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Abstract 

Membrane transport proteins have recently been discovered to be ubiquitously 

expressed in the human body and of paramount importance in cellular uptake. Since 

all pharmaceutical compounds must pass through numerous cell membranes to travel 

and be absorbed by their target cells in order to achieve their desired therapeutic 

effects, transporters have attracted a lot of attention as a research field. As an 

emerging focus area, the precise mechanism of action of many of these transporters 

remains to be fully elucidated. In order to gain a detailed insight into these processes 

it is proposed to carry out mechanistic modelling of the pharmacokinetics of 

transporters. This thesis details the models developed to further our understanding of 

carrier mediated transport. 

The current knowledge on cellular uptake and efflux are discussed and mathematical 

models are developed for two prominent transporters. Structural identifiability and 

indistinguishability analyses are performed on all the models developed using a 

variety of methods to investigate the applicability of each method. Model fits gave 

very good agreement with in vitro data provided by AstraZeneca across a variety of 

experimental scenarios and different species. Mechanistic models for in vivo 

applications are also developed and found to characterise hepatic uptake in rat 

accurately. Recommendations for further work to fully validate the models 

developed so that they can perform robust, predictive simulations are proposed. 

The research in this thesis demonstrates that mechanistic modelling of complex 

biological processes allows for greater understanding of such systems. 
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Chapter 1  

Thesis Introduction 

In recent decades more emphasis has been placed on the role of mathematical 

modelling in medicine and biology since it offers a quantitative approach to support 

new drug development, assist decision-making in pharmacology, and improve 

clinical trial design. Modelling and simulation have also been shown to improve the 

fundamental knowledge of the mechanisms in cells and organisms, many of which 

are still not fully understood. The exposure (pharmacokinetics - PK) and effect 

(pharmacodynamics - PD) of therapeutic drugs can be determined by mathematically 

modelling drug absorption and tissue uptake. This may be achieved by 

compartmental modelling that involves dividing the biological system into a finite 

number of compartments that interact by material or information flowing from one 

compartment to another. This type of mathematical modelling is used in biology, 

complex systems theory, engineering, epidemiology, information science, 

pharmacology, physics, social science, and systems biology. In recent years this 

research field has moved away from non-compartmental methods, such as estimating 

the area under the curve (AUC) of a plasma concentration-time plot to quantify the 

exposure to a drug, because physiologically based pharmacokinetic (PBPK) 

modelling has been shown to have a superior predictive ability and strength in data 

integration as well as enabling mechanistic insights into the complex and often non-

linear physiological processes. Traditionally, compartmental modelling has been 
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implemented at the macroscopic scale, but in recent years these techniques have also 

been use to investigate cellular level interactions and mechanisms. 

In order to achieve their desired therapeutic effects drugs need to travel to and be 

absorbed by target cells. Throughout this process and subsequent metabolism the 

pharmaceutical agent must pass through numerous cell membranes. Carrier-mediated 

uptake via specific carrier proteins or transporters has been proposed as the process 

that is responsible for the transport of molecules and particles across cell 

membranes. Membrane transporter proteins are a key determinant of the trans-

membrane passage of drugs and therefore have attracted much attention. Breast 

Cancer Resistance Protein (BCRP) and Organic Anion Transporting Polypeptide 

(OATP) are two prominent transporters that were selected for investigation in this 

thesis. Breast cancer is the most common cancer among women by a large margin 

and ranks second overall to lung cancer worldwide. An estimated 1.38 million new 

breast cancer cases were diagnosed in 2008 (Ferlay et al. 2010). Developing a 

compartmental model to predict the uptake of an anti-cancer substrate into target 

cells has far reaching implications in cancer research.  It provides a platform for 

optimising maximum possible substrate binding and is therefore an invaluable tool 

into effectively targeting the areas desired. It also provides a fundamental 

understanding of the drug’s pharmacokinetics, crucial for development of new 

treatments. OATP also has implications for oncology; however the main focus in this 

thesis is modelling its role in hepatic uptake of statins, which are used to treat 

hypercholesterolaemia. High cholesterol is often associated with coronary disease, 

since it can cause atherosclerosis. Coronary heart disease remains the UK’s single 

biggest killer, with an estimated 74,000 deaths in 2011 (British Heart Foundation). 
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Despite their clinical significance the exact mechanisms of actions of these 

transporters remains a challenge for the research field. OATP and BCRP have been 

modelled extensively and their physiological and chemical structures are fairly well 

understood. However, no mechanistic models are available in the literature for 

BCRP binding kinetics and the mathematical model developed in this thesis is 

completely novel for this transporter. Conversely, a handful of in vitro mechanistic 

models have been developed for OATP but these have only been applied to rat data 

and have several limitations. The models developed in this thesis not only offer 

advantages in terms of the number of species evaluated (rat, dog, and human), but 

allow for statistical comparison as to which fits describe the data more accurately 

and are implemented using a numerical integrator that is able to cope with stiff 

systems. The OATP systems were found to be highly stiff in Chapter 4, with a 

stiffness ratio of up to 10
11

. 

No mechanistic models for in vivo hepatic uptake have previously been published 

and therefore the model developed in this thesis is entirely novel. Measuring 

endogenous substances such as bile acid is an experimentally convenient way to 

explore the impact of transporter mediated drug-drug interactions in vivo, however 

this has not been modelled mechanistically previously. 

1.1 Aims and Objectives 

The aim of this thesis is to use compartmental modelling analysis to develop novel 

models to describe the mechanisms of two prominent transporters. The intention here 

is to elucidate the processes inherent in transporter action. Therefore the objectives 

of this thesis are to: 
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 Investigate the existing knowledge of membrane transporter proteins and 

their mechanism of action 

 Examine the current techniques for biomedical systems modelling 

 Develop a mechanistic model to describe in vitro BCRP competitive binding 

 Develop a mechanistic model to describe in vitro OATP hepatic uptake in rat 

 Investigate this model’s potential for scaling across species (dog and human) 

 Develop a mechanistic model to describe in vivo OATP competitive binding 

in rat  

 Explore current methods for performing structural identifiablity and 

indistinguishability analyses and their applicability to the non-linear models 

developed 

1.2 Thesis Outline 

In this thesis the investigation will concentrate on developing mathematical models 

based on mass balance principles to describe transporter action. The relevant 

background literature is discussed in Chapter 2, which has been divided into four 

sections concerning mathematical modelling in pharmacology, compartmental 

modelling, structural identifiability and indistinguishability analyses, and 

transporters in pharmacokinetics and pharmacodynamics. In line with most 

pharmaceutical applications attention is focused on non-linear systems. The different 

mechanisms of influx and efflux into cells are described in detail as they provide the 

foundation for the model development. 

The models developed using compartmental modelling methods to describe the 

pharmacokinetics of Hoechst 33342 following administration into a culture medium 
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containing a population of transfected cells (HEK293 hBCRP) are detailed in 

Chapter 3. The intention here was to derive a compartmental model to characterise 

substrate binding to DNA and in addition account for the effect of transportation of 

the substrate out of the cell. Two models are developed: a four compartment model 

was developed to mathematically describe the saturable binding of Hoechst 33342 to 

BCRP, and a seven compartment model derived to account for competitive binding 

in the presence of a potent inhibitor, Fumitremorgin C. Steady state analyses and 

structural identifiability analyses are performed on both models. The parameterised 

mathematical models are subsequently used to estimate any unknown rate constants 

and parameters from in vitro data provided by AstraZeneca in order to obtain 

information on the relative binding affinities to the BCRP transporter. 

Chapter 4 details six candidate models derived to describe in vitro hepatic uptake in 

three species, namely rat, dog, and human. The structural identifiabiabilty and 

indistinguishability of the non-linear compartmental models are investigated in detail 

and the applicability of current methods to perform the analyses is discussed. Two 

models are selected, one for rat and human and one for dog, since they reproduce 

experimental data provided by AstraZeneca the most accurately. Simultaneous fits of 

numerous different concentrations are directly compared to the existing modelling 

approaches currently utilised to establish which models are the most suitable. The 

robustness of the proposed models is evaluated with sensitivity analyses and stiffness 

factors of the models are considered. 

The in vivo data models developed in Chapter 5 build on the in vitro data modelling 

of the two previous chapters. Two compartmental models proposed incorporate the 

competitive binding elements of the BRCP model from Chapter 3 and the OATP 

uptake mechanism from Chapter 4 to describe how oral doses of Cyclosporine A 
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(CsA) effect endogenous bile acid levels in rat. The structural identifiabiabilty of the 

models is explored using a variety of methods and the applicability of current 

methods to perform the analyses is considered once more. Simultaneous fits for three 

different initial concentrations of CsA and one control group with no CsA 

administered are subsequently performed to estimate any unknown rate constants 

and parameters from in vitro data provided by AstraZeneca. 

The overall project conclusions and recommended future work are discussed in 

Chapter 6. 
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Chapter 2  

Literature Review 

Mathematical modelling now plays an increasingly crucial role in medicine and 

biology and has become a universally researched topic area (see for example: Doucet 

1992, Carson & Cobelli 2001, Ottersen 2000, Hoppensteadt 2002). Wide ranging 

applications, such as epidemiological research, planning and evaluation of 

preventive and control programmes, clinical trials, measurement of health, cost-

benefit analysis, diagnosis of patients, and in maximising the effectiveness of 

operations aimed at attaining specified goals within existing resources (Verma et al. 

1981) have proved the usefulness of modelling over many decades. Mathematical 

modelling is particularly important in new drug development, which occurs once a 

compound has been identified as a potential drug, in order to establish its suitability 

as a medication (Sheiner & Steimer 2000). Mathematical models are used to 

determine the appropriate formulation and dosing from a combination of in vitro and 

in vivo studies, as well as clinical trials. A phenomenally expensive and time-

consuming process, normally this tends to be limited to larger pharmaceutical 

companies because of the amount of capital required for such research and 

development (R&D). A large proportion of the R&D budget is spent on investigating 

the pharmacokinetics and pharmacodynamics of new and existing drugs. The word 

pharmacokinetics comes from the Ancient Greek words for “drug”; pharmakon, and 

“to do with motion”; kinetikos. It is the study of how living organisms affect specific 

pharmaceutical agents after administration. It is often split into four main categories: 

absorption (the process of entering the blood stream), distribution (dispersion into 
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tissues), metabolisation (transformation of the compound into mebolites), and 

excretion (removal of the drug from the body). The word pharmacodynamics also 

finds its root in pharmakon, however it is combined with the Ancient Greek word for 

“power”; dynamikos. It is the other main branch of pharmacology, which is 

concerned with the study of pharmaceutical agents’ physiological and biochemical 

effects on living organisms. Pharmacodynamics involves investigating the often non-

linear mechanism of drug action and the resulting relationship between drug 

concentration and effect. In laymen’s terms, pharmacodynamics may simply be 

described as what the drug does to the body, whereas pharmacokinetics is what the 

body does to the drug (Burton 2006). 

This literature review is split into four main sections. First, the topic of mathematical 

modelling in pharmacology is introduced and the most influential literature assessed. 

A physiologically insightful and mechanistic type of modelling, namely 

compartmental modelling is presented in the second section. The relevant literature, 

both championing and critiquing the methodology is appraised. Thirdly, the 

important theoretical topics of structural identifiability and indistinguishability 

analyses, and their applications to biomedical systems modelling are reviewed. The 

focus is on non-linear systems, in line with most pharmaceutical applications and the 

models described in the following chapters of this thesis. Transporters are integral 

membrane transport proteins that are involved in the movement of ions, small 

molecules, and macromolecules, such as another protein across biological 

membranes. They play a crucial role in facilitating or preventing drug movement 

around the body (Ho & Kim 2005). The fourth section details the importance of 

transporters in pharmacokinetics and pharmacodynamics, and how most cellular 

uptake is governed by these proteins. The literature on two prominent transporters is 
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evaluated, justifying the author’s reasons to model their mechanisms in this thesis. 

Finally conclusions are drawn with regard to the compartmental modelling of 

transporter action. 

2.1 Mathematical Modelling in Pharmacology 

Systems biology is an emerging field of study at the forefront of biomedical and 

biological scientific research. Although biology based, it is an inter-disciplinary 

approach that focuses on the complex interactions and mechanisms within biological 

systems. The overarching aims of systems biology are to model and discover 

emergent properties of cells, tissues, and organisms functioning as a holistic system. 

These typically involve developing mathematical models of metabolic networks and 

cell signalling networks. In fact, systems biology may be considered as the 

application of dynamic systems theory to molecular biology (Klipp et al. 2008). 

However mathematical modelling and biology were not always so intricately 

interlinked. Particularly in clinical pharmacology, where historically drug 

development has been based on a relatively improvisatory trial and error process 

(Holford et al. 2000). Although there were some models published in the literature 

before, the seminal manuscript Sheiner et al. 1979 published in the ‘Journal of 

Clinical Pharmacology and Therapeutics’, in which Lewis B. Sheiner (1940-2004) 

and his colleagues simultaneously modelled the pharmacokinetics and 

pharmacodynamics of the neuromuscular blocking agent, D-tubocurarine, has been 

cited over a thousand times. Through his scientific writings, teaching programmes, 

and collaboration with scientists around the world, Sheiner championed model-based 

drug development, that is to say applying statistical models of drug efficacy and 
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safety to preclinical and available clinical data. This paradigm, presented in the 

influential manuscript by Sheiner 1997, offered a quantitative approach to improving 

clinical pharmacology and drug development decision-making. For example, in 

Miller et al. 2005, pharmacokinetic and pharmacodynamic (PK/PD) modelling was 

used to predict potency, simulate various clinical trial scenarios, and confirm 

evidence of efficacy across studied doses. Three case studies are described where 

PK/PD modelling helped decision making and dose selection, design a Phase 2 study 

(drug testing on patients to assess efficacy and safety) with a number of important 

learning experiences as well as extensive financial savings, and eliminated the need 

for some additional clinical trials, thus supporting the approval of the compound. 

Sheiner’s philosophy on clinical pharmacology, the “Learn and confirm” paradigm, 

has become the catchphrase for new drug development. It can be speculated that his 

work made regulatory bodies come to realise that proof of efficacy is only one step 

in a long process from drug discovery to manufacture. This is reflected in the 

guidelines that the Food and Drug Administration (FDA) issued in 1999: “Guidance 

for Industry: Population Pharmacokinetics”, and in 2004: “Innovation or Stagnation: 

Challenge and Opportunity on the Critical Path to New Medical Products”, the latter 

which cites Sheiner. In these papers, the FDA outlines the mechanisms and 

philosophy of pharmacokinetic and pharmacodynamic (PK/PD) modelling, and its 

important role in the efficient development of safe and effective drugs. This 

highlights the importance of integrating PK/PD modelling in drug development and 

its potential impact on decision making and financial savings.  

Newly discovered compounds are analysed for suitability through efficacy studies, 

toxicology studies, and absorption, distribution, metabolism and excretion (ADME) 

studies to optimise the balance of properties necessary to convert leads into effective 
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medicines. These types of studies are widely used in drug discovery; however, as 

mentioned previously, such drug development was generally based on a relatively 

improvisatory trial and error process. Before long, advances in combinatorial and 

library chemistry generated many more molecules of interest that could feasibly be 

screened through these traditional methods (Selick et al. 2002). The sheer number of 

molecules and studies made it impractical both time-wise and financially. 

Furthermore, even though increasing numbers of compounds were screened, fewer 

suitable molecules were delivered and eventually became considered as suitable 

medicines. Drug selection became widely viewed as the bottleneck in the drug 

discovery and development process (Grass & Sinko 2002). Due to the incessant 

rising cost and reduced productivity of drug development (Kuhlman 1999 and Paul 

et al. 2010), interest in the use of alternative methods to stimulate clinical 

pharmacology continued to grow. Whereas, originally PK/PD modelling was 

predominantly only performed in patient studies using the population approach (Ette 

& Ludden 1995, Sheiner & Wakefield 1999, and Williams & Ette 2000), predictive 

models were now required in order to achieve an efficient selection process and 

support critical financial decisions. PK/PD modelling therefore evolved from a 

discipline primarily applied to therapeutic drug monitoring to one that plays a vital 

role in new drug development (Williams & Ette 2000 and Selick et al. 2002). 

Combined with pharmaceutical companies’ increased use of biomarkers and clinical 

trial simulations, PK/PD modelling and simulation has had an even bigger impact on 

drug development over the last decade. 

Modelling and simulation may assist in Phase I (drug testing on healthy volunteers 

for dose--ranging) of drug development by predicting the outcomes of certain assays. 

Subsequently, the experimental outcomes can be compared to the simulated 
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predictions and confirm or refute the proposed assumptions. Furthermore modelling 

is particularly useful for censoring because of assay limitation, characterisation of 

non-linearity, estimating exposure-response relationships, combined analyses, sparse 

sampling studies, special population studies, integrating PK/PD knowledge for 

decision making, simulation of Phase II trials, predicting multiple dose profiles from 

single doses, bridging studies and formulation development (Aarons et al. 2001). 

PK/PD modelling and simulation can also be used as a quantitative tool to help 

provide answers on efficacy and safety of new drugs, faster and at a lower cost. The 

value of modelling becomes greater as more data are accumulated through a 

development programme, especially if data for related drugs are available and shared 

via publications. Modelling and simulation now plays a crucial role in reshaping 

early trials by more effective extraction of information from studies, better 

integration of knowledge across studies and more precise predictions of trial 

outcomes, thereby allowing more informed decision making. PK/PD modelling is 

now used from the preclinical phase through all clinical phases of new drug 

development, as it leads to fewer failed compounds, fewer study failures, and smaller 

numbers of studies needed for registration. 

Modelling and simulation are essential in systems biology and provide new 

approaches to investigate experimental data, ultimately improving understanding of 

the mechanisms in cells and organisms (Mendes et al. 2005, Kell 2006). 

Furthermore, the models and simulations offer systematic strategies for fundamental 

issues in biology and medicine (Carson & Cobelli 2001). PK/PD modelling offers a 

coherent framework to support drug development and investigate the effects of 

potential new drugs on biochemical mechanisms and pathways (Aksenov et al. 

2005). PK/PD models, normally consisting of sets of differential equations, are 
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commonly utilised to describe the inter- and intra-cellular mechanisms and dynamic 

interactions (Wolkenhauer et al. 2008). One such dynamic model frequently 

implemented in pharmaceutical research is compartmental analysis. 

2.2 Compartmental Modelling 

Compartmental modelling, or multi-compartment modelling and flow modelling, is a 

type of mathematical modelling in which the system is divided into a finite number 

of homogenous and well mixed pools called compartments (Anderson 1983; 

Godfrey 1983). The compartments interact by material flowing from one 

compartment to another. The material or information may be fluids, money, energy, 

or resources (Walter & Contreras 1999). There may be input and output flows into 

and from one or more compartments, to and from outside the network, namely 

inflows and outflows, respectively. 

Mass conservation holds for all transfers in and out of compartments and therefore 

ordinary differential equations are used to describe the rate of change of material 

from each compartment (Jacquez & Simon 1993). The main assumption is that the 

concentration of substance in each compartment is uniformly equal and well 

distributed. Therefore a compartmental model is a lumped parameter system model. 

Such models may be linear or non-linear, however the amount or quantity of material 

in each compartment must be greater than or equal to zero, thus compartmental 

systems are a special subset of non-negative systems. 

The most general form of compartmental equations for a linear or non-linear system 

of n compartments is given by: 
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where xi is the concentration or quantity of material in compartment i, 
ijf  is the flow 

rate to compartment i from compartment j, and the subscript 0 denotes the 

environment. In linear, or time-invariant, compartmental models the flow rates (
ijf ) 

are directly proportional to the quantity and concentration of material in the donor 

compartment (
jx ). The system equations therefore become: 
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where the input flow rate 0if  has been written as ( )iu t , which is the input or control 

function, and is given by: 

 
ij ij jf k x   i j .  (2.3) 

An example of a two-compartment model for oral drug administration is given in 

Figure 2.1. In this example, the first compartment, 
1q , represents the quantity of 

drug in the gut while the second, 
2q  , represents the quantity of drug in the plasma. 

The dose, 
1d , is taken orally and can be modelled as an initial condition. The drug is 

absorbed into the blood stream via the rate constant, ka, and then eliminated via the 

rate constant, ke, shown as kabsorption and kelimination in Figure 2.1, respectively. 
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Figure 2.1: First order oral absorption model 

The resulting differential equations are given by: 
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The observation, y, is normally a concentration measurement from a blood sample 

and is therefore given by: 
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where v2 is the volume of distribution, i.e. the volume of plasma within which the 

drug is mixed.  

In pharmacokinetic modelling, the compartments were originally exclusively 

macroscopic, representing different parts of the body, such as organs and the 

systemic blood stream. In fact, Jacquez 1996 defines compartmental systems as 

being comprised of macroscopic subunits. However, compartmental modelling is 

now also applied at the microscopic scale, right down to the cellular level, where 

each compartment may represent a different part of the cell, such as the apical and 

basolateral membranes (see Gonzalez-Alvarez et al. 2005 and Kalvass & Pollack 

2007 for example). In fact, mathematical models of biological systems are now part 

of the standard procedure implemented to investigate complex dynamic, non-linear 

interaction mechanisms in cellular processes (Hengl et al. 2007). 

Compartmental models are considered relatively easy to develop, use, and are 

intuitively clear. They provide a uniform theory and systematic methods for 

developing dynamic models of systems and experiments in many areas of 

biomedicine, ranging from analysing the electrical behaviour of a dendrite (Lindsay 

et al. 2007) to measuring amyloid deposition to improve Alzheimer’s disease 

diagnosis (Price et al. 2005). They are applied in diverse areas of biology such as 

carcinogenesis, channel and receptor kinetics, ecosystem modelling, epidemiology, 

genetics, intermediary metabolism, mutation rate and evolution, and 

pharmacokinetics (Jacquez 1996). The application of compartmental modelling has 

grown into other fields, such as ecology, engineering, physics, and even 

hydrochemistry, where compartmental analysis has used estimate aquifer parameters 

in non-steady flow (Adar & Sorek 1989). Furthermore, compartmental models are 
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also extensively applied to a wide ranging form of competition models, input-output 

analysis, and networks. 

In physiology it is common for modellers to distinguish between process models, 

which describe systems and processes, and data models. Process driven models 

attempt to describe the inherent mechanisms at work in the system, whereas data 

driven models are selected to fit one or more particular data sets without reference to 

the processes at work. The widely used statistical linear and polynomial regression 

models are examples of data driven models. Naturally, it is possible to apply 

modelling that is a combination of data driven and process driven models. Due to the 

compartments having a physiological representation, compartmental models are 

intrinsically process driven. However, compartmental models may be used to fit 

experimental data for which there is no physiological interpretation for the 

compartments used or for the processes involved in the interaction between the 

compartments. Evidently such models are much less useful than the former as they 

do not provide any physiological insight. Human physiology concerns itself with 

studying function and thus mechanistic models, which describe the processes and 

interactions, are more practical to enhance our understanding. Furthermore, the large 

majority of human physiological characteristics are closely homologous to the 

corresponding aspects of animal physiology. Therefore a compartmental model 

developed from animal experimentation may be readily applicable in humans. 

Perhaps it may require some parameter scaling and minor modifications. At worst, it 

will offer some understanding for the physiological processes present and provide a 

solid foundation to model development, whereas a data driven model is very unlikely 

to share the same model interchange ability and applicability across species. Besides 

the advantage of inter-species transpositions, compartmental models also facilitate 



CHAPTER 2.  LITERATURE REVIEW 

32 

 

extrapolation from one mode of administration to another (e.g. intravenous to oral). 

As a result, modellers prefer using process driven models and the application of 

compartmental modelling for estimating physiological parameters from experimental 

data has increased in popularity (Ahearn et al. 2005). 

Physiologically based pharmacokinetic (PBPK) models and techniques aim to 

predict the ADME of natural or synthetic chemical substances in animal species. 

They tend to be compartmental, as the motivation is usually to produce a mechanistic 

model by mathematically describing the anatomical, physiological, physical, and 

chemical interactions and phenomena occurring in ADME processes. The 

compartments generally correspond to predefined organs and tissues and the 

interconnections representing blood and lymph flows.  

Compartmental modelling has its roots in biomedical systems modelling, growing 

out of attempts to understand epidemiology. Mathematical modelling of the outbreak 

and spread of disease in populations had been studied for many years and in 1927, a 

simple deterministic compartmental model was formulated; the mass action 

susceptible-infected-recovered model of Kermark & Mckendrick 1927. Their model 

has stood the test of time and been successful in predicting the behaviour of 

numerous epidemic outbreaks (Brauer & Castillo-Châvez 2012) and to this date it 

remains the gold standard for predicting infectious disease and intervention 

effectiveness (Miller 2012). 

Almost independently, compartmental modelling also emerged from efforts to 

employ radiolabelled compounds for analysing experiments on distribution and 

metabolism. The utilisation of radiolabelled compounds as tracers dates back to the 

early 1920’s. Our understanding of metabolism grew from the work that followed 
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and mathematical analyses to quantify the distribution did not take long to appear. 

Useful parameters such as metabolic clearance rates and mean transit times may be 

estimated from tracer experiments. While some of these parameters can be obtained 

without postulating models to describe the distribution and metabolic rate of 

compounds, mechanistic models to describe the kinetic behaviour of the circulating 

tracers are desirable. Their purpose is to obtain important physiological and 

biochemical information. Although the term had yet to be coined, Artom et al. 1938 

published a linear three compartmental model for radiolabelled rat phospholipids in 

blood, liver, and skeleton. Kinetic theory was eventually developed and 

compartmental modelling has been applied to pharmacokinetics since the 1960’s 

(Jacquez 1996). 

While compartmental modelling is widely regarded as offering the best 

approximation to the actual interactions between the body and a drug, alternative 

methods are implemented in pharmaceutical discovery and development. Non-

compartmental modelling is centred on estimating the area under the curve (AUC) of 

a plasma concentration-time plot to quantify the exposure to a drug. Further 

estimation of global pharmacokinetic metrics are then induced from plasma 

concentration-time plot, such as clearance, the volume of plasma cleared of the drug 

per unit time, which is the ratio of the amount of drug administered over the AUC; 

the apparent volume of distribution dV , the volume in which a drug appears to be 

distributed, which is ratio of the amount of drug administered over the plasma 

concentration; the elimination half-life 1
2

t , the time required for amount of drug to 

reach half of its original value; the elimination rate constant ek  , the rate at which a 

drug is removed from the systemic blood stream, which is the ratio of ln(2) over 
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elimination half-life or the ratio of clearance over the apparent volume of 

distribution; and the absorption rate 
ak , the rate at which a drug is absorbed into the 

systemic blood stream, which is normally estimated from linear regression and curve 

stripping. Wise 1985 suggests alternative power functions of the form aAt  or

a btAt e   to describe the concentration-time plots. Although these non-compartmental 

approaches are highly dependent on the plasma sampling schedule, they produce 

sufficiently accurate results usually deemed adequate for bioequivalence studies. 

Furthermore non-compartmental modelling is also generally more versatile, that is to 

say it is not necessary to assume any specific homogenous pools or to conceptualise 

the interactions and mechanism occurring. The main advantage of non-

compartmental approaches over compartmental analysis is that it is not required to 

develop and validate an appropriate physiological model that describes the inherent 

mechanism in action. On the other hand, the main disadvantage of non-

compartmental modelling is the vastly inferior predictive ability, the lack of data 

integration, and absence of mechanistic insight (Rowland et al. 2011). 

There is abundant literature on compartmental modelling, both supporting and 

criticising the approach. Gurpide & Mann 1970 warned against the temptation of 

constructing models comprised of as many compartments as exponential terms that 

have been identified in the experimental data time series. Here the danger is 

misapplying compartmental analysis, which is a pitfall for all modelling approaches. 

Non-compartmental techniques can just as easily be inappropriately applied as 

compartmental analysis. Furthermore, regardless of the modelling approach used, 

compartmental or non-compartmental, one may also easily misinterpret the analysis 

or the results. However DiStefano 1982 shows that non-compartmental analysis 

always underestimates the volume of distribution and the transit time under certain 
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conditions; that is if any pools that synthesise or metabolise substances are not 

directly measured then the results are assured to be erroneous.  

Critiques of compartmental modelling include that it is not always clear which is the 

better model when more than one model of equivalent complexity is consistent with 

the collected data (Zieler 1981). A phenomenon named ‘vanishing exponentials’ 

(Wagner 1976), where one or two relatively unimportant exponential terms appear to 

disappear when fitting to data, is said to exacerbate the model selection ambiguity 

issue. Lastly, there is some criticism of the very assumptions behind compartmental 

modelling; i.e. that a small number of homogenous well mixed compartments is 

unrealistic and difficult to justify physiologically (Gillespie 1991). However, in 

glucose insulin kinetics, traditional non-compartmental analysis is revealed to 

contain structural errors that obstruct physiological insight (Cobelli et al. 1984). It is 

clear that compartmental modelling alone cannot solve and explain the complex 

biological and chemical reactions and interactions inside the human body, however, 

applied appropriately it is a very powerful tool to elucidate and quantify the 

mechanisms present. Although more demanding in terms of mathematical analysis, 

computational power required, and physiological representation, compartmental 

modelling is more functional and makes superior use of the data collected. The 

mechanistic nature of using compartmental modelling to study the pharmacokinetics 

of compounds may also lead to recommendations on how to improve experimental 

design, for example Clausen et al. 2006 used a simple compartmental model to 

propose insulin preparation enhancements.  

Compartmental analysis continues to dominate pharmacokinetic modelling. It has 

been applied to numerous compounds and substances, such as topotecan (Cheung et 

al. 2008), lipoproteins (Barrett et al. 1998), remifentanil (Egan et al. 2004), tissue-
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type plasminogen activator (Godfrey et al. 1998), nuclear proteins (Carrero et al. 

2003), and morphine both in plasma and cerebrospinal fluid (Meineke et al. 2002; 

Groenendaal et al. 2007). The glucose minimal model, a compartmental model, 

remains the gold standard for glucose-insulin interactions in diabetes treatment (Man 

et al. 2002). The intestine has been modelled as simultaneous and consecutive 

intestinal transit flows for the oral absorption of atenolol (Yu & Amidon 1999), and 

iron (Sarria et al. 2004). Compartmental analysis has been applied to in vivo 

scenarios, to describe chylomicron and plasma free fatty acids in rat (Hultin et al. 

1996) and tryptophan decarboxylase in living brain from positron emission 

tomograms (Cumming & Gjedde 1998). Compartmental models have been used to 

demonstrate that urea-nitrogen production is modulated by protein intake in man 

(Fouillet et al. 2008), to quantify the kinetic parameters alpha-linolenic acid 

conversion (Goyens et al. 2005), and model cell proliferation by anti-cancer agents 

(Ali et al. 2007). It has also recently been applied to model the immune system 

against melanoma cells (Pennisi et al. 2011) and model tumour growth and cytotoxic 

effects of taxotere in xenografts (Evans et al. 2013).  

The theory and application of compartmental modelling may be split into three parts. 

The first is developing a plausible model of the mechanisms and processes at work in 

a specific biological system. Dependent on how much is known and established 

already on the biology and physiology in the field from which the problem arises, 

this may require considerable background research. It is important that the 

accumulated knowledge and theories justify the compartmental model. The structure 

and transfer processes in the model should have physiological meaning in terms of 

the known or suspected processes and structure of the real life system. Once a 

particular compartmental model has been formulated to describe the system being 
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studied, the second part is to develop the analytical theory. The mathematics for 

linear compartmental models is well defined, comparatively complete and relatively 

straight-forward; however it is inherently more complicated for non-linear models. A 

non-linear system is one whose output is not directly proportional to its input, or one 

that does not satisfy the superposition principle, whereas a linear system fulfills these 

conditions (Walker et al. 2008). The third and final part is often the most difficult, 

least understood, and most widely incorrectly implemented. Given one or more 

plausible models describing a system, structural identifiability and 

indistinguishability, sometimes described as the inverse problem, asks “do the data 

uniquely determine the unknown parameters and which of the models best describes 

the physiological mechanisms?”. This normally puts restrictions on the model 

structure and experiment design, which has implications on how the data and which 

data should be collected. The concepts and theory for structural identifiability and 

indistinguishability are more complex and more subtle than the analytical theory of 

the forward problem; i.e. describing how a compartmental system behaves for given 

initial values, inflows, and outflows. 

2.3 Structural Identifiability and 

Indistinguishability 

Structural identifiability arises from the inverse problem of inferring from the 

known, or assumed, properties of a biomedical or biological system a suitable model 

structure and estimates for the corresponding rate constants and other parameters 

(Walter & Prozanto 1997). Under an assumption of the availability of perfect noise-

free data, structural identifiability analysis considers the uniqueness of the unknown 
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model parameters from the input-output structure and initial conditions 

corresponding to proposed experiments to collect data for parameter estimation 

(Bellman & Åström 1970, Godfrey & DiStefano 1987). This is a fundamental, but 

often overlooked, theoretical prerequisite to experiment design, system identification 

and parameter estimation, since numerical estimates for unidentifiable parameters 

are effectively physiologically meaningless. To reiterate, compartmental models are 

process driven models, that is to say the compartments and model parameters have 

biological meaning (Section 2.2). If parameter estimates are to be used to inform 

about intervention or inhibition strategies, or other critical decisions, then it is 

essential that the parameters be uniquely identifiable. Such analysis is highly 

relevant to large-scale, highly complex systems, which are typical in chemical 

kinetics and systems biology. It is important to note that an a priori structurally 

identifiable model does not necessarily guarantee a posteriori numerical parameter 

identifiability (Carson & Cobelli 2001), for example see Grandjean et al. 2011, 

however it should greatly increase the confidence in the parameter estimation 

process for the given system observation(s).  

Structural identifiability is often an issue when applying compartmental models to 

biological systems, as frequently it is not possible to observe every individual 

compartment, i.e. measure the concentration in each compartment. In the 

pharmaceutical experiments performed in drug research and development, biologists 

are generally restricted to measuring a small part of the system. For example they 

may be able to measure the concentration of a drug in the systemic circulation by 

taking blood samples; however they may not be able to directly observe the 

concentration in organs such as the brain and the liver. In order to infer the 

concentrations in the unobserved compartments, it is essential for the model to be 
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structurally identifiable. In other words the observations of the system need to 

uniquely determine the model parameters. 

Observation and measurement errors are not included in the a priori theoretical 

analysis. Structural identifiability is concerned with establishing whether or not there 

is enough information in the observations to uniquely determine the unknown 

parameters. Structural identifiability assumes continuous, noise-free data, therefore it 

is not necessary to physically perform the experiments; the results can be established 

from the model of the experiment. In fact, the analysis should always be performed 

before the experiments as the results can impact on the experimental design and may 

render some experiments futile. The issue of trying to estimate parameter values in 

the presence of real, often discontinuous, and noisy data is a non-structural 

quantitative problem. It only necessitates a very small amount of a posteriori kinetic 

data to solve the problem (Cobelli & Distefano 1980). The a posteriori numerical 

identifiability analyses are based on local sensitivities of the unknown parameters, 

the Fisher Information Matrix, the covariance matrix, or the Hessian of the least 

square function (Srinath & Gunawan 2010). Recent publications on this topic 

(Bandara et al. 2009, Kreutz & Trimmer 2009, He et al. 2010) recommend using 

model based experimental design to iteratively improve the accuracy of the 

parameter estimates. Other authors (Raul et al. 2009) have proposed a method based 

on exploiting the profile likelihood that derives confidence intervals and can be used 

for experimental planning and model reduction. Nevertheless, it is a separate 

technical problem that the modeller needs to address and it should not detract from 

the prerequisite of satisfying a priori structural identifiability. Whilst some authors 

refer to parameter estimation from experimental data as identifiability, i.e. numerical 

or practical identifiability, this a posteriori parameter identification should not be 
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confused with structural identifiability. In this thesis the author will use structural 

identifiability and numerical identifiability to distinguish between the two. 

Another structural identifiability issue that may occur in pharmacology is 

bioavailability in oral compartmental models. Bioavailability is the fraction of an 

orally administered dose that reaches the systemic circulation unchanged (Shah et al. 

1992). When drugs are administered orally, not all the drug reaches the systemic 

blood stream due to incomplete absorption and first-pass metabolism. This is where 

a drug is absorbed by the digestive system and enters the hepatic portal system after 

a drug is swallowed. It is mediated through the portal vein into the liver before it can 

reach the rest of the body. The liver metabolises many drugs before they can emerge 

into the rest of the circulatory system and as a result only a reduced amount of the 

initial dose reaches the blood stream. Bioavailability and other observation gains can 

cause structural identifiability problems, however the issue can be circumvented as 

bioavailability can be estimated from non-compartmental methods using separate 

experiments to compare intravenous administration blood concentrations with oral 

blood concentration data (Amidon et al. 1995). 

Structural identifiability is an essential pre-requisite in process driven models, as the 

resulting data are to be used to obtain parameter values that have a physiological 

meaning. Consequently, structural identifiability is often believed to not be as critical 

for data driven models, which are selected to fit one or more particular data sets 

without reference to the processes at work. However, parameter fitting software 

packages generally struggle when attempting to estimate non-identifiable parameters 

(Chis et al. 2011). Numerical optimisation algorithms may oscillate between 

numerous possible solutions, considerably reducing the confidence in the accuracy 

of the parameter values. There are many examples in the literature, where parameter 
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estimation has been difficult, and in some cases impossible, largely because the 

models are structurally unidentifiable (Lipniacki et al. 2004, Brown et al. 2004, 

Achard & De Schutter 2006, Piazza et al. 2008, Gutenkunst et al. 2007). These 

publications detail how the respective authors were unable to obtain unique and 

meaningful estimates for the unknown parameters since broad ranges of parameter 

values result in similar model predictions. 

Despite the implications, structural identifiability analysis is often ignored in 

biomedical systems modelling. The vast majority of modelling studies are 

implemented without any consideration of structural identifiability, even though they 

do not offer any physiological insight and may cause numerical identification issues 

during parameter estimation, perhaps because it significantly reduces the complexity 

of the mathematical modelling. Regardless of the motivations, structural 

identifiability and indistinguishability is necessary for all models, whether they are 

data or process driven. 

Still under an assumption of the availability of perfect, noise-free data, structural 

indistinguishability analysis considers the uniqueness of the postulated model’s 

input-output structures corresponding to proposed experiments to collect data for 

parameter estimation (Evans et al. 2004). That is to say, it is possible to discriminate 

between the candidate models of the biological system. In order to infer the inherent 

mechanism, it is crucial to be able to distinguish between two or more plausible 

models that have different pathways or biological mechanisms. Indistinguishable 

models have mathematically equivalent input-output structures, therefore rendering 

the experiments to establish which model is superior completely futile (Kholodenko 

et al. 2005). Structural indistinguishability is therefore a critical prerequisite to 

experiment design, in order to differentiate between plausible model mechanisms. 
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In pharmacokinetic modelling, it is important to characterise the biological 

mechanisms present, but there may be a number of models depicting different 

processes that describe the experimental data accurately. The models could be 

represented by similar mathematical equations (see Érdi & Tóth 1989 and Espenson 

1995); however without formal mathematical analyses of the model’s input/output 

structure, postulated mechanisms are only rejected if they are inconsistent with the 

available experimental data. As with structural identifiability analyses, although the 

problem has been described in the literature for over three decades (Cobelli & Salvan 

1977 and Franco et al. 1986), structural indistinguishability is routinely overlooked 

in biomedical systems modelling. 

 Mathematical Formulation and Definitions 2.3.1

Since both structural identifiability and indistinguishability are formal a priori 

methods, it is essentially less complicated to define them formally than informally. 

In order to describe indistinguishability formally, the following pair of autonomous 

non-linear systems with the same input vector ( )tu  are considered: 

   0( , ) ( ( , ), ( ), ), (0, ) ( ),

( , ) ( ( , ), ),

t t t

t t

 
 



q p F q p u p q p q p
p

y p h q p p
  (2.9) 

   0( , ) ( ( , ), ( ), ), (0, ) ( ),

( , ) ( ( , ), ),

t t t

t t

  
 



q p F q p u p q p q p
p

y p h q p p
  (2.10) 

where the vectors p   and p  are constant (time-independent) parameter vectors, i.e. 

1 2( , , , )T

rp p pp  and  
1 2( , , , )T

rp p pp ; the vectors ( , )tq p  and ( , )tq p  are the 

l - dimensional state variable vectors, i.e. 
1 2( , , , )T

lq q qq  and  
1 2( , , , )T

lq q qq , 

such that the vectors 0 ( )q p  and 0 ( )q p  are the initial condition vectors, which may 
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be functions of the unknown parameters p   and p , respectively, in which case the 

parameter dependent initial conditions 
0 ( )q p  and 

0 ( )q p  are well defined for a given 

p   and p , respectively; and the vectors ( , )ty p  and ( , )ty p  are the n -dimensional 

output vectors, i.e. 
1 2( , , , )T

ny y yy  and 
1 2( , , , )T

ny y yy . In biomedical 

systems modelling, the input is generally the dose of drug administered whereas the 

output normally represents the measurement(s) or observation(s) of the given system 

experiment. 

The vector of system equation(s) of model (2.9), F , and the corresponding vector of 

observation function(s), h , are generally non-linear functions of the system state 

vector, ( , )tq p ; input vector, ( )tu ; and parameter vector, p . Similarly for the 

system equation(s) vector of model (2.10), F , and the corresponding observation 

function(s) vector h , which are both normally non-linear functions of the system 

state vector, ( , )tq p ; input vector, ( )tu ; and parameter vector, p . All these 

functions, namely F , F , h , and h , are assumed to be rational polynomial 

functions, i.e. algebraic fractions where both the numerator and the denominator are 

polynomials, and therefore all four are analytical functions. Likewise, the initial 

conditions 0 ( )q  and 0 ( )q
 

assumed to be analytic functions in p  and p , 

respectively. It also assumed that  ( ) 0, u , where   is the set of admissible 

inputs for the models (2.9) and (2.10) on the time interval  0, , where 0  . It is 

possible for this set to be empty, that is to say there are no inflows. 

Both models ( ) p  and ( ) p  contain the same number of state variables ( m ) and 

the same number of output variables ( n ), however the algebraic forms of the system 

equation(s), F  and F , are not necessarily identical. The number of parameters in 
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model ( ) p , r , is not necessarily equal to the number of parameters in model  

( ) p , r . 

The parameter vector p  is in an open subset of s , which denotes the set of 

admissible parameter vectors for the model (2.9) for s  a positive integer: p . 

Likewise the parameter vector p is in an open subset s , which denotes the set of 

admissible parameter vectors for the model (2.10) for s  a positive integer: p . 

Given a particular, constant, and feasible parameter vector p , the resulting 

output vector ( , )ty p  will depend on the input vector ( )tu . Similarly for the model 

( ) p ; given a particular, constant, and feasible parameter vector p , the 

resulting output vector ( , )ty p  will be affected by changes in the input vector ( )tu . 

This relationship between the output vectors and the input vector is referred to as the 

input/output behaviour. The two systems ( ) p  and ( ) p , are defined as 

input/output indistinguishable, written ( ) ( ) p p , if ( , ) ( , )t ty p y p  for all input 

 0,u and for all  0,t  . Given a generic p , that is for all p  except 

possibly for some vectors that are elements in a subset of a closed set of Lebesgue 

measure zero where the rational functions are not defined, the models   and   are 

defined as structurally indistinguishable, written  , if there exist a p  such 

that ( ) ( ) p p  and vice versa, i.e. given a generic p  there exists a p  

such that ( ) ( ) p p . 

Structural identifiability is a special case of indistinguishabilty; given a generic 

p  the model ( ) p  is defined as globally structurally identifiable if the equation 

( , ) ( , )t ty p y p  for all input  0,u
 
and for all  0,t 

 
implies that p p .  
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It also very useful to determine whether individual parameters are identifiable; for a 

given output and well defined initial conditions, an unidentifiable parameter can take 

an (uncountably) infinite set of values, whereas a non-uniquely (locally) identifiable 

parameter can take any of a distinct (countable) set of values. A parameter is 

globally identifiable if for a given output and well defined initial conditions, it can 

only take one value.  

If all of the unknown parameters are globally identifiable, the system model is 

structurally globally identifiable (SGI). In the case that all parameters are locally 

identifiable and at least one is non-uniquely identifiable then the model is 

structurally locally identifiable (SLI). In the case where at least one parameter is 

unidentifiable then the model is structurally unidentifiable (SU). 

Numerous techniques for performing a structural identifiability analysis on linear 

parametric models exist and this is a well-understood topic (Godfrey & DiStefano 

1987 and Walter 1987). Similarly for structural indistinguishability analysis 

(Godfrey & Chapman 1990), as structural identifiability is a special case of structural 

indistinguishability the same methods can generally be used with minor 

modifications. The Laplace transform approach, or transfer function approach, is 

normally the method selected to analyse linear models, see Jacquez & Greif 1985 for 

a thorough discussion of this method. However, when modelling biological and 

biochemical systems, non-linear interactions are ubiquitous. In pharmacology, 

doubling the dose of a drug very rarely doubles the effect, as many of the cellular 

uptake mechanisms are saturable and concentration dependent. One of the best 

known models for enzyme kinetics incorporates Michaelis-Menten kinetics, named 

after German biochemist Leonor Michaelis and Canadian physician Maud Menten 

(see Johnson & Goody 2011 for an English translation of the original publication in 
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German - Michaelis & Menten 1913). Biochemical reactions involving a single 

substrate are often assumed to follow Michaelis-Menten kinetics, without regard to 

the model’s underlying assumptions (Gunawardena 2012). Furthermore most drugs 

do not satisfy the superposition principle, that it to say when administering two 

different substances together, their resulting effect is not the simple addition of their 

individual effects. The resultant action may be synergistic, when the drug’s effect is 

amplified; antagonistic, when the drug’s effect is diminished; or even a new effect 

may be created that neither substances produces on its own. Although these 

interactions are typically drug-drug related, there also exist interactions with foods, 

plants, and herbs. Consequently, most biological systems and mechanisms are 

governed by non-linear differential equations. The Laplace transform approach is not 

applicable to non-linear systems and analysis techniques for non-linear ordinary 

differential equations (ODE) models is an area that is still under development (Miao 

et al. 2011). Assessing a priori structural identifiability and indistinguishability of 

non-linear dynamic systems is particularly challenging (Murray Smith 1998, Audoly 

et al. 2001). There are a number of techniques available for non-linear systems, 

including: 

 Taylor series approach or power series expansion (Pohjanpalo 1978) 

 similarity transformation based approaches (Tunali & Tarn 1987; Vajda et al. 

1989) 

 Volterra and Generating Power Series Approaches (Lecourtier et al. 1987) 

 identifiability tests derived from differential algebra techniques (Fliess & 

Glad 1993, Ljung & Glad 1994, Saccomani et al., 2003) 

 identifiability tableaus (Balsa-Canto et al. 2010) 

 direct test (Denis-Vidal et al. 2001, Walter et al. 2004) 
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 approach based on the implicit function theorem (Xia & Moog 2003) 

 identifiability test for reaction networks (Cracim & Pantea 2008, Davidescu 

& Jorgensen 2008, Szederkényi 2009) 

 recently formulated algebraic input/output relationship approach (Evans et al. 

2012) 

 minimal output sets (Anguelova et al. 2012) 

However, many of these approaches rapidly become mathematically intractable with 

increasing model size and complexity (Margaria et al., 2001; White et al., 2001). 

Significant computational problems can also arise even for relatively simple models 

(Jiménez-Hornero et al. 2008 and Meshkat et al. 2009). There is no ‘one size fits all’ 

technique that is amenable to every model; all the methods have greatly varying 

levels of success, depending on the model to which they are applied. Furthermore it 

is virtually impossible to predict, which methods are guaranteed to work for a 

specific model structure. Selecting an appropriate approach is problematic and they 

are often difficult to implement. Nevertheless, a structural identifiability analysis has 

been successfully applied to a large-scale non-linear mathematical model (43 state 

variables and 81 parameters) of a highly complex biomedical system (Cheung et al. 

2008). 

There are very few reviews on the different methods for performing structural 

identifiability and indistinguishability analyses on non-linear systems in the 

literature. Cobelli & Distefano 1980 only review very few basic techniques but 

exemplify the pitfalls on non-identifiability with some in depth examination of 

several physiological system models. Raue et al. 2011 includes a review of some 

applicable methods for structural identifiability analysis of biological system models 

and reinforces the importance of the a priori analysis. Chis et al. 2011 is the most 
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comprehensive review, as it includes the broadest range of methods and applies them 

to six models of widely varying complexity; however the authors are heavily biased 

in favour of their own method (identifiability tableaus) even though it fails to 

produce conclusive results in all but the simplest cases and some results contradict 

the other methods.  

 Methods 2.3.2

The non-linear approaches for structural identifiability implemented in the 

subsequent chapters are described below. Six different methods and tests were 

applied to all the models developed in order to establish whether each model was 

structurally identifiable and in order to investigate the suitability of each method for 

the candidate models proposed. 

2.3.2.1  A Similarity Transformation Approach for Uncontrolled Systems 

(STAUS) 

Given a linear model structure, this approach generates all the linear models that 

have the same input/output behaviour. It has also been successfully applied to non-

linear models by mapping the state equations to a linear set (Evans et al. 2005). 

Given a non-linear mathematical model of the following general form: 

 ( , ) ( ( , ), )t tx p f x p p  (2.11) 

 0(0, ) ( )x p x p   (2.12) 

 ( , ) ( ( , ), )t ty p h x p p  (2.13) 

where p is the r dimensional vector of unknown parameters. The n dimensional 

vector ( , )tx p  is the state vector, such that 0 ( )x p
 
is the initial state and ( , )ty p  is 
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the observation vector. For an autonomous system with no input, this approach 

initially entails establishing an Observability Rank Criterion (ORC). This is 

performed by defining a function H given by 

 
T

1( , ) ( ( , ), , ( , ))nx x t  H p p p  (2.14) 

where 1( , ) x p  is the observation function h , and ( , )n x p  is the Lie derivative of 

the previous term, given by 

 1
1( , ) ( ) ( ) ( )n

n f nx L x x f x


  



  


p

x
 (2.15) 

where h  is the observation from (2.13) and f  the vector of the system coordinate 

functions given by (2.11). If the Jacobian matrix with respect to x , evaluated at 

0 ( )x p , of the resultant function ( , )H p  is non-singular, then the system (2.11) - 

(2.13) is said to satisfy the ORC and it is possible to construct a smooth mapping 

from the state corresponding to a parameter vector p , indistinguishable from p , to 

the state corresponding to p . For a particular p , let pH  denote the vector field 

( , )H p . According to Theorem 4 from Evans et al. 2005, a smooth map λ is 

calculated using 

 ( ( )) ( )x xp pH λ H  (2.16) 

Equations can then be derived from the initial conditions 0x , the model structure f  

and the observation function h  by using: 

 0 0( ( )) ( )λ x p x p  (2.17) 

 ( ( ( , )), ) ( ( , )) ( ( , ), )t t t





λ
f λ x p p x p  f x p p

x
  (2.18) 
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 ( ( ( , )), ) ( ( , ), )t th λ x p p h x p p  (2.19) 

The resulting system of equations are solved simultaneously for p and the model is 

structurally globally identifiable (SGI) if p p  is the only solution, that is to say all 

the parameters are globally uniquely identifiable. A set of distinct solutions gives 

rise to a structurally locally identifiable (SLI) model. Otherwise the model is 

structurally unidentifiable (SU). The main limitation for applying this method is that 

it can be very memory intensive to solve (2.16) and thus compute a smooth map λ, 

particularly if the model equations contain complicated non-linear terms. In some 

cases, solving (2.16) yields more than one solution or solutions including square 

roots and other non integer powers, which mean that a smooth map λ cannot be 

computed and it is therefore not possible to apply the approach. 

2.3.2.2 A Sufficient Condition for Unidentifiability 

As a straightforward consequence of the similarity transformation approach for 

uncontrolled systems described above the approach gives rise to a sufficient 

condition for unidentifiability (Evans et al. 2005). In this instance, instead of 

calculating the smooth map λ from solving (2.16) using the observation vector field 

H, the smooth map λ is assumed to be of the form 

 
T

1 1( ) ( ,..., )n nt x t x x  (2.20) 

where ( 0)
i

t   and n is the number of states. Again the identities (2.17) - (2.19) are 

used to generate the relevant equations which are solved for p  and t1, ..., tn. If there 

are an (uncountable) infinite number of solutions, then the model is structurally 

unidentifiable (SU). The main limitation of this method is that it only assesses 

unidentifiability and cannot show that a model is identifiable. 
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2.3.2.3 Differential Algebra Approach Using Characteristic Sets (DAACS) 

This approach consists of generating the input/output structure of the given model of 

the general form (2.11) - (2.13) solely in terms of the observation function ( , )ty p  

and its derivatives using characteristic sets (Fliess & Glad 1993, Ljung & Glad 

1994). Assuming the observation ( , ) ( ( , ), )t ty p h x p p  is linear, this approach 

considers two parameter vectors p  and p , that produce the same output for all t , 

and thus produce the same derivatives of the observation for all t , i.e. 

 
       , ,
n n

y t y tp p , for all t .   (2.21) 

If it is possible to generate and expression ( 1)( , , , )ng y y  p  derived from the model 

equations ( ( , ), )tf x p p  purely in terms of the observation vector ( , )ty p  and its 

derivatives then the approach entails solving 

  1 ( 1)( , , , ) ( , , , )
n ng y y g y y
   p p   (2.22) 

for p . This method requires the model to satisfy the ORC and is implemented using 

the Rosenfeld-Gröbner algorithm in Maple 2010, which calculates a characteristic 

set for the model with a particular ranking of variables, where one member of the 

characteristic set gives the input/output map ( 1)( , , , )ng y y  p . A second input/output 

map is generated by substituting p  for p  in the original map. If equating the 

monomials of these two functions produces only one solution for the unknown 

parameters, then the system is SGI. The Rosenfeld-Gröbner algorithm in Maple 2010 

can be very memory intensive, particularly if the model equations contain 

complicated non-linear terms. 
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2.3.2.4 Algebraic Input/Output Relationship Approach (Ai/oRA) 

This is the most recent approach, developed by Evans et al. 2012. Given a model of 

the general form (2.11) - (2.13) that satisfies the ORC, this approach generates the 

corresponding input/output map for the system. This approach requires calculating 

the Lie derivatives of the observation function, defined in Equation (2.15). These are 

used as inputs into the Univariate Polynomial or Groebner Bases algorithms in 

Maple, producing the input/output relationship for the model. Again, a second 

input/output map is generated by substituting p  for p  in the original input/output 

relationship. If equating the monomials of these functions produces only one 

solution for the unknown parameters, then the system is SGI. The Univariate 

Polynomial algorithm in Maple 2010 is probably the most efficient algorithm out of 

all the approaches described, however it can still be very memory intensive, 

particularly if the model equations contain complicated non-linear terms. 

2.3.2.5 Non-differential Input/Output Observable Normal Form Approach 

(NDi/oONF) 

This approach also generates the input/output structure for the given model, solely in 

terms of Lie derivatives of the observation function, defined in Equation (2.15). This 

is achieved using a co-ordinate transformation into the Observable Normal Form. 

Given a model of the general form (2.11) - (2.13) which satisfies the ORC, the Lie 

derivatives are calculated and solved simultaneously as a system of equations to 

obtain expressions for all the states in term of these Lie derivatives. These are 

subsequently substituted into the derivative with respect to time of the highest Lie 

derivative to give an input/output map of the model. If equating the monomials of 

this function produces only one solution for the unknown parameters, then the 

system is SGI. Assuming the model is reduced to its minimal form; the number of 
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Lie derivatives required is one more than the number of state variables. Therefore 

this approach tends to be the least memory intensive to implement for systems with 

few states. 

2.3.2.6 Taylor series expansion 

This general method, introduced in Pohjanpalo 1978, is commonly used for systems 

with a single input and can be applied to both linear and non-linear systems. Given a 

mathematical model of the general form (2.9), the components of the observation 

vector  ,iy t p  are expanded as a Taylor series around the known initial condition.  

 
 

2

( , ) 0, 0, (0, ) 0,
2!

( ) ( ) ( )
!

k
k

i i i i i

t t
y t y y t y y

k
     p p p p p   (2.23) 

where 

 
 

0

0,( )
k

k i
i k

t

d y
y

dt


p  for 1,2,k    (2.24) 

The Taylor series coefficients  
)0,(

k

iy p  are measurable and unique for a particular 

output. Equating the Taylor series coefficients obtained from ( , )ty p  with those 

derived from ( , )ty p  produces a system of equations. If there is only one solution for 

the unknown parameters, then the model is SGI. The total number of unknown 

model parameters determines the minimum number of Taylor series coefficients 

required to establish structurally identifiability and this causes significant 

computational problems in models with numerous unknown model parameters. 

2.3.2.7 Structural Indistinguishability 

As described previously, structural identifiability is a special case of structural 

indistinguishability and therefore the same approaches can generally be implemented 
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with minor modifications. However it is not possible to use the STAUS technique to 

investigate structural indistinguishability of models that have different number of 

states. For DAACS, Ai/oRA, and NDi/oONF the input/output maps generated can be 

compared to investigate if they are structurally distinguishable. This is implemented 

by equating the monomials and solving for the unknown parameter vector p . The 

Taylor series expansion as described above is also used to implement a structural 

indistinguishability analysis. In this approach, the corresponding coefficients of the 

Taylor series expansions around the initial condition of the observation function for 

each of the two candidate models, i.e. 1 1( , )y t p  and 2 2( , )y t p , are compared term by 

term to ascertain relationships between the parameter sets for the two different 

models. This process continues until either all parameters can be uniquely related 

between the two candidate models or a generic contradiction ensues (i.e. from 

established relationships for the parameters from the early coefficients, it is 

necessary for certain parameters in one or both models to be zero, which generically 

cannot be the case). In practice, it is not a pre-requisite to calculate as many Taylor 

series coefficients as there are unknown model parameters, as often 

distinguishability will be ascertained from the early coefficients of the Taylor series 

expansions.  

  



CHAPTER 2.  LITERATURE REVIEW 

55 

 

2.4 Transporters in pharmacokinetics and 

pharmacodynamics 

First and foremost, drugs need to travel to and be absorbed into the target cells in 

order for them to reach the biological receptors where they can be metabolised and 

eventually have the desired therapeutic effect. An administered drug needs to enter 

to systemic circulation in order to be distributed to various tissues in the body. The 

drug is subsequently eliminated from the body by metabolism, normally in the liver, 

and eventually excreted into bile or urine. During all these pharmacological 

processes, the drug molecule will have passed through numerous cell membranes. As 

such, one of the most important factors in establishing the pharmacokinetic 

properties of a new pharmaceutical compound is the permeability of biological 

membranes. 

 

Even though it has generally been widely accepted that numerous medicinal 

molecules are transported across biological membranes via simple diffusion, it has 

recently been proposed that carrier mediated cellular uptake is responsible for most 

of the membrane drug transport in biological systems (Dobson & Kell 2008; Sugano 

et al. 2010). Carrier-mediated transport is the process of molecules and particles 

moving across membranes, such as cell membranes, the blood-brain barrier (BBB), 

and the gastrointestinal mucosa, via a specific carrier protein or transporter 

(Petzinger & Geyer 2006). This process differs from simple passive diffusion where 

particles move from a region of higher concentration to a region of lower 

concentration without a transporter. There are two forms of carrier-mediated 

transport; active transport and facilitated diffusion. Active transport is a non-linear 
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saturable process which requires energy and can move substances against its 

concentration gradient (Shugarts & Benet 2009), as opposed to passive transport 

(simple diffusion, facilitated diffusion, filtration, and osmosis) which does not 

require energy and can only move substances down its concentration gradient. There 

are two categories of active transport determined by the type of energy used. Primary 

active transport requires chemical energy, i.e. adenosine triphosphate (ATP), 

whereas secondary active transport involves using the potential energy stored in 

electrochemical gradients. 

Primary active transport, often referred to as ATP-powered pumps or simply pumps, 

is a coupled chemical reaction. ATP hydrolysis of ATP into adenosine diphosphate 

(ADP), which can be further hydrolysed to give energy, and orthophosphate (Pi), an 

inorganic phosphate, is coupled to transporting ions or small molecules against a 

concentration or electrochemical gradient across a biological membrane. The 

combined reaction is energetically favourable (Lodish et al. 2000) and is illustrated 

in Figure 2.2. The mechanism is characterised by substances binding rapidly and 

reversibly to a transporter protein located on the biological membrane of epithelial 

cells and are translocated from the intracellular to the extracellular milieu, generally 

against a steep diffusion gradient. ATP-powered pumps include sodium pumps, 

proton pumps, and calcium pumps, which transport sodium, hydrogen, and calcium 

respectively. One the most interesting features of primary active transport is that the 

pumps are reversible and can function as ATP synthesisers, which is how 

mitochondria and chloroplasts store energy. 
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Figure 2.2: Example of primary active transport - the sodium-potassium pump 

(Na
+
/K

+
-ATPase), where the transporter uses ATP to simultaneously pump three 

sodium ions (Na
+
) and two potassium ions (K

+
) in and out of the cell, respectively 

(courtesy of Mariana Ruiz Villarreal). 

In secondary active transport, sometimes called co-transport or coupled transport, a 

carrier protein couples the transport of a solute, usually an ion, in the direction of its 

electrochemical gradient to the transport of a second solute against its concentration 

gradient (Shechter 1986). The potential energy stored in the electrochemical ion 

gradient is used to transport the second solute (see Figure 2.3). The ion is generally 

referred to as the driving ion, as its movement is responsible for providing the energy 

required to drive the solute against its concentration gradient. The coupling between 

the driving ion and the solute is crucial to the process, as both must be bound to the 

transporter at the same time for the membrane translocation to occur. It is 

appropriate to call this process secondary active transporter since the electrochemical 

concentration gradient of the driving ion is maintained by primary active transport. 

The driving ion is generally sodium and its gradient is maintained by the sodium-

potassium adenosine triphosphatase (Na
+
/K

+
-ATPase), which co-transports sodium 

out of the cell and potassium into the cell (see Figure 2.2). Secondary active 
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transport was first discovered by Robert K. Crane (Crane et al. 1961). He is 

accredited with being the first to formulate the concept of flux coupling in biology 

(Wright & Turk 2004; Boyd 2008). Secondary active carrier proteins, or 

cotransporters, are classified into two categories; symporters and antiporters, 

depending on the relative direction of movement of the driving ion and the 

cotransported molecule. Symporters cotransport both in the same direction, whilst 

antiporters translocate the cotransported molecule in the opposite direction to the 

driving ion. Examples of active transport include the re-absorption of glucose, amino 

acids, and salts by the proximal convoluted tubule of the nephron in the kidney. 

 

Figure 2.3: Example of secondary active transport - the energy stored in the sodium 

(Na+) concentration is utilised to efflux amino acids out of the cell. The sodium 

(Na+) concentration gradient is characteristically created and maintained by primary 

active transport; the diffusion of this driving ion (Na+) back across the biological 

membrane provides the energy for secondary active transport (courtesy of Mariana 

Ruiz Villarreal). 

On the other hand facilitated diffusion is not energy dependent and cannot move 

substances against a concentration gradient. The main difference between facilitated 
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diffusion and simple diffusion is that the former occurs by means of a membrane 

protein located on the apical and basolateral membrane and as a result, it displays the 

properties of specificity, competition, and saturation. The membrane protein, or 

uniporter, can either be an ion channel or a carrier protein as shown in Figure 2.4. 

Channel proteins transport water and certain specific ions. Structurally, they are 

arranged in a protein lined passageway across the cell membrane’s epithelium. Some 

channel proteins can be open or shut in response to specific signals, such as 

membrane potential difference, physical pressure, and ligand binding. Uniporter 

carrier proteins are a membrane transport protein to which solutes bind and are 

translocated in the decreasing direction of the solute concentration gradient. For 

example, cellular glucose absorption occurs by facilitated diffusion (Alberts 1998). 

 

Figure 2.4: Diagram illustrating facilitated diffusion - membrane transport proteins 

assist the movement of molecules across the biological membrane. There are two 

mechanisms in actions, in the protein channel the molecules pass through the 

channel within the protein and in carrier proteins, the transporter modifies its shape 

in order to allow molecules to influx into the intracellular environment (courtesy of 

Mariana Ruiz Villarreal). 
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Inherently, all carrier mediated processes, both primary and secondary active 

transport and facilitated diffusion, are saturable due to the limited number of binding 

sites on the carrier protein and similar substances are able to compete for the 

transporter, which is when competitive inhibition occurs (Fromm & Kim 2011, 

Yoshida et al. 2013).  

The rate of transport of the different types of active transport tends to differ 

significantly owing to the differences in their mechanism of operation. In channel 

proteins, multiple ions or water molecules can move simultaneously in a single file 

at a very fast rate (up to 10
8
 per second), whereas in pumps and cotransporters move 

only approximately 10
2
 - 10

4
 molecules per second (Lodish et al. 2000). This is 

because each substrate molecule is required to bind to the transporter, which then 

must undergo a conformational change in order to translocate the substrate. 

The carrier mediated process has been recognised for at least 25 years (Cabantchik & 

Ginsburg 1977, Crane 1977) and over the last two decades, a vast number of 

membrane transport proteins have been discovered. It has become increasingly 

apparent that transporters play a critical role in the ADME of a wide variety of drugs 

in clinical use (Mizuno et al. 2003). In fact it is now generally accepted that most 

drugs cannot cross the plasma membrane by simple diffusion and therefore most of 

the cellular uptake and excretion involves transporters (Sugano et al. 2010; Marin 

2012). This is an intuitive result, as cells are likely to have evolved a high level of 

specificity for the substance transported to regulate their external membranes. This 

ensures only the right nutrients can influx and to efflux toxins. Even uptake of 

molecules, such as water and urea, which can diffuse across simple cell membranes 

(pure phospholipid bilayers) is commonly accelerated by membrane transport 

proteins (Lodish et al. 2000). Transporters are integral membrane proteins; that is to 
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say protein molecules that are permanently attached to and spread ubiquitously along 

the biological membrane across which they transport substances. Carrier proteins are 

widely distributed across the body, in all the extracellular membranes, and are 

responsible for transporting a wide range of substrates, such as acetyl coenzyme A, 

amino acids and oligopeptides, ammonium, bile salts, biogenic amines, carboxylate 

and other organic anions, choline, essential metals, fatty acids and lipids, glucose and 

other sugars, inorganic cations and anions, neurotransmitters, nucleosides, thyroid 

hormone, urea, and vitamins (He et al. 2009). 

It is crucial to investigate the interactions between transporters and drugs in 

important organs such as the intestine, kidney, and liver. Understanding the 

mechanisms of transport is critical in determining the extent of ADME of a drug 

substrate in man. The pharmacokinetic profile of a particular compound in the body 

is determined by the cellular uptake and efflux across the phospholipid bilayer, 

which is impeded or expedited by the specific dispersion of transport proteins. 

Since the increasing appreciation of the role that transport proteins play in ADME, 

an International transporter consortium (ITC), consisting of about 50 academic, 

industrial, and regulatory scientist was established in 2007 (International Transporter 

Consortium 2010). In their latest publication the ITC conclude that better in silico 

tools are required to improve mechanistic understanding and assessment of 

intracellular drug and metabolite concentrations, and that the development of 

mathematical models to inform clinical studies in order to fully address the impact of 

uptake and efflux transporters is a key area for academic research (Giacomini & 

Huang 2013). Robust mechanistic models of transporters will aid with dose 

selection, drug interaction prediction, and inter-subject variability in drug response. 
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There are over 400 membrane transporter proteins annotated in the human genome 

divided into two major categories: ATP binding cassette (ABC) and solute carrier 

(SLC) (DeGorter et al. 2012, Liu et al. 2012). The latter is the larger category; over 

380 different SLC sequences have been identified which are grouped into 48 

subcategories (Fredriksson et al. 2008). Less than half of these subcategories have 

been described in clinical pharmacology. The SLC membrane transport protein 

function by either facilitated diffusion (protein channel or uniporter) or secondary 

active transport (symporter or antiporter). Most facilitate cellular uptake, however, 

depending on the orientation of the driving ion and the coupled substrate 

concentration gradients across the biological membrane, certain SLC carriers exhibit 

efflux or bidirectional properties. The smaller ABC transporter category has seven 

subcategories for the 49 unique proteins obtained from the human genome (Dean & 

Allikmets 2001). The ABC transporters are ATP pumps using primary active 

transport and are therefore efflux transporters by definition. Irrespective of whether 

they are influx of efflux transporters, a distinction can be made between absorptive 

and secretory transporters, with the latter mediating drug excretion from the 

circulation into bile and the former being involved in transporting substrates into the 

systemic blood stream. 

Out of the hundreds of unique protein isoforms, around twenty (PEPT1, PEPT2, 

OCT1, OCT2, OCTN1, OCTN2, OAT1, OAT2, OAT3, OAT4, MATE1, MATE2-K, 

OATP1A2, OATP1B1, OATP1B3, OATP2B1, OATP4C1, MDR1, MRP2, MRP3, 

MRP3, BCRP) are currently considered to be the transporters that exert the greatest 

impact on clinical pharmacology (Mizuno & Sugiyama 2002; Tsuji 2002; Ho & Kim 

2005; Ito et al. 2005; Shitara et al. 2005; Endres et al. 2006; Zair et al. 2008). 

Investigating and modelling all of them would easily take at least one lifetime and is 
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evidently beyond the scope of this thesis. Consequently the author has focussed on 

two specific prominent transporters; one from the ATP binding cassette, breast 

cancer resistance protein (BCRP), and one from the SLC family, OATP1B1. 

 Breast Cancer Resistance Protein (BCRP) 2.4.1

Breast cancer resistance protein (BCRP), ABCG2 gene, is the only member of the 

ABCG subfamily that is involved in mediating drugs. It is sometimes referred to as 

Mitoxantrone Resistance-associated protein - MXR (Miyake et al. 1999) or Placenta 

specific ABC transporter - ABC-P (Allikmets et al. 1998); all appropriate names as 

it was discovered to significantly reduce efficacy of the antineoplastic agent 

mitoxantrone in breast cancer treatment (Ross et al. 1999), and heavily expressed in 

placenta. 

It impedes the absorption and enhances the excretion of many endogenous and 

xenobiotic compounds, including various anticancer agents. The ABCG subfamily 

protein isoforms are structurally characterised by one transmembrane domain and 

one ATP-binding site. This configuration is about half the size of the minimal 

functional structure of an ABC transporter, which consists of two transmembrane 

regions, each comprised of two cytoplasmic ATP binding areas and six 

transmembrane helices (Locher 2009). As a result BRCP is considered a half 

transporter, which is believed to dimerise to form a functioning transporter. 

Dimerisation is a chemical reaction in which two monomers react to form a dimer, or 

molecule of two identical halves. There is some evidence to suggest that BCRP 

exists and functions as a homotetramer, i.e. a protein complex comprising of four 

identical subunits (Xu et al. 2004). BCRP was originally discovered in a multidrug-

resistant breast cancer cell line and therefore most of the initial reported substrates 
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are anticancer agents. To date, a large number of functionally and structurally 

diverse hydrophobic drug substrates have been identified as BRCP substrates, such 

as abacavir, albendazole sulfoxide, camptothecin, cerivastatin, cimetidine, 

ciprofloxacin, dipyridamole, edaravone sulfate, erlotinib, flavopiridol, gefitinib, 

glibenclamide, imatinib, lamivudine, methotrexate, Mitoxantrone, nelfinavir, 

nitrofurantoin, norfloxacin, ofloxacin, olmesartan, oxfendazole, pitavastatin, 

rosuvastatin, SN-38, sulfasalazine, topotecan, zidovudine (Cusatis & Sparreboom 

2008, Robey et al. 2009, Sarkadi et al. 2006, van Herwaarden & Schinkel 2006). 

The exact mechanism and clear structural relationship is yet to be fully elucidated 

(Russel 2010). BRCP is highly expressed in many tissues; predominantly in plasma 

membranes with important barrier functions, such as the canalicular membrane of 

brain (Hartz et al. 2010), intestine, kidney (Huls et al. 2009), liver, and placenta 

capillaries. 

BCRP is expressed in the brush border membrane of the gut where in conjunction 

with ABCB1 and MRP2, it plays an important role as the human body’s first line of 

defence against xenobiotics, impeding absorption into the systemic blood stream. It 

actively pumps a wide range of compounds and metabolites back into the gut lumen 

and thereby limits the oral bioavailability of a wide range of drug substrates (Russel 

2010).  

In the liver, BCRP plays a critical role in drug elimination, extracting drugs with 

high protein binding from the systemic blood stream. It is expressed in the 

canalicular membrane of hepatocytes, where alongside with MRP2, it is 

predominantly responsible for pumping conjugated and unconjugated anionic drugs 

into bile. 
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BCRP is also expressed in the kidney where it is involved in renal drug excretion 

(Maliepaard et al. 2001; Huls et al. 2008, Takashima et al. 2013). Alongside three 

other apical ABC transporters (MDR1/P-gp, MRP2, and MRP4) at the proximal 

tubule brush border membrane, BCRP is responsible for mediating the elimination of 

a wide variety of amphipathic drugs and metabolites from the systemic blood stream 

into urine. 

It is also expressed in stem cells, where its function is believed to protect the cells 

against xenobiotics (Zhou et al. 2001), and has been found to have implications for 

the survival of stem cells and tumour cells under hypoxia (Krishnamurthy et al. 

2004). It is of particular interest in oncology as it actively effluxes 

chemotherapeutics, such as mitoxantrone and topotecan, across the cell membrane, 

significantly impeding their efficacy by limiting the amount of therapeutic that can 

accumulate in the target region. Functioning as an obstacle to drug penetration, 

BCRP reduces the effectiveness of some drugs and as a consequence often increases 

drug resistance, which may aggravate and complicate the disease (Doyle & Ross 

2003). Multidrug resistance of tumour cells is a common cause of treatment failure 

in cancer. 

 Organic Anion Transporting Polypeptide (OATP) 2.4.2

The SLCO gene subfamily of SLC is comprised of twelve organic anion transporting 

polypeptides (OATPs) that co-transport large and hydrophobic organic anions (Type 

II). OATPs mainly mediate a variety of amphipathic organic substances, such as 

thyroid hormones, toxins, steroid conjugates, bile salts, and a wide range of drugs 

(Hagenbuch & Gui 2008). There is some evidence to suggest that these 

transmembrane glycoproteins use secondary active transport and act as organic anion 
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antiporters, however, similarly to BCRP, the exact mechanism is yet to be fully 

elucidated (Mahagita et al. 2007, Russel 2010). Whilst some OATPs are expressed 

ubiquitously, OATP1B1 (one of the eleven human OATP isoforms) is exclusively 

found on the liver, expressed on brush border membranes. Other SLC influx 

transporters are expressed at the sinusoidal membrane of hepatocytes, such as 

OATP1B3, OATP2B1, OAT2, and OCT1, however OATP1B1 has been identified 

as particularly significant for mediating many clinically important compounds, such 

as angiotensin converting enzyme (ACE) inhibitors, glitazones, macrolide 

antibiotics, sartans, and statins. There is also evidence of some relevant drug-drug 

interactions being described with the immunosuppressant drug cyclosporine A for 

OATP1B1 mediated statin transport (Endres et al. 2006). Common variants of the 

OTAP1B1 gene, SCL01B1, have been highly correlated to an increased risk of 

simvastatin induced myopathy in a genome wide study (Link et al. 2008). Although 

these genotypes have been shown to be linked with elevated statin blood 

concentrations, there is still some debate in the literature as to whether simvastatin is 

in fact an OATP1B1 substrate (Choi et al. 2010; Romaine et al. 2009). 

OATP1B1 is of central importance in hypercholesterolaemia, as it mediates so many 

statins, which lower cholesterol by inhibiting the HMG-CoA reductase enzyme in 

the liver. High cholesterol is often associated with cardiovascular disease, because 

atherosclerosis, or thickening of the artery walls as a result of the accumulation of 

fatty materials, is one of the major precursors to cardiovascular disease. 

Cardiovascular disease is the leading cause of deaths worldwide and statins have also 

been shown to beneficial with a decrease in mortality and further heart disease in 

those who are at high risk, in particular in patients with a history of cardiovascular 

disease. OATP1B3, a homolog of OATP1B1, exhibits comparable substrate 
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specificity; however its expression is more concentrated around the central vein 

hepatocyte basolateral membranes. Both these organic anion antiporters are critical 

determinants in hepatobiliary elimination, extracting drugs with a high protein 

binding from the systemic blood stream. As hepatic influx is generally the rate 

limiting factor in removing compounds from blood circulation and subsequently 

excreting them into bile, OATP1B1 and OATP1B3 are crucial factors in drug 

disposition and exposure. Their genetic variability and inhibition is of particular 

interest in clinical pharmacology as they are major contributors to patient inter-

individual variability in hepatic elimination and drug-drug interactions (Noe et al. 

2007, Kalliokoski & Niemi 2009). OATP1B1 substrates include a functionally and 

structurally diverse range of amphipathic drugs such as atorvastatin, atrasentan, 

benzylpenicillin, bosentan, caspofungin, cerivastatin, digoxin, enalapril, ezetimibe 

glucuronide, fexofenadine, fluvastatin, methotrexate, olmesartan, pitavastatin, 

pravastatin, rifampicin, rosuvastatin, simvastatin, SN-38, temocapril, troglitazone 

sulfate, and valsartan (Dobson & Kell 2008, Hu et al. 2008, Nies et al. 2008, Noe et 

al. 2007, Katz et al. 2006, Oswald et al. 2008, Abe et al. 2001, Maeda et al. 2006). 

 Previous kinetics modelling 2.4.3

There is a significant amount of drug release kinetic modelling in the literature, 

where a wide variety of different coatings, formulations, and drug manufacturing 

methods are investigated in order to establish the best way for oral administered 

drugs to dissolve in the body. Recently, Dash et al. 2010 and Siepmann & Peppas 

2012 comprehensively reviewed the spectrum of mathematical models in this field. 

Specific matrix structure and topologies are modelled to investigate the mechanisms 

and numerically quantify the release rates. The motivation behind this modelling is 
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to control the drug delivery such that drug concentrations do not dangerously 

increase too rapidly and subsequently exceed their toxic threshold, or conversely that 

drug concentrations never reach or fall below their effective therapeutic level. 

However this modelling is limited to solid pharmaceutical dose dissolution and does 

not concern itself with the gut absorption rate or further transport kinetics and 

metabolisation of the compounds. 

The chemical structure of transporters has also been modelled, including both OATP 

(see for example Chang et al. 2005, Meier-Abt et al. 2006) and BCRP (Ecker et al. 

2008), however this pharmacophore modelling is only concerned with molecular 

structure of transporters and not their kinetics. 

Although OATP1B1 and BCRP have been and continue to be comprehensively 

researched both in vitro and in vivo, using functional assays and human clinical 

studies (Maeda & Sugiyama 2008), the literature on modelling these transporters 

kinetics mathematically is surprisingly sparse. Perhaps because scientists have only 

begun studying the pharmacogenetics of transporters and this research field is still 

very novel (Nakamura et al. 2008).  

In a recent review of the current knowledge of BCRP structure and function (Ni et 

al. 2010), very few equilibrium or kinetic binding studies for substrates or inhibitors 

of BCRP were found in the literature. Özvegy et al. 2001 demonstrated the ATPase 

activity of BCRP to exhibit classical Michaelis-Menten kinetics but did not quantify 

or model the rate constants. Clark et al. 2006 investigated the association and 

dissociation kinetics of the anthracycline antibiotic [
3
H]-daunomycin using plasma 

membranes isolated from insect cells, which express BCRP. Non-compartmental 

analyses, namely non-linear regression using Michaelis-Menten type kinetics, were 
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used to ascertain a dissociation constant 564 57nMdK    with the following 

equation: 
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where B  is the specific bound [
3
H]-daunomycin; maxB  is the maximal binding 

capacity; dK  is the dissociation constant; and  L  is the ligand concentration. The 

fraction of [
3
H]-daunomycin bound as a function of added drug concentration was 

also fitted using the following general dose response equation: 
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where B  is the maximal [
3
H]-daunomycin binding, maxB  is the maximal binding, 

minB  is the minimum binding, 50IC  is the concentration of drug that leads to half-

maximal binding, n  is the Hill slope factor and L  is the log10(ligand concentration). 

A Hill slope coefficient of 1.4 was obtained and used to suggest two symmetric drug 

binding sites. Similarly McDevitt et al. 2008 used non-linear least squares regression 

to fit the general dose response relationship, Equation (2.26), to [
3
H]-daunomycin 

using plasma membranes isolated from insect cells. Likewise Pozza et al. 2006 

performed a direct nucleotide binding study monitored by quenching of intrinsic 

fluorescence of purified BCRP using non-compartmental methods. These results also 

suggest that cooperative binding in BCRP, implicating two separate substrate or 

inhibitor binding sites: one with a high affinity and one with a low affinity, in 

agreement with other published experiment data and BCRP chemical structure 

modelling (Hazai & Bikádi 2008). 
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It is not uncommon for non-compartmental methods to be implemented to study 

efflux transporters; Ginsburg & Stein 1991 fitted antimalarial chloroquine uptake by 

erythrocytes to investigate the mechanism of a proton pump but could not 

distinguish between the postulated modes of drug resistance, which is the main 

disadvantage and limitation of non-compartmental analysis. Other ATP pumps 

binding kinetics have been described by compartmental modelling, such as Sachs & 

Welt 1967, which described the primary active transport of potassium in human red 

blood cells; however at this time, no compartmental models for BRCP binding 

kinetics could be found in the literature. Bruyère et al. 2010 recently studied the 

effect of variation in the expression of some transporters, namely ABCB1, BCRP, 

and CYP3A4, along the human small intestine. The authors used the variation in 

distribution to scale intestinal absorption in whole body PBPK compartmental 

models but did not specifically investigate the binding kinetics of either transporter. 

Conversely, OATP uptake has previously been analysed using compartmental 

models; three models have been identified in the literature previously; Paine et al. 

2008 put forward a linear three compartment model, whilst Poirier et al. 2008 

proposed a non-linear mechanistic two compartment model, which Menochet et al. 

2012 extended by adding an extra parameter to account for non-specific cellular 

binding. 

Paine et al. 2008 evaluated the disposition of three compounds in suspended rat 

hepatocytes: atorvastatin, marketed as a calcium salt to lower cholesterol and prevent 

cardiovascular disease under the trade name Lipitor by Pfizer; cerivastatin, a 

synthetic statin marketed by Bayer A.G. under the brand names Baycol and Lipobay, 

voluntary withdrawn in 2001 due to reports of fatal rhabdomyolysis and its resultant 

renal failure; and indometacin or indomethacin, a non-steroidal anti-inflammatory 
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drug. Although the linear three compartment model proposed in Paine et al., 2008 

offers improvement in describing experimental data compared to the standard 

method, the main limitations of the model are that it is linear and no structural 

identifiability analysis was performed. An analysis of this model suggests that it is in 

fact unidentifiable and any numerical estimates obtained can therefore not be 

considered with confidence. Despite this, Paine et al., 2008 estimates the 

concentration in non-observed compartments and constructs an analogous 

physiological model for in vivo pharmacokinetics predictions. 

In contrast, although no structural identifiability analysis was performed by Poirier et 

al., 2008, an analysis suggests it is globally structurally identifiable. Here a broader 

range of physicochemical compounds is evaluated, namely taurocholate, estrone-3-

sulfate, cholecystokinin octapeptide (CCK-8), deltorphin II, fexofenadine 

napsagatran, pravastatin, pitavastatin, and fluvastatin. The two compartment model 

proposed to describe hepatic uptake differentiates between active and passive 

processes in Chinese hamster ovary control cells and artificial membranes (parallel 

artificial membrane permeability assay), allowing for bidirectional passive 

distribution and secondary active transport. The non-linear mechanistic model offers 

improvements over the conventional kinetic methods; however one main limitation 

is that it does not account for non-specific binding of Pitavastatin. 

Menochet et al., 2012 is the most comprehensive non-linear mechanistic model; 

essentially identical to the Poirier et al., 2008 model besides an extra parameter to 

account for non-specific cellular binding. Uptake of Rosuvastatin, Pravastatin, 

Pitavastatin, Valsartan, Bosentan, Telmisartan, and Repaglinide is investigated in 

freshly isolated rat hepatocytes. The latter two compounds are described with a 

model extension to account for metabolism; a complete mechanistic model 
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describing bidirectional passive diffusion, secondary active transport, intracellular 

binding, and metabolism. Some consideration was also given to structural 

identifiability as the authors use Differential Algebra for Identifiability of Systems 

(DAISY) software (Bellu et al. 2007) to verify the identifiability of the unknown 

kinetic parameters. A similar model will provide the basis for the compartmental 

modelling undertaken in this research. One of the main contributions of the models 

developed is the use of different species (rat, dog , and human hepatocytes), whereas 

all the previously mechanistic modelling has been performed on artificial, hamster, 

and rat cells. 

2.5 Conclusion 

Mathematical modelling is utilised in clinical pharmacology to numerically quantify 

drug absorption and tissue uptake, in order to determine exposure (pharmacokinetics 

- PK) and effect (pharmacodynamics - PD) of therapeutic drugs. Physiologically 

based pharmacokinetic (PBPK) modelling is gradually replacing non-compartmental 

methods and other more empirical approaches in new drug development because of 

their superior predictive ability, strength in data integration, and mechanistic insights 

into the complex and often non-linear physiological processes present. Historically a 

common PBPK approach, namely compartmental modelling, has been implemented 

at the macroscopic scale, modelling whole organs simultaneously to investigate the 

distribution of a drug around the whole body. Recently, these techniques have been 

applied at the cellular level, to explore the microscopic biological interactions and 

mechanisms. Membrane transporter proteins have been identified as key 

determinants of the trans-membrane passage of drugs and as a result they are a major 

factor in the pharmacokinetic, safety, and efficacy profiles of pharmaceutical 
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compounds. Two prominent transporters, namely OATP1B1 and BCRP, have been 

selected to be modelled mechanistically using compartmental analysis as their 

functions have clinically significant consequences on drug therapy. Furthermore, 

although their physiological and chemical structures are fairly well understood and 

have been modelled extensively, their exact mechanisms of action remain biological 

enigmas and very few mechanistic models have previously been used to characterise 

their binding kinetics. 

The main contributions are to improve knowledge of the carrier mediated process, 

particularly: 

 developing a novel mechanistic model to describe in vitro BCRP competitive 

binding to further our understanding of primary active transport by ATP-

powered pumps. No previous mechanistic models have been published in the 

literature. 

 developing a mechanistic model to describe in vitro OATP hepatic uptake to 

further our understand of secondary active transport by solute carriers. Some 

mechanistic models are available in the literature but are have limited their 

application to artificial, hamster, and rat cells. The models developed in this 

research are applied to rat, dog, and human data to ascertain whether cross 

species scaling is suitable. 

 developing a mechanistic model to describe in vivo OATP hepatic uptake in 

rat to investigate the applicability and suitability of in vitro data models to in 

vivo data. No previous mechanistic models have been published in the 

literature. 
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Another contribution includes reviewing the current methods for performing 

structural identifiability and indinstinguishability analyses and their applicability to 

the non-linear models developed. 
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Chapter 3  

Breast Cancer Resistance Protein 

Pharmacokinetics 

In this chapter the pharmacokinetics of Hoechst 33342 following administration into 

a culture medium containing a population of transfected cells (HEK293 hBCRP) is 

described mathematically using compartmental modelling methods (Grandjean et al. 

2011). 

The most effective treatment for the spread of malignant tumours is the use of 

chemotherapeutics, specific pharmaceutical agents or drugs that are selectively toxic 

and destructive to metastatic cells and cancerous tissues. However cancer cells 

develop mechanisms that allow them to simultaneously resist the action of different 

anti-cancer compounds. A biological characteristic, known as multidrug resistance, 

can reduce the exposure of the diseased tissue and so have significant consequences 

for efficacious chemotherapy. Understanding and describing the mechanisms behind 

drug resistance is predicted to improve treatment success in oncology (Gottesman et 

al. 2002). 

During the last four decades of research into multidrug resistance, numerous 

mechanisms in which cancerous cells impede chemotherapy have been discovered, 

namely altered expression and mutation of the target cell, modifications in survival 

and apoptotic pathways, and amended uptake or efflux transporter action. In the 

latter, drugs are actively ejected from the intracellular medium by the increased 
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activity of efflux transporters such as ATP dependent pumps (see Section 2.4). The 

resultant reduced drug concentration in the target intracellular region is a major 

cause of multidrug resistance and treatment failure in chemotherapy (Fetsch et al. 

2006). One such important mechanism is efflux transport by the breast cancer 

resistance protein - BCRP (Doyle et al. 1998), which has been shown in previous 

antigens studies to be primarily expressed in biological cell membranes (Rocchi et 

al. 2000, Scheffer et al. 2000). 

It is therefore crucial for efficacious chemotherapy to know whether a novel drug is a 

substrate for BCRP. As described in Section 1.1, the aim of this chapter is to produce 

a mechanistic compartmental model based on mass balance principles, which 

describes the saturable binding of Hoechst 33342 to BCRP. 

The most direct way to investigate efflux pumps is to employ an assay with a 

radioactive or fluorescent substrate used as a probe where functional activity is 

quantitatively assessed by measuring the reduced concentration in the presence of a 

competing substrate (Aschner et al. 2006). The latter will act as an inhibitor, 

resulting in greater uptake of the probe. Rabindran et al. 1998 report that 

Fumitremorgin C (FTC) is a potent BCRP inhibitor, which therefore directly 

competes with Hoechst 33342 for the limited number of binding sites on BCRP, 

which in turn will effectively reduce the ability of the efflux transporter to resist the 

action of the anti-cancer compound. 

This chapter reports the modelling of the kinetics of an assay that uses transfected 

cells that express BCRP. The assay indirectly measures the binding potential of a 

drug or similar molecule to BCRP by observing the effects on the kinetics of 

Hoechst 33342 (Lalande et al. 1981), a BCRP substrate. When Hoechst 33342 binds 
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to DNA the resulting complex fluoresces (Latt & Stetten 1976; Arndt-Jovin & Jovin 

1977; Lalande et al. 1981; Olive et al. 1985). This allows the relative levels of 

Hoechst 33342 bound to DNA to be measured under different experimental 

conditions. Mathematical modelling of in vitro pharmacokinetic assays has proven 

useful elsewhere (Paine et al. 2008; Baker & Parton 2007). With this experimental 

scenario it is challenging to measure the binding affinity of a drug for BCRP because 

the only known quantities in the system are the initial extracellular concentrations of 

Hoechst 33342 and the drug of interest, as well as a fluorescence time series. The 

concept is to use the parameterised mathematical model to estimate any unknown 

rate constants and parameters from in vitro data provided by AstraZeneca in order to 

obtain information on the relative binding affinities to the BCRP transporter. 

Although the combination of Hoechst 33342 and FTC to study BRCP has been 

investigated previously (Huls et al. 2009), as far as the author is aware, no 

mechanistic models have previously been published. 

3.1 Mathematical Model 

Hoechst 33342 has been shown to be a substrate for BCRP previously (Kim et al. 

2002; Scharenberg et al. 2002), it is readily taken up into living cells, is non-toxic 

and binds specifically and quantitatively to DNA whereupon it fluoresces (Latt & 

Stetten 1976; Arndt-Jovin & Jovin 1977; Lalande et al. 1981; Olive et al. 1985). 

Hoechst 33342 (and an inhibitor of interest) can be added to the medium in which 

the cells sit at the beginning of the experiment. The marker compound enters live 

cells and binds to DNA in the nucleus, resulting in fluorescence. 



CHAPTER 3.  BCRP PHARMACOKINETICS 

97 

 

This fluorescence may be measured and is used as a surrogate to measure binding to 

DNA. The marker compound is a substrate of BCRP and so may be also transported 

out of the cell actively. In the model, compartments are used to represent different 

parts of the cell. Based upon what is known about the system a seven-compartment 

model illustrated in Figure 3.1 was used initially to describe the flow of the substrate 

and inhibitor within and in/out of the cell.  

 

Figure 3.1: Mathematical model representation 

Extracellular Hoechst 33342 (SO) diffuses into the cell (SI) and may then bind to 

DNA in the nucleus (NS) resulting in fluorescence. Hoechst 33342 is also 

transported out of the cell by a BCRP transporter (TS). Similarly extracellular 
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inhibitor FTC (IO) diffuses into the cell (II) and is also transported out by the BCRP 

transporter (TI). 

Although the level of BCRP can conceptually be described by a single compartment, 

it is represented mathematically by two state variables (compartments) as there are 

two different complexes present; the substrate Hoechst 33342 and inhibitor FTC, 

which both compete for the same limited number of binding sites on BCRP 

transporter molecules. 

The seven compartments used and the inter-compartmental rate transfers are 

summarised in Table 3.1. 

Table 3.1: Description of the inter-compartmental rate transfer and compartments 

Inter-compartmental rate transfers Compartments 

     Marker compound cellular influx 
SO 

Extracellular quantity of  

marker compound 
      Marker compound cellular efflux 

     Inhibitor cellular influx 
SI 

Intracellular quantity of  

marker compound 
      Inhibitor cellular efflux 

  
  Marker compound nuclear binding 

IO 
Extracellular quantity of  

inhibitor compound 
  
  Marker compound nuclear dissociation 

  
  Marker compound transporter binding 

II 
Intracellular quantity of  

inhibitor compound 
  
  Marker compound transporter dissociation 

  
  Inhibitor transporter binding TS Marker bound to transporter 

  
  Inhibitor transporter dissociation TI Inhibitor bound to transporter 

       Transporter flow back to marker compound 

NS 
Marker bound to  

the nucleus (DNA) 
       Transporter flow back to inhibitor 
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 System Equations 3.1.1

The system of ordinary differential equations (ODE) describing the model is derived 

using classical mass-balance principles, as per Jacquez 1996. The first order flow 

rates give rise to linear terms. Equation (3.1) shows the flows to and from the 

extracellular quantity of marker compound ( SO ), namely the reversible 

monomolecular substrate diffusion into the cell, 
outkS  and 

inkS , and the transporter 

flow back to marker compound, trankS . 

 

tran in

out

kS kS

TS SO SI

kS

   (3.1) 

The law of mass action gives: 

 out in tran

dSO
kS SI kS SO kS TS

dt
     (3.2) 

whereas, the second order biological reactions give rise to non-linear terms. 

Equation (3.3) describes the flows to and from the quantity of marker bound to the 

BCRP transporter (TS ), namely the non-linear reversible binding of the marker 

compound to the BCRP, with association and dissociation rate constants Sk 
 and Sk 

, 

and the transporter flow back to marker compound, trankS . 

 

   

   

  

  

S tran

S

k kS

T SI TS SO

k





    (3.3) 

Where T  is the quantity of transporter molecules with free binding sites. The law of 

mass action gives: 
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  S S tran

dTS
k SI T k kS TS

dt

      (3.4) 

The quantity of free transporter T can be eliminated given the relevant conservation 

law: 

 0T TS TI T     (3.5) 

where 0T  is the total number of transporter binding sites, Equation (3.4) therefore 

becomes: 

    0S S tran

dTS
k T TS TI k kS TS

dt
SI        (3.6) 

The higher order biological reactions also give rise to nonlinear terms. Equation 

(3.7) describes the flows to and from the quantity of marker bound to the nucleus 

DNA ( NS ), namely the non-linear reversible binding of the marker compound to the 

DNA, with association and dissociation rate constants Nk 
 and Nk 

. 

 

   

   

  

  

N

N

k

N m SI NS

k





   (3.7) 

where N  is the quantity of DNA molecules with free binding sites and m  is the 

order of the nucleus binding reaction, which represents the number of binding sites 

per molecule of DNA. The law of mass action gives: 

 
m

N N

dNS
k SI N k NS

dt

     (3.8) 

The quantity of free DNA molecules N  can be eliminated given the relevant 

conservation law: 
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 0N NS N   (3.9) 

where 
0N   is the total number of DNA binding sites. Equation (3.8) therefore 

becomes: 

  0

m

N N

dNS
k N NSS k

t
I NS

d

      (3.10) 

The corresponding set of non-linear ODE characterising the proposed model is 

therefore given by the following: 

in out tran

dSO
kS kS kSSO I S

d
S T

t
       (3.11) 

   0 0

m

in out S S N N

dSI
kS kS k T TSO SI SI TS TI k k N NSS I NSk

dt
S              (3.12) 

in out tran

dIO
kI kI kIIO I I

d
I T

t
       (3.13) 

 0in out I IIO I
dII

kI kI kI II T TI TS k I
dt

T         (3.14) 

   0S S tran

dTS
k SI T TS TI k kS TS

dt

        (3.15) 

   0I I tran

dTI
k II T TI TS k kI TI

dt

         (3.16) 

 0

m

N N

dNS
k N NSS k N

t
I S

d

       (3.17) 

There is also an eighth equation, the observation of the system in relative 

fluorescence units (RFU), given by 
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 y Fluorescencein RFU NS    (3.18) 

The inputs into the system are the extracellular quantity of marker compound and the 

extracellular quantity of inhibitor. However, instead of modelling them as inputs, 

they are included into the initial conditions, which are: 

 (0) SSO D    (3.19) 

 (0) IIII D    (3.20) 

 (0) IOIO D    (3.21) 

 (0) (0) (0) (0) 0SI TS TI NS      (3.22) 

where 
SD  is the initial quantity of extracellular marker compound, 

IOD  is the initial 

quantity of extracellular inhibitor compound, and 
IID  is the initial quantity of 

intracellular inhibitor compound. The latter is non-zero because the inhibitor is 

added five minutes before the marker and has had time to diffuse into the cell (see 

Section 3.2 for more details). The measured outputs are in relative fluorescence units 

(RFU). Although the exact initial concentrations and volumes for both the marker 

and inhibitor compound are known, how both of these correlate to RFU is unknown. 

Furthermore, the split between the amount of inhibitor compounds inside and outside 

the cell is unknown. Therefore, in the model presented, all three initial conditions are 

considered to be unknown.  

3.2 Experimental Data 

Data were gathered at AstraZeneca (Alderley Park, UK). A multi-well plate provided 

96 experiments with varying initial amounts of marker compound (ranging between 
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0.5 and 10 µmol) and inhibitor levels (ranging between 0 and 100 µmol) (see Table 

3.2 for more details). 

Table 3.2: Matrix showing the number of time  

series data for each experimental set up 

  Hoechst Concentration [µM] 

  0.5 1 2 5 10 Total 

In
h

ib
it

o
r 

C
o
n

ce
n

tr
a
ti

o
n

 [
µ

M
] 

0 2 2 4 2 2 12 

0.1 2 2 4 2 2 12 

0.32 2 2 4 2 2 12 

1 2 2 4 2 2 12 

3.16 2 2 4 2 2 12 

10 2 2 4 2 2 12 

31.6 2 2 4 2 2 12 

100 2 2 4 2 2 12 

Total 16 16 32 16 16 96 

 

Hoechst 33342 accumulation was measured using a POLARStarOptimas (BMG 

Labtech, Offenburg, Germany) fluorescence plate reader with excitation filter = 355 

nm and emission filter = 460-10 nm, fluorescence was measured for 120-135 cycles, 

1 cycle = 1 complete 96-well read, 30 s, Gain = 1200. Fluorescence data were 

captured by the Optima software for analysis. 

The inhibitor was added at time t = 0 s to compartment IO  and the compound 

marker was added five minutes later at time t = 300 s to compartment SO . The 

compound marker was added later to provide a measurement of the residual 

background noise fluorescence present during the experiments. 
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The average background RFU for the first five minutes was subtracted individually 

from each time series (to allow for potential inhibitor independence) and the data are 

time shifted to begin at time t = 300 s. A sample plot of the data is shown in Figure 

3.2. 

 

Figure 3.2: Sample data plot for different initial Hoechst concentrations with no 

inhibitor present 

 Reduced Model 3.2.1

The data provided leant themselves naturally to only modelling the marker 

compound without inhibitor as some control time series were collected with no 

inhibitor present. The inhibitor compartments and corresponding rate constants were 

therefore initially set to zero, reducing the system to a four-compartment system with 

ten parameters, illustrated in Figure 3.3. 
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Figure 3.3: Reduced model representation (with no inhibitor)  

The corresponding set of non-linear ODE characterising the reduced model with no 

inhibitor was derived using classical mass-balance principles and is given by: 

in out tran

dSO
kS SO kS SI kS TS

dt
      (3.23) 

 0in out S S

dSI
kS SO kS SI k SI T TS k TS

dt

       0

m

N Nk SI N NS k NS     (3.24) 

   0S S tran

dTS
k SI T TS k kS TS

dt

       (3.25) 

 0

m

N N

dNS
k SI N NS k NS

dt

     (3.26) 
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y Fluorescencein RFU NS     (3.27) 

With initial conditions: 

 (0) SSO D ,   (3.28) 

 (0) (0) (0) 0SI TS NS   .  (3.29) 

The units for the states (SO, SI, TS, and NS) are in RFU and 
SD  is considered as 

unknown. It was assumed that any kinetic parameters estimated for this sub-model 

would then also be applicable for use in the full model with inhibitor present as the 

rate constants concerned should not be affected by its presence. 

3.3 Steady State Analysis 

From the data, it can be observed that the fluorescence does not reach steady state 

values in the time frame of the experiments (see Figure 3.2). Albeit perhaps for the 

compound concentration of 10 µmol; the plot suggests that the compound bound is 

approaching a steady state value. Although the purpose of the modelling is to 

investigate the relevant transient behaviour, a steady state analysis was performed 

since it could potentially be used at a later stage to validate the model. It identifies 

the levels at which each compartment quantity eventually settles and can be a useful 

method to obtain fundamental information on the system, the basic relationships 

between the compartments and for initial guesses for parameter estimation for 

subsequent fitting (i.e. saturation levels). Steady state analysis is performed by 

setting all the derivatives in the system equations to zero and solving the resulting 

algebraic equations for each system variable. Due to the complex non-linear nature 

of the equations, this was performed using symbolic mathematical packages capable 
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of solving simultaneous equations, namely Mathematica and Maple, which both 

yielded the same solutions. 

 Reduced Model 3.3.1

The steady state analysis solution for the reduced model of the form (3.23) - (3.27) is 

shown below.  

 0(

)

( ))

(

out S S tran S tran

in S S tran

kS k k SI kS k T kS SI
SO

kS k SI k kS

  

 

  


 
  (3.30) 

 SI SI    (3.31) 

 0S

S S tran

k T SI
TS

k SI k kS



 


 
   (3.32) 

 0

m

N

m

N N

N k SI
NS

k k SI



 




   (3.33) 

Equation (3.31) indicates that the equations under-determine the system and there is 

effectively one degree of freedom (DOF). For a given value of (SI), the other three 

compartment concentrations can be computed. This is because the steady state 

solution (3.30) - (3.33) is obtained by equating the four system equations (3.23) - 

(3.26) to zero and solving for the states, i.e. SO, SI, TS, and NS. The redundancy 

occurs because the reduced model of the form (3.23) - (3.27) is a closed system, that 

is to say the sum of the amount of drug in each compartment is equal to the initial 

dose of Hoechst. This is shown mathematically by adding Equations (3.23) - (3.27): 

 0
dSI dSO dTS dNS

dt dt dt dt
      (3.34) 
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Integrating (3.34) and solving for the initial conditions yields: 

 
SSI SO TS NS D    .  (3.35) 

Equation (3.35) effectively constrains SI, i.e. 

 
SSI D SO TS NS      (3.36) 

Substituting the steady state solutions for SO, TS, and NS, that is Equations (3.30), 

(3.32), and (3.33) respectively, into Equation (3.36) and re-arranging yields: 

2 1 2

0 1 1 1

1

1 0
( ) ( )m m

N S in N in S tra

m m m

N S out N S out

n N S in N in S trank k kS SI k kS k kS SI k

k k kS T SI a SI b SI k k kS SI d

k kS SI k kS k k

SI

S

e    

        

   

  





  (3.37) 

where 

 
1 0 0( ) ( ) ( )N S in S N S in tran N out S trana k k kS D N k k kS kS T k kS k kS             (3.38) 

 
1 0 0( ) ( )N S in S N in tran Sb k k kS D N k kS kS D N        (3.39) 

 
1 0 0( ) ( )N S in S N out S tran N S trand k k kS D T k kS k kS k k kS T            (3.40) 

 
1 ( )N in S tran Se k kS k kS D      (3.41) 

Solving Equation (3.37) for SI yields the steady states for SI. Although it is 

suspected that there is only one real possible solution in the feasible range for SI, i.e. 

 0 SSI D  ,  (3.42) 

it has not yet been possible to demonstrate this mathematically, as the undetermined 

number and complexity of the solutions make algebraic manipulation intractable. 
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 Full Model 3.3.2

The steady state analysis solution for the full model of the form (3.11) - (3.18) is 

shown below. 

 0( ( ) )

( )

S out S tran S out out tran

S S tran in

k kS k kS T k kS kS kS

k k kS k

SI TI SI
SO

SI S

  

 

   


 
  (3.43) 

 SI SI    (3.44) 

 

0

( ( )( ) )

( )( )

I out S tran tran I tran S out out tran tran

I in S tran

k kI k kI kS k kI k kI kI kI kSI TI
I

S

k kI k
O

TIkS T

   

 

    


 
  

 tran

in

kI

kI
TI    (3.45) 

 

0

( )( )

( )( )

I tran S S tran

I S tran

k kI k k kS

k k kS

T
I

TIT

I
I

  

 

  


 
   (3.46) 

 0( )S

S S tran

k T

k

SI TI
TS

SI k kS



 




 
   (3.47) 

 TI TI    (3.48) 

 0

m

N

m

N N

N k SI
NS

k k SI



 




   (3.49) 

Similarly, Equations (3.44) and (3.48) indicate that the equations under-determine 

the system and there are effectively two DOFs. For given values of SI and TS, the 

other five compartment concentrations can be computed. As before, this is because 

the steady state solution (3.43) - (3.49) is obtained by equating the seven system 

Equations (3.11)  - (3.17) to zero and solving for the states, i.e. SO, SI, IO, II, TS, TI, 
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and NS. The redundancies also occur because the full model of the form (3.11) - 

(3.18) is a closed system, that is to say the sum of the amount of drug and the sum of 

the amount of inhibitor in each compartment is equal to the initial doses of drug and 

inhibitor respectively. This is shown mathematically by adding the substrate 

Equations (3.11), (3.12), (3.15), and (3.17): 

 0
dSI dSO dTS dNS

dt dt dt dt
    ,  (3.50) 

and by adding the inhibitor Equations (3.13), (3.14), and (3.16): 

 0
dII dIO dTI

dt dt dt
   .  (3.51) 

Integrating (3.50) and solving for the initial conditions yields: 

 SSI SO TS NS D    .  (3.52) 

Integrating (3.51) and solving for the initial conditions yields: 

 III IO TI D   .  (3.53) 

where 
ID  is the total amount of inhibitor present at the start of the experiment, i.e.  

 
I II IOD D D  .  (3.54) 

Substituting the steady state solutions for SO, TS, and NS, that is Equations (3.43), 

(3.47), and (3.49) respectively, into Equation (3.52) and re-arranging yields: 

 

2 1 2

2 2 2 2

1
0

( ) ( )

m m m

N S out N S out

m m

N S in N in S tran N S in N in S tran

k k kS SI a SI b SI k k kS SI c SI d

k k kS SI k kS k kS SI k k kS SI k kS k kS

     

        

     


    
 

   (3.55) 

where 
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 2 0( ) ( )N S in S out S trana k k kS N D kS k kS           

  0( )( )S in trank kS kS T TI      (3.56) 

 
2 0( )( )N in S tran sb k kS k kS N D       (3.57) 

 2 0( )( ) ( )N S in tran out S tran S in Sc k k kS kS T TI kS k kS k kS D              (3.58) 

 
2 ( )N in S tran Sd k kS k kS D      (3.59) 

Substituting the steady state solutions for IO and I, that is Equations (3.45) and 

(3.46) respectively, into Equation (3.53) and re-arranging yields: 

 
2

3 3 3 3

0

0
( )( )I in S tran

a TI b SI TI c TI d

k kI k kS T TI 

  


 
  (3.60) 

where 

 
3 ( )I tran S trana k kI k kS      (3.61) 

 
3 ( )( )S I tran in outb k k kI kI kI       (3.62) 

 3 0( ) ( )( )S tran I tran in out I tran I in Ic k kS k kI kI kI k kI T k kI D              (3.63) 

 
3 0( )I in S tran Id k kI k kS D T     (3.64) 

Simultaneously solving Equations (3.55) and (3.60) for SI and TI yields the steady 

solutions for SI and TI. As for the reduced model of the form (3.23) - (3.27); 

although it is suspected that there is only one real possible solution in the feasible 

ranges for SI and TI, i.e. 

 0 SSI D   and 0 ITI D  , (3.65) 
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respectively, it has not yet been possible to demonstrate this mathematically. Again, 

the undetermined number and complexity of the solutions make algebraic 

manipulation intractable. 

The output of main interest, as might be expected, is the observation NS, which is the 

same function for the reduced model of form (3.23) - (3.27) and the full model of 

form (3.11) - (3.18) (Equations (3.33) and (3.49)). The steady state analysis shows 

that the ultimate level of binding to the DNA is a function of the total number of 

binding sites 
0N , the intracellular quantity of compound SI and the substrate to DNA 

binding affinity, i.e. the binding association and dissociation rate constants, 
Nk   and 

Nk  . Although this is a fairly intuitive result, it describes the exact relationship and 

will be useful at a later stage for parameter estimation and model validation. 

3.4 Structural Identifiability and 

Indistinguishability Analyses 

Structural identifiability analysis has been performed on both of the Hoechst 33342 

pharmacokinetic models developed; the reduced model of the form (3.23) - (3.27) 

and the full model of the form (3.11) - (3.18), using all five of the methods described 

in the literature review (a similarity transformation approach for uncontrolled 

systems - STAUS, differential algebra approach using characteristic sets - DAACS, 

algebraic input/output relationship approach - Ai/oRA, non-differential input/output 

observable normal form approach - NDi/oONF, and Taylor series expansion) in 

order to ascertain whether the unknown system parameters can be identified 
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uniquely or otherwise for the observation available and to ascertain the relative 

applicability of each approach. 

 Taylor Series Approach 3.4.1

This general method, introduced in Pohjanpalo 1978, is described in Section 2.3.2.6. 

For the reduced model of the form (3.23) - (3.27), the vector of unknown parameter 

is given by: 

 0 0, , , , , , , , ,in out N N S S trankS kS k k k k kS D N T      p ,  (3.66) 

the alternate parameter vector, 

 0 0, , , , , , , , ,in out N N S S trankS kS k k k k kS D N T      p ,  (3.67) 

the state vector,  

  
T

( , ) , , ,t SO SI TS NSq p ,  (3.68) 

the initial condition vector,  

  
T

0( ) ,0,0,0Dq p ,  (3.69) 

and the observation vector, 

  
T

( , ) 0,0,0,t NSy p .  (3.70) 

There is no input function as the initial dose of drug D  is included in the initial 

condition vector 
0 ( )q p . For the full model of form (3.11) - (3.18), the vector of 

unknown parameter is given by: 
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 0 0, , , , , , , , , , , , , , , ,Iin out in out N N S S tran tranI S IO IIkS kS kI kI k k k k k k kS kI D D D N T        p , 

   (3.71) 

the alternate parameter vector, 

 0 0, , , , , , , , , , , , , , , ,in out in out N N S S I tran tran S IO II IkS kS kI kI k k k k k k kS kI D D D N T        p ,  

  (3.72) 

the state vector,  

  
T

( , ) , , , , , ,t SO SI IO II TS TI NSq p ,  (3.73) 

the initial condition vector,  

  
T

0( ) ,0, , ,0,0,0IS O IID DDq p ,  (3.74) 

and the observation vector, 

  
T

( , ) 0,0,0,t NSy p .  (3.75) 

Again, there is no input function as the initial doses of drug, 
SD , and inhibitor, 

IOD  

and 
IID , are included in the initial condition vector 

0 ( )q p . Unfortunately, due to the 

structural complexity of the system (i.e. the non-linear terms, in particular the 

powers) this method did not converge to any solutions for either the reduced model 

of the form (3.23) - (3.27) or the full model of the form (3.11) - (3.18) in both 

Mathematica or Maple. 
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 Similarity Transformation Approach for 3.4.2

Uncontrolled Systems (STAUS) 

The first four Lie derivatives ( 01 , 02 , 03 , and 04 ) as defined in Section 2.3.2.1 

are computed for the model of the form (3.23) - (3.27). The Jacobian matrix with 

respect to  
T

, , ,SO SI TS NSq , evaluated at  
T

0 ,0,0,0Dq , of the resultant 

function  01 02 03 04, , ,
T

   H  has full rank for appropriate row vectors 
1  , 

2 , 

3 , and 
4 , which for 1m   are given by the following: 

 1  0 , 0 , 0 ,   k     (3.76) 

2 0 0 ,       , 0 ,     N Nk k N k k         (3.77) 

2 2

3 0 0 0 0 0       ,                   ,        ,N in N out N N N N Nk k N kS k k N kS k k N k k k N k k N k            

2

0                N N N in Nk k k N k k kS D k k         (3.78) 

2 2 2

4 0 0 0 0 0                             N in N in N S in N out ink k N kS k k N kS k k N k T kS k k N kS kS           

 2 2 2 2

0 0 0 0                       2      ,N N in N N N out N outk k k N kS k k k N k k N kS k k N kS          

 2 2 3 3

0 0 0 0 0 02                                  N N N N N S N S Sk k k N k k N k k k N k T k k N k k T              

 2 2 2 2

0 0 0 0 0 0 02                           2      N out S N out in N S N Sk k N kS k T k k N kS kS k k N k T k k N k T            

 2 2 2 2

0 0 0 0         3          ,           N N out N in N S N Sk k k N kS k k N kS D k k N k k k N k           

 2

0 0 0 0 0                             , 2     N S S N in tran N S in N Nk k N k k T k k N kS kS k k N k kS D k k k N             

 2 2 3 2

0 0 0 0                               N N N N in N N S N N outk k k N k k k k kS D k k k N k T k k k N kS               
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2

0 02                3             N in N out in N N in N S ink k N kS D k k kS kS D k k kS D k k T kS D            (3.79) 

The corresponding Jacobian matrix for the full model of the form (3.11) - (3.18) also 

has full rank (Appendix A). Analysis of the resulting equations is shown in 

Appendix A and demonstrates that both the reduced model of the form (3.23) - 

(3.27) and the full model of the form (3.11) - (3.18) are structurally globally 

identifiable (SGI). 

 Differential Algebra Approach 3.4.3

This approach generated the input/output relationship  1
( , , , )

n
g y y


 p  for the 

reduced model of the form (3.23) - (3.27) (see Appendix B). Solving 

  1 ( 1)( , , , ) ( , , , )
n ng y y g y y
   p p   (3.80) 

for p  yields four solutions: 

1 , , 0, , ,in S out out N N N N SkS k kS kS k k k k k         s   

 0 0 0, , , 0,S S tran trank k kS kS D D N T T     ,  (3.81) 

2 0, , , 0, ,in in out out N N N SkS kS kS kS k k k k       s   

 0 0 0 0, , , ,S S tran trank k kS kS D D N N T T     ,  (3.82) 

3 , , 0, , ,in in out out N N N N SkS kS kS kS k k k k k        s   

 0 0 0 0, , , ,S tran trin ank kS kS D D Nk N T TS    ,  (3.83) 

4 , , , , ,in in out out N N N N S SkS kS kS kS k k k k k k         s   
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 0 0 0 0, , , ,S S tran trank k kS kS D D N N T T      .  (3.84) 

However the first three solutions are not suitable as some parameters are equal to 

zero; for
1s : 0Sk    and 

0 0N  , for 
2s : 0Nk    and 0Sk   , and for 

3s : 0Sk   . All 

the parameters must be generically non-zero by definition, i.e.  

 0i p  i ,  (3.85) 

and therefore the only solution for Equation (3.80) is 
4s , i.e. p p  and 

consequently the reduced model of the form (3.23) - (3.27) is structurally globally 

identifiable. 

The differential algebra approach has not yet successfully been applied to the full 

model of form (3.11) - (3.18) since it has not yet been possible to generate the input 

output relationship ( 1)( , , , )ng y y  p  due to computational difficulties. 

 Algebraic Input/Output Relationship Approach 3.4.4

(Ai/oRA) and Non-differential Input/Output 

Observable Normal Form Approach (NDi/oONF) 

These two approaches yielded exactly the same results for the reduced model of the 

form (3.23) - (3.27) as for the differential algebra approach; producing precisely the 

same input/output relationship (see Appendix C and D respectively), confirming the 

model is structurally globally identifiable. Both the Ai/oRA and the NDi/oONF 

approaches have not yet successfully been applied to the full model of the form 

(3.11) - (3.18). It has not yet been possible to generate the input output relationship 

due to computational difficulties. 
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 Summary 3.4.5

The results of the structural identifiability analyses are summarised in Table 3.3. 

These analyses demonstrate that under appropriate conditions all models derived are 

uniquely identifiable for the experiments/observations available. This permits 

subsequent numerical parameter estimation to be performed with greater confidence. 

Table 3.3: Summary of the structural identifiability of both models considered using 

all five approaches (SGI: structurally globally identifiable; DNC: does not converge) 

Approach 
Reduced model 

of the form (3.23) - (3.27) 

Full model 

of the form (3.11) - (3.18) 

2.3.2.1 STAUS SGI SGI 

2.3.2.3 DAACS SGI DNC 

2.3.2.4 Ai/oRA SGI DNC 

2.3.2.5 NDi/oONF SGI DNC 

2.3.2.6 Taylor DNC DNC 

 

3.5 Data Analysis 

 Software 3.5.1

Considering the number of parameters to be estimated and the non-linear nature of 

the system equations, it was necessary to use an appropriate and numerically robust 

kinetic modelling software package to perform the parameter estimation. The 

commercial software package FACSIMILE (MCPA Software, UK) was used since it 

provides a powerful means of solving ODE (using a backward-difference predictor-

corrector method) encountered in biomedical engineering systems modelling, in 
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particular the kinetics of physical and chemical systems. FACSIMILE utilises the 

VA05 routine from the Harwell Subroutine Library, which is a hybrid method 

amalgamating three optimisation methods; namely the Newton-Raphson, steepest 

descent and Levenber-Marquardt. This computer-modelling tool can easily cope with 

the robust numerical solution given by the system equations. A significant advantage 

of FACSIMILE is the ability to handle stiff systems, which exhibit widely varying 

time constants. Fixed time step numerical integrators cannot cope with stiff systems, 

as a combination of small and large time steps are required to estimate all the 

different rate constants accurately whereas the robust numerical integrator within 

FACSIMILE varies the time step accordingly. More importantly, the package also 

contains a powerful parameter-fitting option, whereby specified parameters can be 

adjusted to obtain the best fit to observed data whilst solving the ODE of the model 

simultaneously. The main limitation of the FACSIMILE software is that it uses local 

optimisation methods, and as a result it is sensitive to the initial guesses and may be 

entrapped in local minima. It is therefore important to use numerous wide ranging 

different combinations of initial guesses.  

 Parameter Estimation 3.5.2

During the optimisation process of the model parameter estimation described above, 

FACSIMILE measures the statistical goodness of the fit. This is achieved by 

calculating: 

 The difference between the model and the experimental data, using a 

weighted residual sum of squares (RSS), i.e. the sum of the squares of the 

error at each time point. This provides an overall measure of how close the fit 
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is to the experimental data. This is minimised making the optimisation a least 

squares problem. 

 The confidence levels of the estimated parameter values. This is a statistical 

measure of how well the model and the data define the parameter. 

FACSIMILE outputs a combined weighted RSS value, which is the sum of the error 

at each individual time point for all the time series together and weighted by the 

range of each time series, given by: 

 

2

1 1

ˆw z
ij ij

i j i

y y
RSS

 

 
  

 
   (3.86) 

where i  denotes the data curve and j  the time point, 
ijy   is the i

th
 observed value at 

the j
th

 sampling time; ˆ
ijy  is the corresponding calculated value; and i ie r     is an 

estimate for the standard error of the curve i , in which 0.01e    is the default value 

and the estimated overall data accuracy, and ir   the range of the curve i . Weighting 

each time series RSS by its range allows to simultaneously fit data that have different 

magnitudes more accurately. This means that the relative error for the data at lower 

initial concentrations of Hoechst 33342 contributes to the overall RSS as much as the 

relative error for high concentrations. FACSIMILE also weighs each data set by e , 

and thus negatively weighs the residuals by this amount, hence the RSS is effectively 

multiplied by a factor of 10
4
. 

The confidence level of the estimated parameter value is a statistical measure of how 

well the model and the data define the parameter. It is given as the standard deviation 

of the natural logarithms (SDLN) of the estimated parameters; FACSIMILE works 

in terms of natural logarithms of the parameters in order to ensure they are strictly 
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positive. The SDLN values are estimated using the variance-covariance matrix of the 

total number of parameters and the number of well-determined parameters and can 

be considered as a percentage error. The variance-covariance matrix also provides 

information about the estimated correlation between the parameters. 

During the fitting procedure, FACSIMILE performs a statistical analysis to detect 

parameters that are not well determined (NWD) by the data, that is to say the data 

does not determine a parameter value within tight enough bounds. The values for 

these parameters are then fixed to the last value used in the statistical analysis before 

continuing with the parameter fitting, and treated as unknown in subsequent 

statistical tests. 

3.6 Results 

To obtain parameter estimates for the full system the data with Hoechst 33342 alone 

were initially fitted to the reduced model of the form (3.23) - (3.27). These were then 

used as initial estimates to fit the full system. The assumption is that the kinetic 

parameters are the same for Hoechst 33342 across the experiments - the only 

observed changes are due to the interaction with the inhibitor. The reduced model of 

the form (3.23) - (3.27) comprises the components of the full model of the form 

(3.11) - (3.18) that deal with Hoechst 33342 kinetics. Given these assumptions, and 

the fact the full model is identifiable, it is sensible to use the simplified model 

estimates as initial estimates for the full model of the form (3.11) - (3.18). 
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 Reduced Model of the Form (3.23) - (3.27) 3.6.1

During the numerous preliminary fits undertaken, analysing the initial graphs 

showed that for both 0.5 μM and 10 μM initial substrate concentration, the fits 

consistently underestimated the data. Considering that each time series is a different 

experiment it was reasonable to assume that there could be some variance in the total 

number of binding sites on the nucleus, 0N . A higher number of binding sites would 

allow the time series to reach higher values and give a better visual fit. Instead of 

using one parameter value for 0N  common to all twelve time series, five individual 

parameters were set, one for each initial substrate data set. Similarly this approach 

was followed for the total number of binding sites on the BCRP transporter, 0T , to 

allow for variance and flexibility within the fitting process across the different 

experiments. As the structural identifiability analysis described in Section 3.4 was 

performed assuming one experiment at one concentration, taking different 0N  and 

0T  values across experiments while sharing the other parameters will not be to the 

detriment of the structural identifiability analysis results. A population approach has 

been considered and the data was fitted using Monolix and NONMEM, however 

neither software package was able to describe the data accurately for all the different 

initial conditions. Table 3.4 provides the parameter estimates for the best fit obtained 

for the twelve data sets used where no inhibitor is present. 
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Table 3.4: Well-determined parameters for reduced model of  

the form (3.23) - (3.27) with no inhibitor present 

Parameters Value SDLN Parameters Value SDLN 

     2.45 x 10
-7

 s
-1 42.7 %     6.83 x 10

5
 RFU 8.6 % 

      3.23 s
-1 6.5 %     2.27 x 10

5
 RFU 6.3 % 

  
  6.68 x 10

-4
 RFU

-m
s

-1 39.3 %     4.41 x 10
6
 RFU 5.8 % 

  
  4.43 x 10

-2
 s

-1 42.5 %     2.49 x 10
4
 RFU 29.6 % 

  
  1.30 x 10

-5
 RFU

-1
s

-1 7.3 %     3.11 x 10
3
 RFU 12.6 % 

  
  1.05 x 10

-3
 s

-1 10.9 %     9.91 x 10
2
 RFU 3.5 % 

       1.26 x 10
-4

 s
-1 51.5 %     1.33 x 10

3
 RFU 3.2 % 

  4.35 7.8 %     1.84 x 10
3
 RFU 2.1 % 

    2.91 x 10
5
 RFU 7.2 %   1.55 x 10

7
 RFU 36.3 % 

    4.48 x 10
5
 RFU 9.4 %     7.44 - 

      

Figure 3.4 illustrates the best fit associated with Table 3.4, obtained for the twelve 

data sets used where no inhibitor is present. 
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Figure 3.4: FACSIMILE fits for the reduced model  

of the form (3.23) - (3.27) without inhibitor 

Figure 3.4 is split into five separate charts (a-e), one for each initial substrate 

concentration. 

 Full Model of the Form (3.11) - (3.18) 3.6.2

It did not prove possible to obtain a complete set of well determined parameters 

within FACSIMILE for the full model. Although the model of the form (3.11) - 
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(3.18) is structurally identifiable (given perfect noise-free data), it was not 

numerically identifiable with respect to the data used, and as a result a number of 

parameters were highlighted as not well determined (NWD) within the software 

package FACSIMILE. In order to obtain good estimates for all the parameters, the 

well determined parameters with the lowest SDLN values were fixed. These were 

the 16 independent values of 
0N  and 

0T , the order of the nucleus binding reaction - 

m , the extracellular substrate quantity - SD , the initial intracellular inhibitor 

quantity - IID , and the initial extracellular inhibitor quantity - IOD  . It is assumed that 

fixing these parameters is justifiable as they were well determined by the data and 

had low SDLN values. It is suspected that the 16 independent values of 0N  and 0T  

effectively over parameterised the system. Fixing these parameters essentially adds 

extra constraints to reduce the number of DOF, and enabled FACSIMILE to produce 

well determined estimates for the remaining parameters. Table 3.5 provides the 

parameter estimates for best fits obtained for the full model using all 32 data sets 

where inhibitor is present. 
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Table 3.5: Well determined parameters for full model  

of the form (3.11) - (3.18) with inhibitor present 

Parameters Value SDLN Parameters Value SDLN 

     4.69 x 10
-7

 s
-1 3.5%     5.22 x 10

5
 RFU fixed 

      4.43 x 10
-2

 s
-1 157%     1.34 x 10

6
 RFU fixed 

     2.48 x 10
-4

 s
-1 27.6%     2.91 x 10

6
 RFU fixed 

      1.36 x 10
-3

 s
-1 71.2%     2.06 x 10

6
 RFU fixed 

  
  1.75 x 10

-4
 RFU

-m
s

-1 137%     1.55 x 10
3
 RFU fixed 

  
  7.92 x 10

-4
 s

-1 59.2%     3.71 x 10
3
 RFU fixed 

  
  2.36 x 10

-6
 RFU

-1
s

-1 136%     4.79 x 10
3
 RFU fixed 

  
  1.81 x 10

-3
 s

-1 46.6%     8.97 x 10
3
 RFU fixed 

  
  5.27 x 10

-9
 s

-1 53.8%     6.16 x 10
3
 RFU fixed 

  
  3.15 x 10

-4
 s

-1 138%     6.75 x 10
3
 RFU fixed 

       2.56 x 10
-4

 s
-1 79.8%     7.25 x 10

3
 RFU fixed 

       2.04 x 10
-4

 s
-1 168%     5.70 x 10

3
 RFU fixed 

    6.55 x 10
5
 RFU fixed   1 fixed 

    1.43 x 10
6
 RFU fixed SD   3.20 x 10

6
 RFU fixed 

    7.53 x 10
5
 RFU fixed IID  5.75 x 10

4
 RFU fixed 

    7.57 x 10
5
 RFU fixed IOD  4.71 x 10

3
 RFU fixed 

    48.627 - - - - 

      

The fixed parameter values are included in Table 3.5 and do not have SDLN values 

as they were not allowed to vary during the parameter fitting performed by 

FACSIMILE. The remaining SDLN values (ranging from 3.5% to 168%) are higher 

than for the reduced model of the form (3.23) - (3.27), see Table 3.4 (ranging from 

2.1 - 51.5%). A perhaps counter intuitive result as there are more time series for the 

full model of the form (3.11) - (3.18) (32 time series compared to 12) and therefore 

the data should determine the parameters more accurately, resulting in lower SLDN 
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values. However the full model of the form (3.11) - (3.18) has many more 

parameters to estimate (32 compared to 19), which increases the numbers of DOF 

and the SDLN values. 

In Table 3.5, the estimated values for the total number of binding sites on the 

nucleus, 
0N  and the total number of binding sites on BCRP, 

0T , do not vary greatly 

across each experiment, ranging from 1.55 x 10
3
 to 8.97 x 10

3
 RFU and from 5.22 x 

10
5
 to 2.91 x 10

6
 RFU respectively. These are of the same order of magnitude as for 

the reduced model of the form (3.23) - (3.27), where 0N  ranges from 9.91 x 10
2
 to 

2.49 x 10
4
 RFU and T0 ranges from 2.27 x 10

5
 to 4.41 x 10

6
 RFU (see Table 3.4).   

Furthermore, comparing Tables 3.4 and 3.5 shows that some parameters, namely 

kSin, Nk  , 
Sk  , and trankS  are of the same order of magnitude in both models, however 

there are some discrepancies between the reduced model of the form (3.23) - (3.27) 

and full model of the form (3.11) - (3.18) for certain other parameters, namely outkS , 

Nk  , and 
Sk  . It is suspected that these discrepancies may be due to the different order 

of the nucleus binding reaction - m , which affects the curvature of the fit (a higher 

value producing a more sigmoidal shaped curve). For the reduced model of the form 

(3.23) - (3.27), FACSIMILE converged towards a value of m = 4.35, producing the 

sigmoidal shape at the beginning of the times series, whereas for the full model of 

the form (3.11) - (3.18) a value of m = 1 provided a more complete set of well 

determined parameters. The higher RSS value for the full model of the form (3.11) - 

(3.18) relative to the reduced model of the form (3.23) - (3.27) is believed to be due 

to the higher number of DOF and larger number of data sets used. 
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Figure 3.5 illustrates the best fit associated with Table 3.5, obtained for the full 

model using 32 data sets where inhibitor is present. 

 

Figure 3.5: FACSIMILE fits for full model of the form (3.11) - (3.18) with inhibitor 

 

Figure 3.5 is split into eight separate charts (a-h), one for each initial inhibitor 

concentration. It can be seen from each one that the initial step is less prominent 

(order of the nucleus binding reaction 1m  ). 
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3.7 Discussion and Conclusions 

The mathematical model derived adequately reproduces the observed time series. 

Though introduced into the model to improve the model fits, the estimated 

independent values for 
0N  and 

0T  across experiments do not differ greatly between 

experimental conditions, which suggests that the experimental conditions within 

each well of the multi-well plate are similar. Parameters were estimated with a 

reasonable level of confidence, which can be judged by the SDLN values produced 

by FACSIMILE for each parameter. 

Given these estimates, the binding affinity of FTC for the BCRP transporter can be 

calculated to be: 

 
51.67  1  0I

D

I

k
k M

k






     (3.87) 

This is understandable given the effect small concentrations of FTC have on the 

observed fluorescence-time profiles. 

The models fit their purpose, as they adequately describe the data observed and are 

derived on mechanistic principles based on knowledge of the processes considered. 

Additionally all the parameters and rate constants have been estimated to a 

reasonable degree of accuracy, characterising substrate binding to DNA with 

transportation of the substrate out of the cell numerically. It can be further seen that 

BCRP mediated cellular kinetics can be indirectly measured in this way. Structural 

identifiability analyses for the reduced model of the form (3.23) - (3.27) were 

performed successfully with four methods; a similarity transformation approach for 

uncontrolled systems (STAUS), differential algebra approach using characteristic 
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sets (DAACS), algebraic input/output relationship approach (Ai/oRA), non-

differential input/output observable normal form approach (NDi/oONF). However 

only the STAUS approach was successfully applied to the full model of the form 

(3.11) - (3.18). The Taylor series expansion approach was also applied to both 

models but failed to produce any conclusive results (Table 3.3). The structural 

identifiability analyses show that all models derived are uniquely identifiable for the 

experiments/observations available, adding greater confidence to the numerical 

parameter estimation carried out. 

By modelling the kinetics of the system the binding kinetics for FTC can be inferred. 

A more simplistic approach that used the change in the steady state fluorescence 

would only yield an extracellular concentration of FTC that would alter the observed 

fluorescence by a given amount and such information would be difficult to relate to 

in vivo data. The binding affinity can be compared to blood concentrations observed 

to assess the impact of BCRP on a drug’s ability to penetrate cancer cells and this 

aspect is currently under investigation. 

Further work is required to investigate the competitive binding between Hoechst 

33342 and FTC, using other inhibitors, with a view to elucidate the small 

discrepancies between the two model’s parameter estimates, and ultimately propose 

a more robust model for prediction of uptake at different dose levels. Such a model 

has the potential to be used to estimate the dosage levels required in order to achieve 

the levels of absorption desired once bound to DNA. A population approach was 

considered to account for the variability in the number of binding sites at the nucleus 

and the transporter availability across the different times series but the software 

packages used were unable to describe the data accurately for all the different initial 

conditions. The compartmental modelling approach used in this chapter is also being 
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applied to other processes and different transporter/inhibitor scenarios, such as the in 

vivo competitive binding of pharmaceuticals and bile acids in hepatic uptake (see 

Chapter 5). 
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Chapter 4  

Organic Anion Transporting 

Polypeptide Pharmacokinetics 

The liver plays a crucial role in drug metabolism and the clearance of endogenous 

substances and xenobiotics from blood to bile. These vital processes affect drug oral 

bioavailability (the amount of drug which reaches the target tissue) and drug 

efficacy, since drugs absorbed from the gut must pass through the liver in order to 

enter the systemic circulation. Hepatocytes are the cells in the main tissue of the liver 

responsible for drug metabolism and biliary excretion of drugs. Hepatic uptake is 

considered to consist of a non-saturable passive diffusion component (driven by the 

physicochemical properties of the drug investigated) and a saturable active transport 

component (Webborn et al. 2007; Watanabe et al. 2009). The latter process 

continues to be a central area of research in pharmacokinetics (Chandra & Brouwer, 

2004; Shitara et al., 2006) as transporter proteins are responsible for the vast 

majority of molecular movement in organisms.  

In vitro isolated hepatocyte assays play a crucial role in the study of hepatic uptake 

of new chemical entities (Li et al. 1999; Soars et al., 2007). Mathematical models 

can be developed to investigate the mechanisms present and quantify the kinetics of 

compounds (Paine et al. 2008). Rat hepatocytes can easily be isolated and since the 

cost of human hepatocytes remains preventative for widespread use, they are often 

used when developing new assays. The subsequent physiologically based models 
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provide a firm basis for the prediction of the liver’s contribution to the 

pharmacokinetics of a given xenobiotic in man (Poirer et al. 2008; Watanabe et al. 

2009). 

It is well established that the Organic Anion Transporting Polypeptides (OATP) play 

a very important function in hepatic uptake (Jacquemin et al. 1994; Kullak-Ublick et 

al. 1994). Pitavastatin is a drug used to treat hypercholesterolaemia, which shows 

active uptake into hepatocytes, mediated mainly by OATP1B1 (Shimada et al. 2003; 

Hirano et al. 2004). The aim of this chapter is to investigate the non-linear kinetics 

of in vitro hepatic uptake of the OATP substrate, Pitavastatin, and quantify the 

mechanisms present, both structurally and numerically in three species (rat, dog and 

human). Mechanistic models have only been applied to artificial, hamster, and rat 

cells previously (Poirier et al. 2008, Menochet et al. 2012). 

Hepatic uptake assays are normally split into two samples which are carried out in 

water baths at different temperatures: 4°C and 37°C. The latter is the commonly 

accepted average core body temperature in healthy humans. Hepatocytes are 

cryopreserved at sub-zero temperatures and the protocol is to place them in a 

refrigerator at 4°C for 24hrs before the experiment to warm up the fragile cells 

gradually. The 4°C control sample is performed in parallel because it is 

experimentally convenient to keep the hepatocytes at this temperature in a water bath 

with ice and it matches the refrigerator’s normal working temperature. The current 

widely accepted view is that the rate of passive diffusion of Pitavastatin into the cell 

is the same at both 4°C and 37°C, but that the active transporter action only occurs at 

37°C (Shimada et al. 2003). Data are normally collected at both 4°C and 37°C, and 

the 4°C data are used to estimate passive diffusion whilst the 37°C data are used to 

estimate the active transporter affinity, i.e. the transporter mediated uptake is the 
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uptake measured at 37°C minus the uptake measured at 4°C (known as the 

conventional two step approach). However a mechanistic two compartment model 

proposed by Poirier et al. 2008 suggests that diffusion is highly temperature 

dependent in Chinese hamster ovary control cells and artificial membranes (parallel 

artificial membrane permeability assay). Menochet et al. 2012 extend the model 

further, adding an extra parameter to account for non-specific cellular binding and 

find diffusion differs in freshly isolated rat hepatocytes. It is suspected that the 

current assumption of Shimada et al. (2003) is not valid and data at 4°C and 37°C 

were collected at AstraZeneca by Alex Lench and Charles O’Donnell in order to 

investigate its validity. Fitting 4°C and 37°C data simultaneously with the same 

diffusion rates gave very poor fits and therefore fits were carried out for 4°C and 

37°C data individually to test the hypothesis. The main advantages compared to the 

Poirier et al. 2008 and Menochet et al. 2012 findings is that this is performed for 

more species (rat, dog and human compared to rat alone) and measures (residual sum 

of squares and individual parameter estimation accuracy) are given to compare 

which models describe the uptake more accurately. 

In this chapter, six models are described and the structural identifiability and 

indistinguishability of all the models are investigated. The rate kinetics for the two 

best mechanistic models are compared between rat, dog and human cells to 

investigate if cross species scaling is appropriate. 
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4.1 Mathematical Models 

As described previously, Pitavastatin is a substrate of OATP, which actively 

mediates the transport of the drug across the hepatocyte membrane. Diffusion also 

takes place at the cell membrane, where the drug flows in and out of the cell 

according to the concentration gradient. These two mechanisms can be represented 

by the compartmental model shown in Figure 4.1, where each compartment 

represents a different component of the hepatocyte cell. 

Figure 4.1: Conceptual model representation 

A known concentration of Pitavastatin (converted to quantity for the modelling since 

volumes are known) can be added to the medium in which the hepatocytes sit at the 

beginning of the experiment, x1. The substrate actively binds to OATP, x2, via 

association and dissociation rate constants k1 and r1, respectively, and is mediated 

into the cell, x3, by rate constant k2. Extracellular Pitavastatin, x1, also flows into and 

out of the cell, x3, by diffusion with rate constants k3 and r3 respectively. 

The three compartments used and the inter-comparmental rate transfers are 

summarised in Table 4.1. The units for the rate constants are in s
-1

 and µmol
-1

s
-1

, and 

the compartments are in absolute quantities of µmol. 
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Table 4.1: Description of the inter-compartment rate transfers and compartments 

Inter-compartment rate transfers (s
-1

) Compartments (µmol) 

1k  OATP association (µmol
-1

s
-1

)
 

1x  
Pitavastatin extracellular 

quantity 
1r  OATP dissociation 

2k  OATP  cellular influx 2x  Pitavastatin bound to OATP 

3k  Cellular efflux (diffusion) 

3x  
Pitavastatin intracellular 

quantity 
3r  Cellular influx (diffusion) 

    

 System Equations 4.1.1

The system of ordinary differential equations (ODE) describing the models is 

derived using classical mass-balance principles as per Jacquez 1996, see Section 

3.1.1 for more details. The corresponding set of non-linear ODEs characterising the 

proposed model is therefore given by the following:  

 1
3 3 3 1 1 1 0 2 1 2( )

dx
k x r x k x T x r x

dt
      (4.1) 

 2
1 1 0 2 2 1 2( ) ( )

dx
k x T x k r x

dt
     (4.2) 

 3
3 1 3 3 2 2

dx
r x k x k x

dt
    (4.3) 

where T0 is the total number of transporter binding sites on OATP. The unknown 

parameter set, p , is given by:  

  1 1 2 3 3 0, , , , ,k r k k r Tp   (4.4) 

The initial conditions are given by: 



CHAPTER 4.  OATP PHARMACOKINETICS 

139 

 

 1(0)x D  (4.5) 

 2 (0) 0x   (4.6) 

 
3(0) 0x  , (4.7) 

where D is the known initial dose in µmol (1 million cells). The initial concentration 

of the medium in which the hepatocytes sit at the beginning of the experiment is 

known and given in µmol/L. The initial volume is 1 mL and 1 million cells are used 

thus the initial concentration is multiplied by a factor of 10
-3

 to convert it from 

µmol/L to µmol (1 million cells); x1, x2, x3 therefore denote quantities in µmol (1 

million cells). 

Finally there is the observation of the system which is a measurement of total 

Pitavastatin in the cell and therefore given by:  

 2 3( )y k x x   (4.8) 

where k is the observation gain, i.e. the observation is the sum of the quantity of 

Pitavastatin in compartments x2 and x3. The observed concentration is given in 

nmol/L (0.1 million cells - 100 µL is taken from 1 mL) and the measured volume is 

900 µL (800 µL of buffer is added). The observation is therefore multiplied by 9 x 

10
-6

 to convert from nmol/L (0.1 million cells) to µmol (1 million cells). As the units 

for the initial dose D and the observation are equivalent, the observation gain k is 

effectively unitary, i.e. k = 1. 

It is possible to simplify the model of the form (4.1) - (4.3), by noting that the system 

is closed and the total amount of Pitavastastin in all three compartments must remain 
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constant. This is expressed mathematically by adding Equations (4.1), (4.2), and 

(4.3) giving 

 1 2 3 0x x x   . (4.9) 

Integrating (4.9) with respect to time and solving for the initial condition yields 

 1 2 3x x x D   . (4.10) 

Re-arranging (4.10) gives 

 1 2 3x D x x  
 (4.11) 

and substituting (4.11) into the model of the form (4.1) - (4.3) reduces it to a system 

of two ODEs; 

 1 0 12 2 3 2 2 2( )( )( )k T x rx x k xD x     (4.12) 

 3 33 3 2 22 3( )x D x xr k x k x    (4.13) 

with initial conditions  

 2 3(0) 0, (0) 0x x   (4.14) 

and observation 

 2 3)(y k x x  . (4.15) 

Similarly x2 can be eliminated by re-arranging (4.10) to 

 2 1 3x D x x  
, (4.16) 

or alternatively, x3 can be eliminated by re-arranging (4.10) to give 
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 3 2 3x D x x  
. (4.17) 

The resulting system equations and corresponding initial conditions and observation 

are shown in Table 4.2. 

Table 4.2: Alternative system equations for the model of the form (4.1) - (4.3) 

System equations 

Initial 

Conditions 
Observation 

Eliminating x2: 

3 3 3 1 1 1 01 1 3 1 2
( )k x r x k x T Dx x x r x        (4.18) 

13 3 3 323 1
( )xr k x kx D x x      (4.19) 

 

1
(0)x D  (4.20) 

3
(0) 0x   (4.21) 

 

1
( )Dy k x  (4.22) 

Eliminating x3: 

3 3 1 1 1 0 2 11 1 2 2
(( ) )k r xx k x TD x rx x x       (4.23) 

1 12 2 1 2 20
( ) ( )k x T xx kr x    (4.24) 

 

1
(0)x D  (4.25) 

2
(0) 0x   (4.26) 

 

1
( )Dy k x  (4.27) 

 

Although both the alternative system equations shown in Table 4.2 ultimately have 

the same model structure as the model of the form (4.1) - (4.3), it is interesting to 

perform the structural identifiability analyses for all three versions as they may 

produce varied success and will help assess the robustness of the methods applied.  

 Pseudo Steady State Assumption 4.1.2

It is possible to reduce the above models using a common approximation used in the 

chemical/biological pharmacokinetic systems literature (Jaquez 1996 and Murray 

2003). The necessary assumption is that the binding to the transporter occurs very 

rapidly on the time scale of the rate of appearance of intracellular compound 
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(Jacquez 1996). Taking the proposed model of the form (4.1) - (4.3), this is 

equivalent to assuming that the OATP association and dissociation rate constants, k1 

and r1 are known to be considerably faster than the other rates, namely the flow into 

the cell, k2 and the diffusion into the cell, k3 and r3, i.e. there is rapid equilibration of 

OATP. If this assumption is true then instantaneously after the experiment has 

begun, the amount of substrate bound to transporter (x2) is effectively constant, the 

rate of change of OATP (4.2) can be set to zero and the right hand side of (4.2) can 

be re-arranged to give: 

 0 1
2

1M

T x
x

K x



,  (4.28) 

where 

 

1 2

1

M

r k
K

k




 (4.29) 

is the relevant Michaelis-Menten constant in µmol. Substituting (4.28) back into the 

original system equations, (4.1) and (4.3) become 

 

1 1
3 3 3 1

1

M

M

dx V x
k x r x

dt K x
  


 (4.30) 

 3 1
3 1 3 3

1

M

M

dx V x
r x k x

dt K x
  


 (4.31) 

respectively, where 

 2 0MV k T   (4.32) 

is the maximum velocity of the reaction in µmols
-1

. The unknown parameter set, p  , 

is now given by: 
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  3 3, , ,M MV K k rp  . (4.33) 

The initial conditions are now 

 1(0)x D  (4.34) 

 3 0(0)x  . (4.35) 

and the observation (4.8) is now given by 

 3y kx . (4.36) 

It is possible to simplify the model of the form (4.30) - (4.31), by noting that adding 

(4.30) and (4.31) equals zero, as below 

 1 3 0x x  . (4.37) 

Integrating (4.37) with respect to time and solving for the initial condition yields 

 1 3x x D  . (4.38) 

Re-arranging (4.38) gives 

 1 3x D x 
 (4.39) 

and substituting (4.39) into the model of form (4.30) - (4.31) reduces it to one ODE. 

Alternatively x3 can be eliminated by re-arranging (4.38) as 

 3 1x D x 
. (4.40) 

Both variations are shown in Table 4.3.  
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Table 4.3: Alternative system equations for the model of the form (4.30) - (4.31) 

System equation Initial Condition Observation 

Eliminating x1: 

3 3 3

3

3 3

3

)
)

(
( M

M

V D x
x D xr k x

K D x
  







 (4.41) 

 

3
(0) 0x   (4.42) 

 

3
y kx  (4.43) 

Eliminating x3: 

3 3

1

1 1 1

1

( ) M

M

x
x x D x

V
r

K x
k   


 (4.44) 

 

1
(0)x D  (4.45) 

 

 1
y k D x   (4.46) 

 

Again, both the alternative system equations shown in Table 4.3 ultimately have the 

same model structure as the model of the form (4.30) - (4.31), it is interesting to 

perform the structural identifiability analyses for all three versions as they may 

produce varied success and will help assess the robustness of the methods applied.  

 Non-Specific Binding 4.1.3

Another candidate model developed allows for non-specific binding (Obrink et al. 

1977) of Pitavastatin at the cell wall. This is where the medium in which the cells sit 

in at the beginning of the experiment is not homogenous and a concentration 

gradient occurs at the hepatic cell wall. This is described by adding a fourth 

compartment (x4) to represent a concentration present at the cell wall, as shown in 

Figure 4.2. 

The corresponding set of non-linear ODEs characterising the proposed model 

obtained by mass balance are given by: 

 
4 4 1 1 1 2 21 0 14

( )k x r x k x T x xx r      (4.47) 



CHAPTER 4.  OATP PHARMACOKINETICS 

145 

 

 
1 12 2 1 2 20

( ) ( )k x T xx kr x    (4.48) 

 
4 23 3 3 3 2

r x kx x k x    (4.49) 

 
4 1 4 3 4 34 3

( )r x k r kx x x    (4.50) 

Figure 4.2: Non-specific binding model representation 

with initial conditions 

 
1 2 3 4
(0) , (0) 0, (0) 0, (0) 0x D x x x     (4.51) 

and observation 

  2 3 4
y k x x x   . (4.52) 

Here the unknown parameter set, p , is given by 

  1 1 2 3 3 4 4 0
, , , , , , ,k r k k r k r Tp  . (4.53) 

Again it is possible to simplify the model of the form (4.47) - (4.50), by noting that 

adding (4.47), (4.48), (4.49), and (4.50) gives 

 
1 2 3 4

0x x x x    . (4.54) 

Integrating (4.54) with respect to time and solving for the initial condition yields 
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1 2 3 4

x x x x D    . (4.55) 

Table 4.4: Alternative system equations for the model of the form (4.47) - (4.50) 

System equations 
Initial 

Conditions 

Observation 

Eliminating x1: 

12 2 3 12 2 204
( )( ) ( )x D x x xk T x r xk     (4.56) 

4 23 3 3 3 2
r x kx x k x    (4.57) 

4 2 3 44 4 3 4 3 3
( ( ))x D x x xr k r x k x       (4.58) 

 

2
(0) 0x   (4.59) 

3
(0) 0x   (4.60) 

4
(0) 0x   (4.61) 

 

 

 
2 3 4

y k x x x    

 (4.62) 

Eliminating x2: 

4 41 4 1 3 41 1 1 0
( )k x r x k xx D x xT x     

1 41 3
( )D xr x x    (4.63) 

3 43 1 33 3 2 4
( )r x k x kx D x x x     (4.64) 

4 1 4 3 4 34 3
( )r x k r kx x x    (4.65) 

 

1
(0)x D  (4.66) 

3
(0) 0x   (4.67) 

4
(0) 0x   (4.68) 

 

 
1

y xk D 

 (4.69)
 

Eliminating x3: 

4 4 1 1 1 2 21 0 14
( )k x r x k x T x xx r      (4.70) 

1 12 2 1 2 20
( ) ( )k x T xx kr x    (4.71) 

4 1 4 43 44 1 23
( () )r x k r xx D x xk x      (4.72) 

 

1
(0)x D  (4.73) 

2
(0) 0x   (4.74) 

4
(0) 0x   (4.75) 

 

 
1

y xk D 

 (4.76) 

Eliminating x4: 

1 1 2 3 44 1 1 1 0 2 1 2
( ) ( )k r x k x T x rx D x x xx      

 (4.77) 

1 12 2 1 2 20
( ) ( )k x T xx kr x    (4.78) 

3 33 1 2 3 3 2 2
( )r k x kx xx D x x      (4.79) 

 

1
(0)x D  (4.80) 

2
(0) 0x   (4.81) 

3
(0) 0x   (4.82) 

 

 
1

y xk D 

 (4.83)
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Re-arranging (4.55) and substituting into the model of the form (4.47) - (4.50) 

reduces it to three ODEs. The four alternative structures eliminating x1, x2, x3, and x4 

respectively are show in Table 4.4.  

As previously, all four alternative system equations shown in Table 4.4 ultimately 

have the same model structure as the model of the form (4.47) - (4.50), however it is 

desired to perform the structural identifiability analyses for all five versions as they 

may produce varied success and will help assess the robustness of the methods 

applied.  

The same pseudo steady state assumption as in Section 0, can also be made to obtain 

another representation of this model of the form  

 1
4 4 4 1

1

1
M

M

V x
k x r x

x
x

K
  


 (4.84) 

 1
3 4 3 3

1

3
M

M

V x
r x k x

x
x

K
  


 (4.85) 

 
4 1 4 3 4 34 3

( )r x k r kx x x   . (4.86) 

with initial conditions  

 
1 1 3 4
(0) , (0) 0, (0) 0x D x x    (4.87) 

and observation 

 
 

3 4
y xk x  . (4.88) 

The unknown parameter set, p, is now given by  

  
3 3 4 4

, , , , ,
M M

V K k r k rp  . (4.89) 
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It is possible to simplify the model of the form (4.84) - (4.86), by noting that adding 

(4.84), (4.85), and (4.86) gives 

 
1 3 4

0x x x    (4.90) 

Integrating (4.54) with respect to time on both sides yields 

 
1 3 4

x x x D   . (4.91) 

Re-arranging (4.91) and substituting into the model of the form (4.84) - (4.86) 

reduces it to two ODEs. The three variations, eliminating x1, x3, and x4 respectively 

are shown in Table 4.5. 

Table 4.5: Alternative system equations for the model of the form (4.84) - (4.86) 

System equations 
Initial 

Condition 
Observation 

Eliminating x1: 

3 4 3

3

3

3 4

3

4

( )
M

M

DV
r x

x x

x
kx

D x
x

K
  



 


 (4.92) 

4 4 3 4 3 34 3 4
( )( )x D x xr k r x k x      (4.93) 

 

3
(0) 0x   (4.94) 

4
(0) 0x   (4.95) 

 

 
3 4

y xk x   (4.96) 

Eliminating x3: 

1

4 4 4 1

1

1

M

M

V x
k x r x

x
x

K
  


 (4.97) 

4 1 4 13 444 3
( ) ( )rx D xx k r x k x     (4.98) 

 

1
(0)x D  (4.99) 

4
(0) 0x   (4.100) 

 

 
1

y xk D   (4.101) 

Eliminating x4: 

1

1

1 4 4 11 3
( ) M

M

x D x x
V x

k r x
K x

  


  (4.102) 

1

1

3 3 3 31 3
( ) M

M

x D x x
V x

r k x
K x

  


  (4.103) 

 

1
(0)x D  (4.104) 

3
(0) 0x   (4.105) 

 

 
1

y xk D   (4.106) 
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As for the other models, all three alternative system equations shown in Table 4.5 

ultimately have the same model structure as the model of the form (4.84) - (4.86), 

however it is desired to perform the structural identifiability analyses for all four 

versions as they may produce varied success and will help investigate the robustness 

of the methods applied. 

 Drug Metabolism Models 4.1.4

Although it is suspected that there is minimal in vitro metabolism (Fujino et al. 

1999) the final candidate models developed also account for the drug metabolising 

within the cell. This involves adding an elimination term, k4, to the third 

compartment, as shown in Figure 4.3. 

Figure 4.3: Metabolite model representation 

The corresponding set of nonlinear ODEs characterising the proposed model 

obtained by mass balance are given by: 

 
3 3 3 1 1 1 0 2 1 21

( )k x r x k x T xx x r      (4.107) 

 
1 12 2 1 2 20

( ) ( )k x T xx kr x    (4.108) 

 

x
1
 

x
2
 

Cell OATP 

k
3
 

r
3
 

r
1
 

k
1
 k

2
 

Pitivastatin 

x
3
 

k
4
 



CHAPTER 4.  OATP PHARMACOKINETICS 

150 

 

 
3 1 3 4 23 3 2

( )x kr x k x k x    (4.109) 

with the initial conditions and observation are now given by 

 
1 2 3
(0) , (0) 0, (0) 0x D x x    (4.110) 

and observation 

 
2 3

( )y k x x  . (4.111) 

The unknown parameter set, p, is given by  

  
1 1 2 3 3 4 0
, , , , , ,k r k k r k Tp  . (4.112) 

The same pseudo steady state assumption as in Section 0, can also be made to obtain 

another representation of this model of the form 

 1

1 3 3 3 1

1

M

M

V x
x k x r x

K x
  


 (4.113) 

 
4

1

3 3 1 3 3

1

( ) M

M

V x
x r x k x

K x
k 


 (4.114) 

where the initial conditions are given by 

 
1 3
(0) , (0) 0x D x  , (4.115) 

and the observation is now given by 

 
3

y kx . (4.116) 

The unknown parameter set, p, is given by  

  
3 3 4 4

, , , , ,
M M

V K k r k rp  . (4.117) 
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 Passive Diffusion Model for the 4°C Data 4.1.5

In order to fit the 4°C data individually, the OATP rate constants {k1, r1, k2} are set 

to zero in the three compartment model of the form (4.1) - (4.3), as it is assumed that 

there is no transporter action at this temperature, only passive diffusion. The 

corresponding set of linear ODEs characterising the 4°C model is therefore given by 

the following: 

 1

3 3 3 1

dx
k x r x

dt
   (4.118) 

 3

3 1 3 3

dx
r x k x

dt
   (4.119) 

with initial conditions 

 
1
(0)x D  (4.120) 

 
3

0(0)x   (4.121) 

and observation: 

 
3

y kx  (4.122) 
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4.2 Structural Identifiability and 

Indistinguishability Analyses 

 Taylor Series Expansion 4.2.1

To analyse the 4°C model of the form (4.118) - (4.119) using the Taylor series 

expansion, the observation ( , )ty p  from (4.122) is differentiated twice with respect to 

time:  

 
(1)

3 1 3 3
( )

dy
y k r x k x

dt
   ,  (4.123) 

 
2

(2) 2 2

3 3 3 3 1 3 3 3 3 12
( )

d y
y k k x k r x r k x r x

dt
     .  (4.124) 

Evaluating Equations (4.123) at (4.124) at 0t   yields 

 (1)

3
(0, )y kr Dp   (4.125) 

and 

 (2)

3 3 3
(0, ) ( )y kr k r D  p   (4.126) 

The Taylor series coefficients for ( , )ty p are therefore given by 

 (1)

3
(0, )y kr Dp ,  (4.127) 

and 

 (2)

3 3 3
(0, ) ( )y kr k r D  p .  (4.128) 
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Equating the Taylor series coefficients and solving for the unknown parameter 

vector p yields one solution 

  
3 3 3 3

,k k r r s = ,  (4.129) 

demonstrating that the 4°C model of the form (4.118) - (4.119) is structurally 

globally identifiable (SGI). 

The Taylor series expansion method was also successfully applied to the model of 

the form (4.41): differentiating the observation y from (4.43) with respect to time and 

using 1k   (as shown in Section 4.1.1) yields  

  1 3

3 3 3

3

3

( )
( ) M

M

V xdy
y r k x

dt K D x

D
D x   

 


   (4.130) 

which can be re-arranged as 

 
2

(1) 4 3 4 3 4

3M

a x b x c
y

K D x

 


 
  (4.131) 

where 

 
4 3 3

a k r     (4.132) 

 
4 3 3 3

( )( )
M M

b V r D k r K D        (4.133) 

 2

4 3 3M M
c V D r K D r D     (4.134) 

The derivatives of y up to the fourth order are then calculated as follows: 

 
 

   1 12

2 4 3 4

2

3

2 )(

M

a x b y yd y
y

dt K D x

 
 

 
 (4.135) 
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 

     1 2 1 23

3 4 4 3 4

3

3

2 2 3  ( )

M

ba y a x y yd y
y

dt K D x
 








 (4.136) 

 
 

         2 1 1 34

4 4 4 4

4

2 2

3

3(23 6 4 )

M

a x by a y y y yd y
y

dt K D x
 



 




 (4.137) 

Evaluating the derivatives at t = 0 gives 

    1 4

1
0

M

c
y

K D
 


 (4.138) 

 
   

2

2 4 1 1

2
0

M

b
y

K D

 



 


 (4.139) 

 
   

2

3 4 1 4 2 1 2

3

2 3
0

M

ba
y

K D

  



 




 (4.140) 

 
   4 4 1 2 4 3 1 3

4

2

26 4
0

3

M

a
y

K D

b   


 






. (4.141) 

Assuming that the initial dose D is known, solving (4.138) - (4.141) for all four 

parameters (KM, VM, k3 and r3) yields the unique solutions 

2 2

1 1 3 2

3 2

2 1 2 3 1 4

3

3 4

( )
M

K D
  

    



 
    (4.142) 

 

   

4
3 2

1 1 3 2

2
3 2 3 2 2 2 3

2 1 2 3 1 4 2 1 2 3 1 4 1 2 1 3

27

2 3 4 3 4 3 3
M

V

D D D

  

             




     

 (4.143) 

        
 

3 2 2 4 2 2 4 2

1 1 2 1 4 1 2 3 2 1 4 2 3 2 1 3 1 2 1 3

3 3 2 2 2 3

1 2 1 2 3 1 4 1 2 1 3

2 6 7 3 6

3 4 3 3

d D D
k

D D D D

                

        

       


   
(4.144) 
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 
  

 

2 3 3 4 3 3 2 2 2

1 1 2 4 1 2 3 4 1 2 3 1 2 3 1 2 3

3 3 2 3 2 2 3 2

2 1 2 3 1 4 2 1 2 3 1 2 1 3 1 4

4 2 4 2 2 5 5 4 2 6 3 3

1 1 2 3 1 2 4 1 2 1 3 4 1 4 2 1 3

3

2 1 2 3

12 16 75 42 59

2 3 4 3 4 3 3

24 6 18 6 2 27 9

2 3 4

D D D D
r

D D D D

D D D

D

                

               

                

   

   


     

      

  2 3 2 2 3 2

1 4 2 1 2 3 1 2 1 3 1 4
3 4 3 3D D d               

 (4.145) 

The compartmental model of the form (4.41) is therefore structurally globally 

identifiable (SGI), as Φ1, Φ2, Φ3, Φ4, and D are measurable/known. Unfortunately, 

due to the structural complexity of the system, this approach did not converge to any 

solutions for the three compartment model of the form (4.1) - (4.3) due to 

computational limitations. Although it is possible to compute the first six derivatives 

of the observation; the resulting functions are too large and too complex for 

symbolic packages to manipulate. 

The Taylor series expansion method was also successfully applied to the models of 

the form (4.30) - (4.31) and of the form (4.44), demonstrating that they are SGI. The 

Taylor series expansion approach was also applied to all the remaining models to 

ascertain structural identifiability. However this method did not converge for any of 

the other models proposed. The approach is intractable if it is not possible to obtain 

sufficient Taylor series coefficients or if they prove too complex in structure to yield 

solutions for the unknown parameters using symbolic tools such as Maple 2010 or 

Mathematica 9 (Windows XP Pro 2002 SP3, Intel Quad CPU 1.98GHz, 2.99GB of 

RAM).  

 Observability Rank Criterion 4.2.2

Given that 1k  , the first two Lie derivatives defined in Section 2.3.2.1 of the model 

of the form (4.12) - (4.13) are given by: 

 
1 2 3

x x   ,   (4.146) 
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2 1 2 3 0 2 3 2 3 3 3 1 2

( )( ) ( )k D x x T x r D x x k x r x          .  (4.147) 

The Jacobian Matrix with respect to 
2 3

( , )
T

x xx , evaluated at  
0

0, 0
T

x , of the 

resultant function  
1 2
,

T

 H  is therefore given by: 

 
1 1 0 1 3 1 0 3 3

1 1
J

k D k T r r k T k r


      

 
 
 

,  (4.148) 

which has full rank and therefore the model of the form (4.12) - (4.13) satisfies the 

Observability Rank Criterion (ORC). Similarly all the remaining candidate models 

derived can be shown to satisfy the ORC, allowing the four techniques (the 

similarity transformation approach for uncontrolled systems - STAUS, the algebra 

approach using characteristic sets - DAACS, the algebraic input/output relationship 

approach - Ai/oRA, and the non-differential input/output observable normal form 

approach  -  NDi/oONF) to be applied to all the models described. 

 Similarity Transformation Approach for 4.2.3

Uncontrolled Systems (STAUS) 

For the model of the form (4.41), given that 1k   the first Lie derivative, defined in 

Section 2.3.2.1 is  

 
1 3

x  ,  (4.149) 

which yields the following resultant function 

 
1

H ,  (4.150) 

 and therefore the smooth map   calculated using (2.16) is given by 



CHAPTER 4.  OATP PHARMACOKINETICS 

157 

 

   
3 3

x 
p

H λ x . (4.151) 

Substituting (4.151) into the left hand side of (2.18) yields 

 3

3 3 3 3

3

( ( ( , )), )
( )

)( M

M

V D
t k r D

K D


 




   

 
f λ x p p  (4.152) 

Differentiating (4.151) with respect to x3 yields 

 ( ( , )) 1t





λ
x p

x
. (4.153) 

Finally the system coordinate functions using a parameter vector p  is 

  
 

3

3 3 3 3

3

( ( , ), )
M

M

V D x
t k x r D x

K D x


   

 
f x p p . (4.154) 

Equating the monomials in x3 of (4.152) and (4.154) yields the following four 

equations: 

  2 2 3 2

3 M M M M M M M
r K D K D K K D D K V D V D       

  2 2 3 2

3 M M M M M M M
r K D K D K K D D K V D V D       (4.155) 

2 2

3 3 3 3 3 3 3 3
2 2 3 2

M M M M M M M M M M M
k K K k K D k K D k D r K D r K K r K D r D K V V D           

 2 2

3 3 3 3 3 3 3 3
2 2 3 2

M M M M M M M M M M M
k K K k K D k K D k D r K D r K K r K D r D K V V D           

  (4.156) 

 
3 3 3 3 3 3

3 2
M M M M M

r D r K k K k D r K k K V        

 
3 3 3 3 3 3

2 3
M M M M M

k D k K r K r D V r K k K        (4.157) 

 
3 3 3 3

k r k r    (4.158) 
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Solving (4.155) - (4.158) simultaneously yields 
3 3 3 3 M M M M

,   ,   ,  k k r r K K V V    , i.e. 

p p  and the system is therefore SGI. The STAUS approach was also applied to the 

other models and the results are summarised in Table 4.6. 

 Differential Algebra Approach Using  4.2.4

Characteristics Sets (DAACS) 

As described in Section 2.3.2.3, the DAACS approach is implemented using the 

Rosenfeld-Gröbner algorithm in Maple 2010. The code is shown in Appendix E. For 

the two compartment model of the form (4.12) - (4.13), the Rosenfeld-Gröbner 

algorithm produces the following input/output map: 

 2 2 2 2 3 2

1 5 5 1 5 1 1 1 2 5 1 2 5 2 1 3 3 1 1 2 5 3 1 1 3
( , ) ( )y a b c k d e k k r k f k                      p  (4.159) 

where 

   
5 3 1 1 1 2 0 1 3 0 1 3 2 3 1 3

a k r k D k k T k k T k r D k r rr D        (4.160) 

 2 2

5 1 2 3 0 1 2 0 1 3 0 1 2 3 1 2 1 0 1 3 1 0 1 3 1
2 2 2b k k k T k k T D k k T D k k k D k k rT k k rT k k r D          

  2 2 2

1 2 1 1 3 3 1 1 3 3 1 3 2 3 3 1 3 1 3 0 2 3 1
2 2 4 3k k r D k k r D k rr D k rr k k r k r D k k T k k r          

  2 2 2 2 2 2 2

1 3 3 1 1 3 3 1 2 3 2 1 3 1 3
k k D k r k k D k r k k k rr r r        (4.161) 

  2

5 1 1 2 0 1 3 1 3 0 1 3 2 3 3 1 2 3 3 3 3 1 3
2 3 2 2c k k k T k k D k k T k r D k k k r k r k r k rr           (4.162) 

  
5 1 3 1 1 1 2

2d k k k r k D k     (4.163) 

 2 2 2 2

5 1 2 1 3 0 1 1 0 1 1 1 2 3 2 1 3 3 3 1 1 3
2e k k D k k T k rT k r D k D k k k r k k r r rr            (4.164) 

 
5 1 3 1

f r k k D     (4.165) 
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Equating the monomials  
1 2 3
, ,    in 

1 1
( , ) ( , )y y p p  for the vector of unknown 

parameters,  
1 2 3 1 3 0
, , , , ,k k k r r Tp  yields one unique solution, 

  
1 1 2 2 3 3 1 1 3 3 0 0

, , , , ,k k k k k k r r r r T T     s ,  (4.166) 

 i.e. p p , and thus the two compartment model of the form (4.12) - (4.13) is 

therefore also SGI. The differential algebra approach using characteristic sets was 

also applied to the other models and these results are summarised in Table 4.6. 

 Algebraic Input/Output Relationship  4.2.5

Approach (Ai/oRA) 

For the model of the form (4.44), given that 1k   the first two Lie derivatives are 

given as 

 
1 1

D x   ,   (4.167) 

 1

2 3 1 3 1

1

( )M

M

V x
k D x r x

K x
    


.  (4.168) 

As described in Section 2.3.2.4, the Ai/oRA approach is implemented by using the 

Lie derivatives (4.167) and (4.168) into the Univariate Polynomial or Groebner 

Bases algorithms in Maple 2010. The code is shown in Appendix F. Both algorithms 

produce the same input/output map 

 
2 1 3 32 2

( ) (( , ) )
M M M

K D r Dy K r V D       p   

 
3 3 3 3 31 13

2
( 2 ) ( )

M M M
k D k K K r V r D k r        . (4.169) 
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A second input/output map is generated by substituting p  for p  in the original 

input/output relationship (4.169), 

  
2 1 2 2 3 3

( ) (, )
M M M

K D K r D Vy r D       p  

 2

3 3 3 3 3 3 11
( 2 ) ( )

M M M
k D k K K r V r D k r        .  (4.170) 

Equating the monomials of  
1 2
,   in 

2 2
( , ) ( , )y y p p  yields the following four 

equations 

 
M M

K K   (4.171) 

 
3 3

k r k r     (4.172) 

 
3 3 3 3M M M M

K r r D V K r r D V      (4.173) 

 
3 3 3 3 3 3 3 3

2 2
M M M M M M

k D k K K r V r D k D k K K r V r D           (4.174) 

Solving Equations (4.171) - (4.174) simultaneously for the vector of unknown 

parameters,  
3 3

, , ,
M M

K V k rp  yields one unique solution 

  
3 3 3 3 M M M M

,   ,   ,  k k r r K K V V   s ,  (4.175) 

i.e. p p , and therefore the model of the form (4.44) is structurally globally 

identifiable. The algebraic input/output relationship approach was also applied to the 

other models, the results are summarised in Table 4.6. 
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 Non-Differential Input/Output Observable Normal 4.2.6

Form Approach (NDi/oONF) 

As previously stated, for the model of the form (4.44), given that 1k   the first Lie 

derivative is given as (4.167), which can be re-arranged to give  

 
1 1

x D     (4.176) 

Substituting (4.176) into the second Lie derivative (4.168) yields the same 

input/output map 
2
( , )y p as for the Ai/oRA. The NDi/oONF approach was also 

applied to the other models and the results are summarised in Table 4.6. 

 Summary 4.2.7

The results for the similarity transformation approach for uncontrolled systems 

(STAUS), the algebra approach using characteristic sets (DAACS), the algebraic 

input/output relationship approach (Ai/oRA), and the non-differential input/output 

observable normal form approach (NDi/oONF) are summarised in Table 4.6. 
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Table 4.6:  Summary of the structural identifiability of all six candidate models 

considered using all four approaches (SGI: structurally globally identifiable; SLI*: 

structurally locally identifiable with two solutions; DNC: does not converge) 

 

Basic 

Original 
Pseudo Steady State 

Assumption 

Approach 
(4.1) - 

(4.3) 

(4.12) - 

(4.13) 

(4.18) - 

(4.19) 

(4.23) - 

(4.24) 

(4.30) - 

(4.31) 
(4.41) (4.44) 

2.3.2.1 STAUS SGI SGI SGI SGI DNC SGI SGI 

2.3.2.3 DAACS SGI SGI SGI SGI SGI SGI SGI 

2.3.2.4 Ai/oRA SGI SGI SGI SGI SGI SGI SGI 

2.3.2.5 NDi/oONF SGI SGI SGI SGI DNC SGI SGI 

 

 
Non specific binding 

Original 

Approach 
(4.47) - 

(4.50) 

(4.56) - 

(4.58) 

(4.63) - 

(4.65) 

(4.70) - 

(4.72) 

(4.77) - 

(4.79) 

2.3.2.1 STAUS DNC SLI* SLI* SLI* SLI* 

2.3.2.3 DAACS DNC SLI* DNC SLI* SLI* 

2.3.2.4 Ai/oRA DNC SLI* SLI* SLI* SLI* 

2.3.2.5 NDi/oONF DNC SLI* SLI* SLI* SLI* 

 

 
Non specific Binding Metabolite 

Pseudo Steady State Assumption Original Pseudo 

Approach 
(4.84) - 

(4.86) 

(4.92) - 

(4.93) 

(4.97) - 

(4.98) 

(4.102) - 

(4.103) 

(4.107) - 

(4.109) 

(4.113) - 

(4.114) 

2.3.2.1 STAUS DNC SGI SGI SGI DNC DNC 

2.3.2.3 DAACS SGI SGI SGI SGI DNC SGI 

2.3.2.4 Ai/oRA SGI SGI SGI SGI DNC SGI 

2.3.2.5 NDi/oONF DNC SGI SGI SGI DNC DNC 
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The models of the form (4.1) - (4.3), (4.12) - (4.13), (4.18) - (4.19), and (4.23) - 

(4.24) can all be shown to be SGI via all four techniques. The DAACS produces the 

same input/output map 
1  for the four models. It is important to include Equation 

(4.10) in the DAACS for the model of the form (4.1) - (4.3), or the Rosenfeld-

Gröbner algorithm is unable to produce the input/output map 
1 . The algebraic 

input/output relationship approach (Ai/oRA) produces the same map 
1  for the 

models of the form (4.12) - (4.13), (4.18) - (4.19), and (4.23) - (4.24), confirming 

that they are structurally equivalent, however it produces a different input/output 

map 1a  for the model of the form (4.1) - (4.3). The Ai/oRA map 1a  is of higher 

order (in terms of the first three Lie derivative of the observation) than the DAACS 

map 1 (in terms of the first two Lie derivative of the observation). It is not possible 

to input Equation (4.10) into the Univariate Polynomial or Groebner Bases Maple 

algorithms and therefore they cannot reduce the system accordingly and produce an 

input/output map of the same order as the Rosenfeld-Gröbner algorithm. The maps 

1  and 1a  can be shown to be structurally equivalent and the Ai/oRA confirms that 

the models of the form (4.1) - (4.3), (4.12) - (4.13), (4.18) - (4.19), and (4.23) - 

(4.24) are structurally equivalent. It is therefore important to reduce the system to its 

minimal form when applying the DAACS and Ai/oRA. 

The pseudo steady state models of the form (4.30) - (4.31), (4.41), and (4.44) can all 

be shown to be SGI via the differential algebra approach using characteristic sets 

(DAACS) and the algebraic input/output relationship approach (Ai/oRA). Again 

DAACS produces the same input/output map 2 for the three models and confirms 

that the models of the form (4.30) - (4.31), (4.41), and (4.44) are structurally 

equivalent. Ai/oRA produces the same input/output map as DAACS for the models 
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of the form (4.41) and of the form (4.44); however it produces a higher order 

input/output map 
2b  for the model of the form (4.30) - (4.31). In this instance the 

DAACS is able to produce an input/output map for the model of the form (4.30) - 

(4.31) without including Equation (4.38) and it is the same as the input/output map 

produced by Ai/oRA 
2b . Again 

2  and 
2b  can be shown to be structurally 

equivalent. The similarity transformation approach for uncontrolled systems 

(STAUS) and the non-differential input/output observable normal form approach 

(NDi/oONF) both confirm that the models of the form (4.41) and (4.44) are SGI, 

however they fail to produce conclusive results for the model of the form (4.30) - 

(4.31), highlighting the importance of reducing the system to its minimal form when 

applying the STAUS and NDi/oONF. 

The non-specific binding models of the form (4.56) - (4.58), (4.63) - (4.65), (4.70) - 

(4.72), and (4.77) - (4.79) can all be shown to be structurally locally identifiable 

(SLI) using STAUS, Ai/oRA, and NDi/oONF. The latter two approaches produce 

exactly the same input/output map 3 for all four models, confirming that the models 

of the form (4.56) - (4.58), (4.63) - (4.65), (4.70) - (4.72), and (4.77) - (4.79) are 

structurally equivalent. The three approaches (STAUS, Ai/oRA, and NDi/oONF) 

demonstrate that there are two solutions vectors, namely: 

  1 1 1 1 1 2 2 3 3 3 3 4 4 4 4 0 0, , , , , , ,k k r r k k k k r r k k r r T T        s ,  (4.177) 

 3 4 4 3 3
2 1 1 1 1 2 2 2 3 4 3 3 3 3

44

( )
, , , , ,

k k r k r
k k r r k k k k k r k r k

rk

 
          


s  

4 3 3
4 2 4 4 2 2 0 0

4

( )
, ,

r k r
k k r r k k T T

r


      


,  (4.178) 
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which imply that there are two solutions for most of the unknown parameters, 

however 
1k  and 

0T  are globally identifiable. The DAACS approach confirms this 

result for the models of the form (4.56) - (4.58), (4.70) - (4.72), and (4.77) - (4.79), 

but it does not produce an input/output map for the model of the form (4.63) - (4.65) 

even though all four models have been shown to be structurally equivalent, 

indicating that this approach may be less robust than the Ai/oRA and NDi/oONF in 

obtaining input/output maps. Although it is suspected that the model of the form 

(4.47) - (4.50) has the same structure, none of the approaches produced conclusive 

results. The complexity, in particular the non-linear terms and the fact that the 

observation is a sum of compartments, means that solutions prove intractable. It is 

suspected that there is not enough memory available for Maple 2010 to perform the 

required symbolic calculations. This result demonstrates the importance of reducing 

the system to its minimal form when performing structural identifiability analyses. 

For example the algebraic input/output relationship approach (Ai/oRA) requires as 

many Lie derivatives as there are states, hence reducing the models by one or more 

states significantly simplifies the computation. 

The non-specific binding models of the form (4.84) - (4.86), (4.92) - (4.93), (4.97) - 

(4.98), and (4.102) - (4.103), which include the pseudo steady state assumption, can 

be shown to be SGI using DAACS and Ai/oRA. As before the DAACS yields the 

same input/output maps 4  for all four models, confirming that they are structurally 

equivalent. The Ai/oRA produces the same map as DAACS 4  for the models of the 

form (4.92) - (4.93), (4.97) - (4.98), and (4.102) - (4.103), again generating a higher 

input/output map 4b  for the model of the form (4.84) - (4.86), which can be shown 

to be structurally equivalent using Equation (4.91). The STAUS and NDi/oONF 
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confirm that the models of the form (4.92) - (4.93), (4.97) - (4.98), and (4.102) - 

(4.103) are SGI but do not produce conclusive results for the model of the form 

(4.84) - (4.86) even though it is structurally equivalent. The smooth map   can be 

calculated when applying the STAUS approach, however it contains square roots and 

as a result is transcendental and therefore it is not possible to equate monomials and 

obtain results. Similarly for the NDi/oONF, solving the Lie derivatives 

simultaneously for all the states includes square roots, again highlighting the 

importance of reducing the system to its minimal form when applying the STAUS 

and NDi/oONF. 

None of the approaches could provide conclusive results for the model of the form 

(4.107) - (4.109), as Maple 2010 is unable to perform the required symbolic 

manipulations. On the other hand the DAACS and Ai/oRA demonstrate that the 

model of the form (4.113) - (4.114) is SGI, with both methods producing identical 

input/output maps 5  . 

The algebraic input/output relationship approach (Ai/oRA) proves to be the most 

successful on the hepatic uptake models derived, producing conclusive results for all 

but two of the candidate models, closely followed by the differential algebra 

approach using characteristic sets (DAACS), which produced conclusive results for 

one fewer model. In the models investigated the Ai/oRA approach was more 

efficient in obtaining input/output maps, however the DAACS approach did offer the 

possibility of entering extra algebraic equations and constraints such as (4.10). The 

similarity transformation approach for uncontrolled systems (STAUS) and the non-

differential input/output observable normal form approach (NDi/oONF) do not 

provide any conclusive results for five of the candidate models derived. It is difficult 
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to conclude which approach is superior as different model structures may produce 

different results.  

All of the analyses above were also duplicated in Mathematica 9 which yielded the 

same results as Maple 2010. 

 Structural Indistinguishability 4.2.8

The Taylor series expansion method was successfully applied to the models of the 

form (4.30) - (4.31), (4.41), and (4.44), confirming that they are structurally 

indistinguishable. The Taylor series expansion method was also applied pair-wise to 

all the remaining models, but did not produce conclusive results. As with structural 

identifiability; the approach is intractable if it is not possible to obtain sufficient 

Taylor series coefficients or if the Taylor series coefficient prove too complex in 

structure to yield solutions for the unknown parameters using symbolic tools. 

The following input/output maps were generated in Sections 4.2.3 - 4.2.6: 

1  - models of the form (4.1) - (4.3), (4.12) - (4.13), (4.18) - (4.19), and (4.23) 

- (4.24) 

2  - models of the form (4.30) - (4.31), (4.41), and (4.44) 

3  - models of the form (4.56) - (4.58), (4.63) - (4.65), (4.70) - (4.72), and 

(4.77) - (4.79) 

4  - models of the form (4.84) - (4.86), (4.92) - (4.93), (4.97) - (4.98), and 

(4.102) - (4.103) 

5  - model of the form (4.113) - (4.114) 
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Equating the monomials of the Lie derivatives  
1 2 3
, ,    in 

1 2
( ) ( ) p p , then 

solving for p  yields no feasible solutions and the two models are therefore 

structurally distinguishable. Similarly, it is possible to show pair-wise that each of 

the five input/output maps are structurally distinguishable. 

4.3 Steady State Analysis 

Although the purpose of the modelling is to investigate the relevant transient 

behaviour, a steady state analysis was performed so that it can potentially be used at 

a later stage to assist in validating the models. It identifies the levels at which each 

compartmental quantity eventually settles and can be a useful method to obtain 

fundamental information about the system, the basic relationships between the 

compartments and for initial guesses for parameter estimation for subsequent fitting 

(i.e. saturation levels). Steady state analysis is performed by setting all the 

derivatives in the system equations to zero and solving the resulting algebraic 

equations for each system variable. Due to the complex non-linear nature of the 

equations, this was performed using a symbolic mathematical package capable of 

solving polynomial equations, namely Maple 2010. 

 Three Compartment Model 4.3.1

The steady state solution for the three compartment model of the form (4.1) - (4.3) is 

shown in (4.179) - (4.181) below: 

 
 

 

2 2

1 3 1 3 0 2 3

1

1 3 3

2 4
ˆ

2

k k D k k T D k k
x

k k r

    



 (4.179) 
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 (4.180) 
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
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 (4.181) 

where 

 
3 1 2 3 1 3 1 3 0 2 3 1 2 0 1 3

k r k k rr k k T k r k k T k k D        . (4.182) 

Equations (4.179) - (4.181)  show that there are two possible steady state solutions 

for the given model. It can be readily shown that (4.180) is always positive for both 

solutions. The term inside the square root, Δ
2
 - 4 k1

2 
k3 T0 D (k2 + k3), can be re-

arranged as 

3 3 1 2 2 3 1 2 0 2 3 3 1 1 3

2 2

1 2 0 3 13 0 30 1 3
( )( )( 2 2 )( ) 2k r r k k k k k T k r k r k k T k k D rk k T k k D rT            (4.183) 

which is always positive (since k1, k2, k3, r1, r3, T0, and D are all positive by 

definition). This implies that  

  2 2

1 3 0 2 3
4k k T D k k    (4.184) 

and therefore 

  2 2

1 3 0 2 3
4k k T D k k     . (4.185) 

To determine the stability of the steady states the system is linearised by considering 

the relevant Jacobian matrix J. This is given by: 

 

1 0 2 3 1 1 1 3

1 0 2 2 1 1 1

3 2 3

0

( )

( )

k r k

k k r

k k

T x r k x

J T x k x

r





 

  

   

 
 
 
  

  (4.186) 
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The eigenvalues of the Jacobian matrix J are given as solutions of the following 

cubic equation: 

 3 2

5 5
  0b c       (4.187) 

where 

 
5 1 1 1 0 2 2 3 1 3

( )  b k x k T x k k r r       ,  (4.188) 

 
5 1 2 0 2 1 3 1 1 3 0 2 1 3 1 2 3 2 3 3 1 1 3

( ) ( )c k k T x k k x k k T x k r x k k k r k r rr            (4.189) 

The Jacobian matrix (4.186) does not have full rank and therefore one of the 

eigenvalues is λ = 0. This occurs because the model of the form (4.1) - (4.3) 

underdetermines the system, as shown by Equation (4.9), and the model can be 

reduced to two states. The remaining eigenvalues of the Jacobian matrix J are given 

as solutions of the following quadratic equation: 

 2

5 5
  0b c      (4.190) 

Both coefficients in the quadratic equation, b5 and c5, are non-negative since all the 

terms are also non-negative. By definition 0 ≤ x2 ≤ T0, as T0 is the total number of 

transporter binding sites on OATP (i.e. compartment x2) hence the (T0 - x2) ≥ 0. 

Solutions to (4.190) are given by 

 
5

1

5 5

2
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2

b b c


  
  , 

5

2

5 5

2
4

2

b b c


  
 . (4.191) 

It can be shown that both solutions are negative using Descartes’ rule of signs 

(Anderson et al. 1998), since there are no sign changes in (4.190) and λ1 is always 

negative. In order for λ2 to be negative, b5 must be greater that the root, i.e. 
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2

5 5 5
4b b c    (4.192) 

which in turn implies that 2

5 5
4b c  and the term inside the square root is always 

positive. Therefore both solutions of (4.190) are real and negative, hence both steady 

states are stable (Murray 2003). 

Similar analyses for the models of the form (4.12) - (4.13), (4.18) - (4.19), and (4.23) 

- (4.24) yield the same solutions. 

 Two Compartment Model 4.3.2

The steady state solution for the two compartment model of the form (4.30) - (4.31) 

is shown in (4.193) - (4.194) below: 
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 (4.193) 
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 (4.194) 

where 

 
6 3 3

a k r    (4.195) 

 
6 3 3 3M M M

b k K k D r K V      (4.196) 

 
6 3 M

c k K D     (4.197) 

 
3 3
( ) ( 2 )

M M M
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Again, (4.193) - (4.194) indicate that the two compartment model of the form (4.30) 

- (4.31) has two possible steady states. However the steady states for x1 are the 

solutions to the following quadratic 

 2

6 6 6
  0a b c    .  (4.199) 

It can be shown that only one solution is positive using Descartes’ rule of signs, 

since there is one sign change in (4.199) regardless of the sign of b2 (since KM, VM, 

k3, r3, and D are all positive by definition). Since b6
2 

- 4a6c6 is always positive, as a6 

is positive and c6 is negative, the solutions to (4.199) are 
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.  (4.200) 

As x1 must always be positive, there is only one valid steady state for the model of 

the form (4.30) - (4.31), i.e. 
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To determine the stability of the steady states the system is linearised by considering 

the relevant Jacobian matrix J. This is given by: 
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  (4.203) 

The eigenvalues of the Jacobian matrix J are given as: 
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Once again, the Jacobian matrix (4.203) does not have full rank and therefore one of 

the eigenvalues is 
1

0  . This is because the model of the form (4.30) - (4.31) 

underdetermines the system, as shown by Equation (4.37), and the model can be 

reduced to a single state. The remaining Eigenvalue, λ2, of the Jacobian matrix J is 

always negative and therefore the steady state is stable (Murray 2003). 

Similar analyses for the models of the form (4.41) and (4.44) yield the same results. 

The output of main interest is the observation x3. Both steady states (4.181) and 

(4.194) describe the exact relationships for x3 and will be useful at a later stage for 

parameter estimation and model validation. 

4.4 Experimental Data 

Date were collected at AstraZeneca’s R D facility at Alderley Edge by Alex Lench 

and Charles O’Donnell according to the following protocol. 

 Preparation of Rat and Dog Hepatocytes 4.4.1

Isolation of rat and dog hepatocytes was performed essentially using the two-step 

collagenase perfusion method of Seglen (1976). Briefly for both Beagle dog (weight 

range 12 - 18 kg) and Hans Wistar rat (weight 200 - 300 g), a portion of liver was 

excised that contained suitable vasculature to allow cannulation. The liver was 

cannulated and liver perfusion medium (Invitrogen, Paisley, UK) was perfused via a 

http://dmd.aspetjournals.org/content/35/6/859.long#ref-33
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suitable vein until the liver cleared to an even tan colour (usually 7 - 8 min at a 

perfusion rate of 30 ml/min). Liver digestion medium (Invitrogen) was then perfused 

until the liver displayed evidence of extensive dissociation (usually a further 6 - 8 

min at a perfusion rate of 30 ml/min). The liver was dissected from the rat, and cells 

were gently teased out of the liver capsule into a beaker containing ice-cold 

hepatocyte suspension buffer (2.34 g of sodium HEPES, 0.4 g of D-fructose, 2.0 g of 

bovine serum albumin (BSA)), 1-litre powder equivalent of Dulbecco's modified 

Eagle's medium (Sigma, Gillingham, UK) diluted in 1 litre of water and adjusted to 

pH 7.4 with 1 M HCl. The cell suspension was passed through a 250 μm mesh into a 

precooled tube and centrifuged at 50 g for 2 min at 4°C. The supernatant was 

decanted, the cell pellet was resuspended in suspension buffer (without BSA), and 

the centrifugation step was repeated. The resulting pellet of cells was resuspended in 

10 ml of suspension buffer (without BSA), and an estimation of hepatocyte yield and 

viability was obtained using the trypan blue exclusion method. Only preparations 

with a viability of >80% were used.  

 Thawing of Cryopreserved Human Hepatocytes 4.4.2

Commercial cryopreserved human hepatocytes were purchased from Life 

Technologies Corporation. (Baltimore, MD). Aliquots (20 ml) of hepatocyte 

suspension buffer (with no added albumin) were prewarmed to 37°C. Cryopreserved 

cells were removed from liquid N2 and immediately immersed in a water bath that 

had been preheated to 37°C. The vials were shaken gently until the contents were 

completely free of ice crystals (approximately 90 - 120 s) and were then emptied into 

the prewarmed hepatocyte suspension buffer. The cells were centrifuged at 40 g for 5 

min at 19°C, the supernatant was removed by aspiration, and the resultant pellet was 
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suspended in hepatocyte suspension buffer. The concentration and viability of the 

hepatocytes were determined using trypan blue exclusion, and the cells were 

resuspended at a concentration of 2 million cells/ml.   

 Determination of CLint for the Appearance of 4.4.3

Pitavastatin into Hepatocytes 

CLint values for drug appearance into hepatocytes were determined using a method 

adapted from the centrifugal filtration technique of Petzinger & Fuckel 1992. A vial 

containing rat hepatocytes at a concentration of 2 million viable cells/ml was 

preincubated for 5 min in a waterbath at 37°C along with a vial containing 500 μl of 

Pitavastatin (final concentration 50 - 300µM) in suspension buffer. Reactions were 

initiated with the addition of 500 μl of hepatocyte suspension to the Pitavastatin 

buffer mix. Aliquots (100 μl) were removed at 10 s, 30 s, 50 s and 70 s and 

immediately centrifuged at 7000 g for 30 s through 150 μl of oil (density of 1.015 

g/ml), layered on over 15 µl 3% caesium chloride, using a MiniSpin centrifuge 

(Eppendorf, Cambridge, UK). During this process the hepatocytes pass through the 

oil into the caesium chloride solution. After an overnight incubation at -80ºC, the 

caesium chloride layer (containing the separated cells) was then cut into a 96 well 

plate to which 300 µl of acetonitrile was added before being shaken for two hours 

after which 600µl water was added. The plate was then centrifuged for 10 mins at 

4500 rpm and the supernatant analysed by LC/MS/MS (Liquid Chromatography 

tandem Mass Spectrometry - described in Section 4.4.4 below). Each experiment 

was carried out in triplicate and the mean rate was calculated. Incubations were 

preincubated for 10 mins, carried out on ice or in a water bath for the 4°C and 37°C 

http://dmd.aspetjournals.org/content/35/6/859.long#ref-24
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data respectively. A fifth time point of zero kmol/10
6
 cells at time zero is assumed as 

no uptake should have taken place before the experiment has begun.  

 LC/MS/MS 4.4.4

Pitivastatin levels in the samples were assessed using LC/MS/MS. Liquid 

chromatography was performed using a Thermo MS pump plus (Thermo Fisher 

Scientific, San Jose, California, USA), the mobile phase consisted of water 

containing 0.1% formic acid (v/v) and the organic phase consisted of methanol 

containing 0.1% formic acid (v/v). Chromatographic separation was achieved with 

the following gradient; t = 0 min % organic = 5, t = 3 min % organic = 95, t = 4 min 

% organic = 95, t = 4.1 min % organic = 5 and a Synergi Max RP (Phenomenex, 

Macclesfield, UK) column. Electrospray ionisation on a TSQ Quantum Vantage 

(Thermo Fisher Scientific, San Jose, California, USA) in single reaction monitoring 

mode using a transition of 422.178>274.173, 46 V collision energy and the tube lens 

voltage at 236V.   

 Data Analysis 4.4.5

The commercial software package FACSIMILE (MCPA Software, UK) was used to 

perform the parameter estimation. FACSIMILE was selected over other packages 

such Matlab because it provides more robust statistical information about the fitting 

and is able to cope with stiffer systems. The software selection and parameter 

estimation procedure is detailed in Section 3.5.1. As described therein, FACSIMILE 

produces two measurements for the statistical goodness of the fit, namely a weighted 

residual sum of squares (RSS) and confidence levels for each estimated parameters 

entitled standard deviation of the natural logarithms (SDLN).   
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4.5 Results 

 4°C Diffusion Rates 4.5.1

The 4°C diffusion rates are estimated using the model of the form (4.118)  - (4.119), 

which accounts for passive diffusion only (no active OATP uptake). The rat, dog, 

and human time series and fits are plotted in Figures 4.4 - 4.6 respectively. 

 

   

   

   

Figure 4.4: FACSIMILE fits of 4°C rat data at different initial 

 concentrations (5 - 250 µM). Legend: solid trace - fit, data - circles. 
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Figure 4.5: FACSIMILE fits of 4°C dog data at different initial  

concentrations (2.5 - 650 µM). Legend: solid trace - fit, data - circles. 

  

  

Figure 4.6: FACSIMILE fits of 4°C human data at different initial  

concentrations (1 - 100 µM). Legend: solid trace - fit, data - circles. 
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Table 4.7 below summarises the diffusions rates for all three species for the 4°C data 

fits. 

Table 4.7: 4°C diffusion rates 

 Rat Dog Human 

Parameters Value SDLN Value SDLN Value SDLN 

k3
 1.31 x 10

-1
 s

-1
 0.163 1.53 x 10

-1
 s

-1
 0.135 1.01 x 10

-1
 s

-1
 0.146 

r3
 

2.09 x 10
-3

 s
-1 0.152 7.57 x 10

-4
 s

-1 0.125 3.15 x 10
-3

 s
-1 0.130 

RSS 433,280 - 184,820 - 11,901 - 

       

 Two Compartment Model of the form (4.30) - (4.31)  4.5.2

Table 4.8 below summarises the rate constants for all three species for the 37°C data 

fits using the 4°C diffusion rates obtained in Section 4.5.1. The two compartment 

model of the form (4.30) - (4.31), which combines passive diffusion and active 

OATP transport, is used for the fitting. 

Table 4.8: 37°C parameters using 4°C diffusion rates 

 Rat Dog Human 

Parameters Value SDLN Value SDLN Value SDLN 

VM [µmols
-1

] 7.97 x 10
-4

 0.116 2.93 x 10
-1

 0.190 2.34 x 10
-4

 0.227 

KM [µmol] 1.15 x 10
-1

 0.188 7.48 x 10
-4

 0.140 3.33 x 10
-2

 0.288 

k3 [s
-1

] 1.31 x 10
-1

 Fixed 1.53 x 10
-1

 Fixed 1.01 x 10
-1

 Fixed 

r3 [s
-1

] 2.09 x 10
-3 Fixed 7.57 x 10

-4 Fixed 3.15 x 10
-3 Fixed 

RSS 190,430 - 205,580 - 39,513 - 
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Table 4.9 below summarises the rate constants for all three species for the 37°C data 

fits when diffusion rates are allowed to vary. Again, the two compartment model of 

the form (4.30) - (4.31) is used for the fitting. 

Table 4.9: 37°C parameters 

 Rat Dog Human 

Parameters Value SDLN Value SDLN Value SDLN 

VM [µmols
-1

] 4.58 x 10
-5

  0.173 1.55 x 10
-5

 0.152 5.90 x 10
-6

  0.227 

KM [µmol] 4.98 x 10
-3

  0.472 1.88 x 10
-2

 0.178 1.39 x 10
-3

  0.399 

k3 [s
-1

] 4.51 x 10
-2

 0.089 2.66 x 10
-2

  0.077 1.93 x 10
-2

  0.158 

r3 [s
-1

] 1.78 x 10
-3 0.073 4.89 x 10

-4 0.047 1.86 x 10
-3

  0.080 

RSS 106,100 - 40,520 - 12,717 - 

       

The time series and fits for both scenarios are plotted in Figures 4.7 - 4.9. 
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Figure 4.7: FACSIMILE fits of 37°C rat data at different initial concentrations (5 - 

300 µM). The solid trace shows the fit using two compartment model of the form 

(4.30) - (4.31), the dashed trace using the diffusion rate from 4°C data, and the data 

are the circles. 
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Figure 4.8: FACSIMILE fits of 37°C dog data at different initial concentrations (1 - 

650 µM). The solid trace shows the fit using two compartment model of the form 

(4.30) - (4.31), the dashed trace using the diffusion rate from 4°C data, and the data 

are the circles. 
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Figure 4.9: FACSIMILE fits of 37°C human data at different initial concentrations (1 

- 100 µM). The solid trace shows the fit using two compartment model of the form 

(4.30) - (4.31), the dashed trace using the diffusion rate from 4°C data, and the data 

are the circles. 

 Three Compartment Model of the form (4.1) - (4.3)  4.5.3

Table 4.10 below summarises the rate constants for all three species for the 37°C 

data fits using the 4°C diffusion rates obtained in Section 4.5.1. The three 

compartment model of the form (4.1) - (4.3), which includes passive diffusion and 

active OATP uptake using a pseudo steady state assumption, is used for the fitting. 
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Table 4.10: 37°C parameters with 4°C diffusion rates 

using three compartment model of the form (4.1) - (4.3) 

Table 4.11 below summarises the rate constants for all three species for the 37°C 

data fits when diffusion rates are allowed to vary. Again, the three compartment 

model of the form (4.1) - (4.3) is used for the fitting. 

Table 4.11: 37°C parameters using three compartment 

 model of the form (4.1) - (4.3) 

 Rat Dog Human 

Parameters Value SDLN Value SDLN Value SDLN 

k1 [s
-1

] 2.86 x 10
-7

  0.231 1.31 x 10
-6

  0.125 1.24 x 10
-4

  0.510 

k2 [s
-1

] 1.03 x 10
-5

  NWD 5.34 x 10
-8

  NWD 7.17 x 10
-2

  0.850 

k3 [s
-1

]
 

3.53 x 10
-1

  0.125 2.54 x 10
-2

  0.088 1.49 x 10
-2

  0.273 

r1 [s
-1

]
 

2.86 x 10
-3

  NWD 4.41 x 10
-7

  NWD 1.05 x 10
-1

  NWD 

r3 [s
-1

] 1.50 x 10
-3

  0.088 4.83 x 10
-4

  0.051 1.67 x 10
-3

  0.108 

T0 [µmol] 8.07 x 10
-3

  0.110 3.17 x 10
-4

  0.100 5.56 x 10
-5

  0.598 

RSS 101,600 - 32,095 - 12,340 - 

 

 Rat Dog Human 

Parameters Value SDLN Value SDLN Value SDLN 

k1 [s
-1

] 1.90 x 10
-7

  0.123 6.95 x 10
-8

  0.105 2.83 x 10
-3

  0.288 

k2 [s
-1

] 5.72 x 10
-5

  NWD 5.33 x 10
-8

  NWD 9.88 x 10
1
  NWD 

k3 [s
-1

]
 

1.31 x 10
-1

  Fixed 1.53 x 10
-1

  Fixed 1.01 x 10
-1

  Fixed 

r1 [s
-1

]
 

3.73 x 10
-3

  1.04 4.49 x 10
-7

  NWD 4.71 x 10
-2

  NWD 

r3 [s
-1

] 2.09 x 10
-3

  Fixed 7.57 x 10
-4

  Fixed 3.15 x 10
-3

  Fixed 

T0 [µmol] 5.69 x 10
-3

  0.103 4.80 x 10
-3

   0.080 2.46 x 10
-6

   0.228 

RSS 127,510 - 89,198 - 39,494 - 
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The time series and fits for both scenarios are plotted in Figures 4.10 - 4.12. 

   

    

    

   

Figure 4.10: FACSIMILE fits of 37°C rat data at different initial concentrations (5 - 

300 µM). The solid trace shows the fit using two compartment model of the form 

(4.1) - (4.3), the dashed trace using the diffusion rate from 4°C data, and the data are 

the circles. 

 

 -

 2

 4

 6

 8

 10

 12

 14

 16

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

a. 300µM                  Time (secs) 

 -

 2

 4

 6

 8

 10

 12

 14

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

b. 250µM                  Time (secs) 

 -

 2

 4

 6

 8

 10

 12

 14

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

c. 200µM                  Time (secs) 

 -

 2

 4

 6

 8

 10

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

d. 150µM                  Time (secs) 

 -

 1

 2

 3

 4

 5

 6

 7

 8

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

e. 120µM                  Time (secs) 

 -

 1

 2

 3

 4

 5

 6

 7

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

f. 100µM                  Time (secs) 

 -

 1

 2

 3

 4

 5

 6

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

g. 80µM                  Time (secs) 

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

h. 60µM                  Time (secs) 

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

j. 40µM                  Time (secs) 

 -

 0.5

 1.0

 1.5

 2.0

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

k. 20µM                  Time (secs) 

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

l. 10µM                  Time (secs) 

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

m. 5µM                  Time (secs) 



CHAPTER 4.  OATP PHARMACOKINETICS 

186 

 

   

   

    

  

  

Figure 4.11: FACSIMILE fits of 37°C dog data at different initial concentrations (1 - 

650 µM). The solid trace shows the fit using two compartment model of the form 

(4.1) - (4.3), the dashed trace using the diffusion rate from 4°C data, and the data are 

the circles. 
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Figure 4.12: FACSIMILE fits of 37°C human data at different initial concentrations 

(1 - 100 µM). The solid trace shows the fit using two compartment model of the 

form (4.1) - (4.3), the dashed trace using the diffusion rate from 4°C data, and the 

data are the circles. 

 Other Models 4.5.4

The available data were also fitted using the models of the form (4.84) - (4.86) and 

(4.113) - (4.114). Although the fits described the data accurately both visually and in 

terms of the RSS values, FACSIMILE was unable to obtain good SDLN values (<1) 

for both of those models. The data does not determine the parameters values within 

tight enough bounds, suggesting that the models do not represent the mechanisms 

present. It is suspected that the model of the form (4.84) - (4.86) is over-

parameterised for the data available. The model of the form (4.56) - (4.58) was not 

 -

 1

 2

 3

 4

 5

 6

 7

 8

 9

 -  35  70
Q

u
an

ti
ty

 (
km

o
l/

10
6
 c

el
ls

) 
 

a. 100µM                  Time (secs) 

 -

 1

 2

 3

 4

 5

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

b. 50µM                  Time (secs) 

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

c. 25µM                  Time (secs) 

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

d. 10µM                  Time (secs) 

 -

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

e. 5µM                  Time (secs) 

 -

 0.1

 0.2

 0.3

 0.4

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

f. 2.5µM                  Time (secs) 

 -

 0.1

 0.1

 0.2

 0.2

 0.3

 -  35  70

Q
u

an
ti

ty
 (

km
o

l/
10

6
 c

el
ls

) 
 

g. 1µM                  Time (secs) 



CHAPTER 4.  OATP PHARMACOKINETICS 

188 

 

used for parameter estimation as it was shown to be locally identifiable. Similarly for 

the model of the form (4.107) - (4.109), which could not be shown to be SGI. 

4.6 Discussion 

 4°C diffusion Rates 4.6.1

The plots in Figures 4.4 - 4.6 show that the model of the form (4.118) - (4.119) 

visually fits the data adequately for all three species. The model does appear to 

underestimate the rat data somewhat at low concentrations, in particular for 5 µM 

and 10 µM initial concentrations (see Figures 4.4h and 4.4i). The model does also 

overestimate the dog data at 2.5 µM initial concentration (see Figure 4.5g), however 

for this concentration only one time series is available and it does not follow the 

same pattern as the remaining data. The values of cellular influx, k3, and cellular 

efflux, r3, from Table 4.7 are of similar orders of magnitude across the three species 

and the SDLN values are relatively low for all the rate parameters estimated (0.125 - 

0.163). The model suitably describes the diffusion process. 

 Two Compartment Model of the form (4.30) - (4.31) 4.6.2

Visually it can be seen from Figures 4.7 - 4.9 that the fits where the diffusion rates 

are allowed to vary (solid traces) are better across all three species, especially for the 

lower concentrations. Comparing the values in Tables 4.8 and 4.9, we can see the 

RSS values for those fits are much improved (Rat: 190,430 compared with 106,100. 

Dog: 205,580 compared with 40,520. Human: 39,513 compared with 12,717). 

However the model using the 4°C diffusion rates obtained in Section 4.5.1 is 

restricted, whereas the other model is unrestricted. The restricted model is ‘nested’ 



CHAPTER 4.  OATP PHARMACOKINETICS 

189 

 

within the unrestricted one. That is, the restricted model has two degrees of freedom 

PR (KM and VM), and the unrestricted model has four degrees of freedom, PU (KM, 

VM, k3 and r3). For any values of parameters in the restricted model, the same 

regression curve can be obtained by an appropriate choice of parameters for the 

unrestricted model. The model with more parameters is generally able to fit the data 

at least as well as the model with fewer parameters. Thus, typically, the unrestricted 

model will give a better fit and hence a lower RSS value than the restricted model. A 

statistical F test was used to determine whether the unrestricted model gives a 

significantly better fit to the data. If there are N data points available to estimate the 

parameters of both models, then we can calculate the F statistic using: 

 

R U

U R

U

U

RSS RSS

P P
F

RSS

N P

 
 

 
 
 

 

 (4.206) 

where RSSR is the RSS value for the restricted model and RSSU, the RSS value for 

the unrestricted model. Under the null hypothesis that the unrestricted model does 

not provide a significantly better fit than the restricted model, F will have an F-

distribution, with (PU - PR, N - PU) degrees of freedom. The null hypothesis is 

rejected if the F value calculated from the data is greater than the critical value of the 

F-distribution (Fcrit) for the false-rejection probability of 0.01. The F values for the 

three species are displayed in Table 4.12. In all three cases, the Fcrit value is much 

smaller than the F value calculated from the data. The null hypothesis is therefore 

rejected; thus the unrestricted model does provide a significantly better fit to the data 

than the restricted model.  
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Table 4.12: 37°C parameters 

 Rat Dog Human 

 Restricted Unrestricted Restricted Unrestricted Restricted Unrestricted 

RSS 190,430 106,100 205,580 40,520 39,513 12,717 

DOF (P) 4 6 4 6 4 6 

N 195 194 103 

F 75.1 383 102 

F crit 

(0.01) 4.72 4.72 4.83 

       

From Table 4.9 we can see the values of cellular influx, k3, and cellular efflux, r3, are 

of similar orders of magnitude across all three species. In this case the SDLN values 

for the diffusion parameters are lower than those for the 4°C fits in Section 4.5.1. 

The cellular influx, k3, is approximately four times smaller than cellular efflux, r3, 

which combined are in a similar ratio as per the 4°C fits. 

 Three Compartment Model of the form (4.1) - (4.3) 4.6.3

Visually it can be seen from Figures 4.10 - 4.12 that the fits where the diffusion rates 

are allowed to vary (solid traces) are better across all three species, especially in the 

lower concentrations. Comparing Tables 4.10 and 4.11, we can see the RSS values 

for those fits are improved (Rat: 127,510 compared with 101,600. Dog: 89,198 

compared with 32,095. Human: 39,494 compared with 12,340). However, as 

described in Section 4.6.2, the model using the 4°C diffusion rates obtained in 

Section 4.5.1 is restricted, whereas the other model is unrestricted. An F test is 

performed again to show that the improvement in the RSS value is statistically 

significant (Table 4.13). 
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From Table 4.11 we can see the values of cellular influx, k3, and cellular efflux, r3, 

are of similar orders of magnitude across all three species and the SDLN values are 

low, but this time not hugely different to the values obtained in Section 4.5.1. We 

note that for the fits using the three compartment model of the form (4.1) - (4.3), the 

parameters k2 and r1 have a tendency to be not well determined (NWD). 

The fits from the three compartment model of the form (4.1) - (4.3) are also 

compared with those obtained from the two compartment model of the form (4.30) - 

(4.31). In this instance the two compartment model is nested within the three 

compartment model, the latter has two more degrees of freedom and the lower RSS 

value, as shown in Table 4.13 below: 

Table 4.13: 37°C parameters 

 Rat Dog Human 

Compartments 2 3 2 3 2 3 

RSS 106,100 101,600 40,520 32,095 12,717 12,340 

DOF (P) 4 6 4 6 4 6 

N 195 194 103 

F 4.19 24.7 1.48 

F crit (0.01) 4.72 4.72 4.83 

       

This time the Fcrit value is higher for the rat and human data, suggesting that the two 

compartment model fits the data better, whereas for the dog the converse is true. 
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 Sensitivity Analysis 4.6.4

In order to use the mathematical models as predictive tools, it is necessary to obtain a 

measure of the sensitivity of each parameter, that is to say how much does an 

individual small change of each rate constant affect the system’s response. Although 

mathematical models are used in all areas of society and technology, stringent 

standards of proof are demanded from model-based numbers. Quantitative sensitivity 

analysis is generally agreed to be one such standard (Satelli et al. 2008). Sensitivity 

analysis is used to investigate the robustness of the model predictions and identify 

the parameters that contribute most to the output variability. Direct differential 

methods are used to numerically solve each sensitivity coefficient at each time point. 

Taking a mathematical model of the form (2.11) - (2.13), the system equations (2.11) 

are differentiated with respect to each of the parameters to obtain: 

 
( )

( )

j j j

d t
J t

dt p p p

  
 

  

x x f
 (4.207) 

where ( )J t  is a Jacobian matrix, defined as: 
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 
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 
  

 (4.208) 

For the three compartment model of the form (4.1) - (4.3) the corresponding 

sensitivity differential equations for x3 are given by: 

       31 1 2

11 1 0 2 3 1 1 1 3 1 0 2

1 1 1 1

xx x xd
S k T x r r k x k x T x

dt k k k k

  
         

   
 (4.209) 
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      2 1 2

12 1 0 2 1 2 1 1 1 0 2

1 1 1

x x xd
S k T x r k k x x T x

dt k k k

  
       
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 (4.210) 
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x xx xd
S r k k

dt k k k k
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 (4.218) 

    2 1 2

42 1 0 2 1 2 1 1 2

1 1 1

x x xd
S k T x r k k x x

dt r r r

  
      

  
 (4.219) 

 3 31 2

43 3 2 3

1 1 1 1

x xx xd
S r k k

dt r r r r

  
   

   
 (4.220) 

      31 1 2
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S k T x r r k x k x

dt r r r r

  
        

   
 (4.221) 
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x xx xd
S r k k

dt T T T T
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   
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 (4.226) 

The sensitivity differential equations for the two compartment model of the form 

(4.30) - (4.31) are given by: 
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FACSIMILE is used to numerically solve each sensitivity coefficient at each time 

point. The code is shown in Appendix G. The sensitivity coefficients are normalised 

by dividing each sensitivity coefficient by the square root of the sum of all the 

squares of the individual sensitivity coefficients. The normalised sensitivity 

coefficients are therefore dimensionless. Figures 4.13 - 4.18 show sensitivity plots 

for both the model of the form (4.1) - (4.3) and the two compartment model of the 

form (4.30) - (4.31) for all three hepatocytes (rat, dog and human). 

Almost all the sensitivity coefficients increase in magnitude over time, with the 

exception of 3

13

1

xd
S

dt k





 for the rat and dog hepatocyte using the three compartment 

model of the form (4.1) - (4.3) (see Figures 4.13a and 4.15a). In both those 

instances, the magnitude of the sensitivity increases to a peak then attenuates. The 

time of the peak depends on the initial concentration of Pitavastatin; the higher the 

initial concentration, the earlier the peak occurs. In both cases, for the lowest 

concentrations (5 µM for rat, 1 µM for dog) the sensitivity plots suggest that it has 

not yet reached its maximum magnitude after 70 seconds. 
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Figure 4.13: Rat hepatocyte normalised sensitivity coefficient plots for each 

parameter using three compartment model of the form (4.1) - (4.3). The three traces 

represent different initial concentrations: solid trace shows 300 µM, dashes trace 

shows 50 µM, dotted trace shows 5 µM. 
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Figure 4.14: Rat hepatocyte normalised sensitivity coefficient plots for each 

parameter using two compartment model of the form (4.30) - (4.31). The three traces 

represent different initial concentrations: solid trace shows 300 µM, dashes trace 

shows 50 µM, dotted trace shows 5 µM. 
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Figure 4.15: Dog hepatocyte normalised sensitivity coefficient plots for each 

parameter using three compartment model of the form (4.1) - (4.3). The three traces 

represent different initial concentrations: solid trace shows 650 µM, dashes trace 

shows 25 µM, dotted trace shows 1 µM. 
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Figure 4.16: Dog hepatocyte normalised sensitivity coefficient plots for each 

parameter using two compartment model of the form (4.30) - (4.31). The three traces 

represent different initial concentrations: solid trace shows 650 µM, dashes trace 

shows 25 µM, dotted trace shows 1 µM. 
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Figure 4.17: Human hepatocyte normalised sensitivity coefficient plots for each 

parameter using three compartment model of the form (4.1) - (4.3). The three traces 

represent different initial concentrations: solid trace shows 100 µM, dashes trace 

shows 5 µM, dotted trace shows 1 µM. 
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Figure 4.18: Human hepatocyte normalised sensitivity coefficient plots for each 

parameter using two compartment model of the form (4.30) - (4.31). The three traces 

represent different initial concentrations: solid trace shows 100 µM, dashes trace 

shows 5 µM, dotted trace shows 1 µM. 

The magnitude of the peak also depends on the initial concentration of Pitavastatin; 

the higher the initial concentration, the smaller the magnitude of the peak. The 

sensitivity coefficients for the rat (Figures 4.13 and 4.14) are very similar to the 

sensitivity coefficients for the dog (Figures 4.15 and 4.16), following comparable 

trajectories and having comparable magnitudes. The sensitivity coefficients for the 

human are also alike except for 3
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1

xd
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
, 3

43
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
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similar magnitudes to the rat and dog sensitivity coefficients, but are of opposite 

sign.  

From Figures 4.13, 4.15, and 4.17, it is possible to identify k1, r3 and T0 as the most 

sensitive parameters for the three compartment model of the form (4.1) - (4.3) for all 

three hepatocytes, as these have the largest magnitudes. The rate constant r1 is the 

least sensitive parameter for this candidate model. In Figures 4.13 and 4.15 it can be 

seen that k3 and r3 have similar sensitivity across the different concentration ranges 

for the rat and dog hepatocytes, whereas the other four rate parameters (k1, k2, r3 and 

T0) show different sensitivity trajectories depending on the initial conditions. For k1, 

k2 and r3 the sensitivities decrease the higher the initial concentration while the plot 

for T0 shows the opposite correlation. For k1, the sensitivity decreases so much that it 

is not one of the most sensitive parameters at high initial concentration. In 

comparison, for the human hepatocytes (Figure 4.17), it is T0 and r3 that have almost 

identical sensitivity across the different concentration ranges (compared to k3 and r3 

for the rat and the dog hepatocytes). This time, for all four remaining parameters (k1, 

k2, r3 and T0) the sensitivity decreases at higher concentrations. Again for k1, the 

sensitivity decreases so much that it is not one of the most sensitive parameters at 

high initial concentration.  

For the two compartment model of the form (4.30) - (4.31), Figures 4.14, 4.16 and 

4.18 show that the sensitivities are very similar for all three hepatocytes (rat, dog and 

human). In this case r3 and VM are the most sensitive (compared with k1, r3 and T0 for 

the three compartment model of the form (4.1) - (4.3)) and KM is the least sensitive 

(compared to r1). VM and r3 have almost the same sensitivity across the different 

concentration ranges, whereas the other two rate parameters show different 

sensitivity trajectories. The sensitivities for the rate constants k3 and KM decrease 
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with higher initial concentrations of Pitavastatin, however the range between the 

trajectories is much smaller than for the three compartment model of the form (4.1) - 

(4.3), therefore the sensitivity analysis shows that the two compartment model of the 

form (4.30) - (4.31) is more robust to different initial concentrations of Pitavastatin. 

Finally it is interesting to note that r3 is almost identical in terms of sensitivity for 

both models across all three hepatocytes. 

 Previous modelling 4.6.5

Three models have been identified in the literature previously; Paine et al. 2008 put 

forward a linear three compartment model, whilst Poirier et al, 2008 proposed a non-

linear mechanistic two compartment model, which Menochet et al. 2012 extended by 

adding an extra parameter to account for non-specific cellular binding. The main 

limitations of the model proposed by Paine et al. 2008 are that it is linear and no 

structural identifiability analysis was performed. An analysis of this model by the 

author of this thesis suggests that it is in fact unidentifiable and any numerical 

estimates obtained can therefore not be considered with confidence. In contrast, 

although no structural identifiability analysis was performed by Poirier et al., 2008, 

an analysis by the author of this thesis suggests it is SGI. Its main limitations are that 

it does not account for non-specific binding of Pitavastatin and that numerical 

integration was performed using the Runge-Kutta method, which cannot cope easily 

with highly stiff systems. The stiffness of the numerical solution of a particular 

system may be estimated from the ratio of the largest rate constant over the smaller 

constant. Using this notion of stiffness, the corresponding stiffness ratios for the 

models developed in this chapter are given in Table 4.14. 

Table 4.14: Stiffness ratios 
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Models Rat Dog Human 

4°C passive diffusion 

model of the form (4.118) - (4.119) 

10
2 

10
3 

10
2 

model of the form (4.30) - (4.31)  

using 4°C passive diffusion rates 
10

8 
10

9 
10

7 

model of the form (4.30) - (4.31)
 

10
6 

10
8 

10
6 

model of the form (4.1) - (4.3)  

using 4°C passive diffusion rates 
10

10 
10

11 
10

4 

model of the form (4.1) - (4.3) 10
10 

10
10 

10
5 

    

Table 4.14 shows that the numerical solutions for the rat, dog, and human data are 

highly stiff apart from the 4°C passive diffusion model of the form (4.118) - (4.119). 

The Runge-Kutta method would not be able to cope with these systems. Menochet et 

al., 2012 is the most comprehensive non-linear mechanistic model, although it is 

implemented with the algorithms present in Matlab, which may also struggle with 

highly stiff systems. FACSIMILE’s algorithms and fitting procedure are able to 

handle highly stiff systems; the confidence in the parameter estimate values it 

produces is therefore increased. 

 Conclusions 4.6.6

The disposition of the established OATP substrate Pitavastatin has been evaluated in 

suspended rat, dog and human hepatocytes using two non-linear pharmacokinetic 

models. In this chapter, a physiological three compartment model of the form (4.1) - 

(4.3) is derived to describe Pitavastatin uptake mechanistically, which is reduced to a 

two compartment model of the form (4.30) - (4.31) using a pseudo steady state 

assumption. The reduced model of the form (4.30) - (4.31) is similar to the Menochet 

et al., 2012 model, which is compared with the two step method for some plated rat 
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hepatocyte. Similarly, Poirier et al., 2008 compares their fits obtained from the 

mechanistic model to the two step approach and suggest that diffusion is highly 

temperature dependent in Chinese hamster ovary control cells and artificial 

membranes (parallel artificial membrane permeability assay). Neither studies offer a 

measure for the goodness of fit of their results and it is therefore impossible to 

establish whether their respective models are an improvement on the two step 

approach. Here simultaneous fits of numerous concentrations of 4°C and 37°C data 

are directly compared with 37°C only data for three species (rat, dog and human), 

offering not only an advantage in terms of the number of species evaluated, but also 

allowing for statistical comparison as to which fits describe the data more accurately. 

This analysis demonstrates that both models proposed characterise the data more 

accurately than the conventional two step approach for all three species (rat, dog and 

human), and that the estimated passive diffusion rates from 37°C data are 

significantly different to those estimated from 4°C data. This suggests that the 

current widely accepted view, that the rate of diffusion of Pitavastatin into the cell is 

the same at both 4°C and 37°C, but that the transporter action only occurs at 37°C 

(Shimada et al., 2003), is inaccurate. It follows that 37°C data should be fitted 

independently and it is therefore unnecessary to collect 4°C data altogether, 

potentially cutting down the number of experiments performed, reducing costs and 

supporting the 3Rs (reduce, replace, refine). 

Both models are shown to be structurally identifiable and distinguishable. However 

during the parameter estimation it was found that the three compartment model of 

the form (4.1) - (4.3) is not numerically identifiable as k2 and r1 are not well 

determined (NWD). The two compartment model of the form (4.30) - (4.31) tends to 

fit the data better for the rat and human hepatocytes. Neither the SDLN or 
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confidence levels are improved and there is no significant rise in the RSS, whereas 

the three compartment model of the form (4.1) - (4.3) fits the dog hepatocytes more 

accurately. This suggests that the pseudo steady state assumption is not valid for the 

dog data, that is the OATP association and dissociation rate constants, k1 and r1, are 

not significantly faster than the other rates, namely the flow into the cell, k2 and the 

diffusion into and out of the cell, k3 and r3 respectively. Different transporter 

expression in dog compared to rat and human hepatocytes may explain why a 

different model fits the dog data more precisely. 

Steady state analysis on both models revealed that the two compartment model of the 

form (4.30) - (4.31) is more robust to different initial concentrations of Pitavastatin 

than the three compartment model of the form (4.1) - (4.3) across all species. The 

most sensitive parameters are r3 and KM for the two compartment model of the form 

(4.30) - (4.31). The most sensitive parameters for the three compartment model of 

the form (4.1) - (4.3) depend on the initial concentration of Pitavastatin: k1, r3, and T0 

are the most sensitive at low initial concentrations and only r3 and T0 are the most 

sensitive at the higher initial concentrations across all species. 

Once fully validated the models have the potential to perform robust, predictive 

simulations to ascertain optimal levels of uptake of Pitavastatin in rat, dog, and 

human. 
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Chapter 5  

Transporter Mediated Drug-Drug 

Interactions 

Following on from the in vitro data modelling presented in the two previous 

chapters, the impact of transporter mediated drug-drug interactions in vivo is 

considered. One experimentally convenient method is to look at the effects on the 

blood levels of endogenous substances after dosing a drug. Bile acids are actively 

removed from the hepatic portal circulation into the liver by Organic Anion 

Transport Polypeptides (OATPs) amongst other transporters (Hagenbuch & Gui 

2008). Pharmaceuticals that are substrates of OATPs compete for the limited number 

of binding sites on the transporter, impeding bile acid uptake. This results in 

increased bile acid concentrations in the systemic blood stream, which are 

undesirable as bile acids are surfactants and their subsequent detergent-like 

properties have been shown to be cytotoxic (Rust et al. 2000, Higuchi & Gores 

2003). Prolonged exposure to elevated bile acid levels have also been reported to 

cause spontaneous liver tumour growth in mice (Kim et al. 2007, Yang et al. 2007). 

In addition, bile acid homeostasis is a vital hepatic function since bile acids are 

responsible for regulating liver regeneration (Huang et al. 2006) and energy 

expenditure (Watanabe et al. 2006). Disruption to relatively stable bile acid 

concentrations may cause cholestasis, diarrhoea, and poor lipid absorption (Krone 

1970, Van Deest et al. 1968, Hofmann 2002, Westergaard 2007). 
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Bile acids play a crucial role in dietary fat digestion, catabolising lipids for 

absorption. Like all detergents, bile salt molecules aggregate to form micelles once 

their concentration exceeds a critical value (Hofmann & Borgström 1964). These 

bile salt solutions dissolve fatty acids and monoglycerides, enabling the assimilation 

of lipids. In humans, primary bile acids, namely cholic acid and chenodeoxycholic 

acid, are synthesised from cholesterol metabolisation in the liver and secreted into 

the gall bladder for storage. During digestion, cholecystokinim is secreted from the 

duodenum in response to food intake (Shaffer 2000). This hormone causes the gall 

bladder to contract and release bile acids into the lumen of the intestine, where a 

proportion are dehydroxylated into secondary bile acids by intestinal bacteria. 

Removing a hydroxyl group modifies cholic acid and chenodeoxycholic acid to form 

deoxycholic acid and lithocholic, respectively (Stellwag & Hylemon 1979). The 

enterohepatic circulation of bile acids is represented in Figure 5.1. 

 

Figure 5.1: Circulation of bile acids in man 
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Bile acid enterohepatic circulation is a process whereby bile acids are reabsorbed 

into the circulation and returned to the liver where they can be re-secreted (Hofmann 

1999). Most bile salts are reabsorbed into the hepatic portal circulation by active and 

passive transport. A very small percentage reaches the systemic circulation, as 

hepatocytes actively extract bile acids from the portal vein. The liver may conjugate 

them with an amino acid, namely glycine or taurine, before secreting them again. 

Figure 5.2 summarises the eight conjugated bile acids, which depend on the amino 

acid and primary or secondary acid used. Bile acids are synthesised daily to replenish 

the proportion excreted in feaces. 

 

Figure 5.2: Bile acid synthesis in human from the two primary bile acids. 

The rat digestive system is similar to that of a human but it has two major 

differences. The first is that rats do not have gallbladders; not all mammals have 

gallbladders and rats do not generally eat large amounts of fatty food, thereby make 

a bile storage organ useless. The second difference is that rats have an enlarged 
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intestine, namely the cecum, for fermenting grains and seeds (DeSesso & Jacobson 

2001). 

Rats were dosed with a compound (Cyclosporin A) considered to interact with 

OATPs (Endres et al. 2006); drug and bile acid blood levels were measured over 

time at AstraZeneca. In this chapter it was investigated whether the resulting data 

could be explained by a mechanistic model and which parameters could be uniquely 

identified, in order to support model based inference. Two candidate models are 

proposed, a seven compartment and a five compartment model. Both models are 

founded on the competitive binding mechanism of the BCRP transporter developed 

in Chapters 3, which accurately described Hoechst 33342 uptake in vitro, accounting 

for inhibitor action. Although both BCRP and OATP assist the movement of 

molecules by active transport, they have different mechanisms; BRCP utilises 

chemical energy (adenosine triphosphate - ATP) for primary active transport and 

OATP takes advantage of the potential energy stored in electrochemical gradients for 

secondary active transport (see Chapter 2 for more detail). Whilst the mechanisms 

are different, the BRCP model is utilised as a starting point. The five compartment 

model includes a pseudo steady state assumption, which was found to describe the 

OATP hepatic uptake mechanism in both rat and human more accurately than its 

counterpart (see Chapter 4). 

The structural identifiability of both models is explored using all the methods 

described in Chapter 2, namely the Taylor series expansion, the similarity 

transformation approach for uncontrolled systems (including the sufficient condition 

for unidentifiability), the differential algebra approach using characteristic sets - 

DAACS, the algebraic input/output relationship approach - Ai/oRA, and the non-

differential input/output observable normal form approach - NDi/oONF. Although it 
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is not essential to demonstrate the structural identifiability of models with more than 

one method, it is desired to investigate the applicability of each approach.  

Steady state analyses are also performed on both models and the stability of the 

solutions is investigated by evaluating the relevant Jacobian matrix. Preliminary fits 

of in vivo experimental data are presented and the ability of the model to describe the 

data is discussed. 

5.1 Mathematical Model 

As described earlier, Cyclosporin A (CsA) is administered orally and is subsequently 

absorbed into the systemic blood stream. CsA has been shown to be a substrate of 

OATP previously (Endres et al. 2006), which actively uptakes the drug into the liver. 

From the in vitro data modelling performed in Chapter 4, it is also suspected that 

diffusion takes place, where the drug flows in and out of the liver according to the 

concentration gradient. As rats do not possess gall bladders, bile acid is secreted 

directly from the liver to the intestine. Bile acids are re-absorbed into the liver by 

OATP. These mechanisms can be represented by the compartment model shown in 

Figure 5.3. 

In Figure 5.3, the drug compartments (G, DO, DI, and TD) are coloured in green, 

whereas the bile compartments (BO, TB, and BI) are in red. A known dose of CsA is 

administered and is represented by an initial quantity in the gut compartment G. The 

compound is absorbed into the blood stream (DO) via the absorption rate ka. The 

substrate actively binds to OATP, TD, via association and dissociation rate constants 

D
k

  and 
D

k
 , respectively, and is mediated into the liver, DI, by rate constant kDtran. 

The compound also flows into the liver, DI, by passive diffusion with rate constants 



CHAPTER 5.  TRANSPORTER MEDIATED DRUG-DRUG INTERACTIONS 

214 

 

kDin and kDout. The compound is metabolised and eliminated from the liver via drug 

elimination rate kDe. Meanwhile a constant bile acid production, kp, into the blood 

steam (BO) is assumed. Although bile acid synthesis is unlikely to be perfectly 

 

 

Figure 5.3: Rat bile acid model representation 

constant, especially when concentration levels increase, this approximation is made 

in order to keep the model uncomplicated at this stage. The validity of this 

assumption is discussed later and a negative feedback loop is proposed as an 
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into the liver, BI, by rate constant kBtran. The bile acids also flow into the liver, BI, by 

passive diffusion with rate constants kBin and kBout. The bile acid may be conjugated 

and secreted out of the liver with drug elimination rate kBe. 

Although the level of OATP can conceptually be described by a single compartment, 

it is represented mathematically by two state variables (species) as there are two 

different complexes present; the substrate CsA and bile acids, which both compete 

for the same limited number of binding sites on the OATP transporter molecules. 

The CsA blood concentration y1 and bile acid blood concentration y2 (see Figure 5.3) 

are measured directly from blood samples. Both observations are divided by the 

corresponding volume of distribution, v1 and v2 respectively, to convert the quantities 

for the model variables (µmol) to concentrations (µMol). The seven compartments 

used and the fourteen inter-compartmental rate transfers are summarised in Table 

5.1. 
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Table 5.1: Description of the inter-compartmental rate transfer and compartments 

Inter-compartmental rate transfers  

(units = h
-1

 unless otherwise stated) 
Compartments (units = µmol) 

ka absorption rate from gut 
G Gut 

kDin drug cellular influx 

kDout drug cellular efflux 
DO Extracellular Drug (Blood) 

kDe drug elimination 

kD
+
 drug transporter binding 

DI Intracellular Drug 
kD

-
 drug transporter dissociation 

kDtran drug transporter flow 
TD Drug bound to Transporter 

kp bile production (µmol h
-1

) 

kBin bile acid cellular influx 
BO 

Extracellular Bile Acid 

(Blood) 
kBout bile acid cellular efflux 

kBe bile acid elimination 
BI Intracellular Bile Acid 

kB
+
 bile acid transporter binding 

kB
-
 bile acid transporter dissociation 

TB 
Bile Acid bound to 

Transporter 
kBtran bile acid transporter flow 

   

 System Equations 5.1.1

The system of ordinary differential equations describing the models is derived using 

classical mass-balance principles as per Jacquez 1996, see Section 3.1.1 for more 

details. The corresponding set of non-linear ordinary differential equations 

characterising the proposed model is therefore given by the following: 
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a

dG
k G

dt
     (5.1) 

  
0a D D Dout Din

dDO
k G k DO T TD TB k TD k DI k DO

dt

 
         (5.2) 

    0D Dtran D

dTD
k DO T TD TB k k TD

dt

 
       (5.3) 

  
Din Dout De Dtran

dDI
k DO k k DI k TD

dt
      (5.4) 

  
0p B B Bout Bin

dBO
k k BO T TD TB k TB k BI k BO

dt

 
         (5.5) 

    0B Btran B

dTB
k BO T TD TB k k TB

dt

 
       (5.6) 

  
Bin Bout Be Btran

dBI
k BO k k BI k TB

dt
      (5.7) 

where T0 is the total number of transporter binding sites on OATP. The initial 

conditions are given by 

 (0)G D  (5.8) 

 (0) inBI B  (5.9) 

 (0) outBO B  (5.10) 

 (0) (0) (0) (0) 0DO DI TD TB      (5.11) 

where D is the initial dose of CsA in µmol, Bin is the initial quantity of bile acid in 

the liver, and Bout is the initial quantity of bile acid in the blood stream. The CsA 
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blood concentration and bile acid blood concentration observations of the system, y1 

and y2 respectively, are given by: 

 
1

1

DO
y

v
  and 

2

2

DI
y

v
  (5.12) 

where v1 is the CsA apparent volume of distribution and v2 is the bile acid apparent 

volume of distribution. The unknown parameter set, p, is given by 

  1 2 0
, , , , , , , , , , , , , , , , , ,

a Din Dout De Dtran p BiD D B B in outn Bout Be Btran
k k k k k k k k kk k k k B B v vk T

   
p   (5.13) 

 Pseudo steady state assumption 5.1.2

As for the models developed in Chapter 4, it is possible to reduce the above model 

using a common approximation in the chemical/biological pharmacokinetic systems 

literature (Jaquez 1996 and Murray 2003). As previously described, the model with 

the pseudo steady state assumption described rat in vitro data more accurately and it 

is suspected that this will also be the case in vivo. The necessary assumption is that 

the binding to the transporter occurs very rapidly compared to the time scale of the 

rate of appearance of intracellular compound (Jacquez 1996). Taking the proposed 

model of the form (5.1) - (5.7), this is equivalent to assuming that the OATP 

association and dissociation rate constants; 
D

k
  , 

D
k

  ,
B

k
  , and 

B
k

 , are known to be 

considerably faster than the other rates, namely the flows into the cell, kDtran and 

kBtran, and the diffusion into the cell, kDin , kDout , kBin, and kBout , i.e. there is rapid 

equilibration of OATP. If this assumption is true then instantaneously after the 

experiment has begun, the amount of CsA and bile acids bound to transporter (TD 

and TB) is effectively constant, the rates of change of OATP (5.3) and (5.6) can be 

set to zero and the right hand side of (5.3) can be re-arranged to give: 



CHAPTER 5.  TRANSPORTER MEDIATED DRUG-DRUG INTERACTIONS 

219 

 

   0

D

DOT
TD

K DO



,  (5.14) 

where 

 

D Dtran

D

D

k k
K

k








 (5.15) 

is the relevant Michaelis-Menten constant. Similarly the right hand side of (5.6) can 

be re-arranged to give  

   0

B

BOT
TB

K BO



,  (5.16) 

where 

 

B Btran

B

B

k k
K

k








. (5.17) 

Substituting (4.28) and (5.16) back into the original system equations (5.1) - (5.7) 

yields 

 
a

dG
k G

dt
     (5.18) 

 D BA

a Dout Din

D BA BA D

V K DOdDO
k G k DI k DO

dt K K K DO K BO
    

 
  (5.19) 

 ( )D BA

Dout De Din

D BA BA D

V K DOdDI
k k DI k DO

dt K K K DO K BO
   

 
  (5.20) 

 BA D

p Bout Bin

D BA BA D

V K BOdBO
k k BI k BO

dt K K K DO K BO
   

 
  (5.21) 

 ( )BA D

Bout Be Bin

D BA BA D

V K BOdBI
k k BI k BO

dt K K K DO K BO
   

 
  (5.22) 
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where 

 
0D Stran

V k T  and 
0BA Btran

V k T   (5.23) 

are the maximum velocities of the reactions for CsA and bile acid respectively. The 

unknown parameter set, p, is now given by: 

  
1 2

, , , , , , , , , , , , , , ,
a Din Dout De p BinD D B B inBout Be out

K V K Vk k k k k k B B v vk kp  . (5.24) 

The initial conditions are now given by: 

 (0)B D  (5.25) 

 (0) inBI B  (5.26) 

 (0) outBO B  (5.27) 

 (0) (0) 0DO DI    (5.28) 

and the observations (4.8) remain unchanged. The five compartments used and the 

twelve inter-compartmental rate transfers are summarised in Table 5.2. 
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Table 5.2: Description of the inter-compartmental rate transfer and compartments 

Inter-compartmental rate transfers 

(units = h
-1

 unless otherwise state) 
Compartments (units = µmol) 

ka absorption rate from gut 
G Gut 

kDin drug cellular influx 

kDout drug cellular efflux 
DO Extracellular Drug (Blood) 

kDe drug elimination 

VD drug max velocity (µmol h
-1

) 

DI Intracellular Drug 
KD 

drug Michaelis Mentem constant 

(µmol) 

kp bile production (µmol h
-1

) 
BO 

Extracellular Bile Acid 

(Blood) 
kBin bile acid cellular influx 

kBout bile acid cellular efflux 
BI Intracellular Bile Acid 

kBe bile acid elimination 

VBA bile acid max velocity (µmol h
-1

) 

KBA 
bile acid Michaelis Mentem constant 

(µmol) 

  

5.2 Structural Identifiability Analyses 

 Taylor Series Expansion 5.2.1

Due to the structural complexity of the systems, this approach did not converge to 

any solutions for the seven compartment model of the form (5.1) - (5.7) or the five 

compartment model of the form (5.18) - (5.22). It is not possible to compute enough 

Taylor series expansion coefficients to converge to any solutions due to 

computational limitations. 
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 Observability rank criterion 5.2.2

Lie derivatives, defined in Section 2.3.2.1, were calculated for both observations 

(4.8) of the five compartment model of the form (5.18) - (5.22). The first three Lie 

derivatives of y1 are µ11, µ12, and µ13, whilst the first three Lie derivatives of y2 are 

µ21, µ22, and µ23. The Jacobian matrix of these Lie derivatives with respect to 

( , , , , )
T

G DO DI BO BIx , evaluated at  
0

, 0, 0, ,
T

out inD B Bx , of the resultant function 

 
13 211 1 1 22 2

, ,, ,
T

    H  has full rank (see Appendix H) and therefore the five 

compartment model of the form (5.18) - (5.22) satisfies the observability rank 

criterion (ORC). 

For the seven compartment model of the form (5.1) - (5.7), eight Lie derivatives are 

computed; the first four Lie derivatives of y1 are µ31, µ32, µ33, and µ34, whilst the first 

four Lie derivatives of y2 are µ41, µ42, µ43, and µ44. As above, the Jacobian matrix 

with respect to ( , , , , , , )
T

G DO TD DI BO TB BIx , evaluated at  
0

, 0, 0, 0, , 0,
T

out inD B Bx , 

of the resultant function  
33 34 41 4231 43 32

, , ,, , ,
T

      H  has full rank (see Appendix 

I) and therefore the seven compartment model of the form (5.1) - (5.7) also satisfies 

the ORC. The five techniques (the similarity transformation approach for 

uncontrolled systems - STAUS, the sufficient condition for unidentifiability, the 

differential algebra approach using characteristic sets - DAACS, the algebraic 

input/output relationship approach - Ai/oRA, and the non-differential input/output 

observable normal form approach - NDi/oONF) may therefore be applied to both 

models described. However the DAACS, Ai/oRA, and NDi/oONF approaches are 

not suitable in determining the structurally identifiability of the system as some of 

the initial conditions are unknown, namely 
in

B  and 
out

B . Although all three of the 

methods are unable to check for unknown initial conditions, they are still 
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implemented as they can produce input/output maps and provide important 

information about the system identifiablity; the input/output maps describe the exact 

structure of the system and may be to used to determine the identifiability of the 

unknown parameters excluding the initial conditions. It is also desired to investigate 

how each approach copes with the two candidate models to evaluate the applicability 

of each method. 

 Similarity Transformation Approach for 5.2.3

Uncontrolled Systems (STAUS) 

For the five compartment model of the form (5.18) - (5.22), it is possible to compute 

a smooth map   from (2.16) using  
13 211 1 1 22 2

, ,, ,
T

    H  and the alternate 

parameter vector 

   1 2 0
, , , , , , , , , , , , , , , ,

a Din Dout De Dtran p Bin Bout Be BtranD D B B
k k k k k k k k kk k k k k v v T

   
p .  (5.29) 

Equating the monomials of the states  , , , ,G DO DI BO BI  in Equation (2.18) generates 

807 equations, which Maple is unable to solve simultaneously for the unknown 

parameter vector. The 807 equations were therefore split into groups and each group 

was solved simultaneously. The solutions were subsequently combined and solved in 

conjunction with Equation (2.17) to yield one unique solution: 

1
, , , , , , , , ,

p

a a Din Din Dout Dout De D

in

e p Bin Bin BoD D ut BD

in

oD ut

B
K

k
k k k k k k k k k kK V V

B
k k k         





s   

 2

1 1 2
, , , , , ,

in BA in BA in out

Be B

in

BA BA in in out

in in n in

e

i

B K B V B B B v
K V B Bk k B v v v

B B B B
      





 , (5.30) 
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demonstrating that the five compartment model of the form (5.18) - (5.22) is 

structurally unidentifiable as although ten parameters, namely 
a

k , 
Din

k ,
Dout

k , 
De

k ,
D

K ,

D
V ,

Bin
k , 

Bout
k ,  

Be
k , and 

1
v  are uniquely identifiable, the remaining six parameters, 

namely 
p

k ,
BA

K , 
BA

V , 
in

B , 
out

B , and 
2

v  are unidentifiable. 

The model or observations therefore need to be modified accordingly in order to 

have a structurally identifiable system. It can be shown that if any of the six 

unidentifiable parameters are known then the model is structurally globally 

identifiable by re-arranging the six equations for the unknown parameters from 

(5.30) as follows: 

 2

2

in outBA BA

BA in BA o

p

tp u

B BK V v

K B V B

k

k v
     .  (5.31) 

Therefore if one of the six parameters can be estimated from a different experiment 

or obtained from using values in the literature then the resulting model would be 

structurally globally identifiable. 

It is also possible to demonstrate that if the two apparent volumes of distribution are 

equal (
1 2

v v ), but unknown, then the model is structurally globally identifiable. 

Using this assumption allows the model to be used for parameter estimation. 

Unfortunately it is not possible to generate a smooth map for the seven compartment 

model of the form (5.1) - (5.7) as the resulting equations prove computationally 

intractable. 
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 A Sufficient Condition for Unidentifiability 5.2.4

As described in Section 2.3.2.2, a straightforward consequence of the similarity 

transformation approach gives rise to a sufficient condition for unidentifiability 

(Evans et al. 2005). This test for unidentifiability confirms that the six parameters 
p

k ,

BA
K , 

BA
V , 

in
B , 

out
B , and 

2
v  are unidentifiable for the five compartment model of the 

form (5.18) - (5.22). If the apparent volumes of distribution are equal (
1 2

v v ) then 

the five compartment model of the form (5.18) - (5.22) passes the test. 

The seven compartment model of the form (5.1) - (5.7) passes the sufficient 

condition for unidentifiability with two distinct unknown apparent volumes of 

distribution. 

 Differential Algebra Approach Using Characteristics 5.2.5

Sets (DAACS) 

As described in Section 2.3.2.3, this approach is implemented using the Rosenfeld-

Gröbner algorithm in Maple 2010. Unfortunately the Rosenfeld-Gröbner algorithm 

failed to produce an input/output map for either model. Analysis of the five 

compartment model of the form (5.18) - (5.22) with the alternative structure, i.e. 

equal apparent volumes of distribution (
1 2

v v ), was also attempted, but Maple was 

again unable to produce an input/output map. 

 Algebraic Input/Output Relationship Approach (Ai/oRA) 5.2.6

As described in Section 2.3.2.4, this approach is implemented by using the Lie 

derivatives as inputs into the Univariate Polynomial or Groebner Bases algorithms in 

Maple 2010. As for the DAACS approach, both algorithms failed to produce 
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input/output maps for either models. It is suspected that there is not enough memory 

available for Maple 2010 to perform the required symbolic calculations. Different 

Lie derivative combinations were also attempted, i.e. for the five compartment model 

of the form (5.18) - (5.22): 

  
13 14 2112 21 21

, ,, , ,
T

        (5.32) 

  
21 22 2312 41 21

, ,, , ,
T

        (5.33) 

where µ14 and µ24 are the fourth Lie derivatives of y1 and y2 respectively. These 

combinations also satisfy the ORC. However neither algorithm was able to generate 

an input/output map for either model. Similarly for the five compartment model of 

the form (5.18) - (5.22) with the alternative structure, i.e. equal apparent volumes of 

distribution (
1 2

v v ). 

 Non-differential Input/Output Observable Normal 5.2.7

Form Approach (NDi/oONF) 

For the five compartment model of the form (5.18) - (5.22), it is possible to solve the 

five Lie derivatives µ11, µ12, µ13, µ21, and µ22, simultaneously and obtain equations 

for the five states ( , , , , )G DO DI BO BI strictly in terms of those Lie derivatives, i.e. 

 
1 11
( )G   ,  (5.34) 

 
1 11 12 13
( , , )DO     ,  (5.35) 

 
1 11 12 13
( , , )DI     ,  (5.36) 

 
1 21
( )BO   , (5.37) 
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1 21 22
( , )BI    .  (5.38) 

Equations (5.34) - (5.38) are substituted into a higher Lie derivative, namely µ23, to 

obtain an input/output map 
10
 . A second input/output map 

10
  is generated by 

substituting for p  by  
1 2

, , , , , , , , , , , , , , ,
a Din Dout De p Bin BouD D B B in outt Be

k k k K V Kk k k k V B B v vkp  in 

the original input/output relationship 
10
 . Equating the monomials of µ11, µ12, µ13, 

µ21, µ22, and µ23 in 
10 10
   yields 22 equations; solving them simultaneously for the 

unknown parameter vector p   yields one unique solution 

2 2 22 2

1 2

2 2 2

, , , , , , ,
DBA BA

BA D BA D D Din Din Dout Dout De De

v v v Kv K v V
K K V V V k k k k k k

v v v
       




s   

 2 1 2 2 2

1 2 22

2 2

, , , , , ,
p

Bin Bin Bout Bout Be Be a a p

v k v v v v
k k k k k k k k k v v v

v v
      





 . (5.39) 

It is interesting to note that given known initial conditions, three parameters, namely 

Bin
k , 

Bout
k , and 

Be
k  are uniquely identifiable, the remaining eleven parameters, namely 

BA
K , 

D
K , 

BA
V , 

D
V , 

p
k , 

Din
k , 

Dout
k , 

De
k , 

a
k , 

1
v , and 

2
v  are unidentifiable. However the 

input/output map 
10
  does not contain 

D
V ,

Din
k ,

Dout
k , 

De
k and 

a
k . It is possible to 

generate another input/output map 
11
  by substituting Equations (5.34) - (5.38) into 

the fourth Lie derivative of y1 (µ14). A second input/output map 
11
  is generated by 

substituting p  for p  in the original input/output relationship 
11
 . Equating the 

monomials of µ11, µ12, µ13, µ14, µ21, and µ22 in 
11 11
   yields 78 equations, which 

Maple is unable to solve simultaneously for the unknown parameter vector. The 78 

equations were therefore split into groups and each group was solved 
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simultaneously. The solutions were subsequently combined to yield one unique 

solution: 

1 1 1 1

2

1 1 1 1

, , , , , , ,BA D BA D

BA D BA D Din Din Dout Dout De De

v K v K v V v V
K K V V k k k k k k

v v v v
       




s   

 
1 1 2

1 1 2

1 1

, , , , , ,
p

Bin Bin Bout Bout Be Be a a p

k v v v
k k k k k k k k k v v v

v v
      





  (5.40) 

This solution shows that, given known initial conditions, seven parameters, namely 

Din
k , 

Dout
k , 

De
k ,

Bin
k , 

Bout
k , 

a
k , and 

Be
k  are uniquely identifiable, the remaining seven 

parameters, namely 
BA

K , 
D

K , 
BA

V , 
D

V , 
p

k , 
1

v , and 
2

v  are unidentifiable.  However 

solving 
1

s  from (5.39) and 
2

s from  (5.40) simultaneously yields one unique solution: 


3

, , , , , , ,
BA BA D D BA BA D D Din Din Dout Dout De De

K K K K V V V V k k k k k k       s   

 
1 1 2 2

, , , , , ,
Bin Bin Bout Bout Be Be a a p p

k k k k k k k k k k v v v v         (5.41) 

This confirms that the five compartment model of the form (5.18) - (5.22) is 

therefore structurally globally identifiable given known initial conditions (as 

demonstrated previously by the STAUS approach). 

Unfortunately it is not possible to solve the seven Lie derivatives µ31, µ32, µ33, µ34, 

µ41, µ42, and µ43, simultaneously and obtain equations for the seven states 

( , , , , , , )G DO TD DI BO TB BI strictly in terms of those Lie derivatives. 

 Summary 5.2.8

The results of the structural identifiability analyses for both models are summarised 

in Table 5.3.  
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Table 5.3: Summary of the structural identifiability of both candidate models using 

all five approaches. The results for the DAACS, Ai/oRA, and NDi/oONF approaches 

are in brackets as they assume known initial conditions (SGI: structurally globally 

identifiable; DNC: does not converge; SU: structurally unidentifiable) 

Approach 
Model of the 

form (5.1) - (5.7) 

Model of the  

form (5.18) - (5.22) 

1 2
v v  

1 2
v v  

2.4.2.1 STAUS DNC SU SGI 

2.4.2.3 DAACS (DNC) (DNC) (DNC) 

2.4.2.4 Ai/oRA (DNC) (DNC) (DNC) 

2.4.2.5 NDi/oONF (DNC) (SGI) (SGI) 

2.4.2.6 Taylor DNC DNC DNC 

 

It has not been possible to demonstrate whether the seven compartment model of the 

form (5.1) - (5.7) is structurally identifiable or otherwise as none of the approaches 

implemented produced any conclusive results. On the other hand it is possible to 

demonstrate that the five compartment model of the form (5.18) - (5.22) is 

structurally unidentifiable using the STAUS approach. However, this method 

demonstrates that if the apparent volumes of distribution are equal (
1 2

v v ) and 

unknown then the model is structurally globally identifiable. Apparent volumes of 

distribution are a pharmacological theoretical volume that represents the total 

amount of blood plasma an administered compound would have to occupy if it were 

uniformly distributed. Although it is suspected that bile and CsA have different 

apparent volumes of distribution as they have significantly different molecule size; 

the assumption is made as a first approximation in order to be able to perform 

parameter estimation. 
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For the models developed in this chapter, the STAUS approach is the most useful, as 

it is the only method that produces conclusive results. It is interesting to note that the 

NDi/oONF approach is the only method able to generate an input/output map for the 

five compartment model of the form (5.18) - (5.22), however this is insufficient to 

demonstrate structural identifiability as this approach does not appropriately account 

for unknown initial conditions. 

5.3 Steady State Analysis 

Although the purpose of the modelling is to investigate the relevant transient 

behaviour, a steady state analysis was performed so that it can potentially be used at 

a later stage to assist in validating the models. It identifies the levels at which each 

compartmental quantity eventually settles and can be a useful method to obtain 

fundamental information on the system, the basic relationships between the 

compartments and for initial guesses for parameter estimation for subsequent fitting 

(i.e. saturation levels). Steady state analysis is performed by setting all the 

derivatives in the system equations to zero and solving the resulting algebraic 

equations for each system variable. Due to the complex non-linear nature of the 

equations, this was performed using a symbolic mathematical package capable of 

solving polynomial equations, namely Maple 2010. 

As it was not possible to demonstrate whether the seven compartment model of the 

form (5.1) - (5.7) is structurally identifiable, this model was not taken forward for 

parameter estimation and consequently, the steady state analysis is not included. 
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 Five compartment model of the form (5.18) - (5.22)  5.3.1

The steady state solutions for the five compartment model of the form (5.18) - (5.22) 

are shown in (5.42) - (5.44) below: 
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  (5.44) 

where 

 
7 Be Bin

a k k ,   (5.45) 

 
7

( ) ( )
p Bout Be Be BA BA

b k k k k K V     ,  (5.46) 

 
7

( )
p BA Bout Be

c k K k k   .  (5.47) 

However 
3

s  is not a valid solution as DO  is negative and all the states must be 

positive by definition. From (5.44), in order for BO  to be positive then 

Bin D BA Din D BA
k V K k K V , since all the parameters are strictly positive by definition, which 

therefore implies that DO  is negative. It is also possible to show that 
2

s  is not a valid 

solution either. In (5.42) and (5.43), the solutions for BO  are the roots of the 

following quadratic equation 
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2

7 7 7
0a BO b BO c   .  (5.48) 

Regardless of the sign of 
7

b , there is only one sign change in (5.48) as 
7

a  is positive 

and 
7

c is negative (since 
Be

k , 
Bin

k , 
p

k ,
BA

K , and 
Bout

k  are all positive by definition). It 

can therefore be shown that only one solution is positive using Descartes’ rule of 

signs and since 

 

2 2

7 7 7 7 7 7 7 7

7 7

4 4

2 2

b b a c b b a c

a a

    
   (5.49) 

the only valid solution is therefore 
1

s . 

To determine the stability of the steady state the system is linearised by considering 

the relevant Jacobian matrix J. This is given by: 
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where 

 2

11 1
)(

BA D D BA Din
a K K V K DO k    ,  (5.51) 

 2

21 1
)(

BA D D BA Din
a K K V K DO k   ,  (5.52) 

 2

33 1
)(

BA D BA D Bin
a K K V K DO k    ,  (5.53) 

 2

43 1
)(

BA D BA D Bin
a K K V K DO k   ,  (5.54) 
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1

1

D BA BA D
K K K DO K BI

 
 

.  (5.55) 

Unfortunately Maple is unable to compute the eigenvalues of the corresponding 

Jacobian matrix J for the linearised model of (5.18) - (5.22) symbolically as quintic 

equations are not solvable in symbolic form (Abel-Ruffini theorem). However, as the 

steady states for the three drug compartments G , DO , and DI  are all zero, it is 

possible to reduce the five compartment model of the form (5.18) - (5.22) to two 

compartments by setting G , DO , and DI  equal to zero. The corresponding system of 

equations therefore become 

 BA

p Bout Bin

BA

V BOdBO
k k BI k BO

dt K BO
   


  (5.56) 

 ( )BA

Bout Be Bin

BA

V BOdBI
k k BI k BO

dt K BO
   


  (5.57) 

Setting Equations (5.56)  and (5.57) equal to zero and solving for BO and BI yields 

two solutions: 
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 
  

s   (5.59) 

As expected, the two solutions are exactly the same as the solutions for BO  and BI  

in 
1

s  and 
2

s . As shown above, 
2

s  is not a valid solution (
1

s  is the only valid solution) 

and therefore nor is 
5

s . It is now possible to determine the stability of the steady state 
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4
s ; the system of the form (5.56) - (5.57) is linearised by considering the relevant 

Jacobian matrix J2 given by: 
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J   (5.60) 

where 

 
2 2

( )

BA BA

Bin

BA

V K
k

K BO
  


  (5.61) 

The eigenvalues of the Jacobian matrix J2 are given as roots of the following 

quadratic equation 

 2

8 8
0b c      (5.62) 

where 

 
8 2 Bout Be

b k k     (5.63) 

 
8 2 Be

c k   (5.64) 

The parameters 
Bout

k ,
Be

k , 
BA

V , 
BA

K , 
Bin

k , and 
BA

K  are all positive by definition, and 

therefore 
2

 , 
8

b , and 
8

c are also positive. Consequently there are no sign changes in 

(5.62) and it can be shown that both roots of Equation (5.62) have the same sign 

using Descartes’ rule of signs. The roots of Equation (5.62) are given as 

 

2

8 8 8

1,2

4

2

b b c


  
   (5.65) 

Substituting Equations (5.63) and (5.64) into (5.65) yields 
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( ) ( 2 2 )
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Since 
Bout

k , 
2

 , and 
Be

k  are positive, the term inside the square root of Equation (5.66) 

and (5.67) is positive and therefore both roots 
1
  and 

2
  are real. Since it can be 

shown that both roots 
1
  and 

2
  have the same sign using Descartes’ rule of signs 

and given that 
2

  is negative (
2

 , 
Bout

k , 
Be

k , and the square root are positive), both 

roots 
1
  and 

2
  must therefore be real and negative. Consequently the solutions 4s  

and 5s  are stable. It can therefore be inferred that the steady state solution 1s  is also 

stable for 0G DO DI   . 

5.4 Experimental Data 

Data were collected at AstraZeneca’s R D facility at Alderley Edge by Dr. Simone 

Stahl. Four groups of three male rats (Strain: AlpkHsdBrlHan:WIST) were 

administered with Cyclosporine A, Neoral™ Oral Solution. The first group was used 

as control and the other three groups were given different repeat oral doses, namely 

15, 30, and 40 mg/kg over 14 days. The doses were administered daily (14 doses) 

and the dose volume was 8 ml/kg and the vehicle was aqueous 5% (w/v) 

glucdextroseose. Doses are converted into µmol/kg using CsA’s molecular mass of 

1202.61 g/mol. Measurements of CsA blood concentration and plasma bile acid 

(microM) were collect at five different times points (0, 2, 6, 12, and 24h) on three 

separate days (day 1, 4, and 11). The 0 h measurements were taken pre dose whereas 
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the 24h measurements were taken post dose. Only the measurements for the first day 

are used in the fitting as the model does not account for repeat dosing. 

 Data Analysis 5.4.1

The commercial software package FACSIMILE (MCPA Software, UK) was used to 

perform the parameter estimation. The software selection and parameter estimation 

procedure is detailed in Section 3.5.1. As described therein, FACSIMILE produces 

two measurements for the statistical goodness of the fit, namely a weighted residual 

sum of squares (RSS) and confidence levels for each estimated parameters entitled 

standard deviation of the natural logarithms (SDLN). As per the fitting in Chapter 3 

and 4, numerous wide ranging different combinations of initial guesses were 

implemented in order to attempt to find a global minimum for the optimisation. 

5.5 Results 

The unknown rate constants are estimated using the five compartment model of the 

form (5.18) - (5.22) with equal apparent volumes of distribution (
1 2

v v ). The time 

series and simultaneous fits are plotted in Figure 5.4, where the CsA time series and 

fits are shown on the left hand side (Figures 5.4b, 5.4d, and 5.4f) and the 

corresponding bile acid data and fits are shown on the right hand side (Figures 5.4c, 

5.4e, and 5.4g). There is no CsA plot for the control time series with 0 µM initial 

conditions, as the blood concentrations were not measured because there is no drug 

present. 

Table 5.4 below summarises the corresponding rate constants for the fits. 
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Table 5.4:  Parameter estimates (NWD - not well determined) 

Parameters Value SDLN Parameters Value SDLN 

ka
 1.89 x 10

-1
 h

-1
 0.504 kBout

 1.73 h
-1 NWD 

kDin
 3.60 h

-1
 0.400 kBe

 1.49 x 10
1
 h

-1 NWD 

kDout 8.25 x 10
-2

 h
-1 0.512 VBA 1.30 x 10

3
 µmol h

-1 0.893 

VD 4.32 x 10
-3

 µmol h
-1 NWD KBA 1.23 µmol NWD 

KD
 1.94 x 10

-2
 µmol 0.842 Bout

 
4.19 µmol NWD 

kDe
 

7.78 x 10
-3

 h
-1 NWD Bin

 
4.79 x 10

-1
 µmol NWD 

kp 9.45 x 10
2
 µmol h

-1 0.880 v1
 

2.68 x 10
-1 

L 0.182 

kBin 3.26 x 10
1
 h

-1 0.843 RSS 83,151 - 
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Figure 5.4: FACSIMILE fits of rat data at  

different initial concentrations (0-33.26µM).  

Legend: solid trace - CsA fit, dashed trace - bile fit, data - circles. 
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5.6 Discussion 

The plots in Figure 5.4 show that the five compartment model of the form (5.18) - 

(5.22) visually fits the CsA data adequately for all three different initial 

concentration (Figure 5.4b, Figure 5.4d, and Figure 5.4f). The maximum CsA 

concentration occurs at two hours for all three initial concentrations as the compound 

is absorbed relatively rapidly and is subsequently eliminated from the blood stream 

at a slower rate. The peak CsA concentration increase non-linearly with increased 

initial doses of CsA. The average CsA concentration at two hours is 2.48 µM for the 

12.47 µM initial CsA concentration (Figure 5.4b), 4.55 µM for the 24.95 µM initial 

CsA concentration (Figure 5.4d), and 4.79 µM for the 33.26 µM initial CsA 

concentration (Figure 5.4f). This highlights the non-linear nature of the uptake and 

the relatively small increase in peak CsA concentrations of 0.24 µM (4.79 - 4.55 

µM) for the 8.31 µM (33.26 - 24.95 µM) increase in initial concentration between 

the two highest initial concentrations suggests that the uptake is close to saturation at 

those values.  

Conversely, the bile acid concentration fits are not as good. The fits peak at two 

hours, whereas the data appear to peak at six hours for the 12.47 µM and 24.95 µM 

initial concentrations (Figure 5.4c and Figure 5.4e). For the 33.26 µM initial 

concentration (Figure 5.4g), the data and the fit both peak at two hours, however the 

fit appears to overestimate the data for the later time point, which is also noticeable 

in the other plots. This is not a surprising result as there is only one bile acid 

concentration time point at 24 hours for the three plots with CsA (Figure 5.4c, 

Figure 5.4e, and Figure 5.4g). In comparison, most of the other measurement times 

have three data points for each measurement time and initial concentration of CsA. 
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In total, there are 33 bile acid concentration measurements for the first 12 hours and 

only one post 12 hours. Considering that FACSIMILE minimises the total residual 

sum of squares (RSS) for all the data points, this uneven measurement distribution 

has the effect of heavily weighting the first 12 hours. It is therefore necessary to 

repeat the experiments and obtain more bile acid measurements later on in the 

experiment in order to be able to fit the data more accurately across the 24 hours. 

The fit for the lowest initial concentration of CsA, i.e. 12.47 µM (Figure 5.4g), 

grossly underestimates the data for the first two non-zero time points (2h and 6h). 

However it is important to note that the peak bile acid concentration is higher for the 

12.47 µM initial concentration (Figure 5.4g) than the other two initial concentrations 

(Figure 5.4e and Figure 5.4g). This is an unexpected result as it is understood that 

higher concentrations of CsA should correlate to higher bile acid concentrations. 

Furthermore, the range between the three subjects is inconsistent and particularly 

large at 6 hours in Figure 5.4g; 97 µM range compared to a mean measurement of 

105 µM. It is suspected that the eating patterns of the rats affected the bile acid 

concentration measurements, as the animals have access to food throughout the assay 

and their food intake and times were not monitored. The quantity and timing of when 

the test subjects feed is likely to affect their bile acid concentrations.  

The control plot with no CsA present (Figure 5.4a) shows how the base bile acid 

concentrations fluctuate throughout 24 hours.  Again the range (23 µM) is very large 

compared to the mean concentration for all three animals (13 µM) and the intra 

subject variability is suspected to arise from the different feeding patterns of the 

animals. It is therefore recommended to repeat the experiments with a fixed feeding 

protocol to ascertain whether this is one of the factors responsible for the variability 

in the bile acid measurements. It is suspected that bile acids levels do vary 
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significantly between subjects; however any reduction in the range would be 

advantageous for fitting the data more accurately. Although it is a very small 

discrepancy, it is also interesting to note from the control plot with no CsA present 

(Figure 5.4a), that the initial bile acid concentration at 0 hours is slightly higher than 

the remaining steady state level. Nonetheless, the fit for the control plot with no CsA 

present (Figure 5.4a) visually describes the bile acid data adequately, that is to say 

apart from the small artefact at the beginning the fit is at steady state and close to the 

mean concentration of 13 µM. The slightly larger value at time zero occurs because 

the initial quantity of bile acid in the blood stream, Bout, is a variable that 

FACSIMILE is estimating across all the time series (including when there is CsA 

present).  

In  

Table 5.4, four of the six parameters associated with CsA kinetics (
a

k , 
Din

k , 
Dout

k , 
De

k , 

D
K , and 

D
V ) are well determined, whereas only three out of the eight bile acids 

parameters (
p

k , 
Bin

k , 
Bout

k , 
Be

k , 
BA

K , 
BA

V , 
in

B , and 
out

B ) are well determined. All the 

CsA parameters’ SDLN values (0.400 - 0.842) are also lower than the bile acid 

parameters (0.843 - 0.893), reflecting the plots in Figure 5.4, which show that the 

five compartment model of the form (5.18) - (5.22) describes the CsA kinetics much 

better than the bile acids kinetics. Overall, seven out of the fifteen parameters 

estimated, i.e. almost half, are not well determined (NWD) by the data available. 

From the remaining eight, only two, namely 
Din

k  and 
1

v , have SDLN values below 

0.5. As a whole, the five compartment model of the form (5.18) - (5.22) describes the 

in vivo CsA binding kinetics precisely but does not capture the bile acid kinetics very 

well, which is not wholly unexpected given the relatively small number of data 
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points available. Although model improvements are suggested below, the main 

reason for the latter is the poor quality of the data. The feeding protocol for the 

experiments needs to be controlled and more frequent data should be collected. In 

particular for the later time point of 24 hours; one data point is not sufficient to 

model the competitive kinetics accurately. Another issue is the repeatability of the 

bile acid concentration measurements; with a range of almost 100µM for some bile 

acids measurements, it would as a consequence prove problematic to fit to the data 

accurately. 

 Suggested model improvements 5.6.1

As described previously, bile acids are surfactants and their subsequent detergent-

like properties have been shown to be cytotoxic. As a result their concentrations are 

tightly regulated by feedback control mechanisms that activate when their 

concentration is too high. The liver and the intestines contain FXR, a nuclear 

hormone receptor with the gene name NR1H4. Bile acids function as a signalling 

molecule for FXR and its activation in the liver inhibits the synthesis of bile acids. 

Activation of FXR by bile salts during digestion in the intestine promotes 

transcription and synthesis of FGF19, which subsequently inhibits bile acid 

production in the liver (Kim et al. 2007). Consequently bile acid synthesis is not 

constant if their concentration is too elevated. A feedback mechanism to replicate 

bile acid synthesis inhibition may improve the model accuracy. 

Another proposed alteration is to use different apparent volumes of distribution for 

CsA and the bile acid. One volume value was used for both in order to make the five 

compartment model of the form (5.18) - (5.22) structurally globally identifiable (see 

Section 5.2.3). However it may prove advantageous to use values from the literature 
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for the volumes, as the five compartment model of the form (5.18) - (5.22) has been 

demonstrated by both the STAUS and NDi/oONF approaches to be structurally 

globally identifiable for known initial conditions. An improvement is the fitting is 

expected as it is suspected the apparent volumes of distribution are different. An 

additional advantage of this modification would be reducing the total number of 

unknown parameters as the volumes would now be known. This could also be 

achieved via a model reparametrisation, which in turn reduces the total number of 

degrees of freedom (DoF) and may assist FACSIMILE to improve the fits, both in 

term of the RSS and SDLN values, as shown in Chapter 3. 

5.7  Conclusions 

The in vivo disposition of the established OATP substrate Cyclosporin A (CsA) has 

been evaluated in rat using a non-linear pharmacokinetic model. The mechanistic 

model describes the competitive binding that occurs between CsA and bile acids in 

the liver and combines the characteristics from two in vitro data models developed in 

previous chapters. The in vitro binding kinetics of Pitavastatin to OATP were 

investigated in three species, (rat, dog, and man) in Chapter 4. A mechanistic model 

was found to describe experimental data accurately and its mechanisms are 

incorporated in the in vivo data model described in this chapter. Similarly, the in 

vitro competitive binding kinetics of Hoeschst 33342 and a potent inhibitor 

Fumitremorgin C (FTC) to breast cancer resistance protein (BCRP) were 

investigated in Chapter 3. Although BCRP and OATP are different transporters 

which utilise different processes to translocate substances across cell membranes, the 

competitive binding for the limited number of binding sites on the transporters is 
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believed to be analogous and therefore this element of the model is incorporated in 

the in vivo data model described in this chapter. 

The five compartment model of the form (5.18) - (5.22) with equal apparent volumes 

of distribution (
1 2

v v ) has been shown to be structurally identifiable using the 

similarity transformation approach for uncontrolled systems (STAUS) described in 

Section 2.3.2.1. With individual apparent volumes of distribution, the model is 

shown to be structurally unidentifiable. Other methods were also implemented in 

order to investigate their suitability for performing the analyses; however none were 

able to produce conclusive results. The NDi/oONF approach is the only method able 

to generate an input/output map for the five compartment model of the form (5.18) - 

(5.22), however this is insufficient to demonstrate structural identifiability as this 

approach does not account for unknown initial conditions. The structural 

identifiability analyses show that the five compartment model of the form (5.18) - 

(5.22) with equal apparent volumes of distribution is uniquely identifiable for the 

experiments/observations available, adding greater confidence to the numerical 

parameter estimation carried out. 

The five compartment model of the form (5.18) - (5.22) is derived on mechanistic 

principles based on knowledge of the processes considered and describes the OATP 

binding kinetics of CsA accurately, endorsing the applicability and robustness of the 

model developed in Chapter 4 for both in vitro and in vivo applications. Additionally 

most of the parameters and rate constants have been estimated to a reasonable degree 

of accuracy, characterising substrate binding to OATP with transportation into 

hepatic cells numerically. 
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Unfortunately the model of the form (5.18) - (5.22) does not describe the bile acid 

concentration measurements very accurately. However there are significant issues 

with the quantity and quality of the bile acid data; better quality and more frequent 

data are required in order to develop the model further via incremental changes. It 

may be possible that inherent bile acid inter-subject variability is too large in order to 

model the mechanism precisely. Further work is therefore required to investigate the 

competitive binding between CsA and bile acids, using other compounds, to 

ascertain the suitability of the model and potentially propose a more robust model for 

the prediction of uptake at different dose levels.  

5.8 References 

DeSesso, J. M., & Jacobson, C. F. (2001). Anatomical and physiological parameters 

affecting gastrointestinal absorption in humans and rats. Food and Chemical 

Toxicology, 39(3), 209-228. 

Endres, C. J., Hsiao, P., Chung, F. S., & Unadkat, J. D. (2006). The role of 

transporters in drug interactions. European journal of pharmaceutical sciences, 

27(5), 501-517. 

Hagenbuch, B., & Gui, C. (2008). Xenobiotic transporters of the human organic 

anion transporting polypeptides (OATP) family. Xenobiotica, 38(7-8), 778-801. 

Higuchi, H., & Gores, G. J. (2003). IV. Bile acids and death receptors. American 

Journal of Physiology-Gastrointestinal and Liver Physiology, 284(5), G734-G738. 

Hofmann, A. F., & Borgström, B. (1964). The intraluminal phase of fat digestion in 

man: the lipid content of the micellar and oil phases of intestinal content obtained 

during fat digestion and absorption. Journal of Clinical Investigation, 43(2), 247. 

Hofmann, A. F. (1999). The continuing importance of bile acids in liver and 

intestinal disease. Archives of internal medicine, 159(22), 2647. 



CHAPTER 5.  TRANSPORTER MEDIATED DRUG-DRUG INTERACTIONS 

246 

 

Hofmann, A. F., (2002). Cholestatic liver disease: pathophysiology and therapeutic 

options. Liver, 22(s2), 14-19. 

Huang, W., M, K., Zhang, J., Qatanani, M., Cuvillier, J., Liu, J., & Moore, D. D. 

(2006). Nuclear receptor-dependent bile acid signaling is required for normal liver 

regeneration. Science, 312(5771), 233-236. 

Kim, I., Morimura, K., Shah, Y., Yang, Q., Ward, J. M., & Gonzalez, F. J. (2007). 

Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. 

Carcinogenesis, 28(5), 940-946. 

Kim, I., Ahn, S. H., Inagaki, T., Choi, M., Ito, S., Guo, G. L., & Gonzalez, F. J. 

(2007). Differential regulation of bile acid homeostasis by the farnesoid X receptor 

in liver and intestine. Journal of lipid research, 48(12), 2664-2672. 

Krone, C. L. (1970). Defective intraluminal lipid digestion following ileectomy. 

Arizona medicine, 27(4), 99. 

Rust, C., Karnitz, L. M., Paya, C. V., Moscat, J., Simari, R. D., & Gores, G. J. 

(2000). The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-

kinase-dependent survival signaling cascade. Journal of Biological Chemistry, 

275(26), 20210-20216. 

Shaffer, E. A. (2000). Review article: control of gall‐bladder motor function. 

Alimentary pharmacology & therapeutics, 14(s2), 2-8. 

Stellwag, E. J., & Hylemon, P. B. (1979). 7alpha-Dehydroxylation of cholic acid and 

chenodeoxycholic acid by Clostridium leptum. Journal of lipid research, 20(3), 325-

333. 

Van Deest, B. W., Fordtran, J. S., Morawski, S. G., & Wilson, J. D. (1968). Bile salt 

and micellar fat concentration in proximal small bowel contents of ileectomy 

patients. Journal of Clinical Investigation, 47(6), 1314. 

Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, 

H., & Auwerx, J. (2006). Bile acids induce energy expenditure by promoting 

intracellular thyroid hormone activation. Nature, 439(7075), 484-489. 

Westergaard, H. (2007). Bile acid malabsorption. Current treatment options in 

gastroenterology, 10(1), 28-33. 



CHAPTER 5.  TRANSPORTER MEDIATED DRUG-DRUG INTERACTIONS 

247 

 

Yang, F., Huang, X., Yi, T., Yen, Y., Moore, D. D., & Huang, W. (2007). 

Spontaneous development of liver tumors in the absence of the bile acid receptor 

farnesoid X receptor. Cancer research, 67(3), 863-867. 

 

 



248 

 

Chapter 6  

Conclusions 

Mathematical modelling using compartmental analysis of transporter kinetics has 

been investigated using existing knowledge of the biological processes considered. 

The motivation for this work was to describe breast cancer resistance protein 

(BCRP) cellular efflux and organic anion transporting polypeptide (OATP) hepatic 

uptake using physiologically based pharmacokinetic (PBPK) modelling to gain 

mechanistic insights into the complex and often non-linear physiological processes 

present. Furthermore, in vitro competitive binding to BCRP was investigated using a 

potent inhibitor, Fumitremorgin C (FTC). Similarly in vivo competitive binding to 

OATP between bile acid and an immunosuppressant drug, Cyclosporin A (CsA), 

was explored. 

6.1  BCRP Models 

The two mathematical models derived in Chapter 3 adequately reproduced the 

observed time series data provided by AstraZeneca. The parameter estimates across 

experimental values for total number of binding sites on the transporter and the 

nucleus did not differ greatly between experimental conditions, which suggested that 

the conditions within each well of the multi-well plate are similar.  

The models fit their purpose, as they adequately describe the data observed and are 

derived on mechanistic principles based on knowledge of the biological processes 

considered. Additionally all the parameters and rate constants have been estimated to 
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a reasonable degree of accuracy, which can be judged by the SDLN values produced 

by FACSIMILE for each parameter characterising substrate binding to DNA with 

transportation of the substrate out of the cell numerically. Given these estimates, the 

binding affinity of FTC for the BCRP transporter was calculated to be 

51.67  1  0 μM . It can further be seen that BCRP mediated cellular kinetics can be 

indirectly measured in this way.  

6.2  OATP Models 

The in vitro disposition of OATP binding kinetics was characterised using two non-

linear pharmacokinetic models, one for rat and human and another for dog. 

Previously modelling has not considered dog and human data. The models 

developed in this thesis offer significant advantages over the three mechanistic 

models published previously, namely Paine et al., 2008; Poirier et al., 2008; 

Menochet et al. 2012, which studied rat hepatocytes, Chinese hamster ovary control 

cells, and artificial membranes. One of the main limitations of the previous 

modelling is the data analysis, in particular the choice of numerical integrator for the 

parameter fitting; the models developed in Chapter 4 were found to be highly stiff 

(see Table 4.14) and the numerical integrators implemented in the previously 

published models (Runge-Kutta and algorithms present in Matlab) are likely to 

struggle with highly stiff systems and hence with parameter estimation. 

FACSIMILE’s numerical integrator used for the modelling in this thesis is able to 

handle highly stiff systems and give greater confidence to the parameter estimates 

obtained. Furthermore, although these mechanistic model are suspected to be 

superior to the conventional two step approach, the authors do not offer a measure 

for the goodness of fit of their results and it is therefore impossible to establish 
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whether their respective models are an improvement. It is therefore the first time the 

underlying assumption supporting the conventional two step approach is 

comprehensively debunked using statistical testing. 

In Chapter 4, fits of numerous concentration data profiles are directly compared to 

the conventional two step approach for three species (rat, dog and human), offering 

not only an advantage in terms of the number of species evaluated, but also allowing 

for statistical comparison as to which fits describe the data more accurately. This 

analysis demonstrates that both models proposed characterise the data more 

accurately than the conventional two step approach for all three species (rat, dog and 

human), and that the estimated passive diffusion rates from 37°C data are 

significantly different to those estimated from 4°C data. This suggests that the 

current widely accepted view, that the rate of diffusion of Pitavastatin into the cell is 

the same at both 4°C and 37°C, but that the transporter action only occurs at 37°C, is 

inaccurate. It follows that 37°C data should be fitted independently and it is therefore 

unnecessary to collect 4°C data altogether, potentially cutting down the number of 

experiments performed, reducing costs and supporting the 3Rs. 

Steady state analysis on both models revealed that the model for rat and human 

hepatocytes is more robust to different initial concentrations of Pitavastatin than the 

three compartment model for the dog data. The most sensitive parameters are r3 and 

KM for the rat and human model, whereas the most sensitive parameters for the dog 

model depend on the initial concentration of Pitavastatin: k1, r3, and T0 are the most 

sensitive at low initial concentrations and only r3 and T0 are the most sensitive at the 

higher initial concentrations. 



CHAPTER 6.  CONCLUSIONS 

251 

 

The in vivo disposition of the established OATP substrate Cyclosporin A (CsA) was 

subsequently evaluated in rat. The mechanistic model developed describes the 

competitive binding that occurs between CsA and bile acids in the liver and 

combines the characteristics from the in vitro data models developed in Chapters 3 

and 4, and characterises the OATP binding kinetics of CsA accurately, offering some 

validation to the applicability and robustness of the model developed in Chapter 4 

for both in vitro and in vivo applications. Additionally most of the parameters and 

rate constants have been estimated to a reasonable degree of accuracy, characterising 

in vivo substrate binding to OATP with transportation into hepatic cells numerically. 

However the model developed does not describe the bile acid concentration 

measurements very precisely, mainly due to the poor quantity and quality of the bile 

acid data, thus further work with more data is required. 

6.3 Passive Diffusion vs Active transport 

As described in Chapter 2, it has only been recently proposed that carrier mediated 

cellular uptake is responsible for most of the membrane drug transport in biological 

systems. Up until this point it had generally been widely accepted that numerous 

medicinal molecules were transported across biological membranes via simple 

diffusion alone. This has been an area of contention; with completely different points 

of view expressed in the literature. Sugano et al. 2010 support the view that passive 

diffusion and carrier mediated cellular transport coexist in membrane drug transport, 

both having a vital role and their relative importance being dependent on the specific 

drug and conditions. By contrast, Kell et al. 2011 assert that drug transport through 

biological membranes is in fact almost exclusively carrier mediated. However all the 

models developed in this thesis include both passive diffusion and active transport, 
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as they were found to describe experimental data more accurately than each process 

on its own, in line with all of the latest evidence on drug transport (Di et al. 2012). 

6.4  Structural Identifiability and 

Indistinguishability Analyses 

Structural identifiability analyses were performed on all the models developed in this 

thesis using a variety of methods applicable to non-linear systems. The similarity 

transformation approach for uncontrolled systems (STAUS) proved the most useful 

for the models developed in Chapters 3 and 5, whereas the Algebraic Input/Output 

Relationship Approach (Ai/oRA) was the most successful in terms of obtaining 

conclusive results for the models developed in Chapter 4. These two methods 

consistently outperform the Differential Algebra Approach Using Characteristic Sets 

(DAACS) and Non-differential Input/Output Observable Normal Form Approach 

(NDi/oONF). The Taylor series expansion approach proves to be the least suitable in 

all cases. Other methods were also implemented, but failed to produce solutions. The 

direct test (Denis-Vidal & Joly-Blanchard 2000) is not applicable for most of the 

models described in this thesis as it requires measuring at least one compartment 

directly. DAISY (Bellu et al. 2007) is another differential algebra method software 

base tool, which is less efficient and generally unable to solve the algebraic 

equations generated. GenSSI (Chis et al. 2011) produces identifiability tableaus and 

reduces them sequentially but fails to solve the remaining equations in most cases. 

The structural identifiability analyses show that all models used for parameter 

estimation are uniquely identifiable for the experiments/observations available, 

adding greater confidence to the numerical parameter estimation carried out. 



CHAPTER 6.  CONCLUSIONS 

253 

 

6.5 Further work 

Further work is required to investigate the competitive binding between Hoechst 

33342 and FTC, using other inhibitors, with a view to elucidate the small 

discrepancies between the two models’ parameter estimates. The intention here 

would be to produce simultaneous fits of different inhibitors across different initial 

concentrations whilst keeping the Hoechst kinetics common. The author also 

recommends investigating if the pseudo steady state assumption from Section 5.1.2 

could be applied to the BCRP model. Incremental changes and improvements should 

ultimately propose a more robust model for prediction of uptake at different dose 

levels. Such a model has the potential to be used to estimate the dosage levels 

required in order to achieve the levels of absorption desired once bound to DNA.  

More data are required in order to develop the in vivo OATP model further. It may 

be possible that inherent bile acid inter-subject variability is too large in order to 

model the mechanism precisely and mixed effects modelling should therefore be 

considered. Further work is required to investigate the competitive binding between 

CsA and bile acid, using other compounds, to ascertain the suitability of the model 

and potentially propose a more robust model for prediction of uptake at different 

dose levels.   
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Appendix A 

Maple code for demonstrating that the reduced model of the form (3.23) - (3.27) is 

structurally globally identifiable (SGI) using the STAUS approach. 
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Maple code for demonstrating that the full model of the form (3.11) - (3.18) is 

structurally globally identifiable (SGI) using the STAUS approach. 
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Appendix B 

Maple code for demonstrating that the reduced model of the form (3.23) - (3.27) is 

structurally globally identifiable (SGI) using the DAACS approach. 
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Appendix C 

Maple code for demonstrating that the reduced model of the form (3.23) - (3.27) is 

structurally globally identifiable (SGI) using the Ai/oRA approach. 
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Appendix D 

Maple code for demonstrating that the reduced model of the form (3.23) - (3.27) is 

structurally globally identifiable (SGI) using the NDi/oONF approach. 
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Appendix E 

Maple code for demonstrating that the model of the form (4.30) - (4.31) is 

structurally globally identifiable (SGI) using the DAACS approach. 
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Appendix F 

Maple code for demonstrating that the model of the form (4.84) - (4.86) is 

structurally globally identifiable (SGI) using the Ai/oAR approach. 
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Appendix G 

FACSIMILE code for performing the sensitivity analysis. 

*=========================================================== ; 

* 8 June 2011 University of Warwick; 

* Thomas Grandjean PhD research - T.Grandjean@hotmail.com ; 

*=========================================================== ; 

 

EXECUTE ; 

 

OPEN 8  "H:\hepatocytes\calc.out";  

OPEN 9  "H:\hepatocytes\residuals.out";  

OPEN 10 "H:\hepatocytes\h297sa2p.out"; 

**; 

 

PARAMETER 

K1 2.86E-06 

K2 1.00E-04 

K3 3.53E-02 

R1 2.86E-06 

R3 1.50E-03 

T0 8.07E+02; 

 

VARIABLE 

x1_01 x2_01 x3_01 y_01 

x1k1_01 x1k2_01 x1k3_01 x1r1_01 x1r3_01 x1T0_01 

x2k1_01 x2k2_01 x2k3_01 x2r1_01 x2r3_01 x2T0_01 

x3k1_01 x3k2_01 x3k3_01 x3r1_01 x3r3_01 x3T0_01 

… 

x1k1_39 x1k2_39 x1k3_39 x1r1_39 x1r3_39 x1T0_39 

x2k1_39 x2k2_39 x2k3_39 x2r1_39 x2r3_39 x2T0_39 

x3k1_39 x3k2_39 x3k3_39 x3r1_39 x3r3_39 x3T0_39 

; 

 

INTEGER #COUNT ; 

 

COMPILE INITIAL ; 

x1_01 = 300000 ; 

x2_01 = 0 ; 

x3_01 = 0 ; 

y_01  = 0 ; 

… 

x1_39 = 5000 ; 

x2_39 = 0 ; 

x3_39 = 0 ; 

y_39  = 0 ; 

 

**; 

 

COMPILE EQUATIONS ; 

'x1_01 = r1*x2_01 - k1*x1_01*(T0-x2_01) + k3*x3_01 - r3*x1_01 

; 
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'x2_01 = k1*x1_01*(T0-x2_01) - (r1+k2)*x2_01 ; 

'x3_01 = r3*x1_01 + k2*x2_01 - k3*x3_01 ; 

'y_01  =  k1*x1_01*(T0-x2_01) - (r1+k2)*x2_01  

 + r3*x1_01 + k2*x2_01 - k3*x3_01 ; 

'x1k1_01 = (-k1*(T0-x2_01)-r3)*x1k1_01 + (r1+k1*x1_01)*x2k1_01 

 + k3*x3k1_01 - x1_01*(T0-x2_01) ; 

'x2k1_01 = k1*(T0-x2_01)*x1k1_01 - (r1+k2+k1*x1_01)*x2k1_01 

 + x1_01*(T0-x2_01) ; 

'x3k1_01 = r3*x1k1_01 + k2*x2k1_01 - k3*x3k1_01 ; 

'x1k2_01 = (-k1*(T0-x2_01)-r3)*x1k2_01 + (r1+k1*x1_01)*x2k2_01 

 + k3*x3k2_01 ; 

'x2k2_01 = k1*(T0-x2_01)*x1k2_01 - (r1+k2+k1*x1_01)*x2k2_01 - 

x2_01 ; 

'x3k2_01 = r3*x1k2_01 + k2*x2k2_01 - k3*x3k2_01 + x2_01 ; 

'x1k3_01 = (-k1*(T0-x2_01)-r3)*x1k3_01 + (r1+k1*x1_01)*x2k3_01 

 + k3*x3k3_01 + x3_01 ; 

'x2k3_01 = k1*(T0-x2_01)*x1k3_01 - (r1+k2+k1*x1_01)*x2k3_01 ; 

'x3k3_01 = r3*x1k3_01 + k2*x2k3_01 - k3*x3k3_01 - x3_01 ; 

'x1r1_01 = (-k1*(T0-x2_01)-r3)*x1r1_01 + (r1+k1*x1_01)*x2r1_01 

 + k3*x3r1_01 + x2_01 ; 

'x2r1_01 = k1*(T0-x2_01)*x1r1_01 - (r1+k2+k1*x1_01)*x2r1_01 -

x2_01 ; 

'x3r1_01 = r3*x1r1_01 + k2*x2r1_01 - k3*x3r1_01 ; 

'x1r3_01 = (-k1*(T0-x2_01)-r3)*x1r3_01 + (r1+k1*x1_01)*x2r3_01 

 + k3*x3r3_01 - x1_01 ; 

'x2r3_01 = k1*(T0-x2_01)*x1r3_01 - (r1+k2+k1*x1_01)*x2r3_01 ; 

'x3r3_01 = r3*x1r3_01 + k2*x2r3_01 - k3*x3r3_01 + x1_01 ; 

'x1T0_01 = (-k1*(T0-x2_01)-r3)*x1T0_01 + (r1+k1*x1_01)*x2T0_01 

 + k3*x3T0_01 - k1*x1_01 ; 

'x2T0_01 = k1*(T0-x2_01)*x1T0_01 - (r1+k2+k1*x1_01)*x2T0_01 

 + k1*x1_01 ; 

'x3T0_01 = r3*x1T0_01 + k2*x2T0_01 - k3*x3T0_01 ; 

… 

'x1_39 = r1*x2_39 - k1*x1_39*(T0-x2_39) + k3*x3_39 - r3*x1_39 

; 

'x2_39 = k1*x1_39*(T0-x2_39) - (r1+k2)*x2_39 ; 

'x3_39 = r3*x1_39 + k2*x2_39 - k3*x3_39 ; 

'y_39  =  k1*x1_39*(T0-x2_39) - (r1+k2)*x2_39  

 + r3*x1_39 + k2*x2_39 - k3*x3_39 ; 

'x1k1_39 = (-k1*(T0-x2_39)-r3)*x1k1_39 + (r1+k1*x1_39)*x2k1_39 

 + k3*x3k1_39 - x1_39*(T0-x2_39) ; 

'x2k1_39 = k1*(T0-x2_39)*x1k1_39 - (r1+k2+k1*x1_39)*x2k1_39 

 + x1_39*(T0-x2_39) ; 

'x3k1_39 = r3*x1k1_39 + k2*x2k1_39 - k3*x3k1_39 ; 

'x1k2_39 = (-k1*(T0-x2_39)-r3)*x1k2_39 + (r1+k1*x1_39)*x2k2_39 

 + k3*x3k2_39 ; 

'x2k2_39 = k1*(T0-x2_39)*x1k2_39 - (r1+k2+k1*x1_39)*x2k2_39 - 

x2_39 ; 

'x3k2_39 = r3*x1k2_39 + k2*x2k2_39 - k3*x3k2_39 + x2_39 ; 

'x1k3_39 = (-k1*(T0-x2_39)-r3)*x1k3_39 + (r1+k1*x1_39)*x2k3_39 

 + k3*x3k3_39 + x3_39 ; 

'x2k3_39 = k1*(T0-x2_39)*x1k3_39 - (r1+k2+k1*x1_39)*x2k3_39 ; 

'x3k3_39 = r3*x1k3_39 + k2*x2k3_39 - k3*x3k3_39 - x3_39 ; 

'x1r1_39 = (-k1*(T0-x2_39)-r3)*x1r1_39 + (r1+k1*x1_39)*x2r1_39 

 + k3*x3r1_39 + x2_39 ; 

'x2r1_39 = k1*(T0-x2_39)*x1r1_39 - (r1+k2+k1*x1_39)*x2r1_39 -
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x2_39 ; 

'x3r1_39 = r3*x1r1_39 + k2*x2r1_39 - k3*x3r1_39 ; 

'x1r3_39 = (-k1*(T0-x2_39)-r3)*x1r3_39 + (r1+k1*x1_39)*x2r3_39 

 + k3*x3r3_39 - x1_39 ; 

'x2r3_39 = k1*(T0-x2_39)*x1r3_39 - (r1+k2+k1*x1_39)*x2r3_39 ; 

'x3r3_39 = r3*x1r3_39 + k2*x2r3_39 - k3*x3r3_39 + x1_39 ; 

'x1T0_39 = (-k1*(T0-x2_39)-r3)*x1T0_39 + (r1+k1*x1_39)*x2T0_39 

 + k3*x3T0_39 - k1*x1_39 ; 

'x2T0_39 = k1*(T0-x2_39)*x1T0_39 - (r1+k2+k1*x1_39)*x2T0_39 

 + k1*x1_39 ; 

'x3T0_39 = r3*x1T0_39 + k2*x2T0_39 - k3*x3T0_39 ; 

**; 

 

SETPSTREAM 1 8; 

**; 

SETPSTREAM 2 9; 

**; 

 

DATA ; 

TIME y_01   y_02   y_03   y_04   y_05   y_06   y_07   y_08   

y_09 

 y_10   y_11   y_12   y_13   y_14   y_15   y_16   y_17   y_18   

y_19 

 y_20   y_21   y_22   y_23   y_24   y_25   y_26   y_27   y_28   

y_29 

 y_30   y_31   y_32   y_33   y_34   y_35   y_36   y_37   y_38   

y_39 ; 

RANGE  5596.2 7460.1 3864.6 6770.7 7785.9 6250.5 5597.1 5610.6 

6459.3 

 2656.8 4514.4 5098.5 4697.1 3714.3 3865.5 4805.1 3711.6 

3006.9 2539.8 

 3302.1 2273.4 2700   2439   1079.1 2099.7 2861.1 2164.5 

1872.9 1678.5 

 1918.8 1075.5 828    1305.9 885.6  610.2  898.2  527.4  816.3  

859.5 ; 

0 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 

 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 

 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 

 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 1E-36 ; 

10 5688 6083.1 6149.7 5635.8 5565.6 5434.2 4592.7 4646.7 

5582.7 

 4227.3 4067.1 3681 2073.6 3287.7 2004.3 1675.8 1716.3 1845 

1580.4 

 1744.2 1351.8 1106.1 1179 1618.2 824.4 1198.8 1125.9 670.5 

803.7 

 773.1 599.4 736.2 558.9 315.9 260.1 342.9 184.5 284.4 204.3 ; 

30 6087.6 7092.9 7090.2 5028.3 4790.7 6800.4 4127.4 4979.7 

6852.6 

 4602.6 4458.6 4246.2 4406.4 5274.9 3970.8 3623.4 3014.1 

3549.6 2463.3 

 3252.6 3073.5 2605.5 2438.1 2218.5 1810.8 2738.7 1831.5 

1589.4 1666.8 

 1595.7 1125.9 1113.3 1025.1 692.1 550.8 714.6 458.1 388.8 

511.2 ; 

50 11284.2 13543.2 10014.3 11799 12576.6 11684.7 9724.5 

10257.3 12042 
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 6510.6 8581.5 8779.5 3427.2 5432.4 4183.2 4670.1 3471.3 

4101.3 3058.2 

 3337.2 2970.9 2928.6 2884.5 2697.3 2250 2969.1 2252.7 1916.1 

2001.6 

 2027.7 1631.7 1412.1 1246.5 762.3 706.5 854.1 466.2 910.8 

551.7 ; 

70 9733.5 9605.7 8910 10308.6 10460.7 8931.6 9476.1 9463.5 

7922.7 

 6884.1 7292.7 6659.1 6770.7 7002 5869.8 6480.9 5427.9 4851.9 

4120.2 

 5046.3 3625.2 3806.1 3618 2692.8 2924.1 4059.9 3290.4 2543.4 

2482.2 

 2691.9 556.2 1564.2 1864.8 1201.5 870.3 1241.1 711.9 1100.7 

1063.8 ; 

**; 

 

SETVARY K1 K2 K3 R1 R3 T0 ; 

 

BEGIN; 

 

COMPILE INSTANT ; 

WRITE 1=10, "TIME  y_01 x3k1_01 x3k2_01 x3k3_01 x3r1_01 

x3r3_01 x3T0_01 

 y_04 x3k1_04 x3k2_04 x3k3_04 x3r1_04 x3r3_04 x3T0_04 

 y_07 x3k1_07 x3k2_07 x3k3_07 x3r1_07 x3r3_07 x3T0_07 

 y_10 x3k1_10 x3k2_10 x3k3_10 x3r1_10 x3r3_10 x3T0_10 

 y_13 x3k1_13 x3k2_13 x3k3_13 x3r1_13 x3r3_13 x3T0_13 

 y_16 x3k1_16 x3k2_16 x3k3_16 x3r1_16 x3r3_16 x3T0_16 

 y_19 x3k1_19 x3k2_19 x3k3_19 x3r1_19 x3r3_19 x3T0_19 

 y_22 x3k1_22 x3k2_22 x3k3_22 x3r1_22 x3r3_22 x3T0_22 

 y_25 x3k1_25 x3k2_25 x3k3_25 x3r1_25 x3r3_25 x3T0_25 

 y_28 x3k1_28 x3k2_28 x3k3_28 x3r1_28 x3r3_28 x3T0_28 

 y_31 x3k1_31 x3k2_31 x3k3_31 x3r1_31 x3r3_31 x3T0_31 

 y_34 x3k1_34 x3k2_34 x3k3_34 x3r1_34 x3r3_34 x3T0_34 

 y_37 x3k1_37 x3k2_37 x3k3_37 x3r1_37 x3r3_37 x3T0_37" % ; 

#COUNT=0 ; 

**; 

 

COMPILE PRINT; 

* Output routine called during the final phase; 

#COUNT = #COUNT + 1 ; 

DO 10 FOR #2=#COUNT-1 ; 

WRITE 1=10,  ((E14,6))TIME, 

y_01, x3k1_01, x3k2_01, x3k3_01, x3r1_01, x3r3_01, x3T0_01, 

y_04, x3k1_04, x3k2_04, x3k3_04, x3r1_04, x3r3_04, x3T0_04, 

y_07, x3k1_07, x3k2_07, x3k3_07, x3r1_07, x3r3_07, x3T0_07, 

y_10, x3k1_10, x3k2_10, x3k3_10, x3r1_10, x3r3_10, x3T0_10, 

y_13, x3k1_13, x3k2_13, x3k3_13, x3r1_13, x3r3_13, x3T0_13, 

y_16, x3k1_16, x3k2_16, x3k3_16, x3r1_16, x3r3_16, x3T0_16, 

y_19, x3k1_19, x3k2_19, x3k3_19, x3r1_19, x3r3_19, x3T0_19, 

y_22, x3k1_22, x3k2_22, x3k3_22, x3r1_22, x3r3_22, x3T0_22, 

y_25, x3k1_25, x3k2_25, x3k3_25, x3r1_25, x3r3_25, x3T0_25, 

y_28, x3k1_28, x3k2_28, x3k3_28, x3r1_28, x3r3_28, x3T0_28, 

y_31, x3k1_31, x3k2_31, x3k3_31, x3r1_31, x3r3_31, x3T0_31, 

y_34, x3k1_34, x3k2_34, x3k3_34, x3r1_34, x3r3_34, x3T0_34, 

y_37, x3k1_34, x3k2_37, x3k3_37, x3r1_37, x3r3_37, x3T0_37; 
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LABEL 10; 

**; 

 

SETNOFIT; 

WHENEVER TIME = TOBS % CALL PRINT; 

**; 

 

BEGIN; 

STOP; 
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Appendix H 

Maple code for demonstrating that the five compartment model of the form (5.18) - 

(5.22) satisfies the ORC. 
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Appendix I 

Maple code for demonstrating that the seven compartment model of the form (5.1) - 

(5.7) satisfies the ORC. 
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