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ABSTRACT

The groups KOl are computed for real, complex and

quaternionic spaces. A study is made of which elements

in ﬂnSn—i can be represented by a map f such that

f(tx) = £(x) for a given involution T on S%, for i=0,1,2,3.
Certain elements in arbitrarily high stems are shown

not to be represented by any such map. A computation is
also made of the number of homotopy classes of

7

multiplications on P3 and P', this had been done for.P3

by Naylor but the method used here 1s much simpler.



INTRODUCTION

The groups of stable equivalence classes of vector
bundles on spaces have proved to be of considerable
importance in algebraic topology.  They were introduced
in the late 1950's from ideas of Grothendieck,Atiyah
and Hirzebruch. A study of these groups for projective
spaces led to the solution of the vector fields provlem
by Adams and via the theorem of Hirsch to information

bout immersions of projective spaces in Euclidean

spaces by Atiyah and by Sanderson. Atiyah and Hirzedbruch
made generalized cohomology theories from these groups
and this has led to their study from a homotopy point

of view by several authors.

Here we compute the groups KOi for projective spaces.
This had already been done in some cases by Toda [29]
(for RPSn), and of course by Adams [2] for i=0. Adams
used arguements involving spectral sequences, whereas

-

Toda used direc{ obstruction theory techniques together
with the Bott seouenQe which lln&é up the real and
complex K-theories. 1n [5] Anderoon con51dered the Bott
sequence and suggested that it could prove very useful
to corpute the KO groups of a space. We adopt this
approach as far as possible by using the spectral

P

sequence arguements as little as possible, but they
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cannot be dispensed with completely (without using the
obstruction theory as in [29], but this really amounts
to the same thing).

In 1944, J.H.C.Whitehead showed that if a map
£ : s 8P is essential and is such that f(x) = £(-x)
for every xeS™ then n=3 modl . We apply the K-theory of
projective spaces to extend this type of result to maps

1

between sﬁ%res with a drop of two in the dimension. Ve
can also say whether some elements discussed by Adams

in [3] can be represented by such maps. The behaviour
of eiements in the 3-stem is discussed by studying the

cohomotopy groups of projective svsces.

Recently Naylor computed the number of homotopy
classes of multiplications on PB. Using the cohomotopy
of projective spaces his result is proved in a simple

fashion in Chapter III and also the similar result for P7.
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Chapter I. THE K-THEQRY OF PROJECTIVE SPACES

84 Preliminaries

In this section we give a review of a few concepts
from homotopy theor& that we will need in tﬂis chapter.

All our topological spaces are provided with a fixed
base-point, usually denoted by o. All our maps and
homotcpies preserve base-points. [X,Y] denotes the set of
homotopy classes of maps from X to Y. If AcX then X/A
denotes the space obtained from X by identifying all the
points of A with the base-point. . CX will denote the
reduced cone on X, i.e. the space XxI/Xx{1} U oxI where
I denotes the unit interval [0,1]. SX will denote the
reduced suspension of X, i.e. the space CX/Xx{0}. XvY
will denote the disjoint union of X and Y, with the two
base-points identified. There is an obvious inclusion
of XvY in the Cartesian Product XxY ( whose base-point
is (o0,0)) and the quotient space XxY/XvY is the smash
product XAY. We note that there are homeomorphisms
StAX » SX and IaX =+ 08X, If f : X= Y is any map, the
mapping cone of £, Cf is the space YUfCX = CXvY.With
jdentifications xx{0} ~ fx. The mapping cylinder of f
is the space M= (XAI)vY with identifications xx{0} ~ fx.
e see that there is an inclusion of X as Xx{1} and that

mf/x = Cp o
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We say that a map £ ¢: A= X is a cofibration if,

given any homotopy gt ¢t A= 7Z and a map hO: X - Z such
that hof = 84> then there is a hcmotopy ht: X =» Z such

Examples of cofibrations are inclusions of CW complexes
and the inclusion of the end X in the mapping cylinder
Mf of any map f: X - Y. This latter example shows in
fact, that every map is a cofibration "up to homotopy"
i.e. given a map f: X = Y there is a commutative
diagram g
gy
Ma
with 1 a cofibration and h a homotopy equivalence.

If f: A= X is a cofibration, the space X/TA is
called the cofibre of £f . If f: X -+ Y is any map, the

cofibre of its eguiﬂelent cofibration is (up to homotopy

N\

: \ \\
type) the mapping cone Cf »
Cofibrations (and hence maps) are studied by means
of the Puppe sequence [23]. This is constructed as ¢
follows. Let f:X = Y be any map, we have an inclusiam

1 Ko Cf which is a cofibration, and a map p: C, = SX

T
onto the cofibre of i, by collapsing Y to the base-point.
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By iterating this procedure we get, following [23],

an infinite sequence which up to homotopy can be written

o

K e N Cf > 88X = SY - SCf A B AU e R

It is immediate from the definition of a cofibration
that for any space A, the following induced sequence
of based sets is exaﬁtw

Sp"

-4k
[s™c

5
s

FoagEiriyanc g R L e B

f’
i:.c f::=
o= [Cpra] = [Y,A] - [X,4]
This sequence is a direct generalisation of the

cohomology exact sequence for a pair.

The dual of a cofibration is the more familiar
fibration. There is an analogous Puppe sequence
e ﬂn+1B A g T T v e S o L

ey = S W o e el B G PG 8 s ibration

x : E-» B with fibre F. For any space X the following
induced sequence is an exact sequence of based sets

WO e O O e R L o S R

oo X, 0B8] = [X,F] »[X,E] = [X,B].

This sequence ig a\direct generalisation of the homotopy

\

exact sequence of a\fibration. AN
]

Another important case of this latter Puppe sequence
is the Bott sequence [11], obtained by looking at the

fibration O » 0/U, where O and U are the stable orthogonal
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and unitary groups respectively. This fibration has fibre
U and the inclusion of the fibre is induced by the inclusica
U(n) ¢ 0(2n). By Bott periodicity C/U is homotopically
equivalent to the space QZBO, where BO is the classifying
space for the stable orthogonal group. By interpreting
the Puppe sequence of this fibration in K-theory, we get
the sequence

a r”'n P o an~ . n+ .- :

con = KH(X) = XKOH(X) = KO (X)) » K 7(X) =0,

Here K'(X) is the Grothendieck group of complex vector
bundles on S™UX (n<0) and KO™(X) the corresponding
group of real vector bundles. r is the map induced by
the inclusion U € O and so is induced by forgetting the
complex structure on vector bundles.

By studying the Puppe sequence corresponding to the
fibration U =» U/0 and using the Bott homotopy equivalence
BO x Z = 2(U/0) we get another Bott sequence

ot KoK A Kx) +ixoit2epyee xRN
and the map ¢ is induced by complexification on vector
bundles; by comparing these two sequences we éee that
the boundary map 0 in the first sequence is (up to sign)
the map Bc : KO (X)) » ™1 (X) where B : Kn”.(xl) 3 K3 N (x)
is the Bott isomorphism.

This identification of the boundary map in the first

sequence will be impoxtant in our calculations. This fact



P

is brought out clearly in Atiyah's new approach to Bott
periodicity and the Bott sequence[8].

We also need to know that the composition

B AR 5 B BRI ; : o

rc : KO (X) - KO'(X) is multiplication by. two. This
follows immediately from the corresponding fact about
vector spaces.

The reader will have noticed that we have disregarded
signs in this section. This is because we do not need to

know them in the applications.

%2 The groups KO P

In this section we shall calculate the groups given
in table 2.4 . All the groups shown are reduced and Pn
denotes real prcjective n-dimensional space. A meaning
is given to the symbol KOiPn for i> 0 by extending the
eightfold periodicity.

We note that some of these groups were already known.
k0%P™ can be found in [2,Theorem 7.4] and the values of
KOiPan in [29]. I have learnt since doing this work
that the results of this section and of £3 have been

also done by Fujii [32].
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OPn proved by

We assume the results on KOPn and KO
Adams in [2]. We proceed by induction on the dimension n.

The induction step uses the Puppe sequence of the covering

n-1 11—

map ®: S - P Wwhose cofibre is P. This gives us
some infarmation about KOiPn . We supplement this
information with the Bott sequence for the space gt

As mentioned in $1 this links up the real and the complex
K-theories. We also need to use the Atiyah-Hirzebruchv
spectral sequence [9], which links up the cohomology and

the K-theory of a space.

We remark that K°P" = 212[n/2] see [2,Theorem 7.3].

1

We first calculate X' P" .

n
2.2 Lemma - B N
= i0odlon S8 even
Proof When n = 4 this is true because P1 = S1

A R T T

Suppose that n is even and n > 0 then we have

the Puppe sequence
A
YIS
gOgR gl ot gl g gt 0p0
0 Z y/ finite

(Here as always we write the values of groups already

known, underneath)

1

o " g Y
Hence ® 1s a.monomorphism and so X PYl =::0:3
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Now suppose that n is odd and n 2 3, then we have the

Puppe sequence

k%71 o k%77 o xipR o klpR
finite 7 0
Hence K1Pn =l e

2.3 Lemma The values of the groups KOiP2 are as
shown in table 2.1 .

Proof We are assuming (from [2]) that KOOP2 = 2 -

All the other groups follow trivially either from the

Puppe sequence of the double covering map S1 - S1 or

alternatively from the Atiyah-Hirzebruch spcctral

seguence.

Note The results far P3 are an immediate consequence

of 2.3 and the fact that §°P° = §°p%ys3 .

There now follows a series of lemmas, one for each

tep in our eight-fold induction together with a few others

w

into which we have put the more difficult steps.

2.4 Lemma The results for K01P8n+2 imply those
for Ko1pSo*3 |
Proof From the Puppe sequence

S8n+2 5 Pdn+2 i P8n+3 = S8n+3 ¥

we see that we have the following exact sequences

KO2P8n+2 Es KO2S8n+2 3 K03P8n+3 = K03 P8n+2

52 Z 0

SO KO3P8n+3 e
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(O:)K0380n+2 L xopdnt3 xolpdn+2 Kou88n+2(=0)
S Dot s S R =:Z24n ;

(0=) koHs8at2 | 105p00+3 |, (5pBn+2 (_g)

SO KQBPBn+3 =0 .

a 3 o Pl 4

k035802 |, xbpdnt3 |, xoOpbnt2 |, (o0¢0nt2
0 ; Z2 Z
SO KO6Pdn+3 = Z2 .
KO6an+2 » KO S?nt? , KO7P8n+3'¥\KO7P8n+2 3 KO738n+2
Z, z \ \\\z2 0
and so KO7P8n+3 =2 or Z + 22 .

However from the Bott sequence, we have
K0P8n+3 7, KOOPdn+3 ¥ KO7P8n+3
Z;un+1 z£4n+2

<

hence KO7_1?8n+3 has 2-torion, so it is Z + Z2

; c oy
KO5P8n+3 iR KOl+P8n+3 & KOPon+3 i KO6P8n+3 5 KO5P8n+3
0 Z un JANRY 0
and so we have that KO6P8n+3 = Z2

The map ¢ in the last sequence was a monomorphism
and so by the discussion in §1 the map r in the following
sequence is an epimorphism

; i : : ‘&
§0p5n*3 |, goHpBat3 | xodpdn+3 ., Vpdne3 ., godpBne3

S L HoSPARD . ma o
Now we see that r : K¢P8n+3 - K03P8n+3 is multiplication
Z Z

by two and then we deduce from the Bott sequence and the
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results that we have already that KO P8n+3 has four
elements. Similarly, we see that in the following sequence

the map c is an epimorphism and r a nonomorphism

KOOP8n+3 0 8n+3 -+ KO P8n+3 KO P8n+3 8n+3 K03P8n+3
22un+1 Zzun Z [/
so KopSP*3 o KO1P8n+3 :
8n+3
Now K 'P = Z and we have that the following

composition is multiplication by two

X0 P8n+_‘5 K1Pdn+3 3 X0 P8n+3

finite Z _ finite

iy 8n+3

and so it is also zero , therefore KO P must have

exponent 2 and so it is 22 + 22 g

Wle gave the proof of 2.4 in complete detail, however
in the following lemmas, we will ocmit routine procedure

with Puppe sequences.

2.5 Lemma The results for KOiPBn+3 imply those
for XKOTPORHE.
Proof Immediately}from the Puppe sequence we see that
x0op8BHE | o) xopBnth | z, and Ko /pon+Ht _ 7.
From the Bott sequence we have |
\O5P8n+u ¥ KOuP8n+u - X P8n+u SoED P8n+L;. 30598n+“
0 Z Ln+2 Zg 0

and so KOMP8n+u'= .Zghh+1 -

\ \\\\\



-

oD

In the following sequence the map ¢ is an epimorphism

C
g1 p8oHl | patpBnel | ¥00P8n+h o xOpSn+l
0 Pt un+3 Z.un+2
> g02p8DHE |, xol pOrth | (180 oy
Hence KOZP&HL}r £ KO P8n+u Z2 3

Now in the Puppe seguence we have

go2ponth K0 P8n+3 x02550+3 |, go3ptnth
Zo bo+dy o
= K03P8n+3 i K0388n+3 X0 P8n+L+
Z Z Z
740
& KO RO L E

To do the next inductiom step it does not seem sufficient
to just look at the Bott and Puppe sequences. We will work
out one of the differentials in the KO-theory spectral

sequence. The following is part of the induction

2.6 Lemma K03P8n+5 =0 .

Proof The Ez-term of the KO-theory spectral sequence
for Pbr is as follows

4 0 Z VN 2 Z2
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We know that KO-P* = 0, from 2.5 . This group is

calculated from the indicated diagonal. The only differential

. ‘ ; ik : o
that can kill the term E;’ '= Z, is d,. Hence
H 2.0 R g P g 202
d, ¢ 32’ - bg’ is non-zero. Similarly because KO PLlr = Z2
: R - faby PSS PEYT ' iy
we must have that d2 : m2’ ot mé’ is non-zero. However

the differentials are stable cohomology operations, hence

2 s o0 s . "“p { 4 0 'q’p+2 b _1 $ 2 o}
the differential d, : E;’" - Ej is 8q°p, (where 05

is reduction mod 2) and the differential

d, * 32’—4 - Eg+2’—2 is qu %
3P8n+u

We know by induction that KO =0 8and s0

gooponts | gOntd,=a o Bne5,22 - o He differential

d, : Egn+3’_ﬁ - Egn+5’-2 is Sq2 : H8n+3§P8n+5;22)

Hence 38n+5,-2 =0 .
]
i - i _8n+l
2.7 Lemma The results for XO°P

iP8n+5

imply those

for KO

Proof Immediately from the Puppe sequence we have that

8n+5 6,8n+5 _ Ko7p8n+5

K07P = %, KO'P z = Z, and

2
UP =Oo

From the Bott sequence we see that

8a45- KOLLP8n+5 KOﬁP8n+5'» K1P8n+5

J¥E ¢ KOP andso- 3

are isomorphisms.
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2.6 Lemma The results for K01P8n+5 imply those for
il e e r -
Ko P P*® | apart from kotter CaBPES S L0 L e enanits

BrooL Immediately from the Puppe sequence we see

8n+€ o

that X0P°P*® =z ana xO°P
From the Bott sequence we get

ot 0 7 5
K1P8n+o & KO7P8n+6 = KO6P8n+o 2 KOP8n+6

0 Ze, 232un+3
e KOOP8n+6 L KO7P8n+6 2 K1P8n+6
Zzun+3 Z, 0
and so KO6P8n+6 has order four.

In the following themsp ¢ is an isomorphism

K1Pdn+6 i KO1P8n+6 2 KO0P8n+b c KOP8n+6

0 212An+3 112un+3

5
. KO2P8n+6 5 KO1P8n+o

s KO1P8n+6 S4B ik KO4P8n+6 5

N i
ﬁ02P8n+6 o KOP8\Y\1+6 5 KO“POA+Q\» Ko3P8n+6
0 VAREN, N\ o

; g
hence KO'P°®* = Z lns3

0 .

The map ¢ in the following sequence 1is
multiplication by two

o % s C { 3 r

il 8n+6 - KO5P8n+6 = Koupdn+6 2 K0P8ﬂ+3

0 & Shn+3 Z,)Lm-l-B

so KPPOBe _ Z:
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Q
It now remains to show that KO6P°n+6 = 4y + Z, when n > 1,

xOpdn+b _ 7 Hlin+3
and so.if 'n.z: i the'compogition rci: KOO -8n+6 KO6P8n+6

is zero, which shows thdat KO 13’8n+6 0 &

we already know that it has order four.

We do not seem to be able to show that KODP6 =57 i

2 2
at this stage. ©So we assume only that it has order four and

return later to . show that it . is.in fact 22 eyt

2
2.9 Lemma The results far K01P8n+6 imply those for
ROLpOE] (again, apart from KO6P7 )

Proof Immediately from the Puppe sequence,
8n+7 _

ko  282+7 = xo2p8RtT _ o ana KOOP

From the Bott sequence we have .
X0 P8n+7 "OP8n+7 2 KOLJ,P8n+7 5 KO3P8n+7
0 Z lin+3 /
and from the Puppe sequence KQMP8H+7 is finite, hence it is 2124n+3

8n+7 0 8n+7

¢ : KO p is an isomorphism, so in the sequence
%0 dn+7 X6 P8n+7 X0 p Sn+7 % P8n+7 s P8n+7
ZQLm+3 ZQLm-i-B Z 0

the map r is multiplicatien by two and so KO7P8n+7 S e

2.
41lso the mapsr in the following sequence are multiplication

by two

& r
| BhaE o KO7P8n+7 6 8ﬂ+7 8n+7 o KCOP8n+7

K P

2 Z + 22 -Zzun+3 qun+3

and so KO P8n+7 has order eight.
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From the Puppe sequence we have

KoosShHE |, goltpBnt? | plpBne6 | L i Bni6 | 5 8ns7
0 2 2124n+3 Zzun+3 22
: L poopoe xooson+b KO6P8n+7 % KO6P8n+6
Z2 22- order 87 order Q
hence K0°P°?*7 has order four, but ré :KOOPOR*T . KoIpon+7
factors through K'P°™*7 = z and so KoPPSP*7 . o' %2,
Also as KPP o Zounys xoPpOnrT . Zy + Z, + L, fob n31.

For the purposes of the induction, we will assume
6. 8n+7

only that KO P has order eight and return later to
show that KO6P7 & Z2 + ZQ + 22 .
2.40 Lemma The results for X0°P°®™! imply those
for xoipth (n21) .
Proof Immediately from the Puppe sequence we have
ko1p%? = ko%p® . .
From the Bott sequence
(0=)K'5°% & x0%p82 4 x0%8%0 (o) 80 kOPPER - o
£0%p°R o k9902 o koMpOD | xo3p0n
0 Zzb,n \‘ \\ 0 3 SO KOL"P8n = ZQL‘H :
In the following séquénce ~ K1P8.‘{\-:>\KO5‘P8n -+ Kb“?sn
0 JART
$ %58 & xa®p®® . xo%p®0 ., x1p8n
Zgun ‘ 0 the map ¢ is
multiplication by two, so KO5P83 = Z, and optn has

order four.
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In the sequence

o} jol r ;
e, k0 p% 4 xo®p%P 4 k0P8R  xo0p8n . xo7pBn ., 1p8n

0 order L ZZLm ; Zgb,n 0
the map r has kernel ‘at most 22 SO KO7P8n has order two or
four but it is the cokernel of r so KO7P8n

6._8n 6.8n . 0..8n

22 .
reE KO P = KO°P T'actors through K'P 712un
' 6..8n

and as n > 1 it must be zero , so KO P = Z2 + 22 .

2itt Lémma The results for KOlP8n imply those

Cop BOPRIAYin J o 0 )

Proof Immediately from the Puppe sequence we havé that

x02p80+1 =z ko388 _ o, x0'®PM _ 2 ana xotpSPH _ Z un

In the Bott sequence we have

g r g
KOPBnﬂ A KOOP8n+1 > KO7P8n+1 % K1 P8n+1 A KO1 P8n+1
- Z
qun 2l+n+1 Z Z
and both the maps r must be monomorphisms, so KO7P8n+1 = 22
In the Puppe sequence we have
k02582 Ko6P8n+1 i KO6P8n 2 KO688n 5 KO7P8n+’1
0 Z2 + &2 22 22
» KO'P? & ko's%R & ko%p%RH |, (o0p8R
Z, Z, Z2Lm+1 Zzh-n i KO6P6n+1 = 2,

it KOPBH"'1 - KOL‘LPBn'*')l is an isomorphism , hence in

the sequence



Yl 4 c Z 2 A
4pSn+ S 0.8n+ A Koonn+1 & KO5P8n+x

RO F K ¥
Zgun .Z24n Z,
o K1P8n+1 e KO7P8n+1
Z | 22
¢ is multiplication by two and so I{O5I->8n+1 = Z o
2.12 Lemma  The results for KO'P®®*' ip1v those
for xolpd+2, Gman
Proof Immediately from the Puppe sequence we have

K0opSP*2_ § ang xoipon+2 =Zzun

From the Bott sequence we have
P .
0,.8n+2 0,8n+2 3 KO7P8n+2 % K1P8n+2

K'P = K0P
& 2l+n+1 22un+2 0
and the map r is a monomorphism, so KO7PDn+2 = Z2

H

1P8n+2 g KO7P8n+2 o3 KO6P8n+2 % KOP8n+2 74 Ko0P8n+2
Zzun+1 Zéun+2

K

0 22

so K0Pptn+2 _ g

Similarly c @ KOLLP8n+2 - KOP8n+2 is a monomorpnism

0.8 0.8
and KOPPOR*2 _g i o o et G s s an epimorphism,
xo!p8n+2 _ z, and KoZpSn+2 _ Z,

We have now completed our induction and have proved all
g
the results in table 2.1, except for KO6P6 and KOOP7
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2.1 3 Lemma KC°P" = Z, + Zy
Proof We look at the Atiyah-Hirzebruch KO-theory

2
spectral sequence for P° . There is an exact sequence
0 - Eg"B - ko®P® - Eg"4 - 0
&s s
17 2 9 _u

"
Now in the spectral sequence feor P5 : KOOP5 = By

5.9 B 4
PJ b 32’ b . By the naturality-

N

+ \®
and in that for PD, KO

of the spectral sequence the inclusion map P

2’-4

. . . will
induces an iscmorphism of E2 and so af KO P9 with

P 7
w7 T T oF 2 3 o] 3 1 S] 6
AODB5. This isomorphism factors through KO P , and as

we already know that it has four elements, we have the

resulte.
T 6 7 7 g
2.1“— Lemma KO P! = ) o 42 *+ Zz
?
Proof By the previous proof, Ko°p! = Z, + G,

vher i itl A e e P T A= nd
where Gu is either Ah 2o o, he 52 summand

T N s
corresponds to 32’ % in the spectral sequence.
we have

Also, from the Puppe sequence,/the short exact

sequence & 3
0 - x0°p% o x0®p7 > x0®s7 - 0
Z,43, Zp1G, 2

and from the spectral seguence

2

: -.?7"‘9 *?6’—8
0 = By 48 Gu il ¥l
mi- -7’ "9 corres nds t t1 1,06,-‘7 a : T
The Ej sponds to the KU 5 and so we have a diagram

N :
\ A

)
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0i%s EZ’-9 2 GL;_ 27 Bg:"a 20

ﬁ ol =9 i L

0 - E; O A 0
where the top line comes from the spectral sequence
of 57 and the bottom from that for 87, the vertical
maps are induced by the coveripg 87 - P7.

Hence GL'+ = 2, + Z2

We now summarise a few of the results of this

section that we will need for the applications.

2.5 ' Proposition

n

Let = : S = P be the covering map,

? . 3
| i et : R K Al o
then the induced map ®° : KO P - KO S is zero when
either n-i =1 mod 8 and n # 3 modl

or ni=2mod 8 and m=1 or 2 mod 4 .

Proof Implicit in the proof's of this section.
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o 3 e
$3 The groups KO CP

In this section, we use very similar methods to
those used in the previous section, to compute the
Sl e ¢ 6 XN : . X
groups KC'CP  where CP" is complex projective space of
real dimension 2n. The results are given in the following

table. The symbol rZ denotes the direct sum of r copies

of the integers.

TABLE 3.1

KOlCP2n = nZ for i even
T for % 68di
i xotopHat xolcpHn+3
0 2nz + Z, o2n+ 2
1 X Z 0
.\§2 ¢
2 2ny1 Z \Rh+2z
L 0 0
L 2nz 2n+1Z + 2
5 0
2 22
S 2n+1 2 2n+27
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Wle note that we will not assume any of these results.
However scme of them are known already. KOOCPn may be
found in [24, theorem 3.9]. We will use the Bott sequence
and so will need to know the values of the groups KiCPn.
For i = 0, these can be found in [10] or [24,theorem 3.10}

and for both i = 0 and 41 in [7]. However we reprove them

in the following

3.2 Lemma ﬁ?CPi = nZ and YiCPn = 0.
\\\ ‘\\ &
Proof We induct on n. The result is clearly true
) ¢ 1 2
when n = 1 because CP' = S .

For the induction step we use the Puppe sequence

2n-1

2 ! n-
for the covering map S - CP 1 whose mapping cone

n
R

(0 =) k%221 ., xl'cp? o k'ce™' (= 0) shows

€3]

S

: 3 n
that ﬁ1CP =0, and
\

> K's o x90p® & kVep?t L %%

0 Z n-41% )

0

1 1 e n
shows that X CP" = nZ.

e now start our induction, which has four steps.

-

It starts easily with CP1.
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3«3 Lemms X0 CPuﬂ+2 = 2n+12

Lin+4

Proof We know by induction that KO CP =2 ne 4

n+2
We work in the KO—uneo ry spectral sequence for CPL1L +2

~8n+3,-(8n+1) E8n+h,—\8n+2)
3.

= Jvand = Z

2

Ln+2 e
K02CP 2 = onpqz 4 O0*H,-(8n+2)

However in the proof of 2.6 we showed that the differential

8n+2,-(8n+1 )

s . 8n+l,-(8n+2)
d2 s bz 8 11_,2
P2
was qu, hence %n this case E‘:+%’ (8n+2) = .
\ \
\ X X
\ et
sl iy ’ p polk by
3.4 Lemma The results for KO CP imply those

for Kolgptit2 |

Proof From the Puppe scquence we see that

x0ocE**2 - o, x0%cP*™*2 - 2nuz, xoleRHRte. o,

Ln+2

= ;
xo! cP*™*2 _ o ana kotcp RIS

From the Bott sequence

| f )
KO1CP4n+2 e KOOCPMnTZ 3 KOCP4n+2 5 KO CPun+2 S vl oo Iin+2
0 Ln+2Z 2n+1 2 0
so K0%cPH™*2 | opyyg
and similarly
k' op**2 o xo3cpHP*2 L xo?ophBtR | gOcphnt2 |, poligphine?
0 2n+1 7 Ln+27Z 2n+12
- ' >



3.5 Lemma The results for KOJ'CPLm"'2 imply those

for KOTgpHR*3,

Proof From the Puppe sequence, we see that
A \ ] ;
x0cp"™*3 - 2nwz, k0'cP*™*3 - 0, k023 L onsoz,
= 1 - g
KO-CPHP+3 = 0, K0°cP'™t3 = 2ni27 ana xolcPV3 - o

Also, from
ko et L ko385 |, yolophnt3 | goligpln+2

0 22 2n+1 Z
5 KOHs8P¥D |, xodoplint3 | godgphnt2
B 0
. we see that KOWCP"®*3 - onuz + Z, and KO2CPHR 3 o op 75

Ln
However in the Bott sequence for CPLr+3, we have
) = }y ) ; A
kOcPHB*3 o xo2cpHBtS L xotophBtd L gOgphnt3
0 2n+1 4 + 22 Ln+32Z
Ln+3

and so KO°CP S

2

To complete the induction we first show that

)_1 i| % = 5
KO6CP*“+* = 2n+2Z2 Dby using the spectral sequence as in3.3 4
:hen proceed as in 3.4 and 3.5 . However as the proofs

arc identical, we omit them.

Agein we summarize scme of the results that we will

need in the next chapter :



3.6 Proposition Let m denote the Hopf map from 83 to 82

 §

or a suspension of it. Then if r-i =1 mod 8,
, . .
& S T D1 Tl i 2 T
N KOs - K08 is an epimorphism
Z B

2 . s o
and n° : Xo's® -+ xo*s™!
bg 4o

is an isomorphism .

o ARG P
$4 The groups KO HP

2 A ; ;
HP™ denotes quaternionic projective space of real
dimension 4n. In this section we prove the results

given in the following

TABLE Lto1
i c 4 2 3
Ko Hp<? 2n 0 17, v
o e i S
KO™HP 2n+ Z 0 n+w£2 n+1é2
i 4 5 6 Sl
ko Hpe? 2nz 0 nz nz
; 2 2
Kolnp? 2n+1 2 0 nz, nz,

For i = 0, these are given in [2l,Theorem 3.11]
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The followiﬁé isyobvious ( compare 3.2 or [7,page80] )

1 \
L.,2 Lemma OHP’l =\nZ and K1HPn\§VO.

We now prove the results given in L.1 by induction
. I A e g R
on'n, they -are trye for n = 1 becaues P = b " -,
e 5 : i T T { :
L.3 Lemma The results for KO HP imply those for
IR
KO™HP (o)
Proof The mapping cone of the projection map

gon-1 _, ypen—1

map we see that KOOHP2n % 20, KO1HP2n = .0, X 2“P2 nz
Re-BEP=P i nZ, » KoHEP?® = 2nZ and KOPHP™® = 0.

From the Bott seouence

2
xo 12 L xo%mp2® 5 k%aPR 4 x02uP?D 4 xolpp2d
0 2nz 2nz n22 0
. we see that the cokernel of

e KOH,.2n Lo

The map r in the following sequence is & monomorphism
Io

4 3 o
5% & xolEp?® - xoPEp?? 4 kHp?R o xolup?®
0 nz, end s end
PN SR ¢
and so KO HP = nZ,

The results are completed by another induction step

/hich is virtually identical.
For completeness we state the fcllowing whose peoof

is easy.

2

+ k%P is nZ, , and so KO'HP®® = nz,

2.
18 B % and fron the Puppe sequence of this

2

]
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L.4 Theorem

Let X denote the Cayley projective plane.

Then xo'% =xo*x =12 + 2
Ko6x = K0 X - Lo + Zg

el S
and XOOX = 0 otherwise.
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Chapter II. EQUIVARIANT MAPS BETWEEN SPHERES

In this chapter we consider questions of the
following type.

; ; < - L
Let G be a group acting on a sphere S in a fixed

S e oy 3 m i
way. Which homotopy classes a € an‘ can be represented
S A -3 L il 3 1 s -
by maps £ : S -» § that take G-orbits to points?
L3494 - - 3 7 1 Q\3
le treat the cases G = Lo s S ol e e

Clearly such maps f factor through the quotient
s®/G . We use the results of the previous chapter
find invariants of a given homotopy class and show
that they must weanish (in certain cases) if they factor

\ \

N 1 ln g \
through S /G. . \\ \
13

When @ = Z, , Bredon [11] has recently situdied this

Q

guestion in more generality (when also has a Z,-action).

His technigues can also be used when G = Zp 5 S1 or 83.
However they only apply in the “stable range" and to
fairly low stems. By using results of Adams [3] we can
alsc cconsider some elements in arbitrarily high stems.
This question arose from the particular case in

[1L, page 228], which had in fact previously been

considered by Whitehead [31]
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I would like to thank Professor Bredon for sending
me fuller details and extensions of the work announced
in [11], which have helped me to check some of my .

results.

&4 Immediate Apvlications
\ N

N\

We fix our notation such that é}‘denotes an involution

o ' , . . .
on % ¢ R™! that changes the sign of r+1 co-ordinates,

s s n=-r.r
the gquotient space is then S P

: <0 m
The symbols f : (o‘,wr) + S°. denote a mep £ : 8% o g™

T n
such that I(Trx) = X for all xe8" .

For completeness we give the following elementary

result
b 511 <N n 1
-1 Theorem Let  Feifl ,TP) % 8 then © : 3~ « 8°
8! even degree. If r is even then degree f = 0.

If v is odd, such f exist with any even degree.

Proof -

n 1

o .,
-+ 8" factors as S - n

Q=TT ;
bl .LP g .

T 32:8
In cohcmology we have the following diagram

i
ey

e ot Rha iy
7‘:;3 /

: . P ¢ % .
If. v is even HP = 4y $0. % =0 1.e. degree £ = 0

L=

fPI"

. - 7 $h3 .
it 18<odd Z and ®° takes a generator of
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AR G o pilald

H to twice a generator of H 8, hence the degree
of £ is even.

Gy Gt . -—\I‘ Oy r’ - S S 4+

Bow et 0 VB 8 be the map that collapses
L= RE 4 i % : ¥ 1 4 r..r
pF~1 < P* to a point. If v is oda p* : HYSY o HUP

is an iscmorphism and so the composite map

- _,-A -
n R n-r._r Ci n
e 2
5 - S P = ) has degree two.

= : g Ky n 3
By composing this map with & map of degree d : S = gl

n
we have a 2 (bl,. ) - 8 of degree 2d.

We now prove the following theorem due to
J.H.C.Whitehead [31,Theorem 7] (see also Conner and Floyd

[14, page 228] ) by using the results of Chapter I.

1+2 Theorem T o (Sn,Tr) gt

If ‘v #3 mod 'L, then ¥ ao
If r = 3 mod L, then every element in ﬂnSn'1

can be represented by such & map.

n=4

Proof We remind ourselves that mnS =0
: e X i
when n < 3, ﬂBS = Z generated by the Hopf map m
vl“ : £
and ﬂrSl s 2 generated by the suspension of the
3

Hopf map for n > 3. We also denote thls element by 7n .

By assumption the map £ factors through qM Aot

and so in KO-theory we have a diagram



f.
Cam S i D=
xots® < xotsgt?
\
7° :
xorpr

il

Now if »r > 3 and r-i 1-mod 8 ¢ by L 215

! ! ?
if r £ 3 mod 4 =x° is zero , but m° is non-zero by I 3.6 .
This proves the theorem when r # 3 mod L.
It is clear that the standard representation of

> -» 82 facltarsithrongh K3 83 - P3 .

the Hopf map m ¢ S
The following homotopy commutative diagram shows that
every multiple of it also does

3 n 3 T 2

§ — 587 — 5
, ,
~ ™
f i g
P 5P

Here g is the factorisation map for n, n : S3 - 83
is any map of degree n and £ is the map XP——éJfl
( P° = 50(3) is a group ). It is well known that the
square is homotopy commutative (e.g. [16] )

It now remains to show that 7 : S)'m+3 - S“’n+2
factors through Pun+3 for every n > 0 . We give two

explicit representatives which do, one is corstructed

geometrically and the other by homotopy.

1) We make a few remarks about the Hopf construction.
2. By 5 A '-\m »*\n v\p ~ {01+
It assigns to every map oS X O = 5" a map o aR

- . s . A . . ﬂ"" 1 41
by a modified suspension. An involution T on Pt
&



is induced by any involution i o Tk 4 % oL SRR S iy
P St o

o Sun+4 v Sun+1

Now:let . £ & 8 be the map

given in comple o—-ordinates Dby

<

f———> (22, 1225 eee 222,
ll) > \ Jl’ 42’ J 2.ﬂ+1>

It is well known that the Hopf construction applied

3 %
\2,21’22’ ° 00 ,Z

to this map gives a representative of the homotopy
class m. 1t is also clear that it is a map

(Sun+3,T Sqn+2 ;i

un+3)

2) Let =® @ ghBt3 | phne3 be the covering map and

Ln+3 . un s ; ¢
phat3 |, pH S/p At e collapsing map. Now

q
132“1""‘/1723“‘)l ~ 8§98+ ,3%8 pecause 1t is of the form

w

2m 2m+ 4 i ; : :
nuae 23, and the attaching map a is the composite

o EnLGe o PR -
g8l . 3 plm 5 gl neled b oRid s trivia BY 1.1 .

n'?
= S}'L +va“n+2. By collapsing

Sun+3 5 SLl.n+2

Ln+3
Hence we have a map f ¢ S° .

<Ln+3
o]

to a point we get a map g :

bn+3

th
which factors through P by construction, we show

that it is essential. When n > 1, there is a

decomposition
Ln+3. Une2, . Ln+3 Ln+2
S S E S ,
ﬂun+3( v ) 7cb,l’1+,7>( e 7‘:Lm+2(s )
go if g=~o , the mapping cone of f would be
o ') LL' : k
Suﬂ+2P4vS‘ﬁ+2, however we know that it is P)'*n"'LL/PLm+1

. & ; A :
and Sg 1is different in these spaces.
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2

g . | i
1 +3 Theorem Tat o ,Tr) - 0

Fy

Ead
-

i

132 mod 4 then £ i oy

-

n-2

|,

f r = 3 mod L, every element in %nS
can be represented by such a map.

Sn-—2

il

preoof = = 22 if n > 3 and is generated by

2 L 2
the element 7nén =1 « If n < 3 then the group is zero.

The second statement is an immediate consequence
of Theorem 1.2 »
The first statement follows from I 2.15 and I 3.6

= fiie b S RS

Remark We will show in $2 that if r = 0 mod L4,

then n2 can be represented by an equivariant map if n > L.

In [3] Adams introduces an element hggyq in the
stable 8s+1 stem and an element Bggyo in the stable
8s+2 stem that are generalisations of 1 and n2
respectively. They generate 22 summands in the stable
stems and induce some non-zero maps on KO. Hence we

can deduce similar results for these elements .

~n+8s+1 n H
S - 3 can not be represented

AT s Ee s #Z 3 mod L.
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n+8s+2 n
S -+ 3 can not be represented

n+8s+2 :
saif ,Tr) + g% 4 p & s2--mod 4

Pz amep L ¢ (S
and can if r = 3 mod L.

- o

Proof 1) and the first statement of ii) are
obvious because the elements U are non-zero on XO in
exactly the same dimensions as 7n.ls non-zero.

The second statement of ii) is a conseguence of
1.2 and of Proposition 412.14 of [3] which implies that

Hggyo CaR be taken to be “83+1°n'

Let o denote an action of S' on &% (ns»2r¢ )

T
that multiplies in r+1 complex co-ordinates. The

i . =271 .7
quotient space will be S CP”. Any map
n s ; n .m
Gl bl,cr) + S is clearly amap £ : (S ’12r+1) -+ 5,

From this we can immediately deduce similar results

4

for S'-actions, but for all the cases already considered

the results are identical so we will not state them

fully.

= : i o
Let w, denote an action of 50 on 8, whose

n—@r-BHPr.

quotient space is §° Then we have the following

result



W
N

15 Theorem. Let s > 1 then “85+1 % Sn+8s+1 - Sn

can not be represented by a map

N+8s+ ol
£« <8 1,wr) - S for any r.
The same result holds for the element Hggio °
oTo
Praool This 1s an immediate consequence of the

g

facts KO hPP 0 and KO5HPP = 0 that were proved

o
Q

o o e T 7 S

52 The stable cohomotopy spectral sequence

In this section we use the stable cohomotopy
spectral sequence to study the problem of which homotopy
classes of maps between spheres can be represented by

equivariant maps.

g : T e o ST el
Let (X,Y} = 1im[87X,S Y] with the direct limit maps

being suspensions. It is well known see e.g. [30] that

(generalised) cohomology theory by setting
.

=

()
e}

(@]

ct
]

o (e 185 A i :
{S7X,8°} and so we get an Atiyah-Hirzebruch

(%)
D,q

spectral sequence with Ej’* = HP(X;WE ) and B = {h_n(X)E

o}
where ﬁfo = {SQ,SO} the stable g-stem.

This spectral sequence is discussed in Massey [ﬂ8]

and Peterson [22]. The use of the spectral sequence
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for computations is equivalent to studying the =~
Postnikov deccmposition of a high dimensional sphere,

for this see Maunder [19].

We are now in a position to prove the following,
which completes the results about Zz-actions on

the 2-stem .

A 2 o -2
2«1 Theorem g e Ao e can be represented

= =
by a map T (S‘,Tqr) sae it end only it o> L.

2 5 . Lr =2
Proof It suffices to look at maps g sLL g
Let » > 1, then we are in the stable range. From

Lr

- Pur we get
\QP-1] % [Pur+1’sur~1]

Q
~

the Puppe sequence of the map % : 8
"*

‘ o S ]
[SPgr’Suc 1] 4 [S+r+1,
- [PMP’SMP—1] Em [SAP’SMP—1]

We want to show that the map S* is an epimorphism. To
do this we calculate the various groups that appear in
the sequence by means of the spectral sequence.

By [22,page 459], the initial differential
g0 s B et Tt S L N+2,
dy ¢ “2’ - H, 2 is 8q pyt I B4 BT k¢
‘Il,-1
9

e now give an ad hoc proof that d2 48
[

! 2 2ol
is qu . We compute {P',8°1 = [s PL,Su] from the

spectral sequence. However we can calculate its value
; i £ 2ohh ol 2
independently as follows. [8 PL,S4] = [s PA,BSp]

because the 7-skeleton of BSp is 5. By Bott periodicity
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BSp = QL!’BO, SO [S2PL",SLL] = KOQPLL = Z? WY B2

The relevant part of the E2 term of the spectral

sequence for Puf is
r r 1 q
% 0 52 Odr Z2
\
Zo gedtar sl T
2
! .
.42 ZZ .42 4o Z2
L2 :
Because {P',5°} = Z, , both d, and d, are isomorphisms,

but they are stable cochomology operations, hence

d, is Sq2 (and this checks that dé is qupz).

L§-I‘+1 »,)—'rI’--‘I ]

We now compute [P X {PMP+1,Shr—1}

(0 1)

The relevant part of the Ez-term of the spectral

sequence for phti] is
412 Lr— Lr L+

Zip & 0 Z Z

2 Z

Both the marked differentials are isomorphisms

and so [P%r+',8ur-1] = 0,

which proves the result for r>1.
It remains to look at the involution Tu « e Tirst

consider the case n2 5.



' By Freudenthal's suspension theorem [SP -

39.

£
We want to show that the map S in the following .

o

A ~exact sequence is an epimorphiéa

5 :
_‘[sn-upu’sn-Q] S7 [Sn’sn-zj i [sn-5P5’sn-2]
5 Sh] 3 [Sn-SPS’Sn—2]
for n> 6. However from the exact sequence of the Hopf
Pivpation -85 6% we sse that (882,81 @ [P°.87] 1a
an epimorphism. But [SP5,Su] = K0OP° = 0 by I 2.4

The following Will'complete~the proof of the theorem

2.2 Lemma [P“,sz] =0.

Proof

3

From the Hopf fibration &8~ = 82, we have the

following exact sequence of based sets
f
[P“,s3] - [P“,SQJ - [Pu,BS1] - [P“,Bs3]
Now [P“,s3] = &sp“,s”] = KOoP* ="0.. 'S0 1t will be
Y

‘ e S
enough to show that\f is inaectivaﬁ\

Bs' = BU(41) ana BS® = BSU(2). The map f is induced

by the'usual inclusion of S1 in 83

and clearly takes
a bundle £ to the bundle £ ® £ where & denotes the
‘conjugate bundle. There is just one non-trivial line

"~ bundle on Pu and its first Chern class is the generator
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2l Wt T :
of H(P";2). We show that £ © £ is non-trivial by
computing its second Chern class. Clearly 01(5)

-

and by the product formula [20, Theorem 26] we have

2( et) = CA(E).C{(E), and this is non-trivial on pt
i
-~ 1 5 f o .[l
2.3 Theorem Let n>8, the elements in T (s 3)

(which is Z,, » generated by a suspension of the Hopf

112k n i BICPS SR that can be represented by a map

(Sn,mr) e precisely (for r>8 )

C,l(é

)

212 when r = 41 mod 4
0 r=E 2 ned 4
242 or 222u r= 3 mod L
Z2 r = 0 mod L
Proof As we are taking r=>8, we are in the stable

range and so it is enough to look at the diagram

T =3

S o

Case 1. r =1 mod L4

3,

We show that the map Sx* in the following exact

seguence has image Z12 .

o

Sx
-

I el
[SPum+1,sﬁu 1]
A[Pum+2

[Sum+2 Sum—1]

sl.:.m-1 ] o [Pum Sm‘n-q 1

-

7

Lm—1 4

!
-

. : 3 i n+2
As in the proof of 2.1 we see that [PMIT 48

Z

2



, which proves the result.

As before it is easily checked from the spectral

L. roum+2  Jbme
guence that [P 7°, 7]
Lm+3 um i A :

ST ] we must evaluate a differential

has order eight. However

 to compute [P

in the EB-term :
a4 ohm, 0 u m+3,-2
R 0
4 i } ,
SHm,0 Hum(th+3;Z) ’ Eu3.m+3,--2 g W4m+3<bum Rz )

the differential is Adem's stable secondary operation

&, see [4]. Using 1.3 we check that [P Mm+3 s“@*‘]

has order four and sO d5 is zero. So the order of

pHE+3 MM 55 8.2L which implies the Pesult.

Case 3. » = Lm+3

The result stated is an immediate conseguence
of 1.1 . By using this: sort of method it does not seem
possible tc settle this case ( we would have to evaluate
a differential in the E, -term of the spectral sequence).
However Professor Bredon has pecinted out to me that
it is a conseguence of theorem 5.4 of his peper [412]
that the image of the map Sﬂ*_ié Z,, when r = 3 mod 8
and Z., when r = 7 mod 8. His theorem also implies

the result for case 1.



It follows easily from the spectral sequence that

or 242 s in whieh case the
|

2l
imege of Sx* is either 0 or Z, . however the non-zero

3

Z Z is 7 and this is in the image

Zy © Iy,
by 2.1 . Hence the result and als Mm+1, Sum—2]

Hy

element O

[P o 2

(o}

12

We turn our attention now to some cases outside

3 |

the stable range.

2 >

%.ST = 22 generated by the element M~ .

- = ; (9]
2.4 Theorem : £ iy 87 =8 can be represented by
2 2 ;
) S 1f ¥ & S0k bat not il s 2,5,

Proof The cases » = 3,4 fcllow immediately from

D andt 2.1

Ry an identical proof to that of 2.2, we can show
i - 24
fhet 4P ;8 )= Qe
i TR : R 2 AR R :
It is well known that if = ¢ 8 = P is the covering

~
%

2 : : :
map then S°x = o ( this will be proved in the next

section) . This completes the proof of 2.4 .



83 Further non-stable results

Pirst, we prove the following lemma. I am very

grateful to Dr. B.J.Sanderson for showing me this result.

- ~fm - . - E 3
3.1 Lemma Let M bDe a manifold and Mo be M with
s r <4
an open disc removed. Let £ : N - S 0 ve g

; i e il < Bl Sl
differsntiable embedding of M in S  ~ with trivial

i 5 : n., n+m
normel bundle, then SM = SnMovS
Proof Let N denote the tubular neighbourhood of

the embedding and T the Thom complex of the normal

*g
’.)

Q m

bundle. Then T ¢S M , and T = N/OoN . By removing

a small disc of dimension n+m from the interior of N,

we can get the space T - D which is clearly homotopically
n

equivalent to STM, - The attaching map of the n+m disc D

can be homotoped tc zero over the sphere and so over

yhich proves the lemma.,

e

the Thom compliex T,

-

his lemma replaces a rather complicated direct

i

-

proof of the following

- 2 6 6
3.2 Corollary The maps & 2 S = Paoan@ K. 8 0 - P
are stably trivial.
6 6
Proof We prove that = : 8§ - P is stably trivial

( the other case is similar ).

. S : &y : : ! £
We embed P 1A S 5 3 P7 is parallelisable and
pl

so the normal bundle is trivial . with an open disc



e X &
removed is hcmotopically equivalent to P° and the attaching
map for this disc is easily ssen to be ®, hence the
result.

T
In fact we va\snoxn that uhg\attachln map for

V)

the top cell of any T—manl;cla is stably trivial.

We also have the following well known result

3.3 Corollary P3 does not embed in Ru.
Proof Suppose it does, the normal bundle is

either the trivial or Hopf line bundle. But it is

-

rivial, so it is trivial, However we show

Let © € HQ(K(ZQ,Z);ZA) = Z, be a generator.

L
By looking at the spectral sequence of the relative

fibration (PX,0X) » (X,0) with Z,4 coefficients , where

PX is the space of based paths on X and X = K(Z2,2)

we can check that the suspension map

-

-.-Li- wrf 7 . B \ -«3/ . e
e | (.‘;\52,2),41,) = d \K(Z2,1)’AL!.) - ZJ2
is an epimorphism. H2(K(2, ﬁ);zh) is generated by
the third power which is non-zero on P~. IHence

P ; 2 b
® is non-zero on SP” but is zero on’ SP v8 ,

M ternatively we could have identified © with the

Pontryagin square operation.
v i

A similar proof would show that P’ does not embed in R
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We now discuss ﬁ653 = 242 %
grcoup can be described as

Let T 33 X 32 -5 32
Take q € 57 as a quaternion and ¢' € S
imaginary gquaternion , then let

A generator of this

follows, see [27].

be defined by :

as a purely
1

The Hopf construction applied to T gives a

3.l Theoren The elements
e
R Y /' ~O ki
represented by a map £ : (8°,7..)
0 when: ». =
“12 i
Z Ao
2
Z/ T
o
0 P
RPTOOT Because the group
arbitrary many suspensions, the

immediate from 3.2
The case 1 =

description of the generator.

From the Puppe segquence
] R
deduce that S f',DDJ = Z,
+1 Cant i i
that the element 1 vhich ha
= N2 % -ﬁQ Q WB'
Theaae of S K. 3 |8 P85

is exactly 22 .

SD

£

RS v
=-in ,bJ] . Hence

Plgsdt b ao'a . .
of x633 .

ﬂ683 that can he

O O RO

(OhY

is not killed by
Firy o0

W683

cases I’ = are

3 follows immediately from the

i

i g PLL we' then

» however, from 1.2 we know

order two is in the

-

the image



L!. ~ 1‘_L = o = A%
B LS P o+ P’ that {SB il 9 Zg It follows

om 4.1 that the image is at least Z6 .

unmmand is generated by @«

)
o
=~y
w

the Hopf map v ¢ S =5 and the 2 5 summand is in

the image of the suspension map 75 7
2 o my ot ’\LL
3«5 Theorem The elements of ﬁ7b that can be
- L
pepresented by a map £ : (S ,Tr) -+ S are
0 when r = 2
4 + :.:12 T
r) T = LL
O
0 r =06
at least 2% + Zg r =7
Procf The cases r = 2,6 are immediate from 3.2 .

The case r=3 is shown by explicit construction.
By 1.2 the elements in the Z, can be represented

by such maps when r =4 . ZFrom the Puppe sequence

R 3 £
_ a s
- C

) >l

: S
gind oh1 ot 160 g%

- "L" ",_‘-'_Y‘LL - 3
[5723..} 24 LDJJ.’D‘_*-J > [
PR

and the facts [S7P7,87) 2 KO'P” = Z, + 2, frem I 2.1,

b 4

S3p' is zero from the case » = 3 of this theoren,

s°n* is an epimorphism from 1.3, We deduce that



S T
[SBPA,“4J = Z, which implies the result for » =, .

Similarly, from the Puppe sequence SL‘L - PLL - P5

o+ Rinr = 8 r,_‘2_”— ,,": :
we can show that |[S :D,a“] = 4, % 26 and that the map

D - ot . 2050 T ! ) :
g LS7,b ] - (8 35,5 ] is an epimorphism, but the
‘2 ’\2
composite S - o o S has degree two, which

implies the result for r =5 .

-

The result stated for r = 7 1is an immediate
consequence of 1.1 . However there are other elements

that can be represented by equivariant maps, clearly °
the Hopf map Vv 1is such a map and as P7 is an H-space
every multiple of it is also (cf. the proof of 1.2) .

+ clear that the set of such elements

O

However it is n
forms a subgroup.
The following theorem completes the results for

the 3-stem

- A=
3.6 Theorem The elements of %S 5 ( n28 )

(xS = 2., , generated by the suspension of the

Hopf map v : 8' = 8 ) that can be represented by



L3,

Zo when r = 4
% 2 g
0] 2 r =5
ZQLL ok
Proof These results follow immediately from the

previous proof and the FPreudenthal suspension theorem.
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Chapter III. MULTIPLICATICNS ON PROJECTIVE SPACES

Let o : XvX - X denote the
A multiplication on a space X is a map.
¢ ¢ XxX - X such that plXvX = o .

s A [ . 5 3 3 S
By Adams [1] the only projective spaces that can

2

have a multiplication are P1, P~ and P-7 - i

In this chapter we compute the number of homotopy

5 and P7 v Bwo

classes of multiplications on P
multiplications on a space are said to be homotcepic

if they are homotopic as maps relative to the wedge.
This problem is hinted at in [ﬂ?]. The general prcblem
of finding the number of multiplications on an H-space
is Problem L3 in Massey's list of problems (Ann. Math.

vol. 62 (1955) D.327-359 ) -

1f a space X admits a homotopy associative

multiplication and is such that XvX c XxX is a

{

cofivration then Arkowitz and Curjel [6] set up & 1~

~r

correspondence between the set of multiplications on X

and the homotopy set [XaX,X].

: e %
Using this result Naylor [21] showed that P~ ha

v

exactly 768 different multiplications. We reprove his
result in %1, in a much more elementary way and to stress
thas we will not assume any results from the previous

chapterse.
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9

In §2 we show that the number of multiplicstions
on Pi is 30,720, P7 does not admit a homotopy
ésscciative multiplication, however the anumber cof
multiplications on P7 is in 1-1 correspondence with

the set [P7AP7, P7] = [P7AI7, 87], because the proof

0]

in [6]only asumes that the multiplication has sn inverse.
\ ' %
b N
N
)

S, ; : )
1 Multiplications.on P

As we have pointed out already, we must compute

% prE A el G B
the order of the group LPJAPj,o’j :
2 2 = :
1.4 Lemma Let ® ¢ 8 = P~ be the coveriang map,
o)

then B K 2.0 5%

Proof e bl

e SO
Prom the homotopy sequence of the pair (8°P7,5”)

ok 15

o A )
it is seen that any map 8" - § P  factors through 5.
: 2 : -
So if we assume that S™x # o, it must factor as

! T
el o

s : : RPN
S P - Then ithe Mapping -'cone: ol -0 K

€
: 2 & e :
would contain SCP~ and so Sq would be non-zero

212 ; 2
on S P a contradiction.

1.2 Lemma Let X be a five dimensional complex,
L e e, o / o o e

5 5 o ~ z 5 1LI'_|

then (K287} = fsrle'] .

Proof The isomorphism is the boundary map in the

) e ey 5 i
Puppe sequence of the fibration b/ = b*,



1.3 Propositicn i) [SEPQ,SB} has ;order four.
1i: [SBPg,SB] has order L48.
i1i) [P?aP%,8°] has order four.
iv) [PBAP2,83] has order 16.

Proof i) is immediate from the Puppe sequence of

ql a

Aol : i g ; -
the map S = S which is nmultiplication by two.

2 ;
ii). From the Puppe sequence of the map =« : § = }2
we get !
ci) o Dege B S e et 2 Rt
[s4p?,53] o [8%,6%] » [5°82,6°] & [87P%,87] o [8°,57]

botn the meps at the ends are zero by 1.1, this

ler with i) gives the result.

toget

iii). Prom the Puppe sequence of the map

-
Iat ¢ SqAPQ i S~AP2§\where f has\Qegree two, we get
5 oK
\ :
- RN B i
[8°AP%,82] ~» [8°AP%,87] » [P°AP5,57)
: c o
-> LS1APZ,?3] -» [51AP ,83]
£ r‘}2 - R 1, W M
Both [SZAP2,83] and [8' AP ,83] are Z, and the end
1\2?’\3‘
maps are multiplication by two, &c [PTAP™,S” ] has

order four.

(o WS
o g AR,
iv). TProm the Puppe sequence of %Al : 3 APT = PEAPS,
e e e G s e G R
we get LSPTAR ,SJ} -8 LSBAP ,87] = [ PR, 87
ol o e
-» [PTAP ’m)] i [b ALL,SJ}

By 1.2, both the end maps are in the stable range

.

and as oal is o, we have the result by 1.1, i) and iii).



Ul
no
®

Now, we look.at the Puppe sequence of the map

By the results in 1.3 it only remains to show that

o'
O
_c+
o
Pb
o

nd grare zero. g 18 2ero by 1.1 and 4.2 .
There is a commuting diagram

- of i

| |
L y

Al 2 = 1 f # b -

[8P2Ap3, §89]———3[82:P°,8°]

The vertical maps are induced by the boundary map in
the Puppe sequence of the Iopf fibration S7 - S

and so are épimorphisms. Sf is zero by 1.1 , so I =

Hence [PBAP3,831 has order 16.48 = 768 .

0

also.



§2 Multiplications orn P

U
W
L]

7

<

2
The calculation for P

Y,

pattern as that for P), although the details are

obvicusly much more complicated.

2
> S = L
% : 3 - P 1is stably trivi

will

¥uch use is made of the fact that the map

6

b

al, this was proved in I1I 3.
i .

We remind ourselves that «®,,5' is 22 and that .

is Z1

also be used

i)

50 2 [28] . The following analogue of 1.2

2.1 Lenma Let X be a 413-dimensicnal complex,

then

Proof

map 3

clear

571

f=r
L8sD

I
-
w
2

-
w

e
.

po 5 -
The iscmorphism

n the Puppe sequence of the fibration gl? o g

Tor calculations with

that d2 is non-zero.

is inducezd by the boundary
8

the stable cohomotopy

spectral sequence, we will need the following
: wlly =2 n+2,=3 :

«2 Lemma - P B -+ E :
2.2 Lemm o 5 5 is

2 ik 3 PR Rl e o &= 2 B C : .
induced by the inclusion Z, € Z, -
Proof By looking at the spectral sequence for P5
and knowing from II 3.5 that [S5P5,S7] g, it s

[

The only non-zero such

stable cohcmology operation is 1x3g .
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has order gight.

3
ii) [POAP5,S7.] has order four.

Proof

[0)

i) follows from the spectral sequence for P  in a
straightforward way.
ii) follows from the spectral sequence for P6AP5 g
The cnly differentials that have to be evaluated are
in the Ez-term . The evaluation of the differentials
that are Sq2 is done by means of the Cartan formula [26].

5 s . ;
However to evaluate Sg P, one first has to loock at the

geoh

cell structure of P AP and the results that are

needed are that

Sq2p2 : Hn(P6AP5;Z> - Hn+2(P6AP5;Z2>

is an isomorphism on two summands from 3Z2 to 322
Whell7 11 =g

and an isomorphism on one summand from 222 to uzz

1\Fiheﬂ n= 60

2.l Proposition i) [S7P7,S7] has order 8.120

B e ik,

11 LBCAP ,S/] has order four
v o Sl TR 5
1ii) [P°aP’,8'] has order 2°.



Proof
i)e = We h”ve a Puppe sequence

~‘7] f 4 7 (~.7 ,-\7]

I BEAS 48

[ P 78 AP/ 7]
- [37/\ 6 5% S palagt 4
e

Phe map .£ isdndaced by 1ABK 85 AS = S ABP™ 80

is zero by II 3.2 . g is also zero for the same reason.

ii). We have a Punpe sequence

56,85 577 = [B%AP°,57] + [FOAP?,57] = [F®As?,s7]
he end groups are zero by 2.3 i), hence
(75.5°,57] = [F°Ap°,s’] which has order four by 2.3 ii).
iii) Similarly we have
730 % (%anlisl] o iEbantie]
6,06.57] & [p5.56,87]

[P ASE® ,S

- [P
Prom the results in 2.3 i) and 2.4 ii) we must show
that both £ and g are zero. g is in the stable range
and so is zero by II 3.2. An application of 2.1

brings £ also into the stable range

2,5 Theoren The number of distinct homotopy

i

classes of multiplications on P' is 30,720.
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Proof Yie look at the seguence

.
rse®4p7,57] 5 [sTapf,87] = (p/ap’,s7]

(6.p7 871 8§ [8%p7,5"]

The map g is zero by IT:5:2 ant 24t
By the results in 2.4, it remains only to show that
£ is zero. Suppose I 1s NON-z6Ir0, then there is an

element x € [oP AP7 7] such that fx # 0. Then

15 , o8

- 8

o =

pecause the sequence of the Lopl fibration S

splits ( the splitting map is the suspension ) Sfx £ 0

Vle know tnat Sdfx w0 by Xd Da2 ahd‘

fo -
7 «8] [S8Pov819,68]

sPyie 18 ] The kernel of

e

[s P7,88} 4'[S9P7,89] is generated by the element
20-0! where W1538 .4 * Zﬂ20 and © generates the 4
sumand end o' generates the 7, .4 summand , [28].

50 the element Sx has infinite order. However 1t is
an element of [°2 6 “7,8 ] which sits in the exact
sequence

15250a57,5%] » [8%P

both the end groups in this sequence are finite and

2 6 7 8 2676 ,8}

-] » [87P AP ,S

so we have a contradiction because Sfx € Ker S .
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