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Captain, the most elementary
and valuable statement in science,
the beginning of wisdom, is,

"I do not know".

I do not know what that is, sir.

— Lt. Cmdr. Data, Entrprise, Star Trek
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ABSTRACT

This thesis examines the existence of dual Markov processes and presents the full characterization

of Markov processes in Euclidean space equipped with the natural order (the Pareto order).

Considering the theory of Siegmund’s duality for real-valued Markov Processes, we have presented
an alternative proof to Siegmund [72] using Lebesgue-Stieltjes integration by parts to show the
existence of a Markov dual process in several one dimensional cases, including the real space and
closed intervals. Assuming that a dual process exists, we also provided a straightforward method,
using duality relation, to compute explicitly the dual generator to a Feller process of the usual

Lévy-Khintchine type.

We extended Siegmund’s duality to finite dimensional space equipped with the Pareto order.
The existence of a dual Markov process on an arbitrary Euclidean space is shown using Fubini’s
Theorem applied to Siegmund’s approach. Given a pre-generator of the general Lévy-Khintchine
type, we were able to construct a Feller process with an invariant core under some conditions
assumed on the pre-generator. Furthermore, we also showed the criterion for the Feller process

to have a dual Markov process.

We then studied the relationship between intertwining and duality for two processes in the sense
of Ef(X},y) = Ef(x, Y{) for a certain function f. Of most interest are shift-invariant functions
(functions which depend on the difference of their arguments). To explore this, we developed a
systematic approach to duality using the analysis of the generators of dual Markov processes, then
illustrated this approach using various examples. In particular, we gave a full characterization of

duality arising from Pareto order in R¢ in terms of generators for basic classes of Feller processes.

Lastly, we initiate the application of intertwining to the study of duality of Markov processes
in domains with a boundary. To circumvent specific difficulties arising from the boundary, we

introduce an additional tool of a regularized dual.

viii
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1.1 INTRODUCTION

There are different notions for duality in stochastic analysis. For instance, the Markov processes
(X¥)t=0and (Y} )t>0 (small x, y here, and in what follows, denote the initial points of respective
processes) which take values in the same Borel space E are called dual with respect to the reference

measure v on E, if the duality equation

| Eni)gtovan) = | nvEg(vviay (11)
E E

holds for the appropriate class of functions h and g.

Alternatively, suppose that f is a Borel function on the product E x F of two Borel spaces. One
says that an F-valued Markov process Y} is an f-dual (or dual with respect to function f) to an

E-valued Markov process X7, if
Ef(x, YY) = Ef(X{,y) (1.2)

forall x € E,y € F.In this definition, E on the right hand side and the left hand side of (1.2)

correspond to the distributions of processes X} and Y respectively.



A particular case of (1.2) is the duality of one-dimensional processes (spaces E and F are real-

valued) arising from stochastic monotonicity, where f(x,y) = 1(x>} and hence (1.2) becomes
P(Y! <x) =P(X} >vy). (1.3)

This is Siegmund’s duality. In the classical Lévy’s example of this duality, X¥ and Y{ are the

reflected and absorbed Brownian motions on R, .

Duality of the first kind in (1.1) is not the focus of this thesis and we refer readers to e.g. work
by Angiuli et al. [4] and references therein for a detailed survey of the theory. Instead, we are
concerned with the f-duality, in particular, the existence and characterisation of dual Markov

processes in the sense of (1.2).

This thesis presents three approaches to the problem of finding the existence of duality, namely
the Lebesgue-Stieltjes integration by parts, Fubini’s Theorem and intertwining. Part I of this thesis
(chapters 2 and 3) focuses on the existence of dual Markov processes in finite dimensional real
space. This part begins by revisiting the existence of Siegmund’s duality in different scenarios in
the real space R. In contrast to the method given by Siegmund [72], our proof to the existence
of duality employs Lebesgue-Stieltjes integration by parts. This notion of duality is extended to
finite-dimensional spaces, where the existence of a dual Markov process in R is established via

Fubini’s Theorem.

In Part IT (chapters 4, 5, 6 and 7), we study the tool of intertwining and its role in generalising the
theory of duality to f-duality on R¢ arising from Pareto and similar partial orders. Our objective
here is to characterise classes of dual Markov processes with respect to shift-invariant functions
(functions which depend on the difference of its arguments). The full characterization of duality
is given in terms of generators for basic classes of Feller processes. When considering the duality
of Markov processes in domains with a boundary, we introduce the concept of a regularised dual

to overcome difficulties which arose in this scenario.

1.2 A BRIEF SURVEY OF THE THEORY

In the early fifties, the notion of a duality relation was implicitly described by Lindley [57, 58]

in the application of random walks in queuing theory. In both papers he used the notion of



duality to transform solutions to problems for the "absorbing walk" into solutions to problems for
the "reflecting walk". The word “dual” was believed to be first used in the late fifties in the work
by Karlin and Mcgregor [47], where the properties of ergodicity, recurrence and transience of
birth and death process were characterised. The duality relation of absorbing and non-absorbing

processes was discussed in section 6 of the paper by Karlin and Mcgregor [47].

The general concept of duality has been formalised during the following decades. In general, there
are three main approaches to duality, namely the classical Markovian approach developed by
Siegmund, stochastic recursion and intertwining. In 1976 Siegmund [72] studied duality on the
positive half line. Siegmund showed, using Fubini’s Theorem, that the dual of a Markov process,
reflected at the origin, is uniquely determined by (1.3) and is also a Markov process absorbed at
the origin. The existence of a dual Markov process is conditional on the original Markov process

being stochastically monotone, which was first defined by Daley [22].

In 1996, Asmussen and Sigman [11] developed another approach to duality using stochastic
recursion. In the paper, the authors considered stochastic sequences (Vi )>¢ defined via general
recursion Vi1 = f(V4, Uy ). Here, (Uy )¢>0 is a stationary driving sequence and the function f is
non-negative, continuous and monotone in its first variable. A dual function g of f is constructed
such that g(-.u) is the generalised inverse of f(+, ). One way to achieve this is to obtain U in g
by time-reversing U in the original function f. This kind of duality coincides with Siegmund’s
duality for Markov chains with discrete time when (U¢)¢>0 are uniformly, independently and

identically distributed on the interval (0, 1).

Both approaches developed by Siegmund [72] and Asmussen and Sigman [11] were restricted to
one dimensional cases with discrete or continuous time. Blaszczyszyn and Sigman [14] extended
both methods to general state-space with discrete time. For the case of stochastic recursion,
Blaszczyszyn and Sigman [14] introduced a set-value dual function to allow for unique inversion
in general state-space. On the other hand, Choquet’s Theorem was employed in their paper to
construct Markovian duality on general state-space. Sigman and Ryan [73] studied the theory
of duality for continuous-time, real-valued stochastic processes that were defined via general

recursive functions driven by processes with stationary increments.

In the paper by Holley and Stroock [40], Siegmund’s theory was generalised to duality with

respect to a function, in the sense of E(f(X¥,y)) = E(f(x,Y?)) for a certain function f. The



textbook by Liggett [56] gave a detail survey on this kind of duality. This notion of duality is
mainly studied at the level of Markovian semi-group, using tools in functional analysis such
as intertwining (see e.g. [65] by Pal and Shkolnikov) or “dressing operators” (see e.g. [80] by
Takasaki). Generally speaking, two Markov semi-groups (T¢)¢>0 and (St)t>0 on (E, €) and
(F, F) are said to be intertwined via a Markov kernel Q : (E, &) — (F,F) if StQ = QT (see [13]
by Baine and references therein for a detailed survey on the tool). The notion of intertwining can
be seen as a transfer of spectral information between semi-groups, or a link between Markov

processes.

Section 5 of the paper by Carmona et al. [16] provides assumptions allowing the properties
of intertwining and duality to be equivalent. The duality relationship between Markov chain
kernels was established via intertwining in the work by Huillet and Martinez [43]. In the paper,
Huillet presented duality between stochastic matrices, in discrete time and space, and revisited
Siegmund’s duality of monotone chains, birth and death processes and the non-neutral Moran

model.

The properties of duality have also attracted significant interest by researchers since the early
1980s. Cox and Rosler [20] studied duality in the sense of (1.2) and its relation to time reversal
when reversing the role of entrance and exit laws. Clifford and Sudbury [19] explained Siegmund’s
duality for absorbing and reflecting Markov processes and identified the sample paths of their dual
by using a graphical representation similar to that used in the study of infinite particle systems.
Strong stationary duality was discussed by Diaconis and Fill [26]. In particular, they showed that
strong stationary times could be studied by constructing an absorbing dual process in such a way
that the strong stationary time for the original process is equivalent to the absorption time of
the dual process. A simulation procedure via Siegmund’s duality was suggested and discussed in
detail by Asmussen and Rubinstein [10]. In the textbook by Anderson [3], stochastic monotonicity
and duality for Markov chains were surveyed in detail. The properties of stochastic monotonicity
and duality of Markov chains form an important tool in the work by Kolokoltsov [54]. In the
paper, Kolokoltsov developed the theory of monotonicity and duality for one-dimensional Feller
processes via the approximations of Markov chains. He then studied local monotonicity conditions
to prove the well-posedness of the corresponding Markov semi-group. Mohle [62] worked on

“cone duality” and its relation to the duality in the sense of (1.2).



Apart from developing the tools to construct dual Markov processes and studying their properties,
many research projects have also been conducted to discover applications for duality. For instance,
Siegmund’s duality applied in the context of queuing and storage systems or birth and death
chains yields the relationship between the probability of the considered process and the ruin
probability of the dual process. Suppose that (X})t>0 and (Y7 )t>0 are Markov processes on the
positive half line satisfying Siegmund’s duality relation in (1.3). Then P(X$ > y) = P(t < T),
where 7 is the first hitting time when the dual process (Y} ) reaches 0. For duality in queueing
theory, readers are referred to papers by Ghosal [34], Loynes [59], Bekker and Zwart [12] and
section 9.4 of work by Asmussen [7]. For birth and death chains, readers are referred to work by

Callaert [15], Anderson [3], van Doorn [81], van Doorn [82], Dette et al. [25], Daley [21].

In the field of interacting particle systems, the theory of duality was studied to obtain solutions
to particular problems (see for example work by Kipnis et al. [s0] and Spohn [75]). In this
field, stochastic monotonicity is known as being “attractive” Giardina et al. [36] studied the
deep connection between duality and symmetry of generators and gave a general scheme using
intertwining to construct a dual stochastic process for continuous time Markov processes whose

generator has a symmetry.

Another example of the applications for duality can be also seen in superprocesses (see Ethier
and Kurtz [32], Mytnik [64]). In Mytnik [64] the theory of duality was extended to investigate the
limiting behaviour of branching particle systems which undergo random migration and critical
branching. In insurance mathematics, there is also duality between queuing theory and the
risk processes (see papers by Asmussen and Pihlsgard [9], Djehiche [29] for duality in financial
ruin probabilities). In the field of population dynamics and branching processes, Alkemper and
Hutzenthaler [1] presented a stochastic picture of moment duality and Laplacian duality to the
processes in the field of population dynamics, by studying the graphical representation of the

approximation forward and backward particle processes.

1.3 MAIN CONTRIBUTION

This thesis focuses on time-homogenous Markov processes. We begin by presenting the criterion

for the existence of dual Markov processes in finite dimensional Euclidean space. We then consider



f-duality for the case of shift-invariant functions f and give a systematic study of the theory via
the analysis of the generators of dual Markov processes. Our study is inspired by the analysis of
one-dimensional processes by Kolokoltsov [52, 54]. The main result of this thesis (illustrating this
approach) will be a complete characterization, in terms of their generators, of Markov processes
in R¢, which are dual with respect to Pareto order. This characterization is seemingly new even
for the one-dimensional case, i.e. for Siegmund’s duality. Additionally we illustrate this approach
using other examples. We also address some difficulties arising from the conditions of Siegmund’s
duality (1.3) at boundary points. For instance, these boundary conditions prevent the second
dual to reflected Brownian motion to coincide with itself. In order to overcome such difficulties,

we introduce the notion of a regularized dual that can correct this and similar issues.

Let us emphasise that, in this thesis, we are not aiming to produce any new applications of
duality, instead we look at its characterisation. With this characterisation at hand, we greatly
extend the applicability of many known results on dual processes. For example, the transience-
recurrence duality (Theorem 3.5 in textbook by Liggett [56]) was essentially given without any
examples. Also, the example of exit-entrance duality in the paper Cox and Résler [20] were
reduced to Brownian motion and Ornstein-Uhlenbeck process. Another example includes the

ruin probability calculations of the work by Asmussen and Pihlsgard [9].

1.4 THESIS OUTLINE

PART 1

CHAPTER 2 This chapter introduces the notion of duality on one-dimensional real space. We
begin by extending Siegmund’s theory of stochastically monotone Markov processes on
the positive half line to the real space by presenting an alternative proof to Theorem 1
in Siegmund [72]. When considering duality on closed intervals we study the boundary
conditions for both the original and the dual Markov processes. This chapter is concluded
by computing an explicit form for the dual generator of a Feller process generated by the

usual Lévy-Khintchine type generator, given that the dual process exists.

CHAPTER 3 This chapter is devoted to generalising the concept of Siegmund duality to Pareto-

ordered finite dimensional space R9. The criterion for the existence of a Markov dual on



R4 are given. We also consider the example of an integro-differential (Lévy-Khintchine
type) pre-generator. Following the approach of Kolokoltsov [52, 55], we give the criterion
to construct a stochastically monotone Markov process from the pre-generator which

satisfies the criterion for its Markov dual process to exist in R9,

PART II

CHAPTER 4 As the beginning of Part II, this chapter lays the analytical foundation with the
objective of characterising the duality of Markov processes. Considering the f-duality in
the sense of (1.2), we give the basic tools of intertwining, and explain its role in deriving the
f-duality. Brief ideas on the applications of the tools to the theories of differential equations
and stochastic processes are discussed before we give detailed descriptions and examples

in the following chapters.

CHAPTER 5 In this chapter we deal with duality on R? arising from Pareto and similar partial-
order. After examining the characterisation for each case of diffusion and jump processes,
full characterisation of duality is given in terms of generators for basic Feller processes by
applying the tools discussed in chapter 4. This chapter is concluded by giving a pathwise

example of the study of duality via stochastic differential equations.

CHAPTER 6 This chapter focusses on the duality analysis of translation-invariant functions f,
in other words, functions depending only on the difference of their arguments, f(x,y) =

f(y — x). We shall give several examples of duality for such instances.

CHAPTER 7 In this chapter we address some of the difficulties arising from the condition (1.3)
at boundary points, which, for instance, prevents the second dual of a reflected Brownian
motion to coincide with itself. The tools proposed in Chapter 4 are utilised to study the
theory of duality for processes in domains with a boundary. To circumvent the difficulties
arising from the boundary conditions, we introduce an additional tool - the regularised

dual.
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2.1 INTRODUCTION

In this chapter the concept of stochastic monotonicity, in one dimensional real space, and its role
in defining Siegmund’s duality is introduced. The relationship between stochastic monotonicity
and duality was first explored by Siegmund [72], where the necessary and sufficient conditions
for a Markov dual process to exist on the positive half line (R ) were presented. This notion of
duality is generally known as Siegmund’s duality and has been used by e.g. Piau [67], Huillet
[42], Dette et al. [24].

More recently, Asmussen and Sigman [11] approached duality in discrete time using the stochastic
recursive method while Sigman and Ryan [73] presented the duality via stochastic recursion for
continuous-time processes. In both papers, the stochastic recursive approach to duality involves
an elementary sample-path analysis and is, so far, constrained to one dimension. Both Siegmund’s

and the stationary recursive duality method on discrete time are extended to general state-space by



Blaszczyszyn and Sigman [14]. In Anderson’s textbook [3], the theory is systematically presented

for Markov chains on discrete state-space.

We first introduce Siegmund’s duality in section 2.3. We then extend the theory from R to real
space by presenting an alternative proof to Theorem 1 in paper [72] by Siegmund. Additionally,
we discuss the boundary conditions of Siegmund duality’s on a closed interval on R. Lastly we
consider the example of a Feller process of the usual Lévy-Khintchine type which is assumed to
have a Markov dual process. We show an alternative method to that given by Kolokoltsov [54],
via direct computation using the duality relation to write the explicit form of the corresponding

dual generator.

2.2 BASIC NOTATIONS

Let (X{)t>o0 be a time-homogeneous Markov process on the real line R which is endowed
with Borel sigma-algebra B(IR). This Markov process is characterised by a family of transition
probability distribution functions P{(x, A ), which describe the probability of (X})>o arriving

in a real subset A at time t > 0 given that it starts from some x € R.

Suppose that Borel sets A and A ; are intervals (—oo, y] and [y, 0o) respectively for somey € R.
Then the transition probabilities for process X starting from x € R to arrive in the set Ajand A,
at time t can be written respectively as

PE(x A1) = PIXE < y) = FLly),

PY(x,A2) =P(X} = y)

The function P{(x, A7) = P(X¥ < y) is a cumulative distribution function of the random
variable (X} )¢>0 aty € R. If this function is absolutely continuous in y, then its probability
transition density function, denoted as py(x,y), exists. In this case, the probability transition
measure PX(x, dy) can also be expressed as py (x,y)dy. For the remainder of the section, let us

assume that process X is honest, that is PX(x,R) = 1 forallx € R, t > 0.

A Markov process (X§)¢>o is said to be stochastically monotone if the function P(X} > y) isa

non-decreasing in x for all fixed y. This also means that (X ) >0 is stochastically monotone if, and
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only if, the expectation E(f(X})), or correspondingly the semi-group T*f(x) is a non-decreasing

function in x for every non-decreasing function f.

Remark 1. The definition of stochastic monotonicity for Markov processes first appears in work
by Daley [22] where the notion of stochastic comparisons between Markov chains were discussed.
In general, we say that a Markov process (X} )0 stochastically dominates (Y{ )t>o if the semi-
group TXf(x) > TYf(y) for any bounded increasing functions f when x > y. Therefore, a
Markov process (Xf)¢>o is stochastically monotone if, and only if, it stochastically dominates
itself (see e.g. papers by Keilson and Kester [48], Wang [84], Chen and Wang [18] and references
therein for more on stochastic comparisons). Stochastic monotonicity and related duality are
well developed for Markov chains, see e.g. work by Anderson [3] and van Doorn [81], for birth

and death processes and for one-dimensional diffusions see work by Cox and Rdsler [20].

We will now give some examples of stochastically monotone Markov processes.

Example 1. Let (X{)¢>0 be a Poisson process with intensity c. First, we consider the transition

probabilities P(X} > y) when the process starts at x < y, both x, y € N. The function

N 0 efct(ct)(ifx)
PXt 2y) = Z Thox)
i=y '

00 e t(ct)t . .
i—y—x —q— becomes larger when i begins

is non-decreasing in x since the summation }_
at a smaller number. On the other hand, if the process starts at an x which is larger than y,
the probability distribution P(X} > y) = P(X} > x) = 1 since a Poisson process has non-
increasing sample paths by definition. Thus any Poisson process on N U {0} is stochastically

monotone.

Example 2. A Brownian Motion on R is also stochastically monotone. This is because the function

]
PXF>y) = J e HF de (2.1)
y V2mt

is non-decreasing in x € R, since on the right hand side (z — x)? decreases in x € R.
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Example 3. All time-homogeneous Lévy Processes are stochastically monotone. Let us consider

some x1 and x, € R such that x; > x1. By the property of translation invariance,

P(Xzsz > y) (Xzz+x1—x1 > U)

P
P(X{' >y —x2+x1)
P

(X' = v)

WV

since x2 — X1 is positive.

2.3 SIEGMUND'S DUALITY RELATION ON R.

Let us consider a stochastically monotone Markov process (X} )¢>0 on R such that forally € R,
the function P(X} > y) is right continuous in x € R and tends to 0 and T as x tends to —oo and
oo respectively. Let us denote Fz 1(x) as P(XY > y). Itis clear that Flj .t(x) is also a cumulative
distribution function. Therefore we are able to define a corresponding collection of random

variables (Y? )t>0 on R such that their cumulative distribution functions satisfy:

P(YY <x)=P(X{ >y) =F) (x). (2.2)

We call (2.2) Siegmund’s duality relation to emphasise an important contribution from Siegmund
[72]. The family of random variables (Y¢)¢>o that satisfies the duality relation is said to be a
dual to the Markov Process (X )¢>0. Conversely, if a Markov process (X¥)¢>0 has a dual with
cumulative distribution function Fg .t(x), the relation in (2.2) ensures (X{) (>0 is stochastically

monotone.

In this section, we are interested in the existence and uniqueness of dual Markov processes.
Since the dual is defined by equalities between probability distribution functions, a dual Markov
process must be unique. To show its existence in Theorem 2, we will use the following well-known

integration by parts methods (see for example, work by Hewitt [38] and de Barra [23]).
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Theorem 1. (Lebesgue-Stielges integration by parts) Let f and g be right-continuous functions on

the finite interval [a, b] such that both of them have bounded variation on [a, b]. Then
[ gt | gbodue =fib)g(v) - fla-)gla-) 3
a,b (l,b
where f(x—) = limyyx f(y) and Wy, wqare the signed measures induced by f and g respectively.

In the next proposition we extend the analogue of the above theorem from an arbitrary interval

to the real line.

Proposition 1. Let f and g be right-continuous, non-negative and monotonically increasing func-

tions on R such that both of them are bounded on R. Then

m f(b)g(b) — lim f(a)g(a) (2.4)

li
b—oo a——oo

| o1+ | gtadur =
R R
where f(x—) = limyqx f(x) and ¢, pgare the signed measures induced by f and g respectively.

The proofs to Theorem 1 and Proposition 1 are adaptations from those given by Hewitt [38] and
de Barra [23]. Both proofs are included in section 2.6 for completeness. With both tools we show

in the following theorem the necessary conditions for a dual Markov process to exist.

Theorem 2. Suppose that (X{)i>o0 € R is a stochastically monotone Markov process such that its
transition probability distribution functions P(XY > y) are right continuous in x € R and tend to

1 and 0 as x tends to co and —oo respectively. Then its dual (Y{ )i>0 is a Markov process.

Proof. It is enough to show that the family of random variables (Y{ )¢>0 defined by the duality

relation satisfies the Chapman-Kolmogorov equation.

Let us denote FY (z) as P(X} < z). Then dF} (z) is the probability measure that induces the
probability transition distribution of (X¥)¢>¢ for a given starting point x € R. The Chapman-

Kolmogorov equation of process (X} )¢>o for all x,y € R, and time u, s > O is

POXE,y > y) = J PXE > y)dFX (2] (25)
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where the right hand side is also equal to [}, F;( w(2) def,S (z) according to duality relation in
(2.2). Observe that both FY |, (z) and F} ( (z) are right continuous, monotonically increasing and

bounded by 0 and 1 for all z € R. Using Proposition 1, the equation above becomes

PX;, . >y

s+u =

FY FX
JR Y (2)dF(2)

= Zli_}mgo F;,u(z)Fff’S (z) — Zg@w F;)u(z)Ff,s (z) — LR Ff,s (z—)dFZ‘u(z)
where FY ((z—) = limyyy FX ((w). The first and second term on the right hand side of the

equation above tend to 1 and 0 respectively. Therefore we get

P(XS,y > y) =1 —J B (2 )dFY (2]
R

=1 —J P(X} < z)dF) ,(2).
R

Clearly, [ dFlj wl(z)=1as dF; . (2) is a probability measure on R. Substituting this into the

above,

r

P(XX, . >Yy) = ) dFy . (z) — JR Fx o(z=)dF) ,(2)

:J”R (1 —P(XY < z))dFZ,u(z)

r

=| P(X} > 2)dF) ,(2). (2.6)
JR

Applying the duality relation on both left and right hand sides of (2.6), we can write
P(YY,, <x)= J P(YZ < x)dF) ,(2). (2.7)
R

We can conclude that (X¥)¢>0 has a dual Markov process (Y{ )+>0 that corresponds to the family

of cumulative distribution functions F;( t ]

In Siegmund’s paper [72] Fubini’s theorem was used to show that the same necessary and sufficient
conditions are required for a dual to form a Markov process on the positive half line. This proof
can be easily adapted to Markov processes on the real line. This adaptation is presented in the

appendix section 2.6.
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Next, we show an example to compute the dual of a Lévy process.

Example 4. Let (X¢)¢>0 bea Lévy process. Then according to Theorem 2, its dual Markov process

exists. Furthermore, (Y¢)>0 also has an independent incremental property. This is because

Hence, the dual of Lévy process X is —Xt. In other words, the dual is also a Lévy process with

sample paths of the opposite direction.

Now, we look at some analytical properties of Siegmund’s duality. Let B(IR) be the Banach space
of bounded Borel-measurable functions equipped with the supremum norm. Also, let CX (R) be
the space of k times differentiable functions on R with all these derivatives vanishing at infinity.
By (T{X) >0 we denote a Markov semi-group on B(RR) corresponding to Markov process (Xi)t>o0-

Then for any f € B(R) we write

TXf(x) = E(f(Xt)IXo - x)
- E(f(X’t‘)).

The transition probability distribution function P(X} > y) can also be represented as TX1 >y (x).
Let us also denote (TtY )t>0 to be the Markov semi-group for the dual process (Yt )¢>0. Then the

duality relation can be written as

T 1< (y) = T 5y (x). (2.8)

We say that (T¢)¢>0 is a C-Feller (or Feller continuous) semi-group on the Banach space of
bounded continuous functions Cy, (R) if the function T¢f(x) = E(f(X})) is a continuous func-
tion of x for all bounded continuous f. A C-Feller semi-group is a sub-Markov semi-group in

Cp(R), in other words, forany 0 < u < 1, wehave 0 < Tiu < 1.
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Remark 2. It is worth noting that a C-Feller semi-group is not necessarily Feller and vice versa.
Recall that a Feller semi-group is a strongly continuous semi-group of positive linear contraction
on Coo(R) (Tif € Coo(R) if f € Coo(R)). Contrary to the definitions of a Feller semi-group,
strong continuity is not a requirement for the definition of C-Feller. In particular, a Feller semi-
group is C-Feller if, and only if, the corresponding semi-group applied to a constant is a continuous
function for all t > 0. On the other hand, a C-Feller semi-group is Feller if C,(R) is invariant
under the semi-group and the corresponding restriction is strongly continuous (see chapter 3 and
4, in textbook [55] by Kolokoltsov and work by Schiling and Wang [71] and references therein for

more explanation on the matter).

Proposition 2. Suppose (X{)t>0 is a C-Feller process such that P(XE > y) is continuous iny € R.

Then P(XY > y) must also be continuous in x € R.

Proof. Let (xn)n>0 € R be asequence that converges to x as n tends to co. Since (X} )¢>0 isa C-
Feller process, its transition probability measure initiating at x,, P(X{"™ € dy) = pun converges
weakly to P(X¥ € dy) = pasn — oo. Denote the set [y, c0) as A for some y € R. Then its
boundary point (0A) isy . Since P(X} > y) is continuous in y, the measure admits no atoms,
in other words, u(0A) = P(X¥ = y) = 0. Then by Portmanteau Theorem, p, (A) — p(A),

meaning that P(X} > y) is continuous in x. ]

Proposition 3. Let (T )0 be a C-Feller semi-group such that T{15,(x) is monotonically in-

creasing in x and continuous iny € R. Then, its dual semi-group also forms a C-Feller process.

Proof. By Proposition 2, T*15(x) is also continuous (and therefore right continuous) in all
x € R. Since the corresponding Markov process is stochastically monotone, by Theorem 2 it has
a dual Markov process (Y )i>0 and a corresponding dual semi-group (TY)t>o. Furthermore,
TY1<x(y) = P(YY < x) is a continuous function in x as well as y. By Portmanteau Theorem,
its distribution measure P(YP™ € dx) converges weakly to P(YY € dx). This is precisely the
definition of the dual (Y} )¢>0 being a C-Feller process. O



2.4 SIEGMUND’S DUALITY FOR PROCESSES ON AN INTERVAL. | 16

2.4 SIEGMUND'S DUALITY FOR PROCESSES ON AN INTERVAL.

In this section we investigate the theory of Siegmund’s duality on an arbitrary interval [a, b] C R.
In particular, we study the behaviours of Markov process (Xt )¢>0 and its dual (Y¢)¢>0 at both
barriers {a} and {b}. This section serves as an overview of the more detailed survey on the theory

of duality on an interval, which is presented in chapter 7.

Similar to before, let us suppose that (Xi)¢>0 is a stochastically monotone Markov Process
evolving on an interval [a, b] C R such that its probability distribution function P(X} > y) is
right continuous in x € [a, b) and monotonically increasing in x € [a, b]. Also, assume that
forally € [a, b], limy4p P(XF > y) = 1 and limy o P(X}¥ > y) = 0. Define a set of functions
Fljyt(x) , X,y € [a, b] such that

Y (x) = P(X} > y). (2.9)

Let us recall that (2.9) is Siegmund’s duality relation.

Clearly, forallt > Oandy € [a, b], the function F; t (x) is monotonically increasingin x € [a, b]
and right continuous in x € [a, b). With this set-up, the set of functions FE .t(x) forms a family
of probability distribution functions that correspond to a family of random variables, (Yi)¢>o0.

Furthermore if we let y in (2.9) equal to {a},
Fr ) =PX{>a)=1

forall x € [a,b] and any t > 0. In other words, the probability of Y{* being smaller than or equal
to any x € [a, b] equals to 1.

Proposition 4. If (Xi)t>0 is a stochastically monotone Markov process on [a,b] such that
P(XY > vy) is right-continuous in x € [a,b), then it has a dual Markov process (Yi)t>o0 on

[a, b] which is absorbed at {a}.
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Proof. Similar to Theorem 2, we need to show that the family of cumulative distribution functions
FY(y) satisfies the Chapman-Kolmogorov equation. By the Chapman-Kolmogorov equation for

(Xt)t>0 and duality relation,

P(Yy+s <x) =P(X{is 2y)

| roEz g
[a,b]
= L o Flj)s (z) defyt(z) (2.10)

forall x,y € [a,b] and t > 0. Since both F;( sand FX | are right-continuous functions on [a, b),

we apply Lebesgue-Stieltjes integration by parts in Theorem 1 to (2.10) to obtain

PIYY s <x) =P(X{5 2 y)

=F) ((0)F%(b) = F) ((a—)FF(a—) — J[ . Fri(z—)dF) ((2).
Cl,

In the equation above the second term equals to O by definition. Also, Fff)t (z—) = limy4, Ffét (x),

which also equals P(X} < z). Therefore, the equation above can be rewritten as

P(Y’?Jrs < X) :P(ch<+s > U)

=1 —J P(X} < z)dF) (2)
[a,b]

J (1—P(X} <2))dF} ((2)
[a,b]

J P(X§ > z)dF;)s(z).
(a,b]

By duality relation,
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Hence, (X¢)t>0 has a dual Markov process in [a, b]. Lastly since Fzyt(x) = 1forall x € [a,b],

the dual Markov process is absorbed at the barrier {a}. O

Evidently, one can construct a dual Markov process (Y¢)t>0 on [a, b] if (X¢)¢>0 is a stochastic
monotone Markov process on [a, b] such that P(XY > y) is right continuous in x € [a,b).
Clearly if {a} and {b} are unattainable, both (X¢)¢>0 and (Yi)t>0 evolve on (a, b) in a similar
way to an honest process on R. Otherwise, {a} is an absorbing barrier for the dual process (Y )t>0
and {b} is an absorbing barrier for the original process (X¢)¢>o. The latter can be shown by letting

x in (2.9) equal to b.

One example that illustrates the behaviour of Markov process (X¢)¢>0 and its dual process

(Yt)t>0 is the Brownian Motion on [0, co).

Example 5. (Reflected Brownian Motion at 0). Suppose that (X¢)¢>0 is a Brownian Motion
on (—o0,00). Then (|X¢|)t>0 is a Brownian Motion on the half line [0, co) reflected at 0. Its

transition probability distribution function at some initial point x € [0, co) can be written as

P(IXe[* > y) = P(X{ > y) + P(X{ < —y)
] 0 zZ—X 2 _y Z—X 2
:?<J e_< o dZ+J e_( 7 dz>
7T y —00
] o0 Zz—X 2 o0 z X 2
:Tt<J e—( ! dZ+J e_( Sre dz> (2.11)
U y y

By symmetry and translation of the normal density function, the probability transition cumulative

distribution function in (2.11) becomes

o 1Y e v
x> = — 2t 2t .
(IXel* = y) bﬁ(J—w e dz+J e dz)

—00

Next, split both the integrals above to obtain
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] Y zz -v zz
P([X[* > y) Z\/ﬁ(J ehdz+J e 2tdz
—y o
-y L2 Y+x 22
+J ethz—J e’?dz>
s y
1 X (z—y)2 (z-y)2 v 2
= e 2t —e 2t dz+2J e 2tdz). 2.12
27Tt <JO —00 > ( )

By Proposition 4, since the reflected Brownian Motion is stochastically monotone and P(|X¢[* >
y) is right-continuous in x € [0, 00), (2.12) is also the transition cumulative distribution function,

Flj .t(x) for the dual Markov process (Yt)t>0-

Suppose that the dual process starts at y = 0. Then for all x € [0, 00), the probability distribution

function can be written as

2 (0 22
P(YS <X) :\/T?J e_ﬁdZ:],

—00

confirming that state {0} is an absorbing barrier for the dual process.

Next let x = 0. Then the probability of the dual process Y starting from any y € [0, co) arriving

at the absorbing barrier is

v
:ZJ e 2t dz.

Therefore its probability transition density on (0, co) starting aty € (0, co) is

z—y)? z 2
PY(y,dz) = (e_[ e e )dz.
This density coincides with that of an absorbing Brownian Motion on the half line absorbed at

the origin (see textbook by Knight [51] on Brownian Motion that is absorbed at the origin).

Example 6. (Subordinator) Let (X¢)¢>0 be a subordinator. Recall that (X ) >0 has non-decreasing
sample paths on R, . By Example 4, the dual of X; is —X; and has a non-increasing sample path

which is absorbed at 0.



2.5 DUAL GENERATORS | 20

2.5 DUAL GENERATORS

In this section, we consider the example of an arbitrary one dimensional Feller process (X¢)t>0

in R with a generator of the usual Lévy-Khintchine form:

LXf(x) = %G(x)f”(x) +b(x)f'(x)

+ JR [f(x + w) —f(x) — f'(x)wlg, (w)]v(x, dw). (2.13)

This generator was discussed in detail in work by Kolokoltsov [54]. A criterion for stochastic

monotonicity in terms of this generator is given by the following theorem.

Theorem 3. (presented as Theorem 2.1, Kolokoltsov [54]) Let X be a Feller process in R with a
generator of the usual Lévy-Khintchine form in (2.13) with continuous G, b, v, and let the space
C2(R) of twice continuously differentiable functions with compact support be a core. For simplicity

assume also that the coefficients are bounded, that is

sup (G(x) +b(x)| +J (1A w2)v(x, dw)) < co.

R

If the Lévy measure v is such that for any a > 0, the functions

Joov(x, dw),Ja v(x, dw)

a —00

are non-decreasing and non-increasing functions of x respectively, then the process (Xt )t>ois

stochastically monotone. Moreover, the dual Markov process exists.

The proof to Theorem 3 in Kolokoltsov’s paper [54] utilises discrete approximation of transition
probabilities using the theory of stochastic monotonicity for Markov Chains (for example, see
textbook by Anderson [3] ). Using the same approach of discretization, the explicit form for the

dual generator was also computed in Proposition 3.1 in the same paper by Kolokoltsov.

In this section, we present an alternative approach to Proposition 3.1 in [54] to compute an

explicit form of generator corresponding to the dual Markov process using the duality relation
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in (2.2) directly. Let us first recall the definition of an infinitesimal generator of a Feller process.
Let us denote C.(R) as the space of continuous functions on R vanishing at +00. Also, let
C! (R) be the space of continuously differentiable functions with both the original functions and
their derivatives vanishing at +00. Let (T{)¢>0 be a Feller semi-group of (X¢)¢>0 on Coo(R). A
function f € C(R) belongs to the domain Dy x of the infinitesimal generator of (X¢)¢>o if the
limit

1 d
X i (TX ) = & X
L*f(x) = ltlfg " (T — A1) It t:oTt f(x)

exists in Co, (IR). The operator LX : Dy x — Cu(R) is called the infinitesimal generator of X; or
of the semi-group T;*. Suppose that 1<, € Dy x. Clearly, to write the duality relation in terms
of infinitesimal generators, we just differentiate both sides of the duality relation in (2.8) with

respect to t:

d

LY1 <y (X) = E

T <y ()
t=0

d
=—| T
dt o t >y (X)

=1X1 >y (x) (2.14)

where LY is the infinitesimal generator of the dual process (Y¢)>o.

For any f € C]_(R), we can write the expression of dual generator LYf in terms of the original

generator LX, as shown in the following:

X1, (-)) (2)f'(z)dz. (2.15)

In the following lemmas, we consider the jump and diffusion parts of the generator (2.13) separ-

ately.
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Lemma 1. Consider a one-dimensional Feller process generated by

o0

LYf(x) = J

(f(x Fw)— f(x)>v(x, dw) (2.16)
0

where f € C) (R) and v is a Lévy measure supported on R such that [ v(x,dw) is a non-
decreasing function. Also, assume that either (i) v(x, dw) = v(x, w)p(dw) with v(x, w) being
continuously differentiable in x or (ii) v(x, dw) = «(x)v(dw) with x(x) being continuously

differentiable in x. Then the dual generator takes the explicit form:

]

LYf(x) = J

[f(x —w)— f(x)}wx, dw)
0

where in

(i) (%, dw) = v(x — w, w)p(dw) + [ Zv(x — w,y)u(dy)dw;

(ii) ¥(x, dw) = a(x — w)v(dw) + L a(x — w) [5 v(dy)dw.

Proof. Let us first consider case (i). Applying results (2.15) and given any f € C! (R) we can

write

LYf(x) =— JR L¥T>x(y)f' (y)dy

=[], (1554 @) = Tt vly, wlnlae) ).

Since variable w considered in the second integral is always non-negative, 1>4(y + w) —

1>x(y) = Tx—w,x)(y). Therefore by interchanging the integral term

110 == | [| 1w vl @lnlawl] Fy)ay
R 0

el

— | ], 1w vy, @)y uid

JO
— J:O ”:w (y)v(y, w)dy} w(dw). (217)
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Applying integration by parts to the second integral,

L0 =[] ftw vy, whdy + 1l @)y w,w) = v wl uda)

:Joo [JX f(y)%v(y,w)dy + [f(x— w) — f(x)}V(X— w, w)

0 X—w

—i—f(x)[\/(x—w,w)—v(x,w)]} w(dw). (2.18)

Notice that in the third term above, v(x — w, w) — v(x, w) equals to fz)_w %v(y, w)dy.

Rewriting LYf(x) gives

LYf(x) = J:o H:_w f(y)%f’)dy + [f(x —w)— f(x)} v(x — w, w)

x ov(y, w)
| 0T ay]uaw

X—w a

:J:O [f(x —w) — f(x)}v(x —w,w)u(dw)

+J:O J:w [f(y) _f(x)}%y)w)dyu(dw)- (2.19)

But in the second term, changing the order of integration and by letting y = x — z give

J'oo er [f(y) — f(X)} %V(y, w)dyp(dw)

0 Jx—w

L) 1Y) = 00 - v(y, w)p(dw)dy

= i L [f(x—z) —f(x)} %v(x—z,w)u(dw)dz

= ;:o [f(x —w)— f(x)} (E: %v(x— w,y)u(dy))dw

Substituting the above back into (2.19), we conclude that the dual generator for L}( has the form

(o¢] (o¢]

LYf(x) = J [f(x —w) — f(x)} (v(x —w,w)u(dw) +J iv(x— w,y)p.(dy)) dw.

0 waX
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Similar computation can be applied to case (ii). Equation (2.17) becomes

(o.¢]

LYf(x) = — L [

:ro ”X fy)ed'(y)dy + [f(x — w) — F0)] alx — w)

0 X—w

| rlamay]vide)

X—w

() [olx — w) — cx(x)]]v(dw)

:Joo {f(x— w) — f(x)} o(x — w)v(dw) + JOO J" [f(y) _ f(x)} o (y)dyv(dw).

0 0 Jx—w
(2.20)
Exchanging the integral in the second term yields
J:o J:w [f(y) — f(x)} o (y)dyv(dw) = Eo [f(x —w) — f(x)} J: %oc(x —w)v(dy)dw.
Therefore
LYf(x) :(J:O [f(x —w)— f(x)} alx — w)v(dw))
+ <J:O [f(x —w) —f( )] %oc(x —w) E)O v(dy)dw).
O

The argument above can also be made when the measure v is supported on R_. Lemma 1 leads

to the following:

Lemma 2. Consider a one-dimensional deterministic process generated by
LXf(x) = a(x)f'(x), (2.21)
where f € C]_(R). Then the explicit form of the dual generator is

LY f(x) = —a(x)f’(x).
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Proof. Let

LX f(x) = J:O (f(x Fw)— f(x)) S (dw)

= [fx+1) = 1(x)].

Observe that the equation above is precisely LY if we let v(x, dw) equal to a Dirac measure
dh(dw) for some given h which is greater than 0. Therefore by letting «(x)v(dw) in (2.20)
equal to (x)dn (dw) (where ox(x) is a constant function taking 1) its dual operator, Lgh acting

on indicator function 1y, has the form

LY Tey(x) :Jw ”X ky(z)od(z)dz] S (dw)

0 X—w

+ J:o [1 <wx—w)— 1<y(x)] o(x — w)op (dw).

Since «(z) = 1 does not depend on z and the o’(z) in the first term vanishes, Lgﬂ <y(x) can

be simplified as

LY Ty (x) =Tey(x —h) — Ty (x), (2.22)

Now, we write the generator LX as

f(x+h)—f
L3f(x) = a(x) lim [ (X ! (X)}

hlo h
LX f(x
= a(x) lim o ).
hl0

We substitute this into the expression of the dual generator shown in (2.15),

LYf(x) = —J 312 (y)f' (y)dy

R
o X /
— _{ﬁ% - JR a(y)Ls, T>x(y)f' (y)dy

1

__1; o Y /
— E%hJRa(y)L5h1<y(x)f (y)dy. (2.23)
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Let us first consider the integral [ a(y)Lgh1 <y (x)f’(y)dy. Since by previous calculation,

L3, T<y(®) = Toxon(y) = Tox(y) = Tpen0 ().

Substituting this into the integral in (2.23), we obtain,

Now let us denote %S (y) = a(y)f'(y). Then the dual generator to L% is written as

hoh ), ay
g9 —glx—h)
hl0 h
99
—&(X)
= —a(x)f'(x)
O
Lemma 3. Let Lf(x) = [ f'(x)yTs, (y)v(x, dy) be a generator of a Feller process. Then its

dual operator is

LYf(x) = — J:O ' (x)yls, (y)v(x, dy).

Proof. The proof is straight forward by letting fgo yls, (y)v(x,dy) = a(x) in LXf in Lemma 2.

Lemma 4. Let L{f(x) = %G( )£ (x) for some f € C2(R) and G € C} (R). Then its dual

operator is

1

L) = 5 [G(x)f”(x) + G'(x)f'(x)].
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Proof. Define the following operators:

o0

13,00 = | (Fix+ @) — £(x) ) o (dav)

= f(x + h) — f(x);
"0
LY A0 = | (Fx+ @) = (x)) 8 n(dw)

J—00

= f(x — h) — f(x). (2.24)

Clearly, L and LY equal to L} in Lemma 1 by letting v(x, dw) = a(x)v(dw) in L} be
dn(dw) and d_p (dw) respectively. In this proof we denote their dual operators by Lgh and

Y
LE,h'

Now, rewriting generator L f(x), we obtain

LX(x) = %G(x)f”(x)
_ S lim i [f(x +h) +f(x—h) — Zf(X)]
2 nhloh?
G 1
- & lim o [LX, 100 + 13, #ix)]

The dual generator LXf(x), denoted as LY f(x) is

LYf(x) = — JR L3 15 (y)f' (y)dy

G 1

Substituting the indicator function into L%(h f(x) and L?ﬁhf (x) in (2.24), the dual operator

L0 =l iy | S [Tl 1) = o)+ Tonly = 1) = o] Pty
1 G
=t [ S [T nly) = Tonly) + Tonenly) — Tonly)] vy

1

= —E% 5z ”:_h G(y)f'(y)dy — JHhG(y)f’(y)dy]-
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Letting function H'(y) = G(y)f'(y),

LIf(x) _ Ei% H(x +h) + ]—12(}752 h) — 2H(x)
1 02H(x)
T2 ox2
_ 102[G(x) &)
T2 ox
G(x) 0°f 109G(x) of
2 o2 2 ox ox

O

By linearity of generators we have proven the following theorem using the duality relation directly

in Lemma1 - 4.

Proposition 5. (presented as Proposition 3.1, Kolokoltsov [54] ) Under the assumptions in Theorem
3 suppose additionally that the Lévy measures are supported on R, and either (i) v(x, dw) =
v(x, w)dw with v(x, w) being continuously differentiable in x or (ii) v(x, w) = a(x)v(dw)
with a certain Lévy measure v and a continuously differentiable function a. Then the generator of

the dual Markov process acts by

Y ] " 1 / ! /
L"f(x) ZEG(x)f (x) + (EG (x) —b(x) +JO y(v—v)(x, dw))f (x)
+ J:O [f(x —w) —f(x) + f'(x)1g, (w)}\"/(x, w)u(dw) (2.25)

where in

(i) V(x, dw) = (v(x— w,w) + [ Zv(x— w,y)dy |uldw);

w 9x

(i) V(x, dw) = a(x — w)v(dw) + Za(x — w) [ v(dy)dw.
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2.6 APPENDIX

THEOREMS OF INTEGRATIONS BY PARTS

Theorem. (Lebesgue-Stielges integration by parts) Let f and g be right-continuous functions on the
finite interval [a, b] such that both of them are of bounded variation on [a, b]. Then

| rxdamg+ | gtadur = riblg(b) - fla-gla-) (226)
[a,b] [a,b]

where f(x—) = limyyx f(y) and ¢, g are the signed measures induced by f and g respectively.

Proof. Without loss of generality, we assume that f and g are non-negative and monotonically
increasing functions, otherwise we may decompose f and g with f = f1 —f, and g = g1 — gz as

above then combine the resulting equations in the form (2.3) to obtain the result of the theorem.

Since f and g are right continuous and monotonically increasing, we choose some increasing
sequences{fnJo_; and{gm};m_ of measurable simple functions of the form Z].f:] AiXlai aisr)
where A; < Ai1, such that each of them tends to f and g respectively. We show that (2.3) holds
for f and g replaced by f,, and g, Since f, and gy, are right continuous and monotonically

increasing Borel measurable (step) functions, the integrals are defined.

As f and g are right continuous, let us assume them defined on an interval [a— €, b+ €), for some
€ > 0 and constant on the intervals [a — €, a] and [b, b + €). Then if g;;, = Zf;] CiXlay, ai1)>
wehaveap < a<aj; <...<as <b<agy.Clearlyug, (ai,ait1] = gmlait1)—9gmlai)
for each iand pg, (xi,%i41] = 0if x; and x;1 belong to the same partition. Then if h is any

finite-valued Borel-measurable function,

L | —)dug,, = Zh Qm (ai) —Qm(ai—ﬂ}
a,b

and similarly,

J[] x)dus, Zh —fulal_y)]
a,b
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Let {co,c1,... ,Cp} be the union of the points of the two partitions {01}1 ;1 of gm, {a’}l ; of

f and the endpoints {a} and {b}, such thatco < a=c7 <cz < ... <cp_1 =b < cp. Then,

J[ b}f ~)dug,, = Zf )[gm(ci) — gmlci1)]

)

= Z fnlcioq) [gm(ci) — gm(ci1 )}
= fulco)gm(co) + gmlcy 1)fnlcp 2)

p—1

— 3 gmle) [faled) = falei1)] (2.27)

On the other hand,

L } x)dpr, Z gm(c —fulci1)].
a,b

By observing that f;, (co)gm(co) = fn(a—)gm(a—) and that c,_; = b, we rewrite (2.27) as
J[ e )dug, + J[ 90, = g ()fa(b) — fu(a-)gmla=), (a9
a,b a,b

i.e. (2.3) holds for f;, and g,.

Next, suppose that h is any non-negative monotonically increasing Borel measurable function.
Then given some € > 0, by Theorem 5, page 58 in the text book by de Barra [23], we can find a
step function ¢, 0 < ¢ < hsuch that |h — ¢| < € uniformly on (a — €,b + €). Then for all n

greater than some fixed no,

] Jhdufn - Jhduf\ < J(h— d)dp, + J(h— b)dps
+ ‘ J(bdufn - J d)duf‘
where the first and second terms on the right hand side are less than € (¢, [a, b]+¢[a, b]) < Ke

while the third term clearly tends to zero asn — co. Therefore we must have [ hdps, — [hdps

as n tends to co. Same result holds for ng, and pg.
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Now let n — o0 in (2.28). By (Lebesgue’s) monotone convergence theorem and the fact that

fn T f uniformly (and hence point-wise), we get
J[ )i, + J[ 9 )due, = g (D)(b) ~ fla-)gm(a-).
a,b asb

Similarly, by letting m — oo in equation above we show that (2.3) holds. O

Proposition. Let f and g be right-continuous, non-negative and monotonically increasing functions

on R such that both of them are bounded on R. Then

| fx1ang + | gxidur = fim folgiv)— tim_rla)gla (2:20)
R R — 00

a——oo

where f(x—) = limyx f(x) and uy, g are the signed measures induced by f and g respectively.

Proof. Let{fy}p._; and {gi}]=; be the sequences of functions supported on (—k — 2¢, k] and

(—1 — 2¢, 1 respectively such that for some small € > 0,

f(x) ,—k<x<k
fie(x) =
f(—k) ,—(k+2¢) <x < —Kk,
and
Q(X) )_]' <X < l
gu(x) =

Then both {fy };_; and {gi}{>; converge uniformly to f and g respectively and all f} are right
continuous on [—k, k), monotonically increasing and non-negative functions [—k — €, k], and

similar observation holds for gix. Assume without loss of generality that k < 1. By Theorem 1,

J fk(x—)dugﬁj g1 () ditie =i (K)gu (k) — f(—k — e)gu(—k — ¢)
R R

=f(k)g(k) —f(—=k)g(—k).
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Now, similar to the argument in Theorem 1, if h is any non-negative monotonically increasing
Borel measurable functions, [ hdps, — [ hdpy. Letting 1 — o0, by (Lebesgue’s) monotone
convergence theorem and the fact that {f_};.; and {gx_Jr._; are increasing sequences that

converge uniformly to f and g respectively,

jR fo(x—)ditg + JR g(x)dme = fla + K)gla+ k) — f(—K)g(—k).

Then letting k — 0o, we show that (2.4) holds. O]

Next, we give an alternative proof to Theorem 2 using Fubini’s theorem.

Theorem. (copy of Theorem 2) Suppose that (XT)t>o € R is a stochastically monotone Markov
process such that P(XY > y) is right continuous in all x € R and tends to 1 and 0 as x tends to co

and —oo respectively. Then its dual (Y} ) >0 is a Markov process.

Alternative Proof to Theorem 2. We have to show that the dual process (Y)¢>o satisfies the
Chapman-Kolmogorov equation. By the Chapman-Kolmogorov equation of (Xt )¢>0, the duality

relation in (2.2) can be written as

P(Yeys %) =P(Xiys 2 y)

= J PX(x, dz)P(XZ > y)
zeR

j P(YY < 2)PX(x, dz).
z€R

The cumulative distribution function P(Y{ < z) can be written as | PY(y, dw), where

wgz

PY(y, dw) is the measure that induces the corresponding distribution function. Therefore

P(X§+s>y)=J RJ Py dw)PX(x, )
zeR Jw<z

_ L@R { JWGRH@(W)PI(y, aw) }PY(x, da).
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By Fubini’s theorem,

LGR { JWGR Iz (WIPS (v, dW)}Pi%x, dz)

B JWGR { J'ze]R Lz (wIPT (% dz)}P:(y, aw).

Since I, (W) = [3,y(z), we get

POz = | {] Bu@Px ) Yy aw)
weR zeR

J P¥(x, dz)P{ (y, dw)
JweR Jz>w

= Pe(XF = w)PY (y, dw)
uWGR

= P (VY < x)PY(y,dw).
JweR

Therefore, there is a dual Markov process to (X¢)t>o. O
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3.1 INTRODUCTION

In chapter 2, the theory of monotonicity and duality was introduced via the transition probability
distributions of two Markov processes. However, in many applications the distributions of Markov
processes are given in terms of its infinitesimal generator. Therefore in this chapter we consider
Lévy-Khintchine type pre-generators and take an analytic approach to the theory of duality
for Markov processes in finite dimensional R¢. In section 3.3, we use Fubini’s theorem to show
the necessary and sufficient conditions for a Markov dual process to exist in R%. Aiming at an

instance of integro-differential operators of the form

Zb 13 6 By Ty, Y TV dy) )

i,j=1

we construct a Feller process generated by (3.1). Such constructions of Markov processes can be
done using standard stochastic calculus (see chapter 4 of textbook by Kolokoltsov [55]) or by
analysing well-posedness of the corresponding Markov semi-group (as described by Kolokoltsov

[53] and in chapter 5 of Kolokoltsov’s textbook [55]). The latter, which is the approach we are

34
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taking in this chapter, requires some regularity conditions on (3.1) and involves some analysis of
the corresponding evolution equations for the derivatives of a Markov evolution. Some conditions
are needed so that the Feller processes generated by (3.1) are stochastically monotone. Moreover,
with additional regularity assumptions, we show that a dual Markov process to the considered

Feller process exists on R¢.

3.2 BASIC NOTATIONS

Let (X¢)t>0 = (X1,ty...,Xa,t)t>0 be a time-homogenous Markov process in d—dimensional
real space (R%). Consider some a = (aj,...,aq)andb = (by,...bg) inR%. A d-dimensional
Euclidean space is said to be equipped with Pareto order when a > b if and only if a; > b; for
alli € {i,..., d}. Similarly, given a closed and non-empty convex cone ¢ C R% with a vertex at

the origin, we say that a c-dominates b (writtenasa >. b)ifa—b € c.

In this chapter, we assume Pareto order in R9 for simplicity, noting that the following analysis

holds true for all similar orders generated by linear transformations of Pareto order.

Suppose that the Markov process (X¢)¢>0 is characterised by a family of transition probability
distributions P¥X(x, A), at time t. Here X = (x1,...%,) € R4 denotes a starting point while A
is a Borel subset in B(R<). If sets A and B are intervals [y, co) and (—oo,y] C R respectively,

we write

PX(x,A) =P(X} 2 y) =P(X¥, > y1,..., X5 = ya)
PX(x,B) =P(X{ <y) =P(X{, <y1,..., X3 <ya) = Fi(y)

One can interpret the transition probability distribution P(X¥ < y) as a joint cumulative
distribution of random variables XY , ..., Xj . A Markov process X is said to be stochastically

monotone if P(X} < y) is a non-decreasing function (in the Pareto order) in x € R¢,
Assume that :

(P1) (X¢)t>o is stochastically monotone;

(p2) P(X} < y) isright-continuous in X, i.e. lim;, |x; foraioci<a P(X§ 2 y) = P(X{ > y);
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(p3) Forx(1) x(?) € R4 such thatx!") < x(?),

AL, xP) = 3 (1)l P(XE > y) =0 (3-2)

such that

L set A = {az (ar,...,aa): ap € i L

2. forany a € A, s(a) = #|i: ai = xg),i =1,2,... ,d] is the number of indices i for
(M

which a; = x;

+ X
N
«
Il

(P4) limxiﬁoo, foralli=1,...,d P(X

Now, let us define a function

Fu.t(x) =P(X} > y) (3:3)

By assumptions p1 and P2, the left hand side of (3.3) is a non-decreasing and right continuous
function in x. Also, condition P4 ensures that the function F;‘t(x) tends to 1 as all x; tend
to oo. Furthermore, by condition p3 ngt(x) is a function with non-negative increments in x.
With these four properties, F;’yt(x) forms a family of joint cumulative distribution functions
F;)t (x) = P(Y? < x). Similar to before, equation (3.3) is called the duality relation. The family
of random variables (Y¢)¢>o with cumulative distribution functions satisfying (3.3) is said to be

the dual of (X¢)¢>o.

In the next theorem we present a natural extension of Theorem 2 in chapter 2. We use the same
approach developed by Siegmund [72] to show the necessary and sufficient condition for the

existence of a dual Markov process to (Xt)¢>o on R4,

3.3 PARETO DUALITY IN EUCLIDEAN SPACE

Theorem 4. Suppose that (X¢)t>o0 is a Markov process on RY equipped with Pareto order such

that all conditions P1 to P4 are satisfied. Then its dual Markov process(Yy)>o exists on R4,
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Proof. 1t remains to show that P(Y§ < x) satisfies the Chapman-Kolmogorov equation. By the

Chapman-Kolmogorov equation of (Xt )¢>o and the duality relation in (3.3):

P(Y*?Jrs S ) = P XZ:—O—S = y)

J x,dz P(XZ > y)

zcRd

J P(YY < z)P{(x, dz).
z€eRd

Since P(Y¢ < z) can be written as [ PY(y, dw), we obtain

w<z

PIXE,, > y) = j PY (y, dw)PX(x, dz)

zeR4d Jw<z
[ AL reetwPY iy, aw) v, dz,
zeR4d weRd

Applying Fubini’s theorem to the equation above, the first and second integration are interchange-

able. Therefore,

ot > |

zcR4d
— j {J L= (wW)PX (x, dz) }PY (y, dw).
weRd zcRd

Since I, (W) = I3, (2), the Chapman-Kolmogorov equation becomes

{ JweRd Tz (W)PY (y, dw) | P (x, dz)

POz = | (] Bl dn) Y, aw)
weRd z€R4

J PX(x,dz)P] (y, dw)
JweRd Jz>w

= P (XY > w)P! (y, dw)

JweRd

r

= P (Y <x)PY(y,dw).

JweRd

Therefore, (X¢) has a dual Markov process on R¢. ]
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3.4 WELL-POSEDNESS

In this section we analyse the well-posedness of Markov semi-groups by analysing the corres-
ponding evolution equations for the derivatives of a Markov evolution. In particular, we study

the conditions of integro-differential operators of the form

Zb ZZ e ], 0y v dy), 6

i,j=1

where the function f € C2 (RY), so that we can reconstruct a Feller process from L. The
construction of stochastically monotone Markov processes from this pre-generator was briefly
discussed in chapter 5, Kolokoltsov [55], but the details of such a construction will be presented

in this chapter.

Before we proceed, let us first introduce the notion of conditionally positive operator. Let C(R¢)
be a space of bounded continuous functions that map R¢ to R. We say that an operator L in
C(RY) defined on a domain Dy is conditionally positive if Lf(x) > x for any f € D¢ s.t.
f(x) = maxy f(y) > 0.

Let us also recall the perturbation theory. In summary, this theory can be applied when the
generator under consideration can be represented as a sum of two operators, one is bounded and
another generates a semi-group. The next theorem is a simple form of the perturbation theory
presented in chapter 1 of the textbook by Kolokoltsov [55] (for a detailed study see work done by
Maslov [60] and Simon and Reed [74]).

Theorem 5. (Perturbation theory) Let an operator L with domain D1 generate a strongly continuous
semi-group (T¢)¢>0 on a Banach Space B, and let A be a bounded operator on B. Then
(i) L+ A also generates a strongly continuous semi-group (T¢)¢>0 on B given by the following series
converging in the operator norm:

o0

+ > T

m=1

where Tt(m) = fé thsmATs(:f] )dsm.
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(ii) T f is the unique (bounded) solution of the integral equation

t
th =T f + J thsA—lzsde
0
with a given fo = f.
(iii) If additionally, D is an invariant core for L that is itself a Banach space under the norm || - ||p,

the Ty are uniformly (for t from a compact interval) bounded operators D — D and A is a bounded
operator D — D, then D is an invariant core for L + A and T, are uniformly bounded operators

in D.

Suppose that fRi v(x, dy) in (3.4) is bounded. Then by Theorem s, it is straight forward to
conclude that the operator in (3.4) generates a Feller process. For the case where LM v(x, dy) is
not assumed to be bounded, the following theorem (which was also briefly discussed in Theorem

5.9.4 by Kolokoltsov [55]) gives the criterion for (3.4) to generate a Feller process.

Theorem 6. Consider an operator L of the form in (3.4) for all x € R such that:

(1) v is a Lévy measure with support on R, with a finite first moment
Yy pp

X

sup J ylvix, dy) < oo,
Rd

and that v is twice continuous differentiable in x with

ov(x, dy) J 0%v(x, dy)
su y—————= < o0, su Y| —————= < o0
x,]ngngRi Yo x,lsjﬁsd RS I %00

(2) G,b € C*(R9) are twice differentiable such that their first and second derivatives are bounded;
(3) The matrix G = (Gy )id,j:1 is positive definite and its element Gy ; depends only on xi, X;;

Then L generates a Feller process. Moreover the space C2 (R%) is an invariant core for the semi-group

of this process.
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Proof. First, observe that for any h > 0, assumption (1) implies that

X

0 1 0 d
RY\Br

1
sup | vlndy) < swpp | v dy) < oo
RI\Bn x R¢

x1<j<d 0X; x1<j<d N rd 0x;
02v(x, d 1 0%v(x, d
x,,1<5,k<d JRI\B,  0%jO0Xk x,1<]<dh R4 0x;j0xy

In (3.4), L consists of a second-order differential operator Z?:] b; a < T2 Zl =1 Gijs fzafx)
and an operator fRi [f (x +y) — f(x)|v(x, dy), where the latter may, or may not, be bounded.

Let us introduce an approximation operator L™ defined as:

d

h
i =3 bt 2]Z_ e T LRSS KONt

In the equation above, the first two terms on the right-hand side represent a second-order
differential operator. The third term is a bounded operator in the Banach space C. (R%), C!_(R9)
and Cgo(Rd) by observations in (3.5). Since, in the first two terms each b; and G; ; are bounded
continuous functions with G being a positive definite matrix, the second-order differential
operator is a diffusion operator and generates a conservative Feller semi-group in Co, (R%) with
an invariant core C2 (R¢) (see chapter 6 of the book by Applebaum [5] and Kolokoltsov’s book
[55]). By perturbation theory in Theorem 5, L"f as the sum of diffusion and bounded operators
also generates a conservative Feller semi-group (T{*)(>0 € Coo(IR9), since the conservativeness
is preserved through the perturbation series representation. Now, we consider the following

equation corresponding to (3.4):

fr = L"f,
fé‘ — f where f € Coo(RY). (3.7)
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Taking the first derivative of f‘{‘ in (3.7) with respect to x forall'k € {1,...,d}for f € C2 (RY),

we obtain

0 h _d af{‘(x)
i (X)_dt< Oxr )

d
of ¢ db; df 0Gi 02fr 103Gk 9%f,
="+ +) +
=1 i£k

Xk Oxx Oxi M Oxidxi | 2 dxi Ox2

ov
] [0 =] S dy 69)

h
Let us consider this as an evolution equation for g = gi; ,k =1...d. On the right-hand side

of (3.8), the first term L™ generates a conservative Feller semi-group in C,(R%) as the result of
previous analysis in (3.6). The second term is a bounded and non-homogeneous operator. The
third and fourth terms in (3.8) are conditionally positive order-one differential operators. The

final term represents a bounded operator since

ov(x,d ov(x,d
[ et ]y et o .9)
R4 \e R4

Xy Oxyc

by assumption 2. Hence by perturbation theory again, (3.8) also generates a bounded and positivity
preserving conservative Feller semi-group in Co,(R?). This implies that the first derivative with
respect to x of the function TI*f(x) is bounded uniformly in h for f € Cyo(R%). We conclude

that evolution in (3.7) is well-posed.

Now let us choose a sequence of (LM )jen such that hj | 0 asj — oo. By lemma 6.2 in Ethier

and Kurtz [32] we can write

t
(T =)= T ) s (10
0
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for any i < j. Substituting L™ and L™ in (3.6) and by mean value theorem and triangular

inequality, we can estimate

‘(Lhi - Lhi)Tshif(x)‘ <
JBn;\Bn,

. d
< H Y V. T
“th i=1

<| a HVX.LTshif
th

J

TR+ ) = TR [V (x, dy)

‘ MV(X’ dy)

[y vx, ay)

:O“)dHchgo(Rd)aShi —0 (3.11)
Moreover, we can also conclude that
t
(T =Tl = ] T LT
0

t
< I -]

= O“)tHfHC;o(Rd) as hi,hj — 0.

Hence, as h tends to 0, the family T{*f converges uniformly to a family T;f which specifies a

strongly continuous semi-group in C, (R9).
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Finally we show that the operator L has an invariant core C2 (R9). Taking the second derivatives

of fy = Lfy, we get

2% a4 0f,
anaX1 t _dt anaX1
02f, ob; 0%f, fe
axkax1 1Z Oxk 0%x10%1 12 ox1 axlaxk (3.12)
1 0Gy1  0Gy 0Gix 0Gyy 031,
+ 2 (é( 0xy + 0xy ) +§<< 0xy + OXk >> 0x10XK 00X (3.13)
L 1( 36k 3f,  0Gy 3%
2 + 5 (3.14)
2 OXy axkax1 Oxq 0x{0xi
of¢(x + 6f x)\ ov
J ( dx+y) tl )> 3, % dy) (3.15)
Xk
Z)ft X+y 6ft(x) ov
,d 16
J ( o axl( y) (3.16)
- i o 67)
- anaXL aXi 3
1/ 092Gy 0%fy 902Gy 021y
+ - (3.18)
2 aXLan aXLan anaX]_ axkam
0%v
f —f . .
I (R ) Pt ] G19)

In (3.12), L is a conditionally positive operator that generates a conservative Feller semi-group.

Following L are two bounded operators. The terms (3.13) and (3.14) consist of first order differential

operators while (3.15) , (3.16) and (3.19) are bounded and since assumption (1) ensures that for all

ke{l,...d}

aft (X +y) aft (X) ov
0< J}M( - > OxKk

aXL aXL

0%V
0 < ‘[Ri (ft(x—i—y) —ft(X)>m

ov
(xyy) < |l x,dy) < oo
R4 Xk

oy < [ Il dy) < oo
) y ~ Rﬂr yaxkaxl ) y

The term (3.17) is a bounded and non-homogeneous term, while (3.18) forms a multiplicative

operator which is bounded and conditionally positive. Hence by perturbation theory, T; preserves

C2 (R9). Since the generator L is well defined there too, the space is an invariant core to L. [
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In addition, assuming the same conditions (1) to (3) in Theorem 6 and another two assumptions
(listed in the following theorem), the Feller processes corresponding to the pre-generator L in

(3.4) are stochastically monotone as we will show in the following theorem.

Theorem 7. Consider a Feller process (X¢)t>o0 € R4 generated by the operator in (3.4). Suppose

that operator L satisfies all assumptions (1) to (3), in Theorem 6. In addition, further assume that
(4) the their first and second derivatives of G,b € C?(RY) are positive;
(5) (x dy) are non-negative measures on Rd

Then the process (X¢)t>0 is stochastically monotone.

Proof. Differentiating the equation f, = Lf for any j € {1,...d}. We get

0 ¢ L4 0f
an _dt an

ofy Zab of¢ ZaGU 0%y L 196 0%y

oty
0X; OX; i 0x;j 0x;0x; *3 0X; asz

+ JRd [fulxe+y) - ft(x)} a—y

x; (x, dy). (3.20)

Let us consider this as an evolution equation for g = aft ,j = 1...d. The left hand side of (3.20)
is a differentiation operator. On the right hand side, the operator L in the first term generates
a conservative Feller semi-group and is conditionally positive. The second term is a bounded,
positive, non-homogeneous term. The third and fourth term represent a first order operator,
which is also conditionally positive. The fourth term is a positive term which is bounded by

assumption (5) and assumption (1) in the following sense:

ov v(x, dy)
flxty) — 00 o xdy) < s [T < oo
JRd[ ‘ B P x,jell,...d} 0X;
where k € {1,...,d}. Since (3.20) is a sum of an operator that generates a conservative Feller
Process and some bounded positive generators, it generates a conservative Feller semi-group.
Since on the right hand side of (3.20) L is also a conditionally positive operator, while the other

terms are positive and bounded, the operator on the left hand side of (3.20) acting on functions
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Vy;fforallj €{l,...,dtand f € Co(RY) is also conditionally positive. Then the solution to

the corresponding evolution equation preserves positivity, i.e for any t > 0

0Tof(x) _ of(x) S 0o OT¢f(x)

> 0. .
an an an (3 21)

Now choose an increasing and bounded sequence of functions f,, € C! (R4),n € N such that
Vi;fn(x) = Oforallj € {i,...d}and f;, T 1fy,0] a8 N — oo point-wise. Since all f;, have a

non-negative first derivative, by conditional positivity in (3.21), we have for all natural numbers n

athn(x)

>0
an

i.e. Ty (x) is non-decreasing in x for all n.

Because (T, t > 0) is a Markov semi-group, by dominated convergence theorem the point-wise
convergence of i, 1 1jy o) ensures that Tef, 1 Ti1py o) point-wise too, as 1 — oo. Clearly, the
limit of T¢f,, in 1 is the probability distribution function of the Feller process X4, i.e.

lim Tif(x) = P(X¢ = ylXo = x). (3.22)

n—o0

Since the convergence of T, (x) in . preserves monotonicity, the limit of Ty f,, P(Xy > y|Xo =
x) is non-decreasing in x, which is essentially the definition of stochastic monotonicity of process

(Xt)t 2 O) OJ

In the following theorem, we impose stronger regularity assumptions on the coeflicients of
operator L to see that its corresponding Feller process has probability distribution functions that

satisfy property p3 .

Theorem 8. Let (Xi)t>0 € R4 be a Feller Process generated by (3.4). Assume that
1. b(x) € Coo(RY) such that forall 1 < k < d,

0kb(x)

> 0 and bounded above
0X1...0Xk
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2. Gi,j(x) € Co(RY) only depends on xi and x; and has mixed derivatives satisfying

092Gy j(x)

> 0 and bounded above
aXian

3. V(x, dy) is a Lévy measure with support on RS such that its first moment is finite:
0< supJ lylv(x, dy) < oo (3.23)
y JR4
and for all 1 < k < d the following is satisfied:

0 < sup
y

ak
J |U|M < 00 (3.24)

0X7...0Xk

Then the function P(XY > y) satisfies condition p3 in section 3.2.

Proof. For notational simplicity, we prove the case of a three-dimension Feller process, noting
that the proof follows analogously for any finite number of dimensions. In what follows, for

f € Coo(R%) we consider the operator L as the following:

3

L) = 3 big Z Saean ] HY vy 629

Recall the equations in (3.7)

f:t - Lf
fo = f where f € Coo(RY)
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Taking the third derivatives for f, gives

63 : d ant(X)
SR A 9 10
0%x10%x20%x3 dt 0x70x20%3
. asft(X)
- aX1aXZaX3

03f(x
+ Z 111 t( )
0Xq, 0Xq, 0Xq,

o{ar,az,as3}

a3ft(x)

2 L
92 9%, 0Xq, 0Xq,

of{as,az,a3}

1 Z 13 asft (x)

o{ar,az,asz}

where o{ay, az, az} denotes all permutations of {ay, az, az}.

We can write L', 12 and .3 as

a3 9x 4, 0Xq, 0Xq,

47

(3.26)
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3

[ *fe(x) ¢ 0bi  fi(x)

T OXq,0Xq,0Xq; = axa] 0Xxi0Xq, 0Xq,

Z (aGl ,aq Ga1,i> a4ft(x)
21#(11 0Xq, 6xa1 0Xi0Xq, 0Xq, 0Xq;
laGa1,a1 a4ft(x)

2 Oxq, 0xZ 0Xq,0Xq;0Xq,

02 (ft(x +y)— ft(x)) ov(x, dy)
+ %3 3 (327)
Rd Xa,0Xq; Xa;
5 03¢ (x) _i %b;  92f(x)
92 0% g, 0Xq, 0Xq, _1:1 0Xq, 0Xq, OX{0Xq,
N 1(62Ga],a2 3%Ga,.a; ) 03f¢(x)
2\0xq,0Xq, 0Xq,0Xq,/ 0Xq,0Xq,0Xq,
0(fe(x +y) —fe(x)) 92 d
L[ Ay~ i) 02v(x, dy) a8)
Ra E)xa3 axm axaz
s Bfx) o 3by  of(x)
A3 9x 0, 0Xa, 0Xay _1:1 0Xq, 0Xq,0Xq; OXi
03 v(x, dy)
f —f :
G R A el

The equation in (3.27) consists of a positive bounded, non-homogeneous operator, a first-order
operator (hence conditionally positive) and a bounded, positive operator ensured by (3.23) in
assumption 3. Similarly, both equations in (3.28) and (3.29) consist of positive bounded non-
homogeneous operators and another bounded positive operator ensured by (3.24) in assumption
3. Therefore, (3.26) is the sum of an operator L (that generates a conservative Feller Process) and
bounded positive operator acting on Vi, «, x; ft, for fy € C2(R?). Hence (3.26) generates a
conservative semi-group. Since it is also a conditionally positive operator, the corresponding

evolution problem has a solution that preserves positivity, i.e

93Tof(x) B 03f(x) S0 03T f(x)
aX1aXZaX3 - aX]aXZaX3 - aX1 aXZaX3 -

(3.30)
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Now choose an increasing sequence of bounded functions f;, € C3(R%) such that the derivatives
Virxayxsfn(x) = 0and fi(x) T 11y, 00)(X) point-wise as n tends to infinity. By conditional

positivity, we have Vy, «, x; Ttfn(x) = 0, which also means that for x; < x;

AKn(x1,x2) = ) (1) Tefn(a) > 0 (331)
acA

where set A = {a = (ar,a2,a3) : a; € {xu,xz-l}}, and for a € A, s(a) is the number of

indices 1 for which a; = x1;.

Then by dominated convergence theorem, we have T¢f, (x) T Ti1py, o) (X) point-wise as 1. — oo,
and the monotonicity in (3.31) is preserved. Hence

lim Ky (x1,%2) = lim Y (=1)5Tefy(a) >0

n—o0 n—oo
acA

=Y (1) PXE=y) =0

acA

]

Theorem 6, 7 and 8 hence lead to proof of the existence of a dual generator to a given multi-

dimensional Feller Process.

Theorem 9. Let (Xi)i>0 € R? be a Feller Process generated by (3.4) where all assumptions (1)
- (3) in Theorem 8 are satisfied. Suppose additionally that for i € {1,...d}, all g—xvi(x, dy) are

non-negative measures on Ri.ﬂaen (Xt)t=0 has a dual Markov process in R4

Proof. We have shown that the operator L generates a conservative Feller semi-group and has
an invariant core C2 (R9). Furthermore, its corresponding Feller process X is stochastically
monotone and its transition probabilities P(X} > y) are superadditive in x. Hence by Theorem

4, its Markov dual process exists in R<. l
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41 INTRODUCTION

Part of this thesis presented the criterion for a dual Markov process to exist in a finite dimensional
Euclidean space. At this point a natural question is; are we able to explicitly characterise the
dual Markov process? We have seen a couple of methods which compute the explicit form of
dual generators corresponding to the general real-valued Feller processes, namely the direct
computational method (see section 2.5) and the method of discrete approximation using Markov
chains (see paper by Kolokoltsov [54]). The extension of both methods to characterise the duality
for multidimensional cases can be somewhat messy. Therefore in this chapter we propose a more

systematic analysis to duality via semi-groups and generators.
This chapter focuses on the theory of duality for Markov processes in the sense that

Ef(XE,y) = Ef(x, YY) (4.1)
for a certain f. In the following sections we lay the foundations of our analytical approach to

the theory of duality. The basic tools (intertwining of operators) are given in section 4.3. This is

50
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followed by a discussion of its application to the theory of differential equations and stochastic

processes.

4.2 ON THE GENERAL NOTION OF SEMI-GROUP DUALITY

For a topological (e.g. metric) space X we denote B(X) and Cy,(X) to be the spaces of bounded
Borel measurable, and bounded continuous functions, respectively. Equipped with the sup-norm
||f|| = sup,, [f(x)| both these spaces become Banach spaces. Bounded signed measures on X are
defined as bounded o-additive functions on the Borel subsets of X. The set of such measures M(X)
equipped with the total variation norm is also a Banach space. The standard duality between

B(X) and M(X) is given by the integration:

(f, ) = L f(x)u(dx).

Let X and Y be two topological spaces. A signed (stochastic) kernel from X to Y is a function of
two variables p(x, A ), where x € X and A are Borel subsets of Y such that p(x, .) is a bounded
signed measure on Y for any x and p(., A) is a Borel function for any Borel set A. We say that
this kernel is bounded if sup, ||p(x,.)|| < co. We say that this kernel is weakly continuous if the
mapping x — p(X, .) is continuous with measures M(Y) considered in their weak topology. If

all measures p(Xx, .) are positive, the corresponding kernel is called a stochastic kernel.

Any bounded kernel specifies a bounded linear operator B(Y) — B(X) via the formula

To(x) = L 9(2)p(x, dz).

We call T the integral operator with the kernel p. The standard dual operator T’ is defined as the
operator M(X) — M(Y) specified by the duality relation

(f) T/H) = (Tf) “’))

or explicitly as

T'u(dy) = Lp("’ dy)u(dx).
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Clearly the kernel p(x, dz) is weakly continuous if and only if T acts on continuous functions,

thatis, T: C(Y) — C(X).

Let p(x, dz) be a bounded signed kernel from X to itself, T be the corresponding integral operator,

and f(x,y) be a bounded measurable function on X x Y.

Let us say that the operator TP (f) : B(Y) — B(X) is f-dual to T, if

(TPOf(x, ))(y) = (T, y)) (%) (4.2)

for any x and y. In other words, the application of TP to the second argument of f is equivalent
to the application of T to its first argument. Of course, if TP () is f-dual to T, then T is f-dual to
TP with f(y,x) = f(x,y).

We say that f separates points of X if, for any x1 and x, € X, there exists y € Y such that
f(x1,y) # f(x2,y). The following is a more non-trivial notion. We say that f separates meas-
ures on X if, for any Q1,Q2 € M(X), there exists y € Y such that [f(x,y)Qq(dx) #
[ f(x,y)Q2(dx). If this is the case, the integral operator F = F¢ : M(X) — B(Y) given by

(FQ)(y) = J f(x,y)Q(dx) (43)

is an injective bounded operator, so that the linear inverse F~' is defined on the image F(M(X)).

Let us say that the function FQ is f-generated by Q.

Remark 3. Cox and Rosler [20] say that a function g is representable by f, if there exists a unique
Q such that g = FQ. This paper [20] deals with the application of duality to exit and entrance

laws of Markov processes.

4.3 BASIC TOOLS

Proposition 6. Let f be a bounded measurable function separating measures on X and T be an
integral operator in B(X) with a bounded signed kernel p. Then TP F) is well defined on F(M (X))

and its action on the f-generated functions coincides with T', that is

TP =FoT o, (4.4)
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or equivalently

FloTPH =T/ 0F . (4.5)
In other words, the f-dual operator TP f) is obtained by the “dressing” of the standard dual T' by
the operator F.

Proof. Let g € F(M(X)) be given by g(y) = [ f(x,y)Qg(dx). Then

TP g(y) = L(TD(”f(x,.))(y)Qg(dx)

:L(Tf(.,yn(x)Qg(dx):j j f(z,y)p(x,dz)Qg(dx)zj f(z,4)Q(dz),

xJy Y
with
Qdz) = [ pix, dz)Qg ().
Thus TP () g is f-generated by Q = T'Qg, as required. l

Remark 4. Equation (4.5) is a particular case of intertwining. Readers are referred to work by
Biane [13], Dubédat [30], Patie and Simon [66], Hirsch and Yor [39] and Carmona et al. [16]for
exciting recent developments. Applications of (4.5) in the case of discrete Markov chains are

analysed in detail in the paper Huillet and Martinez [43].

Representation in the form of (4.4) has a direct implication for the theory of semi-groups.

Proposition 7. Let f be a bounded measurable function separating measures on X. Also, let Ty be a
semigroup of integral operators in B(X) specified by the family of bounded signed kernels p+(x, dz)
from X to X, so that T is the identity operator and T, T, = Ty s, which, in terms of kernels, rewrites

as the Chapman-Kolmogorov equation
|| Pl dzips(z dw) = e dw).
Then the dual operators TtD(f) in F(M(X)) also form a semigroup, so that

TP —FoT/oF . (4.6)
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Proof. This is straightforward from (4.4) and the fact that T, forms a semi-group in M(X). O

Remark 5. The duality (1.1) is, of course, also included in the general scheme above, that is, the
dual can still be expressed as (4.4). For instance, if v(dx) has a density v(x) with respect to the
Lebesgue measure and T’ can be reduced to the action on functions, then F~! is the multiplication

onnu(x) and f(x,y) = 6(x —y)v_'(x).

It is also worth noting that the assumption of boundedness of f is not essential. If it is not bounded
(we shall discuss interesting examples of such situations later), the integral operator F will not be
defined on all bounded measures, but only on its subspace. This will be reflected in the domain

of TP () but the overall scheme of Proposition 6 still remains valid.

4.4 LINKS WITH DIFFERENTIAL EQUATIONS AND STOCHASTIC

PROCESSES

Let us explain briefly the main ideas behind the application of the above results to the theory of
differential equations and stochastic processes. Precise details for particular situations will be

discussed in the following chapters.

Let a semi-group T, in B(X) be generated by a (possibly unbounded) operator L in B(X) defined

on an invariant (under all T;) domain D C B(X), so that

d

1
7| Th=lm (th—h)=Lh, heD,

=0 t—0 t

with convergence in some appropriate topology (say, strongly or point-wise) and thus Ty represent

resolving operators for the Cauchy problem of the equation h = Lh. Then (4.4) implies that

d

dt

PG —Fo &

T'oF lg=Fol'oF g
t=0 dt )

t=0

that is, the generator of the semi-group TtD () is

LPH) —Fol/oF ', (4.7)
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so that TP (r) represent resolving operators for the Cauchy problem of the equation g = LP(f)g.
Here L’ is naturally the standard dual operator to L. Thus duality can yield explicit solutions for
equations of this kind. Of course, our arguments were heuristic as we did not pay attention to the
domain of definition of L/, which should be done in practical situations. The main difficulty here

is to characterise the operator Fy.

Next, in order to be able to fill the duality equation (4.2) with probabilistic content, i.e. to rewrite it
as (1.2), the semi-groups T and TP (") should be positivity preserving and generate some Markov

processes.

This line of investigation reduces to the question of whether, for a given conditionally positive

operator L, the corresponding dual LP (") is also conditionally positive.

It can now be seen that the basic issues which must be addressed to make the theory work for
general functions f are (i) the characterisation of the operators F and F~! (for the analytic part

of the story) and (ii) the criteria for conditional positivity of LPF) (for its probabilistic content).

As we shall see it is often convenient to reduce the operator F to some subclass of Borel measures
Q, where its inverse can be explicitly found. For instance, it is often easier to work with Q having

density with respect to some reference measure.
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51 INTRODUCTION

In this chapter, we apply the analytical tools (formulas (4.6) and (4.7)) discussed in chapter 4
to characterise classes of dual Markov processes with respect to various functions f depending
on the difference of their arguments. Here, we deal with duality in R¢ arising from Pareto and
similar partial orders. After examining the characterisation for each case of diffusion and jump
processes individually, the full characterization of duality is given in terms of generators for basic
classes of Feller processes. This chapter is concluded by giving a path-wise example to the study

of duality using stochastic differential equations.

56
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5.2 BASIC NOTIONS

As our basic example we consider f-duality for functions f arising from translation-invariant
partial orders, or more generally, from translation-invariant binary relations. Namely, let X be
a topological linear space and M a Borel subset of X. Then M defines a translation-invariant

binary relation Ry on X such that xRy1y means, by definition, that x —y € M, orx € y + M.

Let M = {(x,y) € X x X : xRpmy}. Let us say that the duality (4.2) arises from the binary
relation M, if

) = tmxy) = Tuxy) = Themy) = Tyem(x). (5.1)

Remark 6. Suppose that f-duality arises from a translation-invariant binary relation Ry1 and
both T and TtD ) are known to be integral operators with kernels p(x, dz) and p? (") (y, dw)
respectively. One can give another instructive proof of Proposition 7 bypassing representation
(4.4) and using instead Fubini’s theorem, as was done by Siegmund [72] for one-dimensional
duality. Namely, it is sufficient to show the semigroup identity Tg(sﬂ =T (ﬂT,P (f) applied to
the functions f(x,.) = Tx_m, as it then extends to the whole F()M(X)) by linearity. And for

these functions we have

(T, M) = (TereTym) (%) = (Te(TeTyim)) () = th(x, dz)(TeTysm)(2)

_ jpt(x, 42)(TP01, ) (y) = jpt(x, az) (Jumw)p?”)(y, dw)) .

Applying Fubini’s theorem this rewrites as

JP?”)(%dWJ J Twim(z)pe(x, dz) = J(Tﬁwm(x)p?”(y,dw)

= TPOT M),
as required.

If M contains the origin and is closed under the addition of vectors, then the relation Ry is a

pre-order (i.e. it is reflexive and transient) and can be naturally denoted by >n,. If this is the case
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and T, and TtD () are integral operators with positive stochastic kernels thus specifying Markov

processes, then duality relation (4.2) or equivalently (1.2) corresponds to the equation
P(X¥ >my) = P(YY <m %), (5.2)

extending one-dimensional duality (1.3).

The basic example we are going to analyse now is the Pareto partial order in X = R¢,i.e. >m

with M = R¢, and its natural extension with M = C(ey,-- -, eq) the cone generated by d
linear independent vectors {eq, - - - , eq}in R%:
d
C(€1,"',€d):{X:ZO(j€jZ ij}())j:])"')d}- (5.3)
j=1

Of course the relation >p with such M is again a Pareto order, but in a transformed system of

coordinates.

Let us start with M. = RY corresponding to the Pareto order, which we shall denote just by >
omitting the subscript M. The corresponding dual semi-groups or processes (if exist) will be

referred to as Pareto dual. In this case

FQy) = | fluylten) = | Qray 6.9

x>y
is just the usual multidimensional distribution function for the measure Q on R¢. It is known (and
easy to see) that FQ characterizes Q uniquely implying that F is injective and thus fa1 separates
measures on RY yielding the main condition of Proposition 6. Moreover, if Q has a density q

with respect to the Lebesgue measure, then q can be found from FQ = g by differentiation:

24g(y)

A (5.5)
0yYr -+ 0yq

q(yr, -+ ,ya) =F 'g(y) = (-1)¢

Thus, in this case, for the Pareto order, the operator F~! has a simple explicit expression.



5.2 BASIC NOTIONS | 59

In the case of orders arising from the cones M = C(ey,--- ,eq) given by (5.3) this formula
generalises to

ad
dag(y)[e1362)"' )ed]

|det(er,e2, - ,eq)l

Cl(yh“' »Ud)Z(F_lg)(U):(—” ) (5.6)
where det(ej, ez, - ,eq) = det(ez) is the determinant of the matrix whose ith columns consist
of the coordinates of the vector e; and

04g

09 Liola | ola
ay—d(y)[ehez)”' yeal = Z .dm(y)% ey ---eq.

11,12, 051

Remark 7. For completeness, let us sketch a proof of this formula. If a measure Q on R< has a

continuous density g, so that

alx) = FQ() = | alz)dz,
y+Cler,-,eq)
the function q can be clearly found as the limit
aty) = lim, | a(z) dzlM(her, -, hea)l 57
n=0Jy+mi(her, - hea)

where

M(hey, -+ ,heq) ={x =Y ajhej, o €[0,1]}
j

is the parallelepiped built on the vectors {hey,--- ,heq}and
M(her, -, heq)| = h| det(e})|
is its Euclidean volume.

From simple combinatorics it follows (see e.g. textbook by Kallenberg [46]) that

J q(z) dz
y+TT(het, - ,heq)
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:g(y)—Zg(y+h€5)+Zg(y+hei+hej)+---+(—1)dg(y+he1 + -+ heq).

j i<j
Let us expand all terms in Taylor series up to the derivatives of order d. As the final expression
should be of order h? (to get a limit in (5.7)) we conclude that all terms with the derivatives of

orders less than d necessarily cancel, so that

J q(z) dz
y+TT(heq, - ,heq)
1.4 g 2% 10%
+ O(hdtT), (.8)

where O(h9*1) denotes the expression of order h4*! that does not contribute to the limit in
(5.7), and where we use the well established (though a bit ambiguous) notation for the action of
the higher order derivative on equal vectors:

3%
oyd

adg

(Y] = @

(y)[\), e )V]-

It remains to note that all terms in expansion (5.8) containing products of coordinates of co-
inciding vectors should vanish (otherwise, using different scaling on e; we would arrive to a
contradiction with the existence of the limit in (5.7)). The only non-vanishing terms should
contain the products of d coordinates of all d vectors. All these products comes from the last

term in the sum (5.8) leading to (5.6).
For instance, let us consider a two-dimensional light cone’
C(eheZ) :{(XJJ) Yy > |X|}€ Rz) (5.9)

corresponding to vectors ey = (1,1),e, = (—1, 1). Then formula (5.6) for the inverse operator

turns to the simple wave operator

alxy) =Fglxy) =3 (5.9~ 5.9) () (510)
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5.3 DUALITY FROM PARETO ORDER: GLOBAL ANALYSIS

Let us now make the detailed analysis of the duality arising from the standard Pareto order in
R4, ie. with M = R9. We aim at (i) finding explicitly the dual operator LP(f) for the main
classes of the generators of Feller processes in R¢ including diffusions and jump processes and
(ii) establishing criteria (in terms of the initial operator L) ensuring that this dual operator is
conditionally positive and specifies a Markov process, so that the duality relation (5.2) holds that
we shall write simply as

PIXE>y) =PV <x) (511)
for the case of the Pareto partial order.

Let us analyse formula (4.4) from Proposition 6. In the case of duality arising from Pareto order
and the operator T being integral with a probability kernel p(x, dz) (i.e. all measures p(x, .) are
probability measures, as is the case for transition operators of Markov processes) it states that for

a distribution function g of a measure Q on R%. i.e. g(x) = fz>x Q(dz) we have

TP(g(x) = FoT' o F g(x) =J

y=x

J., P avQien). 62)

We are interested in the question of when this operator can be extended to all bounded measurable

g as a positive operator preserving constants, i.e. as an integral operator with a probability kernel.

Assume first that the measure Q has a continuous density q so that (5.5) holds, i.e.

In this case d

d
D(f) g(x) = (—1)9 9
T g(x) =(=1) L>Jde(Z’dy)az1---azddz' (5.13)

We like to get rid of the derivatives of g. To be able to do it, let us assume that the kernel p(x, dz)
is weakly continuous and has weakly continuous mixed derivatives, that is, forany I C {1,--- ,d}

(including {1, - - - , d} itself) the mixed derivative

—1(2, dy) (5.14)
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is a well defined weakly continuous kernel (possibly signed). Then, integrating the integral over z

in (5.13) by parts d times and assuming that all boundary terms vanish, we get

d
TPg(x) = JR (Q(Z)J _® dy)) dz. (5.15)
d Yy

>x aZ] -'~aZd

This is an integral operator with the integral kernel (more precisely its density)

d

op
D( ) ):
P (xz L

dy).
" ---azd(z’ y)

For this operator to be positive and constant preserving, necessary conditions are that, for all
x € RY,

op?
[ E e — > .
| e zo (510

op¢ B
J (L% 3z 024 @ dy)) dz=1. (5.17)

From the integration by parts it is seen that for the last condition to hold it is sufficient to assume

that for any subset [ C {1, - - - , d} excluding the whole set {1,--- , d},

) op!tl
lim J dzIJ p—(zl,zi, dy) =0, (5.18)
Z;—=—00 [RII| y>x 621
and there exists a finite limit
oplll
lim J dZI J p_(zb Zi, dy)) (5-19)
z;—00 1| yex 021

which equals 1 for the empty set I. Moreover, one sees by inspection that this condition also
ensures that integrating by parts (5.13) for a g having finite density (5.5), all boundary terms will

in fact vanish, justifying equation (5.15).

Thus we have proved the following statement.

Proposition 8. Suppose an integral operator T in B(R?) is given by a probability kernel p(x, dy)
having all mixed derivatives (5.14) well defined and weakly continuous and such that (5.16) holds,
(5.18) holds for any subset I C {1,--- , d} excluding the whole set {1, - - - , d}, and there exists a



5.4 DUALITY FROM PARETO ORDER: DIFFUSION PROCESSES ‘ 63

finite limit (5.19), which equals 1 for the empty set 1. Then the Pareto dual operator TP () is also an
integral operator with a probability kernel.

Condition (5.16) is of course not directly verifiable. Therefore we shall see how it can be read

from the generator of the process.

5.4 DUALITY FROM PARETO ORDER: DIFFUSION PROCESSES

We plan now to find the generators of the dual processes, when they exist. Let us start with the
simplest case of deterministic processes generated by the first order differential operators of the

form

d
L — (b bi ( —. (5.20)
¢ (x) = (b(x) ; j ax) 5.20

In this case the dual operator is well defined on functions and

L’g(x) = —div(gb)(x Z ax x)].
j

For a vector x = (x7,--- ,xq) € R% let us denote X; the vector in R4~ obtained from x by
deleting the coordinate x;. For a function g(x) let us write g(Zi, x{) for the value of g on the
vector, whose ith coordinate is x;, and other coordinates are those of the vector z. Let us write

dz; for the product of differentials dzy withallk =1, --- , d excluding j.

Integrating by parts and assuming that g decays quickly enough so that the boundary terms at

infinity vanish, we have

LPPg(x) =FL'F 'g(x) = (—1)d+1f > % [b (Z)M] dz; ---dzq
zZ2X j )
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In general one cannot simplify this expression much further, and this is not a conditionally
positive operator (it does not have a Lévy-Khintchine form with variable coefficients) without

further assumptions.

Proposition 9. Let L have form (5.20) with all b; € C'(RY) (the space of bounded continuous
functions with bounded continuous derivatives). Then LPf) jg given by (5.21), so that the solution
to the Cauchy problem of the equation § = LPF) g is given by the corresponding formula (4.4) with
Fand F~! given by (5.4) and (5.5). Moreover, if each b depends only on the coordinate x;, then

99

D

L2900 = —bily) 5 0 (5.22)
that is, LP ) coincides with L up to a sign and the dual process exists and is just the deterministic

motion in the opposite direction to the original one.

Proof. Formula (5.22) is straightforward from (5.21) and the assumptions made on bj. This
makes the last statement plausible. However, strictly speaking, having the generator calculated

) coincides with

on some subclass of functions does not directly imply that the semigroup T,P (f
the semigroups on C(R%) generated by operator (5.22). The simplest way to see that this is in fact
the case is via direct calculations with the semigroup TtD ) jtself. Namely, if the deterministic
Markov process X¥ with generator (5.20) can be expressed as X¥ = X*(x) via the solutions X*(x)
of the Cauchy problem for the ODE % = b(x), its transition kernel takes the form p(z, dy) =

8(y — X*(z)). Then (5.13) becomes

TP 4(x) = (1) gt
v gx) =(=1) NN Fr e (5.23)

Under the assumption that b; depend only on x;, the coordinates of X*(z) are themselves

solutions X} (z;) of the one-dimensional ODE %; = b;(x4), so that one has

0 d
T,P(f)g(X) = (—])dJXt( - ﬁdz (524)
i Zi)z2Xi

From the obvious monotonicity of one-dimensional ODE this rewrites as

d

og _
TD(f) x) = (—1 dJ ——dz = ><JE ! X 2
oW == e X 6
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which is of course the semigroup generated by the operator (5.22). ]

Let us turn to a diffusion operator having the form

d

aZ
Lo() = (0¥, V)bx) = 3 a0 (x) (526)
with a positive definite diffusion matrix a(x) = (ay;(x)).
In this case
d az
L’ = —ay;
o = 3 7 5 o g 0e),
and consequently
LD(f) (X) _ FLIF71 (X) _ (_1)dJ . az a(Z)M) dz dz
= = Z2x {5 0zi0z; | 70z -+ 0zq ] d'

Let us integrate twice by parts the terms containing mixed derivatives and integrate once by parts

the remaining terms. This yields

d
LPMg(x) = (=14 ZJ 9 aj; (2; x-)m(i- Xj)| dz;
S leox, O L7 020020 ]

+2(—1)dZJ

i<j Y21 2%

049
a. — 2. . X. X. di. .

|: 1)621‘..62(1 ( 1))y My ]) 1))

where Zi; denotes the vector in R4~2 obtained from z by deleting ith and jth coordinates,

and (Zij, i, x;) is the vector with ith and jth coordinates taken from the vector x, and other

coordinates taken from the vector z. In case d = 1, the second sum in this expression is of course

empty.
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Again in general case one cannot simplify this expression essentially. However, assuming addition-
ally that the coefficients a;; depends only on the coordinates x;, x; (in particular, a;; depends

only on x;), we have

d
1 Yz 2% an N 0z1 ---0zq 1Y) j
adg

+2(-1)¢ J aij(xi,%;
( ) Z Zij 2R J( ))a L

(2, %1, %5) dZyj.
— z1---0zq
i<j

Integrating by parts with respect to the variables Z; in the first sum and the variables Z;; in the

second, yields (assuming the boundary terms at infinity vanish)

d
0 12909 az9
Za_xJ [a” Xj) ox; } +ZZQ1) X”Xl)a ox; (5.27)
j=1 i<j
or
daj;(xj) 9g(x)
el 04a;j(%;) ) 58
g(x) +Z o o (5.28)

Proposition 10. Let L have form (5.26) with a positive definite diffusion matrix a(x) = (ai;(x))
and with all ay; € C'(RY), so that L generates a Feller diffusion in RY that we denote X5. If the
coefficients ai; depends only on the coordinates xi,x;, then LP") is given by (5.28) and it also

generates a diffusion process in RY that we denote Y7, and the duality relation (5.11) holds.

Proof. Again formula (5.28) makes the statement very plausible, but to deduce (4.4) from (4.7)

additional argument is of course needed. This goes as follows.

But notice first that it is sufficient to prove the statement under additional assumption that
coefficients aij are infinitely smooth with all derivatives bounded (actually we need twice dif-
ferentiability for the above calculation of LP(f) and d times differentiability for the formulas of
Proposition 8 to make sense) and the operator L is strictly elliptic, because any L of type (5.26)
can be approximated by the sequence of L of the same form but strictly elliptic and with smooth
coeflicients. Passing to the limit in the duality equation allows one to prove its validity for the

general case.
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Next, under this smoothness and non-degeneracy assumption, it is well known from the standard
theory of diffusions (or Ito’s processes) that operator (5.28) generates a unique Feller process
such that its semigroup TP (f) preserves the space C2 (R9) of twice continuously differentiable
functions vanishing at infinity with all its derivatives up to order two. Hence, the Cauchy problem
for the equation

g=L""g

is well posed in classical sense for initial functions go from C2 (R¢). It is then straightforward to
see (4.7) that both functions T,P (f) goandFo T/ o F~ gy satisfies this equation. Consequently

these two functions coincide implying (4.4) for the semigroups T; and TtD (f), as required. [J

Thus we have shown that under appropriate assumptions the f-dual operators to the first order
and diffusion operators respectively are again first order and diffusion operators respectively

defining the f-dual or Pareto dual processes.

It is instructive to see which diffusions are self-dual. This is given by the following result that is a
direct consequence of Propositions 10 and 9.
Proposition 11. Let
d
alcp oa
aij (x4, %) — (%) =—(x 2
)Z_] 1j (X1y X5 a aX] 2 Ox: aX)( ) (5.29)

with a positive definite (possibly not strictly) diffusion matrix a(x) = (aij(x)) such that a;; depend
only on xi,x;j and are continuously differentiable (with bounded derivatives). Then the diffusion

generated by L is self-dual in the Pareto sense.

5.5 APPLICATION TO OTHER CONES

Generalization of our results to orders arising from cones C(eq, - - - , e€4) can be obtained by the

change of variables, though the calculations quickly become rather cumbersome. Let us consider
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only the simple example of the two-dimensional cone (5.9). The question we are going to answer
is as follows: under what conditions the diffusion operator
02 02 2%g

Lolxy) = alx y) g5 + 2000 y) 3t + cboy) 33 (5:30)

generates a diffusion that has a dual in the sense of the order generated by C, and how the dual
generator looks like. Having in mind the relation with the standard Pareto order we can expect
that the coefficients should depend in certain way on two arbitrary functions of one variable and

one arbitrary function of two variables. This is in fact the case as the following result shows.

Proposition 12. Let L be of form (5.30) with smooth coefficients generate a Feller diffusion X§. If
the coefficients have the form

a(X>y) - OC(X-HJ) + B(X_U) + w(x)y))
c(xy) =alx+y)+ B(x —y) — w(x,y), (5.31)
b(x,y) = a(x +y) — B(x —y)

with some smooth functions «, 3, w, then X} has the dual diffusion Y{ so that (5.2) holds with

M = C(eq, ez) of form (5.9), where Y is generated by the operator

0 0
LP1g = Lg+4(oC (ey) B/ (x—y)) g (o) +4(o (xy) =B (= y) 3 100 Y)- (532

Proof. Formulas (5.31) are obtained from Proposition 10 by rotation of coordinates, that is by

changex’ =x+y,y' =x—vy. O

5.6 DUALITY FROM PARETO ORDER: JUMP PROCESSES

Let us now turn to the generators L of pure jump processes, that is

Lp(x) = | (0w) = dlx)v(x, dw) (539
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with some bounded stochastic kernel v. For a measure QQ having a density with respect to

Lebesgue measure, let us write shortly L’ q for the measure L’Q. We have

L'q(dz) :J

Rd

q(x)v(x,dz)dx — q(z)dzj v(z,dw).

Rd

Consequently, relabeling the variables of integration, we have

Fol'(a)= (14| (L))

zz2y

=0 ] aenreana- ot

z2y

J q(z)v(z, dw) dz.
Rd

The integrals in the two terms partially cancel. Namely, we can write

Fol'(q) = (—1)¢ J q(z) (1 2>y U v(z,dw) — Jv(z, dw)] + 12;_;9J v(z, dw)) dz,
w2y w2y
implying
Fol'(q) = (-1 )¢ J q(z) [1 22y L@y V(z, dw) — 1,y szy v(z, dw)] dz.

Hence, for a smooth (d times differentiable) function g we can write either
LPg=Fol'oF 'g(y)
94g(2)
=(=1)¢ 1 J ,dw) —1, J ,d dz, (s.
- Jam . 0zq | *PY Wiy v(z, dw) >y Wity v(z,dw)| dz, (5.34)
or

LPPg =Fol’ o F g(y)

=(—1)¢ Jw>y J M

R4 0z - - aZd

09g(z

—et [ ST v awa (535)
z>y JRA 821 e aZd

v(z,dw) dz
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If v(z, dw) depends smoothly on z, this expression can be rewritten by moving the derivatives
from g to v. For this transformation expression (5.35) is more handy than (5.34). To perform
the integration by parts in its second term we shall use the following simple formula (with a
straightforward proof by mathematical induction)

ol

a—ZI(UiaZI)de (5.36)

J 09g(z)

- = _(_1\d )
>y 621 cre ade)(Z)dZ - ( ]) Z JZI}UI g(yI)ZI)

Ic{1,--,d}

which is valid when the boundary terms at infinity vanish, for instance if either ¢ or g vanish
at infinity with all its derivatives. Here |I| is the number of indices in I, the integral over the set
{z1 > y1}is|I|-dimensional and (yi, z1) denotes the vector whose coordinates with indices from

I are those of the vector z and other coordinates are from the vector y.

Using this formula we transform (5.35) into the expression

LPWg(y) =Fol o F 'g(y)

0dv
B dw) dz— dz1g(y; —— (y,z1, dw).
L@y JRd g(z) 0z1 ---0z4 (z,dw) dz IC“Z,,, . L>y1 z19(y1, z1) JRd o (yi, z1, dw)
Singling out from the sum the terms corresponding to I being empty and I being the whole set

{1,---,d}, this rewrites as

ad\/ adv
L@y JRd Q(Z)m(z, dw) dz — J;)y JRd 9(Z)m(2, dw) dz

/
_ZIC{Lm ,d}J

dzrglyryz) | 5z, dw) — gly) | viy,dw)
Z12Y1 Rd aZI R4

where 5’ denotes the sum over all proper subsets I, i.e. all subsets I excluding empty set and
the whole set {1, - - - , d}. Performing the cancellation in the first two terms yields finally (see the

trick leading to (5.34))

LPMg(y) =Fol’ oF 'g(y) = —g(y)J v(y, dw)

/

= Y | emgtyne |5 zaw
Ic{1,,d} zZ12Y1 Rd I
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+J (z)dz |1 J O w1 J Ol )
Ra 9 z}y Wy dz1---0zq ) z2y w;fy dz1 --- 0z y . \5.37

For instance, for d = 1

L20gly) = | gle) ez jw% Y, dw)—f olz) e

which is the formula essentially obtained by Kolokoltsov [52, 54], and for d = 2

LP(g(y) = _Q(UMUZ)JV(U»dW)

ov
—J 9(21,yz)d21Ja—(Znyz,dWJ—J
Z12Y1 Z1

z22Y2

ov
g(y1,z2)dz; J a—(yl,Zz, dw)
Z2

] 0%y ] o%v
+ | 9(z1,22)dz1dzs |14, W>ym(ladw)— Y ] g W(%dw) . (539)

Remark 8. It is worth stressing that one should be cautious in using these formulas as they may
not be true for f not vanishing at infinity, say even for a constant function f (so that these formulas
cannot be used even for checking conservativity condition LP ()1 = 0). Generally one has to
use the following extension of (5.36) (also proved by direct induction) that is valid whenever g,
¢ are smooth and such that forall I C {1,-- -, d} and yj there exist finite limits of the functions

9(yi, z1), (i, z1) and their derivatives in zp, as z; — oo (here co means precisely +00):

J Md}(z)dz

>y aZ1-~~aZd
d M ol
=(-n* > J Z(_UIQ(UI\VOOI)ZI)?(UR])OOI>ZI) dzi, (5.40)
IC{1,,d} " EI2YT |y !

where (yi, j, 005, z1) denotes the vector with I\ J -coordinates from y, I-coordinates from z

and other coordinates being +oo. For instance, in case d = 2 we have

JOO J‘” azg(Z)d)(Z) dz:r’ r" a%(l)g(z) dz

y1 Jy2 021022 y1 Jy2 02102,
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0 az aZ
+J [Q(ZMUZ)a_Z?(Zh‘JZ) - 9(Z1>00)a—j)(21,00)} dz;

00 2 2
] otz 3 ) - gloo 22§ 2 o0, 22)| a2

+9(y1,92)P(y1,Y2) — g(oo,y2) P (o0, y2) — g(y1,00)d(y1,00) + g(00, 00)P (00, c0).

(5.41)
Assuming that for all y
lim J v(z,dw) =0, lim J v(z,dw) =0, (5.42)
Z——00 WZU Z—r00 W<1J

equation (5.38) rewrites in the equivalent conservative form

D(f) M ov o
L= gy) =] (g(z)—gly))dz ~—(z,dw)—| (9g(z)—gly)) dz (z, dw)

—00 w>y 0z y w<y 0

(5.43)

Proposition 13. Let L have form (5.33) with a bounded weakly continuous stochastic kernel v, so
that | generates a C-Feller (ie. its semigroup preserves continuous functions) jump process in R%
that we denote X¥. Then LPF) is given by (5.34). If the kernel v has continuous bounded mixed
derivatives, so that

oy

a—ZI(Z, dW)

is again a bounded kernel (possibly signed) for any nonempty subset I € {1, - - - d} (including the
whole set {1, - - - d}), then LPF) can be rewritten as (5.37). Finally LP) generates itself a C-Feller
Markov process that we denote Y7 if and only if the following conditions hold:

All mixed derivatives of orders from 1 to d — 1 of the jump rates are non-positive, i.e.

ollly
J ———(z,dw) <0 (5.44)
R4 aZI
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for any proper subset 1 of {1, - - - d}; and

0dy
J y m(l>dw)>0> z 7y,
- 5 (5.45)
v
J z m(Z,dW)go, z2=v.
wiy

If this is the case, the duality relation (5.11) holds.

Proof. Everything is proved apart from the criterion for the generation of a Markov process. To
get it one only has to note that the operator [ g(z)p(y, dz) — «(y)g(y) with given kernel p
and function « is conditionally positive (and generates a process) if and only if the kernel p is
stochastic (i.e. positive), and that the kernels from various terms in (5.37) are mutually singular,

so that this positivity condition should be applied separately to each term.

One completes the proof by the same argument as used at the end of the proof of Proposition

10. OJ

A couple of remarks are in order here. Condition (5.45) is not very transparent. A simple particular
case to have in mind is when the kernel v decomposes into a sum of kernels depending on all

variables but for one, i.e.
V(Z) dW) = § Vj(Z1)" 41y Zjp1y )Zdvdw))
j

in which case the condition (5.45) becomes void (thus trivially satisfied). On the other hand,
conditions (5.44) are easy to check. To visualize this condition it is instructive to observe that if q

is a density of a positive measure on R4, then the distribution function
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is positive, but has all mixed derivatives negative. Even more specifically, if v decomposes into a

sum of kernels depending on one variable only, that is
v(z,dw) = Z vj(zj, dw),
J

all conditions of Proposition 13 are reduced to an easy to check requirement that all rates

i vj(zj, dw) are decreasing functions of z;.

Let us note that the method of the calculation of dual used above can still be used for processes

with a boundary. For instance, let us consider a process on R with the generator
Lplx) = | (lw) ~ dlx))vix, dw). (546
Ry
The operator L’ takes the form

L'gidz) = |

q(x)v(x,dz)dx — q(z) dzJ v(z, dw)
R

Ry

and the same calculations as above yield

Y ov o0 ov
D(f) _ ov _ bl
L gly) = Jo g(z) dzL@y 52 (z, dw) L g(z) dZJo<w<g 52 (z, dw)
~ gty) | vy dw)+ gl0) | (o, aw) (5.47)
w22y

that is, an additional term appears arising from additional boundary taken into account while

integrating by parts. Under assumption (5.42), this rewrites in the equivalent conservative form

Y

LPg(y) :J

(g(z)—g(y))dzj Nz, dw)
0

w>y 0z

[T -gwez|  Taaw | 190 -gwvoam. G
y ogw<y 07 w>y

We assume strong smoothness condition for v, which forces the dual Lévy kernel to have a density.

This is not necessary. Just assuming monotonicity of [ - y v(z,dw)and [ _ u v(z,dw) (and
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thus the existence almost sure of non-negative derivatives of these functions of z), we obtain,

instead of (5.49), the formula

o0

Y
L2Mgty) = | (o(z) ~ glu))dx | vizdw) - |

(mm—gmnuj v(z, dw),
Yy

2y w<y

(5.49)

with similar modifications for (5.48) and analogously for d-dimensional case.

Let us mention the link with the theory of stochastic monotonicity. Recall from chapter 2 that
a Markov process X} is called stochastically monotone with respect to Pareto ordering if the
function P(X} > y) is a monotone function of x for any y. Stochastic monotonicity is studied
for various classes of processes, see work by Chen and Wang [18], Chen [17], Kolokoltsov [52, 55],

Zhang [87], Wang [84], Rabehasaina [69] and references therein.

If duality (5.11) holds, then XY is obviously stochastically monotone, but, generally speaking, this
condition is too weak to ensure duality, because stochastic monotonicity of a positive function on
R4 does not imply (apart from one-dimensional case) that it is the multi-dimensional distribution
function for some positive measure (see chapter 3). Therefore it is remarkable enough that for
diffusion processes with generators (5.26) the conditions of stochastic monotonicity and of the
existence of Pareto dual coincide. Even for deterministic processes this is already not so, as for
stochastic monotonicity of processes generated by operators (5.20), b; are allowed to depend on
other coordinates xy (in a monotone way, see e.g. paper by Chen and Wang [18] and references

therein to previous works).

We assumed boundedness of all coefficients involved. This simplification leads to the most straight-
forward formulations that catch up the essence of duality. Of course, extensions to unbounded
kernel rates, diffusion coefficients, etc, are possible under the conditions that ensure that all

processes involved are well defined.

5.7 ARBITRARY FELLER PROCESSES

We have analysed three classes of the generators L separately. But it is clear that if we consider
a process with the generator being the sum of the generators of different classes, then applying

conditions of the results above to each term separately will ensure that the dual to the sum is
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also conditionally positive and generates a process leading to the duality relation (5.11). We refer
to textbooks by Applebaum [5] or Jacob [44] for a general introduction to Feller processes with

arbitrary pseudo-differential generators.

For simplicity, we shall give the corresponding result for one-dimensional Feller processes, but
extension to higher dimensions is straightforward. For this case, the generators of the dual were
obtained by Kolokoltsov [54] by approximating continuous state space generators by discrete
Markov chains and in chapter 2, via the direct method on duality relation. The method of this

chapter will give the same result without any technical restrictions used by Kolokoltsov [54].

Proposition 14. Let a Feller process X§ in Coo(R) have a generator

d? d
Loh) = ) gx) +b(x)+ gy
[ (91— g0 — (= X)g 0T e VX dD) (550)

with a,b € C2(R), a being non-negative, and with the weakly continuous Lévy kernel v such that,

for anyy, conditions (5.42) hold and the functions
| vizaw, | vizaw (5:50)
w2y w<y

are non-decreasing in z, for z < y and z > y respectively, so that their derivatives exist almost

surely and are non-negative. Moreover

v(z,dw) +1,-,d, J v(z, dw) (5.52)

w<y

1z<ydzj

w2y

is a Lévy kernel (it integrates min(1, (w — z)?) and the integral

y+1
J (z—y) |:1z<y(v(y)dz)+dzj

wwz,dmn)+—1z>y(vcy,dz)—-dzj
y—1

w<y

wmz,dMA{

2y



5.7 ARBITRARY FELLER PROCESSES | 77

exists, at least in the sense of the main (or the Cauchy) value. Then the dual process Y{ exists (in
the sense of (5.11)) and has the generator
2
D) d d

9(y) =aly)=—9g(y) + (a'(y) —b(y))ag(y)

Y
+J_ (g(z)—g(y)—(z—y)g’(y)1|z_y<1)dz(J V(z,dW)>

2y

—r(g(z)—g(y)—(z—y)g/(y)1|z_y<1)dz(J v(z,dw))

<y

+'y) | )Ty (v, 2

y—1
bd| vizaw) o0y d - veaw)] G

w2y w<y
Proof. Formula (5.50) is obtained by combining (5.49), (5.28) and (5.22). Conditions given ensure
that the dual operator is well defined as a Lévy-Khintchine type operator with variable coefficients.

]

Remark 9. As shown by Kolokoltsov’s paper [54] and Theorem 5.9.2 in the Kolokoltsov’s textbook
[55], conditions of stochastic monotonicity (monotonicity of functions (5.51)) are sufficient for

the operator (5.50) to generate a Feller process, so that this condition can be dispensed with.

As a corollary of Proposition 14, we can get now the full characterization of self-duality.

Proposition 15. Let a Feller process X} in Coo(R) have a generator (5.50). Then it is self dual (in
the sense of (5.11)) if and only if the following conditions holds:

b(x) =a’(x)/2, dyv(y,dz)+ dzv(z,dy) =0. (5.54)
In particular, if v has a density v(z, w), which is differentiable with respect to the first argument,

then the second equation of (5.54) rewrites as

ov ov

@(H,Z) + E(Z"J) =0. (5.55)

Clearly, this condition is satisfied for v(y, z) = g(ly — z|) with a smooth g, which corresponds to

symmetric Lévy generators.
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Proof. The condition on b follows from Proposition 11. The condition on v arises by the compar-

ison of the integral terms of (5.50) with (5.50) separately fory > zandy < z. O

5.8 PARETO DUALITY VIA SDES

Duality of processes is defined via their distributions, and not pathwise. It is not clear in general
whether any canonical pathwise connection or a natural coupling between dual processes exists.

We shall consider some examples when it does.

First of all, if X¢ is a Lévy process in R4, then —X; is its Pareto-dual, because

Next, if X¢ is a diffusion generated by the SDE
dXt - th + b(Xt) dt,

where W, is a d-dimensional standard Wiener process and b = (by(x1), - ,ba(xq)) with

even functions bj, then Yy = —Xj is again Pareto-dual, as it satisfies the SDE
dYt - —th - b(Yt) dt,

and hence has the generator of the dual process (by Propositions 10 and 9).

Finally we shall prove the following characterization of Pareto-duality of diffusions in terms of

Stratonovich SDEs.

Proposition 16. Let a Feller diffusion X be generated by the Stratonovich SDE of the form

dXt = O'(Xt) o th + b(Xt) dt, (556)
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whereb = (b1(x1), -+ ,ba(xa)) and o = (o) with elements oy depending only on x;. Then

the diffusion generated by the SDE with inverted drift, that is
dYt = G(Yt) o) th — b(Yt) dt) (557)

is Pareto-dual to Xx.

Proof. Notice that in Ito’s form the SDE for X; reads as
. 1 . . A
dX{ =) oy(X)dW;+ | > 505 (XDoy (X)) +buXp) | dt. (5.58)
j J

The generator of X is

02f 1 o
Lf ;(O—Lk Xi G]k(X]) Ox aX ; ; ZO—{] (Xi)o—ij (Xi) + bi(xi) a_X)

Consequently, by the assumptions above and by Propositions 10 and 9, X; has a dual process Y

generated by the operator

of
D
LY f(x =5 Z Oik (xi O']k(X])a ax] Z Z 3 1] (xi)oyj(xi) — bi(xi) a_x]-’

))vk i

which is the generator of a process solving SDE (5.57). O
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6.1 INTRODUCTION

In chapter 4 and 5, we have analysed in some detail of the duality arising from Pareto ordering.
In the general case, explicit calculations are not always available. However, we propose in this
chapter some general schemes for the analysis of translation-invariant functions f, that is functions

depending only on the difference of their arguments:

f(x,y) = f(y —X),

with some other function f that we still denote by f (with some ambiguity). Specifically, we discuss

several examples of duality with operator F~! being the Laplacian or a fractional Lapacian.

6.2 f-DUALITY FROM TRANSLATION INVARIANT f

Recall the operator F from (4.3)

(FQ)(y) = J f(x,1)Q(dx)

8o
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When applied to a measure Q with density q, the operator F takes the form

o(y) = (FQ)(y) :j f(y — x)q(dx), (6.1)

Rd

i.e. it becomes a convolution operator. It is then well known that under appropriate regularity

assumptions, f is the fundamental solution of the pseudo-differential operator L¢ with the symbol

L¢(p) = (6.2)

where

is the Fourier transform of f.

Remark 10. In fact, by the definition of the fundamental solution,

L (f52 ) 100 =300
i0x

which by taking the Fourier transform from both sides rewrites as

as claimed.

Hence g(y) from (6.1) solves the equation Lg = q, so that F~ = L;. Of course, for an arbitrary
f, the operator L can be quite complicated and the identification of the appropriate classes of
functions q and g can be non-trivial. Let us consider the simplest example where L¢ is Laplacian,

or more generally, the fractional power of a Laplacian L¢.

It is well known that the fundamental solution for the Laplace operator A in dimension d > 3 is

the function

1 1

) = 2o M

where 0q_1 is the area of a unit sphere in R¢. Hence the dual operator (4.4) takes the form

TPH — A T 0T 0 A, (6.3)
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and the generator for the corresponding dual semigroup becomes
PO —AToL/0A. (6.4)
Let L be a diffusion operator of the special kind:
Lg(x) = a(x)Ag(x)
with a non-negative bounded smooth function a(x). Then L’ = A o a(x) and thus
PO —AToL’0A =1L, (6.5)

so that L is self f-dual.

Noting that in two dimensions (d = 2) the fundamental solution for the Laplacian is known to

be log |x|/27t. We then get the following.

Proposition 17. Let X be the Feller diffusion generated by the operator Lg(x) = a(x)Ag(x) in

RY with a non-negative bounded smooth function a(x). Then, for all x,y € RY, we have

1 1
E =K 6.6
Xy —yld—2 Xy —x|d-2’ (6.6)

Elog [ X§ —yl=Elog|X{ — x|, d=2 (6.7)

ford > 3 and d = 2 respectively.

Turning to the fractional Laplacian |A|*/2 in R¢ with o € (0,2), d > 2, let us recall that the

inverse operator is given by the Riesz potential

—x/2 — T — 1 Q(U)dy
A9 = 1%g0) = s | S

where

IMo/2)

__yx..d/2
Hale) =25 g — o072y
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/2

see e.g. work by Helgason [37]. Hence, the operator |A| is L¢ for

Let us consider a stable-like process generated by the operator
Lg(x) = —a(x)|A|*?g(x)
with a positive smooth function a(x). Then L’ = |A|*/? o a(x) and thus
P — A7 2 6L/ o |A|¥2 =1, (6.8)

so that L is self f-dual. Thus we proved the following extension of Proposition 17:

Proposition 18. Let X be the stable-like process generated by the operator Lg(x) = a(x)|A|*/?g(x)
in R with d > 2, « € (0, 2] excluding the case d = « = 2 (for which (6.7) holds), and with a

non-negative bounded smooth function a(x). Then, for all x,y € R4,

1 1

=E . 6.
X; =yt XY N (©)
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71 INTRODUCTION

Recall that in section 2.4, we introduced Siegmund’s duality on real-valued intervals, giving
particular attention to the barrier conditions for both the original Markov process and its dual.
In this section we study this kind of duality in detail. We begin by deducing the consequences of
applying the general approach using formalas (4.6) and (4.7) to the study of duality for Markov
processes in domains with a boundary. Furthermore, we discuss some difficulties arising from
condition (1.3) at boundary points, which, for instance, prevents the second dual to reflected
Brownian motion to coincide with itself. This chapter is concluded by introducing the notion of

a regularised dual which addresses this and similar issues.

72 REFLECTED AND ABSORBED PROCESSES IN R+

Let C‘;O (R4) be the space of k times differentiable functions on R¢ with all these derivatives

vanishing at infinity. Also, CX (R ) will denotes the restriction of functions from CX (R) on

84
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Consider a Feller process X = (X} )>0 on R generated by operator

2
Lg(x) =a(x)+ 5g(x) +b(x)<g(x
[ (912) = 90 — (= x)g (4o i )vix, d2)

under the conditions of Proposition 14 assuming additionally that

(A) a € C?(R) and is an even function such that a(x) > 0, b € C%(R) and is an odd function
(implying b(0) = 0), the support of v is in R for x > 0 and v(—x, dy) = Rv(x, dy),
where R denotes the reflection of the measure with respect to the origin (so that, by

definition, [ ¢(y)Rv(x, dy) = [ d(—y)v(x, dy)).

Then, as is well known (see e.g. Theorem 6.8.1 in Kolokoltsov’s textbook [55]) the magnitude |X|
is itself a Markov process on R, also referred to as X§ reflected at the origin. Moreover, if the

transition probabilities of X} are p¢(x, dy), then [X}| has the transition density

pi(x, dy) = pe(x, dy) + Rpe(x, dy),
and the semi-group T'f of [X¥| can be obtained from the semi-group T, of X} by the restriction

to even functions.

Remark 11. Assuming that the kernel v is twice smooth would imply that the space C2, (R) is an
invariant core for X} and consequently that the subspace of functions f from C2 (R, ) such that
f/(0) = 0 is an invariant core for [X¥|.

Remark 12. If X} were a diffusion, the process [X}| on R ; would be stochastically monotone by
the coupling argument, see e.g. Sect I1,2 of textbook by Liggett [56]) and hence by Siegmund’s
theorem in [72] or Theorem 2 in this thesis, it had a Markov dual Y} on R, (in the sense (1.3))
with absorbtion at the origin. In our case monotonicity follows from the construction of the dual

below, which turns out to be given by a semi-group with a conditionally positive generator.

Proposition 19. Under the conditions of Proposition 14 and assumption (A) above, the dual process

Y} is Feller on R, absorbed at the origin and generated by the operator
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D) —afy) Lo ') — bly)) S _
LPgly) =aly) 35904 + (@(v) ~ by Gool) + | (9(0) —glyiv(o,dw)
Y
+[ 92— 9t = vl s (| vizaw)
0 w2y

+9’(y)J ](Z_U)[1z<y(v(y)dz)+dzJ N v(z, dw))
y— wzy

+ 1,5y (vly,dz) — dZJ v(z, dw))

w<y

The semi-group TP of Y} is given explicitly by the formula

(T2g)(y) = 9(0) jw pIef(0, dz) + jm g(x) (ro 9 i, dz)) ax.

P
y 0 ant

Proof. Using (4.6) with F~1g(x) = —g’(x) we get for g € C! (R, )

(e ¢]

(TPo)ly) = |

dz| g/t da) e,
y 0
and hence
D > ref > OO 0 ref
(Te 9)(y) =9(O)J P (0, dZ)+JO dXJ g(x)——pY (x, dz),
y

yielding (7.2) as required.

(7.1)

(7.2)

(7.3)

(7.4)

It is worth stressing that this formula implies the conservativity condition TP 1 = 1 (preservation

of constants by TP), because
lim J prei(x,dz) =1

X—00
Y

by the Feller property and hence

fy o

J _pief(x) dZ)) dx =1 _J p?f(o) dZ)
Yy Yy

(7.5)
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Operators T form a semi-group by Proposition 7. The form of the generator follows from (5.48).
As it is conditionally positive, the semigroup TP preserves positivity and preserves constants thus
being a semi-group of a Markov process. Moreover, as also seen directly from (7.2), TP £(0) = (0),

so that the value at the origin is preserved meaning that this process is absorbing at the origin. [

Remark 13. (i) Formula (7.3) is valid only for g vanishing at infinity, and (7.2) extends it (yields a

minimal extension) to bounded functions on R, . Plugging g = 1 into (7.3) yields zero, not 1.

Remark 14. (ii) The attempt to use integration in (7.5) in the opposite direction, at least when

Pt(x, dz) has a density p¢(x, z), and using lim,_, o, Pif(x, z) = 0 would give

["az (J L . dx)z—j P(0, 2) dz,
y 0 a Yy

which is different from the r.h.s. of (7.5).

It is worth noting additionally that if a(0) # 0 and v = 0, then the subspace of functions g from
C2 (R, ) such that g”(0) = 0 is an invariant core for YY. In fact, the condition LP g(0) = 0
(following from T2 g(0) = g(0)) implies g”(0) = 0. In particular, the integral IW>U g(0) —
g(y)v(0,dw) from (7.1) is well-defined for such g. On the other hand, if a(0) = 0and v =0,

o(1)),b(x) =bx(1+0(1)) asx — Owith a > 0,b € R implying that 0

is an inaccessible boundary point, so that X} = [X¥| for x > 0. In this case nothing comes out of

then a(x) = ax?(1 +

the origin, so that p[¢%(0,z) = O for all z > 0 implying that the first term on the r.h.s. of (7.2)
vanishes and hence that 0 is also inaccessible for Y7 (which follows also from its generator). In

particular, if additionally b(x) = a’(x)/2, the process |X¥/| is self-dual on R, .

There is an extensive literature on the absorption - reflection link presented in Proposition 19,
mostly because of its natural interpretation in terms of ruin probabilities having important
applications in insurance mathematics. For piecewise deterministic Markov processes it was
obtained in paper by Asmussen and Peterson [8] (see also work by Asmussen [6]) and used
effectively by Djehiche [29] to assess ruin probabilities via large deviations. Then it was extended
to diffusions with jumps by Sigman and Ryan [73], and to Lévy processes by Asmussen and
Pihlsgard [9]. Our result is an extension of the corresponding result from [73] by Sigman and
Ryan, as we do it for arbitrary stochastically monotone processes. Our proof is quite different, as

it is more elementary, using effectively only formula (4.6).
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73 SECOND DUAL AND REGULARISED DUAL

Extension of the previous result to processes with a boundary from the right or with two bound-
aries is if course natural, see work by Asmussen and Pihlsgard [9], but not quite straightforward.
We shall clarity the aspects of duality (even the definition has to be modified), needed for these
cases reducing our attention, for simplicity, to Feller processes with transition probabilities having
no atoms, that is to processes such that the function P(X¥ > y) is continuous in y and hence

(by Feller property) also in x. For such process,

P(X} > y) = P(YY <x) <= P(X; <y) =PV} > x). (7.6)

It is natural to ask whether the second dual coincides with the original process. For diftusions on
R4 this is in fact the case, as is seen from Proposition 10 or, in one-dimensional case (d = 1),
directly from (7.6). However, for processes on R, this does not hold, as seen already from Lévy’s
example of reflected Brownian motion in example 5 of chapter 2 in this thesis. In fact, reflected
Brownian Motion cannot be dual to absorbing Brownian Motion, as any dual process on R
should be absorbing at the left end, that is at the origin, as seen directly from (1.3). However, the
reflected Brownian Motion is “almost dual” to the absorbing Brownian Motion in the sense that
P(Y! < x) = P(X} > y) (with Y reflected and X absorbing Brownian Motion) holds for all
y # 0 and all x. This suggests that the usual definition of duality imposes unnatural restrictions

on the boundary.

Consequently, we shall give the following definition. Let X§ be a stochastically monotone process
on [a, 0o) such that P(X} > y) is right continuous in x. A process Y} on [a, co) will be called a
regularised dual to a process X on [a, 00) if (1.3) holds for all x > a,y > a, and the distribution
for y = a is defined by continuity as

P(YZ? <x) =P(Y{" <x) = lim P(Y7 <x). (7.7)

z—a

Remark15. One could also relax the condition for x = aby defining P(Y? < a) = lim,_, o P(Y? <
x). This would lead to the same result, as for usual definition, due to the right continuity of

P(X§{ > y)inx.
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Remark 16. If one only assumes monotonicity of the function P(X} > y), it would become
natural to define the dual distribution P(Y{ < x) as the right continuous modification of the

function P(X} > y).

The following statement is now clear.

Proposition 20. Under the assumptions of Proposition 19 and assuming the function P(X} > y)
is continuous iny fory > 0, the reflected process |XY| is a regularised dual to Y{. Thus the second

regularised dual to |X¥| coincides with [XY|.

Remark 17. The usual (not regularised) dual of Y from Proposition 19 is a rather pathological
process Z%, whose distributions coincides with that of [X§| for z # 0, but the origin is an
unattainable point without escape from it. In other words, its distribution is the same as the
process reflected from the boundary, but only on the outside of the boundary. This means

discontinuity on its pathology. Thus Z7 should be “reflected from the origin” without touching it.

7.4 PROCESSES ON INTERVALS

The theory still does not allow to treat reflected diffusions on R _, even reflected Brownian motion,
since equation (1.3) implies that, in order to have a dual, a process on R_ should be absorbing at

the origin.

A natural extension of the definition of regularised dual given above for processes on a half-line
turns out to be the following. Let X be a stochastically monotone process on [a, b] (meaning
[a,00) or (—oo, bl in case b = 0o or a = —oo respectively) such that P(X} > y) is right
continuous in x. A process Y{ on [a, b] will be called a regularised dual to a process X¥ on [a, b]
if (1.3) holds for all x,y € [a, b] excludingy = a and x = b, where additional conditions are

imposed: equation (7.7) for y = a and equation
P(Y} =b)=P(Y{ 2b) =P(Y{ > b_) = lim P(Y{ > z) (7.8)
for x = b. Notice that this latter condition is equivalent to

P(YY <b) = P(Y{ <b_) = lim P(V} < z). (7.9)
z—



74 PROCESSES ON INTERVALS | 90

If a = —oo or b = oo the corresponding conditions involving a or b are considered to be void,

so that for a process on R the definition reduces to a usual one.

As an example, let us consider an arbitrary one-dimensional diffusion on an interval [, (]
(assuming, for definiteness, that «, 3 are finite points) reflected at both boundaries. More precisely,

let X¥ be a diffusion on R generated by operator (5.50) with vanishing v assuming that

(B) a,b € C?(R) are 2(p — «) periodic functions which are symmetric and antisymmetric
respectively with respect to reflections Ry (Rx(x) = 20¢ — x) and Rg (Rg (x) = 23 — x) around
points o« and 3, implying in particular a’(x) = a’() = b(a) = b(p) = 0; for simplicity
(though this is not very essential) assume also that a > 0 everywhere, so that smooth transition

densities p¢(x,y) of X§ are well defined.

Then the corresponding diffusion (X™f)¥ on [e, 3] obtained by reflecting X} at both boundary
points is well-defined (see e.g. Theorem 6.8.1 in Kolokoltsov [55]) as a Markov process. Moreover,

the transition densities of (X™f)¥ are clearly given by

[e¢]

P y) = ) [pe(xy+ 2k(B — &) + pelx, 20 — y + 2k(B — )],

k=—o0

and the semi-group T of (X"*f)¥ can be obtained from the semi-group T; of X} by the restriction

to functions symmetric with respect to reflections Ry and Rg.

Finally, assumed smoothness of a, b implies that the space CZ (R) is an invariant core for X}
and consequently the subspace of functions f from C2 ([«, B]) such that f’(x) = /() = 0 is

an invariant core for (X™0)¥,

Proposition 21. Under assumption (B) above the regularised dual process Y{ to (X"¢")Y is a
diffusion on [, 3] absorbed at both boundaries and generated by the operator (5.50) with vanishing
v on the invariant core of functions g from C2 ([«, B]) such that g"(x) = g”(B) = 0. Finally,
the semi-group TP of Y7 is given explicitly by the formula

B

(TPg)(y) = (oc)J ref(o, z) dz+ (B)Jy ref(w, z) dz—l—JB (x) <JB 9 ref(x, z) dz> dx
t 9JYy) =g ypt ) 9 (Xpt y “9 yaxpt y .

(7.10)
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Proof. 1t is similar to the proof of Proposition 19 above. The only difference is that, taking
into account (7.8) we can define the action of TP on constants by the conservativity condition
TP1 =1 (rather then deduce it). For smooth g vanishing at 3 we get similar to (7.3) and (7.4)
that

B B
(TPg)(y) = — J dzj o (Ipt(x, 2) dx, ()

X

and hence

(TPg)(y) = g(a) Jw P00, 2) dz + JB (Jﬁ 9(x) 2 pi(x, 2) dx) iz (w)
y y VJa ox

Combining this equation with TP 1 = 1 we get for any smooth function g on [«, 3] that

(TD _ _ * ref P P _ i ref
¢ 9)(y) =9g(B)+(glx)—=g(B)) | P (x,z)dz+ (g(x) —g(B)) 5P (x,z)dx | dz,

y vy Ja ox
yielding (7.10) as required. The rest of the proof is literally the same as for Proposition19. [

Remark 18. Of course one can deal with reflected processes on R _ by introducing a symmetric
notion of duality. Namely, for a process XY on an interval of R let us say that Y} is its right dual, if
P(Y! < x) = P(X¥ > y) holds for all x, y (that is, it is the usual duality used above) and left dual
it P(Y{ < x) = P(X} > y) holds for all x, y, which is equivalent to P(Y{ > x) = P(X} < y).
Thus, by definition, Y{ is right dual to X} if and only if XY is left dual to Y{. The theory of left
dual processes on R_ (and their regularised version) is completely analogous to the theory of

right dual process on R .
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