2

From the Bott sequence
cKOi Hp2n -7 KO °Hp2n -7 KOHp2n -7 K02Hp2n -7 KO1HP21l

o 2n2 2n2 nZ 2 °
we see that the cokernel of
r: KOHp2n -7 KOOlip2n is n22 ' and so K07Hp2n = n22 .

'The map r in the f'o.l.Lowf ng sequence is-a monomor-phf sm

6 2nand so KO HP = ''"17.~-~2 •

The results are completed by another induction step
ihich is virtually identical.

For com:pleteness we state the _o'lLow i.rigwhose :DEoof
is easy.
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4.4 Theorem

Let X denote the Cayley :projective :plane.
'Then KOOX K04X Z + Z- =

Ko6x = "'07X - 22 -I- Z 2
and KOiX = 0 otheI'wise.
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Chapter II. EQ.UTVlillIAN'r MAP~fwErm SPHERES

In this chapter we consider questions of t_e
f011owing type.

Let G be a group acting on a sphere Sn in a fixed
mvray. 1.7hichhomo t opy classes a E 'lCnS can be represented

f n Sill that take G-orlJits to points?by map e : S -7

';Ie treat the cases G == 22 01 or 83, 0 .
Clearly such maps f factor through the quotient

space SnIG. We use L e r-esults of the pr-ev i ous chapter
to find invariants of a g'ven homo'tor y class and eh ov,

- Sn/Gthrough T.

xanish (in certain cases)
~

\
if they factort_at they must

When G
~

= 22 ' Bredon [11] has recently studi~d thi
ouestion in more generality (when Srnalso has a Z2- ction).

1 3E: s 't.e chrrfque s can also be used when G == 2 ,S or S •
P

However they only apply i_the II stable r-ange" and to
f'aIr-Ly 10'N stems. By using results of Adams [3~ we can
a:Lsc consider some elements in arbitrarily high ,stems.

'This question arose from the particular case in
[14, page 228J, which had in fact pr-evlousIy been
considered by Whitehead [31J .
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I v/ouLd like to thank Professor Bredon for sending

me fuller details and extensions of the work announced

in 1i J, whi ch have helped me to check some of my

results.

')1 Imrr..ediate P-PRlications
~

We fix our no~at\l.on such
\

that ~'denotes a involution
non S c 11+1 that c anges the sign of r~ co-ordinates,

n-l" I'the quotient space is then S -P •

'rhe symb 01sf: (s", re-r) -> 8 n denote a map f

such that f(re-rx) = fx for all xE8n •

For completeness we give t~le following elementary

n m
-t S

r-e su I t

." 'I'heorem Let n In n 11f : (8 ,re-r) ~ 8 , then f : S ~ S
~~~ 2ven degree. If r is even then degree f = O.
If :. is odd, such f exist with any even degree.

n nf : S ~ 8 factors as
811-r- Jl. n-"" I'S .Lp -).

In cohomology we have t.ne following dia 'ram
f':~.

Z =. Hn8n ~------

Hrpr ..'~
If I' is even = '7 so F'" = 0 i ..e.;l degree f = 0'"'2

If is odd Hrp'r Z and ;-:' takes tor ofI' = 1C a cene
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of l' is even.
Now le t r r-p : P ~ 8 be the illapthat collapses

a point. If r is odd
is an isomorphism and so the composite map

n8 has degree two.
3y composing this map with Cl. map of degree d : 8n ~ 8n

ve have Cl. map : (sD'~r) ~ 8n of degree 2d.

We now prove the following theorem due to
J.H.C.'~:hitehead [31 ,Theorem 7J (see also Conner and li'loyd.
[14, page 228J ) by using the results of Chapter I.

1.2 Theorem Let f: (Sn'~r) ~ 8n-1 .
If r ¢ 3 mod 4, then f ~ 0 •

If r - 3 mod 4, then every element in ~ 8n-1n

can be represented by such a map.

Proof We remind ourselves that ?en8n-1 = 0

2 Z generated by the Hopfwhen n < 3 , ?e
3
8 = map 1l

and ?e 8n-1 = Z generated by the suspension qf the
n 2

Hopf map for n > 3. We also denote this element by 1l .

By assumption the map f factors through 8n-rpr
and so in KO-theory we have a dia._,ram
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!

f·

NOi'/ ~...co r > 3 and :.-i 1 mod 8 by ·1 2.15..1...1. - ,
! !

if r ~ 3 mod 4 1C
. is zero but y]• is by 1 3.6, non-zero

This proves the t_eorem when r _L 3 mod 4.r

It is clear that the standard representation of
3 ? 3 3the Hopf map n: s ~ S- factors through 1C : S ~ P .

The following homotopy commutative diagram shows that

every multiple of it also does

83 .
n

~ S3
y]

7 82
I

R /.~l
f '",~ g

p3 ~pJ .

Here g is the factorisation map for y], n : 83 ~ 83

is any map of degree nand t' is the map n
XI-----'7 x

p3 = 80(3) is a group). It is well known that the

square is homotopy commutative (e.g. ~16] )

1t iio« remains to show that

factors through p4n+3 for every n > O. We give two

explicit representatives which do, one is cotistructed

geometrically and the other' by homotopy.

1 ) -He iak e a few remarks abou.t the Eopf construction.
-t .' k Srn nn sp sm+n+1 n+1~ asslgns GO every map . x Q ~ a map ~ ~

by a modified suspension. An involution '];"1, on Sm+n+1
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is induced by any involution '1:r_k x '1:k-1 on Srn x Sn

j\f ov,-le t ,,1 -,4n+1;:) x::; -)0 be the map
giveil in complex co-ordinates by

.' •• ,z 2n+ ) 1----;:.. (z z1 ,z z'2 ' ••• ,zz2 .:n+1
It is Hell known that the Hopf construction applied
to this map gives a representative of the homoto1!Y
class~. It is also clear that it is a map

4n+4(s ./'1: )->
, L~l1+3

2) Let 8LLn+3IC: . -> p4n+3 be t'e covering map and
Cl : p4n+ 3 -} pl.+n+3/pLj,U+1t_e collapsing map. Now
p2rn+1/p2m-1 ~ 82 +1v82m because it is of the for
C' 2m 2m+~I d -'-' .,' . . -'-.. . t
u u e an cne a t t.acn i ng map o. 1S vile c ompos i ea

p2m/p2m-1 ,.,_ wn1cn
map f : 8L!,n+3 ->

is trivial by 1 .1

84n+3vs4n+2. By collapsi gHence vve have a
4n+3 ' t' 841 +3 8LJ.n+2the t3 - to a p o.in we 'get a map g : -}.

wh i ch factor's through p4n+ 3 by cons truction, we show
that it is essential. When n > "'1, there Ls a
decomposition

'Tr (s4n+ 3)"4n+ 3 +
~o if g~o, the mapping cone of f would be
4n+2 2 un+2 LI n+4 4n+18 "P vS . ,however we know that it is PI' /p

2and Sq is different in these spaces.



1 G 3 The crem
If r - 1,2 mod 4 then f ~ 0

If I, ~ Sn-2r - 3 mod ~, every element in ,.
il

can be represented by such a map.

the element

1\ Sn-2 = 22 if
11

2
TjoTl = Tj. If

n > 3 and is generated byProof
11 ~ 3 then t e group is z er-c ,

The second statement is an immediate conse~uence
of Tneor~m 1.2 .

The first statement follows from I 2.15 and I 3.6
as in 1.2 •

We will show in 52 that if r == 0 mod 4,'

then Y)2 can be represented by an eg_uivariant map if n > 4.

In [3J Adams introduces an element!J.8 A in thes+
stable 8s+1 stern and an element II in the stable1""'88+2

28s+2 stem that are generalisations of TJ and TJ

respectively. They generate 22 summands in the t~ble
stems and induce some non-zero maps on KO. Hence we
can deduce similar results for these elements.

1 .4 Theorem can not be represented
r' .,. 3 mod 4.by 8. map
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ii) !-L8s+2 ",l1.--:-8s+2Sl1.
: i:;i -J,

fSn+8s+2 ~ )
\. 9Lr ->

can not be represented
Sll. of

1 r == ,2 mod L~

and can if r == 3 mod 4.
Ppoof i) and the first stat ment of ii) are
obvious because the elements I-L ar-e non--zero on KO in
exactly the same dimensions as ~"is non-ze:o.

The second statement of' ii) is a consequence of ,
102 and of Proposition 12.14 of [3J which implies that

1-L8s+2can be taken to be I-LSs+1on·

1 nLet or denote an action of S on S (n > 2r+1 )
that multiplies in r+1 complex co-ordinates. The
q_uotient space vdll be Sn-2r-1 er", Any map
f : (Sn'OrJ -T Si. is clearly a map r : (Sn,'r2r+1) -+ Sm.
From this we can immediately deduce similar results

1for S -actions, but for all the cases already considered
the pesults are identical so we will not state them

fully.

Let wr denote an action of S3 on Sn, whose
. Sn-LI-r-3H"r Th ' th fquotient space 18 r. en we nave e ollowing

result



-'.5 The or-em; Let s ~ i then).L8 -'
8+1

can not be represented by a map
f (n1'1+8s+1 ) nn: o oW -};:;, l~ for any r.

T e same result holds for the element )J.8~? •
u+~

This is an immediate consequence of the
K01 HPI' , -s <r 5 rfacts :::0 anQ ~O HP ::: 0 that were proved

in I § L~ •

2,2 The stable. cohornotop¥ spectral se_(r~l£.§.

In this section we use the stable cohomotopy
spectral sequence to study the problem of which homotopy
classes of maps between spheres can be represented by
equivarian t map s.

Let {x,yl = lim[SrX,Sry] with the direct lim't aps
-}

being suspensions. It is we'lL known see e.g. [30] that
we get a (generalised) cohomology theory by settinG
h-n(X) :::(snx,SOJ and so we get an Atiyah-Hirzebruch
spectral sequence with E~,q :::HP(X;7C:g_) and 'E~:::fh-1(X)J
where 7C:q::: fsq,sOJ the stable q-stem.

This spectral sequence is discussed in Massey 18J

and Peterson [22J. 'rhe use of the spectral sequei ce
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f or computations is equivalent to- studying-'th-e-'"

Postnikov decompo...,ition of a high dimensional sphere,

for this see Maunder [19J.

'Ne az-e nOViin a pos i ti on to prove the follow~ ng ,

rl~Lch c ompLe t.e s the resul ts about z2-actionr-3 on

the 2-stem •

2.1 The oreLl 2 n n-2
~ : 8 ~ 8 can be represented

n n-2
(8 '~4r) ~ S if and only if n > 4.by a map f

Proof It suffices to look at maps Ll-r 4r'-28 ~ 8 •

Let r > 1, then we are in the stable range. F om

th P ~ th ", .• 84r p4re uppe sequence OI -c e El p ,. -> we get

[8?4r,84r-1] 8:~ [84r+1,s4r-1 ] ~ [pL~+1 ,S4r-1 ]

~ [p4r,84r-1] !* [S4r,s4r-1 ]

We wan t to show that the map 81\:::: is an epimor·phism. To

do this Vie calculate the various gr-oups that appear in

the sequence by means of the spectral sequence.

By [22,page 459J, the initial differential

d2 : ",n2'0 ~ -;')2,_+2,-1 . S 2 IIn(X 7) Hn+2(X ).w-, J.'-' lS Cl P2:· ;::.... -) ;Z2 •

'de now give an ad hoc proof that d2 : E~,-1 _} En+2,-2
z, . 2

2is Sq ~ 2 [2 4 4''';e compute fp', S ] = S P ,S ] from the

spectral sequence. However- 1,'I>1e can calculate its value

independently as Iollows. [82P4,S4] = s2p4,BSp

because the 7-s1{eleton of BSp is S4,. By Bott periodicity
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The relevant :part of the E2 term of th.e spectral
sequence for p4 is

z o

Z 2 Z 2

Z 2

Because PL~, Q 2 I _- Z b t' du5 '2' on 2
!

and d2 are i s omor-ph I sm

but they are stable cohomology operations, hence
d2 is Sq2 (and this checks that d; is Sq2p2).

I've no r c ompu te [pLJ-r+1, S4r..;.1 ] = i pLl-r+1 9 SL~r-1 J (r. > 1 )

The relevant :part of t_e E2-term of the spectral
I"or p4r+1 l' ssequence

4r-2 LJ-r-1' 41"

Z2~22

22 Z2~ 22

z z Z ~ 7'2 2 2 ~2

z

30th the marked differentials are iso orphis _s
and so 41"+1 4r-~1

p ,S J::: 0, which proves the resul t for r '> 1 •

It remains to look at the involution 1:'4' We first
consider the case n ~ 5.
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.~ *
If, We want to show that the map 811: Ln, the foll<?wing.

';.~;<.. exact sequence is an ePimorp~i'~~'" . ~

[8n~5p5;8n~2]

[spS, s4J .~ (sn-spS ~sn.-2]

for n a 6. However f'r-om the exact sequence '.of' the Hopi'

fibration s7 -+ 84 we see that [spS~'S4] -+. [p5,s3] is

an' epimorphism. But [BpS; s4] .~. 'Ko3p5 =0, 'by I 2.',1.
\.
' .. ,' ..,

"', ~' .
.... ; '_,'

2.2 Lemma [p4,S2] o. . ,
= .'

"'."! :1 .I

"

"

Hopf fibration 83 -+ S2 ' 'the we have the,
• 1

,:<,:, Proof., .
. ,

From

"

following exact sequence of based sets

[ pLI , s3] -+ [p4, s2] ~ [p4, B 8 1 ] , , .! [p4 ,B 83]

Now [p4,S3] = ~spL~,s4] = K03p4 = "0 •. So i twill be
, ~

enough t~ show that\~' is inje'cti~\.'

.... ~. ,

'/.', ,.

~','

, '
~~;•• .", .t-

o. oJ

" .
., . f. ~,.

\ ~" .,' I \ , ,

..,. . BS1 = BU(1) and Bs3;~.BSU(2). The map f is induced
•••• I ,;. 1 3

. by the usual Lnc.Lus i on of S in .'S and clearly takes
," '.. .

I r ·'t

:,' : a bundle ~ to the ,bundle .; El)" wher-e ~denotes the
';"! ". . '. . ,

, \':,"",'',c'onjugate bundle. There is just one non-trivial line

,-/~>'b'llndle on p4 ~nd.i·ts first 'Che;n' class ls the generator
• I

, "

. -:."
. ,

,-

, f ~ I, •
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f H2(1)4 z ) "J -, th t 'T r_:'"o _ _; • \ e SIlOW a c; E9 Co l S non-trivial by

computing its second C ern class. Clearly c'1(~) = c/
I
(~)

and by the pr oduct f orrau'l,a _20, Theor-em 26 J we have

c2(l;Et;'[; = c
1

l;).c '(tL and this is non-trivial on p4 •

(which is 224 ' generated by a suspension of the Hapf
map Y : 87 ~ 84) that can be represented by a nap

f : (Sn,'Lr) ~ Sn-3 are precisely (for r;<:8 )

o r -

1 mod Lj.

2 mod 4
"7 mod Lj.:J

0 mod L~

212 when r-

212 or 224

22

r ==

r -

Proof'--- As we are taking r;<:8 ~ we are in the stable

range and so it is enough to 100'( at the diagram

Case 1. r =1 od 4
We show that the map s~* in the following ~xact

, , '7seauence nas 1. age u12 •

[sp4m+1 ,s4m-" ]

~[p4m+2 [pLl-m+'j, sLj· -1"

that [p4m+2, s4 .-1 -, = Z
2As in the proof of 2.1 we see



- pum+1 s4m-1] __and ", 0 , wh i ch prove s the re su l,t.

Case 2. r = 4m+2
As Defore it is easily checked from t.he spectr 1

, [ un1+2s e cue nc e tha t P" ,
um.J..3 umto compute [p'" ,8 ,1__

,,4m~ has order eight. However
we must evaluate a differeltial

the differential is Ade~!s stable secondary operatio

i.l?, see [4 . - Lim' 3 L-l-m·...1Using 1 .3 we check that Lp - T , S . . ]
as order four and so d3 is zer·o. So the order of

rp4m+3, sl..!-m]is 8.24 wh i c.himplies the :result.

Case 3. r = 4m+3
The result stated is an immediate consequence

of 1o'i • By using t.ha s sort of method it roes not seem
possible tc settle this case ( we would have to evaluate
a differential in the E4-term of t_e spectral sequence).
However Professor Bredon has pointed out to me that
it is a consequence of theorem 5.4 of his :paper [12J
that the image of the map 8~* is ZA2 when I' 5 3 mod 8

, I

and Z24 when I' 5 7 mod 8. His theorem also implies

the result for case 1.



Case 4. r = ill

It follorls easily from the spectral sequence that
is either Z24 o~ 212 ' in which case the

Inage of" 81C::: is e i t.her- 0 or 22• however the non-zero

elenent of 22 c Z24 is n3 and this is in the image
,-p4m+1 841. -2Renee the result and a so , =by 2.1 .

-ife turn our attention now to some cases outside

the stable range.

~582 = Z2 ge erated by the element ~3 .

n3 5 o
2.4 'I'heoreLl : 8 4 8~ can be represented by

6. map f : (S5,'rr) 4 82 if I' - 3,4 but not if r = 2,5.

The cases j_-' = 3,4 folloW' immediately fro

1 e 2 and 2.1
2y an identical proof to that of 2.2, we can show

.J.. - .J.. -p5 82, o •t, lat, -, J :::

It is we L known that if ~ . 82 -> p2 is the covering.
2 ( .J.. is i,villbe proved in the nextmap then 8 'lC ~ 0 G

section). This completes the proof of 2.L~
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53 Further nen-stable results

First, ive prove t_ e fo:lO':'7ing Lemma; I am very

grateful to Dr. 3.J."anc.erso~: for shcwt ng me this result.

3.1 LemGa. _.--- be a nam r o.ld and 1 be M wi tho

an open disc removed. Let f : M ~ Sn+ffibe a

d· f C> ~., 1 - - - . -C> ~.. Sn+m . th ' .a: I er-en t i a o e emoeo.aa ng or jvi 111 .W11:. .tr1-vial

Proof Let 1 denote the tubular neighbourhood of

the embedding and T tr~e I'hom complex of the normal

bundle. Then 'l' ~ 3'1.: , ar...d T == N/oN. By removi g

a sraa LL disc of d imens Lon n-un from t_ e interior" of lIT,

we can get the space 'I' - D whi c is c l ear'Ly homotopically

e qu ivalen t , "n 11:.0 0" •
"0

'I'he at tac _ing map of the n-un di sc D

can be homotoped to zero over the sphere and so over

the Thorn complex T, which pr-oves the lemma.

This lev~a replaces a rather complicated direct

proof of the following

3.2 Coroll arv The maps 'le
2 2S -> P and?C

are stably trivial.

?::-IJof--- 'ife prove t.ha t S6 ,p6. t bl J~ 1S s.a y crivial

the other case is siila1" ).

'or b d -:J7',Ie em e .r L S15 • p7 is parallelisable and

so tJ.e nor! al bun le is t1"i ial. p7 with an open disc



~~6removed is ric: o t op icall_y e qu -.L~ valen -1- +0 - and th tt h',. i-J v U J.J. _e a Jac _lng

map fer ~is disc is easily seen to be ~, hence the
result.

\
In

. ). \
vie hav&-\shovm tea t tYl.\;~ttaching map for
o~ ar-y ~-~anifold is stably trivial.the top ceJ..l

\.re also have tce f'o'l Low l.ng1,7ellknovm resul t
.... b d' _LI·naG em e ln ~ •

Proof 3uP90se it does, toe normal bundle is
ei ther the tr tvial or Hopf' line bur d.Le , But it is
stably trivial, so it is trivial, nowever we show

3y looking at the spectral sequenoe of the rela tive
fibration (?X!1fCZ) -} -t t- )x ,» Dith 24 coefficients , where

is Le space of based paths Q X and X = K(Z2,2)
're can check t'at t.he euspens t on map

-}

is an ep Lmcr-ph i sm, H3(X(22,1 );6L~)iS geneI'at~dby
the third p ovre r which is non-zer-o on p3. Hence

3216 is non-zero en SP b' t is zero on SP vS4

-,,,,_t.er-na tlvel:."r,'ecould have identified 6 w ; t.h the
Pon t.r-y ag in squa re operation.

A si4ilar proof uculd snow that p7 does not embed in RB.



',"e ::0'.".' c.i S (;1.::.8 S ~ ~enerator of t~is
grc~p can be -ascribed as follows, see 27.

f p.efined y

Cl E
3 as a QU2terll~on an ~2q' E 0 as a purely

Lmagi nar-y qua te r nion , tnen Le t r( q, q! ) -1
- qq! Q.

The = opf' construct! .n app l.t ed to f gives a

representative c~ the gene~ato7 of

3o~. Theorer::: mhe eLe.cent s of
r

repre ented DY a map ~;:l : ISO 'r ) -)J.. , ....

0 wne n r = 2

'I. = 3.<:.11 2

Z2 r = 4

z,... r = 5
°~ r r:

iJ = 0

~6S3 that can be
s3 ar-e

Prcof -::l +-' ..,,3. t ' .11 d buecause U"e Z~ up ~6u lS no Kl e y
arbi tr'ar'yz.a _~T sus::pension s, the case s r = 2 ,6 are

'I'hecase r = 3 follous Luned.iately t'r-om the
description of t'e ge!erato:.

?ron t~e PU?ye se~uence 3 ~ ,3 4s ~ p ~ P we then

deduce that 2 I -f8 P'- s.J- , o\Vever~ from 1 .2 we know
that the element r3 ~hich ~as order two is in t_e
image of the image
l·S exac t -v Z.Av. v_~ 2'

It now :£,"'ollo',vsfro; the Y'u.:ppesequence
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= 26 • It follows
.I ."I • , t.ha t

Q Z ./~ tile '71\.7u = -r- -_" 2 ...J

-, 4
tne HOJf ::: Iman v : u -~ S

t_e image of
and the Z-1 0 summand is in

,e:..

sus~e~sic~ ma9 1\.,....83~ 1\. S4
o 7

3.5 Tr:eo:'e:; n' e en ents of....!le

re:presented t» a ::.....ap "'" . ,,7
'T ) ~

J
U , r

0 whe: r = 2

Z -r z~2 j_- = 3

Z2 y' =
22 + l,.... r = 5

0

0 r = 6

at least 2Z + Z..... r = 7
0

are

that can be

?::oof nhe cases r = 2,6 are immediate from 302 •

r'::he case 1'=3 ':'8 shown by explici t construction.

By 1.2 t e ele_e~ts i~ the Z2 can be represented

by such 11 ap s r := L~ • ?:.CJ'l the
..,j.,:=

J ~ -} 1 [s 3p3 , 84 ]

f:(' om I 2.1,and the facto

tl:.e case r = 3 of tlis theore~,



",7.

-, I,
'S.J-o'+L .L

), -s....·-! = ',:~:::.c_-: tae re eu L t for :... = 4

snow -;:':':.at

seQ_U8ncc 4sSi:::ilar_.i,
and t:at the nap

2 .'.S :p'" :
~ 7 u-S· S', - is a__ epimorphis but the

?3-D S7~ has degree two, whic

= »i~ilplies t_:e

'rhe r-e su.lt s ta te fo..._...:· = 7 ::'8 ar immediate
cor..seCiue::_ceOI... ~ "\, . 2orieve_ there are other elements
that ca be r-epz e s errt.e d y eQ.~ivariant maps,
the £1Op1. ITL "') V 's such a map and as p7 is an_'-'

clearly'
H-sp&ce

every culti:ple o~ It :s also (c~. t:e :proof of 1.2) .

Hovev e r- it is n ot cLe ar- t_ at t e set of such eLemerrt s
fo~ s a subgroup.

The f·olloliir:.g-c>eore: co:npletes the resul ts for

t e 3-ste:n

~:e eJ.e:ner:.ts n 3of ?\nu ( n;;<: 8 )

( ~n-3 Z ~ b t~e?tn = '2L! ' gel era tee. y n suspension of the

Hopf' rna}!
Lt,

~ S' i t r;a t can be re:p ese1ted by

a map
0 si.et: -n = 2...

Z2~ i: 3
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Z2 wne n r :::: L:.

'/ r :::: 5
LJ1 2

0 r :::: 6

Z24 r :::: 7

Proof These results follovr immediately t'r-om the-_._
:Qrevious proof and the ·reudentl18.l su spe ns i on the rem.



).;lUIJTIP:LIr;ATICJ~8 ON P:!O,J.;_;CTIV,~ :"·':.I.AC~;~'__ '"' ......... ~ L • __ '_ .. __ ·~ ..... __ •__ .. _·_

Let ~ : XvX ~ X denote the 'folding! map.

A multiplicatiQ on a srace X is a map.

~ XxX ~ X such t.Bt ~IXvx = ~ .
By Adams [1J the only projective spaces that can

1 3 -
have a multiplication are P , P and p( •

In thi s chapter we compute t.he numbe r of homot.opy

classe s of .ul U.plications on p3 an P7• Two

TJlUl tiplications on a space are said to be homotopic

if they are homotopic as i ap s relative to the we dge ,

T11i8 pr-obLem is hinted at in [1 7. rr~ e general pr .otem

et' fin ri ng t.ne number of multiplications on. an H-space

is P oblem 43 in r"Iassey's list of problems (Ann. \ath.

vol. 62 (1955) p.327-359 ) .
If a space X admits a hom.otopy associa ti ve

multiplication and is such that XvX c XxX is a

cofil')ration then Arkowitz and Curjel [6" set up 8. 1-1

correspondence between the set of multiplications on X

and the homotopy set [XAX,XJ.

Using this result Naylor [21J showed tlat p3 has

exactly 768 different multiplications. We reDrove his

result in 31, in a much mo_e e~ementary way a'd to st_ess

tne S '.'[e vli11 not assume any re suI ts from the previ ous

cha:oters.
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In '32 we show that the numbe r- of muJ,tiIllic t i ons

on D7. 30 7"0.[ 18 ,~.
=»

pi does not a~nit a ha ot.opy

associative multiplication, horrever t le numbe r of

mul tiplication3 on p7 is in 1-1 ccr-r-espondence VIith

the set [P7AP7, p7] ~ [P7AP7, 87 , becau~e the proof

in [6JoDlY a sume s
\

that the multiplication hns an inver·~.

~

\
I

~"I ~i"[lli9.£,!i ons on_ p3

As we have pointed. out aLr-eady , we mus t compute

the er-de l' of the gr-oup [p3 A?3 , s~iJ •

-1.1 Lemma
2 ?

~ : S ~ p~ be the coveriDg m~p,

then S2~ ~ 0 •

w '" cr , r 21 I;!;_roOI_ L J'

')? "
'F'I t h t f' 1 c~'-p....,S;))~r n . e . 0 oPY sequence 0 tle p&lr ~

it is seen that any map 844 S2J2 factors through S3.

So if vie assume t.ha t s2"'-J\ I, • ~ .J.. f .J..• ,7' 0, 1\, mUGu 'aCL-or' '-'lS

?
Then the mapping cone of S-~

:,-_:,uld contain SCp2 and so S~? wou'l d be non-zero

_,2~2 t o' t·Oil. 0 r a con r-ao i c lone

then

Let K be a five dimen3ional complex,

rSl(5 c.L~lJ
L -? U

1 .2 Lemma

Proof The isomorphis!il is the boundary ma» in the

Pupp e sequence of the fibratton 87 -} S}-\·.
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" " '\:Ll/

- -;,; .") ->8./ ,- r, _) 1 has order fC'...E'"'.9U J
7. 7.: -"

S.Jp.J,S5] h3.S oreler 48~
r-p2 p2 83] has or-de r- four.l- I, ,

p3"p2,S3] has order -16.

1 .3 I'roposl.tiol1 I )

iii)
iV)

Prod' I ) is immedi ate r'r cm the Puppe eoquerice of
the map 81 ~ 81 which is multiplication by two.

" " \ll;. Fro~ the Puppe sequence of the map ') 2
1C : S'- -> P

VIC get
[S4p2,83] ~ [86,83J ~ [s3p3,S3] ~ [S3p2,s3] ~ [85,83J

both the maps at the ends are zero by 1.1, this
together with i) gives the result.

iii).

and the end

1+" I" t" by\ t~\ro, RC r".J:D2AP2,~),3-J hasare mu ulP lea 10n \ - ~ " ~

order four.

i v) • From the Puppe sequence of

'lie ge t

2 2 3--> [p /,p ,8 ] -}

By 1 .2, both the end naps are in the stable range
and as 0(\1 is 0, we have the result by 1.1, i) and iii).
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NoV!, Vie look at the Puppe SE! q_uence of'the map
~2 p3 p2 p3 ": ~ A ~ _ A ana get

r SP2 p3 c,3-, . r
'- /\ ,0 J -+ [S3AP39~3] ~ [p3AP3,s3]

~ [p2AP3,s3] ![S?AP3,s3].

By the results in 1.3 it only remains to c' ow that
both f'and g are zero. g is zero by 1.1 and 1.2 .
There is a commuting diagram

'V
(,3 p3 ~,3]
() 1\_ ,0

'V

[Sp2"p3, 83J __ f'_~

The vertical maps are induced by the boundar-y map in
the Pu:ppe sequenc e of the Eopf f'ibrs.ti on S7 -> SL!-
and so are ~pimorphismG. Sf is zero by 1.1 , so f = 0 a1 o.
Hence [p3"p3,s3] has order 16.48 = 768 •
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T e calculatioil fo~ p7 follows the same general
pa t tern as tl at f'cr p3, altb.::mgh the details

obviously much ore carr:lica"!:.ed..
;.:uch use is made of tce f'ac t t: at the map

1C S6 _~6,
~ r 1'" sta"bly trivial, this was proved in II 3.2 •

':.le remi d au 'selves t t 1C/
1
AS7 is 22 and that

oJ

?nl~oJ • T' _e i:01 owing analogue of 1 • 2

~ill also be u~ed
2 •1 LeYJJl18. Let K be Cl. "3-dimensiollal complex,

then

P: 00f ':::'.e 130::101'.Q: ism i's Lnduce d by the boundar-y

map in t e Puppe sequence of the fibration S15 -7 S8.

3'0:0c21culations '\liththe stable c010motopy
spectral se quer ce , 1,'!e r,lillneed the following

2.2 Lemma d2
En,-2 --;. _Jl.+2, -3 isK_

2 ....2

2 Hner• Z \ '"2. .... -)- E"·+ ;224 where i,;; is1::: Q_ • A, 2 J -
induced by t e inclusion Z c Z2L~2

Proof By looldng at the ape ct'ra.l sequence f'or- p5

II 3 r .. t [s5p5 s71 - '/ it l' r.:• o 1:.a ~ J - oJ1 2 ,1 ~and k ewing f om
clear t at d2 is non-zero. The only non-zero such

t ' 'S 2stabLe co' cmology oper-a Lei rs 1::: q
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2.3 Pr-op oe i tion
- \ !-05p6 07J 0 [Q6~6 ,.,71l) ~u ,0 = 1 V ~ 7~ j = 767O an d [<!"D Qo.l.L V..l.!) U

has order eiGht.
ii) [p6AP5,s~J has order four.

Proof'
i) follows t'r om the spectral sequence f'or p6 jona

straightforward way.
.lI ) follows from the spectral ee qu.e ce fay' p6 AP5 •
The only differentials that have to be evaluated are
in the E2-term. The evalua ,ion of the different'als

')

that ar~ Sg_~ is done by means of the Cartan fornula [26].

However to evaluate sg_2P2 one first has to look at the
cell structure of p6Ap5 and the results that are
needed are that

S 2
Cl P2 ->

is an i s ornor'phlSIr. on two summands f'ron 3Z2 to 3Z2
when n = 7 ,
and an isomorphism on one summand from 2Z to2

when n = 6.

2.4 ProI2osition t ) [s7p7,S7] hCl.s o· er 8.1 20
1i) [p6AP6,s7] has order' j_ our

iii) rp6 p7 cJ has order 25.L. /\ ,u
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i). rIe have a Fuppe sequence
7 L 7 f[S ASpO,S ] ~ [S7AS7,S7] ~ [S7AP7,s7]

~ [S7AP6,s7] § [S7AS6,S7]
The map f is induced by , so
is zero by II 3.2 • g is also zero for the sane renso •

i1). We have a Puppe seQuence
[S6A?6,S7] ~ [p6AP6,s7] ~ p6AP5,S7] ~ [ 6As5,:7

Both the end groups are zero by 2.3 i), hence
[p6AP6,s7] ~ [p6AP5,S7] which has order four by 2.3 i1).

iii) Similarly we have
rLp6 S7 Q 7-A , '..J -}

->
g
-> [p6 ,-,6 <::7

I'. U ,v
Pr-om the results in 2.3 i) and 2.4 i j_ ) we must 'how
that both r and g are zero. g is in the stable ra ge

and so is zero by II 3.2. All application of 2.1

brings l' also into the stable range.

2.5 Theorem The number of distinct homotopy
classes of multiplications on p7 i8 30,720.
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P~.GO£'---
1Ne look at the sequence

6 fEsp AP7,s7] ~ [S7AP7,s7] ~ [P7AP7,s7]

~ [p6AP7.,s7J ~ [S6AP7,S7]
The map g is zero by II 3e2 and 2.1 •

By the results in 2.4, it remo.ins only to s ow t et
f is zero. Suppose f is non-zero, then there is Gl

677element x E [Sp AP ,8 ] such that ~x ) O. Then

because the seg_uence of the Hopf fibration

splits ( the splitti~g map is the suspencion) Sfx) 0

':le know that S2fx = 0 by II 3) 02 and
Sfx E [sBp7,sSJ - [S8p6vS15,s8] . The kernel of

S : [S8p7,sB] ~ [S9p7,s9] is generated by the element

I S-,820-0 ~here ~15 = Z + 2120 and 0 generates the ~

S·C:.rill, and and 0' gene r-a'te s the :6120 summarid , [28J.

SO the element Sx has infinite order. However it is

an element of [S2p6AP7,S8] which sits in the exact

sequence
[S2p6AS7,s8] ~ [S2p6AP7,s8j ~ [S2p6AP6,S8]

both the end groups in this seg_uence are finite Clnd

so we have a contradiction because Sfx E Ker S .
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