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Abstract

Fano varieties are one of important classes in the classification of algebraic
varieties. In this thesis, we mainly study problems on deformations of Fano varieties
motivated by the classification problems. In particular, we study Fano 3-folds with
terminal singularities and weak Fano manifolds.

In Chapter 2, we prepare necessary notions on deformation theory and singu-
larities. We also explain about the orbifold Riemann-Roch formula and computation
of numerical data of a K3 surface with Du Val singularities and a Q-Fano 3-fold.

In Chapter 3, we study the deformation theory of a Q-Fano 3-fold with only
terminal singularities. First, we show that the Kuranishi space of a Q-Fano 3-fold is
smooth. Second, we show that every Q-Fano 3-fold with only “ordinary” terminal
singularities is Q-smoothable, that is, it can be deformed to a Q-Fano 3-fold with
only quotient singularities. Finally, we prove Q-smoothability of a Q-Fano 3-fold
assuming the existence of a Du Val anticanonical element. As an application, we get
the genus bound for primary Q-Fano 3-folds with Du Val anticanonical elements.

In Chapter 4, we prove that a weak Fano manifold has unobstructed defor-
mations. For a general variety, we investigate conditions under which a variety is
necessarily obstructed.

In Chapter 5, we investigate a certain coboundary map associated to a 3-fold
terminal singularity which is important in the study of deformations of singular
3-folds. We determine when this map vanishes. As an application, we prove that
almost all Q-Fano 3-folds have Q-smoothing. We also treat the Q-smoothability
problem on Q-Calabi-Yau 3-folds.

In Chapter 6, we study deformations of a pair of a Q-Fano 3-fold X with its
elephant D ∈ |−KX |. We prove that, if X has only quotient singularities and there
exists D with only isolated singularities, there is a deformation X → ∆1 of X over a
unit disc such that |−KXt | has a Du Val element for t ∈ ∆1 \0. We also give several
examples of Q-Fano 3-folds without Du Val elephants.

v



Chapter 1

Introduction

In this thesis, we mainly study deformations of Fano varieties. Fano varieties are

important in the classification of algebraic varieties as we explain in the following.

One of the central topics in complex algebraic geometry is the classification

of algebraic varieties over C. For the classification, the Minimal Model Program

(= MMP) suggests to take a “good model” among varieties with a fixed function

field. In dimension 1, there is only one choice. In dimension 2, we can take a

smooth minimal model by contracting unnecessary −1-curves. In dimension 3, we

can still take a minimal model of a variety, but it admits mild singular points, called

terminal singularities. In the 1980s, the MMP is established in dimension 3 by

many people including Kawamata, Kollár, Mori, Reid, Shokurov (cf. [35]). There is

a recent big development in the MMP in higher dimension and many consequences

are obtained (cf. [5]).

The end products of the MMP are roughly divided into three cases according

to the positivity of the canonical divisor KX of a variety X. They are called of gen-

eral type, Calabi–Yau or Fano if KX is positive, trivial or negative respectively.

In dimension 1 and 2, there is satisfactory classification of these varieties. However,

in dimension 3, although the general framework of the MMP is established, the

precise classification of these three classes is far from completion. Actually, it seems

impossible to have classification of Calabi–Yau 3-folds or 3-folds of general type.

In this thesis, we focus on Fano varieties. They are considered to be simplest

among the three classes. Indeed, there are only finitely many families of smooth

Fano n-folds for fixed n ([32]). Up to dimension 3, smooth Fano varieties are al-

ready classified. However, in dimension 3, we should consider Fano varieties with

terminal singularities (= Q-Fano 3-folds). There are also finitely many families of

them ([33]), but the classification gets complicated due to singularities and is not
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completed. It seems that the classification problem of Q-Fano 3-folds is near the

boundary of possible tasks and impossible tasks. In this thesis, we aim to overcome

this subtlety by studying deformations and elephants of Q-Fano 3-folds.

Deformation theory is an old subject in algebraic geometry. The general no-

tions and tools of deformation theory were developed by people including Kodaira–

Spencer, Grothendieck and others. (We refer to [56] and references therein). How-

ever, for concrete geometric problems, there is no universal method and we should

find ways to treat each problem. In the following, we explain two fundamental

geometric problems in deformations of algebraic varieties.

One is to determine the structure of the Kuranishi space of a projective

variety. The Kuranishi space of a variety parametrizes all small deformations of the

variety and is also called as the semi-universal deformation space. It is important in

the moduli problem for varieties. For a general variety, the Kuranishi space has bad

singularities even for smooth surfaces. However, it is also known that the Kuranishi

space of a Fano manifold or a Calabi–Yau manifold is smooth. In order to show

the smoothness of the Kuranishi space, we should show that all obstruction classes

of deformations vanish. Thus the smoothness of the Kuranishi space is also called

the unobstructedness. Obstruction classes for a smooth projective variety X are

defined as elements of H2(X,ΘX), where ΘX is the tangent sheaf. We can show

H2(X,ΘX) = 0 for a Fano manifold by the Kodaira–Akizuki–Nakano vanishing

theorem. However, for a Calabi–Yau manifold X such that dimX ≥ 3, we have

H2(X,ΘX) 6= 0 and should use some technique called T 1-lifting to treat this case.

We apply this technique to show the unobstructedness for a weak Fano manifold in

Chapter 4. We also show the unobstructedness for a Q-Fano 3-fold in Chapter 3.

We introduce a different method that consists of explicitly interpreting obstruction

classes as complexes.

Another geometric problem is to find a smoothing of a projective variety with

singularities, that is, to determine whether a given variety has a deformation to a

smooth variety. In this thesis, we only treat isolated hypersurface singularities or

their quotients by cyclic group action. Smoothing problems are delicate and related

with topological conditions. For example, Friedman ([13]) showed that; a Calabi–

Yau threefold with ordinary double points has a smoothing if and only if, on the

small resolution of the Calabi–Yau, the exceptional curves have a non-trivial rela-

tion in the homology group. Reid ([53]) made a speculation to connect Calabi–Yau

threefolds by birational contractions and smoothings. Inspired by this, smoothing

problems on Calabi–Yau threefolds were investigated by several people including

Namikawa and Gross. Namikawa–Steenbrink ([45]) proved that a Calabi–Yau three-
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fold with isolated rational hypersurface singularities can be deformed to one with

only ordinary double points. They gave two methods in the paper. One is to use the

coboundary map of some local cohomology group. Another is to use some Hodge

theoretic invariant of a singularity. We apply the former method to the Q-smoothing

problem of a Q-Fano 3-fold.

Now, we explain about Q-smoothing of a Q-Fano 3-fold. By the classification

of 3-fold terminal singularities, they are quotients of isolated hypersurface singular-

ities by cyclic group action. Locally, we can deform a neighborhood of a terminal

singularity to one with only quotient singularities. Such a deformation is called a

Q-smoothing. Altınok–Brown–Reid ([3]) conjectured that a Q-Fano 3-fold ad-

mits a Q-smoothing globally as a part of their program on the classification of

Q-Fano 3-folds. The Q-smoothability is meaningful in the classification since, in

some papers as [60] and [6], they gave classification by assuming that the Q-Fano

3-folds have only quotient singularities. Note that the numerical type of a Q-Fano

3-fold does not change by a Q-smoothing. We treat this Q-smoothability problem

in Chapters 3 and 5. We actually solve this in most of the cases.

Another fundamental problem in the classification of Q-Fano 3-folds is to

find anticanonical elements with only mild singularities. An anticanonical element

is called an elephant. A Fano 3-fold with only canonical Gorenstein singularities has

an elephant with only Du Val singularities ([57], [50]). By using this fact, Mukai

classified “indecomposable” Fano 3-folds with canonical Gorenstein singularities in

[41]. Hence the existence of a Du Val elephant is useful in the classification. How-

ever a Q-Fano 3-fold may not have such a good element in general. There exist

examples of Q-Fano 3-folds with empty anticanonical linear systems or with only

non Du Val elephants as in [3, 4.8.3]. We can still hope to have a Du Val ele-

phant for some Q-Fano 3-folds with large dim |−KX |. Takagi proved the existence

of a Du Val elephant for a Q-Fano 3-fold with only index 2 singularities and with

dim |−KX | ≥ 3. There is a birational result (cf. [2]) which states; if a Q-Fano 3-fold

X does not have a Du Val elephant and dim |−KX | ≥ 1, there exists another Q-Fano

3-fold X ′ which is birational to X and has a Du Val elephant. The birational map

between X and X ′ arises from the Sarkisov program. Altınok–Brown–Reid ([3])

conjectured the following: Let X be a Q-Fano 3-fold with an elephant D which is

possibly very singular. Then the pair (X,D) can be deformed to a pair of a Q-Fano

3-fold with quotient singularities and its Du Val elephant. Such a deformation is

called a simultaneous Q-smoothing. We solve this problem when there exists

an elephant with only isolated singularities in Chapter 6. Our result does not use

conditions on dim |−KX |.
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Chapter 2

Preliminaries

2.1 Deformation functors

First, we introduce a deformation functor of an algebraic scheme.

Definition 2.1.1. (cf. [56, 1.2.1]) LetX be an algebraic scheme over an algebraically

closed field k and S an algebraic scheme over k with a closed point s ∈ S. A

deformation of X over S is a pair (X , i), where X is a scheme flat over S and

i : X ↪→ X is a closed immersion such that the induced morphism X → X ×S {s} is

an isomorphism.

Two deformations (X1, i1) and (X2, i2) over S are said to be equivalent if

there exists an isomorphism ϕ : X1 → X2 over S which makes the following diagram

commute;

X �
� i1 //� p

i2

  

X1

ϕ

��

X2.

Let Artk be the category of Artin local k-algebras with residue field k. We define

the functor DefX : Artk → (Sets) by setting

DefX(A) := {(X , i) : deformation of X over SpecA}/(equiv), (2.1)

where (equiv) means the equivalence introduced in the above.

We also introduce the deformation functor of a closed immersion.

Definition 2.1.2. (cf. [56, 3.4.1]) Let f : D ↪→ X be a closed immersion of algebraic

schemes over an algebraically closed field k and S an algebraic scheme over k with

a closed point s ∈ S. A deformation of a pair (X,D) over S is a data (F, iX , iD) in
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the cartesian diagram

D �
� iD //

f
��

D

F
��

X �
� iX //

��

X

Ψ
��

{s} �
�

// S,

(2.2)

where Ψ and Ψ ◦ F are flat and iD, iX are closed immersions. Two deformations

(F, iD, iX) and (F ′, i′D, i
′
X) of (X,D) over S are said to be equivalent if there exist

isomorphisms α : X → X ′ and β : D → D′ over S which makes the following diagram

commute;

D �
� iD //� p

i′D

  

D //

β
��

X
α
��

X_?iX
oo

nN

i′X}}

D′ // X ′.

We define the functor Def(X,D) : Artk → (Sets) by setting

Def(X,D)(A) := {(F, iD, iX) : deformation of (X,D) over SpecA}/(equiv), (2.3)

where (equiv) means the equivalence introduced in the above.

Next, we introduce the notion of a deformation of a pair of a variety and its

effective Cartier divisors.

Definition 2.1.3. Let X be an algebraic variety and Dj for j ∈ J a finite num-

ber of effective Cartier divisors. Set D :=
∑

j∈J Dj . We can define a functor

DefJ(X,D) : Artk → (Sets) by setting DefJ(X,D)(A) to be the equivalence classes of

deformations of a closed immersion i : D ↪→ X induced by deformations of each

irreducible components Dj ↪→ X for A ∈ Artk.

We skip the script J when D =
∑

j∈J Dj is the decomposition into irreducible

components and there is no confusion.

Remark 2.1.4. If X is smooth and D =
∑

j∈J Dj is a SNC divisor, DefJ(X,D)(A) does

not include an element which induces a smoothing of D.

Let X be a reduced algebraic scheme over an algebraically closed field k

and D its effective Cartier divisor. We define the tangent space of the deformation

functor DefX and Def(X,D) by setting

T 1
X := DefX(A1),

5



T 1
(X,D) := Def(X,D)(A1).

Moreover, we have an isomorphism

T 1
X ' Ext1

OX (Ω1
X ,OX).

(cf. [56, Corollary 1.1.11])

In the study of deformations of Q-Fano 3-folds, we often need the following

lemma about the behavior of flatness under taking complements of codimension 3

closed subsets.

Proposition 2.1.5. Let X be an algebraic scheme over k and Z ⊂ X a closed subset

such that codimX Z ≥ 3. Assume that X is Cohen Macaulay. Let U := X \ Z and

U → SpecA a deformation of U over A ∈ Artk. Let X := (X, i∗OU ) be the scheme

induced from U . Let M be a coherent sheaf on U , flat over A.

Then a coherent sheaf i∗M on X is flat over A.

Proof. This is a special case of [31, Theorem 12].

From this proposition, we have the following equivalence of deformation func-

tors.

Corollary 2.1.6. Let X be a normal variety over k which is Cohen Macaulay. Let

Z ⊂ X be a closed subset such that codimX Z ≥ 3. Let i : U := X \ Z ↪→ X be an

open immersion.

(i) The restriction morphism i∗ : DefX → DefU is an isomorphism.

(ii) Let D be an effective Cartier divisors. Then the restriction morphism Def(X,D) →
DefJ(U,DU ) is an isomorphism, where DU := D ∩ U .

Proof. (i) Let (U → SpecA) ∈ DefU (A) be a deformation of U . By Proposition

2.1.5, we see that the sheaf i∗OU is a sheaf of flat A-algebras. Thus we can define a

functor i∗ : DefU → DefX . We can check that i∗ and i∗ are converse to each other.

(ii) Let (U ,DU ) → SpecA be a deformation of (U,DU ) over A ∈ Artk. We

see that i∗OU and i∗IDU are sheaves of flat A-algebras by Proposition 2.1.5. Thus

we can define an inverse functor i∗ : Def(U,DU ) → Def(X,D) of i∗.

In several parts of this thesis, we study unobstructedness of some deformation

functors. Unobstructedness is defined as follows.
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Definition 2.1.7. We say that deformations of X are unobstructed if, for all A,A′ ∈
Artk with an exact sequence

0→ J → A′ → A→ 0

such that mA′ · J = 0, the natural restriction map of deformations

DefX(A′)→ DefX(A)

is surjective, that is, DefX is a smooth functor.

Proposition 2.1.8. Let X be an algebraic scheme with a versal formal couple (R, û)

in the sense of [56, Definition 2.2.6]. Set Am := k[t]/(tm+1) for all integers m ≥ 0.

Assume that

DefX(An+1)→ DefX(An)

are surjective for all non-negative integers n ≥ 0.

Then deformations of X are unobstructed.

Proof. For A ∈ Artk, let hR(A) be the set of local k-algebra homomorphisms from

R to A. This rule defines a functor

hR : Artk → (Sets).

Since (R, û) is versal, we have a smooth morphism of functors

φû : hR → DefX

defined by û.

Then we can see that

hR(An+1)→ hR(An)

are surjective for all n by the assumption and the versality.

By [12, Lemma 5.6] and the assumption, we can see that hR is a smooth

functor. This implies that DefX is smooth.

2.2 Complex analytic situations

Deformation theory was first developed by Kodaira–Spencer for complex manifolds.

We can define a deformation functor of a complex analytic space and a functor for

7



a closed immersion of complex analytic spaces similarly as in Definition 2.1.1 and

2.1.2. Moreover, we can define a deformation of a germ of a complex analytic space

as follows.

Definition 2.2.1. Let (V, p), (S, 0) be germs of complex analytic spaces.

A deformation of (V, p) over (S, 0) is a pair (f, i) of the following data;

• f : (V, p)→ (S, 0) is a flat morphism of germs of complex analytic spaces.

• i : (V, p) ↪→ (V, p) is a closed immersion such that the induced morphism

(V, p)→ (V ×S 0, p) is an isomorphism of germs.

We can define equivalence between two deformations of (V, p) similarly as in

Definition 2.1.1.

The following notion is an origin of infinitesimal semi-universal family.

Theorem 2.2.2. Let X be a compact complex analytic space. Then there exists a

deformation f : X → S 3 0 of X with the following properties.

(i) Let f ′ : X ′ → S′ 3 0 be a deformation of X. Then there exists an open

neighborhood U ⊂ S′ of 0 and a holomorphic map ϕ : U → S such that ϕ(0) = 0

and two deformations fϕ : X ×S U → U and (f ′)−1(U)→ U are equivalent as

deformations of X.

(ii) Let (dϕ)0 : TS′,0 → TS,0 be the homomorphism between the tangent spaces of

S, S′ induced by ϕ : U → S . Then (dϕ)0 is uniquely determined by f ′.

Definition 2.2.3. We call the base space S of the family f : X → S in Theorem

2.2.2 as the Kuranishi space of X and denote it as Def(X). We call the family

f : X → S as the Kuranishi family.

Moreover, if ϕ is unique on the level of germs, we call f : X → S as the

universal family.

We also have the Kuranishi space for a germ of an isolated singularity as

follows.

Theorem 2.2.4. Let (V, p) be a germ of a complex analytic space V with an isolated

singularity p ∈ V .

Then there exists a germ (S, 0) and a deformation (V, p) → (S, 0) of (V, p)

with the similar properties as in Theorem 2.2.2.

We call (S, 0) the Kuranishi space of (V, p) and denote it by Def(V, p).

8



Example 2.2.5. Let (V, p) be a germ of an isolated singularity in (Cn, 0) defined

by f ∈ OCn,0. Let g1, . . . , gτ ∈ OCn,0 be elements which induce a C-basis of

T 1
(V,p) :=

OCn,0

〈f, ∂f∂x1
, . . . , ∂f∂xn 〉

Set F (x1, . . . , xn, t1, . . . , tτ ) := f(x) +
∑τ

i=1 tjgj(x). Let (V, p) := ((F = 0), 0) ⊂
(Cn×Cτ , 0) be a family over (Cτ , 0) induced by the projection Cn×Cτ → Cτ . Then

we have the following:

(i) T 1
(V,p) ' Def(V,p)(A1).

(ii) (V, p)→ (Cτ , 0) is the Kuranishi family of (V, p).

2.3 Terminal singularities

In the rest of this chapter, we assume that k = C unless otherwise stated.

We encounter several singularities in this thesis. Quotients of Cn or hyper-

surfaces (f = 0) ⊂ Cn give examples of singularities.

Example 2.3.1. Let Zr be a cyclic group of order r. Consider the action of Zr on

Cn given by, for a1, . . . , an ∈ Z,

σ : (x1, . . . , xn) 7→ (ζa1
r x1, . . . , ζ

an
r xn),

where σ ∈ Zr is a generator, x1, . . . , xn are the coordinates on Cn and ζr is the

primitive r-th root of unity. We write the quotient variety as Cn/Zr(a1, . . . , an). If

the quotient is singular, we call it a quotient singularity.

Consider the above Zr-action on Cn. Let f ∈ C[x1, . . . , xn] be a Zr-semi-

invariant polynomial, that is, σ · f = ζf for some ζ ∈ C. Then the hypersurface

(f = 0) ⊂ Cn is preserved by the Zr-action and we can take the quotient variety

(f = 0)/Zr. If it has a singularity, we call it a hyperquotient singularity and write

this (f = 0)/Zr(a1, . . . , an).

Definition 2.3.2. Let X be a normal variety of dimension n and X0 i
↪→ X the

smooth locus of X. The canonical sheaf ωX0 :=
∧n Ω1

X0 on X0 can be extended to

a reflexive sheaf ωX := i∗ωX0 on X. This corresponds to a divisor class KX and we

call it the canonical divisor of X.

Let X be a normal variety such that KX is Q-Cartier, that is, for some

positive integer m, the divisor mKX is Cartier. We call such X Q-Gorenstein.

9



Definition 2.3.3. Let X be a normal Q-Gorenstein variety and µ : Y → X a good

resolution of singularities, that is, a proper birational morphism such that Y is

smooth and the exceptional locus Excµ is a SNC divisor. Let Excµ =
⋃l
i=1Ei be

the decomposition into irreducible components. Then we can write

mKY = µ∗mKX +
l∑

i=1

ma(Ei, X)Ei

for some rational numbers a(Ei, X) for i = 1, . . . , l. We set

discrep(X) := inf{a(Ei, X) | µ : Y → X: resolution}.

It is known that discrep(X) ≥ −1 or discrep(X) = −∞ ([35, Corollary 2.31]).

We say thatX has only terminal (resp. canonical) singularities if discrep(X) >

0 (resp. ≥ 0).

In the most part of this thesis, we are interested in singularities in dimension

2 or 3. It is known that, if X is a normal variety with only terminal singularities,

then X is regular in codimension 2, that is, codimX SingX ≥ 3 (cf. [35, Corollary

5.18]). In particular, 2-dimensional terminal singularities are smooth.

We have the classification of 2-dimensional canonical singularities as follows.

Proposition 2.3.4. Let (V, p) be a germ of a 2-dimensional canonical singular-

ity over the complex number field C. Then (V, p) is isomorphic to a hypersurface

singularity ((f = 0), 0) ⊂ (C3, 0), where f is one of the polynomials given as follows;

An: x2 + y2 + zn+1 ( for n ≥ 1)

Dn: x2 + y2z + zn−1 ( for n ≥ 4)

E6: x2 + y3 + z4

E7: x2 + y3 + yz3

E8: x2 + y3 + z5.

These singularities are called Du Val singularities.

Remark 2.3.5. We can check that the minimal resolution Ṽ → V of a Du Val

singularity satisfies that µ∗KV = KṼ

In 3-fold case, there are plenty of non-Gorenstein terminal singularities. Quo-

tient singularities of special type give such examples.
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Example 2.3.6. Let r, a be positive integers such that r ≥ 2 and (r, a) = 1. Then

the quotient U := C3/Zr(1, a, r − a) has a terminal singularity at the origin 0.

Conversely, it is known that a 3-fold terminal quotient singularity is of this form.

Now, we study a 3-fold terminal singularity in general. Let U be a Stein

neighborhood of a 3-fold terminal singularity p. We assume that OU (mKU ) ' OU
for some positive integer m. Let r ∈ Z be the minimal integer among such integers.

We call r the Gorenstein index of the point p ∈ U .

We can construct a finite morphism

πU : V := Spec

r−1⊕
i=0

OU (iKU )→ U,

where we put a k-algebra structure on
⊕r−1

i=0 OU (iKU ) by the isomorphismOU (−rKU ) '
OU . πU is called the index one cover of U . Using the following proposition, we see

that V has only terminal Gorenstein singularity at π−1(p) =: {q}.

Proposition 2.3.7. The index one cover πU satisfies the following:

(i) πU is étale on U \ {p};

(ii) KV = π∗UKU is a Cartier divisor;

(iii) discrep(V ) ≥ discrep(U). In particular, V is terminal.

Proof. (i),(ii) follow from [52, (3.6) Proposition].

(iii) is a special case of [35, Proposition 5.20].

It is known that a 3-fold terminal Gorenstein singularity is an isolated cDV

singularity, that is, a hypersurface singularity (F = 0) ⊂ A4 defined by a polynomial

F of the form

F (x, y, z, u) = f(x, y, z) + uh(x, y, z, u),

where f is one of the polynomials in Proposition 2.3.4 and h ∈ k[x, y, z, u].

Thus we finally obtain the following.

Theorem 2.3.8. ([52, (3.2) Theorem]) Let (U, p) be a germ of a 3-fold terminal

singularity. Then (U, p) ' (V, q)/Zr, where (V, q) is an isolated cDV singularity

with a Zr-action which is free outside q.

When r > 1, we can give the explicit description of (U, p) as follows. ([40],

[36, Theorem 6.4] ) The cyclic group acts on coordinates x, y, z, u of C4 in this order.
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(i) (U, p) ' ((xy + h(z, ur) = 0)/Zr(a,−a, 0, 1), 0) such that r: arbitrary, (r, a) =

1.

(ii) (U, p) ' ((x2 + y2 + h(z, u) = 0)/Z2(1, 0, 1, 1), 0) such that h ∈ m3.

(iii) (U, p) ' ((h(x, y, z) + u2 = 0)/Z2(1, 1, 0, 1), 0) such that h ∈ m3, xyz or y2z

appears in h with non-zero coefficient.

(iv) (U, p) ' ((u2+x3+h1(y, z)x+h2(y, z) = 0)/Z2(0, 1, 1, 1), 0) such that h2 /∈ m5.

(v) (U, p) ' ((u2 + h(x, y, z) = 0)/Z3(1, 2, 2, 0), 0) such that h ∈ m3, cubic terms

of F is x3 + y3 + z3, x3 + yz2 or x3 + y3.

(vi) (U, p) ' ((x2 + y2 + h(z, u2) = 0)/Z4(1, 3, 2, 1), 0).

Remark 2.3.9. Consider the case r > 1.

In the cases (i) to (v), the Zr-action on A4 preserves the defining equation

F , that is, g · F = F for g ∈ Zr. If this condition is satisfied, we say that (U, p) is

an ordinary singularity.

In (vi), we have g · F = −F for a generator g ∈ Z4. We say that (U, p) in

(vi) is an non-ordinary singularity.

By the classification in Theorem 2.3.8, we obtain the following properties of

3-fold terminal singularities.

Corollary 2.3.10. Let (U, p) be a germ of a 3-fold terminal singularity.

(i) There exists a deformation π : (U , p)→ (∆1, 0) of (U, p) over an open unit disk

such that the general fiber Ut := π−1(t) for t 6= 0 has only quotient singularities.

(ii) For small U , there exists a member D ∈ |−KU | with only a Du Val singularity

at p.

We recall the following result on rigidity of an isolated quotient singularity

of dimension 3 or higher by Schlessinger.

Theorem 2.3.11. ([54]) Let U be a Stein neighborhood of an isolated quotient

singularity p such that dimU ≥ 3.

Then U is infinitesimally rigid, that is, for any A ∈ Artk and U ∈ DefU (A),

we have U ' U × SpecA.

Remark 2.3.12. Let U := (F = 0)/Zr ⊂ A4/Zr be an affine variety with an ordinary

terminal singularity as one of (i)–(v) in Theorem 2.3.8. Set U := (F + t = 0)/Zr ⊂
A4 × A1/Zr, where t is the coordinate on A1 and Zr acts trivially on A1. Then we
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have π : U → A1 induced by the 2nd projection A4 × A1 → A1. We see that the

general fiber Ut has only quotient singularities. For example, if F = xy + z2 + u2

with the Z2-action of weights (1, 1, 0, 1), then Ut has two 1/2(1, 1, 1)-singularities.

Let U := (x2 + y2 + h(z, u2) = 0)/Z4 be an exceptional terminal singularity

with weights (1, 3, 2, 1) as in Theorem 2.3.8 (vi). Set U := (x2 + y2 +h(z, u2) + tz =

0)/Z4 ⊂ A4×A1/Z4, where t is the same variable as above. Then we have π : U → A1

as above and Ut has only quotient singularities. For example, for h(z, u2) = z3 +u2,

the general fiber Ut has a 1/4(1, 3, 1)-singularity and two 1/2(1, 1, 1)-singularity.

More precisely, we have the following description of the first order deforma-

tions of a 3-fold terminal singularity.

Proposition 2.3.13. Let p ∈ U be a Stein neighborhood of a 3-fold terminal sin-

gularity with the Gorenstein index r. Let πU : V → U be the index one cover and

q := π−1
U (p). Then we have

T 1
(U,p) ' (T 1

(V,q))
Zr ,

where the R.H.S is the invariant part with respect to the Zr-action on T 1
(V,q) is

induced by πU .

Proof. We have an isomorphism T 1
(U,p) ' H1(U ′,ΘU ′), where U ′ := U \ {p} by

Corollary 2.1.6 since U ′ is smooth. Let πU ′ : V
′ := π−1

U (U ′)→ U ′ be the restriction

of πU . We see that the Zr-invariant part of (πU ′)∗ΘV ′ is isomorphic to Θ′U . Thus

we see that the Zr-invariant part of H1(V ′,ΘV ′) is isomorphic to H1(U ′,ΘU ′). By

Corollary 2.1.6, we see that T 1
(V,q) ' H

1(V ′,ΘV ′). Hence we obtain isomorphisms

T 1
(U,p) ' H

1(U ′,ΘU ′) ' (H1(V ′,ΘV ′))
Zr ' (T 1

(V,q))
Zr .

Thus we finish the proof of Proposition 2.3.

Example 2.3.14. Let U := (x2 + y2 + z2 + u2 = 0)/Z2 ⊂ C4/Z2(1, 1, 1, 0) be the

ordinary singularity appeared in Remark 2.3.12. Then we have T 1
U ' Cη1, where η1

corresponds to a deformation fη1 : (x2 + y2 + z2 + u2 + t = 0)/Z2 → C.

Let U := (x2 + y2 + z3 + u2 = 0)/Z4 ⊂ C4/Z4(1, 3, 2, 1) be the non-ordinary

singularity appeared in Remark 2.3.12. Then we have T 1
U ' Cηz, where ηz corre-

sponds to a deformation fηz : (x2 + y2 + z3 + u2 + tz = 0)/Z4 → C.

2.4 Obstruction theory of deformation functors

Let X be an algebraic scheme. The functor DefX is often obstructed, that is, there is

some element ξn ∈ DefX(An) which is not in the image of DefX(An+1)→ DefX(An)
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as in the following example.

Example 2.4.1. For a Fano 3-fold X with canonical singularities, its deformation

functor DefX is not smooth in general. For example, let X be a cone over the del

Pezzo surface S of degree 6. Then X has 2 different smoothings, one with a general

fiber P(ΘP2) and one with a general fiber P1 × P1 × P1. This implies that DefX is

obstructed.

We have the following criterion for unobstructedness.

Proposition 2.4.2. ([20, Theorem 10.2]) Let X be a reduced algebraic scheme over

an algebraically closed field k. Let T 1
X := Ext1

X(Ω1
X ,OX), T 2

X := Ext2X(Ω1
X ,OX).

Assume that H2(X,ΘX) = 0, H1(X, T 1
X) = 0 and H0(X, T 2

X) = 0.

Then the functor DefX is unobstructed.

By this criterion, we obtain the following unobstructedness.

Corollary 2.4.3. Assume either of the following;

(i) Let X be a projective curve with only hypersurface singularities.

(ii) Let X be a normal projective surface with only Du Val singularities such that

−KX is ample.

(iii) Let X be a normal projective surface with only Du Val singularities such that

−KX is trivial, that is, X is a K3 surface with Du Val singularities.

Then we have H2(X,ΘX) = H1(X, T 1
X) = H0(X, T 2

X) = 0. In particular, the

functor DefX is unobstructed.

Proof. The conditions H1(X, T 1
X) = H0(X, T 2

X) = 0 follow since X has only hyper-

surface singularities.

In (i), we obtain H2(X,ΘX) = 0 since dimX = 1.

In (ii), we obtain H2(X,ΘX) = 0 by the following argument as in [17].

Since H2(X,ΘX) = Hom(ΘX , ωX)∗ by the Serre duality, it is enough to show that

Hom(OX(−KX), (Ω1
X)∗∗) = 0. By the Bogomolov-Sommese vanishing theorem, the

Kodaira-Iitaka dimension κ(X,L) of a rank one reflexive sheaf L ⊂ (Ω1
X)∗∗ satisfies

κ(X,L) ≤ 1. Since κ(X,−KX) = 2, we obtain Hom(OX(−KX), (Ω1
X)∗∗) = 0 as

required.

In (iii), we have

H2(X,ΘX) ' Hom(ΘX , ωX)∗ ' H0(X, (Ω1
X)∗∗)∗
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by the Serre duality and we obtain H0(X, (Ω1
X)∗∗) = 0 as follows. Since X has only

quotient singularities, we have the Hodge decomposition

H1(X,C) ' H0(X, (Ω1
X)∗∗)⊕H1(X,OX).

Since H1(X,OX) = 0, we obtain H0(X, (Ω1
X)∗∗) = 0 by the Hodge symmetry.

2.5 Local to global obstructions of deformations

Let X be a normal proper variety. We have a spectral sequence

H i(X,Ext j(Ω1
X ,OX))⇒ Exti+j(Ω1

X ,OX)

of Ext groups. This spectral sequence induces an exact sequence

0→ H1(X,ΘX)→ Ext1(Ω1
X ,OX)

π→ H0(X,Ext1(Ω1
X ,OX))

→ H2(X,ΘX)→ Ext2(Ω1
X ,OX). (2.4)

This sequence controls the local to global behavior of deformations in the following

way.

Assume that X has only isolated singularities. Then we have

Ext1(Ω1
X ,OX) ' DefX(A1),

H0(X,Ext1(Ω1
X ,OX)) '

l⊕
i=1

T 1
(X,pi)

,

where we set SingX = {p1, . . . , pl} and (X, pi) is a germ around pi. Hence π can be

regarded as a projection map

T 1
X →

l⊕
i=1

T 1
(X,pi)

.

Hence, if H2(X,ΘX) = 0, the map π is surjective and we can lift local

deformations of singularities to a deformation of X. If the singularities of X have

smoothings in that case and DefX is a smooth functor, then we obtain a global

smoothing of X. Here, a smoothing of an algebraic scheme X means a deformation

of X such that the general fiber of the deformation is smooth. For example, if X is

a variety as in (i), (ii) or (iii) in Corollary 2.4.3, then X has a smoothing.
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However, for a Fano 3-fold with terminal Gorenstein singularities, it may

happen that H2(X,ΘX) 6= 0 (cf. [43, Example 5]). Nevertheless, Namikawa proved

that they admit smoothings ([43]). Our main object in this thesis is to generalize

this result to the non-Gorenstein case.

2.6 The orbifold Riemann-Roch formula and Hilbert se-

ries

The orbifold Riemann-Roch formula is useful in the computation of the graded

ring of a variety with only hyperquotient singularities. We state the theorem and

compute the numerical data on K3 surfaces with Du Val singularities and Q-Fano

3-folds.

Let X be a normal projective variety and A an ample Weil divisor on X. For

n ≥ 0, let

H0(X,nA) := {f ∈ C(X) | div f + nA ≥ 0}

be the Riemann-Roch space and R(X,A) := ⊕n≥0H
0(X,nA) the graded ring asso-

ciated to the pair (X,A). Since we have X ' ProjR(X,A), an explicit description

of R(X,A) in terms of generators and their relations gives an explicit description of

an embedding of X to a certain weighted projective space.

Reid [52] gave the orbifold Riemann-Roch formula for a projective variety X

with only isolated cyclic quotient singularities and a divisor D on X. The formula

describes the Euler characteristic χ(X,OX(D)) of (X,D) as the sum

χ(X,OX(D)) = (RR-type expression in D) +
∑
Q

cQ(D),

where the RR expression is the usual ch(D) · TdX and the sum
∑

Q cQ(D) is the

contribution from quotient singularities on X. See [52, p.407, Corollary] for the

statement.

We first give the formula for surfaces. For that purpose, we introduce the

notion of baskets.

Definition 2.6.1. Let U be a Stein neighborhood of a Du Val singularity p and D

a divisor on U . By [52, (9.4)], there exists a deformation (U ,D) → ∆1 of the pair

(U,D) over a unit disc such that Ut has only cyclic quotient singularities p1, . . . , pl

for t 6= 0. Let Upj ⊂ Ut be a Stein neighborhood of pj for j = 1, . . . , l. Let rj , ij for

j = 1, . . . , l be the integers such that (Ut, pj) ' (C2/Zrj (1,−1), 0) and Dt = ijAj ∈
ClUpj for a generator Aj ∈ ClUpj corresponding to (x = 0)/Zrj ⊂ C2

x,y/Zrj (1,−1).
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In this situation, we say that the pair (U,D) at p is of type {ij ( 1
rj

(1,−1))}lj=1.

We call the data {ij ( 1
rj

(1,−1))}lj=1 the basket of the pair (U,D) at p.

Let aj be a integer such that 0 < aj < rj and (rj , aj) = 1. We also write the

basket as {ajij ( 1
rj

(aj ,−aj))}lj=1.

By using this notion, we state the orbifold Riemann-Roch for surfaces with

Du Val singularities.

Theorem 2.6.2. Let X be a projective surface with only Du Val singularities and

D a divisor on X. Then we have

χ(X,OX(D)) = χ(X,OX) +
D(D −KX)

2
+
∑
Q

cQ(D),

where the sum is taken over the points Q at which D is not Cartier and the term

cQ(D) is written as follows;

Let {ij ( 1
rj

(1,−1))}lj=1 be the basket of the pair (X,D) at Q. Then we define

cQ(D) := −
l∑

j=1

ij(rj − ij)
2rj

.

In order to state the formula on a 3-fold with only terminal singularities, we

need the following notion of baskets which can be defined similarly as in the surface

case.

Definition 2.6.3. Let U be a Stein neighborhood of a 3-fold terminal singular-

ity p and D a Q-Cartier divisor on U . By [52, (6.4)], there exists a deformation

(U ,D)→ ∆1 of the pair (U,D) over a unit disc such that Ut has only cyclic quotient

singularities p1, . . . , pl. Let Upj ⊂ Ut be a Stein neighborhood of pj for j = 1, . . . , l.

Let rj , ij for j = 1, . . . , l be the integers such that (Ut, pj) ' (C3/Zrj (1, aj ,−aj), 0)

for some integer aj and Dt|Upj = ijKUpj
∈ ClUpj .

In this situation, we say that the pair (U,D) at p is of type {ij ( 1
rj

(1, aj ,−aj))}lj=1.

We call the data {ij ( 1
rj

(1, aj ,−aj))}lj=1 (resp. {( 1
rj

(1, aj ,−aj))}lj=1) the basket of the

pair (U,D) (resp. basket of U) at p.

By using this notion, we state the orbifold Riemann-Roch formula for a 3-

fold.

Theorem 2.6.4. ([52, (10.2)]) Let X be a projective 3-fold with only terminal
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singularities and D a Q-Cartier divisor on X. Then we have

χ(X,OX(D)) = χ(X,OX) +
1

12
D(D−KX)(2D−KX) +

1

12
D · c2(X) +

∑
Q

cQ(D),

(2.5)

where the sum is taken over the points at which D is not Cartier. The term cQ(D)

can be defined as follows;

Suppose that (X,D) is of type {ij ( 1
rj

(1, aj ,−aj))}lj=1 at Q. For 1 ≤ j ≤ l,

let

c(ij , rj , aj) := −ij
r2
j − 1

12rj
+

ij−1∑
k=1

bjk(rj − bjk)

2rj
,

where 0 < bj < aj satisfies that ajbj ≡ 1 mod rj, x for x ∈ Z denotes the smallest

residue mod rj and the sum is zero when ij = 1.

To describe a graded ring explicitly, the notion of the Hilbert series is useful.

Definition 2.6.5. Let R = ⊕n≥0Rn be a graded ring. Its Hilbert series P (t) is

defined by setting

Pn := dimCRn, P (t) :=
∑
n≥0

Pnt
n.

If R is generated by finitely many homogeneous elements x1, . . . , xh of positive

degrees over R0 = C, the Hilbert series is a rational function of the form

P (t) =
Q(t)∏h

i=1(1− tdi)
,

where Q(t) ∈ C[t] is a polynomial.

By the orbifold Riemann-Roch formula, we obtain the following description

of the Hilbert series on a K3 surface with Du Val singularities.

Corollary 2.6.6. Let S be a K3 surface with only Du Val singularities and D an

ample divisor on S. Let P(S,D)(t) :=
∑

n≥0 h
0(S, nD)tn be the Hilbert series of the

pair (S,D). Then we can write

P(S,D)(t) =
1 + t

1− t
+
t(1 + t)

(1− t)3

D2

2
−
∑
BQ

1

1− tr
r−1∑
k=1

ik(r − ik)

2r
tk,

where the sum is taken over the points Q at which D is not Cartier and BQ =

{i(1/r(1,−1))} is the basket of (S,D) at Q.
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Remark 2.6.7. In the setting of Corollary 2.6.6, we define the genus g = g(S,D) by

g(S,D) := h0(S,D)− 1.

The genus and the baskets BQ of the singularities of (S,D) determines the Hilbert

series P(S,D)(t). Indeed, we have

D2 = 2g − 2 +
∑
BQ

i(r − i)
r

.

Remark 2.6.8. The numerical date (g,B) for a polarized K3 surface (S,D) should

satisfy the inequalities

g ≥ −1, 2g − 2 +
∑
B

i(r − i)
r

> 0.

Since we have H2(S,ΘS) = 0 by Theorem 2.4.3, we can deform S to a surface St

with only cyclic quotient singularities with the same numerical data (g,B). The

minimal resolution S̃t → St has
∑
B(r− 1) exceptional −2-curves. Since the Picard

number ρ(S̃t) and ρ(St) should satisfy ρ(S̃t)− ρ(St) ≤ 19, we obtain∑
B

(r − 1) ≤ 19. (2.6)

In fact, we just need a local Q-smoothing (U ,DU )→ ∆1 of the pair (U,DU )

of a Stein neighborhood of a Du Val singularity and its divisor. Let µ : Ũ → U

and µt : Ũt → Ut be the minimal resolutions and let m0 and mt be the number

of exceptional curves of µ and µt respectively. We can check that m0 ≥ mt by

calculating case by case with the list in [52, (4.10)]. Thus we obtain the same

inequality (2.6).

Let X be a Q-Fano 3-fold, that is, a projective 3-fold X with only terminal

singularities such that −KX is ample. On a Q-Fano 3-fold, we have the following

description.

Corollary 2.6.9. Let X be a Q-Fano 3-fold and RX := ⊕n≥0H
0(X,−nKX) the

anticanonical ring. The Hilbert series PX(t) of the anticanonical ring RX can be

written as follows;

PX(t) =
1 + t

(1− t)2
+
t(1 + t)

(1− t)4

(−KX)3

2
−
∑
BQ

1

(1− t)(1− tr)

r−1∑
i=1

bi(r − bi)
2r

ti,
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where the sum is taken over non-Gorenstein points Q with the baskets BQ = {1/r(1, a,−a)}
and 0 < b < r satisfies ab ≡ 1 mod r.

Remark 2.6.10. In the setting of Corollary 2.6.9, we define the genus g = g(X) by

g(X) := h0(X,−KX)− 2.

The genus and the baskets of the singularities determines the Hilbert series PX(t).

Indeed, we have

(−KX)3 = 2g − 2 +
∑
BQ

b(r − b)
r

.

Let X be a Q-Fano 3-fold with the numerical data (g,B). We have the

inequalities

g ≥ −2, 2g − 2 +
∑
B

b(r − b)
r

> 0

since h0(X,−KX) ≥ 0 and (−KX)3 > 0.

By [27, (2.2)], we have

1 = χ(X,OX) = − 1

24
KX · c2(X) +

∑
B

r2 − 1

24r
.

Since −KX · c2(X) > 0 by [39, Theorem 6.1], we obtain

∑
B

r2 − 1

r
< 24.

Now we give another constraint for the numerical data (g,B) to be the data

of an existing polarized K3 surface or Q-Fano 3-fold.

Let (S,D) be a polarized K3 surface with Du Val singularities of type A and

the numerical data (g,B = {1( 1
rj

(aj ,−aj))}lj=1). Let f : T → S be the minimal

resolution and N the l.c.m. for all rj . Set Nd := f∗(ND) and e
(j)
i for 1 ≤ j ≤ l and

1 ≤ i ≤ rj − 1. Then these elements satisfy the following;

(Nd)2 = N2

2g − 2 +

l∑
j=1

bj(rj − bj)
rj

 , Nd · e(j)
i = 0,

e
(j)
i · e

(j′)
i′ =


−2 (i = i′, j = j′)

δj,j′ (|i− i′| = 1, j = j′)

0 (otherwise).
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More generally, for a numerical data (g,B = {1(1/rj(aj ,−aj))}), we can

define the lattice L(g,B) with a basis Nd and {e(j)
i | 1 ≤ i ≤ rj − 1, 1 ≤ j ≤ l} with

the relations as above. If the data (g,B) comes from a polarized K3 surface, the

lattice L(g,B) should be a sublattice of the K3 lattice ΛK3.

For a numerical data (g,B = {1( 1
rj

(1, aj ,−aj))}lj=1), we can define the lat-

tice L(g,B) by the same rule from the data (g, {1( 1
rj

(aj ,−aj))}lj=1). If (g,B) is a

numerical data of a Q-Fano 3-fold with a Du Val elephant, the lattice L(g,B) should

be a sublattice of ΛK3. If g ≥ −1 and (g,B) is a numerical data of a Q-Fano 3-

fold, Conjecture 3.1.7 suggests that the lattice L(g,B) should be a sublattice of ΛK3

without assuming the existence of a Du Val elephant.
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Chapter 3

Deformations of Fano threefolds

with terminal singularities

3.1 Introduction

All algebraic varieties in this chapter are defined over C.

3.1.1 Background and our results

Let us begin with the definition of a Q-Fano 3-fold.

Definition 3.1.1. Let X be a normal projective variety. We say that X is a Q-

Fano 3-fold if dimX = 3, X has only terminal singularities and −KX is an ample

Q-Cartier divisor.

Q-Fano 3-folds are important objects in the classification of algebraic vari-

eties. Toward the classification of Q-Fano 3-folds, it is fundamental to study their

deformations.

Definition 3.1.2. Let X be an algebraic variety and ∆1 an open unit disc of

dimension 1. A Q-smoothing of X is a flat morphism of complex analytic spaces

f : X → ∆1 such that f−1(0) ' X and f−1(t) has only quotient singularities of

codimension at least 3.

If X is proper, we assume that f is a proper morphism.

Remark 3.1.3. Schlessinger [54] proved that an isolated quotient singularity of di-

mension ≥ 3 is infinitesimally rigid under small deformations.

Reid ([51], [52]) and Mori [40] showed that a 3-dimensional terminal singu-

larity can be written as a quotient of an isolated cDV hypersurface singularity by a

finite cyclic group action and it admits a Q-smoothing.
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In general, a local deformation may not lift to a global deformation. However,

Altınok–Brown–Reid conjectured the following in [3, 4.8.3].

Conjecture 3.1.4. Let X be a Q-Fano 3-fold. Then X has a Q-smoothing.

The following theorem is an answer to their question in the ordinary case.

Theorem 3.1.5. Let X be a Q-Fano 3-fold with only ordinary terminal singularities

(See Definition 3.3.2). Then X has a Q-smoothing.

We prove a more general statement in Theorem 3.3.5 that implies Theorem

3.1.5.

Previously, Namikawa [43] proved that a Fano 3-fold with only terminal

Gorenstein singularities admits a smoothing, that is, it can be deformed to a smooth

Fano 3-fold. Minagawa [37] proved Q-smoothability of a Q-Fano 3-fold of Fano index

one, that is, it has a global index one cover. Takagi also treated some cases in [61,

Theorem 2.1]. Note that the singularities on a Q-Fano 3-fold in their cases are

ordinary.

In order to prove the Q-smoothablity, we need the following theorem on the

unobstructedness of deformations of a Q-Fano 3-fold.

Theorem 3.1.6. Let X be a Q-Fano 3-fold. Then the deformations of X are

unobstructed.

Namikawa [43] proved the unobstructedness in the Gorenstein case and Mi-

nagawa [37] proved it for a Q-Fano 3-fold of Fano index one. We show it for any

Q-Fano 3-fold. This theorem reduces the problem of finding good deformations to

that of 1st order infinitesimal deformations.

As explained in Chapter 1, an elephant is important in the classification of

Fano 3-folds. Altınok–Brown–Reid [3] gave the following conjecture about deforma-

tion of an elephant of a Q-Fano 3-fold.

Conjecture 3.1.7. Let X be a Q-Fano 3-fold. Assume that |−KX | contains an

element D.

1. Then there exists a deformation f : X → ∆1 of X such that |−KXt | contains

an element Dt with only Du Val singularities for general t ∈ ∆1.

2. Moreover, a divisor Dt ⊂ Xt is locally isomorphic to 1
r (a, r − a) ⊂ 1

r (1, a, r −
a), where both sides are corresponding cyclic quotient singularities for some

coprime integers r and a around each Du Val singularities of Dt.
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We call a deformation as above a simultaneous Q-smoothing of a pair (X,D).

If we first assume the existence of a Du Val elephant, we get the following result.

Theorem 3.1.8. Let X be a Q-Fano 3-fold. Assume that |−KX | contains an ele-

ment D with only Du Val singularities.

Then X has a simultaneous Q-smoothing. In particular, X has a Q-smoothing.

Note that we do not need the assumption of ordinary singularities as in

Theorem 3.1.5. The motivation of Conjecture 3.1.7 is to treat a Q-Fano 3-fold with

only non Du Val elephants. We investigate this case in Chapter 6.

A Q-Fano 3-fold is called primary if its canonical divisor generates the class

group mod torsion elements. Takagi [60] studied primary Q-Fano 3-folds with only

terminal quotient singularities and established the genus bound for those with Du

Val elephants. Hence Theorems 3.1.5 and 3.1.8 are useful for the classification.

Actually, as an application of Theorem 3.1.8, we can reprove his bound as follows.

Corollary 3.1.9. Let X be a primary Q-Fano 3-fold. Assume that X is non-

Gorenstein and |−KX | contains an element with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

Takagi expected the existence of a Du Val elephant forX such that h0(X,−KX)

is appropriately big ([60, p.37]). If we assume the expectation, Corollary 3.1.9 im-

plies the genus bound as above for every primary Q-Fano 3-fold.

3.1.2 Outline of the proofs

We sketch the proof of the above theorems on a Q-Fano 3-fold X.

First, we explain how to prove the unobstructedness briefly. If X is Goren-

stein, we have

Ext2(Ω1
X ,OX) ' Ext2(Ω1

X ⊗ ωX , ωX) ' H1(X,Ω1
X ⊗ ωX)∗

since ωX is invertible and the unobstructedness is reduced to the Kodaira-Nakano

type vanishing of the cohomology. However, if X is non-Gorenstein, that is, ωX is

not invertible, we can not reduce the vanishing of the Ext group to the vanishing

of cohomology groups a priori and we do not have a direct method to prove the

vanishing of the Ext group. Moreover, since we do not have a branched cover of a

Q-Fano 3-fold which is Fano or Calabi–Yau in the general case, we can not reduce the

unobstructedness to that of such cover. We solve this difficulty by considering the
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obstruction classes rather than the ambient obstruction space Ext2 and considering

the smooth part. The important point is that deformations of X are bijective

to deformations of the smooth part as in [34, 12.1.8] or [31, Theorem 12]. The

description of the obstruction by a 2-term extension as in Proposition 3.2.2 is a

crucial tool.

In order to find a good deformation of first order, we follow the line of

the proof in the case of Fano index 1 by Minagawa [37] which used [45, Theorem

1] of Namikawa-Steenbrink on the non-vanishing of the homomorphism between

cohomology groups. We need a generalization of this theorem to the non-Gorenstein

setting which is Proposition 3.3.4. We can generalize this lemma provided that

the singularity is ordinary. The generalization of this lemma for general terminal

singularities implies Conjecture 3.1.4.

Now, in order to find a good deformation of first order under the assumption

of a Du Val elephant, we use the deformation theory of the pair of X and D where

D ∈ |−KX |. The smoothness of the Kuranishi space of X implies that the smooth-

ness of the Kuranishi space of the pair (X,D) for D ∈ |−KX | (Theorem 3.2.9). The

important point in the proof is that an elephant contains the non-Gorenstein points

of X. By this, in order to see that a deformation of X is a Q-smoothing, it is enough

to see that the singularities of D deforms non trivially. Here we adapt the diagram

of [45, Theorem 1.3] to the case (X,D). Instead of the Namikawa-Steenbrink’s

proposition [45, Theorem 1.1] on non-vanishing of a certain cohomology map, we

use the coboundary map of the local cohomology sequence for the pair. To use such

a map, we arrange a resolution of singularities of the pair which has non-positive

discrepancies as in Proposition 3.4.1. Moreover we refine the Lefschetz theorem

for class groups by Ravindra-Srinivas [48] for our cases (Proposition 3.4.5) and this

Lefschetz statement plays an important role for lifting.

3.2 Unobstructedness of deformations of a Q-Fano 3-

fold

3.2.1 Preliminaries on infinitesimal deformations

We use the following lemma about an isomorphism of some Ext groups.

Lemma 3.2.1. Let X be an algebraic scheme over an algebraically closed field k.

Let X ∈ DefX(A) be a deformation of X over A ∈ Artk. Let F be a coherent

OX -module which is flat over A. Let G be a coherent OX-module which is also an

OX -module by the canonical surjection OX � OX . Then we have the following;
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(i) ExtiOX (F ,G) ' ExtiOX (F⊗Ak,G) for all i, where Exti is a sheaf of Ext groups.

(ii) ExtiOX (F ,G) ' ExtiOX (F ⊗A k,G) for all i.

Proof. (i) Let E• → F → 0 be a resolution of F by a complex E• of locally free

OX -modules. By [19, Proposition 6.5], we see that

Hi(HomOX (E•,G)) ' ExtiOX (F ,G), (3.1)

where Hi is a cohomology sheaf and Hom is a sheaf of Hom groups. Since F is flat

over A, we see that E• ⊗A k → F ⊗A k → 0 is still a resolution of the sheaf F ⊗A k.

Hence we have

Hi(HomOX (E• ⊗A k,G)) ' ExtiOX (F ⊗A k,G). (3.2)

Note that HomOX (E•,G) ' HomOX (E• ⊗A k,G) since G is an OX -module. By this

and isomorphisms (3.1) and (3.2), we obtain the required isomorphism in (i).

(ii) This follows from (i) and the local-to-global spectral sequence of Ext

groups;

H i(X ,ExtjOX (F ,G))⇒ Exti+jOX (F ,G)

We need the following description of the obstruction space for deformations

of l.c.i. schemes.

Proposition 3.2.2. Let k be an algebraically closed field of characteristic 0. Let X

be a reduced scheme of finite type over k. Let U ⊂ X be an open subset with only

l.c.i. singularities and ι : U → X an inclusion map. Assume that codimX X \U ≥ 3

and depthpX ≥ 3 for all closed point p ∈ X. Let Ω1
U be the Kähler differential sheaf

on U . Set An := k[t]/(tn+1) and let

ξn := (fn : Xn → SpecAn)

be a deformation of X.

Then the obstruction to lift Xn over An+1 lies in Ext2(Ω1
U ,OU ).

Proof. We need to define an element

oξn ∈ Ext2(Ω1
U ,OU )
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which has a property that oξn = 0 if and only if there is a deformation ξn+1 =

(fn+1 : Xn+1 → SpecAn+1) which sits in the following cartesian diagram;

Xn+1

��

Xnoo

��

SpecAn+1 SpecAn.oo

(3.3)

Since the characteristic of k is zero, we have

Ω1
An/k

' An−1

as An-modules and an exact sequence

0→ (tn+1)
d→ Ω1

An+1/k
⊗An+1 An → Ω1

An/k
→ 0.

Let fUn : Un → SpecAn be the flat deformation of U induced by fn. By

pulling back the above sequence by the flat morphism fUn , we get the following

exact sequence;

0→ OU → f∗Un(Ω1
SpecAn+1/k

|SpecAn)→ f∗UnΩ1
SpecAn/k

→ 0. (3.4)

Then, there is the relative cotangent sequence of a relative l.c.i. morphism

fUn (cf. [56, Theorem D.2.8]);

0→ f∗UnΩ1
SpecAn/k

→ Ω1
Un/k → Ω1

Un/SpecAn
→ 0. (3.5)

By combining the sequences (3.4), (3.5), we get the following exact sequence;

0→ OU → f∗Un(Ω1
SpecAn+1/k

|SpecAn)→ Ω1
Un/k → Ω1

Un/SpecAn
→ 0. (3.6)

Let

oξn ∈ Ext2(Ω1
U ,OU ) ' Ext2(Ω1

Un/ SpecAn
,OU )

be the element corresponding to the exact sequence (3.6). Note that we have the

isomorphism of Ext2 by Lemma 3.2.1.

We check that this oξn is the obstruction to the existence of lifting of ξn over

An+1.

Suppose that we have a lifting ξn+1 = (fn+1 : Xn+1 → SpecAn+1) with the

diagram (3.3). Then we can see that oξn = 0 as in [56, Proposition 2.4.8].

27



Conversely, suppose that oξn = 0. Consider the following exact sequence

Ext1(Ω1
Un/k,OU )

ε→ Ext1(f∗UnΩ1
SpecAn/k

,OU )
δ→ Ext2(Ω1

Un/ SpecAn
,OU )

which is induced by the exact sequence (3.5). Consider

γ ∈ Ext1(f∗UnΩ1
SpecAn/k

,OU )

which corresponds to the exact sequence (3.4). It is easy to see that δ(γ) = oξn .

Hence there exists γ′ ∈ Ext1(Ω1
Un/k,OU ) such that ε(γ′) = γ. The class γ′ corre-

sponds to the following short exact sequence

0→ OU → E → Ω1
Un/k → 0

for some coherent sheaf E on Un. We can construct a sheaf of An-algebras OUn+1 by

OUn+1 := E ×Ω1
Un/k
OUn as in [56, Theorem 1.1.10] with an exact sequence of sheaves

of An-algebras

0→ OU → OUn+1 → OUn → 0. (3.7)

Set OXn+1 := ι∗OUn+1 .

We need the following claim.

Claim 3.2.3. (i) R1ι∗OU = 0.

(ii) Let M be a finite An-module. Then

R1ι∗(f
∗
UnM̃) = 0,

where M̃ is a coherent sheaf on SpecAn associated to M .

Proof of Claim. (i) Let p ∈ X \U be a point and Up a small affine neighborhood of

p. Put Zp := Up ∩ (X \ U). It is enough to show that H1(Up \ Zp,OUp\Zp) = 0. We

have H2
Zp

(Up,OUp) = 0 since depthqOX,q ≥ 3 for all scheme-theoretic point q ∈ Zp
by the hypothesis. Since H i(Up,OUp) = 0 for i = 1, 2, we have H1(Up \ Zp,OUp) '
H2
Zp

(Up,OUp) = 0.

(ii) We proceed by induction on dimkM .

If M ' k, then this is the first claim.

Now assume that there is an exact sequence

0→ k →M →M ′ → 0
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of An-modules and the claim holds for M ′. Then we have an exact sequence

R1ι∗(f
∗
Un k̃)→ R1ι∗(f

∗
UnM̃)→ R1ι∗(f

∗
UnM̃

′)

and the left and right hand sides are zero by the induction hypothesis. Hence

R1ι∗(f
∗
UnM̃) = 0.

Note that ι∗OU ' OX , ι∗OUn ' OXn by Claim 3.2.3. By taking ι∗ of (3.7),

we have an exact sequence

0→ OX → OXn+1 → OXn → 0 (3.8)

since R1ι∗OU = 0.

We can regard OXn+1 as a sheaf of An+1-algebras by the homomorphism

An+1 → An. We can see that OXn+1 is a sheaf of flat An+1-algebras by the local

criterion of flatness (cf. [20, Proposition 2.2]) and the exact sequence (3.8). Let

Xn+1 := (X,OXn+1) be the scheme defined by the sheaf OXn+1 . Then the morphism

Xn+1 → SpecAn+1 is flat and

ξn+1 := (Xn+1 → SpecAn+1)

is a lifting of ξn.

Remark 3.2.4. The author does not know whether the above construction of ob-

struction classes works for general A,A′ as in Definition 2.1.7. However Proposition

2.1.8 reduces the study of unobstructedness to the case A = An, A
′ = An+1.

3.2.2 Proof of the theorem

We need the following Lefschetz type theorem.

Theorem 3.2.5. ([15, Chapter 3.1. Theorem]) Let X ⊂ PN be a projective variety

of dimension n and L ⊂ PN a linear subspace of codimension d ≤ n. Assume that

X \ (X ∩L) has only l.c.i. singularities. Then the relative homotopy group satisfies

πi(X,X ∩ L) = 0 (i ≤ n− d).

In particular, the restriction map H i(X,C)→ H i(X∩L,C) is injective for i ≤ n−d.

By using the obstruction class in Proposition 3.2.2, we can show the following

theorem.
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Theorem 3.2.6. Let X be a Q-Fano 3-fold. Then deformations of X are unob-

structed.

Proof. Let U be the smooth part of X. Note that codimX X \ U ≥ 3 and X is

Cohen-Macaulay since X has only terminal singularities. Hence X and U satisfy

the assumption of Proposition 3.2.2. Set k := C.

Let ξn ∈ DefX(An) be a deformation of X

fn : Xn → SpecAn

and oξn ∈ Ext2(Ω1
U ,OU ) the obstruction class defined in the proof of Proposition

3.2.2. We show that oξn = 0 in the following.

Let ωX be the dualizing sheaf on X. By taking the tensor product of the

sequence (3.6) with the relative dualizing sheaf ωUn/SpecAn of fUn , we have an exact

sequence

0→ ωU → f∗Un(Ω1
SpecAn+1/k

|SpecAn)⊗ ωUn/ SpecAn

→ Ω1
Un/k ⊗ ωUn/ SpecAn → Ω1

Un/ SpecAn
⊗ ωUn/ SpecAn → 0. (3.9)

By taking ι∗ of the above sequence, we get a sequence

0→ ωX → ι∗(f
∗
UnΩ1

SpecAn+1/k
|SpecAn ⊗ ωUn/ SpecAn)

→ ι∗(Ω
1
Un/k ⊗ ωUn/SpecAn)→ ι∗(Ω

1
Un/ SpecAn

⊗ ωUn/ SpecAn)→ 0. (3.10)

This sequence is exact by the following claim.

Claim 3.2.7. (i) R1ι∗ωU = 0.

(ii) R1ι∗(f
∗
UnΩ1

SpecAn/k
⊗ ωUn/ SpecAn) = 0.

Proof of Claim. (i) Let p ∈ X \ U be a singular point and Up a small affine neigh-

borhood at p. It is enough to show that H2
p (Up, ωUp) = 0. Let πp : Vp → Up be the

index 1 cover of Up. Then we have (πp)∗OVp ' ⊕r−1
i=0OUp(iKUp) where r is the index

of the singularity p ∈ X. Hence

H2
q (Vp,OVp) '

r−1⊕
i=0

H2
p (Up,OUp(iKUp)),

where q := π−1(p). L.H.S. is zero by the same argument as in Claim 3.2.3 since

depthqOVp,q = 3. Hence we proved the first claim.
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(ii) Let f(n,p) : U(n,p) → SpecAn be the deformation of Up induced from fn. It is

enough to show that

H2
p (U(n,p), f

∗
(n,p)Ω

1
SpecAn/k

⊗ ωU(n,p)/An) = 0.

Set ω
[i]
U(n,p)/An

:= ι∗ω
⊗i
U ′(n,p)/An

, where U ′(n,p) := U(n,p) \ {p}. We can take an index

1 cover φ(n,p) : V(n,p) → U(n,p) which is determined by an isomorphism ω
[rp]
U(n,p)/An

'
OU(n,p)

, where rp is the Gorenstein index of Up. Set g(n,p) := f(n,p) ◦ φ(n,p). Note

that

(φ(n,p))∗(g
∗
(n,p)Ω

1
SpecAn/k

) '
r−1⊕
i=0

f∗(n,p)Ω
1
SpecAn/k

⊗ ω[i]
U(n,p)/An

.

We can see that H2
p (U(n,p), f

∗
(n,p)Ω

1
SpecAn/k

⊗ ωU(n,p)/An) is a direct summand of

H2
q (V(n,p), g

∗
(n,p)Ω

1
SpecAn/k

) ' H2
q (V(n−1,p),OV(n−1,p)

)

and this is zero by Claim 3.2.3(ii).

Note that we have an isomorphism

Ext2(ι∗(Ω
1
Un/An ⊗ ωUn/An), ωX) ' Ext2(ι∗(Ω

1
U ⊗ ωU ), ωX)

by Lemma 3.2.1. By using this isomorphism, we define o′ξn ∈ Ext2(ι∗(Ω
1
U ⊗ωU ), ωX)

to be the element corresponding to the sequence (3.10). Let r2 : Ext2(ι∗(Ω
1
U ⊗

ωU ), ωX) → Ext2(Ω1
U ⊗ ωU , ωU ) be the natural restriction map and T : Ext2(Ω1

U ⊗
ωU , ωU )→ Ext2(Ω1

U ,OU ) be the map induced by tensoring ω−1
U . Then we have

T (r2(o′ξn)) = oξn .

Hence it is enough to show that Ext2(ι∗(Ω
1
U ⊗ ωU ), ωX) = 0. By the Serre duality,

we have Ext2(ι∗(Ω
1
U ⊗ ωU ), ωX)∗ ' H1(X, ι∗(Ω

1
U ⊗ ωU )), where ∗ is the dual.

In the following, we show that

H1(X, ι∗(Ω
1
U ⊗ ωU )) = 0.

Let m be a positive integer such that −mKX is very ample and |−mKX | contains a

smooth member Dm which is disjoint with the singular points of X. Let πm : Ym :=

Spec⊕m−1
i=0 OX(iKX) → X be a cyclic cover determined by Dm. Note that Ym has

only terminal Gorenstein singularities.
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There is the residue exact sequence

0→ Ω1
U → Ω1

U (logDm)→ ODm → 0

By tensoring this sequence with ωU and taking the push-forward of the sheaves by

ι, we obtain an exact sequence

0→ ι∗(Ω
1
U ⊗ ωU )→ ι∗(Ω

1
U (logDm)⊗ ωU )→ ι∗(ωU |Dm).

The last homomorphism is surjective and ι∗(ωU |Dm) ' ωX |Dm since ι∗(ωU |Dm) is

supported on Dm ⊂ U . Hence we obtain an exact sequence

0→ ι∗(Ω
1
U ⊗ ωU )→ ι∗(Ω

1
U (logDm)⊗ ωU )→ ωX |Dm → 0 (3.11)

It induces an exact sequence

H0(X,ωX |Dm)→ H1(X, ι∗(Ω
1
U ⊗ ωU ))→ H1(X, ι∗(Ω

1
U (logDm)⊗ ωU )).

We have H0(X,ωX |Dm) = 0 since −KX is ample. Therefore, it is enough to show

that

H1(X, ι∗(Ω
1
U (logDm)⊗ ωU )) = 0.

Put D′ := π−1
m (Dm) which satisfies that D′ ' Dm and π∗mDm = mD′. By using the

isomorphism

(πm)∗
(
Ω1
Ym(logD′)(−D′)

)
'

m−1⊕
i=0

ι∗
(
Ω1
U (logDm)⊗OU ((i+ 1)KU )

)
,

we can see that H1(X, ι∗(Ω
1
U (logDm)⊗ ωU )) is a direct summand of

H1(Ym,Ω
1
Ym(logD′)(−D′)).

We can show that

H1(Ym,Ω
1
Ym(logD′)(−D′)) = 0

as follows. There is an exact sequence

0→ Ω1
Ym(logD′)(−D′)→ Ω1

Ym → Ω1
D′ → 0
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and it induces an exact sequence

H0(D′,Ω1
D′)→ H1(Ym,Ω

1
Ym(logD′)(−D′))→ H1(Ym,Ω

1
Ym)

β→ H1(D′,Ω1
D′).

We can see that H1(D′,OD′) = 0 since Dm ' D′ and we have an exact sequence

0→ OX(−Dm)→ OX → ODm → 0.

This and the Hodge symmetry imply H0(D′,Ω1
D′) = 0. Hence it is enough to show

that β is injective. We use the following commutative diagram

H1(Ym,Ω
1
Ym

)
β

// H1(D′,Ω1
D′)

H1(Ym,O∗Ym)⊗ C

φ

OO

β1

��

γ
// H1(D′,O∗D′)⊗ C

ψ

OO

β2

��

H2(Ym,C)
δ // H2(D′,C).

We can see that δ is injective by Theorem 3.2.5 since Ym has only l.c.i. singularities.

Note that β1 is an isomorphism since H i(Ym,OYm) = 0 for i = 1, 2. Hence δ ◦ β1 =

β2 ◦ γ is injective. This implies that γ is injective. We can show that φ is surjective

by an argument which is similar to that in [42, (2.2)]. Note that ψ is injective since

D′ is a smooth surface and H1(D′,OD′) = 0. Hence ψ ◦ γ = β ◦ φ is injective.

Therefore β is injective.

Hence we proved oξn = 0. It is enough for unobstructedness by Proposition

2.1.8 since X is a projective variety and has a semi-universal deformation space.

Remark 3.2.8. For a Fano 3-fold X with canonical singularities, its Kuranishi space

Def(X) is not smooth in general. For example, let X be a cone over the del Pezzo

surface of degree 6. Then X has 2 different smoothings.

Next, we study deformations of a Q-Fano 3-fold with its pluri-anticanonical

element.

Theorem 3.2.9. Let X be a Q-Fano 3-fold and m a positive integer. Assume

that |−mKX | contains an element D. Let Def(X,D) and DefX be the deformation

functors of the pair (X,D) and X respectively.

Then the forgetful map Def(X,D) → DefX is a smooth morphism of functors.

In particular, the deformations of the pair (X,D) are unobstructed.
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Proof. Set k := C. Let A be an Artin local k-algebra, e = (0→ k → Ã→ A→ 0) a

small extension and ζ := (f : (X ,D)→ SpecA) a flat deformation of the pair (X,D).

Assume that we have a lifting X̃ → Spec Ã of f : X → SpecA. It is enough to show

that there exists a lifting D̃ ⊂ X̃ of D ⊂ X . Let ND/X be the normal sheaf of

D ⊂ X. Since an obstruction to the existence of such a lifting lies in H1(D,ND/X),

it is enough to show that

H1(D,ND/X) = 0.

There is an exact sequence

0→ OX → OX(D)→ ND/X → 0

and this induces an exact sequence

H1(X,OX(D))→ H1(D,ND/X)→ H2(X,OX).

The L.H.S and R.H.S. are zero by the Kodaira vanishing theorem. Hence we have

H1(D,ND/X) = 0.

3.3 A Q-smoothing of a Q-Fano 3-fold: the ordinary

case

3.3.1 Stratification on the Kuranishi space of a singularity

First, we recall a stratification on the Kuranishi space of an isolated singularity

introduced in the proof of [45, Theorem 2.4].

Let V be a Stein space with an isolated hypersurface singularity p ∈ V . Then

we have its semi-universal deformation space Def(V ) and the semi-universal family

V → Def(V ). It has a stratification into Zariski locally closed and smooth subsets

Sk ⊂ Def(V ) for k ≥ 0 with the following properties;

• Def(V ) = qk≥0Sk.

• S0 is a non-empty Zariski open subset of Def(V ) and V is smooth over S0.

• Sk are of pure codimension in Def(V ) for all k > 0 and codimDef(V ) Sk <

codimDef(V ) Sk+1.

• If k > l, then Sk ∩ Sl = ∅.

• V has a simultaneous resolution on each Sk, that is, there is a resolution of

V ×Def(V ) Sk which is smooth over Sk.
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3.3.2 A useful homomorphism between cohomology groups

Let us explain the homomorphism which we need for finding Q-smoothings. For

that purpose, we explain the index one cover and the ordinariness of a terminal

singularity again (See Proposition 2.3.7, Remark 2.3.9).

Let p ∈ U be a 3-dimensional Stein neighborhood of a terminal singularity p

of index r, that is, r is the minimal positive integer such that rKU is Cartier. Fix

a positive integer m such that r|m. Let

πU : V := Spec

m−1⊕
i=0

O(iKU )→ U

be the finite morphism defined by the isomorphism OU (rKU ) ' OU . Note that V

is a disjoint union of several copies of the index 1 cover of U . Let G := Z/mZ be

the Galois group of πU . Set Q := π−1
U (p).

We consider the case m = r to explain the ordinariness of a terminal singu-

larity. In this case, V is called the index one cover of U . The germ (V,Q) is a germ

of a terminal Gorenstein singularity and it is known that (V,Q) is a cDV singular-

ity and that (V,Q) is a hypersurface in the germ (C4, 0). Let fV be the defining

equation of (V,Q) in (C4, 0). fV is a Zr-semi-invariant function with respect to the

action of G = Zr. Let ζU ∈ C be the eigenvalue of the action on fV , that is, ζU

satisfies that g · fV = ζUfV , where g ∈ G is the generator. We have the following

fact by the classification of 3-dimensional terminal singularities by Reid and Mori.

Fact 3.3.1. Let (U, p) be a germ of a 3-dimensional terminal singularity. Then ζU

is 1 or −1.

By this fact, we introduce the following notions on terminal singularities.

Definition 3.3.2. Let (U, p) be a germ of 3-dimensional terminal singularity. We

say that (U, p) is ordinary (resp. non-ordinary) if ζU = 1 (resp. ζU = −1).

Now we go back to general m which is some multiple of r. Let νV : Ṽ → V

be a G-equivariant good resolution, FV := ν−1
V (Q) = Exc(νV ) its exceptional locus

which has normal crossing support and Ũ := Ṽ /G the quotient. So we have a

diagram

Ṽ
π̃U //

νV
��

Ũ

µU
��

V
πU // U.

(3.12)
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Let F (0)
U be the Zm-invariant part of (π̃U )∗(Ω

2
Ṽ

(logFV )(−FV − ν∗VKV )). Set V ′ :=

V \Q. We have the coboundary map of the local cohomology group

τV : H1(V ′,Ω2
V ′ ⊗ ω−1

V ′ )→ H2
FV

(Ṽ ,Ω2
Ṽ

(logFV )(−FV − ν∗VKV )).

This is same as the homomorphism used by Namikawa–Steenbrink [45] and Mina-

gawa [37].

Lemma 3.3.3. ([45, Theorem 1.1], [37, Lemma 4.1]) Let V be a Stein space as

above. Assume that V is not rigid. Then τV 6= 0.

We see that the cohomology groups appearing in τV areOV,Q-modules. More-

over, τV is an OV,Q-module homomorphism. Note that T 1
(V,Q) ' H

1(V ′,Ω2
V ′ ⊗ ω

−1
V ′ )

is generated by one element ηV as an OV,Q-module. Actually ηV ∈ T 1
(V,Q) corre-

sponds to a deformation (fV + t = 0) ⊂ (C4, 0) ×∆1, where t is the coordinate on

∆1. Hence we see that τV (ηV ) 6= 0.

The G-invariant part of τV is

φU : H1(U ′,Ω2
U ′ ⊗ ω−1

U ′ )→ H2
EU

(Ũ ,F (0)
U ),

where U ′ := U \ {p} is the punctured neighborhood and EU ⊂ Ũ is the exceptional

locus of µU .

If (U, p) is ordinary, we see that ηV is contained in H1(U ′,Ω2
U ′ ⊗ ω−1

U ′ ) ⊂
H1(V ′,Ω2

V ′ ⊗ ω
−1
V ′ ) since ηV induces a deformation (fV + t = 0)/Zr ⊂ C4/Zr ×∆1

of the germ (U, p). Hence we obtain the following.

Lemma 3.3.4. Let (U, p) be a germ of an ordinary terminal singularity. Then

φU 6= 0.

3.3.3 Proof of the theorem

We can find good first order deformations as follows.

Theorem 3.3.5. Let X be a Q-Fano 3-fold.

Then X has a deformation f : X → ∆1 over an unit disc such that the

singularities on Xt for t 6= 0 satisfy the following condition;

Let pt ∈ Xt be a singular point and Upt its Stein neighborhood. Then φUpt = 0,

where φUpt is the homomorphism defined in Section 3.3.2.

Remark 3.3.6. We first explain the strategy of our proof. Let pi ∈ Ui be a Stein

neighborhood of a singularity on X. In order to find a good deformation direction,
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we study the restriction homomorphism pUi : T
1
X → T 1

Ui
. The problem is that this

is not always surjective. Actually there is an example of a Q-Fano 3-fold X such

that H2(X,ΘX) 6= 0 ([43, Example 5]). So we use the commutative diagram as in

(3.15). The diagram is similar to that in the proof of [37, Theorem 4.2]. Minagawa

used a cyclic cover of X branched only on singular points. We use a cyclic cover of

X branched along a divisor, but the framework of the proof is almost same.

Proof. Let p1, . . . , pl ∈ X be the non-rigid singular points of X such that p1, . . . , pl′

for some l′ ≤ l are the points which satisfy

φUi 6= 0

for i = 1, . . . , l′, where Ui is a small Stein neighborhood of pi.

First we prepare notations to introduce the diagram (3.15). Let m be a

sufficiently large integer such that −mKX is very ample and |−mKX | contains a

smooth member Dm such that Dm ∩ SingX = ∅. Let

π : Y := Spec
m−1⊕
i=0

OX(iKX)→ X

be the cyclic cover determined byDm. There exists a good Zm-equivariant resolution

([1]) ν : Ỹ → Y which induces an isomorphism ν−1(Y \ π−1{p1, . . . , pl}) → Y \
π−1{p1, . . . , pl} and a birational morphism µ : X̃ := Ỹ /Zm → X. These induce the

following cartesian diagram;

Ỹ
π̃ //

ν
��

X̃

µ

��

Y
π // X.

(3.13)

Let πi : Vi := π−1(Ui) → Ui and νi : Ṽi := ν−1(Vi) → Vi be morphisms

induced by the morphisms in the above diagram. Put Ũi := Ṽi/Zm. Then we get

the following cartesian diagram;

Ṽi
π̃i //

νi

��

Ũi

µi

��

Vi
πi // Ui.

(3.14)

Put F := Exc(ν), E := Exc(µ), D′ := π−1(Dm) and L′ := OY (D′) =

OY (π∗(−KX)). Note that F has normal crossing support since ν is good. Also

put Fi := Exc(νi) and Ei := Exc(µi). Let F (0) be the Zm-invariant part of
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π̃∗(Ω
2
Ỹ

(logF )(−F ) ⊗ ν∗L′). Let U be the smooth part of X. Note that F (0)|U '
Ω2
U ⊗ ω

−1
U . Set F (0)

i := F (0)|Ũi and U ′i := Ui \ {pi}. Note that F (0)
i |U ′i ' Ω2

U ′i
⊗ ω−1

U ′i
.

We have the following commutative diagram;

H1(U,Ω2
U ⊗ ω

−1
U )

⊕ψi //

⊕pUi
��

⊕l′i=1H
2
Ei

(X̃,F (0))

'
��

// H2(X̃,F (0))

⊕l′i=1H
1(U ′i ,Ω

2
U ′i
⊗ ω−1

U ′i
)
⊕φi // ⊕l′i=1H

2
Ei

(Ũi,F (0)
i ).

(3.15)

We identify H2
Ei

(X̃,F (0)) and H2
Ei

(Ũi,F (0)
i ) by the natural homomorphism induced

by restriction. Note that F (0)
i ' F (0)

Ui
, where F (0)

Ui
is the sheaf defined in Section

3.3.2. Hence φi is φUi in Section 3.3.2.

Next we see that pUi in the diagram (3.15) is the restriction homomor-

phism of T 1 as follows. Let T 1
X , T

1
Vi
, T 1

Ui
be the tangent spaces of the functors

DefX ,DefVi ,DefUi respectively. By [54, §1 Theorem 2] or the proof of Proposition

3.2.2 in this paper, we can see that the first order deformations of Vi, Ui are bijective

to those of the smooth part V ′i , U
′
i . Similarly we can see the same correspondence

for X. So we have

T 1
X ' H1(U,ΘU ) ' H1(U,Ω2

U ⊗ ω−1
U ),

T 1
Vi ' H

1(V ′i ,ΘV ′i
) ' H1(V ′i ,Ω

2
V ′i
⊗ ω−1

V ′i
),

T 1
Ui ' H

1(U ′i ,ΘU ′i
) ' H1(U ′i ,Ω

2
U ′i
⊗ ω−1

U ′i
),

where ΘU ,ΘV ′i
,ΘU ′i

are the tangent sheaves of U, V ′i , U
′
i respectively. Hence pUi is

regarded as the restriction homomorphism T 1
X → T 1

Ui
.

We want to lift ηi ∈ H1(U ′i ,Ω
2
U ′i
⊗ ω−1

U ′i
) ' T 1

Ui
which induces a non-trivial

deformation of Ui to an element of H1(U,Ω2
U ⊗ ω

−1
U ) ' T 1

X . In order to do that, we

consider φi(ηi) ∈ H2
Ei

(Ũi,F (0)
i ) and lift it by using the diagram (3.15).

Since π̃ is finite, H2(X̃,F (0)) is a direct summand of

H2(Ỹ ,Ω2
Ỹ

(logF )(−F )⊗ ν∗L′)

and this is zero by the vanishing theorem by Guillen-Navarro Aznar-Puerta-Steenbrink

([46] Theorem 7.30 (a)). Hence ⊕ψi is surjective.

By the assumption that φi 6= 0 for i = 1, . . . , l′, there exists ηi ∈ H1(U ′i ,Ω
2
U ′i
⊗

ω−1
U ′i

) \ Kerφi. By the surjectivity of ⊕ψi, there exists η ∈ H1(U,Ω2
U ⊗ ω

−1
U ) such
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that ψi(η) = φi(ηi). Then we have

pUi(η) /∈ Ker(φi). (3.16)

We want to see that pUi(η) induces a non-trivial deformation of a singularity pi ∈ Ui.
For that purpose, we study the deformation of Vi induced by pUi(η) and see that it

does not come from a deformation of the resolution of Vi.

Since Vi has only rational singularities, the birational morphism νi : Ṽi → Vi

induces a morphism of the functors Def Ṽi → DefVi ([63, Theorem 1.4 (c)]) and the

homomorphism H1(Ṽi,ΘṼi
) → H1(V ′i ,ΘV ′i

) on their tangent spaces. This homo-

morphism can be rewritten as

(νi)∗ : H1(Ṽi,Ω
2
Ṽi
⊗ ω−1

Ṽi
)→ H1(V ′i ,Ω

2
V ′i
⊗ ω−1

V ′i
)

and this is a homomorphism induced by an open immersion V ′i ↪→ Ṽi. Note that

infinitesimal deformations of Ui come from Zm-equivariant deformations of Vi and

H1(U ′i ,ΘU ′i
) ' H1(V ′i ,ΘV ′i

)Zm .

Note that φi is the Zm-invariant part of the homomorphism

τi : H
1(V ′i ,Ω

2
V ′i
⊗ ω−1

V ′i
)→ H2

Fi(Ṽi,Ω
2
Ṽi

(logFi)(−Fi − ν∗iKVi)).

Claim 3.3.7. Im(νi)∗ ⊂ Ker τi.

Proof of Claim. We can write

KṼi
= ν∗iKVi +

mi∑
j=1

ai,jFi,j ,

where Fi =
⋃mi
j=1 Fi,j is the irreducible decomposition and ai,j ≥ 1 are some integers

for j = 1, . . . ,mi since Vi is terminal Gorenstein. We can define a homomorphism

αi : H
1(Ṽi,Ω

2
Ṽi
⊗ ω−1

Ṽi
)→ H1(Ṽi,Ω

2
Ṽi

(logFi)(−Fi − ν∗iKVi))
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as a composite of the following homomorphisms;

αi : H
1(Ṽi,Ω

2
Ṽi
⊗ ω−1

Ṽi
) = H1(Ṽi,Ω

2
Ṽi

(−
mi∑
j=1

ai,jFi,j − ν∗iKVi))

→ H1(Ṽi,Ω
2
Ṽi

(logFi)(−
mi∑
j=1

ai,jFi,j−ν∗iKVi))→ H1(Ṽi,Ω
2
Ṽi

(logFi)(−Fi−ν∗iKVi))

(3.17)

since ai,j ≥ 1.

Note that Ker τi = Im ρi, where we put

ρi : H
1(Ṽi,Ω

2
Ṽi

(logFi)(−Fi − ν∗iKVi))→ H1(V ′i ,Ω
2
V ′i
⊗ ω−1

V ′i
).

We can see that (νi)∗ factors as

(νi)∗ : H1(Ṽi,Ω
2
Ṽi
⊗ω−1

Ṽi
)
αi→ H1(Ṽi,Ω

2
Ṽi

(logFi)(−Fi− ν∗iKVi))
ρi→ H1(V ′i ,Ω

2
V ′i
⊗ω−1

V ′i
).

Hence Ker τi = Im ρi ⊃ Im(νi)∗.

By Claim 3.3.7 and the relation (3.16), we get pUi(η) 6∈ Im(νi)∗. This means

that a deformation of Vi induced by pUi(η) does not come from that of the resolution

Ṽi. In the following, we check that the deformation of Vi goes out from the minimal

stratum of the stratification on the Kuranishi space Def(Vi) introduced in Section

3.3.1.

Let ri be the Gorenstein index of the singular point pi and π−1
i (pi) =:

{qi1, . . . , qik(i)} , where k(i) := m
ri

. Let

Vi := qk(i)
j=1Vi,j

be the decomposition into the connected components of Vi. Fix a stratification on

each Def(Vi,j) for j = 1, . . . , k(i) as in Section 3.3.1. We see that pUi(η) ∈ T 1
Ui
⊂ T 1

Vi,1

induces a deformation gi,1 : Vi,1 → ∆1. By the property of the Kuranishi space, there

exists a holomorphic map ϕi,1 : ∆1 → Def(Vi,1) which induces the above deformation

of Vi,1. Let Si,k be the minimal stratum of Def(Vi,1). Then the image of ϕi,1 is not

contained in Si,k. and, for general t ∈ ∆1, we have ϕi,1(t) ∈ Si,k′ for some k′ < k.

Let g : X → ∆1 be a small deformation of X over a disc induced by η ∈ H1(U,ΘU ).

Then g induces a deformation of Vi,1 We can continue this process as long as φi 6= 0

and reach a deformation of X whose general fiber has the required condition in the

statement of Theorem 3.3.5.
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Lemma 3.3.4 and Theorem 3.3.5 imply the following.

Corollary 3.3.8. Let X be a Q-Fano 3-fold with only ordinary terminal singulari-

ties. Then X has a Q-smoothing.

Proof. By Lemma 3.3.4, we can continue the process in the proof of Theorem 3.3.5

until we get a Q-smoothing since deformations of ordinary terminal singularities are

ordinary.

Remark 3.3.9. Let (U, p) be a germ of a non-ordinary 3-dimensional terminal sin-

gularity. We determine when the coboundary map φU vanishes in Chapter 5.

3.3.4 Non-smoothable examples

The smoothing problem is delicate. We exhibit an example of a non-smoothable

weak Fano 3-fold with terminal Gorenstein singularities. Thus the Fano assumption

is necessary in Corollary 3.3.8.

First, we treat a proposition necessary for constructing non-smoothable va-

rieties.

Example 3.3.10. ([44]) Let p ∈ X be a Stein space with an isolated rational

Gorenstein singularity of dimension 3 and π : Y → X a crepant partial resolution,

that is, π is a proper birational morphism such that Y is normal and KY = π∗KX .

Let E ⊂ Y be the exceptional locus of π and Σ ⊂ Y the singular locus of Y . By [4],

Y has a finite dimensional semi-universal deformation space Def(Y ). The following

is an important proposition for checking smoothability.

Proposition 3.3.11. ([44, Proposition 1.3]) Assume that Y has only ordinary dou-

ble points p1, . . . , pn as singularities. Let ν : Z → Y be a small resolution of ordinary

double points and set Ci := ν−1(pi). Let E1, . . . , Em be the irreducible components

of ν−1(E). Let r be the rank of the matrix (Ci · Ej)1≤i≤n,1≤j≤m

Then Def(Z) and Def(Y ) are smooth and we have

dim Def(Y ) = dim Def(Z) + n− r.

Moreover, the following are equivalent.

(a) Y has a smoothing.

(b) There exist nonzero rational numbers α1, . . . , αn such that (
∑n

i=1 αiCi ·Ej) = 0

for all j.
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We use this proposition in the next example.

Example 3.3.12. There is an example of a weak Fano 3-fold with an ordinary

double point which does not have a smoothing. It is written in [38, Example 3.7].

We now explain it for the convenience of the reader.

Let X̄ be the cone over the del Pezzo surface S = F1 of degree 8. Then X̄ is

a Fano 3-fold with an isolated rational Gorenstein singularity p̄ ∈ X̄. Let f : Z → X

be the blow-up at p̄. Then f is a crepant resolution and Z ' ProjS(OS ⊕ ω−1
S ).

The exceptional divisor E of f is isomorphic to F1. Let C ⊂ E be the −1-curve

on F1 and µ : F1 → P2 the contraction of C. Then Z is a weak Fano 3-fold with

a (−1,−1)-curve C, that is, the normal bundle NC/Z ' OC(−1) ⊕ OC(−1). Let

ν : Z → X be a birational contraction of C, that is, a projective birational morphism

to a projective variety X. We can construct this by a base point free divisor E +

π∗(−KS) + π∗µ∗OP2(1), where π : Z ' ProjS(OS ⊕ ω−1
S )→ S is the projection. We

can check that, for an irreducible curve Γ ⊂ Z, we have DX · Γ = 0 if and only if

Γ = C.

Then X is a weak Fano 3-fold with an ordinary double point p = ν(C). The

divisor F := ν(E) is isomorphic to P2 and passes through p ∈ X. We see that F

is not Q-Cartier since the local analytic class group at p ∈ X is torsion free and a

Cartier divisor through a singular point is not smooth. Hence X is not Q-factorial.

Let V be a Stein neighborhood of p̄ and g : X → X̄ an induced birational

morphism. We can apply Proposition 3.3.11 to the birational morphism g−1(V )→
V . Hence g−1(V ) ⊂ X is not smoothable. This implies that X is not smoothable.

3.4 A Q-smoothing of a Q-Fano 3-fold with a Du Val

elephant

In this section, we prove the Q-smoothability of a Q-Fano 3-fold with a Du Val

elephant.

3.4.1 Existence of an essential resolution of a pair

We need a resolution of a 3-dimensional hypersurface singularity and its divisor with

good properties as follows.

Proposition 3.4.1. Let Y be a 3-dimensional variety with only hypersurface singu-

larities and D a Cartier divisor on Y with only Du Val singularities. Assume that

a finite group G acts on Y and the action preserves D.
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Then there exists a G-equivariant resolution of singularities f : Ỹ → Y of Y

with the following properties;

(i) The strict transform D̃ ⊂ Ỹ of D is smooth,

(ii) We have KD̃ = f∗DKD, where fD : D̃ → D is the morphism induced by f .

Proof. Let fD : D̃ → D be the minimal resolution of D which is a composition of

the blow-ups at smooth points. Let f1 : Ỹ1 → Y be a composition of the blow-ups

at the same smooth points as fD. We can assume that f and fD are G-equivariant

since we can take G-invariant centers of the blow-ups for fD.

Next, we can take a G-equivariant resolution f2 : Ỹ → Ỹ1 such that f2 is

isomorphism on Ỹ1 \ Sing Ỹ1. Note that f2 induces an isomorphism on D̃. We see

that the composition f := f1 ◦ f2 : Ỹ → Y satisfies the required condition. Thus we

finish the proof.

3.4.2 Classification of 3-dimensional terminal singularities

Let (p ∈ U) be a germ of a 3-dimensional terminal singularity. By Reid’s result [52],

(U, p) is locally isomorphic to

0 ∈ (f = 0)/Zr ⊂ C4/Zr,

where Zr acts on C4 diagonally and f ∈ C[x, y, z, u] and x, y, z, u are Zr-semi-

invariant functions on C4. By the list in [52](6.4), we have a Zr-semi-invariant

function h ∈ C[x, y, z, u] such that

Dh := (f = h = 0)/Zr ⊂ (f = 0)/Zr =: Uf

has only a Du Val singularity at the origin and Dh ∈ |−KUf |.

3.4.3 Some ingredients for the proof

LetX be an algebraic scheme andD its closed subscheme. For the functor Def(X,D) : Artk →
(Sets), let T 1

(X,D) := Def(X,D)(A1) be the tangent space.

We use the following fact that deformations of a pair of a variety and its

divisor.

Lemma 3.4.2. Let X be a 3-dimensional variety with only terminal singularities

and D a Q-Cartier divisor on X. Let Z ⊂ X be a 0-dimensional subset. Let

ι : U := X \ Z ↪→ X be an open immersion. Set DU := D ∩ U .

Then the restriction homomorphism ι∗ : T 1
(X,D) → T 1

(U,DU ) is an isomorphism.
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Proof. We can construct the inverse ι∗ : T 1
(U,DU ) → T 1

(X,D) of ι∗ as follows. ξ ∈
T 1

(U,DU ) corresponds to a deformation U1 → SpecA1 and an A1-flat ideal sheaf

IDU1
. We see that OX1 := ι∗OU1 is a sheaf of A1-flat algebras by a similar argument

as in the proof of Proposition 3.2.2. Moreover, we see that ID1 := ι∗IDU1
is an

A1-flat ideal sheaf. Indeed there is an exact sequence 0→ IDU → IDU1
→ IDU → 0

and, by taking its push-forward by ι, we obtain an exact sequence

0→ ID → ID1 → ID → 0. (3.18)

The surjectivity in (3.18) follows from R1ι∗IDU = 0. We can show that R1ι∗IDU = 0

similarly as Claim 3.2.7 since ID can be written locally as an eigenspace of some

invertible sheaf with respect to the group action induced by the index one cover.

By the sequence (3.18), we see that ID1 is flat over A1. Thus (OX1 , ID1) defines an

element ι∗(η) ∈ T 1
(X,D) and this determines ι∗.

Let p ∈ U be a Stein neighborhood of a 3-dimensional terminal singularity

p with the Gorenstein index r. By the classification of 3-dimensional terminal sin-

gularities, there exists D ∈ |−KU | with only Du Val singularity at p. Let m be a

positive multiple of r and πU : V → U the Zm-cyclic cover of U determined by the

isomorphism OU (rKU ) ' OU as in Section 3.3.2. Set ∆ := π−1
U (D). Then V has

terminal Gorenstein singularities at Q := π−1(p) and ∆ has Du Val singularities

at Q. Let ν : Ṽ → V be the Zm-equivariant resolution of singularities of (V,∆)

constructed in Proposition 3.4.1. Let ∆̃ := ν−1
∗ (∆) ⊂ Ṽ be the strict transform of

∆ and F the exceptional divisor of ν. Then we have the coboundary map

τ(V,∆) : H1(V ′,Ω2
V ′(log ∆′))→ H2

F (Ṽ ,Ω2
Ṽ

(log ∆̃)), (3.19)

where V ′ := V \Q and ∆′ := V ′ ∩∆. By Lemma 3.4.2, we see that

T 1
(V,∆) ' T

1
(V ′,∆′) ' H

1(V ′,ΘV ′(− log ∆′)) ' H1(V ′,Ω2
V ′(log ∆′)(−KV ′ −∆′)).

By fixing a Zm-equivariant isomorphism OV ' OV (−KV −∆), we finally obtain an

isomorphism

T 1
(V,∆) ' H

1(V ′,Ω2
V ′(log ∆′)).

This isomorphism is Zm-equivariant and the Zm-invariant parts are

T 1
(U,D) ' H

1(U ′,Ω2
U ′(logD′)).
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For deformations of ∆, we have the following.

Lemma 3.4.3. Let ι∆ : ∆′ ↪→ ∆ be the open immersion. Then the restriction

homomorphism ι∗∆ : T 1
∆ → T 1

∆′ is injective.

Proof. For ∆1 ∈ Def∆(A1), we have (ι∆)∗ι
∗
∆O∆1 ' O∆1 since ∆ is S2.

We have the following commutative diagram;

T 1
(V,∆)

//

p∆

��

T 1
(V ′,∆′)

//

p∆′

��

H1(V ′,Ω2
V ′(log ∆′))

P∆′

��

T 1
∆

// T 1
∆′

// H1(∆′,Ω1
∆′),

where P∆′ is induced by the residue homomorphism. This implies that the elements

of ImP∆′ is coming from elements of T 1
∆. We also have the following diagram;

H1(∆̃,Ω1
∆̃

)
R∆ // H1(∆′,Ω1

∆′)

T 1
∆̃

'
OO

//

(ν∆)∗
''

T 1
∆′

'

OO

T 1
∆

ι∗∆

OO

The vertical isomorphisms are induced by the isomorphism O∆(K∆) ' O∆ since

ν∗∆K∆ = K∆̃. The homomorphism (ν∆)∗ is the blow-down morphism by Wahl

([63]). It is well known that (ν∆)∗ = 0 since ∆ has a Du Val singularity (cf. [8,

2.10]). Hence we see that R∆ = 0 as well.

We have the following lemma.

Lemma 3.4.4. Let R∆ : H1(∆̃,Ω1
∆̃

) → H1(∆′,Ω1
∆′) be the restriction homomor-

phism as above.

Then we have P∆′(Ker τ(V,∆)) ⊂ ImR∆ = 0. In particular, this implies that

τ(V,∆)(η) 6= 0 for η ∈ H1(V ′,Ω2
V ′(log ∆′)) ' T 1

(V,∆) which induces a smoothing of ∆.

Proof. We have a diagram

H1(Ṽ ,Ω2
Ṽ

(log ∆̃))
α(V,∆)

//

��

H1(V ′,Ω1
V ′(log ∆′))

��

H1(∆̃,Ω1
∆̃

)
R∆ // H1(∆′,Ω1

∆′)
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The vertical homomorphisms are induced by the residue homomorphisms and the

horizontal homomorphisms are induced by open immersions. Hence the diagram is

commutative. Since Ker τ(V,∆) = Imα(V,∆), we obtain the claim by the diagram.

We also need the following Lefschetz type statement.

Proposition 3.4.5. Let Y be a normal projective 3-fold with only isolated singular-

ities and ∆ ⊂ Y its ample Cartier divisor with only isolated singularities. Assume

that H1(Y,OY ) = 0. Let ν : Ỹ → Y be a resolution of singularities of the pair (Y,∆)

which is isomorphism on Y \ (Sing Y ∪ Sing ∆) such that the strict transform ∆̃ of

∆ is smooth. Let r∆̃ : Pic Ỹ → Pic ∆̃ be the restriction homomorphism.

Then Ker r∆̃ is generated by ν-exceptional divisors.

Proof. It is enough to show that

r∆ : ClY → Cl ∆

is injective. Indeed we have a commutative diagram

Cl Ỹ
r∆̃ //

ν∗
��

Cl ∆̃

(ν∆)∗
��

ClY
r∆ // Cl ∆

and, if r∆ is injective, can see that

Ker r∆̃ ⊂ Ker(ν∆)∗ ◦ r∆̃ = Ker r∆ ◦ ν∗ = Ker ν∗

and Ker ν∗ is generated by ν-exceptional divisors.

Let m be a sufficiently large integer such that m∆ is very ample. By [49,

Theorem 1], there exists a very general smooth element ∆m ∈ |m∆| which is disjoint

with Sing ∆ and

r∆m : ClY → Cl ∆m

is an isomorphism. Take A ∈ Ker r∆. Then we have A · ∆ = 0 as a rational

equivalence class of a cycle on Y . Then we have

A ·∆m = 0

as a rational equivalence class on Y .

We show that A|∆m = 0 ∈ Cl ∆m as follows. It is enough to show that

A|∆m is numerically trivial on ∆m since H1(∆m,O∆m) = 0. Let Γ ∈ Cl ∆m be any
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element. Since r∆m is an isomorphism, there exists F ∈ ClY such that F |∆m = Γ.

We have

A|∆m · Γ = (A ·∆m) · F = 0

by the intersection theory. Indeed A · ∆m is a sum of several curves which are

regularly immersed since ∆m ∩ Sing Y = ∅. Hence A|∆m = 0 ∈ Cl ∆m and we get

A = 0 ∈ ClY since ClY
'→ Cl ∆m. Thus we get r∆ is injective and we finish the

proof.

3.4.4 Proof of the theorem

Our strategy of the proof of Theorem 3.1.8 is similar to that of [45, Theorem 1.3].

In [45, Theorem 1.3], there are two crucial ingredients. One is the non-vanishing of

the coboundary map of local cohomology group ([45, Theorem 1.1]). And another is

the vanishing of a composition of homomorphisms between some cohomology groups

([45, Proposition 1.2]). We modify these propositions to our setting of a pair of a

variety and its divisor.

Proof of Theorem 3.1.8. By Corollary 3.3.8, we can assume that the singularities on

X are non ordinary terminal singularities. We prepare the notations to introduce

the diagram (3.22).

Let m be a positive integer such that −mKX is very ample and |−mKX |
contains a smooth element Dm which satisfies Dm ∩ SingD = ∅ and intersects

transversely with D. Let π : Y := Spec⊕m−1
i=0 OX(iKX) → X be the cyclic cover

determined by Dm. Note that Y is terminal Gorenstein. Put {p1, . . . , pl} := SingD.

Note that SingX ⊂ SingD since all the singularities on X are non-Gorenstein. Also

note that G := Gal(Y/X) ' Zm acts on Y and ∆ := π−1(D) is G-invariant.

Let Ui be a sufficiently small Stein neighborhood of pi such that Ui \ {pi}
is smooth and KVi = 0, where Vi := π−1(Ui). Let πi : Vi → Ui be the morphism

induced by π.

By Proposition 3.4.1, we can take a Zm-equivariant resolution ν : Ỹ → Y of

Y such that ν|ν−1(Y \Sing ∆) is an isomorphism, ∆̃ := (ν−1)∗∆ is smooth and

ν∗∆K∆ = K∆̃,
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where ν∆ : ∆̃→ ∆ is induced by ν. Then we have the following diagram;

Ỹ
π̃ //

ν
��

X̃

µ

��

Y
π // X.

(3.20)

We also have the following diagram induced by the above diagram;

Ṽi
π̃i //

νi

��

Ũi

µi

��

Vi
πi // Ui.

(3.21)

Put F := Exc(ν) ⊂ Ỹ , Fi := Exc(νi), E := Exc(µ) and Ei := Exc(µi). Put

∆̃i := (ν−1
i )∗∆i, where ∆i := ∆ ∩ Vi.

Let F (0) be the Zm-invariant part of π̃∗Ω
2
Ỹ

(log ∆̃) and set F (0)
i := F (0)|Ũi .

Set U := X \ SingD. Note that F (0)|U ' Ω2
U (logDU ), where DU := D ∩ U .

Hence we have the following diagram;

H1(U,Ω2
U (logDU ))

⊕ψi //

⊕pUi
��

⊕l
i=1H

2
Ei

(X̃,F (0))

'
��

⊕βi // H2(X̃,F (0))

⊕l
i=1H

1(U ′i ,Ω
2
U ′i

(logD′i))
⊕φi //

⊕l
i=1H

2
Ei

(Ũi,F (0)
i ),

(3.22)

where U ′i := Ui \ {pi} and D′i := D ∩ U ′i .
We have restriction homomorphisms ι∗ : T 1

(X,D) → T 1
(U,DU ) and ι∗i : T 1

(Ui,Di)
→

T 1
(U ′i ,D

′
i)

, where ι : U ↪→ X and ιi : U
′
i ↪→ Ui are open immersions. By Lemma 3.4.2

and the arguments around it, we see that

H1(U,Ω2
U (logDU )) ' T 1

(X,D),

H1(U ′i ,Ω
2
U ′i

(logD′i)) ' T 1
(Ui,Di)

.

By using the diagram (3.22), we want to lift ηi ∈ H1(U ′i ,Ω
2
U ′i

(logD′i)) ' T 1
(Ui,Di)

which induces a simultaneous Q-smoothing of (Ui, Di) to X. For that purpose, we

consider φi(ηi) and lift it to H1(U,Ω2
U (logDU )).

Note that φi is the Zm-invariant part of the coboundary map τi : H
1(V ′i ,Ω

2
V ′i

(log ∆′i))→
H2
Fi

(Ṽi,Ω
2
Ṽi

(log ∆̃i)). We see that τi is same as τ(Vi,∆i) introduced in (3.19). Thus
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we can use the results in Section 3.4.3. By Lemma 3.4.4, we see that

P∆′i
(Ker τi) ⊂ ImR∆i = 0, (3.23)

where P∆′i
: H1(V ′i ,Ω

2
V ′i

(log ∆′i))→ H1(∆′i,Ω
1
∆′i

) andR∆i : H
1(∆̃i,Ω

1
∆̃i

)→ H1(∆′i,Ω
1
∆′i

)

are defined as in Section 3.4.3.

There exists ηi ∈ T 1
(Ui,Di)

which induces a simultaneous Q-smoothing of

(Ui, Di) by the description in Section 3.4.2. Note that φi(ηi) 6= 0 by the relation

(3.23). To lift φi(ηi) to H1(U,Ω2
U (logDU )), we need the following claim.

Claim 3.4.6. βi ◦ φi = 0.

Proof of Claim. βi ◦ φi is the Zm-invariant part of a composition of the homomor-

phisms

H1(V ′i ,Ω
2
V ′i

(log ∆′i))→ H2
Fi(Ṽi,Ω

2
Ṽi

(log ∆̃i))

' H2
Fi(Ỹ ,Ω

2
Ỹ

(log ∆̃))→ H2(Ỹ ,Ω2
Ỹ

(log ∆̃)). (3.24)

By considering its dual, it is enough to show that the Zm-invariant part of the

homomorphism

Φi : H
1(Ỹ ,Ω1

Ỹ
(log ∆̃)(−∆̃))→ H1(V ′i ,Ω

1
V ′i

(log ∆′i)(−∆′i))

is zero. We show that Φi = 0 in the following.

For a Z-module M , we set MC := M ⊗ C. Let K(Ỹ ,∆̃) be a sheaf of groups

defined by an exact sequence

1→ K(Ỹ ,∆̃) → O
∗
Ỹ
→ O∗

∆̃
→ 1.

We have a commutative diagram with two horizontal exact sequences

0 // H1(Ỹ ,Ω1
Ỹ

(log ∆̃)(−∆̃)) // H1(Ỹ ,Ω1
Ỹ

) // H1(∆̃,Ω1
∆̃

)

0 // H1(Ỹ ,K(Ỹ ,∆̃))C
//

ε

OO

H1(Ỹ ,O∗
Ỹ

)C //

δỸ

OO

H1(∆̃,O∗
∆̃

)C,

δ∆̃

OO

where the injectivity follows since we see thatH0(∆̃,Ω1
∆̃

) = 0 and thatH0(Ỹ ,O∗
Ỹ

)→
H0(∆̃,O∗

∆̃
) is surjective. We see that δỸ is an isomorphism and δ∆̃ is injective since

we have H i(Ỹ ,OỸ ) = 0 for i = 1, 2 and H1(∆̃,O∆̃) = 0. Hence we see that ε is an

isomorphism.
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Set K(V ′i ,∆
′
i)

:= K(Ỹ ,∆̃)|V ′i . We have a commutative diagram

H1(Ỹ ,Ω1
Ỹ

(log ∆̃)(−∆̃))

��

H1(Ỹ ,K(Ỹ ,∆̃))C'
oo

Φ′i
��

H1(V ′i ,Ω
1
V ′i

(log ∆′i)(−∆′i)) H1(V ′i ,K(V ′i ,∆
′
i)

)C.oo

Hence it is enough to show that Φ′i = 0. Moreover we have a commutative diagram

H1(Ỹ ,K(Ỹ ,∆̃))C

��

� � // H1(Ỹ ,O∗
Ỹ

)C

Φ′′i
��

H1(V ′i ,K(V ′i ,∆
′
i)

)C
� � // H1(V ′i ,O∗V ′i )C.

Since ν is an isomorphism outside Sing ∆, we see that Φ′′i = 0 by Proposition 3.4.5.

Hence we see that Φ′i = 0 and we finish the proof of Claim 3.4.6.

By Claim 3.4.6, we have βi(φi(ηi)) = 0. Thus there exists η ∈ H1(U,Ω2
U (logD′))

such that ψi(η) = φi(ηi) for each i. Then P∆′i
(pUi(η)−ηi) ∈ P∆′i

(Ker τi) ⊂ ImR∆i =

0 by the relation (3.23). Hence we have

P∆′i
(pUi(η)) = P∆′i

(ηi) ∈ H1(∆′i,Ω
1
∆′i

). (3.25)

Note that this element corresponds to an element of T 1
∆i

which induces a smoothing

of ∆i by the definition of ηi.

By Theorem 3.2.9, there exists a deformation f : (X ,D) → ∆1 of (X,D)

induced by η. By the relation (3.25), we see that f induces a smoothing of ∆i.

Note that Sing Vi ⊂ Sing ∆i and this relation is preserved by deformation since

Dt ∈ |−KXt | contains all non-Gorenstein points of Xt, where Xt := f−1(t) for

t ∈ ∆1. We see that a deformation of Vi becomes smooth along a deformation of ∆i

which is smooth since a deformation of ∆i ⊂ Vi is still a Cartier divisor, Thus f is

a Q-smoothing and we finish the proof of Theorem 3.1.8.

Remark 3.4.7. There are many examples of Q-Fano 3-folds without Du Val ele-

phants. See Section 6.4 for such examples.
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3.4.5 Genus bound for primary Q-Fano 3-folds

Definition 3.4.8. Let X be a Q-Fano 3-fold. Let C̃lX be the quotient of the divisor

class group ClX by its torsion part. X is called primary if

C̃lX ' Z · [−KX ].

Takagi [60] proved the following theorem on the genus bound of certain pri-

mary Q-Fano 3-folds.

Theorem 3.4.9. ([60, Theorem 1.5]) Let X be a primary Q-Fano 3-fold with only

terminal quotient singularities. Assume that X is non-Gorenstein and |−KX | con-

tains an element with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

By combining his result and our results, we get the following genus bound.

Theorem 3.4.10. Let X be a primary Q-Fano 3-fold. Assume that X is non-

Gorenstein and |−KX | contains an element with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

Proof. By Theorem 3.1.8, there is a deformation X → ∆1 of X such that Xt has only

quotient singularities and |−KXt | contains an element with only Du Val singularities

for t 6= 0. By Theorem 5.28 of [35], we have h0(X,−KX) = h0(Xt,−KXt). By

Theorem 3.4.9, we have

h0(X,−KX) = h0(Xt,−KXt) ≤ 10.
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Chapter 4

Deformations of weak Fano

manifolds

4.1 Introduction

We consider algebraic varieties over an algebraically closed field k of characteristic

zero.

The Kuranishi space of a smooth projective variety has bad singularities in

general. Even in the surface case, Vakil [62] exhibited several examples of smooth

projective surfaces of general type with arbitrarily singular Kuranishi spaces.

On the other hand, in some nice situations, the Kuranishi space is smooth.

A famous result is that the Kuranishi space of a Calabi–Yau manifold is smooth.

The Kuranishi space of a Fano manifold X is also smooth since H2(X,ΘX) = 0 by

the Kodaira–Nakano vanishing theorem, where ΘX is the tangent sheaf of X.

In this chapter, we look for several nice projective manifolds with smooth

Kuranishi space.

A smooth projective variety X is called a weak Fano manifold if the anti-

canonical divisor −KX is nef and big. The following is the main theorem of this

chapter.

Theorem 4.1.1. Deformations of a weak Fano manifold are unobstructed.

Previously, Ran proved the unobstructedness for a weak Fano manifold with

a smooth anticanonical element ([47, Corollary 3]). Minagawa’s argument in [38]

implies the unobstructedness when |−2KX | contains a smooth element. However

these assumptions are not satisfied for a general weak Fano manifold as explained

in Example 4.2.9. We prove it for the general case.
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We use the T 1-lifting technique developed by Ran, Kawamata, Deligne and

Fantechi-Manetti. Another approach is dealt with by Buchweitz–Flenner in [7].

The following more general result implies Theorem 4.1.1.

Theorem 4.1.2. Let X be a smooth projective variety. Assume that H1(X,OX) = 0

and there exists a positive integer m and a smooth divisor D ∈ |−mKX | such that

H1(D,ND/X) = 0.

Then deformations of X are unobstructed.

We sketch the proof of Theorem 4.1.2. Instead of proving the unobstruct-

edness directly, we first prove the unobstructedness for the pair of a weak Fano

manifold X and a smooth element D of |−mKX | for a sufficiently large integer m

in Theorem 4.2.2. Next we show that the unobstructedness for (X,D) implies the

unobstructedness for X.

We also show that the Kuranishi space of a smooth projective surface is

smooth if the Kodaira dimension of the surface is negative or 0 in Theorem 4.3.2. It

seems to be known to experts but we give a proof for the convenience of the reader.

4.2 Proof of theorem

Fix an algebraically closed field k of characteristic zero. Let Artk be the cate-

gory of Artinian local k-algebras with residue field k and Sets the category of

sets. For a proper variety X over k and an effective Cartier divisor D on X,

let Def(X,D) : Artk → Sets be the functor sending A ∈ Artk to the set of equiv-

alence classes of proper flat morphisms f : XA → SpecA together with effective

Cartier divisors DA ⊂ XA and marking isomorphisms φ0 : XA ⊗A k → X such that

φ0(DA⊗A k) = D. This is the pair version of the deformation functor DefX defined

in [28]. We see that Def(X,D) is a deformation functor in the sense of Fantechi–

Manetti ([11, Introduction]).

We need the following lemma.

Lemma 4.2.1. Let Z be a smooth proper variety over k and ∆ ⊂ Z a smooth

divisor. Set An := k[t]/(tn+1) for a non-negative integer n. Let Zn → SpecAn

and ∆n ⊂ Zn be deformations of Z and ∆. Let Ω•Zn/An(log ∆n) be the de Rham

complex of Zn/An with logarithmic poles along ∆n (cf. [25, (7.1.1)]). Then we have

the following:

(i) the hypercohomology group Hk(Zn,Ω
•
Zn/An

(log ∆n)) is a free An-module for all

k;
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(ii) the spectral sequence

Ep,q1 := Hq(Zn,Ω
p
Zn/An

(log ∆n))⇒ Hp+q(Zn,Ω
•
Zn/An

(log ∆n)) (4.1)

degenerates at E1;

(iii) the cohomology group Hq(Zn,Ω
p
Zn/An

(log ∆n)) is a free An-module and com-

mutes with base change for any p and q.

Proof. We can prove this by the same argument as in [9, Théorème 5.5]. We give a

proof for the convenience of the reader. We can assume that k = C by the Lefschetz

principle.

(i) Set U := Z \ ∆. Let ι : U ↪→ Z be the open immersion. We see that

the complex Ω•Zn/An(log ∆n) is quasi-isomorphic to ι∗Ω
•
Un/An

by a standard ar-

gument as in [46, Proposition 4.3], where Un → SpecAn is a deformation of U

which is induced by Zn → SpecAn. We have an isomorphism Hk(Zn, ι∗Ω
•
Un/An

) '
Hk(Un,Ω

•
Un/An

) since we have Riι∗Ω
j
Un/An

= 0 for i > 0 and all j. Moreover we

have Hp+q(Un,Ω
•
Un/An

) ' Hp+q(U,An), where the latter is the singular cohomology

on U with coefficient An since Ω•Un/An is a resolution of the sheaf An,U , where An,U

is a constant sheaf on U associated to An (See [9, Lemme 5.3]). Hence we obtain

(i) since we have

Hp+q(Zn,Ω
•
Zn/An

(log ∆n)) ' Hp+q(U,An) ' Hp+q(U,C)⊗An.

Moreover we obtain the equality

dimCHp+q(Zn,Ω
•
Zn/An

(log ∆n)) = dimC(An) · dimCHp+q(Z,Ω•Z(log ∆)).

(ii) By the argument as in [9, (5.5.5)], we see that

dimCH
q(Z,Ωp

Zn/An
(log ∆n)) ≤ dimC(An) · dimCH

q(Z,Ωp
Z(log ∆)) (4.2)

and equality holds if and only if Hq(Z,Ωp
Zn/An

(log ∆n)) is a free An-module. By the

spectral sequence (4.1), we have∑
p+q=k

dimCH
q(Zn,Ω

p
Zn/An

(log ∆n)) ≥ dimCHk(Zn,Ω
•
Zn/An

(log ∆n)). (4.3)
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By the two inequalities (4.2), (4.3) and (i), we obtain

dimC(An) ·
∑
p+q=k

dimCH
q(Z,Ωp

Z(log ∆)) ≥ dimC(An) · dimCHk(Z,Ω•Z(log ∆)).

(4.4)

We have equality in the inequality (4.4) since the spectral sequence (4.1) degenerates

at E1 when n = 0 by [10, Corollaire (3.2.13)(ii)]. Hence we have equality in (4.3)

and obtain (ii).

(iii) This follows from (i) and (ii).

To prove Theorem 4.1.2, we prove the following theorem on unobstructedness

of deformations of a pair.

Theorem 4.2.2. Let X be a smooth proper variety such that H1(X,OX) = 0.

Assume that there exists a smooth divisor D ∈ |−mKX | for some positive integer

m. Then deformations of (X,D) are unobstructed, that is, Def(X,D) is a smooth

functor.

Proof. SetAn := k[t]/(tn+1) andBn := k[x, y]/(xn+1, y2) ' An⊗kA1. For [(Xn, Dn), φ0] ∈
Def(X,D)(An), let T 1((Xn, Dn)/An) be the set of isomorphism classes of pairs ((Yn, En), ψn)

consisting of deformations (Yn, En) of (Xn, Dn) over Bn and marking isomorphisms

ψn : Yn ⊗Bn An → Xn such that ψn(En ⊗Bn An) = Dn, where we use a ring homo-

morphism Bn → An given by x 7→ t and y 7→ 0. Then we see the following.

Claim 4.2.3. We have

T 1((Xn, Dn)/An) ' H1(Xn,ΘXn/An(− logDn)), (4.5)

where ΘXn/An(− logDn) is the dual of Ω1
Xn/An

(logDn).

Proof. We can prove this by a standard argument (cf. [56, Proposition 3.4.17]) using

Bn = An ⊗k A1.

Hence, by [11, Theorem A], it is enough to show that the natural homomor-

phism

γn : H1(Xn,ΘXn/An(− logDn))→ H1(Xn−1,ΘXn−1/An−1
(− logDn−1))

is surjective for the above Xn, Dn and for Xn−1 := Xn ⊗An An−1, Dn−1 := Dn ⊗An
An−1.
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Note that we have a perfect pairing

Ω1
Xn/An

(logDn)× Ωd−1
Xn/An

(logDn)→ OXn(KXn/An +Dn) ' ω⊗1−m
Xn/An

,

where we set d := dimX. We have OXn(KXn/An + Dn) ' ω⊗1−m
Xn/An

since we have

H1(X,OX) = 0 (See [20, Theorem 6.4(b)], for example.). Thus we see that

H1(Xn,ΘXn/An(− logDn)) ' H1(Xn,Ω
d−1
Xn/An

(logDn)⊗ ω⊗m−1
Xn/An

).

Let

πn : Zn := Spec
m−1⊕
i=0

OXn(iKXn/An)→ Xn

be the ramified covering defined by a section σDn ∈ H0(Xn,−mKXn/An) which

corresponds to Dn. We have an isomorphism

π∗nΩ1
Xn/An

(logDn) ' Ω1
Zn/An

(log ∆n)

for some divisor ∆n ∈ |−π∗nKXn/An |. Hence we see that

(πn)∗Ω
d−1
Zn/An

(log ∆n) '
m−1⊕
i=0

Ωd−1
Xn/An

(logDn)(iKXn/An)

and Ωd−1
Xn/An

(logDn)⊗ ω⊗m−1
Xn/An

is one of the direct summands.

Hence it is enough to show that the natural restriction homomorphism

rn : H1(Zn,Ω
d−1
Zn/An

(log ∆n))→ H1(Zn−1,Ω
d−1
Zn−1/An−1

(log ∆n−1))

is surjective, where we set Zn−1 := Zn ⊗An An−1 and ∆n−1 := ∆n ⊗An An−1, since

γn is an eigenpart of rn. By Lemma 4.2.1(iii), we see the required surjectivity. This

completes the proof of Theorem 4.2.2.

Remark 4.2.4. Iacono [23] proved Theorem 4.2.2 when m = 1 without the assump-

tion H1(X,OX) = 0 in [23, Corollary 4.5] as a consequence of the analysis of DGLA.

Remark 4.2.5. We can remove the assumption H1(X,OX) = 0 when m = 1 by a

similar argument as in [47, Corollary 2]. In that case, we see that OXn(KXn/An +

Dn) ' OXn since we have H0(Xn,KXn/An +Dn) ' An by Claim 4.2.1, with Xn, Dn

as in the proof of Theorem 4.2.2.

We do not know whether we can remove the assumption H1(X,OX) = 0 in

Theorem 4.2.2 when m is arbitrary.
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Theorem 4.2.2 implies Theorem 4.1.2 as follows.

Proof of Theorem 4.1.2. Since H1(D,ND/X) = 0, we see that the forgetful mor-

phism

Def(X,D) → DefX

between functors is smooth. Since Def(X,D) is smooth by Theorem 4.2.2, we see

that DefX is also smooth.

Theorem 4.1.2 implies Theorem 4.1.1 as follows.

Proof of Theorem 4.1.1. Let X be a weak Fano manifold of dimension d. By the

base point free theorem, we can take a sufficiently large integerm such that−mKX is

base point free and contains a smooth elementD ∈ |−mKX |. We haveH1(D,ND/X) =

0 since there is an exact sequence

H1(X,OX(D))→ H1(D,ND/X)→ H2(X,OX)

and both outer terms are zero by the Kawamata–Viehweg vanishing theorem. Hence

Theorem 4.1.2 implies Theorem 4.1.1.

Remark 4.2.6. We can prove the following theorem by the same argument as The-

orem 4.1.1.

Theorem 4.2.7. Let X be a complex manifold whose anticanonical bundle is nef and

big. Then deformations of X are unobstructed.

Actually we see that such a complex manifold is Moishezon since there is a

big divisor on X. Hence we can show Lemma 4.2.1 and the base-point free theorem

in this setting. Using these, we can show Theorem 4.2.7 in the same way as Theorem

4.1.1.

Example 4.2.8. We give an example of a weak Fano manifold such thatH2(X,ΘX) 6=
0, where ΘX is the tangent sheaf.

Let f : X → P(1, 1, 1, 3) be the blow-up of the singular point p of the weighted

projective space. We can check that X ' PP2(OP2 ⊕ OP2(−3)) and f is the anti-

canonical morphism of X. Hence −KX = f∗(−KP(1,1,1,3)) and this is nef and big.

Set E := OP2 ⊕OP2(−3). By a direct calculation using the relative Euler sequence

for PP2(E)→ P2, we see that

h2(X,ΘX) = h2(X,ΘX/P2) = h2(P2, E ⊗ E∗) = 1.
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Hence H2(X,ΘX) 6= 0.

Thus we need a technique such as T 1-lifting for the proof of Theorem 4.1.2.

Example 4.2.9. We give an example of a Fano manifold such that neither of the

linear systems |−KX | and |−2KX | contain smooth elements. Our example is a

modification of an example in [29, Example 3.2 (3)].

Let X := X5d ⊂ P(1, . . . , 1, 5, d) = P(1n, 5, d) be a weighted hypersurface of

degree 5d and dimension n. Assume that d 6≡ 0 mod 5 and that 5+n−4d = 2. (For

example, d = 6, n = 21.) The latter condition implies that −KX = OX(2). We see

that the base locus of |−KX | and |−2KX | consists of a point p := H1∩. . .∩Hn∩X5d,

where H1, . . . ,Hn are degree 1 hyperplanes of the first n coordinates of P(1n, 5, d).

We see that every element of |−KX | has multiplicity 2 at the base point p and hence

is singular. We also see that every element of |−2KX | has multiplicity 4 at the base

point p and hence is singular.

Example 4.2.10. We give an example of a smooth projective variety such that

DefX is not smooth and −KX is big.

Let C ⊂ P3 be a smooth curve with an obstructed embedded deformation

which lies in a cubic surface as in [20, Theorem 13.1]. Let µ : X → P3 be the blow-up

of P3 along C. Then X has an obstructed deformation. See [20, Example 13.1.1].

Note that −KX = µ∗OP3(4)−E where E := µ−1(C) and C is contained in a cubic

surface S ⊂ P3. Let S̃ ⊂ X be the strict transform of S. Then we see that −KX is

big since S̃ + |µ∗OP3(1)| ⊂ |−KX |.

Example 4.2.11. We give an example of X and D ∈ |−KX | such that Def(X,D) is

smooth but DefX is not smooth.

Let C ⊂ P3 be a smooth curve in a quartic surface S such that the Hilbert

scheme of curves in P3 is singular at the point corresponding to C (cf. [20, Exercise

13.2]). Let X → P3 be the blow-up of P3 along C. Then X has an obstructed

deformation. However the strict transform D := S̃ ∈ |−KX | of S is smooth and

H1(X,OX) = 0. Hence Def(X,D) is smooth by Theorem 4.2.2.

Example 4.2.12. We give an example of X with an obstructed deformation such

that −KX is nef.

Set X := Tm × P1 where Tm is a complex torus of dimension m ≥ 2. Then

X has an obstructed deformation ([30, p.436–441]). Note that −KX is nef. It is

actually semiample.

It is natural to ask the following question:
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Problem 4.2.13. Let X be a smooth projective variety such that −KX is nef and

H1(X,OX) = 0. Is the Kuranishi space of X smooth?

4.3 The surface case

The following lemma states that smoothness of the Kuranishi space is preserved

under the blow-up at a point.

Lemma 4.3.1. Let S be a smooth projective variety and ν : T → S the blow-up at

a point p ∈ S. Then the functor DefS is smooth if and only if the functor DefT is

smooth.

Proof. Let Def(S,p) be the functor of deformations of a closed immersion {p} ⊂ S

and Def(T,E) the functor as in Section 2, where E := ν−1(p). We can define a natural

transformation

ν∗ : Def(T,E) → Def(S,p)

as follows: given A ∈ Artk and a deformation (T,E) of (T,E) over A, we see that

ν∗OT is a sheaf of flat A-algebras by [63, Corollary 0.4.4] since we have R1ν∗OT = 0.

We also see that ν∗OT(−E) is a sheaf of flat A-modules by [63, Corollary 0.4.4]

since we have R1ν∗OT (−E) = 0 by a direct calculation. Hence we can define a

deformation (S,p) of (S, p) over A by sheaves OS := ν∗OT, Ip := ν∗OT(−E) and

obtain a natural transformation ν∗.

We can also define a natural transformation

ν∗ : Def(S,p) → Def(T,E)

as follows: given a deformation (S,p) of (S, p) over A ∈ Artk, we define a deforma-

tion T of T as the blow-up of S along p. We can also define a deformation E of E

by the inverse image ideal sheaf ν−1Ip · OT, where Ip is the ideal sheaf of p ⊂ S.

We see that ν∗ and ν∗ are inverse to each other. Hence we have Def(T,E) '
Def(S,p) as functors.

We have forgetful morphisms of functors FT : Def(T,E) → DefT and FS : Def(S,p) →
DefS . We see that FT and FS are smooth since we haveH1(E,NE/T ) ' H1(Pd−1,OPd−1(−1)) =

0 and H1(Np/S) = 0, where we set d := dimS.
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Thus we have a diagram

Def(T,E)
∼ //

FT
��

Def(S,p)

FS
��

DefT DefS ,

where FT and FS are smooth. Hence we see the required equivalence.

By this lemma, we see that a smooth projective surface has unobstructed

deformations if and only if its relatively minimal model has unobstructed deforma-

tions.

Using Lemma 4.3.1, we can prove the following:

Theorem 4.3.2. Let X be a smooth projective surface with non-positive Kodaira

dimension. Then the deformations of X are unobstructed.

Proof. By Lemma 4.3.1, we can assume that X does not contain a −1-curve.

If the Kodaira dimension of X is negative, it is known that X ' P2 or

X ' PC(E) for some projective curve C and a rank 2 vector bundle E on C. In

these cases, we see that H2(X,ΘX) = 0 by the Euler sequence or the argument in

[55, p.204].

If the Kodaira dimension of X is zero, it is a K3 surface, an Abelian sur-

face or its étale quotient. It is well known that these surfaces have unobstructed

deformations. Hence we are done.

Remark 4.3.3. Kas [26] gave an example of a smooth projective surface of Kodaira

dimension 1 with an obstructed deformation.
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Chapter 5

Deformations of Q-Calabi-Yau

threefolds and Q-Fano threefolds

5.1 Introduction

We consider algebraic varieties over C.

In this chapter, we continue the study of Q-smoothing of a Q-Fano 3-fold

in Chapter 2. We study the coboundary map of local cohomology introduced in

Section 3.3.2 more precisely.

The following is a main result of this chapter.

Theorem 5.1.1. A Q-Fano 3-fold can be deformed to one with only quotient singu-

larities and singularities isomorphic to (x2+y2+z3+u2 = 0)/Z4 ⊂ C4/Z4(1, 3, 2, 1).

This is a generalization of Theorem 3.1.5. The key tool in the proof is

the coboundary map φUi associated to some local cohomology group of a Stein

neighborhood Ui of a singularity pi on X. (See (5.2) for the definition of φUi .) The

following purely local statement is the main result of Section 5.2.

Theorem 5.1.2. Let (U, p) be a germ of a non-ordinary 3-dimensional terminal

singularity (See Definition 3.3.2).

(i) Assume that the index one cover (V, q) 6' ((x2 + y2 + z3 + u2 = 0), 0). Then

we have φU 6= 0.

(ii) Assume that (V, q) ' ((x2 + y2 + z3 + u2 = 0), 0). Then φU = 0.

This theorem together with Theorem 3.3.5 implies Theorem 5.1.1. However,

the map vanishes for the singularity (x2 +y2 +z3 +u2 = 0)/Z4 as shown in Theorem
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5.1.2 (ii). Thus we need another method to treat a general Q-Fano 3-fold. However,

as an application of Theorem 5.1.2, we obtain the Q-smoothability of some Q-

Calabi–Yau 3-fold (Corollary 5.2.6).

We treat an example of a Q-Fano 3-fold X with several terminal singular-

ities isomorphic to (x2 + y2 + z3 + u2 = 0)/Z4 in Section 5.3. This X satisfies

that H2(X,ΘX) 6= 0. Nevertheless, we shall see that we can deform the terminal

singularities on X.

5.2 Coboundary map of local cohomology

Let (U, p) be a germ of a 3-dimensional non-ordinary terminal singularity. By the

classification([40], [52]), we have

(U, p) ' ((x2 + y2 + g(z, u) = 0), 0)/Z4 ⊂ (C4/Z4, 0), (5.1)

where g(z, u) ∈ m2
C4,0 is some Z4-semi-invariant polynomial in z, u and σ ∈ Z4 acts

on C4 by σ · (x, y, z, u) 7→ (
√
−1x,−

√
−1y,−z,

√
−1u).

We explain the coboundary map of local cohomology which is introduced in

Section 3.3.2 to find a Q-smoothing of a Q-Fano 3-fold (See also [45, Section 1],

[37, Section 4]). Let ν : Ṽ → V be a Z4-equivariant good resolution and F ⊂ Ṽ its

exceptional divisor. Let

τV : H1(V ′,Ω2
V ′(−KV ′))→ H2

F (Ṽ ,Ω2
Ṽ

(logF )(−F − ν∗KV ))

be the coboundary map of the local cohomology. Let π̃ : Ṽ → Ũ := Ṽ /Z4 be the

finite morphism induced by π and E ⊂ Ũ the exceptional locus of µ : Ũ → U .

Let F (0)
U be the Z4-invariant part of π̃∗Ω

2
Ṽ

(logF )(−F − ν∗KV ). Then we have the

coboundary map

φU : H1(U ′,Ω2
U ′(−KU ′))→ H2

E(Ũ ,F (0)
U ) (5.2)

which is the Z4-invariant part of τV .

We have H1
F (Ṽ ,Ω2

Ṽ
(logF )(−F )) = 0 by the proof of [59, Theorem 4]. We

also haveH2
F (Ṽ ,Ω2

Ṽ
(logF )(−F )) = 0 by the Guillén–Navarro Aznar–Puerta–Steenbrink

vanishing theorem. Thus we have an exact sequence

0→ H1(Ṽ ,Ω2
Ṽ

(logF )(−F − ν∗KV ))→ H1(V ′,Ω2
V ′(−KV ′))

τV→ H2
F (Ṽ ,Ω2

Ṽ
(logF )(−F − ν∗KV ))→ 0 (5.3)

62



We have the following inequality.

Proposition 5.2.1. We have

dim Ker τV ≤ dim Im τV . (5.4)

Proof. This is proved in Remark after [45, Theorem(1.1)]. Let us recall the proof

for the convenience of the reader.

By the exact sequence (5.3), it is enough to show that

h1(Ṽ ,Ω2
Ṽ

(logF )(−F )) ≤ h2
F (Ṽ ,Ω2

Ṽ
(logF )(−F )).

We have a surjection

H2
F (Ṽ ,Ω2

Ṽ
(logF )(−F ))→ H2

F (Ṽ ,Ω2
Ṽ

(logF ))

since we have H2
F (Ṽ ,Ω2

Ṽ
(logF )⊗OF ) = Gr2

F H
5
{q}(V,C) = 0. By the local duality,

we have

H2
F (Ṽ ,Ω2

Ṽ
(logF ))∗ ' H1(Ṽ ,Ω1

Ṽ
(logF )(−F )).

Moreover we see that the differential homomorphism

d : H1(Ṽ ,Ω1
Ṽ

(logF )(−F ))→ H1(Ṽ ,Ω2
Ṽ

(logF )(−F ))

is surjective by analysing the spectral sequence

Hq(Ṽ ,Ωp

Ṽ
(logF )(−F ))⇒ Hp+q(Ṽ ,Ω•

Ṽ
(logF )(−F )) = 0

as in the proof of [45, Theorem 1.1]. Thus we obtain relations

h2
F (Ṽ ,Ω2

Ṽ
(logF )(−F )) ≥ h2

F (Ṽ ,Ω2
Ṽ

(logF )) = h1(Ṽ ,Ω1
Ṽ

(logF )(−F ))

≥ h1(Ṽ ,Ω2
Ṽ

(logF )(−F )) (5.5)

and this implies (5.4).

Let T 1
(V,q), T

1
(U,p) be the sets of first order deformations of the germs (V, q)

and (U, p) respectively. Recall that we have an isomorphism T 1
(V,q) ' OV,q/JV,q of

OV,q-modules for the Jacobian ideal JV,q ⊂ OV,q. Hence we have a surjective OV,q-
module homomorphism ε : OV,q → T 1

(V,q) which sends h ∈ OV,q to the corresponding
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deformation εh ∈ T 1
(V,q). Also we have a commutative diagram

T 1
(U,p)

' //
� _

��

H1(U ′,Ω2
U ′(−KU ′))� _

��

T 1
(V,q)

' // H1(V ′,Ω2
V ′(−KV ′)),

where the horizontal isomorphisms are restrictions by open immersions and the up-

per terms inject into the lower terms as Z4-invariant parts. Thus, in the proof of The-

orem 5.2.3, we identify T 1
(V,q), T

1
(U,p) and H1(V ′,Ω2

V ′(−KV ′)), H
1(U ′,Ω2

U ′(−KU ′)) re-

spectively via these isomorphisms.

We use the following notion of right equivalence ([16, Definition 2.9]).

Definition 5.2.2. Let C{x1, . . . , xn} be the convergent power series ring of n vari-

ables. Let f, g ∈ C{x1, . . . , xn}.
f is called right equivalent to g if there exists an automorphism ϕ of C{x1, . . . , xn}

such that ϕ(f) = g. We write this as f
r∼ g.

By using these ingredients, we prove the following.

Theorem 5.2.3. Let (U, p) be a germ of a non-ordinary 3-dimensional terminal

singularity.

(i) Assume that the index one cover (V, q) 6' ((x2 + y2 + z3 + u2 = 0), 0). Then

we have φU 6= 0.

(ii) Assume that (V, q) ' ((x2 + y2 + z3 + u2 = 0), 0). Then φU = 0.

Proof. (i) Suppose that φU = 0. We show the claim by contradiction. We can write

g(z, u) =
∑
ai,jz

iuj for some ai,j ∈ C for i, j ≥ 0 which are zero except finitely

many of them. Since the generator σ ∈ Z4 acts on g by σ · g = −g and on ziuj by

σ · ziuj =
√
−1

2i+j
ziuj , we see that ai,j 6= 0 only if

2i+ j ≡ 2 mod 4. (5.6)

Let Jg := (∂g∂z ,
∂g
∂u) ⊂ C[z, u] be the Jacobian ideal of the polynomial g. Note that

we have T 1
(V,q) ' C[z, u]/(g, Jg) since εx = εy = 0 ∈ T 1

V,q.

(Case 1) Assume that a0,2 6= 0. We can write

g(z, u) = u2(1 + h1(z, u)) + h2(z)
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for some polynomials h1(z, u) ∈ (z, u) ⊂ C[z, u] and h2(z) ∈ (z) ⊂ C[z]. Thus

g(z, u) ∈ OC2,0 is right equivalent to u2 + h2(z). We see that h2(z) ∈ OC,0 is

right equivalent to z2i0+1 for some positive integer i0 since (g = 0) has an isolated

singularity and by the condition (5.6). Thus we have

(V, q) ' ((x2 + y2 + z2i0+1 + u2 = 0), 0).

If i0 = 1, it contradicts the assumption (V, q) 6' ((x2 + y2 + z3 + u2 = 0), 0).

Hence we have i0 ≥ 2. By calculating the partial derivatives of x2 +y2 +z2i0+1 +u2,

we see that ε1, εz, εz2 ∈ T 1
(V,q) are linearly independent and

dimT 1
(V,q) ≥ 3.

On the other hand, we see that τV (εz) = 0 since we assumed φU = 0 and εz ∈ T 1
(U,p).

By this and the fact that τV is an OV,q-module homomorphism, we obtain a surjec-

tion C[z, u]/(z, u) → Im τV since εu = 0. By this surjection and C[z, u]/(z, u) ' C,

we obtain dim Im τV ≤ 1. By this and the inequality (5.4), we obtain an inequality

dimT 1
(V,q) = dim Im τV + dim Ker τV ≤ 1 + 1 = 2

and it is a contradiction.

(Case 2) Assume that a0,2 = 0. Then we see that ai,j 6= 0 only if 2i+ j ≥ 6

by (5.6). Note that a monomial ziuj with 2i + j ≥ 6 is some multiple of either

z3, z2u2, zu4 or u6. By computing partial derivatives of these monomials, we see

that (g, Jg) ⊂ (z2, zu2, u4). Thus we see that ε1, εz, εzu, εu, εu2 , εu3 ∈ T 1
(V,q) are

linearly independent and we obtain

dimT 1
(V,q) ≥ 6. (5.7)

On the other hand, by the assumption φU = 0, we have τV (εz) = 0, τV (εu2) =

0 since εz, εu2 ∈ T 1
(U,p). Thus we have a relation (z, u2) ⊂ Ker τV ◦ ε ⊂ OV,q and

obtain a surjection C[z, u]/(z, u2)→ Im τV . This implies an inequality dim Im τV ≤
dimC[z, u]/(z, u2) = 2. By this inequality and the inequality (5.4), we have an

inequality

dimT 1
(V,q) = dim Ker τV + dim Im τV ≤ 2 + 2 = 4.

This contradicts (5.7).

Hence we obtain φU 6= 0 and finish the proof of (i).
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(ii) For non-negative integers i, j, we set

bi,j := dimHj(Ṽ ,Ωi
Ṽ

(logF )(−F )),

li,j := dimHj(F,Ωi
Ṽ

(logF )⊗OF ).

Let sk(V, q) for k = 0, 1, 2, 3 be the Hodge number of the Milnor fiber of (V, q) as

in [59, Section 4]. By [59, Theorem 6], we have s0 = 0, s1 = b1,1, s2 = b1,1 + l1,1 and

s3 = l0,2. We see that l0,2 = 0 by [59, Lemma 2]. Since the sum
∑3

k=0 sk(V, q) is the

Milnor number of (V, q), we obtain 2b1,1 + l1,1 = 2. Since b1,1 6= 0 by [45, Theorem

2.2], we obtain

b1,1 = 1, l1,1 = 0. (5.8)

There exists an exact sequence

H0(F,Ω1
Ṽ

(logF )⊗OF )→ H1(Ṽ ,Ω1
Ṽ

(logF )(−F ))→ H1(Ṽ ,Ω1
Ṽ

(logF ))

→ H1(F,Ω1
Ṽ

(logF )⊗OF ). (5.9)

Since l1,0 = 0 by [59, Lemma 1], the both outer terms are zero and the homomor-

phism in the middle is an isomorphism. By this and (5.8), we have

C ' H1(Ṽ ,Ω1
Ṽ

(logF )) ' H2
F (Ṽ ,Ω2

Ṽ
(logF )(−F ))∗. (5.10)

Suppose that τV (εz) 6= 0. Then εz 6∈ Ker τV . This implies that Ker τV = 0

since T 1
(V,q) ' C[z]/(z2) as C[z]-modules. Thus C2 ' Im τV ' H2

F (Ṽ ,Ω2
Ṽ

(logF )(−F )).

This contradicts (5.10).

Thus we obtain τV (εz) = 0. Since T 1
(U,p) ' C is generated by εz, we see that

φU = 0. Thus we finish the proof of (ii).

We have another coboundary map

τ̄V : H1(V ′,Ω2
V ′(−KV ′))→ H2

F (Ṽ ,Ω2
Ṽ

(−ν∗KV ))

and this fits in the commutative diagram

H1(V ′,Ω2
V ′(−KV ′))

τ̄V //

τV
��

H2
F (Ṽ ,Ω2

Ṽ
(−ν∗KV ))

H2
F (Ṽ ,Ω2

Ṽ
(logF )(−F − ν∗KV )),

& � τ ′V

44
(5.11)
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where the injectivity of τ ′V is proved in the proof of [45, Theorem 1.1].

Let F̄ (0)
U := (π̃∗Ω

2
Ṽ

(−ν∗KV ))Z4 be the Z4-invariant part. Let

φ̄U : H1(U ′,Ω2
U ′(−KU ′))→ H2

E(Ũ , F̄ (0)
U )

be the coboundary map. It is the Z4-invariant part of τ̄V . As the Z4-invariant part

of the diagram (5.11), we obtain the following diagram;

H1(U ′,Ω2
U ′(−KU ′))

φ̄U //

φU
��

H2
E(Ũ , F̄ (0)

U )

H2
E(Ũ ,F (0)

U ).

) 	 φ′U
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By these arguments, we obtain the following corollary of Theorem 5.2.3.

Corollary 5.2.4. Let (U, p) be a germ of a non-ordinary 3-dimensional terminal

singularity. Assume that φ̄U = 0.

Then we have (U, p) '
(
(x2 + y2 + z3 + u2 = 0)/Z4(1, 3, 2, 1), 0

)
.

Since V has only rational singularities, we can define the blow-down mor-

phism ([63])

ν∗ : H1(Ṽ ,Ω2
Ṽ

(−KṼ ))→ H1(V ′,Ω2
V ′(−KV ′)).

We can prove the relation

Im ν∗ ⊂ Ker τV = Ker τ̄V (5.12)

by the same argument as in Claim 3.3.7.

5.2.1 Application to Q-smoothing problems

By Proposition 5.2.3 and Theorem 3.3.5 we obtain the following. It almost solves

the conjecture in [3, 4.8.3].

Corollary 5.2.5. Let X be a Q-Fano 3-fold. Then X can be deformed to a Q-Fano

3-fold with only quotient singularities and the non-ordinary terminal singularities

(x2 + y2 + z3 + u2 = 0)/Z4(1, 3, 2, 1).

As another corollary of Theorem 5.2.3, we obtain a similar result for Q-

Calabi–Yau 3-fold. Here, a Q-Calabi–Yau 3-fold means a normal projective 3-fold

with only terminal singularities whose canonical divisor is a torsion class. Let

r be the Gorenstein index of X, that is, the minimal positive integer such that
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OX(rKX) ' OX . The isomorphism OX(rKX) ' OX determines the global index

one cover π : Y := Spec⊕r−1
j=0OX(jKX)→ X.

Corollary 5.2.6. Let X be a Q-Calabi–Yau 3-fold. Assume that the global index

one cover Y → X is Q-factorial.

Then a Q-Calabi–Yau 3-fold X can be deformed to one with only quotient

singularities and singularities isomorphic to (x2 + y2 + z3 + u2 = 0)/Z4(1, 3, 2, 1).

Proof. The proof is a modification of the proof of [37, Main Theorem 1]. We sketch

the proof for the convenience of the reader.

We can assume that X has only quotient singularities and non-ordinary ter-

minal singularities by [37, Main Theorem 1]. First we prepare notations to define

the diagram (5.13).

Let p1, . . . , pl ∈ X be the non-ordinary singularities and U1, . . . , Ul their Stein

neighborhoods. Let ν : Ỹ → Y be a good Zr-equivariant resolution, π̃ : Ỹ → X̃ :=

Ỹ /Zr the quotient morphism and µ : X̃ → X the induced birational morphism.

Let Vi := π−1(Ui), Ṽi := ν−1(Vi) and νi := ν|Ṽi : Ṽi → Vi be the restrictions.

Let Ũi := µ−1(Ui) and π̃i := π̃|Ṽi : Ṽi → Ũi the induced finite morphism. Let F̄ (0) :=(
π̃∗Ω

2
Ỹ

(−ν∗KV )
)Zr

be the Zr-invariant part and F̄ (0)
i := F̄ (0)|Ũi its restriction.

Then we have the diagram

H1(X ′,Ω2
X′(−KX′))

⊕ψi //

⊕pUi
��

H2
E(X̃, F̄ (0))

⊕Bi //

ϕi '
��

H2(X̃, F̄ (0))

H1(U ′i ,Ω
2
U ′i

(−KU ′i
))

φ̄i // ⊕li=1H
2
Ei

(Ũi, F̄ (0)
i )

(5.13)

Note that Bi ◦ ϕ−1
i ◦ φ̄i is the Zr-invariant part of the composition

H1(V ′i ,Ω
2
V ′i

(−KV ′i
))→ H2

Fi(Ṽi,Ω
2
Ṽi

(−ν∗iKVi))→ H2
F (Ỹ ,Ω2

Ỹ
(−ν∗KY ))

→ H2(Ỹ ,Ω2
Ỹ

(−ν∗KY )). (5.14)

We see that this is zero by [45, Proposition 1.2] since we assumed that Y is Q-

factorial. Thus we also see that Bi ◦ ϕ−1
i ◦ φ̄i = 0.

There exists an element ηi ∈ H1(U ′i ,Ω
2
U ′i

(−KU ′i
)) such that φ̄i(ηi) 6= 0 by

Corollary 5.2.5. Since Bi ◦ ϕ−1
i ◦ φ̄i(ηi) = 0, there exists η ∈ H1(X ′,Ω2

X′(−KX′))

such that ψi(η) = ϕ−1
i (φ̄i(ηi)). By the relation (5.12) and pUi(η) − ηi ∈ Ker φ̄i,

we see that pUi(η) 6∈ Im(νi)∗, where we use the inclusion H1(U ′i ,Ω
2
U ′i

(−KU ′i
)) ⊂

H1(V ′i ,Ω
2
V ′i

(−KU ′i
)). By arguing as in the end of the proof of Theorem 3.3.5, we can
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deform singularity pi ∈ Ui as long as φ̄i 6= 0. By Corollary 5.2.4, we obtain a required

deformation since the deformations of a Q-Calabi–Yau 3-fold are unobstructed [42].

5.3 Examples

We investigate an example of a Q-Fano 3-fold with the singularity (x2+y2+z3+u2 =

0)/Z4(1, 3, 2, 1). The following is a modification of the example given in [43, Example

5].

Example 5.3.1. Let S := P1×P1 and L := OS(−1,−1) = pr∗1OP1(−1)⊗pr∗2OP1(−1).

Set

ϕ1 := s0s1

3∏
i=0

(s0 − ζi4s1), ϕ2 := t0t1

3∏
j=0

(t0 − ζj4t1) ∈ H0(P1,O(6)),

where ζ4 :=
√
−1 and s0, s1 and t0, t1 are the homogeneous coordinates on P1. Set

b0 := pr∗1 ϕ1 ⊗ pr∗2 ϕ2.

Let W0 ⊂ PS(OS ⊕ L⊗2 ⊕ L⊗3) be a hypersurface defined by an equation

fW0 := Y 2Z = X3 + b0Z
3, where X,Y, Z are sections determined by natural inclu-

sions

X : L⊗2 ↪→ OS ⊕ L⊗2 ⊕ L⊗3,

Y : L⊗3 ↪→ OS ⊕ L⊗2 ⊕ L⊗3,

Z : OS ↪→ OS ⊕ L⊗2 ⊕ L⊗3.

By [43, Example 5], a small deformation of W0 is a hypersurface of the form

W = (Y 2Z = X3 + aXZ2 + bZ3) ⊂ PS(OS ⊕ L⊗2 ⊕ L⊗3),

where a ∈ H0(S,L⊗−4), b ∈ H0(S,L⊗−6). Set p1 := [0 : 1], p2 := [1 : 0], p3 :=

[1 : 1], p4 := [ζ4 : 1], p5 := [−1 : 1], p6 := [−ζ4 : 1] ∈ P1. Let π : W0 → S be the

composition W0 ↪→ PS(OS ⊕ L⊗2 ⊕ L⊗3) → S. We see that W0 has 36 singular

points pi,j for 1 ≤ i, j ≤ 6 such that π(pi,j) = (pi, pj) ∈ S. They are all isomorphic

to a cDV singularity

0 ∈ A1,2 := (st+ x3 + y2 = 0) ⊂ C4

The elliptic fibration π : W0 → S has a section Σ := (X = Z = 0). Since W0

is smooth along Σ and NΣ/W0
' OS(−1,−1), we have a contraction morphism

ν : W0 → X0. X0 is a Fano 3-fold with only terminal Gorenstein singularities and
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we have H2(X0,ΘX0) 6= 0 by [43].

Let φ := φ1 × φ2 be an automorphism determined by

φ1 = φ2 =

(
ζ4 0

0 1

)
∈ AutP1 ' PGL(2,C).

Note that

φ∗1s0 = ζ4s0, φ
∗
1s1 = s1, φ

∗
2t0 = ζ4t0, φ

∗
2t1 = t1.

This induces Φ ∈ Aut(PS(OS ⊕ L⊗2 ⊕ L⊗3)) by the base change. We also have

ψ ∈ Aut(OS ⊕ L⊗2 ⊕ L⊗3) induced by the matrix1 0 0

0 −1 0

0 0 −ζ4


and this ψ induces Ψ ∈ AutS(PS(OS ⊕ L⊗2 ⊕ L⊗3)) such that

Ψ∗X = −X, Ψ∗Y = −ζ4Y, Ψ∗Z = Z.

Set θ := Ψ◦Φ. Then we see that θ∗(fW0) = −fW0 and θ induces θW0 ∈ AutW0. Since

θ4
W0

= id, we have the Z4-action on W0. Let V0 := W0/Z4 be the quotient. Since the

section Σ of π is preserved by θW0 , we have the contraction µ : V0 → Y0 := X0/Z4

of Σ/Z4 ⊂ V0. Note that the 4 singularities pi,j such that 1 ≤ i, j ≤ 2 are fixed

by the automorphism θ and the remaining 32 singularities pi,j are divided into 8

θ-orbits. Thus we see that V0 has 8 A1,2-singularities and 4 singular points which

are isomorphic to

A1,2/4 := (st+ x3 + y2 = 0)/Z4 ⊂ C4
s,t,x,y/Z4(1, 1, 2, 3),

where Z4 acts on s, t, x, y with weights 1, 1, 2, 3. Let q := µ(Σ/Z4) ∈ Y0 be the

singular point arises from the contraction µ. We can check that the singular point

q is isomorphic to (xy + zu = 0)/Z4(1, 1, 1, 1). We see that this singularity is rigid.

Let T 1
V0

and T 1
Y0

be the sets of first order deformations of V0 and Y0 respectively.

We have a blow-down morphism µ∗ : T 1
V0
→ T 1

Y0
([63]) since Y0 has only rational

singularities. Thus we see that µ∗ : T 1
V0
→ T 1

Y0
is an isomorphism.

We see that X0 → Y0 is étale outside finite points and −KY0 is ample.

We shall show that H2(V0,ΘV0) 6= 0. It is enough to show that T 1
V0
→

H0(V0, T 1
V0

) is not surjective, where T 1
V0

:= Ext1(Ω1
V0
,OV0) is the Ext sheaf and is

supported on singularities of V0.
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By the description of deformations of W0, we have a surjective homomor-

phism

H0(S,L⊗−4)⊕H0(S,L⊗−6)→ T 1
W0

which sends (a, b) on the L.H.S. to a deformation

(Y 2Z = X3 + λaXZ2 + (b0 + λb)Z3) ⊂ PS(OS ⊕ L⊗2 ⊕ L⊗3)× SpecC[λ]/(λ2).

Since we have Ψ∗(XZ2) = −XZ2 and Ψ∗(Z3) = Z3, by taking the Z4-equivariant

deformations, we obtain a surjective homomorphism

H0(S,L⊗−4)Z4 ⊕H0(S,L⊗−6)[2] → T 1
V0
,

where H0(S,L⊗−4)Z4 is the Z4-invariant part and

H0(S,L⊗−6)[2] := {s ∈ H0(S,L⊗−6) | θ∗W0
(s) = −s}.

We can compute that H0(S,L⊗−4)Z4 has a basis

s4
1 ⊗ t41, s4

1 ⊗ t40, s0s
3
1 ⊗ t30t1, s2

0s
2
1 ⊗ t20t21, s3

0s1 ⊗ t0t31, s4
0 ⊗ t41, s4

0 ⊗ t40.

Thus we obtain dimH0(S,L⊗−4)Z4 = 7.

Let q1, . . . , q8 ∈ V0 be the A1,2-singularities. For i = 1, . . . , 8, the semi-

universal family of a A1,2-singularity qi is (st + x3 + σix + τi + y2 = 0) ⊂ C4 × C2

over C2 with coordinates σi, τi. Thus we have

T 1
V0,qi ' Cσi ⊕ Cτi.

Let r1, . . . , r4 ∈ V0 be the A1,2/4-singularities. The semi-universal family of rj is

given by (st + x3 + ρjx + y2 = 0)/Z4 ⊂ C4/Z4 × C over C with a coordinate ρj .

Thus we have

T 1
V0,rj ' Cρj .

We have a commutative diagram

H0(S,L⊗−4)Z4 ⊕H0(S,L⊗−6)[2] //

��

T 1
V0

��⊕8
i=1(Cσi ⊕ Cτi)⊕

⊕4
j=1 Cρj

' // H0(V0, T 1
V0

).

We see that the image of H0(S,L⊗−4)Z4 is contained in
⊕8

i=1 Cσi ⊕
⊕4

j=1 Cρj and
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the image of H0(S,L⊗−6)[2] is contained in
⊕8

i=1 Cτi. Thus we see that

dim Coker(α : T 1
V0
→ H0(V0, T 1

V0
))

≥ dim Coker(α′ : H0(S,L⊗−4)Z4 →
8⊕
i=1

Cσi ⊕
4⊕
j=1

Cρj) ≥ 8 + 4− 7 = 5. (5.15)

Thus α is not surjective and H2(Y0,ΘY0) 6= 0.

By Theorem 3.3.5 and Corollary 5.2.5, we can deform 8 A1,2-singularities.

The remaining 4 A1,2/4-singularities can not be treated by Corollary 5.2.5. Never-

theless, we can deform these singularities. Indeed, the elements s4
0⊗ t40, s4

0⊗ t41, s4
1⊗

t40, s
4
1 ⊗ t41 ∈ H0(S,L⊗−4)Z4 induce Q-smoothings of p1,1, p1,2, p2,1, p2,2 respectively.
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Chapter 6

Deforming non-Du Val

elephants of Q-Fano 3-folds

6.1 Introduction

In this chapter, we consider Conjecture 3.1.7 on deformations of elephants of a

Q-Fano 3-fold. The conjecture states that; Let X be a Q-Fano 3-fold such that

|−KX | 6= ∅. Then X has a deformation f : X → ∆1 such that |−KXt | contains a

Du Val elephant for t 6= 0.

We show that, if there is an elephant with only isolated singularities and X

has only quotient singularities, we have such a good deformation as follows.

Theorem 6.1.1. Let X be a Q-Fano 3-fold with only quotient singularities. Assume

that there exists D ∈ |−KX | with only isolated singularities.

Then there exists a deformation (X ,D)→ ∆1 of (X,D) over a unit disc such

that Dt has only Du Val singularities for t 6= 0.

The assumption that X has only quotient singularities is reasonable since it

is conjectured that a Q-Fano 3-fold X can be deformed to one with only quotient

singularities. Indeed, it is solved in most of the cases (See Theorem 3.1.5 and

Theorem 5.1.1).

The statement is not empty since there is an example of a Q-Fano 3-fold with

only terminal quotient singularities and with only non-Du Val elephants (Example

6.4.4).
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6.1.1 Strategy of the proof

Let SingD := {p1, . . . , pl}, Ui ⊂ X a Stein neighborhood of pi for i = 1, . . . , l

and Di := D ∩ Ui. Let T 1
(X,D), T

1
(Ui,Di)

be the sets of first order deformations of

the pair (X,D) and (Ui, Di) respectively. Since deformations of the pair (X,D) are

unobstructed by Theorem 3.1.6, it is enough to find an element η ∈ T 1
(X,D) which de-

forms singularities of Di. We study the restriction homomorphism ⊕pUi : T 1
(X,D) →

⊕li=1T
1
(Ui,Di)

and want to lift a local deformation ηi ∈ T 1
(Ui,Di)

. There exists an exact

sequence

T 1
(X,D)

⊕pUi→ ⊕li=1T
1
(Ui,Di)

→ H2(X,ΘX(− logD)),

where ΘX(− logD) is the sheaf of tangent vectors which vanish along D. One direct

approach is to try to prove H2(X,ΘX(− logD)) = 0. However, this strategy does

not work well. Thus we should study the map ⊕pUi more precisely.

For this purpose, we use some local cohomology groups supported on the

exceptional divisor of a suitable “V-resolution” µi : Ũi → Ui of the pair (Ui, Di) for

i = 1 . . . , l. A V-resolution means a proper birational morphism such that Ũi has

only quotient singularities and µ−1
i (Di) has VNC support. We use the commutative

diagram of the form

T 1
(X,D)

⊕pUi //

⊕ψi ))

⊕li=1T
1
(Ui,Di)

⊕φi
��

⊕li=1H
2
Ei

(Ũi,Ω
2
Ũi

(log D̃i + Ei)),

where D̃i ⊂ Ũi is the strict transform of Di. The two key statements are the non-

vanishing of φi and the surjectivity of ψi. In order to show φi 6= 0, we should

carefully choose a V-resolution µi : Ũi → Ui. We first choose a suitable weighted

blow-up µi,1 : Ui,1 → Ui such that KUi,1 +D̃i−µ∗i,1(KUi +Di) has negative coefficient

(Lemma 6.3.1, Lemma 6.3.3 and Lemma 6.3.4). Next we construct a suitable V-

resolution µi,12 : Ũi,2 → Ũi,1 of the pair (Ui,1, µ
−1
i,1 (Di)) (Lemma 6.3.6). By these

careful choices, we can achieve φi 6= 0 in Lemma 6.3.10. The surjectivity of ψi

follows from the fact that X \D is affine. Here we need the Fano assumption.
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6.2 Preliminaries on deformations of a pair

6.2.1 Preliminaries on weighted blow-up

We prepare several properties of the weighted blow-up. We refer [22, Section 3] for

more details.

Let v := 1
r (a1, . . . , an) ∈ 1

rZ
n, N := Zn + Zv a lattice and M := Hom(N,Z).

Let e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) be a basis of NR := N ⊗ R and σ :=

Rn≥0 ⊂ Rn the cone determined by e1, . . . , en. Let Uv := SpecC[σ∨ ∩M ] be the

associated toric variety. We know that Uv ' Cn/Zr(a1, . . . , an), where the R.H.S.

is the quotient of Cn by the Zr-action

(x1, . . . , xn) 7→ (ζa1
r x1, . . . , ζ

an
r xn),

where x1, . . . , xn are the coordinates on Cn and ζr is the primitive r-th root of unity.

Let v1 := 1
r (b1, . . . , bn) ∈ N be a primitive vector such that bi > 0 for all i.

Let Σ1 be a fan which is formed by the cones σi generated by {e1, . . . , ei−1, v1, ei+1, . . . , en}
for i = 1, . . . , n. Let U1 be the toric variety associated to the fan Σ1. Let µ1 : U1 → U

be the toric morphism associated to the subdivision. It is a birational morphism

with an exceptional divisor E1 := µ−1
1 (0) ' P(b1, . . . , bn). We call µ1 the weighted

blow-up with weights v1.

Let f :=
∑
fi1,...,inx

i1
1 · · ·xinn ∈ C[x1, . . . , xn] be the Zr-semi-invariant poly-

nomial with respect to the Zr-action on Cn. Let

wtv1(f) := min{
n∑
j=1

bjij
r
| fi1,...,in 6= 0}

be the v1-weight of f . Let Df := (f = 0)/Zr ⊂ U be the divisor determined by f

and Df,1 ⊂ U1 the strict transform of Df . Then we have the following;

KU1 = µ∗1KU +
1

r
(

n∑
i=1

bi − r)E1, (6.1)

Df,1 = µ∗1Df − wtv1(f)E1. (6.2)

Let U1,i ⊂ U1 be the affine open subset which corresponds to the cone σi.

Then we have U1 =
⋃n
i=1 U1,i and

U1,i ' Cn/Zai(−a1, . . . ,
i−th
r , . . . ,−an).
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Moreover the morphism µ1|U1,i : U1,i → U is described by

(x1, . . . , xn) 7→ (x1x
a1/r
i , . . . , x

ai/r
i , . . . , xnx

an/r
i ).

6.2.2 Deformations of a divisor in a terminal 3-fold

We first define discrepancies of a log pair.

Definition 6.2.1. Let U be a normal variety and D its divisor such that KU +D

is Q-Cartier, that is, m(KU + D) is a Cartier divisor for some positive integer m.

Let µ : Ũ → U be a proper birational morphism from another normal variety and

E1, . . . , El its exceptional divisors. Let D̃ ⊂ Ũ be the strict transform of D.

We define a rational number a(Ei, U,D) as the number such that

m(KŨ + D̃) = µ∗(m(KU +D)) +

l∑
i=1

ma(Ei, U,D)Ei.

We call a(Ei, U,D) the discrepancy of Ei with respect to the pair (U,D).

Let U be a Stein neighborhood of a 3-fold terminal singularity of Gorenstein

index r and D a Q-Cartier divisor on U . We have the index one cover πU : V :=

Spec⊕r−1
j=0OU (jKU ) → U determined by an isomorphism OU (rKU ) ' OU . Let

G := Gal(V/U) ' Zr be the Galois group of πU . This induces a G-action on the pair

(V,∆), where ∆ := π−1
U (D). We can define functors of G-equivariant deformations

of (V,∆) as follows.

Definition 6.2.2. Let DefG(V,∆) : (ArtC) → (Sets) be a functor such that, for A ∈
(ArtC), a set DefG(V,∆)(A) ⊂ Def(V,∆)(A) is the set of deformations (V,∆) of (V,∆)

over A with a G-action which is compatible with the G-action on (V,∆).

We can also define the functor DefGV : (ArtC) → (Sets) of G-equivariant

deformations of V similarly.

Proposition 6.2.3. We have isomorphisms of functors

DefG(V,∆) ' Def(U,D), DefGV ' DefU . (6.3)

Moreover, these functors are unobstructed and the forgetful homomorphism Def(U,D) →
DefU is a smooth morphism of functors.

Remark 6.2.4. The latter isomorphism DefGV ' DefU is given in [42, Proposition

3.1].
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Proof. For a G-equivariant deformation of (V,∆), we can construct a deformation

of (U,D) by taking its quotient by G. Conversely, given a deformation (U ,D) of

(U,D). Let ι : U ′ := U \ {p} ↪→ U be an open immersion and U ′ → SpecA a

deformation of U ′ induced by U . Let ω
[i]
U/A := ι∗ω

⊗i
U ′/A. This is flat over An by [31,

Theorem 12]. Thus we can construct a G-equivariant deformation of (V,∆) by

πU : V := SpecU ⊕r−1
i=0ω

[i]
U/A → U

and ∆ := π∗U (D), where πU is defined by an isomorphism ϕsU : ω
[r]
U/A ' OU for some

nowhere vanishing section sU ∈ H0(U , ω[r]
U/A). Note that πU is independent of the

choice of a section sU . We can check that these constructions are converse to each

other. Thus we obtain the required isomorphisms of functors.

Since V has only l.c.i. singularities and ∆ is its Cartier divisor, we see the

latter statements. Thus we finish the proof of Proposition 6.2.3.

These arguments imply the following.

Proposition 6.2.5. Let U,D, πU : V → U,∆ as above. Then we have

T 1
(U,D) ' (T 1

(V,∆))
G, T 1

U ' (T 1
V )G.

We check these isomorphisms in the following examples.

Example 6.2.6. Let U := C3/Z2(1, 1, 1) and D := (x3 + y3 + z3 = 0)/Z2 ⊂ U its

divisor. In this case, we can write V = C3 and ∆ = (x3 + y3 + z3 = 0) ⊂ V . We

have

T 1
(U,D) ' (T 1

(V,∆))
Z2 ' (OC3,0/(x

2, y2, z2))[−1] ' Cηx ⊕ Cηy ⊕ Cηz ' C3,

where (OC3,0/(x
2, y2, z2))[−1] := {f ∈ OC3,0/(x

2, y2, z2) | g · f = −f}.

6.2.3 Additional lemma

We need the following lemma due to Professor Angelo Vistoli.

Lemma 6.2.7. Let f ∈ C[x, y, z] be a polynomial which defines an isolated singu-

larity 0 ∈ D := (f = 0) ⊂ C3. Assume that D := (f + tx = 0) ⊂ C3 ×∆1 defines

a smoothing of D over a unit disk ∆1. Let g ∈ C[x, y, z] be a polynomial such that

mult0 g ≥ 2. Then D′ := (f + t(x+ g) = 0) ⊂ C3 ×∆1 is also a smoothing of D.
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Proof. Consider the linear system

{C[s:t] := (sf + t(x+ g) = 0) ⊂ C3 | [s : t] ∈ P1}.

By Bertini’s theorem C[s:t] is smooth away from the base points of the linear system,

for all but finitely many values of [s : t]. If p ∈ C3 is a base point of the linear system,

then either p is the origin, in which case C[0:1] is smooth at p, or is not, and in this

case C[1:0] is smooth at p. Since being smooth at a base point is an open condition,

we have that Ct is smooth at all points of C3 for all but finitely many values of

t.

6.2.4 Blow-down morphism of deformations

Let X be an algebraic variety and X̃ → X its resolution of singularities. Suppose

we have a deformation X̃ → SpecA over an Artin ring A. If X has only rational

singularities, we can “blow-down” the deformation X̃ to a deformation of X.

We need the following proposition in general setting.

Proposition 6.2.8. ([63, Section 0]) Let X be an algebraic scheme over k and

A ∈ Artk. Let X → SpecA be a deformation of X and F a quasi-coherent sheaf on

X , flat over A, inducing F := F ⊗A k on X.

If H1(X,F ) = 0, then φ0 is an isomorphism and H0(X ,F) is A-flat.

Proposition 6.2.8 implies the following.

Corollary 6.2.9. Let X → Y be a proper birational morphism of integral normal

k-schemes. Assume that R1f∗OY = 0.

Then there exists a morphism of functors

f∗ : DefX → DefY

defined as follows: For a deformation X → SpecA of X over A ∈ Artk, we define

its image by f∗ as the scheme Y = (Y, f∗OX ).

We call this transformation the blow-down morphism.

For a surface with non-rational singularities, Wahl considered “equisingular-

ity” of deformations via the blow-down transformation. Although the blow-down

transformation is not always possible, we can still consider the “equisingular defor-

mation functor” as follows.

Definition 6.2.10. Let U := SpecR be an affine normal surface over k with a

singularity at p and f : X → U a resolution of a singularity such that f−1(p) has SNC
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support. Wahl ([63, (2.4)]) defined an equisingular deformation of the resolution of

a singularity as a deformation of (X,E) whose blow-down can be defined. More

precisely, he defined a functor ESX : Artk → (Sets) by setting

ESX(A) := {(X , E) ∈ Def(X,E)(A) | H0(X ,OX ) : A-flat.}

There exists a natural transformation f∗ : ESX → DefU and this induces a linear

map f∗(A1) : ESX(A1)→ DefU (A1) on the tangent spaces.

Equisingular deformation should preserve some properties of a singularity.

For example, it is known that equisingular deformations of an isolated 2-dimensional

hypersurface singularity do not change the Milnor number ([63]). In particular,

smoothings of a hypersurface singularity can not be equisingular. However, the

situation is a bit different in higher codimension case. Although a singularity has

high multiplicity in general, an equisingular deformation may be induced by an

equation of multiplicity one. This phenomenon does not happen in the hypersurface

case as shown in Lemma 6.2.7. In the following, we exhibit such an example due to

Wahl ([64]) of a deformation of an isolated complete intersection singularity (ICIS

for short).

Example 6.2.11. Let U := (xy − z2 = x4 + y4 + w2 = 0) ⊂ C4 be an ICIS and

U := (xy − z2 + tw = x4 + y4 + w2 = 0) ⊂ C4 × C a deformation of U , where

x, y, z, w are coordinates on C4 and t is a deformation parameter of C. For any

value of t, the singularity Ut is a cone (Ct,KCt) for a smooth curve Ct of genus

3 and its canonical bundle, that is, Ut ' Spec⊕∞k=0H
0(Ct, kKCt). We see that

C0 ' (xy − z2 = x4 + y4 +w2 = 0) ⊂ P(1, 1, 1, 2) is a hyperelliptic curve and Ct for

t 6= 0 is a smooth quartic curve in P2. The singularity has a resolution

ft : Tot(OCt(KCt)) := Spec⊕∞k=0OCt(kKCt)→ Ut,

where Tot(OCt(KCt)) is the total space of the line bundle OCt(KCt). It is actually

a contraction of the zero section. Thus we get a family of contractions Ũ → U .

Let ηw ∈ T 1
(U,p) be the element corresponding to the deformation U . By the above

description, we see that ηw ∈ Im(f0)∗. Recall that T 1
U,p ' O

⊕2
U,p/Jp for the Jacobian

sub-module Jp determined by the partial derivatives of the defining equations of U .

Since the order of w is one, we see that ηw 6∈ m2
U,pT

1
(U,p).

We use the pair version of the blow-down transformation as follows.

Let X be a normal variety with only rational singularities and D =
∑

j∈J Dj

a sum of effective Cartier divisors Dj on X. Let µ : X̃ → X be a resolution of
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singularities of X. Let D̃ ⊂ X̃ be the strict transform of D and E =
∑m

i=1Ei

the exceptional locus of µ. Since X has only rational singularities, we see that

µ∗OX̃ ' OX and R1µ∗OX̃ = 0.

Proposition 6.2.12. Let X,D, X̃, D̃, E be as above. Then we can define a mor-

phism of functors

µ∗ : Def(X̃,D̃+E) → Def(X,D)

Proof. Consider a deformation (X̃ ,
∑

j∈J D̃j +
∑m

i=1 Ei) of (X, D̃ + E) over A ∈
Artk. We can blow down a deformation X̃ of X̃ over A as in Corollary 6.2.9 since

R1µ∗OX̃ = 0.

Let IDj , IEi ⊂ OX̃ be the ideal sheaves of given deformations of Dj , Ei re-

spectively. We can write

µ∗Dj = D̃j +
m∑
i=1

ai,jEi

by some non-negative integers ai,j . We can define a deformation of Dj ⊂ X by the

ideal

µ∗

(
ID̃j ·

m∏
i=1

Iai,jEi

)
⊂ OX .

We can check that this ideal is A-flat by Proposition 6.2.8 (iii) and

R1µ∗OX̃(D̃j +

m∑
i=1

ai,jEi) = R1µ∗µ
∗OX(Dj) = 0.

Example 6.2.13. Let D ⊂ U be a reduced divisor in a smooth 3-fold U . Let

µ : Ũ → U be a proper birational morphism from another smooth variety Ũ . Let

D̃ ⊂ Ũ be the strict transform of D and E the µ-exceptional divisor. Then we

can define a natural transformation µ∗ : Def(Ũ ,D̃+E) → Def(U,D) and this induces

a homomorphism µ∗ : T 1
(Ũ ,D̃+E)

→ T 1
(U,D) on the tangent spaces. We use this ho-

momorphism in the proof of Lemma 6.3.10. The point is that we can define the

blow-down transformation even if some irreducible component of D has non-isolated

singularities. When D has only isolated singularities, the definition of the blow-down

transformation is easier (See (6.7), for example).
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6.3 Deformations of elephants with isolated singulari-

ties

In this section, we treat deformations of a pair of a Q-Fano 3-fold and a member of

|−KX | with only isolated singularities.

6.3.1 First blow-up

Consider a Q-Fano 3-fold X and its elephant D with only isolated singularities. Take

a non-Du Val singularity p on D and its Stein neighborhood U ⊂ X. We first prepare

lemmas on a weighted blow-up of the Stein neighborhood U . We want to construct a

weighted blow-up U1 → U whose exceptional divisor E1 has a negative discrepancy

a(E1, U,D). Since U is analytic locally isomorphic to C3 or C3/Zr(1, a, r − a) for

some coprime integers r and a, we argue for these latter spaces. We use the same

symbol 0 for the origin of C3 and its image on C3/Zr.
The following is the easiest case where a singularity on a divisor is a hyper-

surface singularity of multiplicity 3 or higher.

Lemma 6.3.1. Let U := C3 and D ⊂ U a divisor with an isolated singularity at 0.

Assume that mD := mult0D ≥ 3. Let µ1 : U1 → U be the blow-up at the origin 0.

Then the discrepancy a(E1, U,D) satisfies

a(E1, U,D) = 2−mD ≤ −1. (6.4)

Proof. This follows since we have KU1 = µ∗1KU + 2E1 and D1 = µ∗1D −mDE1.

We use the following notion of right equivalence ([16, Definition 2.9]).

Definition 6.3.2. Let C{x1, . . . , xn} be the convergent power series ring of n vari-

ables. Let f, g ∈ C{x1, . . . , xn}.
f is called right equivalent to g if there exists an automorphism ϕ of C{x1, . . . , xn}

such that ϕ(f) = g. We write this as f
r∼ g.

The following double point in a smooth neighborhood is actually the most

tricky case.

Lemma 6.3.3. Let 0 ∈ D := (f = 0) ⊂ C3 =: U be a divisor such that mult0D = 2

and 0 ∈ D is not a Du Val singularity.

Then there exists a birational morphism µ1 : U1 → U which is a weighted

blow-up of weights (3, 2, 1) or (2, 1, 1) for a suitable coordinate system on U such

81



that the discrepancy a(E1, U,D) of the µ1-exceptional divisor E1 satisfies

a(E1, U,D) ≤ −1.

Proof. By taking a suitable coordinate change, we can write f = x2 + g(y, z) for

some g(y, z) ∈ C[y, z] which defines a reduced curve (g(y, z) = 0) ⊂ C2. We see that

mult0 g(y, z) ≥ 3 since, if mult0 g(y, z) = 2, we see that D has a Du Val singularity of

type A at 0. We can write g(y, z) =
∑
gi,jy

izj for gi,j ∈ C. We divide the argument

with respect to the multiplicity mult0 g(y, z) of the polynomial g(y, z).

(Case 1) Consider the case mult0 g(y, z) ≥ 4. Let µ1 : U1 → U be the

weighted blow-up with weights (2, 1, 1) and D1 ⊂ U1 the strict transform of D.

Then we have

KU1 = µ∗1KU + 3E1,

µ∗1D = D1 +mDE1,

where mD = min{4,min{i+ j | gi,j 6= 0}}. By the assumption mult0 g(y, z) ≥ 4, we

see that gi,j 6= 0 only if i+ j ≥ 4. Thus we see that mD = 4. Since we have

KU1 +D1 = µ∗1(KU +D)− E1,

the weighted blow-up µ1 satisfies the required property.

(Case 2) Consider the case mult0 g(y, z) = 3. Let g(k) :=
∑

i+j≤k gi,jy
izj

be the k-jet of g. We divide this into two cases with respect to g(3). The proof

uses the arguments in the classification of simple singularities of type D and E ([16,

Theorem 2.51, 2.53]).

(2.1) Suppose that g(3) factors into at least two different factors. By [16,

Theorem 2.51], we see that g
r∼ y(z2 + yk−2) for some k ≥ 4. Thus 0 ∈ D is a Du

Val singularity of type Dk. This contradicts the assumption.

(2.2) Suppose that g(3) has a unique linear factor. We can write g(3) = y3 by

a suitable coordinate change. By the proof of [16, Theorem 2.53], the 4-jet g(4) can

be written as

g(4) = y3 + αz4 + βyz3

for some α, β ∈ C.

(i) If α 6= 0, we obtain g
r∼ y3 + z4 by the same argument as [16, Theorem

2.53, Case E6]. Thus we see that 0 ∈ D is a Du Val singularity of type E6.

(ii) If α = 0 and β 6= 0, we obtain g
r∼ y3 + yz3 by the same argument as [16,
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Theorem 2.53, Case E7]. Thus we see that 0 ∈ D is a Du Val singularity of type E7.

(iii) Now assume that α = β = 0. In this case, the 5-jet g(5) can be written

as

g(5) = y3 + γz5 + δyz4

for some γ, δ ∈ C.

If γ 6= 0, we obtain g
r∼ y3 + z5 by the same argument as [16, Theorem 2.53,

Case E8]. Thus we see that 0 ∈ D is a Du Val singularity of type E8.

If γ = 0 and δ 6= 0, we can write g = y3 + yz4 + h6(y, z) for some h6(y, z) ∈
C[y, z] such that mult0 h6(y, z) ≥ 6. Let µ1 : U1 → U be the weighted blow-up with

weights (3, 2, 1) on (x, y, z) and E1 its exceptional divisor. Then we can calculate

KU1 = µ∗1KU + 5E1,

µ∗1D = D1 + 6E1

by the formula (6.2). Thus we obtain

KU1 +D1 = µ∗1(KU +D)− E1.

Hence µ1 has the required property.

If γ = δ = 0, we can write g = y3 + h6 for some nonzero h6 such that

mult0 h(y, z) ≥ 6. Let µ1 : U1 → U be the weighted blow-up with weights (3, 2, 1)

as above. We can similarly check that this µ1 has the required property.

For U = C3/Zr(1, a, r− a), we can take 1/r(1, a, r− a)-weighted blow-up for

the first blow-up as follows.

Lemma 6.3.4. Let U = C3/Zr(1, a, r−a) be the quotient variety for some coprime

integers r and a such that 0 < a < r and D ∈ |−KU | an anticanonical divisor with

only isolated singularity at 0 ∈ U . Let πU : V = C3 → U be the quotient morphism

and ∆ := π−1
U (D). Assume that mult0 ∆ ≥ 2. Let µ1 : U1 → U be the weighted

blow-up with weights 1/r(1, a, r − a) and E1 its exceptional divisor.

Then we have an inequality on the discrepancy

a(E1, U,D) ≤ −1.

Proof. Let f =
∑
fi,j,kx

iyjzk be the defining equation of ∆ ⊂ C3 at 0 ∈ C3. We
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have

KU1 = µ∗1KU +
1

r
(1 + a+ r − a− r)E1 = µ∗1KU +

1

r
E1,

µ∗1D = D1 +
mD

r
E1,

where mD := min{i + aj + (r − a)k | fi,j,k 6= 0}. We see that mD ≥ 2 since ∆ is

singular. Thus we can write

KU1 +D1 = µ∗1(KU +D) +
1

r
(1−mD)E1

and 1
r (1−mD) < 0. Since KU +D is a Cartier divisor, we see that 1

r (1−mD) is a

negative integer. Thus µ1 satisfies the required condition.

6.3.2 Second blow-up

Let U1 → U be either one of the weighted blow-ups constructed in Section 6.3.1.

We use the same notation as Section 6.3.1.

We define the “VNC”-pair as follows.

Definition 6.3.5. (cf. [58, Definition 1.16]) Let U be a normal variety with only

cyclic quotient singularities and D ⊂ U its reduced divisor. A pair (U,D) is called

a VNC pair if, for each point p, there exists a Stein neighborhood Up and a cyclic

cover πp : Vp → Up such that Vp is smooth and π−1
p (D ∩ Up) is a normal crossing

divisor. We call D a VNC divisor. Moreover, if π−1
p (D ∩Up) is a smooth divisor for

each point p ∈ U , we call (U,D) a V-smooth pair.

Let U be a normal variety and D its divisor. Let µ : Ũ → U is a proper bira-

tional morphism. We say that µ is a V-resolution of the pair (U,D) if (Ũ , µ−1(D))

is a VNC pair.

We construct a useful V-resolution U2 → U1 of (U1, D1 + E1) as follows.

Lemma 6.3.6. Let µ1 : U1 → U,D1 and E1 be those as in Section 6.3.1.

Then there exists a projective birational morphism µ12 : U2 → U1 and a finite

set Z ⊂ U1 such that U2 has only quotient singularities, µ−1
12 (D1 ∪ E1) has VNC

support, and U ′1 := U1 \ Z satisfies the following conditions; U ′1 and U ′2 := µ−1
12 (U ′1)

are smooth and the morphism µ′12 := µ12|U ′2 : U ′2 → U ′1 is a composition of blow-ups

of smooth curves in the strict transforms of D′1 := U ′1 ∩D1.

As a consequence, the discrepancies satisfy

a(E′2,j , U
′
1, D

′
1) ≤ 0
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for all µ′12-exceptional divisors E′2,j.

Proof. By the construction of µ1 : U1 → U , we see that U1 has only terminal quotient

singularities and −KU1 is µ1-ample. Let m be a sufficiently large integer such that

−mKU1 is µ1-free. Take a general member Am ∈ |−mKU1 | such that Am and E1

intersects transversely, Am ∩ SingU1 = ∅ and the intersection of (D1)sm and Am is

transversal.

Let π1 : V1 := Spec⊕m−1
j=0 OU1(jKU1)→ U1 be the cyclic cover branched along

Am. Set ∆1 := π−1
1 (D1) and F1 := π−1

1 (E1). Then we see that V1 is smooth and the

non-SNC locus of ∆1∪F1 is contained in ∆1∩F1. We can construct a Zm-equivariant

resolution fk,1 : Vk → V1 of the pair (V1,∆1 + F1) which is a composition

fk,1 : Vk
fVk−1→ Vk−1 → · · · → V2

fV1→ V1

of blow-ups fVi : Vi+1 → Vi of smooth irreducible subvarieties Zi ⊂ Vi for i =

1, . . . , k − 1 such that f−1
k,1 (∆1 ∪ F1) has SNC support. Let ∆i ⊂ Vi be the strict

transform of ∆1 and fi,1 := fV1 ◦ · · · ◦ fVi−1 : Vi → V1. We can take these centers Zi

such that Zi ⊂ ∆i and with the following conditions;

(i) Zi ⊂ Sing ∆i if ∆i is singular,

(ii) Zi is contained in the non-SNC locus of f−1
i,1 (∆1 ∪ F1) if ∆i is smooth.

Let

B0 :=
⋃

dim fi,1(Zi)=0

fi,1(Zi)

be the union of the images of Zi over points on V1 and

B1 :=
⋃

fi1,1(Zi1 )6=fi2,1(Zi2 )

(fi1,1(Zi1) ∩ fi2,1(Zi2))

the intersections of the different images of 1-dimensional centers. We also set

Bsing := π−1
1 (SingU1) and Bram := π−1

1 (Am) ∩ (∆1 ∩ F1). Let

B0 := B0 ∪B1 ∪Bsing ∪Bram (6.5)

be the 0-dimensional locus we want to remove and Z := π1(B0). Since Bsing ⊂ B0,

we see that U ′1 := U \ Z is smooth. Since fk,1 is Zm-equivariant, we can take U2 :=

Vk/Zm and fk,1 induces a birational morphism µ12 : U2 → U1. Let U ′2 := µ−1
12 (U ′1)

and µ′12 := µ12|U ′2 : U ′2 → U ′1. We shall see that µ′12 is a composition of blow-ups of

smooth curves in the following.
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Let V ′1 := V1 \ B0, V ′i := f−1
i,1 (V ′1), where fi,1 := fVi−1 ◦ · · · fV1 : Vi → V1. We

see that Z ′i := Zi ∩ V ′i is the center of the blow-up fV ′i := fVi |V ′i+1
: V ′i+1 → V ′i . Let

σ ∈ Zm be the generator. We see that Zm-orbit {Z ′1, σ ·Z ′1, . . . , σm−1 ·Z ′1} are disjoint

since we have B1 ⊂ B0 as in (6.5). Let fW1 : W2 →W1 := V1 be the blow-up of the

Zm-invariant center
⋃m−1
j=0 σjZ ′1. By repeating this operation, we can construct the

morphism V ′k → V ′1 as a composition of blow-ups of Zm-invariant centers;

V ′k = Wl →Wl−1 → · · · →W2 →W1 = V ′1 ,

where fWi : Wi+1 →Wi is a blow-up of a Zm-invariant smooth curve ZWi contained

in the strict transform of ∆′1 := ∆1 ∩ V ′1 . By this construction, the Zm-action on

V1 induces the action on each Wi and we can take the Zm-quotient Qi := Wi/Zm
and gQi : Qi+1 → Qi for i = 1, . . . , l − 1. Let π′1 := π1|V ′1 : V ′1 → U ′1 and RV ′1 ⊂ V ′1
its ramification divisor. Let RWi ⊂ Wi be the strict transform of RV ′1 which is the

ramification locus of π′i : Wi → Qi. Let ZQi := π′i(ZWi) and D′i ⊂ Qi the strict

transform of D′1 ⊂ U ′1 = Q1. We see that gQi is a blow-up of a smooth curve ZQi
such that ZQi ⊂ D′i since RWi is disjoint with the center ZWi ⊂ Wi of Wi+1 → Wi

and the quotient morphism Wi → Qi is étale around ZWi . Thus we see that µ′12 is

a composition of blow-ups of smooth curves. By this and the smoothness of U ′1, we

see that U ′2 is also smooth.

We can check the inequality a(E′2,j , U
′
1, D

′
1) ≤ 0 as follows; We have an

equality

∑
j

a(E′2,j , U
′
1, D

′
1)E′2,j = KQl +D′l − (µ′12)∗(KQ1 +D′1)

=
∑
i

(gk,i+1)∗(KQi+1 +D′i+1 − g∗Qi(KQi +D′i)). (6.6)

We also have KQi+1 + D′i+1 − g∗Qi(KQi + D′i) = (1 − multZQi (D
′
i))g

−1
Qi

(ZQi) and

1−multZQi (D
′
i) ≤ 0. Thus we see that a(E′2,j , U

′
1, D

′
1) ≤ 0 for each j.

We finish the proof of Proposition 6.3.6.

Remark 6.3.7. Note that U2 is a normal variety with only quotient singularities, but

can have non-isolated singularities.

6.3.3 Lemmas on cohomology groups

Let U := C3/Zr(1, a, r− a) and D ∈ |−KU | with only isolated singularity at 0 ∈ D.

Let π : V := C3 → U be the quotient morphism and ∆ := π−1(D). We can assume
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that ∆ = (f = 0) ⊂ C3. By Proposition 6.2.5, we have

T 1
(U,D) ' (T 1

(V,∆))
Zr

and we regard T 1
(U,D) as a subspace of T 1

(V,∆). Since V is smooth, we also have

T 1
(V,∆) ' T 1

∆ ' OV,0/Jf,0 for the Jacobian ideal Jf,0 ⊂ OV,0. Thus T 1
(V,∆) has a

OV,0-module structure and we fix an OV,0-module homomorphism

ε : OV,0 → T 1
(V,∆)

such that, for h ∈ OV,0, an element ε(h) ∈ T 1
(V,∆) is a deformation (f + th =

0) ⊂ V × SpecC[t]/(t2) of V . Let m2T 1
(U,D) := m2

V,0T
1
(V,∆) ∩ T

1
(U,D) be the set of

deformations induced by functions with multiplicity 2 or more.

Since D has an isolated singularity at 0 ∈ U , we have T 1
(U,D) ' T 1

(U ′,D′),

where U ′ := U \ 0 and D′ := D ∩ U (cf. Lemma 3.4.2).

Let U1 → U be one of the weighted blow-ups constructed in Section 6.3.1. We

can define the blow-down morphism (µ1)∗ : T 1
(U1,D1+E1) → T 1

(U,D) as a composition

(µ1)∗ : T 1
(U1,D1+E1)

ι∗1→ T 1
(U ′,D′)

'→ T 1
(U,D), (6.7)

where ι∗1 is the restriction by an open immersion ι1 : U ′ ' U1 \ E1 ↪→ U1.

Lemma 6.3.8. Let µ1 : U1 → U,D1 and E1 be those as in Section 6.3.1.

Then we have the following

(i) T 1
U1

= 0.

(ii) Im(µ1)∗ ⊂ m2T 1
(U,D).

Proof. (i) We shall show H1(U1,ΘU1) = 0 as follows.

Let m1 be a positive integer such that |−m1KU1 | contains a smooth member

Dm1 such that Dm1 ∩ SingU1 = ∅. Let π1 : V1 → U1 be the degree m1 cyclic

cover branched along Dm1 . We have H1(U1,ΘU1) ' H1(U1, (ι1)∗Ω
2
U ′1

(−KU ′1
)), where

U ′1 := U1 \ SingU1 and ι1 : U ′1 ↪→ U1 is the open immersion. We see that this is a

Zm1-invariant part of H1(V1,Ω
2
V1

(L1)), where L1 := π∗1(−KU1). Note that L1 is a

Cartier divisor and µ1◦π1-ample over U . By the vanishing theorem on a toric variety

(cf. [14, Theorem 1.1]), we see that H1(V1,Ω
2
V1

(L1)) = 0. Thus, as its subspace, we

obtain H1(U1,ΘU1) = 0.

(ii) Take η1 ∈ T 1
(U1,D1+E1). We have an exact sequence

H0(U1,OU1(D1))→ H0(D1,ND1/U1
)→ H1(U1,OU1) = 0.
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Hence the deformation of D1 induced by η1 comes from some divisor D′1 ∈ |D1|. In

particular, it can be extended over a unit disc ∆1. We also obtain H0(E1,NE1/U1
) =

0 since −E1 is µ1-ample. Hence η1 induces a trivial deformation of E1 over a unit

disc.

By these arguments and (i), the first order deformation η1 can be extended

to a deformation (U1,D1 + E1)→ ∆1 of (U1, D1 +E1) over a unit disc ∆1 such that

U1 ' U1 × ∆1. By taking its image by µ1 × id : U1 × ∆1 → U × ∆1, we obtain a

deformation (U ,D)→ ∆1 of (U,D).

If U = C3, let m1 be a positive integer such that

(µ1 × id)∗D = D1 +m1E1.

If U = C3/Zr, let m1 be a rational number such that

(µ1 × id)∗(rD) = rD1 + rm1E1.

For t ∈ ∆1, let Dt,D1,t be the fibers of D,D1 over t and m1,t a rational number such

that µ∗1Dt = D1,t +m1,tE1. The above relations imply that m1,t is invariant for all

t ∈ ∆1.

First assume that U is smooth. Recall that µ1 : U1 → U is a weighted blow-

up of weights (a, b, c), where (a, b, c) is (1, 1, 1), (3, 2, 1) or (2, 1, 1) by Lemmas 6.3.1,

6.3.3. Suppose that there exists η1 ∈ T 1
(U1,D1+E1) such that

(µ1)∗(η1) ∈ T 1
(U,D) \m

2T 1
(U,D). (6.8)

We use the inclusion T 1
(U,D) ⊂ T 1

(V,∆) as above. Take h1 ∈ OV,0 such that ε(h1) =

(µ1)∗(η1). By the condition (6.8), we obtain mult0 h1 ≤ 1. Hence we see that m1,t ≤
max{a, b, c} =: M by the formula (6.2). However, we can check that m1,0 > M .

Indeed, if the weight is (3, 2, 1), we see that M = 3 and m1,0 ≥ 6 by the calculation

in the proof of Lemma 6.3.3. If the weight is (2, 1, 1), the maximum is 2 and m1,0 ≥ 4

by the calculation in the same lemma. This is a contradiction.

Next assume that U has a quotient singularity. Suppose that there is an

element η1 ∈ T 1
(U1,D1+E1) with the condition (6.8). As in the case U is smooth,

we can take h1 ∈ OV,0 such that ε(h1) = (µ1)∗(η1) and mult0 h1 ≤ 1. Then we

see that m1,t ≤ (1/r) max{1, a, r − a} for t 6= 0 by the formula (6.2). However we

see that m1,0 ≥ 1 + 1/r by the calculation in the proof of Lemma 6.3.4. This is a

contradiction.

Hence we finish the proof of (ii).
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We define a reflexive sheaf of differential forms for a VNC pair as follows.

Definition 6.3.9. ((cf. [58, Definition 1.17])) For a VNC pair (U,D), let ι : U ′ ↪→ U

be the smooth locus of U and D′ := D ∩U ′. We define Ω̃i
U (logD) := ι∗Ω

i
U ′(logD′).

Let U,U1, U2, D2 as in Lemma 6.3.6. Let µ2 := µ1 ◦ µ12 : U2 → U and

E2 := µ−1
2 (0) the µ2-exceptional divisor.

Since U2 \ E2 ' U \ 0 = U ′, we have the coboundary map

φU : H1(U ′,Ω2
U ′(logD′))→ H2

E2
(U2, Ω̃

2
U2

(logD2 + E2)).

We fix an isomorphism SD : OU (−KU −D) ' OU and it induces an isomorphism

ϕSD : T 1
(U,D) → H1(U ′,ΘU ′(− logD′))→ H1(U ′,Ω2

U ′(logD′)).

We have the following lemma.

Lemma 6.3.10. We have KerφU ⊂ ϕSD(m2T 1
(U,D)). In particular, we have φU 6= 0.

Proof. Let E12 ⊂ U2 be the µ12-exceptional locus. Let U ′1 := U1 \Z, U ′2 := µ−1
12 (U ′1)

and U ′′1 := U1 \ (µ12(E12) ∪ Z). We have the following relation;

U ′2
� � ι2 //

µ′12

��

U2

µ12

��

U ′′1

/ �

ι12

>>

� � // U ′1
� � // U1

µ1

��

U ′
P0

ι1

``

� � // U.

(6.9)

Set D′j := Dj ∩ U ′j , E′j := Ej ∩ U ′j for j = 1, 2.

Let G′2 be a divisor on U ′2 supported on E′2 such that

{−(KU2 +D2 + E2) + µ∗2(KU +D)}|U ′2 ∼ G
′
2.

We see that G′2 is effective since we have

G′2 = −E′2 +
{
−(KU ′2

+D′2) + (µ′12)∗(KU ′1
+D′1)

}
+ (µ′12)∗ {−(KU1 +D1) + µ∗1(KU +D)} |U ′1 ≥ −E

′
2 + 0 + (µ′12)∗E′1 ≥ 0 (6.10)

by Lemmas in Section 6.3.1 and Lemma 6.3.6. Set G′′1 := G′2 ∩ U ′′1 . Note that we
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have an open immersion

ι : U ′ = U \ 0 ' U2 \ µ−1
2 (0) ↪→ U2.

Then we have the following commutative diagram;

H1(U2, Ω̃
2
U2

(logD2 + E2))

ι∗2
��

ι∗ // H1(U ′,Ω2
U ′(logD′))

H1(U ′2,Ω
2
U ′2

(logD′2 + E′2))

φG′2
��

H1(U ′2,Ω
2
U ′2

(logD′2 + E′2)(G′2))
ι∗12 // H1(U ′′1 ,Ω

2
U ′′1

(logD′′1 + E′′1 )(G′′1)),

ι∗1

OO
(6.11)

where ι∗, ι∗1, ι
∗
2, ι
∗
12 are the restriction by open immersions ι, ι1, ι2, ι12 as in the dia-

gram (6.9) and φG′2 is induced by an injection OU ′2 ↪→ OU ′2(G′2).

Since U ′2 is smooth and D′2 +E′2 is a SNC divisor by the construction of µ12,

we have a natural isomorphism

T 1
(U ′2,D

′
2+E′2) ' H

1(U ′2,ΘU ′2
(− logD′2+E′2)) ' H1(U ′2,Ω

2
U ′2

(logD′2+E′2)(−KU ′2
−D′2−E′2)).

The isomorphism SD induces an isomorphism µ∗2(SD) : OU2(µ∗2(−KU −D)) ' OU2

and this induces an isomorphism

H1(U ′2,Ω
2
U ′2

(logD′2 + E′2)(−KU ′2
−D′2 − E′2)) ' H1(U ′2,Ω

2
U ′2

(logD′2 + E′2)(G′2)).

Thus we have an isomorphism

ϕµ∗2(SD) : T 1
(U ′2,D

′
2+E′2) ' H

1(U ′2,Ω
2
U ′2

(logD′2 + E′2)(G′2)).
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The homomorphisms ϕµ∗2(SD) and ι∗1 ◦ ι∗12 fit in the commutative diagram

H1(U ′2,Ω
2
U ′2

(logD′2 + E′2)(G′2))
ι∗1◦ι∗12 // H1(U ′,Ω2

U ′(logD′))

T 1
(U ′2,D

′
2+E′2)

//

(µ′12)∗

��

ϕµ∗2(SD)'
OO

T 1
(U ′,D′)

ϕSD'

OO

T 1
(U ′1,D

′
1+E′1)

'
��

T 1
(U,D)

'
OO

T 1
(U1,D1+E1),

(µ1)∗

44

(6.12)

where (µ′12)∗ can be defined by the properties of µ′12 described in Lemma 6.3.6. We

have Im(µ1)∗ ⊂ m2T 1
(U,D) by Lemma 6.3.8. By this and the above diagrams, we see

the claim. We finish the proof of Lemma 6.3.10.

6.3.4 Proof of Theorem

We define “simultaneous Q-smoothing” as follows.

Definition 6.3.11. Let X be a normal 3-dimensional variety with only terminal

singularities and D ∈ |−KX | an anticanonical element.

We call a deformation f : (X ,D) → ∆1 a simultaneous Q-smoothing if Xt
and Dt have only quotient singularities and (Xt,Dt) is a V-smooth pair for t 6= 0

(Definition 6.3.5).

We give the proof of the main theorem in the following.

Theorem 6.3.12. Let X be a Q-Fano 3-fold with only quotient singularities such

that there exists an element D ∈ |−KX | with only isolated singularities.

Then (X,D) has a simultaneous Q-smoothing.

Proof. Let m be a sufficiently large integer such that |−mKX | contains a smooth

element Dm such that SingD ∩Dm = ∅. Let π : Y → X be a cyclic cover branched

along Dm and ∆ := π−1(D). This induces an index one cover around each point of

SingX and Y is smooth.

Let p1, . . . , pl ∈ SingD be the image of non-Du Val singular points of ∆ and

pl+1, . . . , pl+l′ the image of Du Val singularities of ∆. Let Ui ⊂ X be a Stein neigh-

borhood of pi and Di := D∩Ui for i = 1, . . . , l+l′. For i = 1, . . . , l, let µi,1 : Ui,1 → Ui
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be the weighted blow-up constructed in Section 6.3.1 and µi,12 : Ui,2 → Ui,1 the bi-

rational morphism constructed in Lemma 6.3.6. Let µi,2 := µi,1 ◦µi,12 : Ui,2 → Ui be

the composition. For i = l + 1, . . . , l + l′, let µi : Ũi → Ui be a projective birational

morphism such that (Ũi, µ
−1
i (Di)) is a VNC pair.

By patching these µi,2 for i = 1, . . . , l and µi for i = l + 1, . . . , l + l′, we

construct a birational morphism µ : X̃ → X such that µ−1(D) ⊂ X̃ is a VNC

divisor. Let D̃ ⊂ X̃ be the strict transform of D and E ⊂ X̃ the µ-exceptional

divisor. Also let D̃i := D̃ ∩ µ−1(Ui) and Ei := µ−1(pi) for i = 1, . . . , l + l′.

We use the following diagram;

H1(X ′,Ω2
X′(logD′))

⊕ψi //

⊕pUi
��

H2
E(X̃, Ω̃2

X̃
(log D̃ + E))

⊕ϕi '
��

// H2(X̃, Ω̃2
X̃

(log D̃ + E))

⊕l+l′i=1H
1(U ′i ,Ω

2
U ′i

(logD′i))
⊕φi// ⊕l+l′i=1H

2
Ei

(Ũi, Ω̃
2
Ũi

(log D̃i + Ei)),

(6.13)

where X ′ := X \ {p1, . . . , pl+l′} and D′ := D ∩X ′.
Let i ∈ {1, . . . , l} be a fixed number and ηi ∈ H1(U ′i ,Ω

2
U ′i

(logD′i)) an element

inducing a simultaneous Q-smoothing of (Ui, Di). We see that H2(X̃, Ω̃2
X̃

(log D̃ +

E)) = 0 since X̃ \(D̃+E) ' X \D is a smooth affine variety and H2(X̃, Ω̃2
X̃

(log D̃+

E)) is a subquotient of H4(X̃ \ (D̃ + E),C) = 0 by the mixed Hodge theory

on V-manifolds. Thus there exists η ∈ H1(X ′,Ω2
X′(logD′)) such that ψi(η) =

(ϕi)
−1(φi(ηi)). Since ηi − pUi(η) ∈ Kerφi, we see that

ϕ−1
SDi

(ηi − pUi(η)) ∈ m2T 1
(Ui,Di)

(6.14)

by Lemma 6.3.10. Let πi : Vi → Ui be the index one cover and ∆i := π−1
i (Di) ⊂ Vi.

By (6.14) and Lemma 6.2.7, we see that pUi(η) induces a smoothing of ∆i. Thus it

induces a deformation of (Ui, Di) to a V-smooth pair. By Theorem 3.2.9, we can lift

the first order deformation η to a deformation f : (X ,D)→ ∆1 of (X,D) over a unit

disc ∆1. This f induces a simultaneous Q-smoothing of (Ui, Di) for i = 1, . . . , l.

Thus we can deform all non-Du Val singularities of D and obtain a Q-Fano 3-

fold with a Du Val elephant as a general fiber of the deformation f . Moreover, by

Theorem 3.1.8, there exists a simultaneous Q-smoothing of this Q-Fano 3-fold. Thus

we finish the proof of Theorem 6.3.12.

6.4 Examples

Shokurov and Reid proved the following theorem.
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Theorem 6.4.1. Let X be a Fano 3-fold with only canonical Gorenstein singulari-

ties.

Then a general member D ∈ |−KX | has only Du Val singularities.

For non-Gorenstein Q-Fano 3-folds, this statement does not hold. We give

several examples of Q-Fano 3-folds without Du Val elephants.

Example 6.4.2. ([24]) Iano-Flethcer gave an examples of a Q-Fano 3-fold without

elephants. Let X := X12,14 ⊂ P(2, 3, 4, 5, 6, 7) be a weighted complete intersection

of degree 12 and 14. Then we have | −KX | = ∅ and general X have only terminal

quotient singularities.

Iano-Fletcher gave a list of 95 families of Q-Fano 3-fold weighted hypersur-

faces. General members of those families have only quotient singularities and they

have Du Val elephants. However, by taking special members in those families, we

can construct weighted hypersurfaces without Du Val elephants as follows.

Example 6.4.3. Let X := X14 := ((x14 + x2y6
1) + w2 + y3

1y
4
2 + y7

2 + y1z
4 = 0) ⊂

P(1, 2, 2, 3, 7) be a weighted hypersurface with coordinates x, y1, y2, z, w of weights

1, 2, 2, 3, 7 respectively. This is a modified version of an example in [3, 4.8.3].

We can check that X has only terminal singularities. It has three 1/2(1, 1, 1)-

singularities on the (y1, y2)-axis, a terminal singularity (x2+w2+z4+y4
2 = 0)/Z2(1, 1, 1, 0)

and a 1/3(1, 2, 1)-singularity at [0 : 0 : 0 : 1 : 0].

We see that |−KX | = {D} and D has an elliptic singularity (w2 + y4
2 + z4 =

0)/Z2. In fact, this is log canonical.

Next we give a Q-Fano 3-fold with only quotient singularities and with only

non-log canonical elephants. Thus the statement of Theorem 6.1.1 is not empty.

Example 6.4.4. Let X := (x15 + xy7 + z5 + w3
1 + w3

2 = 0) ⊂ P(1, 2, 3, 5, 5) be a

weighted hypersurface, where x, y, z, w1, w2 are coordinate functions with degrees

1, 2, 3, 5, 5 respectively. We can check that X has a 1/2(1, 1, 1)-singularity and three

1/5(1, 2, 3)-singularities. Thus X is a Q-Fano 3-fold with only terminal quotient

singularities.

On the other hand, we have |−KX | = {D}, where D := (z5 + w3
1 + w3

2 =

0) ⊂ P(2, 3, 5, 5). We see that the singularity p = [1 : 0 : 0 : 0] ∈ D is isomorphic

to a singularity (x5
1 + x3

2 + x3
3 = 0)/Z2, where the Z2-action is of type 1/2(1, 1, 1).

The singularity is not Du Val. In fact, we see that it is even not log canonical by

computing a resolution of singularity explicitly.

Next, we give an example of a Q-Fano 3-fold with only non-normal elephants.
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Example 6.4.5. Let X := X16 := (x16+x(z5+zy6)+yu2+w4 = 0) ⊂ P(1, 2, 3, 4, 7)

be a weighted hypersurface with coordinates x, y, z, w, u with weights 1, 2, 3, 4, 7

respectively.

Firstly, we check that X has only terminal singularities. By computing the

Jacobian of the defining equation of X, we see that X is quasi-smooth outside the

points on an affine piece y 6= 0 such that x = w = u = 0 and z(z4 + y6 = 0).

We can describe the singularities as follows; An affine piece (x 6= 0) is smooth. An

affine piece (y 6= 0) has two singularities isomorphic to (xz + w4 + u2 = 0) ⊂ C4

and an singularity (xz + w4 + u2 = 0)/Z2, where Z2 acts on x, z, w, u with weights

1/2(1, 1, 0, 1). They are terminal by the classification ([36, Theorem 6.5]). On a

piece (z 6= 0), there exists a 1/3(2, 1, 2)-singularity. A piece (w 6= 0) is smooth. A

piece (u 6= 0) has a 1/7(1, 3, 4)-singularity.

Next, we check that |−KX | has only non-normal elements. Indeed, we have

|−KX | = {D} with D = (yu2 + w4 = 0) ⊂ P(2, 3, 4, 7) and the singular locus of D

is non-isolated.

Thus it is meaningful to consider Conjecture 3.1.7 when the singularity of an

elephant is non-isolated.

On the other hand, we could not find an example of a Q-Fano 3-fold without

Du Val elephants such that h0(X,−KX) ≥ 2. Thus the following question is natural.

Problem 6.4.6. Let X be a Q-Fano 3-fold such that h0(X,−KX) ≥ 2.

Does there exist a Du Val elephant of X? Or, does there exist a normal

elephant of X?
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