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ABSTRACT

�is thesis examines the existence of dual Markov processes and presents the full characterization

of Markov processes in Euclidean space equipped with the natural order (the Pareto order).

Considering the theory of Siegmund’s duality for real-valuedMarkov Processes, we have presented

an alternative proof to Siegmund [72] using Lebesgue–Stieltjes integration by parts to show the

existence of a Markov dual process in several one dimensional cases, including the real space and

closed intervals. Assuming that a dual process exists, we also provided a straightforward method,

using duality relation, to compute explicitly the dual generator to a Feller process of the usual

Lévy-Khintchine type.

We extended Siegmund’s duality to �nite dimensional space equipped with the Pareto order.

�e existence of a dual Markov process on an arbitrary Euclidean space is shown using Fubini’s

�eorem applied to Siegmund’s approach. Given a pre-generator of the general Lévy-Khintchine

type, we were able to construct a Feller process with an invariant core under some conditions

assumed on the pre-generator. Furthermore, we also showed the criterion for the Feller process

to have a dual Markov process.

We then studied the relationship between intertwining and duality for two processes in the sense

of Ef(Xxt , y) = Ef(x, Y
y
t ) for a certain function f. Of most interest are shi�-invariant functions

(functions which depend on the di�erence of their arguments). To explore this, we developed a

systematic approach to duality using the analysis of the generators of dual Markov processes, then

illustrated this approach using various examples. In particular, we gave a full characterization of

duality arising from Pareto order inRd in terms of generators for basic classes of Feller processes.

Lastly, we initiate the application of intertwining to the study of duality of Markov processes

in domains with a boundary. To circumvent speci�c di�culties arising from the boundary, we

introduce an additional tool of a regularized dual.
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1 INTRODUCTION

contents

1.1 Introduction 1

1.2 A brief survey of the theory 2

1.3 Main Contribution 5

1.4 �esis Outline 6

1.1 introduction

�ere are di�erent notions for duality in stochastic analysis. For instance, the Markov processes

(Xxt )t>0 and (Y
y
t )t>0 (small x, y here, and in what follows, denote the initial points of respective

processes) which take values in the same Borel spaceE are called dual with respect to the reference

measure ν on E, if the duality equation∫
E

Eh(Xxt )g(x)ν(dx) =
∫
E

h(x)Eg(Ytx)ν(dx) (1.1)

holds for the appropriate class of functions h and g.

Alternatively, suppose that f is a Borel function on the product E× F of two Borel spaces. One

says that an F-valued Markov process Yyt is an f-dual (or dual with respect to function f) to an

E-valued Markov process Xxt , if

Ef(x, Yyt ) = Ef(Xxt , y) (1.2)

for all x ∈ E, y ∈ F. In this de�nition, E on the right hand side and the le� hand side of (1.2)

correspond to the distributions of processes Xxt and Y
y
t respectively.

1



1.2 a brief survey of the theory 2

A particular case of (1.2) is the duality of one-dimensional processes (spaces E and F are real-

valued) arising from stochastic monotonicity, where f(x, y) = 1{x>y} and hence (1.2) becomes

P(Yyt 6 x) = P(Xxt > y). (1.3)

�is is Siegmund’s duality. In the classical Lévy’s example of this duality, Xxt and Y
y
t are the

re�ected and absorbed Brownian motions on R+.

Duality of the �rst kind in (1.1) is not the focus of this thesis and we refer readers to e.g. work

by Angiuli et al. [4] and references therein for a detailed survey of the theory. Instead, we are

concerned with the f-duality, in particular, the existence and characterisation of dual Markov

processes in the sense of (1.2).

�is thesis presents three approaches to the problem of �nding the existence of duality, namely

the Lebesgue-Stieltjes integration by parts, Fubini’s�eorem and intertwining. Part I of this thesis

(chapters 2 and 3) focuses on the existence of dual Markov processes in �nite dimensional real

space. �is part begins by revisiting the existence of Siegmund’s duality in di�erent scenarios in

the real space R. In contrast to the method given by Siegmund [72], our proof to the existence

of duality employs Lebesgue-Stieltjes integration by parts. �is notion of duality is extended to

�nite-dimensional spaces, where the existence of a dual Markov process in Rd is established via

Fubini’s �eorem.

In Part II (chapters 4, 5, 6 and 7), we study the tool of intertwining and its role in generalising the

theory of duality to f-duality on Rd arising from Pareto and similar partial orders. Our objective

here is to characterise classes of dual Markov processes with respect to shi�-invariant functions

(functions which depend on the di�erence of its arguments). �e full characterization of duality

is given in terms of generators for basic classes of Feller processes. When considering the duality

of Markov processes in domains with a boundary, we introduce the concept of a regularised dual

to overcome di�culties which arose in this scenario.

1.2 a brief survey of the theory

In the early ��ies, the notion of a duality relation was implicitly described by Lindley [57, 58]

in the application of random walks in queuing theory. In both papers he used the notion of
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duality to transform solutions to problems for the "absorbing walk" into solutions to problems for

the "re�ecting walk". �e word “dual” was believed to be �rst used in the late ��ies in the work

by Karlin and Mcgregor [47], where the properties of ergodicity, recurrence and transience of

birth and death process were characterised. �e duality relation of absorbing and non-absorbing

processes was discussed in section 6 of the paper by Karlin and Mcgregor [47].

�e general concept of duality has been formalised during the following decades. In general, there

are three main approaches to duality, namely the classical Markovian approach developed by

Siegmund, stochastic recursion and intertwining. In 1976 Siegmund [72] studied duality on the

positive half line. Siegmund showed, using Fubini’s �eorem, that the dual of a Markov process,

re�ected at the origin, is uniquely determined by (1.3) and is also a Markov process absorbed at

the origin. �e existence of a dual Markov process is conditional on the original Markov process

being stochastically monotone, which was �rst de�ned by Daley [22].

In 1996, Asmussen and Sigman [11] developed another approach to duality using stochastic

recursion. In the paper, the authors considered stochastic sequences (Vt)t>0 de�ned via general

recursionVt+1 = f(Vt, Ut). Here, (Ut)t>0 is a stationary driving sequence and the function f is

non-negative, continuous and monotone in its �rst variable. A dual function g of f is constructed

such that g(·.u) is the generalised inverse of f(·, u). One way to achieve this is to obtainUt in g
by time-reversingUt in the original function f. �is kind of duality coincides with Siegmund’s

duality for Markov chains with discrete time when (Ut)t>0 are uniformly, independently and

identically distributed on the interval (0, 1).

Both approaches developed by Siegmund [72] and Asmussen and Sigman [11] were restricted to

one dimensional cases with discrete or continuous time. Błaszczyszyn and Sigman [14] extended

both methods to general state-space with discrete time. For the case of stochastic recursion,

Błaszczyszyn and Sigman [14] introduced a set-value dual function to allow for unique inversion

in general state-space. On the other hand, Choquet’s �eorem was employed in their paper to

construct Markovian duality on general state-space. Sigman and Ryan [73] studied the theory

of duality for continuous-time, real-valued stochastic processes that were de�ned via general

recursive functions driven by processes with stationary increments.

In the paper by Holley and Stroock [40], Siegmund’s theory was generalised to duality with

respect to a function, in the sense of E(f(Xxt , y)) = E(f(x, Yyt )) for a certain function f. �e
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textbook by Liggett [56] gave a detail survey on this kind of duality. �is notion of duality is

mainly studied at the level of Markovian semi-group, using tools in functional analysis such

as intertwining (see e.g. [65] by Pal and Shkolnikov) or “dressing operators” (see e.g. [80] by

Takasaki). Generally speaking, two Markov semi-groups (Tt)t>0 and (St)t>0 on (E,E) and

(F,F) are said to be intertwined via a Markov kernelQ : (E,E)→ (F,F) if StQ = QTt (see [13]

by Baine and references therein for a detailed survey on the tool). �e notion of intertwining can

be seen as a transfer of spectral information between semi-groups, or a link between Markov

processes.

Section 5 of the paper by Carmona et al. [16] provides assumptions allowing the properties

of intertwining and duality to be equivalent. �e duality relationship between Markov chain

kernels was established via intertwining in the work by Huillet and Martinez [43]. In the paper,

Huillet presented duality between stochastic matrices, in discrete time and space, and revisited

Siegmund’s duality of monotone chains, birth and death processes and the non-neutral Moran

model.

�e properties of duality have also attracted signi�cant interest by researchers since the early

1980s. Cox and Rösler [20] studied duality in the sense of (1.2) and its relation to time reversal

when reversing the role of entrance and exit laws. Cli�ord and Sudbury [19] explained Siegmund’s

duality for absorbing and re�ectingMarkov processes and identi�ed the sample paths of their dual

by using a graphical representation similar to that used in the study of in�nite particle systems.

Strong stationary duality was discussed by Diaconis and Fill [26]. In particular, they showed that

strong stationary times could be studied by constructing an absorbing dual process in such a way

that the strong stationary time for the original process is equivalent to the absorption time of

the dual process. A simulation procedure via Siegmund’s duality was suggested and discussed in

detail by Asmussen and Rubinstein [10]. In the textbook by Anderson [3], stochastic monotonicity

and duality for Markov chains were surveyed in detail. �e properties of stochastic monotonicity

and duality of Markov chains form an important tool in the work by Kolokoltsov [54]. In the

paper, Kolokoltsov developed the theory of monotonicity and duality for one-dimensional Feller

processes via the approximations ofMarkov chains.He then studied localmonotonicity conditions

to prove the well-posedness of the corresponding Markov semi-group. Möhle [62] worked on

“cone duality” and its relation to the duality in the sense of (1.2).
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Apart from developing the tools to construct dual Markov processes and studying their properties,

many research projects have also been conducted to discover applications for duality. For instance,

Siegmund’s duality applied in the context of queuing and storage systems or birth and death

chains yields the relationship between the probability of the considered process and the ruin

probability of the dual process. Suppose that (Xxt )t>0 and (Y
y
t )t>0 are Markov processes on the

positive half line satisfying Siegmund’s duality relation in (1.3). �en P(X0T > y) = P(τ 6 T),

where τ is the �rst hitting time when the dual process (Yyt ) reaches 0. For duality in queueing

theory, readers are referred to papers by Ghosal [34], Loynes [59], Bekker and Zwart [12] and

section 9.4 of work by Asmussen [7]. For birth and death chains, readers are referred to work by

Callaert [15], Anderson [3], van Doorn [81], van Doorn [82], Dette et al. [25], Daley [21].

In the �eld of interacting particle systems, the theory of duality was studied to obtain solutions

to particular problems (see for example work by Kipnis et al. [50] and Spohn [75]). In this

�eld, stochastic monotonicity is known as being “attractive”. Giardinà et al. [36] studied the

deep connection between duality and symmetry of generators and gave a general scheme using

intertwining to construct a dual stochastic process for continuous time Markov processes whose

generator has a symmetry.

Another example of the applications for duality can be also seen in superprocesses (see Ethier

and Kurtz [32], Mytnik [64]). In Mytnik [64] the theory of duality was extended to investigate the

limiting behaviour of branching particle systems which undergo random migration and critical

branching. In insurance mathematics, there is also duality between queuing theory and the

risk processes (see papers by Asmussen and Pihlsgård [9], Djehiche [29] for duality in �nancial

ruin probabilities). In the �eld of population dynamics and branching processes, Alkemper and

Hutzenthaler [1] presented a stochastic picture of moment duality and Laplacian duality to the

processes in the �eld of population dynamics, by studying the graphical representation of the

approximation forward and backward particle processes.

1.3 main contribution

�is thesis focuses on time-homogenous Markov processes. We begin by presenting the criterion

for the existence of dualMarkov processes in �nite dimensional Euclidean space.We then consider



1.4 thesis outline 6

f-duality for the case of shi�-invariant functions f and give a systematic study of the theory via

the analysis of the generators of dual Markov processes. Our study is inspired by the analysis of

one-dimensional processes by Kolokoltsov [52, 54]. �e main result of this thesis (illustrating this

approach) will be a complete characterization, in terms of their generators, of Markov processes

in Rd, which are dual with respect to Pareto order. �is characterization is seemingly new even

for the one-dimensional case, i.e. for Siegmund’s duality. Additionally we illustrate this approach

using other examples. We also address some di�culties arising from the conditions of Siegmund’s

duality (1.3) at boundary points. For instance, these boundary conditions prevent the second

dual to re�ected Brownian motion to coincide with itself. In order to overcome such di�culties,

we introduce the notion of a regularized dual that can correct this and similar issues.

Let us emphasise that, in this thesis, we are not aiming to produce any new applications of

duality, instead we look at its characterisation. With this characterisation at hand, we greatly

extend the applicability of many known results on dual processes. For example, the transience-

recurrence duality (�eorem 3.5 in textbook by Liggett [56]) was essentially given without any

examples. Also, the example of exit-entrance duality in the paper Cox and Rösler [20] were

reduced to Brownian motion and Ornstein-Uhlenbeck process. Another example includes the

ruin probability calculations of the work by Asmussen and Pihlsgård [9].

1.4 thesis outline

part i

chapter 2 �is chapter introduces the notion of duality on one-dimensional real space. We

begin by extending Siegmund’s theory of stochastically monotone Markov processes on

the positive half line to the real space by presenting an alternative proof to �eorem 1

in Siegmund [72]. When considering duality on closed intervals we study the boundary

conditions for both the original and the dual Markov processes. �is chapter is concluded

by computing an explicit form for the dual generator of a Feller process generated by the

usual Lévy-Khintchine type generator, given that the dual process exists.

chapter 3 �is chapter is devoted to generalising the concept of Siegmund duality to Pareto-

ordered �nite dimensional space Rd. �e criterion for the existence of a Markov dual on
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Rd are given. We also consider the example of an integro-di�erential (Lévy-Khintchine

type) pre-generator. Following the approach of Kolokoltsov [52, 55], we give the criterion

to construct a stochastically monotone Markov process from the pre-generator which

satis�es the criterion for its Markov dual process to exist in Rd.

part ii

chapter 4 As the beginning of Part II, this chapter lays the analytical foundation with the

objective of characterising the duality of Markov processes. Considering the f-duality in

the sense of (1.2), we give the basic tools of intertwining, and explain its role in deriving the

f-duality. Brief ideas on the applications of the tools to the theories of di�erential equations

and stochastic processes are discussed before we give detailed descriptions and examples

in the following chapters.

chapter 5 In this chapter we deal with duality on Rd arising from Pareto and similar partial-

order. A�er examining the characterisation for each case of di�usion and jump processes,

full characterisation of duality is given in terms of generators for basic Feller processes by

applying the tools discussed in chapter 4. �is chapter is concluded by giving a pathwise

example of the study of duality via stochastic di�erential equations.

chapter 6 �is chapter focusses on the duality analysis of translation-invariant functions f,

in other words, functions depending only on the di�erence of their arguments, f(x, y) =

f̃(y− x). We shall give several examples of duality for such instances.

chapter 7 In this chapter we address some of the di�culties arising from the condition (1.3)

at boundary points, which, for instance, prevents the second dual of a re�ected Brownian

motion to coincide with itself. �e tools proposed in Chapter 4 are utilised to study the

theory of duality for processes in domains with a boundary. To circumvent the di�culties

arising from the boundary conditions, we introduce an additional tool - the regularised

dual.



2 SIEGMUND’S DUALITY OF MARKOV PROCESSES

AND GENERATORS

contents
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2.6 Appendix 29

2.1 introduction

In this chapter the concept of stochastic monotonicity, in one dimensional real space, and its role

in de�ning Siegmund’s duality is introduced. �e relationship between stochastic monotonicity

and duality was �rst explored by Siegmund [72], where the necessary and su�cient conditions

for a Markov dual process to exist on the positive half line (R+) were presented. �is notion of

duality is generally known as Siegmund’s duality and has been used by e.g. Piau [67], Huillet

[42], Dette et al. [24].

More recently, Asmussen and Sigman [11] approached duality in discrete time using the stochastic

recursive method while Sigman and Ryan [73] presented the duality via stochastic recursion for

continuous-time processes. In both papers, the stochastic recursive approach to duality involves

an elementary sample-path analysis and is, so far, constrained to one dimension. Both Siegmund’s

and the stationary recursive dualitymethod on discrete time are extended to general state-space by

8
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Błaszczyszyn and Sigman [14]. In Anderson’s textbook [3], the theory is systematically presented

for Markov chains on discrete state-space.

We �rst introduce Siegmund’s duality in section 2.3. We then extend the theory from R+ to real

space by presenting an alternative proof to �eorem 1 in paper [72] by Siegmund. Additionally,

we discuss the boundary conditions of Siegmund duality’s on a closed interval on R. Lastly we

consider the example of a Feller process of the usual Lévy-Khintchine type which is assumed to

have a Markov dual process. We show an alternative method to that given by Kolokoltsov [54],

via direct computation using the duality relation to write the explicit form of the corresponding

dual generator.

2.2 basic notations

Let (Xxt )t>0 be a time-homogeneous Markov process on the real line R which is endowed

with Borel sigma-algebraB(R). �is Markov process is characterised by a family of transition

probability distribution functions PXt (x,A), which describe the probability of (Xxt )t>0 arriving

in a real subsetA at time t > 0 given that it starts from some x ∈ R.

Suppose that Borel setsA1 andA2 are intervals (−∞, y] and [y,∞) respectively for some y ∈ R.
�en the transition probabilities for processX starting from x ∈ R to arrive in the setA1andA2

at time t can be written respectively as

PXt (x,A1) = P(X
x
t 6 y) = F

X
x,t(y),

PXt (x,A2) = P(X
x
t > y).

�e function PXt (x,A1) = P(Xxt 6 y) is a cumulative distribution function of the random

variable (Xxt )t>0 at y ∈ R. If this function is absolutely continuous in y, then its probability

transition density function, denoted as pXt (x, y), exists. In this case, the probability transition

measure PXt (x, dy) can also be expressed as pXt (x, y)dy. For the remainder of the section, let us

assume that process X is honest, that is PXt (x,R) = 1 for all x ∈ R, t > 0.

A Markov process (Xxt )t>0 is said to be stochastically monotone if the function P(Xxt > y) is a

non-decreasing in x for all �xedy.�is alsomeans that (Xxt )t>0 is stochasticallymonotone if, and
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only if, the expectationE
(
f(Xxt )

)
, or correspondingly the semi-group TXf(x) is a non-decreasing

function in x for every non-decreasing function f.

Remark 1. �e de�nition of stochastic monotonicity for Markov processes �rst appears in work

by Daley [22] where the notion of stochastic comparisons betweenMarkov chains were discussed.

In general, we say that a Markov process (Xxt )t>0 stochastically dominates (Yyt )t>0 if the semi-

group TXt f(x) > TYt f(y) for any bounded increasing functions f when x > y. �erefore, a

Markov process (Xxt )t>0 is stochastically monotone if, and only if, it stochastically dominates

itself (see e.g. papers by Keilson and Kester [48], Wang [84], Chen and Wang [18] and references

therein for more on stochastic comparisons). Stochastic monotonicity and related duality are

well developed for Markov chains, see e.g. work by Anderson [3] and van Doorn [81], for birth

and death processes and for one-dimensional di�usions see work by Cox and Rösler [20].

We will now give some examples of stochastically monotone Markov processes.

Example 1. Let (Xxt )t>0 be a Poisson process with intensity c. First, we consider the transition

probabilities P(Xxt > y) when the process starts at x 6 y, both x, y ∈ N. �e function

P(Xxt > y) =
∞∑
i=y

e−ct(ct)(i−x)

(i− x)!

is non-decreasing in x since the summation
∑∞
i=y−x

e−ct(ct)i

i! becomes larger when i begins

at a smaller number. On the other hand, if the process starts at an x which is larger than y,

the probability distribution P(Xxt > y) = P(Xxt > x) = 1 since a Poisson process has non-

increasing sample paths by de�nition. �us any Poisson process on N+ ∪ {0} is stochastically

monotone.

Example 2. ABrownianMotion onR is also stochasticallymonotone.�is is because the function

P(Xxt > y) =
∫∞
y

1√
2πt

e−
1
2t

(z−x)2dz (2.1)

is non-decreasing in x ∈ R, since on the right hand side (z− x)2 decreases in x ∈ R.
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Example 3. All time-homogeneous Lévy Processes are stochastically monotone. Let us consider

some x1 and x2 ∈ R such that x2 > x1. By the property of translation invariance,

P(Xx2t > y) = P(Xx2+x1−x1t > y)

= P(Xx1t > y− x2 + x1)

> P(Xx1t > y)

since x2 − x1 is positive.

2.3 siegmund’s duality relation on R.

Let us consider a stochastically monotone Markov process (Xxt )t>0 on R such that for all y ∈ R,
the function P(Xxt > y) is right continuous in x ∈ R and tends to 0 and 1 as x tends to−∞ and∞ respectively. Let us denote FYy,t(x) as P(X

x
t > y). It is clear that F

Y
y,t(x) is also a cumulative

distribution function. �erefore we are able to de�ne a corresponding collection of random

variables (Yyt )t>0 on R such that their cumulative distribution functions satisfy:

P(Yyt 6 x) = P(Xxt > y) = F
Y
y,t(x). (2.2)

We call (2.2) Siegmund’s duality relation to emphasise an important contribution from Siegmund

[72]. �e family of random variables (Yt)t>0 that satis�es the duality relation is said to be a

dual to the Markov Process (Xxt )t>0. Conversely, if a Markov process (Xxt )t>0 has a dual with

cumulative distribution function FYy,t(x), the relation in (2.2) ensures (Xxt )t>0 is stochastically

monotone.

In this section, we are interested in the existence and uniqueness of dual Markov processes.

Since the dual is de�ned by equalities between probability distribution functions, a dual Markov

process must be unique. To show its existence in�eorem 2, we will use the following well-known

integration by parts methods (see for example, work by Hewitt [38] and de Barra [23]).
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�eorem 1. (Lebesgue-Stielges integration by parts) Let f and g be right-continuous functions on
the �nite interval [a, b] such that both of them have bounded variation on [a, b]. �en∫

[a,b]

f(x−)dµg +

∫
[a,b]

g(x)dµf = f(b)g(b) − f(a−)g(a−) (2.3)

where f(x−) = limy↑x f(y) and µf, µgare the signed measures induced by f and g respectively.

In the next proposition we extend the analogue of the above theorem from an arbitrary interval

to the real line.

Proposition 1. Let f and g be right-continuous, non-negative and monotonically increasing func-
tions on R such that both of them are bounded on R. �en∫

R
f(x−)dµg +

∫
R
g(x)dµf = lim

b→∞ f(b)g(b) − lim
a→−∞ f(a)g(a) (2.4)

where f(x−) = limy↑x f(x) and µf, µgare the signed measures induced by f and g respectively.

�e proofs to �eorem 1 and Proposition 1 are adaptations from those given by Hewitt [38] and

de Barra [23]. Both proofs are included in section 2.6 for completeness. With both tools we show

in the following theorem the necessary conditions for a dual Markov process to exist.

�eorem 2. Suppose that (Xxt )t>0 ∈ R is a stochastically monotone Markov process such that its
transition probability distribution functions P(Xxt > y) are right continuous in x ∈ R and tend to
1 and 0 as x tends to∞ and −∞ respectively. �en its dual (Yyt )t>0 is a Markov process.

Proof. It is enough to show that the family of random variables (Yyt )t>0 de�ned by the duality

relation satis�es the Chapman-Kolmogorov equation.

Let us denote FXx,t(z) as P(X
x
t 6 z). �en dFXx,t(z) is the probability measure that induces the

probability transition distribution of (Xxt )t>0 for a given starting point x ∈ R. �e Chapman-

Kolmogorov equation of process (Xxt )t>0 for all x, y ∈ R, and time u, s > 0 is

P(Xxs+u > y) =
∫
R
P(Xzu > y)dFXx,s(z) (2.5)



2.3 siegmund’s duality relation on R. 13

where the right hand side is also equal to
∫
R F
Y
y,u(z)dF

X
x,s(z) according to duality relation in

(2.2). Observe that both FYy,u(z) and F
X
x,s(z) are right continuous, monotonically increasing and

bounded by 0 and 1 for all z ∈ R. Using Proposition 1, the equation above becomes

P(Xxs+u > y) =
∫
R
FYy,u(z)dF

X
x,s(z)

= lim
z→∞ FYy,u(z)FXx,s(z) − lim

z→−∞ FYy,u(z)FXx,s(z) −
∫
R
FXx,s(z−)dFYy,u(z)

where FXx,s(z−) = limw↑z F
X
x,s(w). �e �rst and second term on the right hand side of the

equation above tend to 1 and 0 respectively. �erefore we get

P(Xxs+u > y) =1−
∫
R
FXx,s(z−)dFYy,u(z)

=1−

∫
R
P(Xxs < z)dF

Y
y,u(z).

Clearly,
∫
R dF

Y
y,u(z) = 1, as dF

Y
y,u(z) is a probability measure on R. Substituting this into the

above,

P(Xxs+u > y) =
∫
R
dFYy,u(z) −

∫
R
FXx,s(z−)dFYy,u(z)

=

∫
R

(
1− P(Xxs < z)

)
dFYy,u(z)

=

∫
R
P(Xxs > z)dF

Y
y,u(z). (2.6)

Applying the duality relation on both le� and right hand sides of (2.6), we can write

P(Yys+u 6 x) =
∫
R
P(Yzs 6 x)dFYy,u(z). (2.7)

We can conclude that (Xxt )t>0 has a dual Markov process (Yyt )t>0 that corresponds to the family

of cumulative distribution functions FYy,t.

In Siegmund’s paper [72] Fubini’s theoremwas used to show that the same necessary and su�cient

conditions are required for a dual to form a Markov process on the positive half line. �is proof

can be easily adapted to Markov processes on the real line. �is adaptation is presented in the

appendix section 2.6.
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Next, we show an example to compute the dual of a Lévy process.

Example 4. Let (Xt)t>0 be a Lévy process.�en according to�eorem 2, its dualMarkov process

exists. Furthermore, (Yt)t>0 also has an independent incremental property. �is is because

P(Xxt > y) = P(X
0
t > y− x)

= P(−X0t 6 x− y)

= P(−Xyt 6 x).

Hence, the dual of Lévy process Xt is −Xt. In other words, the dual is also a Lévy process with

sample paths of the opposite direction.

Now, we look at some analytical properties of Siegmund’s duality. Let B(R) be the Banach space

of bounded Borel-measurable functions equipped with the supremum norm. Also, let Ck∞(R) be
the space of k times di�erentiable functions on R with all these derivatives vanishing at in�nity.

By (TXt )t>0 we denote aMarkov semi-group onB(R) corresponding toMarkov process (Xt)t>0.

�en for any f ∈ B(R) we write

TXt f(x) = E
(
f(Xt)|X0 = x

)
= E

(
f(Xxt )

)
.

�e transition probability distribution function P(Xxt > y) can also be represented as T
X
t 1>y(x).

Let us also denote (TYt )t>0 to be the Markov semi-group for the dual process (Yt)t>0. �en the

duality relation can be written as

TYt 16x(y) = T
X
t 1>y(x). (2.8)

We say that (Tt)t>0 is a C-Feller (or Feller continuous) semi-group on the Banach space of

bounded continuous functions Cb(R) if the function Ttf(x) = E(f(Xxt )) is a continuous func-

tion of x for all bounded continuous f. A C-Feller semi-group is a sub-Markov semi-group in

Cb(R), in other words, for any 0 6 u 6 1, we have 0 6 Ttu 6 1.
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Remark 2. It is worth noting that a C-Feller semi-group is not necessarily Feller and vice versa.

Recall that a Feller semi-group is a strongly continuous semi-group of positive linear contraction

on C∞(R) (Ttf ∈ C∞(R) if f ∈ C∞(R)). Contrary to the de�nitions of a Feller semi-group,

strong continuity is not a requirement for the de�nition of C-Feller. In particular, a Feller semi-

group is C-Feller if, and only if, the corresponding semi-group applied to a constant is a continuous

function for all t > 0. On the other hand, a C-Feller semi-group is Feller if C∞(R) is invariant
under the semi-group and the corresponding restriction is strongly continuous (see chapter 3 and

4, in textbook [55] by Kolokoltsov and work by Schiling and Wang [71] and references therein for

more explanation on the matter).

Proposition 2. Suppose (Xxt )t>0 is aC-Feller process such that P(Xxt > y) is continuous in y ∈ R.
�en P(Xxt > y)must also be continuous in x ∈ R.

Proof. Let (xn)n>0 ∈ R be a sequence that converges to x asn tends to∞. Since (Xxt )t>0 is a C-

Feller process, its transition probability measure initiating at xn, P(X
xn
t ∈ dy) = µn converges

weakly to P(Xxt ∈ dy) = µ as n → ∞. Denote the set [y,∞) as A for some y ∈ R. �en its

boundary point (∂A) is y . Since P(Xxt > y) is continuous in y, the measure admits no atoms,

in other words, µ(∂A) = P(Xxt = y) = 0. �en by Portmanteau �eorem, µn(A) → µ(A),

meaning that P(Xxt > y) is continuous in x.

Proposition 3. Let (TXt )t>0 be a C-Feller semi-group such that TXt 1>y(x) is monotonically in-
creasing in x and continuous in y ∈ R. �en, its dual semi-group also forms a C-Feller process.

Proof. By Proposition 2, TXt 1>y(x) is also continuous (and therefore right continuous) in all

x ∈ R. Since the corresponding Markov process is stochastically monotone, by �eorem 2 it has

a dual Markov process (Yyt )t>0 and a corresponding dual semi-group (TYt )t>0. Furthermore,

TYt 16x(y) = P(Y
y
t 6 x) is a continuous function in x as well as y. By Portmanteau�eorem,

its distribution measure P(Yyn

t ∈ dx) converges weakly to P(Yyt ∈ dx). �is is precisely the

de�nition of the dual (Yyt )t>0 being a C-Feller process.
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2.4 siegmund’s duality for processes on an interval.

In this section we investigate the theory of Siegmund’s duality on an arbitrary interval [a, b] ⊂ R.
In particular, we study the behaviours of Markov process (Xt)t>0 and its dual (Yt)t>0 at both

barriers {a} and {b}. �is section serves as an overview of the more detailed survey on the theory

of duality on an interval, which is presented in chapter 7.

Similar to before, let us suppose that (Xt)t>0 is a stochastically monotone Markov Process

evolving on an interval [a, b] ⊂ R such that its probability distribution function P(Xxt > y) is

right continuous in x ∈ [a, b) and monotonically increasing in x ∈ [a, b]. Also, assume that

for all y ∈ [a, b], limx↑b P(X
x
t > y) = 1 and limx↓a P(X

x
t > y) = 0. De�ne a set of functions

FYy,t(x) , x, y ∈ [a, b] such that

FYy,t(x) = P(X
x
t > y). (2.9)

Let us recall that (2.9) is Siegmund’s duality relation.

Clearly, for all t > 0 andy ∈ [a, b], the function FYy,t(x) ismonotonically increasing in x ∈ [a, b]

and right continuous in x ∈ [a, b). With this set-up, the set of functions FYy,t(x) forms a family

of probability distribution functions that correspond to a family of random variables, (Yt)t>0.

Furthermore if we let y in (2.9) equal to {a},

FYa,t(x) = P(X
x
t > a) = 1

for all x ∈ [a, b] and any t > 0. In other words, the probability of Yat being smaller than or equal

to any x ∈ [a, b] equals to 1.

Proposition 4. If (Xt)t>0 is a stochastically monotone Markov process on [a, b] such that
P(Xxt > y) is right-continuous in x ∈ [a, b), then it has a dual Markov process (Yt)t>0 on
[a, b] which is absorbed at {a}.
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Proof. Similar to�eorem 2, we need to show that the family of cumulative distribution functions

FYt (y) satis�es the Chapman-Kolmogorov equation. By the Chapman-Kolmogorov equation for

(Xt)t>0 and duality relation,

P(Yyt+s 6 x) =P(X
x
t+s > y)

=

∫
[a,b]

P(Xzs > y)dF
X
x,t(z)

=

∫
[a,b]

FYy,s(z)dF
X
x,t(z) (2.10)

for all x, y ∈ [a, b] and t > 0. Since both FYy,s and F
X
x,t are right-continuous functions on [a, b),

we apply Lebesgue-Stieltjes integration by parts in �eorem 1 to (2.10) to obtain

P(Yyt+s 6 x) =P(X
x
t+s > y)

=FYy,s(b)F
X
x,t(b) − F

Y
y,s(a−)FXx,t(a−) −

∫
[a,b]

FXx,t(z−)dFYy,s(z).

In the equation above the second term equals to 0 by de�nition. Also, FXx,t(z−) = limx↑z F
X
x,t(x),

which also equals P(Xxt < z). �erefore, the equation above can be rewritten as

P(Yyt+s 6 x) =P(X
x
t+s > y)

=1−

∫
[a,b]

P(Xxt < z)dF
Y
y,s(z)

=

∫
[a,b]

(
1− P(Xxt < z)

)
dFYy,s(z)

=

∫
[a,b]

P(Xxt > z)dF
Y
y,s(z).

By duality relation,

P(Yyt+s 6 x) =
∫
[a,b]

P(Xxt > z)dF
Y
y,s(z)

=

∫
[a,b]

P(Yzt 6 x)dFYy,s(z).
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Hence, (Xt)t>0 has a dual Markov process in [a, b]. Lastly since FYa,t(x) = 1 for all x ∈ [a, b],

the dual Markov process is absorbed at the barrier {a}.

Evidently, one can construct a dual Markov process (Yt)t>0 on [a, b] if (Xt)t>0 is a stochastic

monotone Markov process on [a, b] such that P(Xxt > y) is right continuous in x ∈ [a, b).

Clearly if {a} and {b} are unattainable, both (Xt)t>0 and (Yt)t>0 evolve on (a, b) in a similar

way to an honest process onR. Otherwise, {a} is an absorbing barrier for the dual process (Yt)t>0

and {b} is an absorbing barrier for the original process (Xt)t>0.�e latter can be shown by letting

x in (2.9) equal to b.

One example that illustrates the behaviour of Markov process (Xt)t>0 and its dual process

(Yt)t>0 is the Brownian Motion on [0,∞).

Example 5. (Re�ected Brownian Motion at 0). Suppose that (Xt)t>0 is a Brownian Motion

on (−∞,∞). �en (|Xt|)t>0 is a Brownian Motion on the half line [0,∞) re�ected at 0. Its

transition probability distribution function at some initial point x ∈ [0,∞) can be written as

P(|Xt|
x > y) = P(Xxt > y) + P(X

x
t 6 −y)

=
1√
2πt

( ∫∞
y

e−
(z−x)2

2t dz+

∫−y
−∞ e−

(z−x)2

2t dz
)

=
1√
2πt

( ∫∞
y

e−
(z−x)2

2t dz+

∫∞
y

e−
(z+x)2

2t dz
)

(2.11)

By symmetry and translation of the normal density function, the probability transition cumulative

distribution function in (2.11) becomes

P(|Xt|
x > y) =

1√
2πt

( ∫x−y
−∞ e−

z2

2t dz+

∫−y−x
−∞ e−

z2

2t dz
)
.

Next, split both the integrals above to obtain
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P(|Xt|
x > y) =

1√
2πt

( ∫x−y
−y

e−
z2

2t dz+

∫−y
−∞ e−

z2

2t dz

+

∫−y
−∞ e−

z2

2t dz−

∫y+x
y

e−
z2

2t dz
)

=
1√
2πt

( ∫x
0

e−
(z−y)2

2t − e−
(z+y)2

2t dz+ 2

∫−y
−∞ e−

z2

2t dz
)
. (2.12)

By Proposition 4, since the re�ected Brownian Motion is stochastically monotone and P(|Xt|
x >

y) is right-continuous in x ∈ [0,∞), (2.12) is also the transition cumulative distribution function,

FYy,t(x) for the dual Markov process (Yt)t>0.

Suppose that the dual process starts at y = 0. �en for all x ∈ [0,∞), the probability distribution

function can be written as

P(Y0t 6 x) =
2√
2πt

∫0
−∞ e−

z2

2t dz = 1,

con�rming that state {0} is an absorbing barrier for the dual process.

Next let x = 0. �en the probability of the dual process Y starting from any y ∈ [0,∞) arriving

at the absorbing barrier is

P(Yyt = 0) = P(Yyt 6 0)

= 2

∫−y
−∞ e−

z2

2t dz.

�erefore its probability transition density on (0,∞) starting at y ∈ (0,∞) is

PYt (y, dz) =
1√
2πt

(
e−

(z−y)2

2t − e−
(z+y)2

2t

)
dz.

�is density coincides with that of an absorbing Brownian Motion on the half line absorbed at

the origin (see textbook by Knight [51] on Brownian Motion that is absorbed at the origin).

Example6. (Subordinator) Let (Xt)t>0 be a subordinator. Recall that (Xt)t>0 has non-decreasing

sample paths on R+. By Example 4, the dual of Xt is −Xt and has a non-increasing sample path

which is absorbed at 0.
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2.5 dual generators

In this section, we consider the example of an arbitrary one dimensional Feller process (Xt)t>0

in R with a generator of the usual Lévy-Khintchine form:

LXf(x) =
1

2
G(x)f ′′(x) + b(x)f ′(x)

+

∫
R+

[
f(x+ω) − f(x) − f ′(x)ω1B1

(ω)
]
ν(x, dω). (2.13)

�is generator was discussed in detail in work by Kolokoltsov [54]. A criterion for stochastic

monotonicity in terms of this generator is given by the following theorem.

�eorem 3. (presented as �eorem 2.1, Kolokoltsov [54]) Let Xt be a Feller process in R with a
generator of the usual Lévy-Khintchine form in (2.13) with continuous G, b, ν, and let the space
C2c(R) of twice continuously di�erentiable functions with compact support be a core. For simplicity
assume also that the coe�cients are bounded, that is

sup
x

(
G(x) + |b(x)|+

∫
R+

(1∧ω2)ν(x, dω)
)
<∞.

If the Lévy measure ν is such that for any a > 0, the functions

∫∞
a

ν(x, dω),

∫−a
−∞ ν(x, dω)

are non-decreasing and non-increasing functions of x respectively, then the process (Xt)t>0is
stochastically monotone. Moreover, the dual Markov process exists.

�e proof to �eorem 3 in Kolokoltsov’s paper [54] utilises discrete approximation of transition

probabilities using the theory of stochastic monotonicity for Markov Chains (for example, see

textbook by Anderson [3] ). Using the same approach of discretization, the explicit form for the

dual generator was also computed in Proposition 3.1 in the same paper by Kolokoltsov.

In this section, we present an alternative approach to Proposition 3.1 in [54] to compute an

explicit form of generator corresponding to the dual Markov process using the duality relation



2.5 dual generators 21

in (2.2) directly. Let us �rst recall the de�nition of an in�nitesimal generator of a Feller process.

Let us denote C∞(R) as the space of continuous functions on R vanishing at ±∞. Also, let

C1∞(R) be the space of continuously di�erentiable functions with both the original functions and
their derivatives vanishing at±∞. Let (TXt )t>0 be a Feller semi-group of (Xt)t>0 on C∞(R). A
function f ∈ C∞(R) belongs to the domainDLXof the in�nitesimal generator of (Xt)t>0 if the

limit

LXf(x) = lim
t↓0

1

t
(TXt f− f) =

d

dt

∣∣∣∣
t=0

TXt f(x)

exists in C∞(R). �e operator LX : DLX → C∞(R) is called the in�nitesimal generator of Xt or

of the semi-group TXt . Suppose that 16y ∈ DLX . Clearly, to write the duality relation in terms

of in�nitesimal generators, we just di�erentiate both sides of the duality relation in (2.8) with

respect to t:

LY16y(x) =
d

dt

∣∣∣∣
t=0

TYt 16y(x)

=
d

dt

∣∣∣∣
t=0

TXt 1>y(x)

= LX1>y(x) (2.14)

where LY is the in�nitesimal generator of the dual process (Yt)t>0.

For any f ∈ C1∞(R), we can write the expression of dual generator LYf in terms of the original

generator LX, as shown in the following:

LYf(y) = −LY
( ∫
R
1>(·)(z)f

′(z)dz
)
(y)

= −LY
( ∫
R
16z(·)f ′(z)dz

)
(y)

= −

∫
R

(
LY16z(·)

)
(y)f ′(z)dz

= −

∫
R

(
LX1>y(·)

)
(z)f ′(z)dz. (2.15)

In the following lemmas, we consider the jump and di�usion parts of the generator (2.13) separ-

ately.
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Lemma 1. Consider a one-dimensional Feller process generated by

LX1 f(x) =

∫∞
0

(
f(x+ω) − f(x)

)
ν(x, dω) (2.16)

where f ∈ C1∞(R) and ν is a Lévy measure supported on R+ such that
∫∞
a ν(x, dω) is a non-

decreasing function. Also, assume that either (i) ν(x, dω) = ν(x,ω)µ(dω) with ν(x,ω) being
continuously di�erentiable in x or (ii) ν(x, dω) = α(x)ν(dω) with α(x) being continuously
di�erentiable in x. �en the dual generator takes the explicit form:

LY1 f(x) =

∫∞
0

[
f(x−ω) − f(x)

]
ν̃(x, dω)

where in

(i) ν̃(x, dω) = ν(x−ω,ω)µ(dω) +
∫∞
ω
∂
∂x
ν(x−ω,y)µ(dy)dω;

(ii) ν̃(x, dω) = α(x−ω)ν(dω) + ∂
∂x
α(x−ω)

∫∞
ω ν(dy)dω.

Proof. Let us �rst consider case (i). Applying results (2.15) and given any f ∈ C1∞(R) we can
write

LY1 f(x) = −

∫
R
LX1>x(y)f

′(y)dy

=−

∫
R

[ ∫∞
0

(
1>x(y+ω) − 1>x(y)

)
ν(y,ω)µ(dω)

]
f ′(y)dy.

Since variable ω considered in the second integral is always non-negative, 1>x(y + ω) −

1>x(y) = 1[x−ω,x)(y). �erefore by interchanging the integral term

LY1 f(x) = −

∫
R

[ ∫∞
0

1[x−ω,x)(y)ν(y,ω)µ(dω)
]
f ′(y)dy

= −

∫∞
0

[ ∫
R
1[x−ω,x)(y)f

′(y)ν(y,ω)dy
]
µ(dω)

= −

∫∞
0

[ ∫x
x−ω

f ′(y)ν(y,ω)dy
]
µ(dω). (2.17)
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Applying integration by parts to the second integral,

LY1 f(x) =

∫∞
0

[ ∫x
x−ω

f(y)
∂

∂y
ν(y,ω)dy+ f(x−ω)ν(x−ω,ω) − f(x)ν(x,ω)

]
µ(dω)

=

∫∞
0

[ ∫x
x−ω

f(y)
∂

∂y
ν(y,ω)dy+

[
f(x−ω) − f(x)

]
ν(x−ω,ω)

+ f(x)[ν(x−ω,ω) − ν(x,ω)]
]
µ(dω). (2.18)

Notice that in the third term above, ν(x − ω,ω) − ν(x,ω) equals to
∫x−ω
ω

∂
∂y
ν(y,ω)dy.

Rewriting LYf(x) gives

LY1 f(x) =

∫∞
0

[ ∫x
x−ω

f(y)
∂ν(y,ω)

∂y
dy+

[
f(x−ω) − f(x)

]
ν(x−ω,ω)

+

∫x
x−ω

f(x)
∂ν(y,ω)

∂y
dy
]
µ(dω)

=

∫∞
0

[
f(x−ω) − f(x)

]
ν(x−ω,ω)µ(dω)

+

∫∞
0

∫x
x−ω

[
f(y) − f(x)

]∂ν(y,ω)

∂y
dyµ(dω). (2.19)

But in the second term, changing the order of integration and by letting y = x− z give∫∞
0

∫x
x−ω

[
f(y) − f(x)

] ∂
∂y
ν(y,ω)dyµ(dω)

=

∫x
−∞
∫∞
x−y

[
f(y) − f(x)

] ∂
∂y
ν(y,ω)µ(dω)dy

=

∫∞
0

∫∞
z

[
f(x− z) − f(x)

] ∂
∂x
ν(x− z,ω)µ(dω)dz

=

∫∞
0

[
f(x−ω) − f(x)

]( ∫∞
ω

∂

∂x
ν(x−ω,y)µ(dy)

)
dω.

Substituting the above back into (2.19), we conclude that the dual generator for LY1 has the form

LY1 f(x) =

∫∞
0

[
f(x−ω) − f(x)

](
ν(x−ω,ω)µ(dω) +

∫∞
ω

∂

∂x
ν(x−ω,y)µ(dy)

)
dω.
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Similar computation can be applied to case (ii). Equation (2.17) becomes

LY1 f(x) = −

∫∞
0

[ ∫x
x−ω

f ′(y)α(y)dy
]
ν(dω)

=

∫∞
0

[ ∫x
x−ω

f(y)α ′(y)dy+
[
f(x−ω) − f(x)

]
α(x−ω)

+ f(x)[α(x−ω) − α(x)]
]
ν(dω)

=

∫∞
0

[
f(x−ω) − f(x)

]
α(x−ω)ν(dω) +

∫∞
0

∫x
x−ω

[
f(y) − f(x)

]
α ′(y)dyν(dω).

(2.20)

Exchanging the integral in the second term yields∫∞
0

∫x
x−ω

[
f(y) − f(x)

]
α ′(y)dyν(dω) =

∫∞
0

[
f(x−ω) − f(x)

] ∫∞
ω

∂

∂x
α(x−ω)ν(dy)dω.

�erefore

LY1 f(x) =
( ∫∞
0

[
f(x−ω) − f(x)

]
α(x−ω)ν(dω)

)
+
( ∫∞
0

[
f(x−ω) − f(x)

] ∂
∂x
α(x−ω)

∫∞
ω

ν(dy)dω
)
.

�e argument above can also be made when the measure ν is supported on R−. Lemma 1 leads

to the following:

Lemma 2. Consider a one-dimensional deterministic process generated by

LX2 f(x) = a(x)f
′(x), (2.21)

where f ∈ C1∞(R). �en the explicit form of the dual generator is

LY2 f(x) = −a(x)f ′(x).
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Proof. Let

LXδhf(x) =

∫∞
0

(
f(x+ω) − f(x)

)
δh(dω)

=
[
f(x+ h) − f(x)

]
.

Observe that the equation above is precisely LX1 if we let ν(x, dω) equal to a Dirac measure

δh(dω) for some given h which is greater than 0. �erefore by letting α(x)ν(dω) in (2.20)

equal to α(x)δh(dω) (where α(x) is a constant function taking 1) its dual operator, LYδh acting

on indicator function 16y, has the form

LYδh16y(x) =

∫∞
0

[ ∫x
x−ω

16y(z)α
′(z)dz

]
δh(dω)

+

∫∞
0

[
16y(x−ω) − 16y(x)

]
α(x−ω)δh(dω).

Since α(z) = 1 does not depend on z and the α ′(z) in the �rst term vanishes, LYδh16y(x) can

be simpli�ed as

LYδh16y(x) =16y(x− h) − 16y(x), (2.22)

Now, we write the generator LX2 as

LX2 f(x) = a(x) lim
h↓0

[
f(x+ h) − f(x)

]
h

= a(x) lim
h↓0

LXδhf(x)

h
.

We substitute this into the expression of the dual generator shown in (2.15),

LY2 f(x) = −

∫
R
LX2 1>x(y)f

′(y)dy

= − lim
h↓0

1

h

∫
R
a(y)LXδh1>x(y)f

′(y)dy

= − lim
h↓0

1

h

∫
R
a(y)LYδh16y(x)f

′(y)dy. (2.23)
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Let us �rst consider the integral
∫
R a(y)L

Y
δh
16y(x)f

′(y)dy. Since by previous calculation,

LYδh16y(x) = 1>x−h(y) − 1>x(y) = 1[x−h,x)(y).

Substituting this into the integral in (2.23), we obtain,∫
R
a(y)LYδh16y(x)f

′(y)dy =

∫
R
a(y)

[
1>x−h(y) − 1>x(y)

]
f ′(y)dy

=

∫
R
a(y)1[x−h,x)(y)f

′(y)dy

=

∫x
x−h

a(y)f ′(y)dy.

Now let us denote
∂g
∂y

(y) = a(y)f ′(y). �en the dual generator to LX2 is written as

LY2 f(x) = − lim
h↓0

1

h

∫x
x−h

∂g(y)

∂y
dy

= − lim
h↓0

g(x) − g(x− h)

h

= −
∂g

∂x
(x)

= −a(x)f ′(x).

Lemma 3. Let LX3 f(x) =
∫∞
0 f
′(x)y1B1

(y)ν(x, dy) be a generator of a Feller process. �en its
dual operator is

LY3 f(x) = −

∫∞
0

f ′(x)y1B1
(y)ν(x, dy).

Proof. �e proof is straight forward by letting
∫∞
0 y1B1

(y)ν(x, dy) = a(x) in LX2 f in Lemma 2.

Lemma 4. Let LX4 f(x) = 1
2
G(x)f ′′(x) for some f ∈ C2∞(R) and G ∈ C1∞(R). �en its dual

operator is

LY4 f(x) =
1

2

[
G(x)f ′′(x) +G ′(x)f ′(x)

]
.
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Proof. De�ne the following operators:

LXδhf(x) =

∫∞
0

(
f(x+ω) − f(x)

)
δh(dω)

= f(x+ h) − f(x);

LXδ−h
f(x) =

∫0
−∞
(
f(x+ω) − f(x)

)
δ−h(dω)

= f(x− h) − f(x). (2.24)

Clearly, LXδh and LXδ−h
equal to LX1 in Lemma 1 by letting ν(x, dω) = a(x)ν(dω) in LX1 be

δh(dω) and δ−h(dω) respectively. In this proof we denote their dual operators by LYδh and

LYδ−h
.

Now, rewriting generator LX4 f(x), we obtain

LX4 f(x) =
1

2
G(x)f ′′(x)

=
G(x)

2
lim
h↓0

1

h2

[
f(x+ h) + f(x− h) − 2f(x)

]
=
G(x)

2
lim
h↓0

1

h2

[
LXδhf(x) + L

X
δ−h

f(x)
]
.

�e dual generator LXf(x), denoted as LYf(x) is

LY4 f(x) = −

∫
R
LX4 1>x(y)f

′(y)dy

= −

∫
R

G(y)

2
lim
h↓0

1

h2

[
LXδh1>x(y) + L

X
δ−h

1>x(y)
]
f ′(y)dy

Substituting the indicator function into LXδhf(x) and L
X
δ−h

f(x) in (2.24), the dual operator

LY4 f(x) = − lim
h↓0

1

h2

∫
R

G(y)

2

[
1>x(y+ h) − 1>x(y) + 1>x(y− h) − 1>x(y)

]
f ′(y)dy

= − lim
h↓0

1

h2

∫
R

G(y)

2

[
1>x−h(y) − 1>x(y) + 1>x+h(y) − 1>x(y)

]
f ′(y)dy

= − lim
h↓0

1

2h2

[ ∫x
x−h

G(y)f ′(y)dy−

∫x+h
x

G(y)f ′(y)dy
]
.
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Letting functionH ′(y) = G(y)f ′(y),

LY4 f(x) = lim
h↓0

H(x+ h) +H(x− h) − 2H(x)

2h2

=
1

2

∂2H(x)

∂x2

=
1

2

∂[G(x) ∂f
∂x

]

∂x

=
G(x)

2

∂2f

∂x2
+
1

2

∂G(x)

∂x

∂f

∂x
.

By linearity of generators we have proven the following theorem using the duality relation directly

in Lemma 1 - 4.

Proposition 5. (presented as Proposition 3.1, Kolokoltsov [54] ) Under the assumptions in �eorem
3 suppose additionally that the Lévy measures are supported on R+ and either (i) ν(x, dω) =

ν(x,ω)dω with ν(x,ω) being continuously di�erentiable in x or (ii) ν(x,ω) = a(x)ν(dω)

with a certain Lévy measure ν and a continuously di�erentiable function a. �en the generator of
the dual Markov process acts by

LYf(x) =
1

2
G(x)f ′′(x) +

(1
2
G ′(x) − b(x) +

∫1
0

y(ν− ν̃)(x, dω)
)
f ′(x)

+

∫∞
0

[
f(x−ω) − f(x) + f ′(x)1B1

(ω)
]
ν̃(x,ω)µ(dω) (2.25)

where in

(i) ν̃(x, dω) =
(
ν(x−ω,ω) +

∫∞
ω
∂
∂x
ν(x−ω,y)dy

)
µ(dω);

(ii) ν̃(x, dω) = a(x−ω)ν(dω) + ∂
∂x
a(x−ω)

∫∞
ω ν(dy)dω.
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2.6 appendix

theorems of integrations by parts

�eorem. (Lebesgue-Stielges integration by parts) Let f and g be right-continuous functions on the
�nite interval [a, b] such that both of them are of bounded variation on [a, b]. �en∫

[a,b]

f(x−)dµg +

∫
[a,b]

g(x)dµf = f(b)g(b) − f(a−)g(a−) (2.26)

where f(x−) = limy↑x f(y) and µf, µg are the signed measures induced by f and g respectively.

Proof. Without loss of generality, we assume that f and g are non-negative and monotonically

increasing functions, otherwise we may decompose f and g with f = f1− f2 and g = g1−g2 as

above then combine the resulting equations in the form (2.3) to obtain the result of the theorem.

Since f and g are right continuous and monotonically increasing, we choose some increasing

sequences {fn}
∞
n=1 and {gm}

∞
m=1 ofmeasurable simple functions of the form

∑k
i=1 λiχ[ai,ai+1)

where λi < λi+1, such that each of them tends to f and g respectively. We show that (2.3) holds

for f and g replaced by fn and gm. Since fn and gm are right continuous and monotonically

increasing Borel measurable (step) functions, the integrals are de�ned.

As f and g are right continuous, let us assume them de�ned on an interval [a−ε, b+ε), for some

ε > 0 and constant on the intervals [a− ε, a] and [b, b+ ε). �en if gm =
∑s−1
i=1 ζiχ[ai,ai+1),

we havea0 < a < a1 < . . . < as 6 b < as+1. Clearlyµgm
(ai, ai+1] = gm(ai+1)−gm(ai)

for each i and µgm
(xi, xi+1] = 0 if xi and xi+1 belong to the same partition. �en if h is any

�nite-valued Borel-measurable function,

∫
[a,b]

h(x−)dµgm
=

s−1∑
i=1

h(ai−)
[
gm(ai) − gm(ai−1)

]
and similarly,

∫
[a,b]

h(x)dµfn =

r−1∑
i=1

h(a ′i)
[
fn(a

′
i) − fn(a

′
i−1)

]
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Let {c0, c1, . . . , cp} be the union of the points of the two partitions {ai}
s−1
i=1 of gm, {a ′i}

r−1
i=1 of

fn and the endpoints {a} and {b}, such that c0 < a = c1 < c2 < . . . < cp−1 = b < cp. �en,

∫
[a,b]

fn(x−)dµgm
=

p−1∑
i=1

fn(ci−)
[
gm(ci) − gm(ci−1)

]
=

p−1∑
i=1

fn(ci−1)
[
gm(ci) − gm(ci−1)

]
=− fn(c0)gm(c0) + gm(cp−1)fn(cp−2)

−

p−1∑
i=1

gm(ci)
[
fn(ci) − fn(ci−1)

]
(2.27)

On the other hand,

∫
[a,b]

gm(x)dµfn =

p−1∑
i=1

gm(ci)
[
fn(ci) − fn(ci−1)

]
.

By observing that fn(c0)gm(c0) = fn(a−)gm(a−) and that cp−1 = b, we rewrite (2.27) as∫
[a,b]

fn(x−)dµgm
+

∫
[a,b]

gm(x)dµfn = gm(b)fn(b) − fn(a−)gm(a−), (2.28)

i.e. (2.3) holds for fn and gm.

Next, suppose that h is any non-negative monotonically increasing Borel measurable function.

�en given some ε > 0, by �eorem 5, page 58 in the text book by de Barra [23], we can �nd a

step function φ, 0 6 φ 6 h such that |h− φ| < ε uniformly on (a− ε, b+ ε). �en for all n

greater than some �xed n0,∣∣∣ ∫ hdµfn −

∫
hdµf

∣∣∣ 6 ∫(h− φ)dµfn +

∫
(h− φ)dµf

+
∣∣∣ ∫ φdµfn −

∫
φdµf

∣∣∣
where the �rst and second terms on the right hand side are less thanε

(
µfn [a, b]+µf[a, b]

)
< Kε

while the third term clearly tends to zero asn→∞.�erefore wemust have
∫
hdµfn →

∫
hdµf

as n tends to∞. Same result holds for µgm
and µg.
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Now let n → ∞ in (2.28). By (Lebesgue’s) monotone convergence theorem and the fact that

fn ↑ f uniformly (and hence point-wise), we get∫
[a,b]

f(x−)dµgm
+

∫
[a,b]

gm(x)dµfn = gm(b)f(b) − f(a−)gm(a−).

Similarly, by lettingm→∞ in equation above we show that (2.3) holds.

Proposition. Let f and g be right-continuous, non-negative andmonotonically increasing functions
on R such that both of them are bounded on R. �en∫

R
f(x−)dµg +

∫
R
g(x)dµf = lim

b→∞ f(b)g(b) − lim
a→−∞ f(a)g(a) (2.29)

where f(x−) = limy↑x f(x) and µf, µg are the signed measures induced by f and g respectively.

Proof. Let {fk}∞k=1 and {gl}
∞
l=1 be the sequences of functions supported on (−k − 2ε, k] and

(−l− 2ε, l] respectively such that for some small ε > 0,

fk(x) =


f(x) ,−k 6 x 6 k

f(−k) ,−(k+ 2ε) < x < −k,

and

gl(x) =


g(x) ,−l 6 x 6 l

g(−l) ,−(l+ 2ε) < x < −l.

�en both {fk}
∞
k=1 and {gl}

∞
l=1 converge uniformly to f and g respectively and all fk are right

continuous on [−k, k), monotonically increasing and non-negative functions [−k− ε, k], and

similar observation holds for gk. Assume without loss of generality that k < l. By �eorem 1,∫
R
fk(x−)dµgl

+

∫
R
gl(x)dµk =fk(k)gl(k) − f(−k− ε)gl(−k− ε)

=f(k)g(k) − f(−k)g(−k).
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Now, similar to the argument in�eorem 1, if h is any non-negative monotonically increasing

Borel measurable functions,
∫
hdµfk →

∫
hdµf. Letting l → ∞, by (Lebesgue’s) monotone

convergence theorem and the fact that {fka
}
∞
k=1 and {gka

}
∞
k=1 are increasing sequences that

converge uniformly to f and g respectively,∫
R
fk(x−)dµg +

∫
R
g(x)dµk = f(a+ k)g(a+ k) − f(−k)g(−k).

�en letting k→∞, we show that (2.4) holds.

Next, we give an alternative proof to �eorem 2 using Fubini’s theorem.

�eorem. (copy of �eorem 2) Suppose that (Xxt )t>0 ∈ R is a stochastically monotone Markov
process such that P(Xxt > y) is right continuous in all x ∈ R and tends to 1 and 0 as x tends to∞
and −∞ respectively. �en its dual (Yyt )t>0 is a Markov process.

Alternative Proof to �eorem 2. We have to show that the dual process (Yt)t>0 satis�es the

Chapman-Kolmogorov equation. By the Chapman-Kolmogorov equation of (Xt)t>0, the duality

relation in (2.2) can be written as

P(Yyt+s 6 x) = P(X
x
t+s > y)

=

∫
z∈R

PXt (x, dz)P(X
z
s > y)

=

∫
z∈R

P(Yys 6 z)PXt (x, dz).

�e cumulative distribution function P(Yys 6 z) can be written as
∫
w6z P

Y
s (y, dw), where

PYs (y, dw) is the measure that induces the corresponding distribution function. �erefore

P(Xxt+s > y) =
∫
z∈R

∫
w6z

PYs (y, dw)P
X
t (x, dz)

=

∫
z∈R

{ ∫
w∈R

I6z(w)PYs (y, dw)
}
PXt (x, dz).
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By Fubini’s theorem, ∫
z∈R

{ ∫
w∈R

I6z(w)PYs (y, dw)
}
PXt (x, dz)

=

∫
w∈R

{ ∫
z∈R

I6z(w)PXt (x, dz)
}
PYs (y, dw).

Since I6z(w) = I>w(z), we get

P(Xxt+s > y) =
∫
w∈R

{ ∫
z∈R

I>w(z)PXt (x, dz)
}
PYs (y, dw)

=

∫
w∈R

∫
z>w

PXt (x, dz)P
Y
s (y, dw)

=

∫
w∈R

Pt(X
x
t > w)P

Y
s (y, dw)

=

∫
w∈R

Pt(Y
w
t 6 x)PYs (y, dw).

�erefore, there is a dual Markov process to (Xt)t>0.
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3.1 introduction

In chapter 2, the theory of monotonicity and duality was introduced via the transition probability

distributions of twoMarkov processes. However, inmany applications the distributions ofMarkov

processes are given in terms of its in�nitesimal generator. �erefore in this chapter we consider

Lévy-Khintchine type pre-generators and take an analytic approach to the theory of duality

for Markov processes in �nite dimensional Rd. In section 3.3, we use Fubini’s theorem to show

the necessary and su�cient conditions for a Markov dual process to exist in Rd. Aiming at an

instance of integro-di�erential operators of the form

Lf(x) =

d∑
i=1

bi
∂f

∂xi
+
1

2

d∑
i,j=1

Gi,j
∂2f

∂xi∂xj
+

∫
Rd

+

[f(x+ y) − f(x)]ν(x, dy) (3.1)

we construct a Feller process generated by (3.1). Such constructions of Markov processes can be

done using standard stochastic calculus (see chapter 4 of textbook by Kolokoltsov [55]) or by

analysing well-posedness of the corresponding Markov semi-group (as described by Kolokoltsov

[53] and in chapter 5 of Kolokoltsov’s textbook [55]). �e latter, which is the approach we are

34
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taking in this chapter, requires some regularity conditions on (3.1) and involves some analysis of

the corresponding evolution equations for the derivatives of aMarkov evolution. Some conditions

are needed so that the Feller processes generated by (3.1) are stochastically monotone. Moreover,

with additional regularity assumptions, we show that a dual Markov process to the considered

Feller process exists on Rd.

3.2 basic notations

Let (Xt)t>0 = (X1,t, . . . , Xd,t)t>0 be a time-homogenous Markov process in d–dimensional

real space (Rd). Consider somea = (a1, . . . , ad) andb = (b1, . . . bd) inRd. Ad–dimensional

Euclidean space is said to be equipped with Pareto order when a > b if and only if ai > bi for

all i ∈ {i, . . . , d}. Similarly, given a closed and non-empty convex cone c ⊂ Rd with a vertex at

the origin, we say that a c-dominates b (written as a >c b) if a− b ∈ c.

In this chapter, we assume Pareto order in Rd for simplicity, noting that the following analysis

holds true for all similar orders generated by linear transformations of Pareto order.

Suppose that the Markov process (Xt)t>0 is characterised by a family of transition probability

distributions PXt (x, A), at time t. Here x = (x1, . . . xn) ∈ Rd denotes a starting point whileA

is a Borel subset inB(Rd). If setsA and B are intervals [y,∞) and (−∞,y] ⊂ Rd respectively,

we write

PXt (x, A) = P(X
x
t > y) = P(Xx

1,t > y1, . . . , X
x
d,t > yd)

PXt (x, B) = P(X
x
t 6 y) = P(Xx

1,t 6 y1, . . . , X
x
d,t 6 yd) = F

X
x,t(y)

One can interpret the transition probability distribution P(Xx
t 6 y) as a joint cumulative

distribution of random variables Xx
1,t, . . . , X

x
d,t. A Markov process X is said to be stochastically

monotone if P(Xx
t 6 y) is a non-decreasing function (in the Pareto order) in x ∈ Rd.

Assume that :

(p1) (Xt)t>0 is stochastically monotone;

(p2) P(Xx
t 6 y) is right-continuous in x, i.e. limzi↓xi, for all 06i6d P(X

z
t > y) = P(Xx

t > y);
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(p3) For x(1), x(2) ∈ Rd such that x(1) 6 x(2),

4L(x(1), x(2)) =
∑
a∈A

(−1)s(a)P(Xa
t > y) > 0 (3.2)

such that

1. setA =
{
a = (a1, . . . , ad) : ai ∈ {x

(1)
i , x

(2)
i }
}
,

2. for any a ∈ A, s(a) = #
∣∣i : ai = x

(1)
i , i = 1, 2, . . . , d

∣∣ is the number of indices i for

which ai = x
(1)
i

(p4) limxi→∞, for all i=1,... ,d P(Xx
t 6 y) = 1;

Now, let us de�ne a function

FYy,t(x) = P(X
x
t > y) (3.3)

By assumptions p1 and p2, the le� hand side of (3.3) is a non-decreasing and right continuous

function in x. Also, condition p4 ensures that the function FYy,t(x) tends to 1 as all xi tend

to∞. Furthermore, by condition p3 FYy,t(x) is a function with non-negative increments in x.

With these four properties, FYy,t(x) forms a family of joint cumulative distribution functions

FYy,t(x) = P(Y
y
t 6 x). Similar to before, equation (3.3) is called the duality relation. �e family

of random variables (Yt)t>0 with cumulative distribution functions satisfying (3.3) is said to be

the dual of (Xt)t>0.

In the next theorem we present a natural extension of �eorem 2 in chapter 2. We use the same

approach developed by Siegmund [72] to show the necessary and su�cient condition for the

existence of a dual Markov process to (Xt)t>0 on Rd.

3.3 pareto duality in euclidean space

�eorem 4. Suppose that (Xt)t>0 is a Markov process on Rd equipped with Pareto order such
that all conditions p1 to p4 are satis�ed. �en its dual Markov process(Yt)t>0 exists on Rd.
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Proof. It remains to show that P(Yys 6 x) satis�es the Chapman-Kolmogorov equation. By the

Chapman-Kolmogorov equation of (Xt)t>0 and the duality relation in (3.3):

P(Yyt+s 6 x) = P(Xx
t+s > y)

=

∫
z∈Rd

PXt (x, dz)P(X
z
s > y)

=

∫
z∈Rd

P(Yys 6 z)PXt (x, dz).

Since P(Yys 6 z) can be written as
∫
w6z P

Y
s (y, dw), we obtain

P(Xx
t+s > y) =

∫
z∈Rd

∫
w6z

PYs (y, dw)PXt (x, dz)

=

∫
z∈Rd

{ ∫
w∈Rd

I6z(w)PYs (y, dw)
}
PXt (x, dz).

Applying Fubini’s theorem to the equation above, the �rst and second integration are interchange-

able. �erefore,

P(Xx
t+s > y) =

∫
z∈Rd

{ ∫
w∈Rd

I6z(w)PYs (y, dw)
}
PXt (x, dz)

=

∫
w∈Rd

{ ∫
z∈Rd

I6z(w)PXt (x, dz)
}
PYs (y, dw).

Since I6z(w) = I>w(z), the Chapman-Kolmogorov equation becomes

P(Xx
t+s > y) =

∫
w∈Rd

{ ∫
z∈Rd

I>w(z)PXt (x, dz)
}
PYs (y, dw)

=

∫
w∈Rd

∫
z>w

PXt (x, dz)P
Y
s (y, dw)

=

∫
w∈Rd

Pt(X
x
t > w)PYs (y, dw)

=

∫
w∈Rd

Pt(Y
w
t 6 x)PYs (y, dw).

�erefore, (Xt) has a dual Markov process on Rd.
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3.4 well-posedness

In this section we analyse the well-posedness of Markov semi-groups by analysing the corres-

ponding evolution equations for the derivatives of a Markov evolution. In particular, we study

the conditions of integro-di�erential operators of the form

Lf(x) =

d∑
i=1

bi
∂f

∂xi
+
1

2

d∑
i,j=1

Gi,j
∂2f

∂xi∂xj
+

∫
Rd

+

[f(x+ y) − f(x)]ν(x, dy), (3.4)

where the function f ∈ C2∞(Rd), so that we can reconstruct a Feller process from L. �e

construction of stochastically monotone Markov processes from this pre-generator was brie�y

discussed in chapter 5, Kolokoltsov [55], but the details of such a construction will be presented

in this chapter.

Before we proceed, let us �rst introduce the notion of conditionally positive operator. Let C(Rd)

be a space of bounded continuous functions that map Rd to R. We say that an operator L in

C(Rd) de�ned on a domain DL is conditionally positive if Lf(x) > x for any f ∈ DL s.t.

f(x) = maxy f(y) > 0.

Let us also recall the perturbation theory. In summary, this theory can be applied when the

generator under consideration can be represented as a sum of two operators, one is bounded and

another generates a semi-group. �e next theorem is a simple form of the perturbation theory

presented in chapter 1 of the textbook by Kolokoltsov [55] (for a detailed study see work done by

Maslov [60] and Simon and Reed [74]).

�eorem5. (Perturbation theory) Let an operatorLwith domainDL generate a strongly continuous
semi-group (Tt)t>0 on a Banach Space B, and letA be a bounded operator on B. �en

(i) L+A also generates a strongly continuous semi-group (T̃t)t>0 on B given by the following series
converging in the operator norm:

T̃t =Tt +

∞∑
m=1

T̃
(m)
t

where T̃ (m)
t =

∫t
0 Tt−smAT̃

(m−1)
sm dsm.
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(ii) T̃tf is the unique (bounded) solution of the integral equation

T̃tf = Ttf+

∫t
0

Tt−sAT̃sfds

with a given f0 = f.

(iii) If additionally,D is an invariant core for L that is itself a Banach space under the norm ‖ · ‖D,
the Tt are uniformly (for t from a compact interval) bounded operatorsD→ D andA is a bounded
operatorD→ D, thenD is an invariant core for L+A and T̃t are uniformly bounded operators
inD.

Suppose that
∫
Rd

+
ν(x, dy) in (3.4) is bounded. �en by �eorem 5, it is straight forward to

conclude that the operator in (3.4) generates a Feller process. For the case where
∫
Rd

+
ν(x, dy) is

not assumed to be bounded, the following theorem (which was also brie�y discussed in�eorem

5.9.4 by Kolokoltsov [55]) gives the criterion for (3.4) to generate a Feller process.

�eorem 6. Consider an operator L of the form in (3.4) for all x ∈ Rd such that:

(1) ν is a Lévy measure with support on Rd+, with a �nite �rst moment

sup
x

∫
Rd

+

|y|ν(x, dy) <∞,
and that ν is twice continuous di�erentiable in x with

sup
x,16j6d

∫
Rd

+

|y|
∂ν(x, dy)

∂xj
<∞, sup

x,16j,k6d

∫
Rd

+

|y|
∂2ν(x, dy)

∂xj∂xk
<∞;

(2)G, b ∈ C2(Rd) are twice di�erentiable such that their �rst and second derivatives are bounded;

(3) �e matrixG = (Gi,j)
d
i,j=1 is positive de�nite and its elementGi,j depends only on xi, xj;

�en L generates a Feller process. Moreover the spaceC2∞(Rd) is an invariant core for the semi-group
of this process.
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Proof. First, observe that for any h > 0, assumption (1) implies that

sup
x

∫
Rd

+\Bh

ν(x, dy) 6 sup
x

1

h

∫
Rd

+

|y|ν(x, dy) <∞;

sup
x,16j6d

∫
Rd

+\Bh

∂ν(x, dy)

∂xj
6 sup

x,16j6d

1

h

∫
Rd

+

|y|
∂ν(x, dy)

∂xj
<∞;

sup
x,,16j,k6d

∫
Rd

+\Bh

∂2ν(x, dy)

∂xj∂xk
6 sup

x,16j6d

1

h

∫
Rd

+

|y|
∂2ν(x, dy)

∂xj∂xk
<∞. (3.5)

In (3.4), L consists of a second-order di�erential operator
∑d
i=1 bi

∂f
∂xi

+ 1
2

∑d
i,j=1Gi,j

∂2f
∂xi∂xj

and an operator
∫
Rd

+

[
f(x+ y) − f(x)

]
ν(x, dy), where the latter may, or may not, be bounded.

Let us introduce an approximation operator Lh de�ned as:

Lhf(x) =

d∑
i=1

bi
∂f

∂xi
+
1

2

d∑
i,j=1

Gi,j
∂2f

∂xi∂xj
+

∫
Rd

+\Bh

[f(x+ y) − f(x)]ν(x, dy). (3.6)

In the equation above, the �rst two terms on the right-hand side represent a second-order

di�erential operator.�e third term is a bounded operator in the Banach spaceC∞(Rd),C1∞(Rd)
and C2∞(Rd) by observations in (3.5). Since, in the �rst two terms each bi andGi,j are bounded

continuous functions with G being a positive de�nite matrix, the second-order di�erential

operator is a di�usion operator and generates a conservative Feller semi-group in C∞(Rd) with
an invariant core C2∞(Rd) (see chapter 6 of the book by Applebaum [5] and Kolokoltsov’s book

[55]). By perturbation theory in�eorem 5, Lhf as the sum of di�usion and bounded operators

also generates a conservative Feller semi-group (Tht )t>0 ∈ C∞(Rd), since the conservativeness
is preserved through the perturbation series representation. Now, we consider the following

equation corresponding to (3.4):

ḟht = Lhft

fh0 = f where f ∈ C∞(Rd). (3.7)
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Taking the �rst derivative of ḟht in (3.7) with respect to xk for all k ∈ {1, . . . , d} for f ∈ C2∞(Rd),
we obtain

∂

∂xk
ḟht (x) =

d

dt

(∂fht (x)
∂xk

)
=Lh

∂ft

∂xk
+

d∑
i=1

∂bi

∂xk

∂ft

∂xi
+
∑
i 6=k

∂Gik

∂xk

∂2ft

∂xi∂xk
+
1

2

∂Gkk

∂xk

∂2ft

∂x2k

+

∫
Rd

+\Bh

[
ft(x+ y) − ft(x)

] ∂ν
∂xk

(x, dy) (3.8)

Let us consider this as an evolution equation for g = ∂fht
∂xk

, k = 1 . . . d. On the right-hand side

of (3.8), the �rst term Lh generates a conservative Feller semi-group in C∞(Rd) as the result of
previous analysis in (3.6). �e second term is a bounded and non-homogeneous operator. �e

third and fourth terms in (3.8) are conditionally positive order-one di�erential operators. �e

�nal term represents a bounded operator since∫
Rd

+\ε

|y|
∂ν(x, dy)

∂xk
<

∫
Rd

|y|
∂ν(x, dy)

∂xk
<∞ (3.9)

by assumption 2. Hence by perturbation theory again, (3.8) also generates a bounded and positivity

preserving conservative Feller semi-group in C∞(Rd). �is implies that the �rst derivative with

respect to x of the function Tht f(x) is bounded uniformly in h for f ∈ C∞(Rd). We conclude

that evolution in (3.7) is well-posed.

Now let us choose a sequence of (Lhj)j∈N such that hj ↓ 0 as j→∞. By lemma 6.2 in Ethier

and Kurtz [32] we can write

(
Thi
t − T

hj

t

)
f =

∫t
0

T
hj

t−s

(
Lhi − Lhj

)
Thi
s ds (3.10)
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for any i < j. Substituting Lhi and Lhj in (3.6) and by mean value theorem and triangular

inequality, we can estimate

∣∣∣(Lhi − Lhj
)
Thi
s f(x)

∣∣∣ 6 ∫
Bhj

\Bhi

∣∣∣Thi
s f(x+ y) − T

hi
s f(x)

∣∣∣ν(x, dy)
6
∫
Bhj

∥∥∥ d∑
i=1

∇xiThi
s f
∥∥∥ ∣∣∣y∣∣∣ν(x, dy)

6
∫
Bhj

d ·
∥∥∥∇xiThi

s f
∥∥∥ ∣∣∣y∣∣∣ν(x, dy)

= o(1)d
∥∥∥f∥∥∥

C1∞(Rd)
as hi → 0 (3.11)

Moreover, we can also conclude that

∥∥(Thi
t − T

hj

t

)
f
∥∥ =

∥∥∫t
0

T
hj

t−s

(
Lhi − Lhj

)
Thi
s ds

∥∥
6
∫t
0

∥∥Thj

t−s

(
Lhi − Lhj

)
Thi
s ds

∥∥
= o(1)t

∥∥f∥∥
C1∞(Rd)

as hi, hj → 0.

Hence, as h tends to 0, the family Tht f converges uniformly to a family Ttf which speci�es a

strongly continuous semi-group in C∞(Rd).
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Finally we show that the operator L has an invariant coreC2∞(Rd). Taking the second derivatives
of ḟt = Lft, we get

∂2

∂xk∂xl
ḟt(x) =

d

dt

∂2ft

∂xk∂xl

=L
∂2ft

∂xk∂xl
+

d∑
i=1

∂bi

∂xk

∂2ft

∂xi∂xl
+

d∑
i=1

∂bi

∂xl

∂2ft

∂xi∂xk
(3.12)

+
1

2

(∑
i 6=l

(∂Gil
∂xl

+
∂Gli

∂xl

)
+
∑
i 6=k

(∂Gik
∂xk

+
∂Gki

∂xk

)) ∂3ft

∂xi∂xk∂xl
(3.13)

+
1

2

(
∂Gkk

∂xk

∂3ft

∂x2k∂xl
+
∂Gll

∂xi

∂3ft

∂x2l∂xk

)
(3.14)

+

∫
Rd

+

(
∂ft(x+ y)

∂xl
−
∂ft(x)

∂xl

)
∂ν

∂xk
(x, dy) (3.15)

+

∫
Rd

+

(
∂ft(x+ y)

∂xk
−
∂ft(x)

∂xk

)
∂ν

∂xl
(x, dy) (3.16)

+

d∑
i=1

∂2bi

∂xk∂xl

∂ft

∂xi
(3.17)

+
1

2

(
∂2Glk

∂xl∂xk

∂2ft

∂xl∂xk
+
∂2Gkl

∂xk∂xl

∂2ft

∂xk∂xl

)
(3.18)

+

∫
Rd

+

(
ft(x+ y) − ft(x)

)
∂2ν

∂xk∂xl
(x, dy). (3.19)

In (3.12), L is a conditionally positive operator that generates a conservative Feller semi-group.

FollowingL are two bounded operators.�e terms (3.13) and (3.14) consist of �rst order di�erential

operators while (3.15) , (3.16) and (3.19) are bounded and since assumption (1) ensures that for all

k ∈ {1, . . . d}

0 <

∫
Rd

+

(
∂ft(x+ y)

∂xl
−
∂ft(x)

∂xl

)
∂ν

∂xk
(x, dy) 6

∫
Rd

+

‖f ′′‖|y| ∂ν
∂xk

(x, dy) <∞
0 <

∫
Rd

+

(
ft(x+ y) − ft(x)

)
∂2ν

∂xk∂xl
(x, dy) 6

∫
Rd

+

‖f ′‖|y| ∂
2ν

∂xk∂xl
(x, dy) <∞

�e term (3.17) is a bounded and non-homogeneous term, while (3.18) forms a multiplicative

operator which is bounded and conditionally positive. Hence by perturbation theory, Tt preserves

C2∞(Rd). Since the generator L is well de�ned there too, the space is an invariant core to L.
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In addition, assuming the same conditions (1) to (3) in �eorem 6 and another two assumptions

(listed in the following theorem), the Feller processes corresponding to the pre-generator L in

(3.4) are stochastically monotone as we will show in the following theorem.

�eorem 7. Consider a Feller process (Xt)t>0 ∈ Rd generated by the operator in (3.4). Suppose
that operator L satis�es all assumptions (1) to (3), in �eorem 6. In addition, further assume that

(4) the their �rst and second derivatives of G, b ∈ C2(Rd) are positive;

(5) ∂ν
∂xi

(x, dy) are non-negative measures on Rd+.

�en the process (Xt)t>0 is stochastically monotone.

Proof. Di�erentiating the equation ḟt = Lf for any j ∈ {1, . . . d}. We get

∂

∂xj
ḟt(x) =

d

dt

∂ft

∂xj

=L
∂ft

∂xj
+

d∑
i=1

∂bi

∂xj

∂ft

∂xi
+
∑
i 6=j

∂Gij

∂xj

∂2ft

∂xi∂xj
+
1

2

∂Gjj

∂xj

∂2ft

∂x2j

+

∫
Rd

[
ft(x+ y) − ft(x)

] ∂ν
∂xj

(x, dy). (3.20)

Let us consider this as an evolution equation for g = ∂ft
∂xj

, j = 1 . . . d. �e le� hand side of (3.20)

is a di�erentiation operator. On the right hand side, the operator L in the �rst term generates

a conservative Feller semi-group and is conditionally positive. �e second term is a bounded,

positive, non-homogeneous term. �e third and fourth term represent a �rst order operator,

which is also conditionally positive. �e fourth term is a positive term which is bounded by

assumption (5) and assumption (1) in the following sense:∫
Rd

[
ft(x+ y) − ft(x)

] ∂ν
∂xk

(x, dy) < sup
x,j∈{1,...d}

∫
|y|
∂ν(x, dy)

∂xj
<∞

where k ∈ {1, . . . , d}. Since (3.20) is a sum of an operator that generates a conservative Feller

Process and some bounded positive generators, it generates a conservative Feller semi-group.

Since on the right hand side of (3.20) L is also a conditionally positive operator, while the other

terms are positive and bounded, the operator on the le� hand side of (3.20) acting on functions
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∇xjf for all j ∈ {1, . . . , d} and f ∈ C∞(Rd) is also conditionally positive. �en the solution to

the corresponding evolution equation preserves positivity, i.e for any t > 0

∂T0f(x)

∂xj
=
∂f(x)

∂xj
> 0⇒ ∂Ttf(x)

∂xj
> 0. (3.21)

Now choose an increasing and bounded sequence of functions fn ∈ C1∞(Rd), n ∈ N such that

∇xjfn(x) > 0 for all j ∈ {i, . . . d} and fn ↑ 1[y,∞] as n → ∞ point-wise. Since all fn have a

non-negative �rst derivative, by conditional positivity in (3.21), we have for all natural numbers n

∂Ttfn(x)

∂xj
> 0

i.e. Ttfn(x) is non-decreasing in x for all n.

Because (Tt, t > 0) is a Markov semi-group, by dominated convergence theorem the point-wise

convergence of fn ↑ 1[y,∞) ensures that Ttfn ↑ Tt1[y,∞) point-wise too, as n→∞. Clearly, the

limit of Ttfn in n is the probability distribution function of the Feller process Xt, i.e.

lim
n→∞ Ttfn(x) = P(Xt > y|X0 = x). (3.22)

Since the convergence of Ttfn(x) inn preserves monotonicity, the limit of Ttfn, P(Xt > y|X0 =

x) is non-decreasing in x, which is essentially the de�nition of stochastic monotonicity of process

(Xt, t > 0).

In the following theorem, we impose stronger regularity assumptions on the coe�cients of

operator L to see that its corresponding Feller process has probability distribution functions that

satisfy property p3 .

�eorem 8. Let (Xt)t>0 ∈ Rd be a Feller Process generated by (3.4). Assume that

1. b(x) ∈ C∞(Rd) such that for all 1 6 k 6 d,

∂kb(x)

∂x1 . . . ∂xk
> 0 and bounded above
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2.Gi,j(x) ∈ C∞(Rd) only depends on xi and xj and has mixed derivatives satisfying

∂2Gi,j(x)

∂xi∂xj
> 0 and bounded above

3. ν(x, dy) is a Lévy measure with support on Rd+ such that its �rst moment is �nite:

0 < sup
y

∫
Rd

|y|ν(x, dy) <∞ (3.23)

and for all 1 6 k 6 d the following is satis�ed:

0 < sup
y

∫
Rd

|y|
∂kν(x, dy)

∂x1 . . . ∂xk
<∞ (3.24)

�en the function P(Xxt > y) satis�es condition p3 in section 3.2.

Proof. For notational simplicity, we prove the case of a three-dimension Feller process, noting

that the proof follows analogously for any �nite number of dimensions. In what follows, for

f ∈ C∞(Rd) we consider the operator L as the following:

Lf(x) =

3∑
i=1

bi
∂f

∂xi
+
1

2

3∑
i,j=1

Gi,j
∂2f

∂xi∂xj
+

∫
Rd

+

[f(x+ y) − f(x)]ν(x, dy) (3.25)

Recall the equations in (3.7)

ḟt = Lf

f0 = f where f ∈ C∞(Rd)
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Taking the third derivatives for ḟt gives

∂3

∂x1∂x2∂x3
ḟt(x) =

d

dt

∂3ft(x)

∂x1∂x2∂x3

=L
∂3ft(x)

∂x1∂x2∂x3

+
∑

σ{a1,a2,a3}

L1a1

∂3ft(x)

∂xa1
∂xa2

∂xa3

+
∑

σ{a1,a2,a3}

L2a1,a2

∂3ft(x)

∂xa1
∂xa2

∂xa3

+
∑

σ{a1,a2,a3}

L3a1,a2,a3

∂3ft(x)

∂xa1
∂xa2

∂xa3

(3.26)

where σ{a1, a2, a3} denotes all permutations of {a1, a2, a3}.

We can write L1, L2 and L3 as
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L1a1

∂3ft(x)

∂xa1
∂xa2

∂xa3

=

3∑
i=1

∂bi

∂xa1

∂3ft(x)

∂xi∂xa2
∂xa3

+
1

2

∑
i 6=ai

(∂Gi,a1

∂xa1

+
∂Ga1,i

∂xa1

) ∂4ft(x)

∂xi∂xa1
∂xa2

∂xa3

+
1

2

∂Ga1,a1

∂xa1

∂4ft(x)

∂x2a1
∂xa2

∂xa3
∂xa4

+

∫
Rd

∂2
(
ft(x+ y) − ft(x)

)
∂xa2

∂xa3

∂ν(x, dy)

∂xa1

(3.27)

L2a1,a2

∂3ft(x)

∂xa1
∂xa2

∂xa3

=

3∑
i=1

∂2bi

∂xa1
∂xa2

∂2ft(x)

∂xi∂xa3

+
1

2

( ∂2Ga1,a2

∂xa1
∂xa2

+
∂2Ga2,a1

∂xa2
∂xa1

) ∂3ft(x)

∂xa1
∂xa2

∂xa3

+

∫
Rd

∂
(
ft(x+ y) − ft(x)

)
∂xa3

∂2ν(x, dy)

∂xa1
∂xa2

(3.28)

L3a1,a2,a3

∂3ft(x)

∂xa1
∂xa2

∂xa3

=

3∑
i=1

∂3bi

∂xa1
∂xa2

∂xa3

∂ft(x)

∂xi

+

∫
Rd

(ft(x+ y) − ft(x)
) ∂3ν(x, dy)

∂xa1
∂xa2

∂xa3

(3.29)

�e equation in (3.27) consists of a positive bounded, non-homogeneous operator, a �rst-order

operator (hence conditionally positive) and a bounded, positive operator ensured by (3.23) in

assumption 3. Similarly, both equations in (3.28) and (3.29) consist of positive bounded non-

homogeneous operators and another bounded positive operator ensured by (3.24) in assumption

3. �erefore, (3.26) is the sum of an operator L (that generates a conservative Feller Process) and

bounded positive operator acting on∇x1,x2,x3ft, for ft ∈ C3∞(Rd). Hence (3.26) generates a
conservative semi-group. Since it is also a conditionally positive operator, the corresponding

evolution problem has a solution that preserves positivity, i.e

∂3T0f(x)

∂x1∂x2∂x3
=

∂3f(x)

∂x1∂x2∂x3
> 0⇒ ∂3Ttf(x)

∂x1∂x2∂x3
> 0 (3.30)
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Now choose an increasing sequence of bounded functions fn ∈ C3(Rd) such that the derivatives
∇x1,x2,x3fn(x) > 0 and fn(x) ↑ 1[y,∞)(x) point-wise as n tends to in�nity. By conditional

positivity, we have∇x1,x2,x3Ttfn(x) > 0 , which also means that for x1 6 x2

4Kn(x1, x2) =
∑
a∈A

(−1)s(a)Ttfn(a) > 0 (3.31)

where set A =
{
a = (a1, a2, a3) : ai ∈ {x1i, x2i}

}
, and for a ∈ A, s(a) is the number of

indices i for which ai = x1i.

�en by dominated convergence theorem, we have Ttfn(x) ↑ Tt1[y,∞)(x) point-wise as n→∞,

and the monotonicity in (3.31) is preserved. Hence

lim
n→∞Kn(x1, x2) = lim

n→∞
∑
a∈A

(−1)s(a)Ttfn(a) > 0

=
∑
a∈A

(−1)s(a)P(Xat > y) > 0

�eorem 6, 7 and 8 hence lead to proof of the existence of a dual generator to a given multi-

dimensional Feller Process.

�eorem 9. Let (Xt)t>0 ∈ Rd be a Feller Process generated by (3.4) where all assumptions (1)
– (3) in �eorem 8 are satis�ed. Suppose additionally that for i ∈ {1, . . . d} , all ∂ν

∂xi
(x, dy) are

non-negative measures on Rd+.�en (Xt)t>0 has a dual Markov process in Rd

Proof. We have shown that the operator L generates a conservative Feller semi-group and has

an invariant core C2∞(Rd). Furthermore, its corresponding Feller process Xt is stochastically

monotone and its transition probabilities P(Xx
t > y) are superadditive in x. Hence by�eorem

4, its Markov dual process exists in Rd.
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4.1 introduction

Part I of this thesis presented the criterion for a dualMarkov process to exist in a �nite dimensional

Euclidean space. At this point a natural question is; are we able to explicitly characterise the

dual Markov process? We have seen a couple of methods which compute the explicit form of

dual generators corresponding to the general real-valued Feller processes, namely the direct

computational method (see section 2.5) and the method of discrete approximation using Markov

chains (see paper by Kolokoltsov [54]). �e extension of both methods to characterise the duality

for multidimensional cases can be somewhat messy. �erefore in this chapter we propose a more

systematic analysis to duality via semi-groups and generators.

�is chapter focuses on the theory of duality for Markov processes in the sense that

Ef(Xxt , y) = Ef(x, Y
y
t ) (4.1)

for a certain f. In the following sections we lay the foundations of our analytical approach to

the theory of duality. �e basic tools (intertwining of operators) are given in section 4.3. �is is

50
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followed by a discussion of its application to the theory of di�erential equations and stochastic

processes.

4.2 on the general notion of semi-group duality

For a topological (e.g. metric) space X we denote B(X) and Cb(X) to be the spaces of bounded

Borel measurable, and bounded continuous functions, respectively. Equipped with the sup-norm

‖f‖ = supx |f(x)| both these spaces become Banach spaces. Bounded signed measures on X are

de�ned as boundedσ-additive functions on the Borel subsets ofX.�e set of suchmeasuresM(X)

equipped with the total variation norm is also a Banach space. �e standard duality between

B(X) andM(X) is given by the integration:

(f, µ) =

∫
X

f(x)µ(dx).

Let X and Y be two topological spaces. A signed (stochastic) kernel from X to Y is a function of

two variables p(x,A), where x ∈ X andA are Borel subsets of Y such that p(x, .) is a bounded

signed measure on Y for any x and p(., A) is a Borel function for any Borel setA. We say that

this kernel is bounded if supx ‖p(x, .)‖ <∞. We say that this kernel is weakly continuous if the

mapping x 7→ p(x, .) is continuous with measuresM(Y) considered in their weak topology. If

all measures p(x, .) are positive, the corresponding kernel is called a stochastic kernel.

Any bounded kernel speci�es a bounded linear operator B(Y)→ B(X) via the formula

Tg(x) =

∫
Y

g(z)p(x, dz).

We call T the integral operator with the kernel p. �e standard dual operator T ′ is de�ned as the

operatorM(X)→M(Y) speci�ed by the duality relation

(f, T ′µ) = (Tf, µ),

or explicitly as

T ′µ(dy) =

∫
X

p(x, dy)µ(dx).
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Clearly the kernel p(x, dz) is weakly continuous if and only if T acts on continuous functions,

that is, T : C(Y)→ C(X).

Let p(x, dz) be a bounded signed kernel fromX to itself, T be the corresponding integral operator,

and f(x, y) be a bounded measurable function on X× Y.

Let us say that the operator TD(f) : B(Y)→ B(X) is f-dual to T , if

(TD(f)f(x, .))(y) = (Tf(., y))(x) (4.2)

for any x and y. In other words, the application of TD to the second argument of f is equivalent

to the application of T to its �rst argument. Of course, if TD(f) is f-dual to T , then T is f̃-dual to

TD(f) with f̃(y, x) = f(x, y).

We say that f separates points of X if, for any x1 and x2 ∈ X, there exists y ∈ Y such that

f(x1, y) 6= f(x2, y). �e following is a more non-trivial notion. We say that f separates meas-
ures on X if, for any Q1, Q2 ∈ M(X), there exists y ∈ Y such that

∫
f(x, y)Q1(dx) 6=∫

f(x, y)Q2(dx). If this is the case, the integral operator F = Ff : M(X)→ B(Y) given by

(FQ)(y) =

∫
f(x, y)Q(dx) (4.3)

is an injective bounded operator, so that the linear inverse F−1 is de�ned on the image F(M(X)).

Let us say that the function FQ is f-generated byQ.

Remark 3. Cox and Rösler [20] say that a function g is representable by f, if there exists a unique

Q such that g = FQ. �is paper [20] deals with the application of duality to exit and entrance

laws of Markov processes.

4.3 basic tools

Proposition 6. Let f be a bounded measurable function separating measures on X and T be an
integral operator in B(X) with a bounded signed kernel p. �en TD(f) is well de�ned on F(M(X))

and its action on the f-generated functions coincides with T ′, that is

TD(f) = F ◦ T ′ ◦ F−1, (4.4)
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or equivalently
F−1 ◦ TD(f) = T ′ ◦ F−1. (4.5)

In other words, the f-dual operator TD(f) is obtained by the “dressing” of the standard dual T ′ by
the operator F.

Proof. Let g ∈ F(M(X)) be given by g(y) =
∫
f(x, y)Qg(dx). �en

TD(f)g(y) =

∫
X

(TD(f)f(x, .))(y)Qg(dx)

=

∫
X

(Tf(., y))(x)Qg(dx) =

∫
X

∫
Y

f(z, y)p(x, dz)Qg(dx) =

∫
Y

f(z, y)Q̃(dz),

with

Q̃(dz) =

∫
p(x, dz)Qg(dx).

�us TD(f)g is f-generated by Q̃ = T ′Qg, as required.

Remark 4. Equation (4.5) is a particular case of intertwining. Readers are referred to work by

Biane [13], Dubédat [30], Patie and Simon [66], Hirsch and Yor [39] and Carmona et al. [16]for

exciting recent developments. Applications of (4.5) in the case of discrete Markov chains are

analysed in detail in the paper Huillet and Martinez [43].

Representation in the form of (4.4) has a direct implication for the theory of semi-groups.

Proposition 7. Let f be a bounded measurable function separating measures on X. Also, let Tt be a
semigroup of integral operators in B(X) speci�ed by the family of bounded signed kernels pt(x, dz)
fromX toX, so that T0 is the identity operator and TtTs = Tt+s, which, in terms of kernels, rewrites
as the Chapman-Kolmogorov equation∫

X

pt(x, dz)ps(z, dw) = pt+s(x, dw).

�en the dual operators TD(f)
t in F(M(X)) also form a semigroup, so that

T
D(f)
t = F ◦ T ′t ◦ F−1. (4.6)
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Proof. �is is straightforward from (4.4) and the fact that T ′t forms a semi-group inM(X).

Remark 5. �e duality (1.1) is, of course, also included in the general scheme above, that is, the

dual can still be expressed as (4.4). For instance, if ν(dx) has a density ν(x) with respect to the

Lebesguemeasure and T ′ can be reduced to the action on functions, then F−1 is themultiplication

on nu(x) and f(x, y) = δ(x− y)ν−1(x).

It is also worth noting that the assumption of boundedness of f is not essential. If it is not bounded

(we shall discuss interesting examples of such situations later), the integral operator F will not be

de�ned on all bounded measures, but only on its subspace. �is will be re�ected in the domain

of TD(f), but the overall scheme of Proposition 6 still remains valid.

4.4 links with differential equations and stochastic

processes

Let us explain brie�y the main ideas behind the application of the above results to the theory of

di�erential equations and stochastic processes. Precise details for particular situations will be

discussed in the following chapters.

Let a semi-group Tt in B(X) be generated by a (possibly unbounded) operator L in B(X) de�ned

on an invariant (under all Tt) domainD ⊂ B(X), so that

d

dt

∣∣∣∣
t=0

Tth = lim
t→0

1

t
(Tth− h) = Lh, h ∈ D,

with convergence in some appropriate topology (say, strongly or point-wise) and thus Tt represent

resolving operators for the Cauchy problem of the equation ḣ = Lh. �en (4.4) implies that

d

dt

∣∣∣∣
t=0

T
D(f)
t g = F ◦ d

dt

∣∣∣∣
t=0

T ′ ◦ F−1g = F ◦ L ′ ◦ F−1g,

that is, the generator of the semi-group T
D(f)
t is

LD(f) = F ◦ L ′ ◦ F−1, (4.7)
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so that T
D(f)
t represent resolving operators for the Cauchy problem of the equation ġ = LD(f)g.

Here L ′ is naturally the standard dual operator to L. �us duality can yield explicit solutions for

equations of this kind. Of course, our arguments were heuristic as we did not pay attention to the

domain of de�nition of L ′, which should be done in practical situations. �e main di�culty here

is to characterise the operator Ff.

Next, in order to be able to �ll the duality equation (4.2) with probabilistic content, i.e. to rewrite it

as (1.2), the semi-groups Tt and T
D(f)
T should be positivity preserving and generate someMarkov

processes.

�is line of investigation reduces to the question of whether, for a given conditionally positive

operator L, the corresponding dual LD(f) is also conditionally positive.

It can now be seen that the basic issues which must be addressed to make the theory work for

general functions f are (i) the characterisation of the operators F and F−1 (for the analytic part

of the story) and (ii) the criteria for conditional positivity of LD(f) (for its probabilistic content).

As we shall see it is o�en convenient to reduce the operator F to some subclass of Borel measures

Q, where its inverse can be explicitly found. For instance, it is o�en easier to work withQ having

density with respect to some reference measure.
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5.1 introduction

In this chapter, we apply the analytical tools (formulas (4.6) and (4.7)) discussed in chapter 4

to characterise classes of dual Markov processes with respect to various functions f depending

on the di�erence of their arguments. Here, we deal with duality in Rd arising from Pareto and

similar partial orders. A�er examining the characterisation for each case of di�usion and jump

processes individually, the full characterization of duality is given in terms of generators for basic

classes of Feller processes. �is chapter is concluded by giving a path-wise example to the study

of duality using stochastic di�erential equations.

56
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5.2 basic notions

As our basic example we consider f-duality for functions f arising from translation-invariant

partial orders, or more generally, from translation-invariant binary relations. Namely, let X be

a topological linear space andM a Borel subset of X. �enM de�nes a translation-invariant

binary relation RM on X such that xRMymeans, by de�nition, that x− y ∈M, or x ∈ y+M.

Let M̃ = {(x, y) ∈ X × X : xRMy}. Let us say that the duality (4.2) arises from the binary

relationM, if

f(x, y) = fM(x, y) = 1M̃(x, y) = 1x−M(y) = 1y+M(x). (5.1)

Remark 6. Suppose that f-duality arises from a translation-invariant binary relation RM and

both Tt and T
D(f)
t are known to be integral operators with kernels pt(x, dz) and p

D(f)
t (y, dw)

respectively. One can give another instructive proof of Proposition 7 bypassing representation

(4.4) and using instead Fubini’s theorem, as was done by Siegmund [72] for one-dimensional

duality. Namely, it is su�cient to show the semigroup identity T
D(f)
t+s = T

D(f)
s T

D(f)
t applied to

the functions f(x, .) = 1x−M, as it then extends to the whole F(M(X)) by linearity. And for

these functions we have

(T
D(f)
t+s 1x−M)(y) = (Tt+s1y+M)(x) = (Tt(Ts1y+M))(x) =

∫
pt(x, dz)(Ts1y+M)(z)

=

∫
pt(x, dz)(T

D(f)
s 1z−M)(y) =

∫
pt(x, dz)

(∫
1z−M(w)pD(f)

s (y, dw)

)
.

Applying Fubini’s theorem this rewrites as∫
pD(f)
s (y, dw)

∫
1w+M(z)pt(x, dz) =

∫
(Tt1w+M)(x)pD(f)

s (y, dw)

= TD(f)
s (T

D(f)
t 1x−M)(y),

as required.

IfM contains the origin and is closed under the addition of vectors, then the relation RM is a

pre-order (i.e. it is re�exive and transient) and can be naturally denoted by>M. If this is the case
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and Tt and T
D(f)
t are integral operators with positive stochastic kernels thus specifying Markov

processes, then duality relation (4.2) or equivalently (1.2) corresponds to the equation

P(Xxt >M y) = P(Yyt 6M x), (5.2)

extending one-dimensional duality (1.3).

�e basic example we are going to analyse now is the Pareto partial order in X = Rd, i.e.>M
withM = Rd+, and its natural extension withM = C(e1, · · · , ed) the cone generated by d

linear independent vectors {e1, · · · , ed} in Rd:

C(e1, · · · , ed) = {x =

d∑
j=1

αjej : αj > 0, j = 1, · · · , d}. (5.3)

Of course the relation>M with suchM is again a Pareto order, but in a transformed system of

coordinates.

Let us start withM = Rd+ corresponding to the Pareto order, which we shall denote just by>

omitting the subscriptM. �e corresponding dual semi-groups or processes (if exist) will be

referred to as Pareto dual. In this case

(FQ)(y) =

∫
fM(x, y)Q(dx) =

∫
x>y

Q(dx) (5.4)

is just the usualmultidimensional distribution function for themeasureQ onRd. It is known (and

easy to see) that FQ characterizesQ uniquely implying that F is injective and thus fM separates

measures on Rd yielding the main condition of Proposition 6. Moreover, ifQ has a density q

with respect to the Lebesgue measure, then q can be found from FQ = g by di�erentiation:

q(y1, · · · , yd) = F−1g(y) = (−1)d
∂dg(y)

∂y1 · · ·∂yd
. (5.5)

�us, in this case, for the Pareto order, the operator F−1 has a simple explicit expression.
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In the case of orders arising from the conesM = C(e1, · · · , ed) given by (5.3) this formula

generalises to

q(y1, · · · , yd) = (F−1g)(y) = (−1)d
∂dg
∂yd (y)[e1, e2, · · · , ed]
| det(e1, e2, · · · , ed)|

, (5.6)

where det(e1, e2, · · · , ed) = det(eji) is the determinant of the matrix whose ith columns consist

of the coordinates of the vector ei and

∂dg

∂yd
(y)[e1, e2, · · · , ed] =

∑
i1,i2,··· ,id

∂dg

∂yi1 · · ·∂yid
(y)ei11 e

i2
2 · · · e

id
d .

Remark 7. For completeness, let us sketch a proof of this formula. If a measureQ on Rd has a

continuous density q, so that

g(x) = FQ(x) =

∫
y+C(e1,··· ,ed)

q(z)dz,

the function q can be clearly found as the limit

q(y) = lim
h→0

∫
y+Π(he1,··· ,hed)

q(z)dz|Π(he1, · · · , hed)|−1, (5.7)

where

Π(he1, · · · , hed) = {x =
∑
j

αjhej, αj ∈ [0, 1]}

is the parallelepiped built on the vectors {he1, · · · , hed} and

|Π(he1, · · · , hed)| = hd| det(eji)|

is its Euclidean volume.

From simple combinatorics it follows (see e.g. textbook by Kallenberg [46]) that∫
y+Π(he1,··· ,hed)

q(z)dz
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= g(y) −
∑
j

g(y+ hej) +
∑
i<j

g(y+ hei + hej) + · · ·+ (−1)dg(y+ he1 + · · ·+ hed).

Let us expand all terms in Taylor series up to the derivatives of order d. As the �nal expression

should be of order hd (to get a limit in (5.7)) we conclude that all terms with the derivatives of

orders less than d necessarily cancel, so that∫
y+Π(he1,··· ,hed)

q(z)dz

=
1

d!
hd

−
∑
j

∂dg

∂yd
[ej] +

∑
i<j

∂dg

∂yd
[ei + ej] + · · ·+ (−1)d

∂dg

∂yd
[e1 + · · ·+ ed]


+O(hd+1), (5.8)

whereO(hd+1) denotes the expression of order hd+1 that does not contribute to the limit in

(5.7), and where we use the well established (though a bit ambiguous) notation for the action of

the higher order derivative on equal vectors:

∂dg

∂yd
(y)[v] =

∂dg

∂yd
(y)[v, · · · , v].

It remains to note that all terms in expansion (5.8) containing products of coordinates of co-

inciding vectors should vanish (otherwise, using di�erent scaling on ei we would arrive to a

contradiction with the existence of the limit in (5.7)). �e only non-vanishing terms should

contain the products of d coordinates of all d vectors. All these products comes from the last

term in the sum (5.8) leading to (5.6).

For instance, let us consider a ’two-dimensional light cone’

C(e1, e2) = {(x, y) : y > |x|} ∈ R2, (5.9)

corresponding to vectors e1 = (1, 1), e2 = (−1, 1). �en formula (5.6) for the inverse operator

turns to the simple wave operator

q(x, y) = F−1g(x, y) =
1

2

(
∂2g

∂y2
−
∂2g

∂x2

)
(x, y). (5.10)
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5.3 duality from pareto order: global analysis

Let us now make the detailed analysis of the duality arising from the standard Pareto order in

Rd, i.e. withM = Rd+. We aim at (i) �nding explicitly the dual operator LD(f) for the main

classes of the generators of Feller processes in Rd including di�usions and jump processes and

(ii) establishing criteria (in terms of the initial operator L) ensuring that this dual operator is

conditionally positive and speci�es a Markov process, so that the duality relation (5.2) holds that

we shall write simply as

P(Xxt > y) = P(Yyt 6 x) (5.11)

for the case of the Pareto partial order.

Let us analyse formula (4.4) from Proposition 6. In the case of duality arising from Pareto order

and the operator T being integral with a probability kernel p(x, dz) (i.e. all measures p(x, .) are

probability measures, as is the case for transition operators of Markov processes) it states that for

a distribution function g of a measureQ on Rd. i.e. g(x) =
∫
z>xQ(dz) we have

TD(f)g(x) = F ◦ T ′ ◦ F−1g(x) =
∫
y>x

∫
Rd

p(z, dy)Q(dz). (5.12)

We are interested in the question of when this operator can be extended to all boundedmeasurable

g as a positive operator preserving constants, i.e. as an integral operator with a probability kernel.

Assume �rst that the measureQ has a continuous density q so that (5.5) holds, i.e.

q(x) = (−1)d
∂gd

∂x1 · · ·∂xd
.

In this case

TD(f)g(x) = (−1)d
∫
y>x

∫
Rd

p(z, dy)
∂gd

∂z1 · · ·∂zd
dz. (5.13)

We like to get rid of the derivatives of g. To be able to do it, let us assume that the kernel p(x, dz)

is weakly continuous and has weakly continuous mixed derivatives, that is, for any I ⊂ {1, · · · , d}
(including {1, · · · , d} itself) the mixed derivative

∂p|I|

∂zI
(z, dy) (5.14)
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is a well de�ned weakly continuous kernel (possibly signed). �en, integrating the integral over z

in (5.13) by parts d times and assuming that all boundary terms vanish, we get

TD(f)g(x) =

∫
Rd

(
g(z)

∫
y>x

∂pd

∂z1 · · ·∂zd
(z, dy)

)
dz. (5.15)

�is is an integral operator with the integral kernel (more precisely its density)

pD(x, z) =

∫
y>x

∂pd

∂z1 · · ·∂zd
(z, dy).

For this operator to be positive and constant preserving, necessary conditions are that, for all

x ∈ Rd, ∫
y>x

∂pd

∂z1 · · ·∂zd
(z, dy) > 0, (5.16)

∫ (∫
y>x

∂pd

∂z1 · · ·∂zd
(z, dy)

)
dz = 1. (5.17)

From the integration by parts it is seen that for the last condition to hold it is su�cient to assume

that for any subset I ⊂ {1, · · · , d} excluding the whole set {1, · · · , d},

lim
zĪ→−∞

∫
R|I|

dzI

∫
y>x

∂p|I|

∂zI
(zI, zĪ, dy) = 0, (5.18)

and there exists a �nite limit

lim
zĪ→∞

∫
R|I|

dzI

∫
y>x

∂p|I|

∂zI
(zI, zĪ, dy), (5.19)

which equals 1 for the empty set I. Moreover, one sees by inspection that this condition also

ensures that integrating by parts (5.13) for a g having �nite density (5.5), all boundary terms will

in fact vanish, justifying equation (5.15).

�us we have proved the following statement.

Proposition 8. Suppose an integral operator T in B(Rd) is given by a probability kernel p(x, dy)
having all mixed derivatives (5.14) well de�ned and weakly continuous and such that (5.16) holds,
(5.18) holds for any subset I ⊂ {1, · · · , d} excluding the whole set {1, · · · , d}, and there exists a
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�nite limit (5.19), which equals 1 for the empty set I. �en the Pareto dual operator TD(f) is also an
integral operator with a probability kernel.

Condition (5.16) is of course not directly veri�able. �erefore we shall see how it can be read

from the generator of the process.

5.4 duality from pareto order: diffusion processes

We plan now to �nd the generators of the dual processes, when they exist. Let us start with the

simplest case of deterministic processes generated by the �rst order di�erential operators of the

form

Lφ(x) = (b(x),∇φ(x)) =
d∑
j=1

bj(x)
∂φ

∂xj
. (5.20)

In this case the dual operator is well de�ned on functions and

L ′g(x) = −div(gb)(x) = −
∑
j

∂

∂xj
[bj(x)g(x)].

For a vector x = (x1, · · · , xd) ∈ Rd let us denote x̌i the vector in Rd−1 obtained from x by

deleting the coordinate xi. For a function g(x) let us write g(ži, xi) for the value of g on the

vector, whose ith coordinate is xi, and other coordinates are those of the vector z. Let us write

džj for the product of di�erentials dzk with all k = 1, · · · , d excluding j.

Integrating by parts and assuming that g decays quickly enough so that the boundary terms at

in�nity vanish, we have

LD(f)g(x) = FL ′F−1g(x) = (−1)d+1
∫
z>x

∑
j

∂

∂zj

[
bj(z)

∂dg(z)

∂z1 · · ·∂zd

]
dz1 · · ·dzd

= (−1)d
∑
j

∫
žj>x̌j

bj(žj, xj)
∂dg(z)

∂z1 · · ·∂zd
(žj, xj)džj. (5.21)
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In general one cannot simplify this expression much further, and this is not a conditionally

positive operator (it does not have a Lévy-Khintchine form with variable coe�cients) without

further assumptions.

Proposition 9. Let L have form (5.20) with all bj ∈ C1(Rd) (the space of bounded continuous
functions with bounded continuous derivatives). �en LD(f) is given by (5.21), so that the solution
to the Cauchy problem of the equation ġ = LD(f)g is given by the corresponding formula (4.4) with
F and F−1 given by (5.4) and (5.5). Moreover, if each bj depends only on the coordinate xj, then

LD(f)g(x) = −bj(xj)
∂g

∂xj
, (5.22)

that is, LD(f) coincides with L up to a sign and the dual process exists and is just the deterministic
motion in the opposite direction to the original one.

Proof. Formula (5.22) is straightforward from (5.21) and the assumptions made on bj. �is

makes the last statement plausible. However, strictly speaking, having the generator calculated

on some subclass of functions does not directly imply that the semigroup T
D(f)
t coincides with

the semigroups onC(Rd) generated by operator (5.22). �e simplest way to see that this is in fact

the case is via direct calculations with the semigroup T
D(f)
t itself. Namely, if the deterministic

Markov processXxt with generator (5.20) can be expressed asX
x
t = X

t(x) via the solutionsXt(x)

of the Cauchy problem for the ODE ẋ = b(x), its transition kernel takes the form pt(z, dy) =

δ(y− Xt(z)). �en (5.13) becomes

T
D(f)
t g(x) = (−1)d

∫
Xt(z)>x

∂gd

∂z1 · · ·∂zd
dz. (5.23)

Under the assumption that bi depend only on xi, the coordinates of X
t(z) are themselves

solutions Xti(zi) of the one-dimensional ODE ẋi = bi(xi), so that one has

T
D(f)
t g(x) = (−1)d

∫
Xt

i(zi)>xi

∂gd

∂z1 · · ·∂zd
dz. (5.24)

From the obvious monotonicity of one-dimensional ODE this rewrites as

TD(f)g(x) = (−1)d
∫
zi>(Xt

i)
−1(xi)

∂gd

∂z1 · · ·∂zd
dz = g((Xt)−1(x)), (5.25)
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which is of course the semigroup generated by the operator (5.22).

Let us turn to a di�usion operator having the form

Lφ(x) = (a(x)∇,∇)φ(x) =
d∑

i,j=1

aij(x)
∂2φ

∂xi∂xj
(x) (5.26)

with a positive de�nite di�usion matrix a(x) = (aij(x)).

In this case

L ′g(x) =

d∑
i,j=1

∂2

∂xi∂xj
[aij(x)g(x)],

and consequently

LD(f)g(x) = FL ′F−1g(x) = (−1)d
∫
z>x

d∑
i,j=1

∂2

∂zi∂zj

[
aij(z)

∂dg(z)

∂z1 · · ·∂zd
)

]
dz1 · · ·dzd.

Let us integrate twice by parts the terms containing mixed derivatives and integrate once by parts

the remaining terms. �is yields

LD(f)g(x) = (−1)d−1
d∑
j=1

∫
žj>x̌j

∂

∂xj

[
ajj(žj, xj)

∂dg(z)

∂z1 · · ·∂zd
(žj, xj)

]
džj

+2(−1)d
∑
i<j

∫
žij>x̌ij

[
aij

∂dg

∂z1 · · ·∂zd

]
(žij, xi, xj)džij,

where žij denotes the vector in Rd−2 obtained from z by deleting ith and jth coordinates,

and (žij, xi, xj) is the vector with ith and jth coordinates taken from the vector x, and other

coordinates taken from the vector z. In case d = 1, the second sum in this expression is of course

empty.
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Again in general case one cannot simplify this expression essentially. However, assuming addition-

ally that the coe�cients aij depends only on the coordinates xi, xj (in particular, aii depends

only on xi), we have

LD(f)g(x) = (−1)d−1
d∑
j=1

∫
žj>x̌j

∂

∂xj

[
ajj(xj)

∂dg(z)

∂z1 · · ·∂zd
(žj, xj)

]
džj

+2(−1)d
∑
i<j

∫
žij>x̌ij

aij(xi, xj)
∂dg

∂z1 · · ·∂zd
(žij, xi, xj)džij.

Integrating by parts with respect to the variables žj in the �rst sum and the variables žij in the

second, yields (assuming the boundary terms at in�nity vanish)

LD(f)g(x) =

d∑
j=1

∂

∂xj

[
ajj(xj)

∂g(x)

∂xj

]
+ 2
∑
i<j

aij(xi, xj)
∂2g

∂xi∂xj
, (5.27)

or

LD(f)g(x) = Lg(x) +

d∑
j=1

∂ajj(xj)

∂xj

∂g(x)

∂xj
. (5.28)

Proposition 10. Let L have form (5.26) with a positive de�nite di�usion matrix a(x) = (aij(x))

and with all aij ∈ C1(Rd), so that L generates a Feller di�usion in Rd that we denote Xxt . If the
coe�cients aij depends only on the coordinates xi, xj, then LD(f) is given by (5.28) and it also
generates a di�usion process in Rd that we denote Yyt , and the duality relation (5.11) holds.

Proof. Again formula (5.28) makes the statement very plausible, but to deduce (4.4) from (4.7)

additional argument is of course needed. �is goes as follows.

But notice �rst that it is su�cient to prove the statement under additional assumption that

coe�cients aij are in�nitely smooth with all derivatives bounded (actually we need twice dif-

ferentiability for the above calculation of LD(f) and d times di�erentiability for the formulas of

Proposition 8 to make sense) and the operator L is strictly elliptic, because any L of type (5.26)

can be approximated by the sequence of L of the same form but strictly elliptic and with smooth

coe�cients. Passing to the limit in the duality equation allows one to prove its validity for the

general case.
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Next, under this smoothness and non-degeneracy assumption, it is well known from the standard

theory of di�usions (or Ito’s processes) that operator (5.28) generates a unique Feller process

such that its semigroup T
D(f)
t preserves the space C2∞(Rd) of twice continuously di�erentiable

functions vanishing at in�nity with all its derivatives up to order two. Hence, the Cauchy problem

for the equation

ġ = LD(f)g

is well posed in classical sense for initial functions g0 fromC
2∞(Rd). It is then straightforward to

see (4.7) that both functions T
D(f)
t g0 and F ◦ T ′t ◦ F−1g0 satis�es this equation. Consequently

these two functions coincide implying (4.4) for the semigroups Tt and T
D(f)
t , as required.

�us we have shown that under appropriate assumptions the f-dual operators to the �rst order

and di�usion operators respectively are again �rst order and di�usion operators respectively

de�ning the f-dual or Pareto dual processes.

It is instructive to see which di�usions are self-dual. �is is given by the following result that is a

direct consequence of Propositions 10 and 9.

Proposition 11. Let

Lφ(x) =

d∑
i,j=1

aij(xi, xj)
∂2φ

∂xi∂xj
(x) +

1

2

d∑
j=1

∂ajj

∂xj
(xj)

∂φ

∂xj
(x) (5.29)

with a positive de�nite (possibly not strictly) di�usion matrix a(x) = (aij(x)) such that aij depend
only on xi, xj and are continuously di�erentiable (with bounded derivatives). �en the di�usion
generated by L is self-dual in the Pareto sense.

5.5 application to other cones

Generalization of our results to orders arising from cones C(e1, · · · , ed) can be obtained by the

change of variables, though the calculations quickly become rather cumbersome. Let us consider
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only the simple example of the two-dimensional cone (5.9). �e question we are going to answer

is as follows: under what conditions the di�usion operator

Lg(x, y) = a(x, y)
∂2g

∂x2
+ 2b(x, y)

∂2g

∂x∂y
+ c(x, y)

∂2g

∂y2
(5.30)

generates a di�usion that has a dual in the sense of the order generated by C, and how the dual

generator looks like. Having in mind the relation with the standard Pareto order we can expect

that the coe�cients should depend in certain way on two arbitrary functions of one variable and

one arbitrary function of two variables. �is is in fact the case as the following result shows.

Proposition 12. Let L be of form (5.30) with smooth coe�cients generate a Feller di�usion Xxt . If
the coe�cients have the form

a(x, y) = α(x+ y) + β(x− y) +ω(x, y),

c(x, y) = α(x+ y) + β(x− y) −ω(x, y),

b(x, y) = α(x+ y) − β(x− y)

(5.31)

with some smooth functions α,β,ω, then Xxt has the dual di�usion Y
y
t so that (5.2) holds with

M = C(e1, e2) of form (5.9), where Yyt is generated by the operator

LD(f)g = Lg+4(α ′(x+y)+β ′(x−y))
∂g

∂x
(x, y)+4(α ′(x+y)−β ′(x−y))

∂g

∂y
(x, y). (5.32)

Proof. Formulas (5.31) are obtained from Proposition 10 by rotation of coordinates, that is by

change x ′ = x+ y, y ′ = x− y.

5.6 duality from pareto order: jump processes

Let us now turn to the generators L of pure jump processes, that is

Lφ(x) =

∫
Rd

(φ(w) − φ(x))ν(x, dw) (5.33)



5.6 duality from pareto order: jump processes 69

with some bounded stochastic kernel ν. For a measure Q having a density with respect to

Lebesgue measure, let us write shortly L ′q for the measure L ′Q. We have

L ′q(dz) =

∫
Rd

q(x)ν(x, dz)dx− q(z)dz

∫
Rd

ν(z, dw).

Consequently, relabeling the variables of integration, we have

F ◦ L ′(q) = (−1)d
∫
z>y

(L ′q)(dz)

= (−1)d
∫
w>y

∫
Rd

q(z)ν(z, dw)dz− (−1)d
∫
z>y

∫
Rd

q(z)ν(z, dw)dz.

�e integrals in the two terms partially cancel. Namely, we can write

F◦L ′(q) = (−1)d
∫
q(z)

(
1z>y

[∫
w>y

ν(z, dw) −

∫
ν(z, dw)

]
+ 1z�y

∫
w>y

ν(z, dw)

)
dz,

implying

F ◦ L ′(q) = (−1)d
∫
q(z)

[
1z�y

∫
w>y

ν(z, dw) − 1z>y

∫
w�y

ν(z, dw)

]
dz.

Hence, for a smooth (d times di�erentiable) function g we can write either

LD(f)g = F ◦ L ′ ◦ F−1g(y)

= (−1)d
∫

∂dg(z)

∂z1 · · ·∂zd

[
1z�y

∫
w>y

ν(z, dw) − 1z>y

∫
w�y

ν(z, dw)

]
dz, (5.34)

or

LD(f)g =F ◦ L ′ ◦ F−1g(y)

=(−1)d
∫
w>y

∫
Rd

∂dg(z)

∂z1 · · ·∂zd
ν(z, dw)dz

− (−1)d
∫
z>y

∫
Rd

∂dg(z)

∂z1 · · ·∂zd
ν(z, dw)dz (5.35)
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If ν(z, dw) depends smoothly on z, this expression can be rewritten by moving the derivatives

from g to ν. For this transformation expression (5.35) is more handy than (5.34). To perform

the integration by parts in its second term we shall use the following simple formula (with a

straightforward proof by mathematical induction)

∫
z>y

∂dg(z)

∂z1 · · ·∂zd
φ(z)dz = (−1)d

∑
I⊂{1,··· ,d}

∫
zI>yI

g(yĪ, zI)
∂|I|φ

∂zI
(yĪ, zI)dzI, (5.36)

which is valid when the boundary terms at in�nity vanish, for instance if either φ or g vanish

at in�nity with all its derivatives. Here |I| is the number of indices in I, the integral over the set

{zI > yI} is |I|-dimensional and (yĪ, zI) denotes the vector whose coordinates with indices from

I are those of the vector z and other coordinates are from the vector y.

Using this formula we transform (5.35) into the expression

LD(f)g(y) = F ◦ L ′ ◦ F−1g(y)

=

∫
w>y

∫
Rd

g(z)
∂dν

∂z1 · · ·∂zd
(z, dw)dz−

∑
I⊂{1,··· ,d}

∫
zI>yI

dzIg(yĪ, zI)

∫
Rd

∂|I|ν

∂zI
(yĪ, zI, dw).

Singling out from the sum the terms corresponding to I being empty and I being the whole set

{1, · · · , d}, this rewrites as

∫
w>y

∫
Rd

g(z)
∂dν

∂z1 · · ·∂zd
(z, dw)dz−

∫
z>y

∫
Rd

g(z)
∂dν

∂z1 · · ·∂zd
(z, dw)dz

−
∑ ′

I⊂{1,··· ,d}

∫
zI>yI

dzIg(yĪ, zI)

∫
Rd

∂|I|ν

∂zI
(yĪ, zI, dw) − g(y)

∫
Rd

ν(y, dw),

where
∑ ′

denotes the sum over all proper subsets I, i.e. all subsets I excluding empty set and

the whole set {1, · · · , d}. Performing the cancellation in the �rst two terms yields �nally (see the

trick leading to (5.34))

LD(f)g(y) = F ◦ L ′ ◦ F−1g(y) = −g(y)

∫
Rd

ν(y, dw)

−

′∑
I⊂{1,··· ,d}

∫
zI>yI

dzIg(yĪ, zI)

∫
Rd

∂|I|ν

∂zI
(yĪ, zI, dw)
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+

∫
Rd

g(z)dz

[
1z�y

∫
w>y

∂dν

∂z1 · · ·∂zd
(z, dw) − 1z>y

∫
w�y

∂dν

∂z1 · · ·∂zd
(z, dw)

]
. (5.37)

For instance, for d = 1

LD(f)g(y) =

∫y
−∞ g(z)dz

∫
w>y

∂ν

∂z
(z, dw)−

∫∞
y

g(z)dz

∫
w<y

∂ν

∂z
(z, dw)−g(y)

∫
ν(y, dw),

(5.38)

which is the formula essentially obtained by Kolokoltsov [52, 54], and for d = 2

LD(f)g(y) = −g(y1, y2)

∫
ν(y, dw)

−

∫
z1>y1

g(z1, y2)dz1

∫
∂ν

∂z1
(z1, y2, dw) −

∫
z2>y2

g(y1, z2)dz2

∫
∂ν

∂z2
(y1, z2, dw)

+

∫
g(z1, z2)dz1dz2

[
1z�y

∫
w>y

∂2ν

∂z1∂z2
(z, dw) − 1z>y

∫
w�y

∂2ν

∂z1∂z2
(z, dw)

]
. (5.39)

Remark 8. It is worth stressing that one should be cautious in using these formulas as they may

not be true for f not vanishing at in�nity, say even for a constant function f (so that these formulas

cannot be used even for checking conservativity condition LD(f)1 = 0). Generally one has to

use the following extension of (5.36) (also proved by direct induction) that is valid whenever g,

φ are smooth and such that for all I ⊂ {1, · · · , d} and yĪ there exist �nite limits of the functions

g(yĪ, zI), φ(yĪ, zI) and their derivatives in zI, as zI →∞ (here∞means precisely +∞):

∫
z>y

∂dg(z)

∂z1 · · ·∂zd
φ(z)dz

= (−1)d
∑

I⊂{1,··· ,d}

∫
zI>yI

∑
J⊂Ī

(−1)|J|g(yĪ\J,∞J, zI)∂|I|φ∂zI (yĪ\J,∞J, zI)
dzI, (5.40)

where (yĪ\J,∞J, zI) denotes the vector with Ī \ J -coordinates from y, I-coordinates from z

and other coordinates being +∞. For instance, in case d = 2 we have

∫∞
y1

∫∞
y2

∂2g(z)

∂z1∂z2
φ(z)dz =

∫∞
y1

∫∞
y2

∂2φ(z)

∂z1∂z2
g(z)dz
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+

∫∞
y1

[
g(z1, y2)

∂2φ

∂z1
(z1, y2) − g(z1,∞)

∂2φ

∂z1
(z1,∞)

]
dz1

+

∫∞
y2

[
g(y1, z2)

∂2φ

∂z2
(y1, z2) − g(∞, z2)∂2φ

∂z2
(∞, z2)]dz2

+ g(y1, y2)φ(y1, y2) − g(∞, y2)φ(∞, y2) − g(y1,∞)φ(y1,∞) + g(∞,∞)φ(∞,∞).

(5.41)

Assuming that for all y

lim
z→−∞

∫
w>y

ν(z, dw) = 0, lim
z→∞

∫
w<y

ν(z, dw) = 0, (5.42)

equation (5.38) rewrites in the equivalent conservative form

LD(f)g(y) =

∫y
−∞(g(z)−g(y))dz

∫
w>y

∂ν

∂z
(z, dw)−

∫∞
y

(g(z)−g(y))dz

∫
w<y

∂ν

∂z
(z, dw).

(5.43)

Proposition 13. Let L have form (5.33) with a bounded weakly continuous stochastic kernel ν, so
that L generates a C-Feller (i,e. its semigroup preserves continuous functions) jump process in Rd

that we denote Xxt . �en LD(f) is given by (5.34). If the kernel ν has continuous bounded mixed
derivatives, so that

∂|I|ν

∂zI
(z, dw)

is again a bounded kernel (possibly signed) for any nonempty subset I ∈ {1, · · ·d} (including the
whole set {1, · · ·d}), then LD(f) can be rewritten as (5.37). Finally LD(f) generates itself a C-Feller
Markov process that we denote Yyt if and only if the following conditions hold:

All mixed derivatives of orders from 1 to d− 1 of the jump rates are non-positive, i.e.

∫
Rd

∂|I|ν

∂zI
(z, dw) 6 0 (5.44)
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for any proper subset I of {1, · · ·d}; and

∫
w>y

∂dν

∂z1 · · ·∂zd
(z, dw) > 0, z � y,∫

w�y

∂dν

∂z1 · · ·∂zd
(z, dw) 6 0, z > y.

(5.45)

If this is the case, the duality relation (5.11) holds.

Proof. Everything is proved apart from the criterion for the generation of a Markov process. To

get it one only has to note that the operator
∫
g(z)µ(y, dz) − α(y)g(y) with given kernel µ

and function α is conditionally positive (and generates a process) if and only if the kernel µ is

stochastic (i.e. positive), and that the kernels from various terms in (5.37) are mutually singular,

so that this positivity condition should be applied separately to each term.

One completes the proof by the same argument as used at the end of the proof of Proposition

10.

A couple of remarks are in order here. Condition (5.45) is not very transparent. A simple particular

case to have in mind is when the kernel ν decomposes into a sum of kernels depending on all

variables but for one, i.e.

ν(z, dw) =
∑
j

νj(z1, · · · , zj−1, zj+1, · · · , zd, dw),

in which case the condition (5.45) becomes void (thus trivially satis�ed). On the other hand,

conditions (5.44) are easy to check. To visualize this condition it is instructive to observe that if q

is a density of a positive measure on Rd, then the distribution function

g(x) =

∫
z�x

q(z)dz
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is positive, but has all mixed derivatives negative. Even more speci�cally, if ν decomposes into a

sum of kernels depending on one variable only, that is

ν(z, dw) =
∑
j

νj(zj, dw),

all conditions of Proposition 13 are reduced to an easy to check requirement that all rates∫
νj(zj, dw) are decreasing functions of zj.

Let us note that the method of the calculation of dual used above can still be used for processes

with a boundary. For instance, let us consider a process on R+ with the generator

Lφ(x) =

∫
R+

(φ(w) − φ(x))ν(x, dw). (5.46)

�e operator L ′ takes the form

L ′q(dz) =

∫
R+

q(x)ν(x, dz)dx− q(z)dz

∫
R+

ν(z, dw)

and the same calculations as above yield

LD(f)g(y) =

∫y
0

g(z)dz

∫
w>y

∂ν

∂z
(z, dw) −

∫∞
y

g(z)dz

∫
06w<y

∂ν

∂z
(z, dw)

− g(y)

∫
ν(y, dw) + g(0)

∫
w>y

ν(0, dw), (5.47)

that is, an additional term appears arising from additional boundary taken into account while

integrating by parts. Under assumption (5.42), this rewrites in the equivalent conservative form

LD(f)g(y) =

∫y
0

(g(z) − g(y))dz

∫
w>y

∂ν

∂z
(z, dw)

−

∫∞
y

(g(z) − g(y))dz

∫
06w<y

∂ν

∂z
(z, dw) +

∫
w>y

(g(0) − g(y))ν(0, dw). (5.48)

We assume strong smoothness condition forν, which forces the dual Lévy kernel to have a density.

�is is not necessary. Just assuming monotonicity of
∫
w>y ν(z, dw) and

∫
w<y ν(z, dw) (and
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thus the existence almost sure of non-negative derivatives of these functions of z), we obtain,

instead of (5.49), the formula

LD(f)g(y) =

∫y
−∞(g(z) − g(y))dz

∫
w>y

ν(z, dw) −

∫∞
y

(g(z) − g(y))dz

∫
w<y

ν(z, dw),

(5.49)

with similar modi�cations for (5.48) and analogously for d-dimensional case.

Let us mention the link with the theory of stochastic monotonicity. Recall from chapter 2 that

a Markov process Xxt is called stochastically monotone with respect to Pareto ordering if the

function P(Xxt > y) is a monotone function of x for any y. Stochastic monotonicity is studied

for various classes of processes, see work by Chen and Wang [18], Chen [17], Kolokoltsov [52, 55],

Zhang [87], Wang [84], Rabehasaina [69] and references therein.

If duality (5.11) holds, then Xxt is obviously stochastically monotone, but, generally speaking, this

condition is too weak to ensure duality, because stochastic monotonicity of a positive function on

Rd does not imply (apart from one-dimensional case) that it is themulti-dimensional distribution

function for some positive measure (see chapter 3). �erefore it is remarkable enough that for

di�usion processes with generators (5.26) the conditions of stochastic monotonicity and of the

existence of Pareto dual coincide. Even for deterministic processes this is already not so, as for

stochastic monotonicity of processes generated by operators (5.20), bj are allowed to depend on

other coordinates xk (in a monotone way, see e.g. paper by Chen and Wang [18] and references

therein to previous works).

We assumed boundedness of all coe�cients involved.�is simpli�cation leads to themost straight-

forward formulations that catch up the essence of duality. Of course, extensions to unbounded

kernel rates, di�usion coe�cients, etc, are possible under the conditions that ensure that all

processes involved are well de�ned.

5.7 arbitrary feller processes

We have analysed three classes of the generators L separately. But it is clear that if we consider

a process with the generator being the sum of the generators of di�erent classes, then applying

conditions of the results above to each term separately will ensure that the dual to the sum is



5.7 arbitrary feller processes 76

also conditionally positive and generates a process leading to the duality relation (5.11). We refer

to textbooks by Applebaum [5] or Jacob [44] for a general introduction to Feller processes with

arbitrary pseudo-di�erential generators.

For simplicity, we shall give the corresponding result for one-dimensional Feller processes, but

extension to higher dimensions is straightforward. For this case, the generators of the dual were

obtained by Kolokoltsov [54] by approximating continuous state space generators by discrete

Markov chains and in chapter 2, via the direct method on duality relation. �e method of this

chapter will give the same result without any technical restrictions used by Kolokoltsov [54].

Proposition 14. Let a Feller process Xxt in C∞(R) have a generator

Lg(x) = a(x)
d2

dx2
g(x) + b(x)

d

dx
g(x)

+

∫∞
−∞(g(z) − g(x) − (z− x)g ′(x)1|z−x|61)ν(x, dz) (5.50)

with a, b ∈ C2(R), a being non-negative, and with the weakly continuous Lévy kernel ν such that,
for any y, conditions (5.42) hold and the functions∫

w>y
ν(z, dw), −

∫
w<y

ν(z, dw) (5.51)

are non-decreasing in z, for z < y and z > y respectively, so that their derivatives exist almost
surely and are non-negative. Moreover

1z<ydz

∫
w>y

ν(z, dw) + 1z>ydz

∫
w<y

ν(z, dw) (5.52)

is a Lévy kernel (it integratesmin(1, (w− z)2) and the integral

∫y+1
y−1

(z− y)

[
1z<y(ν(y, dz) + dz

∫
w>y

ν(z, dw)) + 1z>y(ν(y, dz) − dz

∫
w<y

ν(z, dw))

]
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exists, at least in the sense of the main (or the Cauchy) value. �en the dual process Yyt exists (in
the sense of (5.11)) and has the generator

LD(f)g(y) =a(y)
d2

dy2
g(y) + (a ′(y) − b(y))

d

dy
g(y)

+

∫y
−∞(g(z) − g(y) − (z− y)g ′(y)1|z−y|61)dz

(∫
w>y

ν(z, dw)

)
−

∫∞
y

(g(z) − g(y) − (z− y)g ′(y)1|z−y|61)dz

(∫
w<y

ν(z, dw)

)
+ g ′(y)

∫y+1
y−1

(z− y)
[
1z<y(ν(y, dz)

+ dz

∫
w>y

ν(z, dw)) + 1z>y(ν(y, dz) − dz

∫
w<y

ν(z, dw))
]

(5.53)

Proof. Formula (5.50) is obtained by combining (5.49), (5.28) and (5.22). Conditions given ensure

that the dual operator is well de�ned as a Lévy-Khintchine type operator with variable coe�cients.

Remark 9. As shown by Kolokoltsov’s paper [54] and�eorem 5.9.2 in the Kolokoltsov’s textbook

[55], conditions of stochastic monotonicity (monotonicity of functions (5.51)) are su�cient for

the operator (5.50) to generate a Feller process, so that this condition can be dispensed with.

As a corollary of Proposition 14, we can get now the full characterization of self–duality.

Proposition 15. Let a Feller process Xxt in C∞(R) have a generator (5.50). �en it is self dual (in
the sense of (5.11)) if and only if the following conditions holds:

b(x) = a ′(x)/2, dyν(y, dz) + dzν(z, dy) = 0. (5.54)

In particular, if ν has a density ν(z,w), which is di�erentiable with respect to the �rst argument,
then the second equation of (5.54) rewrites as

∂ν

∂y
(y, z) +

∂ν

∂z
(z, y) = 0. (5.55)

Clearly, this condition is satis�ed for ν(y, z) = g(|y− z|) with a smooth g, which corresponds to
symmetric Lévy generators.
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Proof. �e condition on b follows from Proposition 11. �e condition on ν arises by the compar-

ison of the integral terms of (5.50) with (5.50) separately for y > z and y < z.

5.8 pareto duality via sdes

Duality of processes is de�ned via their distributions, and not pathwise. It is not clear in general

whether any canonical pathwise connection or a natural coupling between dual processes exists.

We shall consider some examples when it does.

First of all, if Xt is a Lévy process in Rd, then −Xt is its Pareto-dual, because

P(Xxt > y) = P(X0t > y− x) = P(−X0t 6 x− y) = P(−Xyt 6 x).

Next, if Xt is a di�usion generated by the SDE

dXt = dWt + b(Xt)dt,

whereWt is a d-dimensional standard Wiener process and b = (b1(x1), · · · , bd(xd)) with
even functions bj, then Yt = −Xt is again Pareto-dual, as it satis�es the SDE

dYt = −dWt − b(Yt)dt,

and hence has the generator of the dual process (by Propositions 10 and 9).

Finally we shall prove the following characterization of Pareto-duality of di�usions in terms of

Stratonovich SDEs.

Proposition 16. Let a Feller di�usion Xxt be generated by the Stratonovich SDE of the form

dXt = σ(Xt) ◦ dWt + b(Xt)dt, (5.56)
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where b = (b1(x1), · · · , bd(xd)) and σ = (σjk) with elements σjk depending only on xj. �en
the di�usion generated by the SDE with inverted dri�, that is

dYt = σ(Yt) ◦ dWt − b(Yt)dt, (5.57)

is Pareto-dual to Xt.

Proof. Notice that in Ito’s form the SDE for Xt reads as

dXit =
∑
j

σij(Xt)dWj +

∑
j

1

2
σ ′ij(X

i
t)σij(X

i
t) + bi(X

i
t)

 dt. (5.58)

�e generator of Xt is

Lf(x) =
1

2

∑
i,j,k

σik(xi)σjk(xj)
∂2f

∂xi∂xj
+
∑
i

∑
j

1

2
σ ′ij(xi)σij(xi) + bi(xi)

 ∂f

∂xj
.

Consequently, by the assumptions above and by Propositions 10 and 9, Xt has a dual process Yt

generated by the operator

LDf(x) =
1

2

∑
i,j,k

σik(xi)σjk(xj)
∂2f

∂xi∂xj
+
∑
i

∑
j

1

2
σ ′ij(xi)σij(xi) − bi(xi)

 ∂f

∂xj
,

which is the generator of a process solving SDE (5.57).
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6.1 introduction

In chapter 4 and 5, we have analysed in some detail of the duality arising from Pareto ordering.

In the general case, explicit calculations are not always available. However, we propose in this

chapter some general schemes for the analysis of translation-invariant functions f, that is functions

depending only on the di�erence of their arguments:

f(x, y) = f(y− x),

with some other function f that we still denote by f (with some ambiguity). Speci�cally, we discuss

several examples of duality with operator F−1 being the Laplacian or a fractional Lapacian.

6.2 f-duality from translation invariant f

Recall the operator F from (4.3)

(FQ)(y) =

∫
f(x, y)Q(dx)

80
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When applied to a measureQ with density q, the operator F takes the form

g(y) = (FQ)(y) =

∫
Rd

f(y− x)q(dx), (6.1)

i.e. it becomes a convolution operator. It is then well known that under appropriate regularity

assumptions, f is the fundamental solution of the pseudo-di�erential operator Lf with the symbol

Lf(p) =
1

f̂(p)
, (6.2)

where

f̂(p) =

∫
e−ixpf(x)dx

is the Fourier transform of f.

Remark 10. In fact, by the de�nition of the fundamental solution,

Lf

(
1

i

∂

∂x

)
f(x) = δ(x),

which by taking the Fourier transform from both sides rewrites as

Lf(p)f̂(p) = 1,

as claimed.

Hence g(y) from (6.1) solves the equation Lfg = q, so that F−1 = Lf. Of course, for an arbitrary

f, the operator Lf can be quite complicated and the identi�cation of the appropriate classes of

functions q and g can be non-trivial. Let us consider the simplest example where Lf is Laplacian,

or more generally, the fractional power of a Laplacian Lf.

It is well known that the fundamental solution for the Laplace operator ∆ in dimension d > 3 is

the function

f(x) = −
1

(d− 2)σd−1

1

|x|d−2
,

where σd−1 is the area of a unit sphere in Rd. Hence the dual operator (4.4) takes the form

TD(f) = ∆−1 ◦ T ′ ◦ ∆, (6.3)
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and the generator for the corresponding dual semigroup becomes

LD(f) = ∆−1 ◦ L ′ ◦ ∆. (6.4)

Let L be a di�usion operator of the special kind:

Lg(x) = a(x)∆g(x)

with a non-negative bounded smooth function a(x). �en L ′ = ∆ ◦ a(x) and thus

LD(f) = ∆−1 ◦ L ′ ◦ ∆ = L, (6.5)

so that L is self f-dual.

Noting that in two dimensions (d = 2) the fundamental solution for the Laplacian is known to

be log |x|/2π. We then get the following.

Proposition 17. Let Xxt be the Feller di�usion generated by the operator Lg(x) = a(x)∆g(x) in
Rd with a non-negative bounded smooth function a(x). �en, for all x, y ∈ Rd, we have

E
1

|Xxt − y|
d−2

= E
1

|Xyt − x|
d−2

, (6.6)

E log |Xxt − y| = E log |Xyt − x|, d = 2 (6.7)

for d > 3 and d = 2 respectively.

Turning to the fractional Laplacian |∆|α/2 in Rd with α ∈ (0, 2), d > 2, let us recall that the

inverse operator is given by the Riesz potential

|∆|−α/2g(x) = Iαg(x) =
1

Hd(α)

∫
Rd

g(y)dy

|x− y|d−α
,

where

Hd(α) = 2
απd/2

Γ(α/2)

Γ((d− α)/2)
,
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see e.g. work by Helgason [37]. Hence, the operator |∆|α/2 is Lf for

f(x) =
1

Hd(α)

1

|x|d−α
.

Let us consider a stable-like process generated by the operator

Lg(x) = −a(x)|∆|α/2g(x)

with a positive smooth function a(x). �en L ′ = |∆|α/2 ◦ a(x) and thus

LD(f) = |∆|−α/2 ◦ L ′ ◦ |∆|α/2 = L, (6.8)

so that L is self f-dual. �us we proved the following extension of Proposition 17:

Proposition 18. LetXxt be the stable-like process generated by the operatorLg(x) = a(x)|∆|α/2g(x)
in Rd with d > 2, α ∈ (0, 2] excluding the case d = α = 2 (for which (6.7) holds), and with a
non-negative bounded smooth function a(x). �en, for all x, y ∈ Rd,

E
1

|Xxt − y|
d−α

= E
1

|Xyt − x|
d−α

. (6.9)
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7.4 Processes on intervals 89

7.1 introduction

Recall that in section 2.4, we introduced Siegmund’s duality on real-valued intervals, giving

particular attention to the barrier conditions for both the original Markov process and its dual.

In this section we study this kind of duality in detail. We begin by deducing the consequences of

applying the general approach using formalas (4.6) and (4.7) to the study of duality for Markov

processes in domains with a boundary. Furthermore, we discuss some di�culties arising from

condition (1.3) at boundary points, which, for instance, prevents the second dual to re�ected

Brownian motion to coincide with itself. �is chapter is concluded by introducing the notion of

a regularised dual which addresses this and similar issues.

7.2 reflected and absorbed processes in R̄+

Let Ck∞(Rd) be the space of k times di�erentiable functions on Rd with all these derivatives

vanishing at in�nity. Also, Ck∞(R̄+) will denotes the restriction of functions from Ck∞(R) on
R̄+ = {x > 0}.

84
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Consider a Feller process X = (Xxt )t>0 on R generated by operator

Lg(x) =a(x)
d2

dx2
g(x) + b(x)

d

dx
g(x)

+

∫∞
−∞(g(z) − g(x) − (z− x)g ′(x)1|z−x|61)ν(x, dz)

under the conditions of Proposition 14 assuming additionally that

(a) a ∈ C2(R) and is an even function such that a(x) > 0, b ∈ C2(R) and is an odd function

(implying b(0) = 0), the support of ν is in R+ for x > 0 and ν(−x, dy) = Rν(x, dy),

where R denotes the re�ection of the measure with respect to the origin (so that, by

de�nition,
∫
φ(y)Rν(x, dy) =

∫
φ(−y)ν(x, dy)).

�en, as is well known (see e.g. �eorem 6.8.1 in Kolokoltsov’s textbook [55]) the magnitude |Xxt |

is itself a Markov process on R+, also referred to as Xxt re�ected at the origin. Moreover, if the

transition probabilities of Xxt are pt(x, dy), then |Xxt | has the transition density

preft (x, dy) = pt(x, dy) + Rpt(x, dy),

and the semi-group T reft of |Xxt | can be obtained from the semi-group Tt of X
x
t by the restriction

to even functions.

Remark 11. Assuming that the kernel ν is twice smooth would imply that the space C2∞(R) is an
invariant core for Xxt and consequently that the subspace of functions f from C2∞(R̄+) such that

f ′(0) = 0 is an invariant core for |Xxt |.

Remark 12. If Xxt were a di�usion, the process |Xxt | on R̄+ would be stochastically monotone by

the coupling argument, see e.g. Sect II,2 of textbook by Liggett [56]) and hence by Siegmund’s

theorem in [72] or �eorem 2 in this thesis, it had a Markov dual Yyt on R̄+ (in the sense (1.3))

with absorbtion at the origin. In our case monotonicity follows from the construction of the dual

below, which turns out to be given by a semi-group with a conditionally positive generator.

Proposition 19. Under the conditions of Proposition 14 and assumption (A) above, the dual process
Yyt is Feller on R̄+ absorbed at the origin and generated by the operator
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LDg(y) =a(y)
d2

dy2
g(y) + (a ′(y) − b(y))

d

dy
g(y) +

∫
w>y

(g(0) − g(y)ν(0, dw)

+

∫y
0

(g(z) − g(y) − (z− y)g ′(y)1|z−y|61)dz

(∫
w>y

ν(z, dw)

)
−

∫∞
y

(g(z) − g(y) − (z− y)g ′(y)1|z−y|61)dz

(∫
w<y

ν(z, dw)

)
+ g ′(y)

∫y+1
y−1

(z− y)

[
1z<y(ν(y, dz) + dz

∫
w>y

ν(z, dw))

+ 1z>y(ν(y, dz) − dz

∫
w<y

ν(z, dw))

]
(7.1)

�e semi-group TDt of Yyt is given explicitly by the formula

(TDt g)(y) = g(0)

∫∞
y

preft (0, dz) +

∫∞
0

g(x)

(∫∞
y

∂

∂x
p
ref
t (x, dz)

)
dx. (7.2)

Proof. Using (4.6) with F−1g(x) = −g ′(x) we get for g ∈ C1∞(R̄+)

(TDt g)(y) = −

∫∞
y

dz

∫∞
0

g ′(x)preft (x, dz)dx, (7.3)

and hence

(TDt g)(y) = g(0)

∫∞
y

preft (0, dz) +

∫∞
0

dx

∫∞
y

g(x)
∂

∂x
preft (x, dz), (7.4)

yielding (7.2) as required.

It is worth stressing that this formula implies the conservativity condition TDt 1 = 1 (preservation

of constants by TDt ), because

lim
x→∞

∫∞
y

preft (x, dz) = 1

by the Feller property and hence∫∞
0

∂

∂x

(∫∞
y

preft (x, dz)

)
dx = 1−

∫∞
y

preft (0, dz). (7.5)
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Operators TDt form a semi-group by Proposition 7.�e form of the generator follows from (5.48).

As it is conditionally positive, the semigroup TDt preserves positivity and preserves constants thus

being a semi-group of aMarkov process.Moreover, as also seen directly from (7.2), TDt f(0) = f(0),

so that the value at the origin is preservedmeaning that this process is absorbing at the origin.

Remark 13. (i) Formula (7.3) is valid only for g vanishing at in�nity, and (7.2) extends it (yields a

minimal extension) to bounded functions on R̄+. Plugging g = 1 into (7.3) yields zero, not 1.

Remark 14. (ii) �e attempt to use integration in (7.5) in the opposite direction, at least when

pt(x, dz) has a density pt(x, z), and using limx→∞ preft (x, z) = 0 would give∫∞
y

dz

(∫∞
0

∂

∂x
preft (x, z)dx

)
= −

∫∞
y

preft (0, z)dz,

which is di�erent from the r.h.s. of (7.5).

It is worth noting additionally that if a(0) 6= 0 and ν = 0, then the subspace of functions g from

C2∞(R̄+) such that g ′′(0) = 0 is an invariant core for Yyt . In fact, the condition LDg(0) = 0

(following from TDt g(0) = g(0)) implies g ′′(0) = 0. In particular, the integral
∫
w>y(g(0) −

g(y)ν(0, dw) from (7.1) is well-de�ned for such g. On the other hand, if a(0) = 0 and ν = 0,

then a(x) = ax2(1+ o(1)), b(x) = bx(1+ o(1)) as x→ 0 with a > 0, b ∈ R implying that 0

is an inaccessible boundary point, so that Xxt = |Xxt | for x > 0. In this case nothing comes out of

the origin, so that preft (0, z) = 0 for all z > 0 implying that the �rst term on the r.h.s. of (7.2)

vanishes and hence that 0 is also inaccessible for Yyt (which follows also from its generator). In

particular, if additionally b(x) = a ′(x)/2, the process |Xxt | is self-dual on R+.

�ere is an extensive literature on the absorption - re�ection link presented in Proposition 19,

mostly because of its natural interpretation in terms of ruin probabilities having important

applications in insurance mathematics. For piecewise deterministic Markov processes it was

obtained in paper by Asmussen and Peterson [8] (see also work by Asmussen [6]) and used

e�ectively by Djehiche [29] to assess ruin probabilities via large deviations. �en it was extended

to di�usions with jumps by Sigman and Ryan [73], and to Lévy processes by Asmussen and

Pihlsgård [9]. Our result is an extension of the corresponding result from [73] by Sigman and

Ryan, as we do it for arbitrary stochastically monotone processes. Our proof is quite di�erent, as

it is more elementary, using e�ectively only formula (4.6).
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7.3 second dual and regularised dual

Extension of the previous result to processes with a boundary from the right or with two bound-

aries is if course natural, see work by Asmussen and Pihlsgård [9], but not quite straightforward.

We shall clarify the aspects of duality (even the de�nition has to be modi�ed), needed for these

cases reducing our attention, for simplicity, to Feller processes with transition probabilities having

no atoms, that is to processes such that the function P(Xxt > y) is continuous in y and hence

(by Feller property) also in x. For such process,

P(Xxt > y) = P(Yyt 6 x)⇐⇒ P(Xxt 6 y) = P(Yyt > x). (7.6)

It is natural to ask whether the second dual coincides with the original process. For di�usions on

Rd this is in fact the case, as is seen from Proposition 10 or, in one-dimensional case (d = 1),

directly from (7.6). However, for processes on R+ this does not hold, as seen already from Lévy’s

example of re�ected Brownian motion in example 5 of chapter 2 in this thesis. In fact, re�ected

Brownian Motion cannot be dual to absorbing Brownian Motion, as any dual process on R+

should be absorbing at the le� end, that is at the origin, as seen directly from (1.3). However, the

re�ected Brownian Motion is “almost dual” to the absorbing Brownian Motion in the sense that

P(Yyt 6 x) = P(Xxt > y) (with Y re�ected and X absorbing Brownian Motion) holds for all

y 6= 0 and all x. �is suggests that the usual de�nition of duality imposes unnatural restrictions

on the boundary.

Consequently, we shall give the following de�nition. Let Xxt be a stochastically monotone process

on [a,∞) such that P(Xxt > y) is right continuous in x. A process Yyt on [a,∞) will be called a

regularised dual to a process Xxt on [a,∞) if (1.3) holds for all x > a, y > a, and the distribution

for y = a is de�ned by continuity as

P(Yat 6 x) = P(Ya+

t 6 x) = lim
z→a

P(Yzt 6 x). (7.7)

Remark 15. One could also relax the condition forx = a by de�ningP(Yyt 6 a) = limz→a P(Y
z
t 6

x). �is would lead to the same result, as for usual de�nition, due to the right continuity of

P(Xxt > y) in x.
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Remark 16. If one only assumes monotonicity of the function P(Xxt > y), it would become

natural to de�ne the dual distribution P(Yyt 6 x) as the right continuous modi�cation of the

function P(Xxt > y).

�e following statement is now clear.

Proposition 20. Under the assumptions of Proposition 19 and assuming the function P(Xxt > y)

is continuous in y for y > 0, the re�ected process |Xxt | is a regularised dual to Y
y
t . �us the second

regularised dual to |Xxt | coincides with |Xxt |.

Remark 17. �e usual (not regularised) dual of Yxt from Proposition 19 is a rather pathological

process Zzt , whose distributions coincides with that of |Xzt | for z 6= 0, but the origin is an

unattainable point without escape from it. In other words, its distribution is the same as the

process re�ected from the boundary, but only on the outside of the boundary. �is means

discontinuity on its pathology. �us Zzt should be “re�ected from the origin” without touching it.

7.4 processes on intervals

�e theory still does not allow to treat re�ected di�usions on R̄−, even re�ected Brownianmotion,

since equation (1.3) implies that, in order to have a dual, a process on R̄− should be absorbing at

the origin.

A natural extension of the de�nition of regularised dual given above for processes on a half-line

turns out to be the following. Let Xxt be a stochastically monotone process on [a, b] (meaning

[a,∞) or (−∞, b] in case b = ∞ or a = −∞ respectively) such that P(Xxt > y) is right

continuous in x. A process Yyt on [a, b] will be called a regularised dual to a process Xxt on [a, b]

if (1.3) holds for all x, y ∈ [a, b] excluding y = a and x = b, where additional conditions are

imposed: equation (7.7) for y = a and equation

P(Yyt = b) = P(Yyt > b) = P(Yyt > b−) = lim
z→b

P(Yyt > z) (7.8)

for x = b. Notice that this latter condition is equivalent to

P(Yyt < b) = P(Yyt < b−) = lim
z→b

P(Yyt < z). (7.9)
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If a = −∞ or b =∞ the corresponding conditions involving a or b are considered to be void,

so that for a process on R the de�nition reduces to a usual one.

As an example, let us consider an arbitrary one-dimensional di�usion on an interval [α,β]

(assuming, for de�niteness, thatα,β are �nite points) re�ected at both boundaries.More precisely,

let Xxt be a di�usion on R generated by operator (5.50) with vanishing ν assuming that

(B) a, b ∈ C2(R) are 2(β − α) periodic functions which are symmetric and antisymmetric

respectively with respect to re�ections Rα (Rα(x) = 2α− x) and Rβ (Rβ(x) = 2β− x) around

points α and β, implying in particular a ′(α) = a ′(β) = b(α) = b(β) = 0; for simplicity

(though this is not very essential) assume also that a > 0 everywhere, so that smooth transition

densities pt(x, y) of X
x
t are well de�ned.

�en the corresponding di�usion (Xref)xt on [α,β] obtained by re�ecting Xxt at both boundary

points is well-de�ned (see e.g. �eorem 6.8.1 in Kolokoltsov [55]) as a Markov process. Moreover,

the transition densities of (Xref)xt are clearly given by

preft (x, y) =

∞∑
k=−∞[pt(x, y+ 2k(β− α)) + pt(x, 2α− y+ 2k(β− α))],

and the semi-group T reft of (Xref)xt can be obtained from the semi-group Tt ofX
x
t by the restriction

to functions symmetric with respect to re�ections Rα and Rβ.

Finally, assumed smoothness of a, b implies that the space C2∞(R) is an invariant core for Xxt

and consequently the subspace of functions f from C2∞([α,β]) such that f ′(α) = f ′(β) = 0 is

an invariant core for (Xref)xt .

Proposition 21. Under assumption (B) above the regularised dual process Yyt to (Xref)xt is a
di�usion on [α,β] absorbed at both boundaries and generated by the operator (5.50) with vanishing
ν on the invariant core of functions g from C2∞([α,β]) such that g ′′(α) = g ′′(β) = 0. Finally,
the semi-group TDt of Yyt is given explicitly by the formula

(TDt g)(y) = g(α)

∫β
y

preft (α, z)dz+g(β)

∫y
α

preft (α, z)dz+

∫β
α

g(x)

(∫β
y

∂

∂x
preft (x, z)dz

)
dx.

(7.10)
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Proof. It is similar to the proof of Proposition 19 above. �e only di�erence is that, taking

into account (7.8) we can de�ne the action of TDt on constants by the conservativity condition

TDt 1 = 1 (rather then deduce it). For smooth g vanishing at β we get similar to (7.3) and (7.4)

that

(TDt g)(y) = −

∫β
y

dz

∫β
α

g ′(x)preft (x, z)dx, (7.11)

and hence

(TDt g)(y) = g(α)

∫∞
y

preft (α, z)dz+

∫β
y

(∫β
α

g(x)
∂

∂x
preft (x, z)dx

)
dz. (7.12)

Combining this equation with TDt 1 = 1 we get for any smooth function g on [α,β] that

(TDt g)(y) = g(β)+(g(α)−g(β))

∫∞
y

preft (α, z)dz+

∫β
y

(∫β
α

(g(x) − g(β))
∂

∂x
preft (x, z)dx

)
dz,

yielding (7.10) as required. �e rest of the proof is literally the same as for Proposition 19.

Remark 18. Of course one can deal with re�ected processes on R̄− by introducing a symmetric

notion of duality. Namely, for a process Xxt on an interval ofR let us say that Yyt is its right dual, if
P(Yyt 6 x) = P(Xxt > y) holds for all x, y (that is, it is the usual duality used above) and le� dual
if P(Yyt < x) = P(Xxt > y) holds for all x, y, which is equivalent to P(Yyt > x) = P(Xxt 6 y).

�us, by de�nition, Yyt is right dual to Xxt if and only if Xxt is le� dual to Yyt . �e theory of le�

dual processes on R− (and their regularised version) is completely analogous to the theory of

right dual process on R+.
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