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ABSTRACT

The sequential Monte Carlo (smc) methods have been widely used for modern

scientific computation. Bayesian model comparison has been successfully applied

in many fields. Yet there have been few researches on the use of smc for the purpose

of Bayesian model comparison. This thesis studies different smc strategies for

Bayesian model computation. In addition, various extensions and refinements of

existing smc practices are proposed in this thesis. Through empirical examples, it

will be shown that the smc strategies can be applied for many realistic applications

which might be difficult for Markov chain Monte Carlo (mcmc) algorithms. The

extensions and refinements lead to an automatic and adaptive strategy. This strategy

is able to produce accurate estimates of the Bayes factor withminimalmanual tuning

of algorithms.

Another advantage of smc algorithms over mcmc algorithms is that it can be

parallelized in a straightforward way. This allows the algorithms to better utilize

modern computer resources. This thesis presents work on the parallel implemen-

tation of generic smc algorithms. A C++ framework within which generic smc

algorithms can be implemented easily on parallel computers is introduced. We

show that with little additional effort, the implementations using this framework

can provide significant performance speedup.
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1 INTRODUCTION

This thesis studies the use of sequential Monte Carlo (smc) algorithms for the pur-

pose of Bayesian model comparison. Themain focus of the work is the performance

of the Monte Carlo algorithms when they are used in the context of Bayesian model

comparison. Contemporary methodologies on model selections and Monte Carlo

methods for the purpose of Bayesian model comparison are reviewed. Method-

ologies on using smc in this context are developed. Some extensions to as well as

refinements of existing smc practices are also presented in this work.

The performance of smc algorithms for the purpose of Bayesian model com-

parison is studied empirically through various realistic models. Some theoretical

results are also derived for non-standard methods. As this thesis covers a wide array

of topics, one particular model, the position emission tomography (pet) compart-

mental model, is used as a running example for illustrating purpose throughout

this thesis. This model is introduced in the next chapter. However, it shall be noted

that, this thesis is not concerned with the analysis of the pet data in general. The

particular model used in this thesis is chosen for a few reason. It provides a gen-

uine model selection problem to which different methods can be applied and their

performance can be compared. In the context of Bayesian model comparison, it is

also considerably computationally challenging, in the sense that many widely used

Monte Carlo methods might not perform well for practical use. The smc algorithms

are very well suited for this and many other realistic Bayesian model comparison

problems. And the advantage of the smc algorithm can be made more clear through

such and other realistic models.

In the remainder of this chapter, the context that motivates the work of this

thesis is first discussed. It is followed by a summary of notations used throughout

the thesis. It is concluded with an outline of the structure of the following chapters.

4



introduction

1.1 context

Model comparison and selection are problems found throughout the discipline

of statistics. It can appear in different forms, such as the choice of regressors in

regression analysis, or the determination of the number of components in mixture

models. Often, there can be more than one model that can be potentially used to

describe the data and to make predictions or for other purposes. However, some

models might be better than others in the sense that the estimation and prediction

based on them have smaller errors or variances, etc. Some models are simpler than

others while providing comparable accuracy. In many application areas, model

selection is also important for the purpose of identifying the underlying reasons

of certain phenomena observed through the data. Many model selection and

comparison methods have been developed throughout the history of statistics.

Some of them are developed for particular classes of models while others make little

assumptions of the candidate models. This thesis is more concerned with the later.

Bayesian model comparison has been studied and practiced for a long time.

There are considerable computational difficulties when using this approach, as

many high dimensional integrations are involved. The development of Monte Carlo

algorithms has enabled the practice of Bayesian model comparison for a wide range

of realistic applications. However, algorithms such as Markov chain Monte Carlo

(mcmc) cannot efficiently simulate high dimensional multimodal distributions in

many situations. In addition, estimators of quantities for the purpose of Bayesian

model comparison, such as the Bayes factor, obtained through these algorithms are

often unreliable in the sense that with manageable computational cost, the variances

are often too large for practical use. In some cases, reliable and efficient estimators

can be obtained, but they are often less generic as they require knowledge of the

models not generally available. In this thesis, we aim to develop high performance

algorithms that are both generic and reliable.

Population based algorithms have been developed in recent decades. They

often prove to be more suitable than mcmc algorithms for simulating high dimen-

5



introduction

sional multimodal distributions. Reliable estimators of quantities such as the Bayes

factor can also be obtained through these algorithms. However, there is little

literature on its application to Bayesian model comparison. This thesis presents

a framework based on sequential Monte Carlo (smc) algorithms, within which

Bayesian model comparison can be carried out in a (semi-) automatic fashion while

better accuracy compared to some other recent developments can be obtained. This

is made possible through the use of various adaptive strategies.

This thesis also presents work on the practical implementations of smc algo-

rithms. Compared to mcmc, practical tools for smc are relatively fewer. In addition,

there is interest in the utilization of parallel computing for the implementation of

smc algorithms. The work presented in this thesis provides a toolbox with which re-

searchers can implement generic smc algorithms on parallel computers with relative

ease.

1.2 notations

Most notations used in this thesis are introduced and defined in context. A few

conventions are followed throughout this thesis.

Capital Latin letters, such as 𝑋, are used to denote random variables and

corresponding lower case letters, such as 𝑥, are used to denote their realizations.

In the context of Markov chain, we use notations such as𝑋𝑡 to denote the random

variable to indicate its dependency on time 𝑡. For various Monte Carlo estimators,

we use notations such as𝑋(𝑖) to denote the random samples, including the case of

mcmc algorithms. The difference between𝑋𝑡 and𝑋(𝑖) is to explicitly express that

in some algorithms, not all samples from a Markov chain are used for estimation

purpose. For smc algorithms, we use 𝑋(𝑖)𝑡 to denote the particle value of the 𝑖th

particle at time 𝑡. For a sequence of variables, such as𝑋1,… ,𝑋𝑛, we use the notation

𝑋1∶𝑛 to denote the sequence.

The letter 𝑦 is used throughout this thesis to denote the data. The letter 𝔼 is

used to denote the expectation of random variables. And wherever appropriate, 𝔼𝜋
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introduction

is used to denote the expectation with respect to a distribution 𝜋. The letters Pr are

used to denote probabilities of random events.

For a scalar function of an 𝑛-vector 𝜃 = (𝜃1,… , 𝜃𝑛)𝑇, say 𝑓(𝜃), we use the

notation, 𝜕
2𝑓(𝜃)
𝜕𝜃𝜕𝜃𝑇 to denote the Hessian matrix, i.e., a matrix whose element at the

𝑖th row and 𝑗th column is 𝜕𝑓(𝜃)/𝜕𝜃𝑖𝜃𝑗. We also use the notation 𝜕𝑓(𝜃)𝜕𝜃 to denote

the score vector whose 𝑖th element is 𝜕𝑓(𝜃)/𝜕𝜃𝑖. For an 𝑚-vector function 𝑓(𝜃) =

(𝑓1(𝜃),… , 𝑓𝑚(𝜃)), we use the notation 𝐽(𝑓(𝜃)) = 𝜕𝑓(𝜃)𝜕𝜃 to denote the Jacobian

matrix whose element at the 𝑖th row and 𝑗th column is 𝜕𝑓𝑖(𝜃)/𝜕𝜃𝑗.

To avoid introducing too many notations, some notations might be reused

if their meanings are clear in the context and their usage is limited to a particular

section where they are relevant. These and other notations are defined when they

are encountered the first time.

1.3 outline

This thesis is concerned with the methodologies of using smc algorithms for the

purpose of Bayesian model comparison and their practical implementations. It is

structured as the following.

Chapter 2 introduces the positron emission tomography (pet) compartmen-

tal model. It is a realistic model that will be used as a running example

throughout this thesis to demonstrate various methodologies. Work on the

application of Bayesian model comparison to the pet compartmental model

was published in [167].

Chapter 3 reviews some commonly usedmodel selectionmethods. In partic-

ular some information-theoretic selection criteria and the Bayesian approach.

By comparison, it will be shown that Bayesianmodel comparison is of interest

for some realistic applications where its use was previously limited by the

computational cost.

Chapter 4 reviews some Monte Carlo algorithms in the context of Bayesian

model comparison. It will be shown that there are considerable difficulties

7
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for many problems of interest.

Chapter 5 presents a framework based on smc that can be used for the pur-

pose of Bayesian model comparison. In particular, various adaptive strategies

will be discussed. This chapter is an extension to [168] and [169].

Chapter 6 presents a C++ library for the practical implementations of smc

algorithms. Parallel computing is of particular interest. Parts of this chapter

is based on [166].

8



2 POSITRON EMISSION TOMOGRAPHY COMPARTMENTAL

MODEL

Bayesian model comparison for the positron emission tomography (pet) com-

partmental model was studied before by the author. This thesis uses this realistic

example for demonstration in Chapters 3 to 5. This chapter introduces the compart-

mental model and its application to pet. Later we will frequently refer to materials

here for details of the model setting. This chapter is based on [167] by the author.

It shall be noted that, the application of Bayesian model comparison to the

pet compartmental model is introduced here in a separate chapter only because it

is used throughout the thesis as a demonstrating example. It is not unique to any

of the following chapters. This thesis is not about the analysis of pet data or the

compartmental model in general. Since this model is used for illustrating purpose

only, only where demonstration and comparison of methods are appropriate it is

used. Not all model selection and Monte Carlo methods reviewed in the next two

chapters are applied to this model.

2.1 compartmental model

Compartmental models are a class of models that describe systems in which some

real or abstract quantity flows between different (physical or conceptual) com-

partments, each with its own characteristics. It is often of interest to infer both

parameters that describe the dynamics of the system and the number of compart-

ments that are required in order to adequately describe measured data within this

framework. The choice of the number of compartments in the model presents a

model selection problem of interest.

A compartmental system comprises a finite number of macroscopic sub-

units called compartments, each of which is assumed to contain homogeneous and

9



positron emission tomography compartmental model

well-mixed material. The compartments interact by material flowing from one

compartment to another. There may be flows into one or more compartments from

outside the system (inflows) and there may be flows from one or more compart-

ments out of the system (outflows) [81]. In this thesis, linear compartmental models

are considered. In these models, the rate of tracer flow from a compartment is

proportional to the quantity of tracer in that compartment. In such models the

flow may be parameterized by a pair of transfer coefficients, which are termed rate

constants and may take the value zero, for each pair of compartments.

This class of models yields a set of ordinary differential equations (ode) that

describes the flow of tracer. Consider an 𝑟-compartments model. Let 𝑓(𝑡) be the

𝑟-vector whose 𝑖th element corresponds to the concentration in the 𝑖th compartment

at time 𝑡. Let 𝑏(𝑡) be the 𝑟-vector that describes all flow into the system from

outside. The 𝑖th element of 𝑏(𝑡) is the rate of inflow into the 𝑖th compartment from

the environment. The dynamics of such a model may be written as,

̇𝑓(𝑡) = 𝐴𝑓(𝑡) + 𝑏(𝑡),

𝑓(0) = 𝜉,

where 𝜉 is the 𝑟-vector of initial concentrations and ̇𝑓 denotes the time derivative

of 𝑓. The matrix 𝐴 is formed from the rate constants (see [67]). The solution [142,

sec. 8.3.1] to this set of equations is,

𝑓(𝑡) = 𝑒𝐴𝑡𝜉 + ∫
𝑡

0
𝑒𝐴(𝑡−𝑠)𝑏(𝑠) d 𝑠,

where the matrix exponential 𝑒𝐴𝑡 = ∑∞𝑘=0
(𝐴𝑡)𝑘

𝑘! .

2.2 application to positron emission tomography

Positron emission tomography (pet) is an analytical imaging technology that uses

compounds labelled with positron emitting radionuclides as molecular tracers to

image and measure biochemical process in vivo. It is one of the few methods

10
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available to neuroscientists to study biochemical processes within living brains,

as methodology such as magnetic resonance imaging (mri) is primarily only able to

study effects via blood flow changes, while pet can study changes in the biochemical

systems themselves. This is of considerable interest within research into diseases

where biochemical changes are known to be responsible for symptomatic changes,

such as in schizophrenia and other psychiatric diseases [47]. In a clinical setting,

pet is now one of the most commonly used diagnostic procedures for cancer (both

within and outside the brain), as fluoro-deoxyglucose ([18F]-FDG, an radiotracer

analogue of glucose) can be imaged. Cancer cells tend to be very metabolically

active, thus requiring more glucose than surrounding cells, resulting in a greater

uptake of [18F]-FDG, leading to an indication of cancer location on an [18F]-FDG

scan [49].

In a typical molecular assay, usually a positron-labelled tracer is injected

intravenously and the pet camera scans a record of positron emission as the tracer

decays [127]. With all events detected by the pet camera, the time course of the

tissue concentrations are reconstructed as three-dimension images [98]. The digital

image so captured shows the signal integrated over small volume elements, termed

voxels. Each voxel has a volume of the order of a few cubic millimeters. This data

provides the tissue time-activity function, which is the total concentration of tracer

in all tissue compartments. In the plasma input compartmental model, in addition

to the pet data, a separate measurement of the concentration of tracer in the plasma

is available. This measurement is generally assumed to be noise free (it can be

measured with much greater accuracy than the signal of interest). This model is

used in the current study. See [67] for the pet compartmental model in general.

There are many reasons that linear ode models, of which the plasma input

model is one, are the most commonly used in pet analysis. Perhaps most impor-

tantly, such systems have been shown to characterize pet experimental data well

[103]. The amount of data available to fit the model for each voxel is relatively small

(20-40 time points), and even with a three-compartments linear ode model, the

estimation of six parameters is non-trivial; it is clear that attempting to estimate

11
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𝐶𝑃 𝐶𝑇

𝐶𝑇1

𝐶𝑇𝑖

𝐶𝑇𝑗

𝐶𝑇𝑟

𝐾1

𝑘2

Figure 2.1 Illustration of the plasma input pet compartmental model.

the parameters of more general non-linear ode systems robustly will be close to

impossible in this setting. Furthermore, on a voxel level, which is the type of spatial

analysis that is of interest here, the signal-to-noise ratio of the data is not high,

making any parameter estimation difficult. Finally, as the models are estimated for

every voxel in the brain (typically around a quarter of a million voxels per scan),

computational consideration needs to be taken into account. Thus, linear odemod-

els are both experimentally useful and computationally efficient; and it is difficult

to justify the additional complexity that would arise from considering more general

models.

The model used in this thesis, the plasma input model as illustrated in Fig-

ure 2.1, with 𝑟 tissue compartments can be written as a set of ode,

𝐶̇𝑇(𝑡) = 𝐴𝐶𝑇(𝑡) + 𝑏𝐶𝑃(𝑡)

𝐶𝑇(𝑡) = 1𝑇𝐶𝑇(𝑡)

𝐶𝑇(0) = 0,

12
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where 𝐶𝑇(𝑡) is an 𝑟-vector of time-activity functions of each tissue compartment,

𝐶𝑃(𝑡) is the plasma time-activity function, i.e., the input function. 𝐴 is the 𝑟 × 𝑟

state transition matrix with𝐴(𝑖, 𝑗) being the rate constant of tracer flowing from the

𝑖th compartment into the 𝑗th compartment. 𝑏 = (𝐾1, 0,… , 0)𝑇 is an 𝑟-vector, where

𝐾1 is the rate constant of input from the plasma into tissues. The 𝑟-vectors 1 and

0 correspond to the 𝑟-vectors of ones and zeros, respectively. The matrix 𝐴 takes

the form of a diagonally dominant matrix with non-positive diagonal elements and

non-negative off-diagonal elements. Furthermore, 𝐴 is negative semidefinite [67].

The solution to this set of ode is,

𝐶𝑇(𝑡) = 𝐶𝑃(𝑡) ⊗ 𝐻𝑇𝑃(𝑡) = ∫
𝑡

0
𝐶𝑃(𝑡 − 𝑠)𝐻𝑇𝑃(𝑠) d 𝑠 (2.1)

𝐻𝑇𝑃(𝑡) =
𝑟

∑
𝑖=1
𝜙𝑖𝑒−𝜃𝑖𝑡, (2.2)

where⊗ is the convolution operator and the 𝜙1∶𝑟 and 𝜃1∶𝑟 parameters are functions of

the rate constants. There is a one-to-one mapping between the set of rate constants

and the set of 𝜙1∶𝑟 and 𝜃1∶𝑟 parameters (see [67] for the explicit form of themappings

for various model configurations, including the ones later used in this thesis). The

input function 𝐶𝑃(𝑡) is assumed to be nearly continuously measured. The tissue

time-activity function 𝐶𝑇(𝑡) is measured discretely, leading to measured values of

the integral of the signal over each of 𝑛 consecutive, non-overlapping time intervals

ending at time points 𝑡1,… , 𝑡𝑛. The macro parameter of interest is the volume of

distribution, 𝑉𝐷, defined by

𝑉𝐷 = ∫
∞

0
𝐻𝑇𝑃(𝑡) d 𝑡 =

𝑟

∑
𝑖=1

𝜙𝑖
𝜃𝑖
. (2.3)

This corresponds to the steady state ratio of tissue concentration to plasma concen-

tration in a constant plasma concentration regime. That is, if an injection of tracers

into the plasma was made such that the plasma concentration remained constant

over time, then the ratio of concentration in the tissues to the concentration in the

plasma after an infinite time had passed would be exactly 𝑉𝐷.

It is assumed that the input is the same at all voxels of the reconstructed im-

age. However, the model for each voxel is not assumed to be the same, and different
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number of compartments can be associated with each one. The model selection

problem is to find the number of compartments given the data at each voxel. The

compartments in the model typically can be identified with free tracer, specifically

bound tracer (tracer bound to the system under investigation) and non-specifically

bound tracer (tracer bound to different competing systems), indicating the role of

certain chemicals within particular brain systems. In the model fitting, a “massive

univariate” approach is taken with each voxel being analyzed separately. Spatial

effects are neglected in this approach and voxels are assumed to be independent.

This approach is common in the literature and makes the problem of dealing with

a very large number of voxels feasible. However, it imposes very stringent com-

putational requirements. About a quarter of a million voxels must be analyzed

(i.e., the time series analysis must be repeated separately for each of these voxels),

meaning that robustness is essential as complex model-specific characterizations

and model/algorithm tuning cannot be performed on a voxel by voxel basis.

The changes of the biochemical systems are reflected in the different rates

of the decay of the concentration of the compounds labelled with position emit-

ting radionuclides. The compartments in the context of the pet compartmental

model are conceptual instead of physical. In the situation where the tracers are not

interacting with the brain tissues in any way, all tracers are free tracers. They are

input into the brain and flows outside it without being bound to any tissues. And

thus there will be only one compartment. When the biochemical process of interest

does occur within the brain, some tracers will be bound to the tissues instead of

flowing outside the brain. In this case, a second compartment may be observed. It

is also possible that the tracers are bound to the brain tissues but not through the

biochemical process of interest. In this case, a third compartment may be observed,

too.

The model selection problem in this context is the choice of the number of

compartments that can be best used to describe the data. As said above, identifying

the existence of the second or higher order compartments is of interest. If the data

support such a higher model, then it is at least possible that the biochemical process
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𝐾1

𝑘2

𝑘3

𝑘4

𝑘5 𝑘6

Plasma

Non-specifically bound

Specifically bound

Three compartments

Figure 2.2 Illustration of the three-compartments plasma input pet model.

of interest is indeed happeningwithin the brain. And thus further diagnoses through

other techniques can be used to determine the cause the symptomatic changes.

2.3 simulated and real pet data

Two kinds of data are used in this thesis. The first is simulated from a three-

compartments model as illustrated in Figure 2.2, with the matrix of rate constants,

𝐴 =
[[[[

[

−𝑘2 − 𝑘3 − 𝑘5 𝑘4 𝑘6
𝑘3 −𝑘4 0

𝑘5 0 −𝑘6

]]]]

]

, (2.4)

where 𝑘2 = 3 × 10−3, 𝑘3 = 5.5 × 10−3, 𝑘4 = 1.5 × 10−3, 𝑘5 = 10−3 and 𝑘6 = 3 × 10−3.

The rate constant of input 𝐾1 = 6 × 10−3. All parameters have the unit s−1 except

𝐾1, which has the unit ml s−1 cm−3 [78]. The simulated data has 32 time frames

with lengths corresponding to the integration periods used in real experiments

(27.5, 32.5, 2 × 10, 20, 6 × 30, 75, 11 × 120, 210, 5 × 300, 450, and 2 × 600, all in

seconds). The plasma input function 𝐶𝑃(𝑡) is the same as the one obtained from

real pet scans (see next paragraph). Noise is added to the synthetic data such that

the noise is normally distributed with mean zero, and variance proportional to the
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time activities divided by the length of time frames (i.e., 𝐶𝑇(𝑡𝑖)/(𝑡𝑖 − 𝑡𝑖−1)). The

noise is scaled such that the highest variance in the sequence is equal to a “noise

level” variable (with the others scaled in proportion). This noise level ranges from

0.01 to 5.12, from lower than typical region of interest (roi) analysis (in which the

data is averaged over a biologically meaningful region in order to improve signal to

noise ratio) to higher than the noise associated with voxel-level analysis [125]. For

each noise level, 2,000 time series were simulated.

Data from a pet study using [11C]diprenorphine are also used in this the-

sis, where [11C] denotes the radioactive Carbon. The same data was previously

analyzed in [125, 89]. In both studies, parameter estimation instead of model se-

lection is of interest. The overall aim of the study was to quantify opioid receptor

concentration in the brain of normal subjects allowing a baseline to be found for

subsequent studies on diseases such as epilepsy. Diseases such as epilepsy tend to

involve changes in brain receptor concentrations or occupancy levels either due

to physical lesions within the brain or other chemically relevance differences from

normal controls. Two dynamic scans from a measured [11C]diprenorphine study of

normal subjects, for which an plasma input function was available, were analyzed.

One of them is used in this thesis. [11C]diprenorphine is a tracer that binds to the

opioid (pain) receptor system in the brain. The subject underwent 95 minutess

dynamic [11C]diprenorphine pet baseline scans on the same camera. The subjects

were injected 185 MBq of [11C]diprenorphine. pet scans were acquired in 3d mode

on a Siemens/cti ecat exact3d pet camera, with a spatial resolution after image

reconstruction of approximately 5mm. Data was reconstructed using the repro-

jection algorithm [98] with ramp and Colsher filters cutoff at Nyquist frequency.

Reconstructed voxel size was 2.096mm×2.096mm×2.43mm. Acquisition was per-

formed in listmode (event-by-event) and scans were rebinned into 32 time frames

of increasing durations. The end time points of each frame is the same as in the

simulated data. Frame-by-frame movement correction was performed on the pet

images. Overall this resulted in images of size 128 × 128 × 95 voxels, which when

masked to include only brain regions, resulted in 233,054 separate time series to be
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analyzed. Figure 5.1 shows the estimates of 𝑉𝐷 for this data obtained in a previous

study [167]. It can be seen that the spatial structure of the data is heterogeneous. Ro-

bustness of algorithms is needed to obtain good performance for the large number

of data sets.

2.4 modeling error structures

In the scenarios considered in this thesis, linear one-, two-, and three-compartment

models are considered possible; the methods could deal with other compartmental

models straightforwardly, but we focus on these as they are the most interesting

in the application of interest. Let 𝑡1,… , 𝑡𝑛 be the end points of the time frames at

which the tissue concentrations are measured, and let 𝑦1,… , 𝑦𝑛 be the observed

data, that is, the value of𝐶𝑇(𝑡𝑖) in the ode system. Measurement error is assumed to

be white and additive with zeromean and variance proportional to activities divided

by the length of time frames (i.e., 𝐶𝑇(𝑡𝑖)/(𝑡𝑖 − 𝑡𝑖−1), the same as the one used in the

simulated data). These assumptions arise from the physical characterization of the

pet system of interest; alternative specifications would be possible and appropriate

for other situations. Recall Equations (2.1) and (2.2) and rewrite 𝐶𝑇(𝑡) in terms of

the parameters 𝜙1∶𝑟 and 𝜃1∶𝑟, for 𝑖 = 1,… , 𝑛

𝐶𝑇(𝑡𝑖; 𝜙1∶𝑟, 𝜃1∶𝑟) =
𝑟

∑
𝑗=1
𝜙𝑗 ∫
𝑡𝑖

0
𝐶𝑃(𝑠)𝑒

−𝜃𝑗(𝑡𝑗−𝑠) d 𝑠

𝑦𝑖 = 𝐶𝑇(𝑡𝑖; 𝜙1∶𝑟, 𝜃1∶𝑟) + 𝜀𝑖√
𝐶𝑇(𝑡𝑖; 𝜙1∶𝑟, 𝜃1∶𝑟)
𝑡𝑖 − 𝑡𝑖−1

,

where 𝑟 = 1, 2, or 3 is the number of tissue compartments, 𝑡0 = 0, and 𝜀𝑖 are

identically independently distributed (i.i.d.) random variables with mean zero. It

is usually assumed that 𝜀𝑖 has a Normal distribution. It is demonstrated in [167]

that there is evidence that a Student 𝑡 distribution better fits the observed data.
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Therefore, we consider two error structures,

𝜀𝑖 ∼u� (0, 𝜆−1) Normally-distributed errors

𝜀𝑖 ∼ u� (0, 𝜏, 𝜈) 𝑡-distributed errors,

where u� (0, 𝜆−1) is the Normal distribution with mean zero and precision 𝜆, and

u� (0, 𝜏, 𝜈) is the Student 𝑡 distribution with location zero, scale 𝜏, and degrees of

freedom 𝜈. Unless stated otherwise, in the examples of this thesis, the Normally

distributed error structure is used when modeling the simulated data. The Student 𝑡

distributed error structure is used when modeling the real data.
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3 MODEL SELECTION

Model selection is a problem found throughout statistics and related disciplines.

A number of approaches has been developed through the history of statistics. We

review some of themore widely usedmethods. We are mostly interested inmethods

that are generic in the sense that their usefulness is not limited to any particular

class of models.

Section 3.1 reviews a few information-theoretic approaches. The most im-

portant one of them is perhaps the Akaike’s information criterion (aic; [3, 2]).

A few other closely related methods are also reviewed in this section. Section 3.2

reviews the Bayesian approach to model comparison and selection. This chapter is

concluded by discussions of the methods reviewed.

3.1 information-theoretic approach

Information theory is a discipline that covers a wide range of theories and methods

that are fundamental to many scientific disciplines (see e.g., [34] for an overview).

The most relevant one here is the Kullback-Leibler divergence (kld) [102], which

measures the discrepancy between two density functions. Many model selection

methods are based on estimators of this measure of discrepancy.

3.1.1 Kullback-Leibler divergence

Assume that the distribution of data is continuous and has a density function 𝑔. Let

𝑓(𝑥) = 𝑓(𝑥|𝜃) be the density function of some continuous parametric distribution,

where 𝜃 is the parameter vector. The kld between 𝑔 and 𝑓 is defined by,

𝐷kl(𝑔, 𝑓) = ∫ 𝑔(𝑥) log(
𝑔(𝑥)
𝑓(𝑥|𝜃)
) d 𝑥. (3.1)
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In [102] it was originally developed from information theory, as it relates the “in-

formation” lost when 𝑓 is used to approximate 𝑔. The kld is always nonnegative

and equals to zero if and only if 𝑔(𝑥) = 𝑓(𝑥) everywhere [23, sec. 6.8]. The concept

can be generalized to discrete distributions and more general settings [23, sec. 2.1.3].

For the purpose of simplicity, in the remainder of this section, we will assume that

distributions under discussion are continuous.

A procedure of model selection under this theme is thus finding models that

have theminimumkld between the true data generating distribution and themodel

distribution. There is often a set of candidate models. Each model is defined by

a parametric distribution. Therefore model selection can be viewed as a two-step

process. First, for each model a value of the parameter vector is found such that the

kld is minimized within this model across the parameter space. Second, models

with the smallest kld among all models are selected.

It is clear that the calculation of𝐷kl(𝑔, 𝑓) relies on the knowledge of both 𝑓

and 𝑔 which is unknown, as well as the value of the parameter vector 𝜃. Rewrite

Equation (3.1) as the following,

𝐷kl(𝑔, 𝑓) = ∫ 𝑔(𝑥) log 𝑔(𝑥) d 𝑥 − ∫ 𝑔(𝑥) log𝑓(𝑥|𝜃) d 𝑥

= 𝔼𝑔[log 𝑔(𝑋)] − 𝔼𝑔[log 𝑓(𝑋|𝜃)]. (3.2)

The first term is a constant. Therefore, minimizing𝐷kl(𝑔, 𝑓) is equivalent to min-

imizing (−𝔼𝑔[log 𝑓(𝑋|𝜃)]). The later is also called the relative Kullback-Leibler

divergence. Let ̃𝜃 denote the value of the parameter vector that minimizes the rela-

tive kld and ̂𝜃(𝑦) denote an estimator of it, where 𝑦 is the data generated from 𝑔.

We have the minimum and estimated kld,

𝐷̃kl(𝑔, 𝑓) = Constant − 𝔼𝑔[log 𝑓(𝑋| ̃𝜃)], (3.3)

𝐷̂kl(𝑔, 𝑓) = Constant − 𝔼𝑔[log 𝑓(𝑋| ̂𝜃(𝑦))], (3.4)

respectively. Since ̂𝜃(𝑦) ≠ ̃𝜃 for (almost) all data 𝑦, we have 𝐷̂kl(𝑔, 𝑓) > 𝐷̃kl(𝑔, 𝑓).

An alternative criterion is the expected value of 𝐷̂kl(𝑔, 𝑓),

𝐷̄kl = Constant − 𝔼 ̂𝜃𝔼𝑔[log 𝑓(𝑋| ̂𝜃(𝑦))] (3.5)
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where the outer expectation is with respect to 𝑔 and integrates out the estimated

parameter ̂𝜃(𝑦). It is again almost always larger than the minimum kld. However,

using the expected kld as a model selection criterion allows us to select models

that on average minimize the estimated kld. Note that we cannot compute this

term analytically since it depends on the true model 𝑔, which is assumed to be

unknown. The model selection criteria discussed below rely on approximations

of this quantity. These methods attempt to select the model that asymptotically

minimizes, over a set of models, the expected kld.

3.1.2 Akaike’s information criterion

The aic strategy is based on an observation of the relationship between the maxi-

mum likelihood estimator (mle) and the kld. Let 𝑦 = (𝑦1,… , 𝑦𝑛) denotes iden-

tically independently distributed (i.i.d.) samples generated from 𝑔. Then by the

Strong Law of Large Numbers (slln),

1
𝑛
ℓ𝑛(𝜃)

a.s.
−−−→ 𝔼𝑔[log 𝑓(𝑌|𝜃)] (3.6)

where ℓ𝑛(𝜃) = ∑𝑛𝑖=1 log 𝑓(𝑦𝑖|𝜃) is the log-likelihood function. This suggests the

use of the mle, denoted by ̂𝜃, which maximizes ℓ𝑛(𝜃) as an estimator of ̃𝜃, which

minimizes 𝐷kl(𝑔, 𝑓). The expected kld 𝐷̄kl(𝑔, 𝑓) can be approximated by em-

pirical average ℓ𝑛( ̂𝜃), up to an additive constant that is the same for all models.

However, as shown in [3], this approximation is systematically biased upward (also

see [32, sec. 2.3] for some remarks on this bias). It can be shown that the bias is

approximately 𝑘/𝑛 where 𝑘 is the length of the parameter vector 𝜃. This leads to the

adjusted estimator of the expected relative kld,

− 1
𝑛
ℓ𝑛( ̂𝜃) +
𝑘
𝑛
. (3.7)

In [3] it is rescaled to,

aic = −2ℓ𝑛( ̂𝜃) + 2𝑘 (3.8)

and the aic strategy selects the model with the smallest value of aic.
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A more rigorous derivation of Equation (3.8) can be found in [32, sec. 2.3]

and [23, sec. 6.2]. Here, we are more interested in the conditions under which this

approximation is good enough for the purpose of model selection. Some remarks

below are given without proof. For technical details, see the two references of the

derivation of aic.

First, the derivation of the bias term is based on a first order Taylor expansion

of𝔼𝑔[ℓ𝑛( ̂𝜃)/𝑛−𝐷̄kl(𝑔, 𝑓)]. The accuracy is of order 𝑜(𝑛). The assumption about the

parametric model 𝑓 is quite minimal. Given more information about the structure

of the models, more accurate estimator can be derived by using a second order

expansion (discussed later in Section 3.1.3).

Second, more importantly, aic assumes that the candidate models are close

enough to the true model. When there is significant misspecification of the models,

the results from using the aicmethod can bemisleading. Estimators of the expected

kld that aremoremodel robust can be derived. Later, in Section 3.1.4 amore general

estimator of the expected relative kld is discussed, of which aic is a special case.

Third, though earlier we assumed i.i.d. samples, which leads to the conver-

gence (3.6) as a motivation of using the mle for the estimation of expected relative

kld, this is not necessary for the application of the aic strategy. The aic model

selection method has also been successfully used for dependent data. For example,

[105] shows that aic is efficient for selecting the order of an autoregressive process.

However, aic does assume that the model distribution is well behaved in the sense

that the estimator used to evaluate the criterion is indeed close to the minimizer of

the kld.

Last but not least, aic has the tendency of selecting more complex models in

the sense that when there are multiple models with the minimum expected kld, aic

is likely to choose the model with more parameters. Intuitively, the log-likelihood

function increases linearly as the sample size grows, while the penalty term 2𝑘 is not

affected. Therefore, the aic strategy is likely going to select more complex models

when more data becomes available. This is formally shown in [147]: When there

are more than one model that minimizes the kld, aic does not necessarily choose
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the simplest model.

3.1.3 A second order aic

As shown in [154], the first order approximation can perform poorly when the data

size is small (compared to the number of parameters to be estimated). A second

order variant is derived in the same paper and further studied by [77], which led to

a criterion that is called aic𝑐, the corrected aic,

aic𝑐 = −2ℓ𝑛( ̂𝜃) +
2𝑛𝑘
𝑛 − 𝑘 − 1

. (3.9)

It is clear that the additional bias correction is negligible if 𝑛 is large when compared

to 𝑘, as lim𝑛→∞ 2𝑛𝑘/(𝑛 − 𝑘 − 1) = 2𝑘, which is exactly the penalty term in the

original aic formula. A rule of thumb, found in various source, is that aic𝑐 should

be used in place of aic when 𝑛/𝑘 ≤ 40; see e.g., [23, sec. 2.4].

aic𝑐 is just one way to improve aic for small sample size. In particular, it

is derived in the case of a model with linear structure and Gaussian errors (see

[77] and [23, sec. 6.4.1] for derivations of aic𝑐). With other models, other forms of

improved aic can be derived. However, this form has also been used successfully

in literature even in nonlinear non-Gaussian cases. For example see [160] for its

application to the pet compartmental model.

Both aic and aic𝑐 assume the use of the mle for the computation of the

criteria. However, inmany nonlinear applications, the estimator is obtained through

optimization of criteria other than the likelihood function. For example, nonlinear

least squares (nls) estimation and other optimization procedures are widely used

in the estimation of the pet compartmental model. Model selection criteria are

computed with these estimators. These estimators are commonly used because

of their ease of computation and other properties. However, the model selection

results obtained this way may not be satisfactory.

For example, in [167] the model selection for the pet compartmental model

using the aic and other methods were studied. Table 3.1 shows the frequencies of
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Table 3.1 Frequencies of models selected by aic𝑐 (%) for 2,000 pet compartmental
model data sets simulated from the three-compartments model.

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1 0 0.1 0.6 1.0 1.8 16.3 48.8 78.3 91.6 98.5
2 91.6 94.0 95.0 96.3 96.6 83.1 50.7 21.5 8.3 2.5
3 8.4 5.9 4.4 2.7 1.6 0.6 0.5 0.2 0.1 0

models selected by aic𝑐 for 2,000 data sets simulated from the three-compartments

model (see Section 2.3) while using the nls estimator. It can be seen that, for data

sets with small noise levels (the highest variance of the Normally distributed error

added to the simulated time series, with others scaled in proportion), the aic𝑐
method is able to select the two-compartments model with a very high frequency.

Though this is not the true model that generated the data, it is very close as the

third compartment is difficult to identify (see discussions in [167] and references

therein). However, when the noise level increases, the method is unable to identify

the second compartment.

It is possible to derive more accurate second or even higher order approx-

imations to the expected relative kld for some models. However, this may not

be feasible for some realistic applications. For example, the pet compartmental

model does not have an explicit form of the likelihood function, which may create

significant technical difficulty if we want to refine the aic approximation. More

importantly, such refinement of aic relies on assumptions about the explicit form

of the true model 𝑔 or one that closely imitates it. When the form of the model is

drastically different from the one used to derive criteria such as aic𝑐, poor results

of model selection are likely to be obtained as we have seen here.
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3.1.4 Takeuchi’s information criterion

As stated earlier, aic (and some of its refinements such as aic𝑐) depends on the

assumption that the candidate models are close to the one that generated the data.

However, this might not be the case in reality. In [155], a general derivation from

kld to aic was developed. An intermediate result indicated a selection criterion

useful when there is considerable model misspecification, formulated as tic,

tic = −2ℓ𝑛(𝜃) + 2 tr(𝐻(𝜃)𝐾(𝜃)−1) (3.10)

where −𝐻(𝜃) is the expectation of the Hessian matrix and 𝐾(𝜃) is the variance

matrix of the score vector, respectively, that is,

𝐻(𝜃) = −𝔼𝑔[
𝜕2 log 𝑓(𝑋|𝜃)
𝜕𝜃𝜕𝜃𝑇

] and 𝐾(𝜃) = var𝑔[
𝜕 log𝑓(𝑋|𝜃)
𝜕𝜃
], (3.11)

provided that all differentiations and integrations exist. The expectations are taken

with respect to the true data generating distribution 𝑔. Ideally tic should be eval-

uated at the minimizer of the kld, ̃𝜃. In reality, the mle is often used to eval-

uate the likelihood function and various estimator of the bias correction term,

tr(𝐻( ̃𝜃)𝐾( ̃𝜃)−1), has been developed (see e.g., [32]). If the mle is well behaved

[106], then we can substitute the mle into Equation (3.10) and use empirical aver-

ages as estimates of tr(𝐻( ̂𝜃)𝐾( ̂𝜃)−1). The explicit form of the bias correction term

can also be derived for some models. For example, see [23, sec. 6.6]. This allows

more accurate evaluation of tic.

Note that, since ̃𝜃minimizes the kld, the expectation of the score vector is a

zero vector when evaluated at ̃𝜃, under suitable continuity conditions. Further, if

𝑔(𝑥) = 𝑓(𝑥| ̃𝜃) everywhere, then it is obvious that the above two matrices are equal

and become the Fisher information matrix, provided the ability to exchange the

order of integrations and differentiations and other regularity conditions. In this

case, tr(𝐻(𝜃)𝐾(𝜃)−1) = 𝑘, and the tic leads to the aic formula. It becomes clear

now that aic is an approximation of tic in the situation where the candidate models

are close to the true data generating mechanism. The tic method does not have
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such assumptions and may perform considerably better than aic in the situation of

model misspecification.

Unlike the refinements of aic such as aic𝑐, the tic method relies heavily on

the assumption of large sample size in order to obtain accurate estimation of the

bias term. It is difficult to derive small sample correction for the tic approximation.

See also the discussions in [23, sec. 6.7.8]

3.1.5 Cross-validation

Cross-validation has a long history in applied and theoretical statistics. It has been

formalized in [51] and [151] (also see the introduction in [151] for an overview of

earlier development on this method). The basic idea is to split the data into two

parts. One part of the data is used for model fitting and the resulting estimates

of parameters are used to predict the other part of the data. By comparing the

predictions based on part of the data and the observed other part, the usefulness of

the model is determined.

Formally, following [51], let 𝑦 = (𝑦1,… , 𝑦𝑛) be the data set and 𝑦𝑡 ⊂ 𝑦 be

a non-empty proper subset. The sub-sample 𝑦𝑡 is called the training set and its

complement 𝑦𝑣 = 𝑦\𝑦𝑡 is called the validation set. For each model, defined by a

parametric distribution with density 𝑓(⋅|𝜃), a loss function is defined, say 𝛾(⋅|𝜃).

The choice of the loss function 𝛾 is formally arbitrary. It is taken as a measurement

of the fitness of the model. A commonly used one is the log-density function,

𝛾(𝑥|𝜃) = − log𝑓(𝑥|𝜃) [149]. The risk estimator of 𝔼𝑔[𝛾(𝑋| ̂𝜃(𝑦))], where ̂𝜃(𝑦) is

the estimate obtained with all data and the expectation is taken with respect to the

unknown distribution 𝑔 that generates the data, is obtained through averaging over

the left-out data,

𝑅̂𝑣𝑓(𝑦,𝑦
𝑡) = 1
|𝑦\𝑦𝑡|

∑
𝑦∈𝑦\𝑦𝑡
𝛾(𝑦| ̂𝜃(𝑦𝑡)) (3.12)

where ̂𝜃(𝑦𝑡) is the parameter estimate obtainedwith only the training set𝑦𝑡. Further,

let 𝑦𝑡1,… ,𝑦
𝑡
𝑚 be a sequence of non-empty proper subsets of 𝑦. The cross-validation
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estimator of the risk is defined as,

𝑅̂cv𝑓 (𝑦, {𝑦
𝑡
𝑖}
𝑚
𝑖=1) =
1
𝑚

𝑚

∑
𝑖=1
𝑅̂𝑣𝑓(𝑦,𝑦

𝑡
𝑖). (3.13)

The model selection proceeds to choose the model with the smallest value of the

estimated risk 𝑅̂cv𝑓 (𝑦, {𝑦
𝑡
𝑖}
𝑚
𝑖=1).

An alternative, as seen in [164], is called cross-validationwith voting. Amodel

with density 𝑓1 is chosen over a model with density 𝑓2 if and only if 𝑅̂𝑣𝑓1(𝑦,𝑦
𝑡
𝑖) <

𝑅̂𝑣𝑓2(𝑦,𝑦
𝑡
𝑖) for a majority of the partitions of the data 𝑦. When there are multiple

candidate models, the same paper proposed the following procedure: For each

partition of the data 𝑦, and the corresponding training set 𝑦𝑡𝑖 and validation set

𝑦𝑣𝑖 = 𝑦\𝑦
𝑡
𝑖 , a model with the smallest value of 𝑅̂𝑣𝑓(𝑦,𝑦

𝑡
𝑖) is selected. Then the model

selected most frequently (the most voted) among all partitions is chosen as the best

model.

There are different ways to split the sample. The most commonly used is

perhaps the leave-one-out procedure [151, 51]. In this case, training sets 𝑦𝑡𝑖 = 𝑦\{𝑦𝑖}

for 𝑖 = 1,… , 𝑛 are used. A more general scheme is that 𝑘 observations are left out

for each training set and all possible combinations are considered [144]. It is clear

that 𝑘 = 1 yields the leave-one-out procedure and for large sample size, a modest

𝑘 can lead to higher computational cost as the number of possible partitions is the

binomial coefficient. This is also called the 𝑘-fold procedure. Other procedures are

also possible. For more information we refer to [150] and [75].

There are also different choices of the loss function 𝛾. The one mentioned

earlier, 𝛾(𝑥|𝜃) = − log𝑓(𝑥|𝜃), when combined with the leave-one-out procedure,

leads to the estimator,

− 1
𝑛

𝑛

∑
𝑖=1
log 𝑓(𝑦𝑖| ̂𝜃(𝑦𝑡𝑖)) (3.14)

where ̂𝜃(𝑦𝑡𝑖) is the estimate obtained using the sub-sample 𝑦𝑡𝑖 = 𝑦\{𝑦𝑖}. It was shown

in [150] that this is asymptotically equivalent to the aic strategy for model selection.

An alternative loss function for linear regression models was proposed in [5].

The squared difference between the observation and the predictor is used as the risk

27



model selection

estimator. Given a model 𝑦𝑖 = 𝛽𝑇𝑥𝑖 + 𝜀𝑖, and let ̂𝑦𝑖 be the predictor of 𝑦𝑖 obtained

with the model fitted with all but the 𝑖th observation, i.e., using the leave-one-out

procedure, this leads to the press statistic,

press =
𝑛

∑
𝑖=1
(𝑦𝑖 − ̂𝑦𝑖)2 (3.15)

The model with the smallest press value is selected. This is one of the commonly

used model selection methods for regression models.

The performance of cross-validation for model selection depends on both the

choice of the loss function and the partition of the sample. There is a large amount

of literature on cross-validation for various model selection problems. For some

models, specific choice of the function 𝛾 were proposed, for example, the press

statistic shown earlier and its more robust variant such as replacing the squared

error by the absolute error [32, sec. 2.9]. Also as argued in the same book, the use

of 𝛾(𝑥|𝜃) = − log𝑓(𝑥|𝜃) is a sensible choice for many applications, as the resulting

cross-validation estimator can be interpreted as an estimator of the expected relative

kld.

The partition of the sample can influence the performance more significantly.

And the procedure that minimizes the bias and variance of the risk estimator is

not necessarily the same as the one that produces the best model selection results.

For example, for regression models with random covariates, [22] gave examples

where the best risk estimator was obtained with the leave-one-out procedure while

a 10-fold cross-validation could produce more accurate model selection results.

More generally, the performance depends on the asymptotic behavior of 𝑛𝑡/𝑛 where

𝑛𝑡 is the size of the training set. For instance, [143] showed that for linear model

selection, cross-validation is more efficient when 𝑛𝑡 is asymptotically equal to 𝑛

while using a 𝑘-fold procedure.
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3.2 bayesian model comparison

Bayes’ theorem, in its simplest form is stated as below,

Pr(𝐻|𝑦) =
Pr(𝑦|𝐻) Pr(𝐻)
Pr(𝑦)

(3.16)

where 𝑦 is the data and 𝐻 is a hypothesis. Like many other probability theories,

technically Bayes’ theorem merely provides a method of accounting for the uncer-

tainty. There are different interpretations, rooted in the views of probabilities. See

[20, chap. 1] and references therein for discussions on this topic. In this thesis, we

are more concerned with the practical applications of the Bayesian model compar-

ison technique, its computational difficulties, and its implementation for realistic

models. More philosophical issues will not be elaborated in this thesis.

A treatment of Bayesian modeling from a decision-theoretic perspective can

be found in [134]. Formal mathematical representations can also be found in [20,

sec. 5.1 and sec. 6.1]. Notions of rational decisions in the context of uncertainty were

also made precise in the form of axioms in [35, 36]. It is assumed that a rational

decision cannot be considered separately from rational beliefs. And rational beliefs

should be built upon available information (the data) and any personal preference

input (the prior information).

In the remainder of this section, we first introduce the formalization of the

model choice problem within the Bayesian framework. It leads to the important

Bayes factor, discussed in Section 3.2.2. In Section 3.2.3 we discuss the construction

of priors and its particular relevance to the Bayesian model comparison problem.

3.2.1 Model choice problems

Consider a (possibly infinite) countable set of parametric models, denoted by ℳ =

{ℳ𝑘}𝑘∈u�. Under each model, the data 𝑦 = (𝑦1,… , 𝑦𝑛) is generated according to

a likelihood function 𝑝(𝑦|𝜃𝑘,ℳ𝑘) where 𝜃𝑘 is the parameter vector in the space

𝛩𝑘 ⊂ ℝ𝑑𝑘. Within the Bayesian framework, a prior distribution is chosen for the
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parameters conditional upon the model, say 𝜋(𝜃𝑘|ℳ𝑘). And each model itself

has a prior distribution 𝜋(ℳ𝑘). For the purpose of simplicity, all distributions

are assumed to be continuous except 𝜋(ℳ𝑘), which is assumed to be discrete.

According to Bayes’ theorem, the posterior distribution of the parameters and the

model, conditional upon the data, is given by the following density, defined on the

space⋃𝑘∈u�{ℳ𝑘} × 𝛩𝑘,

𝜋(𝜃𝑘,ℳ𝑘|𝑦) =
𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘)𝜋(ℳ𝑘)

𝑝(𝑦)
, (3.17)

where

𝑝(𝑦) = ∑
𝑘∈u�
𝑝(𝑦|ℳ𝑘)𝜋(ℳ𝑘), (3.18)

𝑝(𝑦|ℳ𝑘) = ∫ 𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘) d 𝜃𝑘. (3.19)

The distribution 𝜋(𝜃𝑘,ℳ𝑘|𝑦) is termed the full posterior. The within model poste-

rior distribution of the parameters is given by,

𝜋(𝜃𝑘|𝑦,ℳ𝑘) =
𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘)
𝑝(𝑦|ℳ𝑘)

. (3.20)

The term 𝑝(𝑦|ℳ𝑘) is called themarginal likelihood or the evidence of the model.

Note that the marginal likelihood is also the normalizing constant of the posterior

𝑝(𝜃𝑘|𝑦,ℳ𝑘).

From Equation (3.17), it is clear that the posterior model probability 𝜋(ℳ𝑘|𝑦)

is a marginal of the full posterior, and can be calculated given the prior 𝜋(ℳ𝑘),

𝜋(ℳ𝑘|𝑦) =
𝜋(ℳ𝑘) ∫ 𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘) d 𝜃𝑘
∑𝑙∈u� 𝜋(ℳ𝑙) ∫ 𝑝(𝑦|𝜃𝑙,ℳ𝑙)𝜋(𝜃𝑙|ℳ𝑙) d 𝜃𝑙

. (3.21)

The Bayesian model choice problem mostly centers around the inference of this

posterior model probability. Many methods for computing this probability are re-

viewed in Chapter 4. In the remainder of this section, we assume that the calculation

of required quantities is possible and accurate.

Our aim is to choose the “best” model from the set ℳ. There will usually

be actions taken after the model selection, for example, parameter estimation, or
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prediction of future events, etc. The consequences of these actions instead of the

chosen model itself are of interest. Therefore, from a decision-theoretic perspective,

the “best” model shouldmaximize the utility for some quantity of interest. However,

in practice it is common to ignore the actions following the model selection and the

sole interest is the true model, say ℳ𝑡. This is because the Bayesian framework is

often used to simultaneously provide parameter estimation, model selection, model

averaging and other inferences. It is difficult to define a criterion that chooses

models best for all these purposes. In the simplified setting, where only the true

model is of interest, it is natural to define a zero-one utility function, say 𝑢(ℳ𝑘,ℳ𝑡),

𝑢(ℳ𝑘,ℳ𝑡) =
{{
{{
{

0, if ℳ𝑘 =ℳ𝑡,

1 otherwise.
(3.22)

It is easy to see that the model ℳ𝑘 that maximizes the expected utility given data

𝑦 is the model with the highest posterior probability 𝜋(ℳ𝑘|𝑦) [20, chap. 6]. Also

see [134, sec. 7.2.1] for an in-depth discussion of the difficulties of the Bayesian

formulation in the model choice problem and the reason why such a simplified

maximum posterior probability approach.

It should be noted that the use of the zero-one utility is only valid if the true

model ℳ𝑡 belongs to ℳ. Otherwise, the utility is always zero for all models. In

what follows, we presume that our aim is to find themodel with the highest posterior

probability.

Bayesian model selection can be attractive for a few reasons. First, it pro-

vides a natural probabilistic interpretation of the results. It is very easy to account

model uncertainty within this framework. When there are more than one models

well supported by the data and it is uncertain which one should be chosen as the

best model, the posterior model probabilities can be used as weights to construct

weighted estimator. This leads to Bayesian model averaging. See, e.g., [130, 33, 41],

for more discussions and examples.

Second, it is also consistent in the sense that if there is indeed a true model,

given enough data, it is guaranteed to be selected. Later we will see some results
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for the pet compartmental model showing that Bayesian model selection indeed

provides better results compared to methods such as aic.

Third, and perhaps a more important factor, the Bayesian framework can be

applied to a wider range of applications compared to methods based on asymptotic

behaviors of the data. There are very minimal assumptions about the models under

consideration. Model selection methods reviewed earlier often require the good

behavior of an estimator, or a sufficient large sample size etc. In contrast, within

Bayesian framework, the regularity of the likelihood function is not an issue as

long as the integrations in Equation (3.21) are finite. In addition, though a large

sample size can be beneficial in the sense that it can reduce the uncertainty of the

model selection results, it is not necessary. The uncertainty of model selection is

well accounted within the Bayesian framework and improvements can be obtained

through model averaging as mentioned earlier. These advantages allow Bayesian

model selection to be successfully applied to a wide range of applications.

3.2.2 Bayes factor

When the model set ℳ is finite, we can find the model with the highest posterior

probability by comparing models pairwise. To compare the posterior probabilities

of two models, say ℳ𝑘1 and ℳ𝑘2, one only needs to compute their ratio. Recall

Equation (3.21), the ratio can be written as,

𝜋(ℳ𝑘1|𝑦)
𝜋(ℳ𝑘2|𝑦)

=
𝜋(ℳ𝑘1)
𝜋(ℳ𝑘2)

∫ 𝑝(𝑦|𝜃𝑘1 ,ℳ𝑘1)𝜋(𝜃𝑘1|ℳ𝑘1) d 𝜃𝑘
∫ 𝑝(𝑦|𝜃𝑘2 ,ℳ𝑘2)𝜋(𝜃𝑘2|ℳ𝑘2) d 𝜃𝑘

=
𝜋(ℳ𝑘1)
𝜋(ℳ𝑘2)

𝐵𝑘1𝑘2 , (3.23)

where

𝐵𝑘1𝑘2 =
∫ 𝑝(𝑦|𝜃𝑘1 ,ℳ𝑘1)𝜋(𝜃𝑘1|ℳ𝑘1) d 𝜃𝑘1
∫ 𝑝(𝑦|𝜃𝑘2 ,ℳ𝑘2)𝜋(𝜃𝑘2|ℳ𝑘2) d 𝜃𝑘2

=
𝑝(𝑦|ℳ𝑘1)
𝑝(𝑦|ℳ𝑘2)

(3.24)

is called the Bayes factor. Equation (3.23) states how the prior odds ratio is trans-

formed into the posterior odds ratio by the Bayes factor [96]. The Bayes factor is the

principle tool for Bayesian model comparison and model selection. As it is made

clear in the above equation, to compute the Bayes factor, all that needs to be done is
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Table 3.2 Jeffreys’ intepretation of the Bayes factor.

log10 𝐵𝑘1𝑘2 𝐵𝑘1𝑘2 Evidence in favor of model𝑀𝑘1
0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

the computation of the marginal likelihood for each model ℳ𝑘 ∈ℳ,

𝑝(𝑦|ℳ𝑘) = ∫ 𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|𝑘) d 𝜃𝑘.

It is obvious that 𝐵𝑖𝑗 = 𝐵𝑖𝑘𝐵𝑘𝑗, and thus the Bayes factor approach is equivalent to

choosing the model with the highest marginal likelihood provided that the model

prior distribution 𝜋(ℳ𝑘) is uniform, as long as the model set ℳ is finite.

The Bayes factor, 𝐵𝑘1𝑘2, can be interpreted as the evidence provided by the

data in favor of model ℳ𝑘1 against model ℳ𝑘2 . As noted earlier, the marginal like-

lihood 𝑝(𝑦|ℳ𝑘) is also called the evidence supporting model ℳ𝑘. Jeffrey suggested

that the Bayes factor can be interpreted on a log10 scale [88]. The interpretations are

reproduced in Table 3.2. The interpretation of the Bayes factor can be application de-

pendent. The Jeffreys’ interpretation, and a similar scale based on 2 log 𝐵𝑘1𝑘2 , which

is on the same scale as the likelihood ratio test [96], are only general guidelines.

Other interpretations can be more suitable for specific applications. For example,

[96] mentioned that for forensic evidence to be conclusive in a criminal trial, the

posterior odds of guilt against innocence needs to be at least 1,000.

A final remark about the Bayes factor is that, though obviously it can only be

used when the set of candidate models is finite, it is not necessarily an issue for many

interesting cases. As we will see later in the next chapter, evaluating the marginal

likelihood by simulating samples from the model posterior can be relatively easy

compared to evaluating the full posterior probabilities. The ease of computation

might offset limitations.
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The calculation of the Bayes factor can be made exact using analytical results

only occasionally. In most applications of interest, approximations have to be used.

Two approaches are widely used. One is to use Monte Carlo approximations. An-

other is based on the asymptotic behavior of the Bayes factor. Two of the later are

reviewed here.

Bayesian information criterion

The Bayesian information criterion (bic) was developed as a large sample approxi-

mation to the marginal likelihood 𝑝(𝑦|𝜃𝑘,ℳ𝑘) [141]. The bic is defined as,

bic = −2ℓ𝑛( ̂𝜃𝑘) + 𝑘 log(𝑛), (3.25)

where ℓ𝑛( ̂𝜃𝑘) is the log-likelihood function evaluated at the mle, 𝑘 is the number of

parameters to be estimated and 𝑛 is the number of observations. The bic strategy

chooses the model with the smallest value of bic. A derivation of bic can be found

in [32, sec. 3.2].

Similar to aic, bic assumes that the sample size is large enough in order to

approximate the marginal likelihood properly. In addition, bic also assumes “good

behavior” of the likelihood function in the sense that the mle is in the high posterior

probability region. These assumptions restrict the use of bic in some situations.

See [18] for examples where the irregularity of the likelihood function caused the

bic method unable to give reasonable results. There are other criticism of the bic

strategy. For example [134, sec. 7.2.3] argued that the bic strategy eliminated the

subjective input into the Bayes modeling since the value of bic does not depend

on the prior distribution. However this is equally argued as an advantage of this

strategy in the case that priors, to which the Bayes factors can be very sensitive, are

hard to specify.

Though bic is not an estimator of the Kullback-Leibler divergence, in [147]

it was shown that asymptotically bic is able to choose the simplest model that

minimizes the expected kld between the true model and the candidate model. In
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Table 3.3 Frequencies of models selected by bic (%) for 2,000 pet compartmental
model data sets simulated from the three-compartments model.

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1 0 0.1 0.8 1.3 3.5 27.1 64.9 87.8 95.7 98.6
2 94.6 96.2 96.1 96.8 95.5 72.7 35.0 12.2 4.3 1.4
3 5.4 3.7 3.1 1.9 1.0 0.2 0.1 0 0 0

contrast to aic (see discussions in Section 3.1.2), bic is less subject to overfitting. On

the other hand, it may not be as efficient as aic for some applications. For example,

in [105] it was shown that for autoregressive process and some other time series

applications, bic is not efficient in the sense that bic may not choose the model that

minimizes the prediction error. In [32, sec. 4.7], it was also shown that bic is not

efficient for regression variable selection.

Table 3.3 shows the frequencies of models selected by the bic for 2,000 pet

data sets simulated from the three-compartments model (see Section 2.3) while

using the nls estimator. Compared to the use of aic𝑐 (Table 3.1), the results are

quite similar though bic does tend to select lower order models more frequently.

Intuitively, bic penalizes model complexity more than aic for 𝑛 ≥ e2 ≈ 7.4 (and

thus the penalty term 𝑘 log(𝑛) > 2𝑘).

Laplace approximation

An alternative large sample approximation of the marginal likelihood is given by

[159],

(2𝜋)𝑑𝑘/2√|(−𝐻( ̃𝜃))−1|𝑝(𝑦| ̃𝜃𝑘,ℳ𝑘)𝜋( ̃𝜃𝑘|ℳ𝑘) (3.26)

where ̃𝜃𝑘 is the maximizer of the posterior density 𝜋(𝜃𝑘|𝑦,ℳ𝑘) and𝐻( ̃𝜃) denotes

the Hessian matrix evaluated at ̃𝜃. The accuracy of the Laplace approximation was

examined in [97] and other sources. In general, it is an adequate approximation if
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the likelihood function is close to Normal [96].

Often the maximizer of the posterior density is not easily obtained. A variant

of the Laplace approximation is to use the mle instead. For a sufficient large sample

size, the posterior is likely to peak at the same region as the likelihood function.

Though less commonly used than the bic approximation, the Laplace approx-

imation does not eliminate the effects of priors. For some applications, it provides a

low cost (compared to simulation techniques) alternative for evaluating the Bayes

factor over a range of priors.

3.2.3 Choice of priors

The prior distribution 𝜋(𝜃𝑘|ℳ𝑘) is chosen by statisticians in the modeling process.

The choice of the prior distribution is one of the most critical and criticized part

of Bayesian modeling. In principle, the prior distribution should represent the

prior beliefs. That is, it represents how much is already known about the data

generating mechanism and what is believed about it before the observation of the

data, no more or no less. It should not only describe all knowledge already known,

but also more importantly preserve all ignorance. If it contains more information

than what is actually known, the inference can be biased. In other words, one can

always construct a prior distribution such that inference will be biased towards

one’s preference, which is not necessarily rational. Ideally, the priors need to be

considered carefully on a per problem basis. It is often too difficult to elicit a precise

distribution from prior information. Therefore it is necessary to make at least

partially arbitrary choice of the prior distribution [134, chap. 3][96]. Nonetheless

there are a few classes of prior distributions frequently used in practice.

36



model selection

Conjugate priors

A conjugate prior, say 𝜋(𝜃𝑘|ℳ𝑘), for a parametric model with a likelihood function

𝑝(𝑦|𝜃𝑘,ℳ𝑘), is one such that the posterior 𝜋(𝜃𝑘|𝑦,ℳ𝐾) belongs to the same family

of distributions as the prior. In [20, sec. 5.2] it was argued that a conjugate prior re-

duces the input of prior information to only the choice of parameter values and thus

cannot be fully justified from a subjective perspective. Though their mathematical

simplicity makes them attractive, for many applications of interest it is difficult to

find such priors.

Non-informative priors

In situations where no or little prior information is available, the so-called “non-

informative” priors are often used. Many of them are derived from the data or the

likelihood function of the models.

Flat tails The simplest form is a uniform distribution or some distribution with

flat tails such as a Cauchy distribution. This choice can provide a robust prior

in the sense that outliers and misspecification of priors will not affect the results

significantly. For example, see [124] and [42] for analysis of the use of the Student 𝑡

distribution as the prior of location parameters such as the mean of a Normal

distribution.

Jeffreys priors Jeffreys priors [87] have the form,

𝜋(𝜃𝑘|ℳ𝑘) ∝ √|𝐼(𝜃𝑘)| (3.27)

where

𝐼(𝜃𝑘) = −𝔼𝑦[
𝜕2 log 𝑝(𝑦|𝜃𝑘,ℳ𝑘)
𝜕𝜃𝑘𝜕𝜃𝑇𝑘

] (3.28)

where the expectation is taken with respect to the likelihood function 𝑝(𝑦|𝜃𝑘,ℳ𝑘),

is the Fisher information. The defining property of Jeffreys priors is their invariance
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in the sense that, for a one-to-one transformation 𝜙𝑘 = ℎ(𝜃𝑘), we have the Jacobian

transformation,

𝐼(𝜙𝑘) = (𝐽(ℎ−1(𝜙𝑘)))𝑇𝐼(ℎ−1(𝜙𝑘))(𝐽(ℎ−1(𝜙𝑘)))

where 𝐽(ℎ−1(𝜙𝑘)) is the Jacobian matrix . For 𝜃𝑘 = ℎ−1(𝜙𝑘), it follows,

𝜋(𝜙𝑘) ∝ √|𝐼(𝜃𝑘)||𝐽(ℎ−1(𝜙𝑘))| ∝ 𝜋(𝜃𝑘)|
𝜕𝜃𝑘
𝜕𝜙𝑘
|

where the last term is the determinant of the Jacobian transformation. The above

expression states that the Jeffreys prior of the transformed parameter 𝜙𝑘 is the same

as the one obtained by changing variable of the Jeffreys prior of 𝜃𝑘. In other words,

a change of variable does not change the prior under the Jeffreys rule. Another

informal interpretation is that, the prior should contain no more information than

the observed data do. The Fisher information is widely accepted as an indicator of

the amount of information brought by the model about the parameter 𝜃𝑘 given the

data [45]. Therefore, intuitively values of 𝜃𝑘 for which 𝐼(𝜃𝑘) are large are more likely

than those for which 𝐼(𝜃𝑘) are small.

However, Jeffreys priors derived for many models may be problematic. It is

often the case that the derived Jeffreys priors can be improper. For example, the

Jeffreys prior for the mean parameter of a Normal likelihood is uniform on the

real line. This can create technical difficulties if the improper priors also lead to

improper posteriors since the marginal likelihood, as the normalizing constant of

the posteriors, cannot be computed. This makes the Bayesianmodel choice problem

difficult to formalize. See also the discussion in [96]. However, improper priors

can also lead to proper posteriors, for example see [57, sec. 2.9], [134, sec. 1.5],

[96] and references therein for successful applications using improper priors. In

general, for more complex models using proper priors is recommended since it

might be easier to verify that the posteriors are also proper. In the situationwhere the

derived Jeffreys priors are improper, it is possible to use some proper distributions

to approximate them. For example, an inverse Gamma distribution can be used to
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arbitrarily closely approximate 𝜋(𝑥) ∝ 1/𝑥, which is often seen as the Jeffreys prior

for scale parameters, such as the precision parameter of a Normal distribution.

Reference priors Another class of non-informative priors is called reference priors,

introduced in [19]. Reference priors aim to derive priors such that the distance

between the posterior and prior is maximized, usually measured in terms of the

Kullback-Leibler divergence [102] (also see Section 3.1.1). In some sense, a reference

prior is the least informative prior. See [14, 16, 15] and [20, sec. 5.4] for more

information on this class of priors.

Another form of the reference priors is to partition the parameter vector

𝜃𝑘 = (𝜃
(1)
𝑘 , 𝜃
(2)
𝑘 ) where 𝜃

(1)
𝑘 is the parameter of interest and 𝜃(2)𝑘 is the nuisance

parameter. First 𝜋(𝜃(2)𝑘 |𝜃
(1)
𝑘 ,ℳ𝑘) is defined as the Jeffreys prior associated with

𝑝(𝑦|𝜃𝑘,ℳ𝑘) when 𝜃
(1)
𝑘 is fixed. Then define the marginal,

̃𝑝(𝑦|𝜃(1)𝑘 ,ℳ𝑘) = ∫ 𝑝(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃
(2)
𝑘 |𝜃
(1)
𝑘 ,ℳ𝑘) d 𝜃

(2)
𝑘 , (3.29)

and compute the Jeffreys prior 𝜋(𝜃(1)𝑘 |ℳ𝑘) associated with ̃𝑝(𝑦|𝜃(1)𝑘 ,ℳ𝑘). By us-

ing the Jeffreys prior, given fixed parameter of interest, the effects of the nuisance

parameter is eliminated.

Using non-informative priors for the pet compartmental model In [167] results of

using non-informative priors for the Bayesian analysis of the pet compartmental

model were obtained. Here we consider the simulated data (see Section 2.3) and

using Normally distributed errors (see Section 2.4). An inverse Gamma distribution

approximation to the Jeffreys prior was used for the precision parameter of the

Normal distribution. Uniformdistributions are used for the 𝜃1∶𝑟 and𝜙1∶𝑟 parameters

(see Section 2.2 for the parameterization). The interval of the uniform distributions

are the same as considered feasible in the optimization procedures such as the nls

estimator. The results of model selection is shown in Table 3.4. Compared to the

results of using aic𝑐 and bic (Tables 3.1 and 3.3), it is a significant improvement. For

data with low level of noise there is a high frequency of selecting the true model.
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Table 3.4 Frequencies of models selected by the Bayes factor (vague priors) (%)
for 2,000 pet compartmental model data sets simulated from the three-
compartments model

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1 0 0 0 0 6.3 7.0 24.3 30.7 41.6 54.8
2 12.5 20.1 35.2 49.4 55.3 67.5 62.6 59.1 52.2 43.0
3 87.5 79.9 64.8 50.6 38.4 25.5 13.1 10.2 6.2 2.2

For more noisy data, it is expected the second and third compartments are difficult

to identify. Overall, the results are much more satisfactory than those of aic𝑐 and

bic.

Informative priors

When the parameters bear real world meaning, it may be possible to construct

informative priors. For some applications, calibrating an informative prior requires

substantial expertise and some model specific information. Nonetheless, there are

also some general methods.

When the parameter space is finite, it might be possible to obtain subjective

evaluation of the probabilities of the different values of the parameter. When the

space is uncountable, the problem is obviously more complicated. One simple

approach is to partition the parameter space and determine the probabilities of the

parameter falling into each of the partition [134, sec. 3.2.2].

A more systematic approach is the maximum entropy priors [86]. Assume

that some characteristics of the parameter vector 𝜃𝑘 in the model ℳ𝑘 are known in

the form of prior expectations,

𝔼𝜋[ℎ𝑖(𝜃𝑘)|ℳ𝑘] = 𝛾𝑖, for 𝑖 = 1,… ,𝐾 (3.30)

where the expectation is taken with respect to the prior distribution 𝜋(𝜃𝑘|ℳ𝑘) and
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ℎ𝑖 is some function. For example, if the mean and variance of the parameter is

known, then we might have ℎ1(𝑥) = 𝑥 and ℎ2(𝑥) = 𝑥2 in the univariate case. In a

finite setting, define the entropy

ℰ(𝜋) = − ∑
𝜃𝑘∈𝛩𝑘

𝜋(𝜃𝑘|ℳ𝑘) log 𝜋(𝜃𝑘|ℳ𝑘) (3.31)

where𝛩𝑘 is the parameter space.Themaximumentropy prior is the𝜋 thatmaximizes

ℰ under the constraints of Equations (3.30).

This can be extended to the continuous case by introducing a reference dis-

tribution, say 𝜋0(𝜃𝑘). Define the entropy as the negative kld between 𝜋0(𝜃𝑘) and

𝜋(𝜃𝑘|ℳ𝑘),

ℰ(𝜋) = −∫ 𝜋0(𝜃𝑘) log(
𝜋0(𝜃𝑘)
𝜋(𝜃𝑘|ℳ𝑘)

) d 𝜃𝑘 (3.32)

The reference distribution 𝜋0 can be chosen as one of the non-informative priors

discussed earlier. Such a choice is justified in [134, chap. 9].

The maximum entropy procedure in essence selects a prior that preserves

the prior information – the expectations of {ℎ𝑖(𝜃𝑘)}𝐾𝑖=1 while making it as close to

the non-informative prior as possible. Therefore, the prior knowledge is presented

while the ignorance is also preserved.

Using informative priors for the pet compartmental model Here we give an example

of constructing a biologically informed prior for the pet compartmental model. It

is based on both the prior knowledge of the underlying biochemical process and

mathematical properties of the models.

In [6] some useful results about compartmental models in general were pro-

vided. Recall the parameterizations in Section 2.2. Let 𝛾0𝑗 denote the rate constant

of the outflow from the 𝑗th compartment into the environment. Without loss of

generality, assume that the parameters 𝜃1∶𝑟 are ordered, 𝜃1 ≤ … ≤ 𝜃𝑟. Then,

1. 0 ≤ 𝜃𝑖 ≤ 2max𝑗 |𝐴𝑗𝑗| for all 𝑖.

2. min𝑗 𝛾0𝑗 ≤ 𝜃1 ≤ max𝑗 𝛾0𝑗.

3. when there is only one outflow into the environment, say the rate constant of

this outflow is 𝑘2, as in the plasma input model, then 0 ≤ 𝜃1 ≤ 𝑘2.
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In addition, ∑𝑟𝑖=1 𝜙𝑖 = 𝐾1, where 𝐾1 is the rate constant of input from the plasma

into the tissues [67]. Therefore 𝜙𝑖 < 𝐾1 for 𝑖 = 1,… , 𝑟. Given this information,

more informative prior distributions can be constructed. For simplicity, we restrict

discussion to imposing upper and lower bounds on the possible values of the pa-

rameters. As we subsequently find that inference is not overly sensitive to the prior

specification we do not pursue more complicated approaches.

To demonstrate the idea, an informative prior distribution for parameters

𝜃1∶3 and 𝜙1∶3 in the three-compartments model is constructed. First note that the

transition matrix 𝐴 (see Section 2.3) is,

𝐴 =
[[[[

[

−𝑘2 − 𝑘3 − 𝑘5 𝑘4 𝑘6
𝑘3 −𝑘4 0

𝑘5 0 −𝑘6

]]]]

]

.

It is believed that all the rate constants take values in the range [5 × 10−4, 10−2] (for

example see [167, 125]). Without loss of generality, we impose the identifiability

constraint 𝜃1 ≤ 𝜃2 ≤ 𝜃3, then,

0 < 𝜃1 ≤ 𝑘2 ≤ 10−2 (3.33)

𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤ max{2(𝑘2 + 𝑘3 + 𝑘5), 2𝑘4, 2𝑘6} ≤ 6 × 10−2 (3.34)

Under the imposed ordering, as 𝜃1 is the smallest exponent, the term 𝜙1𝑒−𝜃1𝑡 decays

more slowly than any other term in the expansion. Consequently, 𝜙1/𝜃1 is likely to

make a relatively large contribution to 𝑉𝐷 = ∑𝑟𝑖=1 𝜙𝑖/𝜃𝑖. It is not well known how

large the ratio (𝜙1/𝜃1)/𝑉𝐷 will be. However, it is easy to conduct a numerical study

here, given the small number of parameters. It is found that among all possible

combination of rate constants, 𝜙1/𝜃1 ≥ 0.5𝑉𝐷. If the combinations of the rate

constants are restricted to those without excessively large differences among them,

i.e., cases in which, say, 𝑘5 ≫ 𝑘6 are not considered, then 𝜙1/𝜃1 ≥ 0.7𝑉𝐷. The

reason for not considering these cases is that such irreversible (trapped) models

yield infinite 𝑉𝐷 estimates and it is generally known in advance that the tracer

employed will exhibit reversible dynamics. In addition, from results of previous
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Table 3.5 Frequencies of models selected by the Bayes factor (informative priors) (%)
for 2,000 pet compartmental model data sets simulated from the three-
compartments model.

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1 0 0 0 0 0 1.0 6.2 15.2 27.8 37.1
2 10.6 17.5 33.3 45.8 58.8 70.2 73.0 67.3 57.3 53.0
3 89.4 82.5 66.7 54.2 41.2 28.8 20.8 17.5 14.9 9.9

studies, it is reasonable to believe that𝑉𝐷 in the range from 10 to 30 for the majority

of voxels. We might just set 𝑉𝐷 ≈ 20.

With this information we can then construct informative priors for the pa-

rameters of interest. The means the distributions of 𝜙1∶𝑟 are chosen such that they

are less than 𝐾1 but sum up to it, without significant differences among than. Con-

ditional on 𝜙1∶𝑟, the distributions of 𝜃1∶𝑟 can be specified. For example, conditional

on 𝜙1, 𝜃1 has mean 𝜙1/(0.8𝑉𝐷) (since 0.7𝑉𝐷 ≤ 𝜙1/𝜃1 ≤ 𝑉𝐷). Similarly the dis-

tributions of 𝜃𝑖 conditional on 𝜙1∶𝑖 and 𝜃1∶𝑖−1 for 𝑖 = 2 and 3 can be constructed.

More technical details can be found in [167]. In particular, truncated Normal dis-

tributions are used as the priors for the parameters given all the upper and lower

bounds. Table 3.5 shows the model selection results when using these informative

priors. It can be seen that, especially for data with higher noise level, the results are

considerably improved compared to using vague priors (Table 3.4).

Sensitivity analysis

Intuitively the influence of priors can be eliminated given enough data. In the

particular problem of Bayesian model comparison, it should be noted that the Bayes

factor can be more sensitive to the choice of prior than the posterior means of

parameters, in the sense that more data are needed to eliminate the influence of
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priors [95, 96].

Note that by “more data”, we not only refer the situation where a larger sample

size is obtained, but also when the data are measured more accurately. For example,

compare the results of using informative priors (Table 3.5) and those of using vague

priors (Table 3.4) for the pet compartmental model. For less noisy data (i.e., the

data is more informative), the difference is minimal. For noisy data (i.e., the data is

less informative), there are considerable differences in model selection results. In

contrast, the estimates of 𝑉𝐷 see much less difference even for very noisy data in

terms of mean squared errors (mse; results are not shown in this thesis, see [167]).

Though in our example, such difference is not problematic, the sensitivity of the

Bayes factor to the choice of priors should not be overlooked in realistic applications.

It is therefore of interest to evaluate the Bayes factor over a range of possible

priors to assess the sensitivity issues. This is often computationally expensive since

many high dimensional integrations are required. When there is enough informa-

tion to construct parametric priors, it is possible to alter the values of parameters

and recompute the Bayes factor [114]. In general situations, a less computational

expensive method is to use the Laplace approximation to compare the Bayes factor

using different priors [97]. It is also proposed in the literature to use the maximum

of the Bayes factor (and thus the maximal evidence against a model) to evaluate the

sensitivity problem [17].

3.3 discussions

We have reviewed a few model selection methods in this chapter. The information-

theoretic approach is well understood and has been practiced for a long history.

The Bayesian approach has gained substantial interest in the last few decades. The

computation of the integrations required by Bayesian model comparison will be

reviewed in the next chapter.

The Bayesian approach can be appealing in at least two situations. First, when

there is substantial prior knowledge about the underlying data generating mech-
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anisms, the Bayesian framework provides a way to incorporate these information

to lead to rational decisions. Even when no or little prior information is available,

the Bayesian approach can be useful when the underlying assumptions about the

models or data that lead to the asymptotic results regarding the various information

criteria are not met, as Bayesian model comparison imposes very few assumptions

on the form of models. For example, through the running example of this thesis,

the pet compartmental model, we have found that Bayesian model selection even

with vague priors can provide significant improvement over methods such as aic𝑐
or bic which is only an approximation to the Bayes factor. The results can be further

improved via informative priors.

Despite all the advantages, using Bayesian model comparison also has con-

siderably higher computational cost since many high dimensional integrations are

required. As wewill see later, manywidely used techniquesmay fail to evaluate these

integrations accurately. The work of this thesis aims to provide a new framework

within which the computational difficulty is further lowered than current practice.

This review is far from comprehensive. We have restricted ourselves to meth-

ods that have minimal assumptions about the form of the models. For particular

models, many other methods have been developed. For example, in regression anal-

ysis, the Mallow’s 𝐶𝑝 is a popular model selection criterion. For more information

on information-theoretic approaches we refer to [23, 32].

One generic approach to model selection that is not reviewed in this chapter

but worth mentioning is the minimum description length (mdl) method. It is

somehow different from the methods reviewed so far. It selects the model with the

least complexity which is measured as the length of using a programming language

to describe the data given the model and the model itself. The description length

of data given the model can be measured with − log 𝑝(𝑦|ℳ𝑘) while the description

length of the model can be more problematic since there is no universally agreed

good form of this length. We refer to [66] for more information on this approach

and its modern refinements.

The review of Bayesian model comparison in this chapter gives context for
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later chapters. In Chapter 4, some algorithms for evaluating the Bayes factor and

posteriormodel probabilities are reviewed and inChapter 5, novel algorithms are de-

veloped. Limited by the scope, there are many important topics within the Bayesian

framework that were not discussed. We refer to [20, 134] for a more systematic

treatment. In particular, [20] also has comprehensive bibliographies on many of

the topics related to Bayesian statistics.
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4 MONTE CARLO METHODS

As shown in the last chapter, Bayesian model comparison usually involves compu-

tation of some integrations with respect to complex posterior distributions. Only

in very special situations, this can be resolved analytically. In most cases, these

integrations are approximated using simulation techniques. In this chapter, we

review some of the widely used Monte Carlo methods with an emphasis on their

applications to Bayesian computation.

In Section 4.1 we introduce the basic idea of Monte Carlo integration. Sec-

tion 4.2 discusses the importance sampling technique. Section 4.3 reviews a class

of important Monte Carlo algorithms, Markov chain Monte Carlo. This chapter is

concluded by Section 4.4, a discussion on the reviewed algorithms and some other

development in this area that is not reviewed in detail.

4.1 classical monte carlo

Classical Monte Carlo integration approximates the expectation of a function 𝜑

with respect to a (continuous) distribution 𝜋,

𝔼𝜋[𝜑(𝑋)] = ∫ 𝜑(𝑥)𝜋(𝑥) d 𝑥

provided that the above expectation exists, by drawing identically independently

distributed (i.i.d.) samples from 𝜋, say {𝑋(𝑖)}𝑁𝑖=1, and approximating the expectation

by the empirical average,

𝜑̂𝑁mc =
1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑋(𝑖)). (4.1)

This method is also called vanillaMonte Carlo or naïveMonte Carlo. The estimator

𝜑̂𝑁mc converges almost surely to𝔼𝜋[𝜑(𝑋)]when𝑁 →∞ by the Strong Law of Large

Numbers (slln).

47



monte carlo methods

Clearly this method can only be applied when drawing samples directly from

the target distribution 𝜋 is possible. There are a few ways to draw random variates

from a reasonably well behaved distribution. See [135, chap. 2] on this topic. In

many cases, simulation from a distribution 𝜋 efficiently requires the evaluations of

its density function point-wise, or finding some easy to simulate distribution that

closely imitates 𝜋. In the context of Bayesian computation, the target distributions

are usually complex posteriors only known up to some normalizing constants. And

thus point-wise evaluation is not possible. In addition, the high dimensional aspect

of many models makes it near impossible to find a distribution that closely imitates

the target. In addition, even when it is possible, the accuracy of the estimator 𝜑̂𝑁mc
depends heavily on the function 𝜑.

For example, consider the approximation of the marginal likelihood (see

Section 3.2.2),

𝑝(𝑦|ℳ𝑘) = ∫ 𝑓(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘) d 𝜃𝑘,

or equivalently,

𝑝(𝑦|ℳ𝑘) = 𝔼𝜋[𝑓(𝑦|𝜃𝑘,ℳ𝑘)], (4.2)

where the expectation is taken with respect to the prior distribution 𝜋(𝜃𝑘|ℳ𝑘).

It is possible to use samples from 𝜋(𝜃𝑘|ℳ𝑘), the prior distribution, to approxi-

mate the integration. With samples generated from 𝜋(𝜃𝑘|ℳ𝑘), say {𝜃
(𝑖)
𝑘 }
𝑁
𝑖=1, we can

approximate 𝑝(𝑦|ℳ𝑘) by,

̂𝑝(𝑦|ℳ𝑘)
𝑁
mc =
1
𝑁

𝑁

∑
𝑖=1
𝑓(𝑦|𝜃(𝑖)𝑘 ,ℳ𝑘). (4.3)

This estimator was studied in [114] and also mentioned in [96]. However, this

approach often results in large variances. The likelihood function (and thus the

posterior distribution) is often much more concentrated than the prior distribution.

And there may be a large proportion of samples with small likelihood values and a

few with high values. For instance, consider the one-compartment pet model (see

Section 2.2) and informative priors (see Section 3.2.3). Using 100,000 samples from

the prior distribution, the empirical mean and standard deviation of the estimates

48



monte carlo methods

from 100 simulations is −40.9 and 2.1, respectively for the simulated data. How-

ever when the dimension of the model is increased by using a two-compartments

model, the estimates have empirical mean and standard deviation −39.6 and 12.6,

respectively. The variance is too large for practical use of evaluating the Bayes factor.

Similar problems were also shown in [114].

4.2 importance sampling

The importance sampling method is based on the observation of the following

identity,

𝔼𝜋[𝜑(𝑋)] = ∫ 𝜑(𝑥)𝜋(𝑥) d 𝑥 = ∫ 𝜑(𝑥)
𝜋(𝑥)
𝜂(𝑥)
𝜂(𝑥) d 𝑥 = 𝔼𝜂[𝜑(𝑋)

𝜋(𝑋)
𝜂(𝑋)
], (4.4)

where 𝜂 is a distribution with respect to which 𝜋 is absolutely continuous and the

two expectations are taken with respect to 𝜋 and 𝜂, respectively. The above equation

is termed importance fundamental identity in [135]. The distribution 𝜂 is often called

the proposal or instrumental distribution. Thus given i.i.d samples {𝑋(𝑖)}𝑁𝑖=1 from

distribution 𝜂, the expectation 𝔼𝜋[𝜑(𝑋)] can be approximated by the following

importance sampling estimator,

𝜑̂𝑁is =
1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑋(𝑖))𝜋(𝑋

(𝑖))
𝜂(𝑋(𝑖))
. (4.5)

The above estimator converges almost surely to𝔼𝜋[𝜑(𝑋)] when𝑁 →∞. However,

its variance is not necessarily finite. In general, the variance is finite if and only if,

[135, sec. 3.3.2],

∫ (𝜑(𝑥))2
(𝜋(𝑥))2

𝜂(𝑥)
< ∞. (4.6)

To access the above inequality, evaluating a more complex integration than the

original problem is required. In [59] two types of sufficient conditions were men-

tioned. One is that 𝜋/𝜂 is upper bounded and var𝜋[𝜑(𝑋)] is finite. Another is that

the support is compact, 𝜋 is upper bounded and 𝜂 is lower bounded by 𝜀 > 0.
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Both 𝜋 and 𝜂 are often only known up to some normalizing constants, which

can be approximated with the same samples. This leads to the estimator,

𝜑̂𝑁wis =
∑𝑁𝑖=1𝑤

(𝑖)𝜑(𝑋(𝑖))

∑𝑁𝑖=1𝑤(𝑖)
(4.7)

where𝑤(𝑖) ∝ 𝜋(𝑋(𝑖))/𝜂(𝑋(𝑖)), and are termed the importance weights. This estimator

also converges almost surely to 𝔼𝜋[𝜑(𝑋)] when𝑁 →∞. This estimator has a bias

since it is the ratio of two unbiased estimator. However, even when the normalizing

constants of 𝜋 and 𝜂 are both known, this estimator can be preferable to 𝜑̂is due to

its possible smaller mean squared error. In fact, [26] showed an example of using the

Cauchy distribution as the proposal distribution for the evaluation of expectations

under the Student 𝑡 distribution, where for some functions, such as 𝜑(𝑥) = |𝑥|, 𝜑̂𝑁wis

can outperform 𝜑̂𝑁is considerably.

In general, the performance of the importance sampling depends not only

on the choice of the proposal distribution 𝜂, but also the function of interest 𝜑.

As suggested in [135, sec. 3.3.2], to minimize the variance of the estimator, the

distribution 𝜂 should be chosen such that |𝜑(𝑥)|𝜋(𝑥)/𝜂(𝑥) is almost constant with

a finite variance. That is, it is preferable for the distribution 𝜂 to be proportional

to |𝜑|𝜋 and to have heavier tails. Though heavier tails do not necessarily lead to

the sufficient conditions such as those mentioned in [59], thinner tails are more

likely to result in infinite variances as extreme large importance weights are more

likely to occur in this situation. Often the same samples are used to evaluate the

expectations of different functions. And the proposal distribution is chosen such

that 𝜂 is close to 𝜋 with heavier tails.

In the context of Bayesian model comparison, we are interested in the eval-

uation of the marginal likelihood 𝑝(𝑦|ℳ𝑘). We may use a proposal distribution,

say 𝜂 and samples drawn from it to approximate the expectation (4.2). This leads to

the estimator,

̂𝑝(𝑦|ℳ𝑘)
𝑁
is =
∑𝑁𝑖=1𝑤

(𝑖)𝑓(𝑦|𝜃(𝑖)𝑘 ,ℳ𝑘)

∑𝑁𝑖=1𝑤(𝑖)
(4.8)

where 𝑤(𝑖) ∝ 𝜋(𝜃(𝑖)𝑘 |ℳ𝑘)/𝜂(𝜃
(𝑖)
𝑘 ) and {𝜃

(𝑖)
𝑘 }
𝑁
𝑖=1 are distributed with 𝜂. Good perfor-
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mance can be obtained when 𝜂 is close to 𝑓(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘). In other words,

we need some knowledge of the posterior distribution 𝜋(𝜃𝑘|𝑦,ℳ𝑘), which is often

not available for complex models. Even when some characteristics of the posterior

distribution are available, other techniques might be preferred. For example, with

such information, algorithms reviewed in the next section may allow us to effi-

ciently simulate dependent samples with the posterior distribution as the limiting

distribution.

One possible solution to such problems is to use some form of adaptive

schemes. For example, [123] proposed to use a family of parametric distributions

as proposal distributions and the parameters are iteratively tuned. In their paper,

a multivariate 𝑡 distribution is used as an example. Compared to a multivariate

Normal distribution, it has heavier tails and by changing the degree of freedom and

other parameters, the distribution can be changed into different shapes to match the

characteristics of the target distribution. This can be flexible for some applications.

However, for many distributions of interest, especially that are high dimensional

and multimodal, it is difficult to find an explicit parametric distribution that can

sample those local modes efficiently. As we will see in the next chapter, sequential

Monte Carlo algorithms can iteratively construct efficient proposals and are suitable

for a wide range of applications, including Bayesian model comparison.

4.3 markov chain monte carlo

Both the vanilla Monte Carlo and importance sampling methods require simula-

tions directly from a distribution, which is often not feasible in realistic applica-

tions. Estimation techniques based on dependent samples were developed. The

most important type, Markov chain Monte Carlo (mcmc), uses dependent samples

generated by a Markov chain with the target 𝜋 as a limiting distribution for the

approximation of the desired integration. A limiting distribution, informally is one

such that if 𝑋𝑡, the state of the Markov chain at step 𝑡 is distributed with 𝜋, then

𝑋𝑡+1, the next state is also distributed with 𝜋.
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The basic idea is that, given samples from a Markov chain with a limiting

distribution 𝜋, say (𝑋(1),… ,𝑋(𝑖),… ), then under suitable conditions (outlined for

each algorithm later), for a 𝜋-integrable function 𝜑,

lim
𝑁→∞
1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑋(𝑖)) = 𝔼𝜋[𝜑(𝑋)]. (4.9)

Therefore samples generated by this Markov chain can be used for estimation of

various quantities in a similar fashion as with vanilla Monte Carlo or importance

sampling. This leads to the estimator,

𝜑̂𝑁mcmc =
1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑋(𝑖)) (4.10)

where {𝑋(𝑖)}𝑁𝑖=1 are𝑁 samples from the Markov chain.

The construction of such Markov chains leads to the development of various

widely used mcmc algorithms. In this section, some of the more important ones

are reviewed.

4.3.1 Discrete time Markov chain

This section briefly discusses some notions of discrete time Markov chains. Most

concepts are introduced in a descriptive way and we restrict ourselves to the contin-

uous case. For formal definitions in more general settings, see Appendix a.1. Also

see [135, chap. 6] for a treatment of the topic in more detail in the context of mcmc

algorithms.

A Markov chain can be defined in terms of transition kernels. For continuous

random variables𝑋 and𝑋′ defined in space 𝐸, which are ordered in time in some

sense, a transition kernel is the distribution of𝑋′ conditional on𝑋. That is, Pr(𝑋′ ∈

𝐴|𝑥) = ∫ 𝐾(𝑥, 𝑥′) d 𝑥′ where 𝐴 ⊂ 𝐸. We also call 𝐾 just kernel.

A discrete time Markov chain, denoted by (𝑋𝑡) is a sequence of random

variables𝑋0, 𝑋1,… ,𝑋𝑡,… such that conditional on (𝑥𝑡−1,… , 𝑥0),𝑋𝑡 has the same

distribution as it has conditional on 𝑥𝑡−1. Clearly a transition kernel is such a
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conditional distribution. In the context of mcmc, we aremostly concernedwith time

homogeneousMarkov chains. A Markov chain (𝑋𝑡) is said to be time homogeneous

if for every 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡𝑘, the distribution of (𝑋𝑡1 ,… ,𝑋𝑡𝑘) conditional on 𝑥𝑡0 is

the same as (𝑋𝑡1−𝑡0 ,… ,𝑋𝑡𝑘−𝑡0) conditional on 𝑥0. In other words, given the initial

state 𝑥0 or its distribution, the Markov chain is determined solely by its transition

kernel.

We will be mostly concerned with the sensitivity of the Markov chain with

respect to the initial value 𝑋0 or its distribution and the existence and the speed at

which the Markov chain converges to its limiting distribution. A few properties of a

given Markov chain are discussed below. In short, irreducibility states that all states

communicate. The Markov chain can reach any state 𝑦 ∈ 𝐸 starting from any other

state 𝑥 ∈ 𝐸. A stronger version says that the chain can travel any distance in one step.

Another property is aperiodicity, which says that for a chain leaving a group of states

it does not need to take 𝑘 or amultiple of 𝑘 steps to return to it with 𝑘 > 1. Informally,

a sufficient but not necessary condition for an irreducible chain to be aperiodic is that

the chain can stay in a neighborhood of a state (or at the state in the discrete case) for

an arbitrary number of instances without being forced to leave it. Or it does not need

to go through a cycle to reach back into the neighborhood of the current state. These

two properties guarantee a Markov chain to explore a space freely. A third property

we will discuss is recurrence, which states that the Markov chain will visit any state

for infinite times. In other words, the Markov chain can explore a space throughout

starting from almost anywhere. A stronger version, Harris recurrence, allows the

chain to start from everywhere. A property fundamental to mcmc algorithms is

the existence of invariant distribution, which states that the Markov chain can be

stable under suitable conditions and converge to a desired distribution. A sufficient

condition for the existence of invariant distribution, detailed balance, is perhaps

the most useful tool in practice to check the validity of a given algorithm. Last, we

will discuss the ergodicity of Markov chains, which measures the speed at which

a Markov chain converges to its invariant (and thus its limiting) distribution. An

ergodic Markov chain is one whose marginal distribution of 𝑋𝑡 converges to the
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limiting distribution 𝜋 when 𝑡 → ∞, in the sense that the total-variation norm

converges to zero. Stronger forms of convergence also exists. AMarkov chain is said

to be geometrically ergodic, if the convergence speed, measured as the total-variation

norm between the marginal distribution of 𝑋𝑡 and the limiting distribution 𝜋, is

bounded by a geometric sequence, for every initial value in the space the Markov

chain is defined. Further, if this bound is uniform across the speed, that is there is a

geometric sequence independent of the initial value by which the total variance is

bounded, then the Markov chain is said to be uniformly ergodic.

4.3.2 Metropolis-Hastings algorithm

TheMetropolis-Hastings algorithm, first introduced in [116] and then generalized

in [71], produces a Markov chain with limiting distribution 𝜋 with a conditional

distribution 𝑞(⋅|𝑥) called the proposal or instrumental distribution through the

following transition. At time 𝑡, given sample 𝑋𝑡, first 𝑌𝑡 is drawn from 𝑞(𝑦𝑡|𝑥𝑡).

Then, set

𝑋𝑡+1 =
{{
{{
{

𝑌𝑡, with probability 𝛼(𝑥𝑡, 𝑦𝑡),

𝑋𝑡 with probability 1 − 𝛼(𝑥𝑡, 𝑦𝑡).

where

𝛼(𝑥, 𝑦) = min{
𝜋(𝑦)
𝜋(𝑥)
𝑞(𝑥|𝑦)
𝑞(𝑦|𝑥)
, 1}. (4.11)

The probability 𝛼(𝑥, 𝑦) is called theMetropolis-Hastings acceptance probability. This

leads to Algorithm 4.1.

The conditions under which the Markov chain produced by this algorithm

has 𝜋 as its limiting distribution are quite minimal [135, sec. 7.3.2]. Intuitively,

the generated Markov chain is aperiodic if the algorithm allows events such as

{𝑋𝑡+1 = 𝑋𝑡}, that is, the acceptance probability is not equal to one almost surely.

A sufficient condition for irreducibility is that the conditional distribution 𝑞(⋅|𝑥)

is positive. In other words, it allows that every subset of the state space with can

be reached in a single step. It can be proved that with these two conditions, the
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Draw𝑋0 ∼ 𝜇 where 𝜇 is the initial condition.

Set 𝑡 ← 0.

repeat

Draw 𝑌𝑡 ∼ 𝑞(𝑦𝑡|𝑥𝑡).

Compute 𝛼 = min{𝜋(𝑦
𝑡)
𝜋(𝑥𝑡)
𝑞(𝑥𝑡|𝑦𝑡)
𝑞(𝑦𝑡|𝑥𝑡) , 1}

Draw 𝑈 ∼ u� [0, 1].

if 𝑈 ≤ 𝛼 then

Set𝑋𝑡+1 ← 𝑌𝑡.

else

Set𝑋𝑡+1 ← 𝑋𝑡.

end if

Set 𝑡 ← 𝑡 + 1.

until Sufficiently many samples have been produced.

Algorithm 4.1 The Metropolis-Hastings algorithm

convergence in Equation (4.9) holds [135, Theorem 7.4 and Corollary 7.5].

TheMetropolis-Hastings algorithm is important not only because it has found

many applications, but also because it is the foundation of many other algorithms.

For example the reversible jump mcmc and population mcmc algorithms, reviewed

later in Section 4.3.4 and 4.3.5, respectively, can both be viewed as extensions to this

algorithm.

Thedesign of the proposal distributions can greatly influence the performance

of the estimators. It has been a difficult problem and has attracted substantial

attention in the past. In the following, we discuss three commonly used designs.
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Independent proposals

Aproposal independent of the current state𝑋𝑡 leads to the independentMetropolis-

Hastings algorithm. Let 𝜂 denote this proposal. The acceptance probability becomes,

𝛼(𝑥, 𝑦) = min{
𝜋(𝑦)𝜂(𝑥)
𝜋(𝑥)𝜂(𝑦)

, 1}. (4.12)

The resulting Markov chain is uniformly ergodic if the target 𝜋 is bounded by the

proposal 𝜂 up to a multiplier. In other words, there exists a constant𝑀 such that

𝜋(𝑥) ≤ 𝑀𝜂(𝑥) for all 𝑥 in the support of 𝜋.

Though uniform ergodicity is a much desired property for a given algorithm,

without proper optimizing, the performance of an independent proposal is often

far from ideal. The proposal 𝜂 should be chosen such that it maximizes the average

acceptance rate 𝛼̄ = 𝔼[𝛼(𝑥, 𝑦)]. Given a stationary chain and thus the state 𝑋 is

distributed with 𝜋, and a proposed value 𝑌 which is distributed with 𝜂, it is defined

as,

𝛼̄ = 𝔼[min{
𝜋(𝑌)𝜂(𝑋)
𝜋(𝑋)𝜂(𝑌)

, 1}] = 2 Pr(
𝜋(𝑌)
𝜂(𝑌)
≥ 𝜋(𝑋)
𝜂(𝑋)
), (4.13)

provided that 𝜋/𝜂 is absolutely continuous and the expectation is taken with respect

to 𝑓(𝑥, 𝑦) = 𝜋(𝑥)𝜂(𝑦). The second equality is made clear by the following. Let

𝑧(𝑥, 𝑦) =
𝜋(𝑦)𝜂(𝑥)
𝜋(𝑥)𝜂(𝑦)

.

It is clear that 𝑧(𝑥, 𝑦) < 1 is equivalent to 𝑧(𝑦, 𝑥) > 1. For continuous distributions,

expand the expectation,

𝛼̄ = ∫ min{𝑧(𝑥, 𝑦), 1}𝑓(𝑥, 𝑦) d 𝑥 d𝑦

= ∫
𝑧(𝑥,𝑦)<1
𝑧(𝑥, 𝑦)𝑓(𝑥, 𝑦) d 𝑥 d𝑦 + ∫

𝑧(𝑥,𝑦)≥1
𝑓(𝑥, 𝑦) d 𝑥 d𝑦.

Note that,

𝑧(𝑥, 𝑦)𝑓(𝑥, 𝑦) =
𝜋(𝑦)𝜂(𝑥)
𝜋(𝑥)𝜂(𝑦)

𝜋(𝑥)𝜂(𝑦) = 𝜋(𝑦)𝜂(𝑥) = 𝑓(𝑦, 𝑥).
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It follows,

𝛼̄ = ∫
𝑧(𝑦,𝑥)>1
𝑓(𝑦, 𝑥) d 𝑥 d𝑦 + ∫

𝑧(𝑥,𝑦)≥1
𝑓(𝑥, 𝑦) d 𝑥 d𝑦

= 2Pr(𝑧(𝑥, 𝑦) ≥ 1).

The average acceptance rate 𝛼̄measures how often a new proposed value is accepted

in the long run of the algorithm. This optimization is generic in the sense that the

function of interest 𝜑 is not involved. In practice, 𝜂 should be chosen such that

it is close to 𝜋 as much as possible. The requirement for 𝜋/𝜂 to be bounded also

suggests that 𝜂 at least should not have too thin tails compared to 𝜋. Ideally it should

have slightly heavier tails than 𝜋 but not much less concentrated. In this aspect, the

choice of 𝜂 is similar to the choice of the proposal distribution for the importance

sampling. Hence it inherits the same difficulties as outlined in Section 4.2.

Random walks

The random walk Metropolis-Hastings algorithm, originally introduced in [116],

uses proposals that are symmetric, often in the form 𝑞(𝑦|𝑥) = 𝑞(|𝑦 − 𝑥|). This leads

to the acceptance probability,

𝛼(𝑥, 𝑦) = min{
𝜋(𝑦)
𝜋(𝑥)
, 1}. (4.14)

This algorithm does not satisfy conditions for the uniform ergodicity in general.

However it is geometrically ergodic under certain conditions. In [115], a condition

based on log-concavity of𝜋 in the tails was given. TheMarkov chain is geometrically

ergodic if,

log 𝜋(𝑥1) − log 𝜋(𝑥2) ≥ 𝛼|𝑥1 − 𝑥2| (4.15)

for some 𝛼 > 0 and some 𝑥0 such that 𝑥0 < 𝑥1 < 𝑥2 or 𝑥2 < 𝑥1 < −𝑥0.

The random walk is one of the most widely used type of mcmc algorithms. It

provides a generic working solution tomany otherwise difficult problems. However,

without optimization, its performance is often far from satisfactory. For example,
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multimodal distributions often have modes that are separated by extremely small

probability areas. These areas limit the move of the random walk. If the chain

proposes bigger steps, then it is possible that most proposed values fall in small

probability areas and the probability of jumping from one mode to another is arbi-

trarily small. This leads to extremely small acceptance rates. On the other hand, if

the chain proposes smaller steps, it will take many iterations for the chain to explore

the whole space. In either case, if the scaling (such as the variance of a Normal

distribution or some other measures of the dispersion of the proposal distribution)

of the random walk is chosen poorly, it can take arbitrarily long time for the chain

to move outside the neighborhood of one local mode of the target distribution. In

this situation, the sampler is said to be in a trapping state.

For instance, consider the pet compartmental model (see Section 2.2), a

Normally distributed error structure (see Section 2.4), and non-informative priors

(see Section 3.2.3) for the simulated data. We construct a random walk algorithm

with three blocks,

1. Update 𝜙1∶𝑟 with a multivariate Normal random walk proposal.

2. Update 𝜃1∶𝑟 with a multivariate Normal random walk proposal

3. Update 𝜆 with a Normal random walk proposal on the log scale, i.e., on log 𝜆.

Both Figure 4.1 and 4.2 show the trace of (𝜙1, 𝜃1) from three samplers for the one-

compartment model, initialized with different values. Each sampler is iterated

10,000 times. In the former, the proposal scales (the variance of the Normal dis-

tributions, which are univariate in the case of the one-compartment model) are

well tuned while the later uses scales five times of the former. In Figure 4.1, each

sampler is able to find the high probability region quickly and explore it efficiently.

In contrast, in Figure 4.2, none of the samplers is able to find the high probability

region and they are trapped around the initial values.
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Sampler  Sampler  Sampler 

e-

e-

e-

. . . . . . . . . . . . . . .
𝜙1

𝜃 1

Figure 4.1 Trace of (𝜙1, 𝜃1) from three random walk Metropolis-Hastings samplers
for the one-compartments pet model with non-informative priors, using
well tuned proposal scales. The first few values of each trace are not shown
in the plots since they are far away from the high probability region with
an order of magnitude difference in values.

Optimal proposal scales As seen in the above example, finding the optimal scales

for a randomwalk algorithm can be important for realistic applications. One way to

measure the optimality of the randomwalk is based on the asymptotic behavior of an

efficiency criterion equal to the ratio of the variance of an estimator based on an i.i.d

sample and the variance of the estimator 𝜑̂𝑁mcmc in Equation (4.10). In [136] it was

recommended that the optimal proposal distribution should produce chains with

acceptance rate close to 0.5 for models with dimension 1 or 2 and 0.25 for models

with higher dimensions. One of the more widely used type of proposals is the

Normal distribution or its multivariate variant. In [54] a form of optimal covariance

is given as (2.382/𝑑)𝛴𝜋, where 𝑑 is the dimension of the target distribution 𝜋 and

𝛴𝜋 is the true covariance matrix of the parameters under 𝜋. In [137] it was further

established that when the dimension goes to infinity, and the covariance matrix is

assumed to be diagonal, say 𝐼𝑑𝜎2𝑑, the optimal scaling of 𝜎𝑑 has a corresponding

acceptance rate 0.234. This optimal rate has been commonly used as a rule of thumb
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Sampler  Sampler  Sampler 

.

.

.

.

. . . . . . . . .
𝜙1

𝜃 1

Figure 4.2 Trace of (𝜙1, 𝜃1) from three random walk Metropolis-Hastings samplers
for the one-compartments pet model with non-informative priors, using
proposal scales five times of those tuned.

in practice. Some more recent results for other proposal distributions including

non-Gaussian cases can be found in, e.g., [145, 119]

Adaptive proposals

It often requires substantial efforts to tune an algorithm’s proposals towards opti-

mality. Alternatively, many adaptive strategies have been developed. See [11] for a

recent review. The basic theme is that a family of proposal distributions, indexed

by some parameter, say 𝑞(⋅|𝑥) = 𝑞(⋅|𝑥, 𝜃) with 𝜃 ∈ 𝛩, is considered. And the value

of the parameter is updated along with the state. This leads to Algorithm 4.2.

There are many methods of updating the parameters. See [11] for some com-

mon algorithms. One of the more widely used is based on the Normal random

walk or its multivariate variant. In [68, 69], it is proposed to use the past samples to

approximate the optimal covariance matrix (2.382/𝑑)𝛴𝜋 [54]. The algorithm first

initializes 𝜇0, a 𝑑-vector and 𝛴0, a covariance matrix. At time 𝑡, they are updated
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Draw𝑋0 ∼ 𝜇 where 𝜇 is the initial condition.

Set 𝜃0 to an arbitrary valid value.

Set 𝑡 ← 0.

repeat

Compute 𝜃𝑡 = 𝛾𝑡(𝜃0, 𝑋0,… ,𝑋𝑡−1) where 𝛾𝑡 is a transformation that update

the parameters based on past samples.

Draw𝑋𝑡+1 using the proposal 𝑞(⋅|𝑥𝑡, 𝜃𝑡) with the Metropolis-Hastings rule.

Set 𝑡 ← 𝑡 + 1.

untilThe accept rate of the last 𝐾 iterations are close to 0.234.

Set 𝜃 ← 𝜃𝑡.

Perform Algorithm 4.1 with proposal 𝑞(⋅|𝑥) = 𝑞(⋅|𝑥, 𝜃).

Algorithm 4.2 Adaptive Metropolis-Hastings algorithm

with,

𝜇𝑡+1 = 𝜇𝑡 + 𝛾𝑡+1(𝑋𝑡+1 − 𝜇𝑡) (4.16)

𝛴𝑡+1 = 𝛴𝑡 + 𝛾𝑡+1((𝑋𝑡+1 − 𝜇𝑡)(𝑋𝑡+1 − 𝜇𝑡)𝑇 − 𝛴𝑡) (4.17)

where {𝛾𝑡}𝑡>0 is a sequence of small numbers, which are formally arbitrary but

could influence the performance. As noted by [11], though it is possible to set the

sequence to a constant 𝛾, it is more common to set it to a deterministic decreasing

sequence such that∑𝑡≥1 𝛾
𝑡 = ∞ and∑𝑡≥1(𝛾

𝑡)2 < ∞ to allow the effect of adaptation

becomes smaller and smaller as the algorithm progresses. This algorithm has also

been studied by [9] and others.

One obvious problem with such adaptive scheme is that the resulting chains

are no longer Markovian. And the limiting distribution, if it exists, may no longer

be 𝜋 as shown by examples in [11]. It is a common practice to adapt the algorithm

up to some point 𝑡, and stop the adaptation and use parameter 𝜃𝑡 for all iterations

onwards, as seen in Algorithm 4.2. The first part of the generated chain is called

the burn-in period and is usually discarded afterwards. Estimations are based on
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iterations after the burn-in period. Some rules for when to stop adaptation was

discussed in [11] and references therein.

There are more advanced techniques where the adaptive scheme attains a

vanishing adaptation property. Informally, after a long enough period, the adaptive

algorithmwill only change the parameter 𝜃 slightly and eventually it becomes stable.

These algorithms require more careful design to assure convergence. The algorithm

can be particularly problematic when the adaptation parameter 𝜃 approaches the

boundaries of its space𝛩. For example, in the Normal randomwalk example above,

it is possible that the covariance matrix becomes too large or too small. And in

either case, ergodicity of the algorithm may be lost [11]. One possible solution is

to construct the algorithm such that the adaptation parameter is bounded. Some

general methodologies of ensuring the boundedness and convergence of adaptive

mcmc can be seen in literature, such as [8] and [10].

Adaptive schemes are often necessary for realistic applications. For example,

consider the pet compartmental model. As seen earlier, the scaling of the Normal

random walk influences the performance greatly. However, in a single pet scan,

there are about a quarter of a million data sets, each results in a different posterior

surface. Manual tuning for each of them is a difficult task. When the random walk

algorithm is applied for the real data, we used the adaptive Normal random walk

for the parameters (𝜙1∶𝑟, 𝜃1∶𝑟). Using 10,000 iterations as the burn-in period for

adaptation, we were able to obtain satisfactory acceptance rates (in the range from

0.2 to 0.4) for the majority of the vast amount of data sets.

4.3.3 Gibbs sampling

The Metropolis-Hastings algorithm is generic in the sense that it requires mini-

mal knowledge of the target distribution to construct a valid sampler (though not

necessarily an efficient one). There also exists a class of mcmc algorithms that are

more model dependent and they can use the (conditional) features of the target

distribution to construct potentially more efficient samplers. One more impor-
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Draw𝑋0 ∼ 𝜇 where 𝜇 is the initial condition.

Set 𝑡 ← 0.

repeat

for 𝑖 = 1,… , 𝑝 do

Draw𝑋𝑡+1𝑖 ∼ 𝜋𝑖(𝑥
𝑡+1
𝑖 |𝑥
𝑡+1
1 ,… , 𝑥

𝑡+1
𝑖−1 , 𝑥
𝑡
𝑖+1,… , 𝑥

𝑡
𝑝).

end for

Set 𝑡 ← 𝑡 + 1.

until Sufficient many samples have been produced.

Algorithm 4.3 Gibbs sampling (deterministic scan)

tant of them is the Gibbs sampling. As we will see later, it is a special case of the

Metropolis-Hastings algorithm.

AGibbs sampler, as first introduced by [58], assumes that the random variable

𝑋 can be written as 𝑋 = (𝑋1,… ,𝑋𝑝), where 𝑋𝑖’s are either unidimensional or

multidimensional. Let 𝜋1,… , 𝜋𝑝 denote the full conditionals, defined by

𝑋𝑖|𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑝 ∼ 𝜋𝑖(𝑥𝑖|𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑝). (4.18)

If sampling from each of these distributions is possible, the associated Gibbs sampler

is given by the following algorithm that transits𝑋𝑡 to𝑋𝑡+1 in 𝑝 steps. At each step 𝑖

(within one iteration),𝑋𝑡+1𝑖 is generated from 𝜋𝑖,

𝑋𝑡+1𝑖 ∼ 𝜋𝑖(𝑥
𝑡+1
𝑖 |𝑥
𝑡+1
1 ,… , 𝑥

𝑡+1
𝑖−1 , 𝑥
𝑡
𝑖+1,… , 𝑥

𝑡
𝑝). (4.19)

This leads to Algorithm 4.3. See [135, chap. 9 and 10] for a full theoretical treatment

of the Gibbs sampling.

The Markov chain produced by a Gibbs sampler is irreducible if 𝜋 satisfies

the so-called positivity condition: All 𝜋𝑖 are positive implies that 𝜋 is also positive

[135, Theorem 10.8]. An easier to verify condition for Harris recurrent is that the

transition kernel associated with Algorithm 4.3 is absolutely continuous with respect

to 𝜋 [158]. Some simpler conditions can be found in [76]. Stronger convergence
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results such as geometrically ergodicity are more difficult to be established for the

Gibbs sampling in general.

Intuitively, the decomposition of the joint distribution gives a particular co-

ordinate system with each step only exploring one of the coordinates. It may take

many cycles for the sampler to move around the surface of the joint distribution. As

shown in [135, note 9.7.1], poor parameterizations or decomposition can lead to slow

convergence to the extent of getting into a trapping state. This kind of situations

most commonly occur when two highly correlated parameters, say𝑋𝑘1 and𝑋𝑘2 , are

updated in separate Gibbs moves. When𝑋𝑘1 is updated, because of its dependency

on𝑋𝑘2 , its move is limited, and vice versa.

For a particular parameterization of the target distribution, one can use better

decompositions to speedup convergence in a Gibbs sampler. There are few general

methodologies to solve this problem. The practical rule is to create decompositions

as independent as possible. For instance, in the special case that (𝑋1,… ,𝑋𝑝) are

mutually independent, then a Gibbs sampler is equivalent to sampling directly from

the target distribution. Admittedly, such decompositions, though they exist, can

hardly be found in interesting cases, otherwise one would not need to consider an

mcmc algorithm in the first place.

Another approach is to reparameterize the target distribution with the same

principle of decomposition. For example, in [135, sec. 10.4.1], an example is given for

a bivariate Normal distribution. To sample (𝑋1, 𝑋2) from u�2(0, 𝛴), where 𝛴 is such

that its eigenvalues satisfy 𝜆min ≪ 𝜆max and its eigenvectors correspond to the first

and second diagonals ofℝ2, using a Gibbs sampler operating on (𝑋1 +𝑋2, 𝑋1 −𝑋2)

is much faster than that on (𝑋1, 𝑋2). The reparameterization here is based on the

eigenbasis in this example. Note that, this kind of techniques is not unique to the

Gibbs sampling. They can also be used for other mcmc algorithms. See, e.g., [74,

61] for more discussions on this topic.
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Relation with theMetropolis-Hastings algorithm TheGibbs sampling can be viewed

as a special case of the Metropolis-Hastings algorithm. It is equivalent to a compo-

sition of Metropolis-Hastings samplers in which at each step a single component

is updated using its full conditional as the proposal distribution. It is easy to ver-

ify that the acceptance probability is uniformly equal to one [135, Theorem 10.13].

Let 𝑌 = (𝑋1∶𝑖−1, 𝑌𝑖, 𝑋𝑖+1∶𝑝) where 𝑌𝑖 is the value proposed with 𝜋𝑖 at step 𝑖. The

acceptance probability is then,

𝛼(𝑥, 𝑦) = min{
𝜋(𝑦)
𝜋(𝑥)
𝜋𝑖(𝑥|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)
𝜋𝑖(𝑦|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)

, 1}.

Rewrite 𝜋(𝑥) and 𝜋(𝑦) in the form of conditional densities, it follows

𝛼(𝑥, 𝑦) = min{
𝜋𝑖(𝑦𝑖|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)𝜋(𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)
𝜋𝑖(𝑥𝑖|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)𝜋(𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)

𝜋𝑖(𝑥𝑖|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)
𝜋𝑖(𝑦𝑖|𝑥1∶𝑖−1, 𝑥𝑖+1∶𝑝)

, 1}

= min{1, 1} = 1

Random scan Algorithm 4.3 is also called the deterministic scan Gibbs sampling,

in the sense that the components are updated in a deterministic order (𝑋1,… ,𝑋𝑝).

Consequentially, this resulting chain is not reversible. Intuitively, to construct the

same Markov chain backward in time, the components need to be updated in the

reverse order of the original Gibbs sampler. Another way of doing Gibbs sampling is

to use a random scan [109], where at each time 𝑡, a sequence of integers (𝑘1,… , 𝑘𝑝)

is generated, usually uniformly across all permutations of (1,… , 𝑝), and the com-

ponents are updated in the order of (𝑋𝑘1 ,… ,𝑋𝑘𝑝). This leads to Algorithm 4.4.

The resulting Markov chain is reversible [109]. This property can be useful when

applying the Central Limit Theorem [135, sec. 10.1.2].

Completion A common difficulty of the Gibbs sampling is that some of the full

conditionals may not be easily sampled from. In some situations, the full condi-

tionals of the target are not explicit at all. For example, missing data models are

often in the form,

𝑓(𝑦|𝜃) = ∫ 𝑓(𝑦, 𝑧|𝜃) d 𝑧.
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Draw𝑋0 ∼ 𝜇 where 𝜇 is the initial condition.

Set 𝑡 ← 0.

repeat

Draw (𝑘1,… , 𝑘𝑝) ∼ 𝜎(1,… , 𝑝) where 𝜎 is typically a distribution uniform

over all permutations of (1,… , 𝑝).

for 𝑖 = 1,… , 𝑝 do

Draw𝑋𝑡+1𝑘𝑖 ∼ 𝜋𝑘𝑖(𝑥
𝑡+1
𝑘𝑖
|𝑥𝑡+1𝑘1 ,… , 𝑥

𝑡+1
𝑘𝑖−1
, 𝑥𝑡𝑘𝑖+1 ,… , 𝑥

𝑡
𝑘𝑝
).

end for

Set 𝑡 ← 𝑡 + 1.

until Sufficient many samples have been produced.

Algorithm 4.4 Gibbs sampling (random scan)

where 𝑧 is the unobserved data and 𝑓(𝑦, 𝑧|𝜃) is the likelihood function given the

complete data (𝑦, 𝑧). In these situations, it is possible to use completion to construct

a Gibbs sampler. A distribution, say 𝜂 with the following property is chosen,

∫ 𝜂(𝑥, 𝑦) d 𝑦 = 𝜋(𝑥). (4.20)

In other words, 𝜋 is a marginal of 𝜂. Then the Gibbs sampler is constructed with

the full conditionals of 𝜂 instead of 𝜋. The sub-chain of the resulting Markov chain

that corresponds to the marginal 𝜋 is then 𝜋-invariant. When such a technique

is used, there are many possible choices of 𝜂 to complete 𝜋. Some applications

provide natural choices, such as the aforementioned missing data models. Simple

examples are mixture models. Instead of direct sampling from the distribution

that is proportional to the summation of some distributions, an auxiliary location

variable can be introduced to complete the distribution. In particular, given the

target distribution of the form,

𝜋(𝑥) ∝
𝑟

∑
𝑗=1
𝑤𝑖𝜋𝑗(𝑥)
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The location variable, say 𝑍 can be introduced such that𝑋|𝑧 = 𝑗 ∼ 𝜋𝑗 and Pr(𝑍 =

𝑗) = 𝑤𝑗. In some cases, by introducing such an auxiliary variable, it is easier to

construct a Gibbs sampler.

4.3.4 Reversible jump mcmc

The reversible jump mcmc (rjmcmc) algorithm, introduced by [63], is a technique

widely used for simulations where the dimension of the parameter space is not

fixed. In the context of Bayesian model selection, it can be used for inference of the

full posterior 𝜋(𝜃𝑘,ℳ𝑘|𝑦), which is defined on the space 𝛩 = ⋃𝑘∈u�({ℳ𝑘} × 𝛩𝑘).

In situations where this can be reduced to the estimation of the Bayes factor (Sec-

tion 3.2.2), techniques reviewed so far in this chapter can be used. However, when

u� is (infinite) countable, or for other reasons, direct inference on the full posterior

distribution is desired, rjmcmc is the most widely used technique. The rjmcmc

and other algorithms that are capable of simulating the full posterior distribution

are not only conceptually appealing, but also sometime necessary. In the scenarios

where a large number of models are possible and it is difficult to narrow it down

to a manageable set of candidate models, using rjmcmc can be potentially more

efficient than performing simulations for each model when model selection is of

interest.

The rjmcmc algorithm adapts the Metropolis-Hastings algorithm to con-

struct transition kernels to simulate the full posterior. Instead of a single type of

moves defined by a proposal distribution, a countable set of moves is considered, say

𝑚 ∈ℳ. Each type of moves is capable of moving the current state of the Markov

chain between, say 𝛩𝑘 and 𝛩𝑘′, the parameter space of model ℳ𝑘 and ℳ𝑘′ (where

in the case of 𝑘 = 𝑘′, the move is similar to those in an mcmc algorithm on a fixed

dimension space). At state 𝜃𝑘 ∈ 𝛩𝑘, a move of type 𝑚 together with a new state

𝜃𝑘′ ∈ 𝛩𝑘′ are proposed according to 𝑞𝑚(𝜃𝑘′|𝜃𝑘)𝑟𝑚(𝜃𝑘), where 𝑟𝑚(𝜃𝑘) is the proba-

bility of choosing a type 𝑚move when at state 𝜃𝑘; and 𝑞𝑚(𝜃𝑘′|𝜃𝑘) is the proposal

kernel for the new state when a move of type𝑚 is made. Usually, these moves are
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designed in pairs. For type of moves 𝑚, there is an inverse type, say 𝑚′, that can

move the state 𝜃𝑘′ ∈ 𝛩𝑘′ to 𝜃𝑘 ∈ 𝛩𝑘. The move is accepted with probability,

𝛼(𝜃𝑘, 𝜃𝑘′) = min{1,
𝜋(𝑀𝑘′)𝜋(𝜃𝑘′|𝑀𝑘′)𝑝(𝑦|𝜃𝑘′,𝑀𝑘′)
𝜋(ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘)𝑝(𝑦|𝜃𝑘,ℳ𝑘)

𝑞𝑚′(𝜃𝑘|𝜃𝑘′)𝑟𝑚′(𝜃𝑘′)
𝑞𝑚(𝜃𝑘′|𝜃𝑘)𝑟𝑚(𝜃𝑘)

}. (4.21)

In practice, the proposed new state 𝜃𝑘′ is often implemented by drawing a vector of

continuous random variables, say 𝑢, independent of 𝜃𝑘 and a deterministic bijection

of vector (𝜃𝑘, 𝑢) to 𝜃𝑘′, say 𝜃𝑘′ = 𝑇(𝜃𝑘, 𝑢). The inverse of the move from 𝜃𝑘′ back to

𝜃𝑘, 𝑚′, then uses the inverse of this transformation. Through a simple change of

variable, the conditional density 𝑞𝑚(𝜃𝑘′|𝜃𝑘) can be expressed in terms of the density

of vector 𝑢, say 𝑞(𝑢). The acceptance probability becomes

𝛼(𝜃𝑘, 𝜃𝑘′) = min{1,
𝜋(𝑀𝑘′)𝜋(𝜃𝑘′|𝑀𝑘′)𝑝(𝑦|𝜃𝑘′,𝑀𝑘′)
𝜋(ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘)𝑝(𝑦|𝜃𝑘,ℳ𝑘)

𝑟𝑚′(𝜃𝑘′)
𝑟𝑚(𝜃𝑘)

1
𝑞(𝑢)
|
𝜕𝜃𝑘′
𝜕(𝜃𝑘, 𝑢)
|},

(4.22)

where the last term is the determinant of the Jacobian transformation. The design

of efficient between-model moves is often difficult, and the mixing of these moves

largely determines the performance of the algorithm.

It should be noted that, in the above we only described the move that transits

the parameters from the space of one model into another. As mentioned earlier,

in practice, rjmcmc moves are designed in pairs. In each pair, the two moves are

capable of moving the parameters between two models. For each type of move that

generates parameters 𝜃𝑘′ given 𝜃𝑘, an inverse move can be constructed. At each

iteration, there may be multiple steps. One step is to update the parameters without

changing the model. Other steps may move the parameters between models. At

each of the later step, a pair of moves is implemented, and with equal probabilities

(i.e., 𝑟𝑚(𝜃𝑘) = 𝑟𝑚′(𝜃𝑘′) = 0.5), one type of the move in the pair is performed.

The main difficulties lie in the choice of cross-model proposals and the bi-

jection 𝑇. Though the mapping 𝑇 theoretically is quite flexible, its creation and

optimization can be quite difficult in practice. This is particularly true when the

parameter space is complicated. In some extreme cases, creating a valid kernel is

already difficult. For example, in multimodal models, where rjmcmc has gained
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substantial attention, information available in posterior distributions of any given

model does not characterize modes that exist only in models of higher dimension;

and thus a successful between-model move between these dimensions becomes

difficult [83]. Inefficient proposals result in Markov chains that are slow to explore

the whole parameter space. However, the natural ideas of neighborhood and others,

which proved to be useful concepts for within model simulations, may no longer be

intuitive in the variable dimensionmodel settings. For instance, when a cross-model

occurs, the previous state of the parameters, which may be in a high probability

region of the model in the last iteration, when transformed might be in a low prob-

ability region of the model of the current iteration. In addition, rjmcmc does not

characterize all models well as some may be visited by the chain only rarely. This

may not be a problem when the model is indeed of low posterior probability and

there is little interest in such models. However, in some cases it will be difficult to

determine whether the low acceptance rates of between model moves results from

actual characteristics of the posterior or from a poorly adapted proposal kernel.

Some discussion of the optimization of the cross-model moves can be found

in [64]. Also the adaptive scheme for the Metropolis-Hastings algorithm has been

extended for rjmcmc, for example [70]. However little other work is known for

the actual performance of this kind of improvement to rjmcmc. In [65] a method

called delayed rejectionwas discussed. In this method, a rejection of a proposal does

not immediately lead to the acceptance of current state, instead a second proposal

is attempted. Their numerical results showed efficiency improvement but with

increased computation cost.

4.3.5 Population mcmc

Population-based methods have been considered in recent research. An entire

family of such algorithms, sequential Monte Carlo, is considered in Chapter 5.

Another algorithm, population mcmc, which has seen applications in the area of

Bayesian model comparison, is reviewed in this section.
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Population mcmc operates by constructing a sequence of distributions {𝜋𝑡}𝑇𝑡=0
with at least one of them being the target distribution 𝜋. Parallel mcmc chains are

simulated for each of these distributions. In addition, the chains interact with

each other by swapping or crossover moves, which allows fast mixing chains to

“lend” information to slow mixing chains. The outputs are therefore samples that

approximate the product∏𝑇𝑡=0 𝜋𝑡 with the target distribution being a marginal.

Different choices of the sequence of distributions are possible. One commonly

used in practice is called tempering. For a target 𝜋, a sequence {𝜋𝑡}𝑇𝑡=0 is constructed

such that,

𝜋𝑡(𝑥) ∝ [𝜋(𝑥)]𝛼(𝑡/𝑇) (4.23)

where the mapping 𝛼 ∶ [0, 1] → [0, 1] is monotonically increasing with 𝛼(1) =

1 (also see [111] for similar annealing schemes). Other similar schemes can be

constructed. For example, in the context of Bayesian modeling where 𝜋 is the

posterior distribution 𝜋(𝜃𝑘|𝑦,ℳ𝑘) ∝ 𝜋(𝜃𝑘|ℳ𝑘)𝑓(𝑦|𝜃𝑘,ℳ𝑘), one can construct a

sequence

𝜋𝑡(𝜃𝑘) = 𝜋(𝜃𝑘|ℳ𝑘)[𝑓(𝑦|𝜃𝑘,ℳ𝑘)]𝛼(𝑡/𝑇) (4.24)

where the monotonically increasing mapping 𝛼 satisfies 𝛼(0) = 0 and 𝛼(1) = 1.

Therefore the sequence of distributions moves smoothly from the prior, which

usually can be sampled from easily, into the posterior.

The algorithm targets the distribution∏𝑇𝑡=0 𝜋𝑡. After initializing 𝑇Markov

chains for each of the marginals {𝜋𝑡}𝑇𝑡=0 with a common support 𝐸, at each itera-

tion, two types of moves are performed. One is local moves, sometimes termed

mutation, that advances each chain individually using an mcmc algorithms such

as the Metropolis-Hastings algorithm or the Gibbs sampling. One may select one

chain at random in each iteration to mutate or advance all chains in parallel. The

other type is global moves. The purpose is to allow fast mixing chains to trans-

fer information into slowly mixing chains. In each global move, two chains, say

with indices 𝑘1 and 𝑘2, are selected. Let 𝑋𝑘1 and 𝑋𝑘2 denote their current states.

Two new states, 𝑌𝑘1 and 𝑌𝑘2 are proposed according to conditional distributions
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for 𝑘 = 0,… ,𝑇 do

Draw𝑋0𝑘 ∼ 𝜇𝑘 where 𝜇𝑘 is the initial condition.

end for

Set 𝑡 ← 0.

repeat

for 𝑘 = 0,… ,𝑇 do

Draw𝑋𝑡+1𝑘 ∼ 𝐾𝑘(𝑥
𝑥
𝑘 , 𝑥
𝑡+1
𝑘 ) where 𝐾𝑘 is a 𝜋𝑘-invariant Markov kernel.

end for

Draw 𝑘1 and 𝑘2, 𝑘1 ≠ 𝑘2, from {0,… , 𝑇} such that the distribution of (𝑘1, 𝑘2)

is uniform over all possible permutations.

Draw 𝑌𝑡+1𝑘1 ∼ 𝑞𝑘1(𝑦
𝑡+1
𝑘1
|𝑥𝑡+1𝑘2 ) and 𝑌

𝑡+1
𝑘2
∼ 𝑞𝑘2(𝑦

𝑡+1
𝑘2
|𝑥𝑡+1𝑘1 ).

Compute 𝛼, the acceptance probability according to the Metropolis-

Hastings rule (𝛼((𝑥𝑡𝑘1 , 𝑥
𝑡
𝑘2
) in Equation (4.25) for an exchange move and

𝛼(𝑥𝑡𝑘1 , 𝑥
𝑡
𝑘2
, 𝑦𝑡+1𝑘1 , 𝑦

𝑡+1
𝑘2
) in Equation (4.26) for a crossover move). With proba-

bility 𝛼, set𝑋𝑡+1𝑘1 ← 𝑌
𝑡+1
𝑘1

,𝑋𝑡+1𝑘2 ← 𝑌
𝑡+1
𝑘2

.

Set 𝑡 ← 𝑡 + 1.

until Sufficiently many samples have been produced.

Algorithm 4.5 Population mcmc with parallel updating.

𝑞𝑘1(𝑦𝑘1|𝑥𝑘2) and 𝑞𝑘2(𝑦𝑘2|𝑥𝑘1), respectively. That is, the proposed new state of each

chain depends on the current state of the other. The new states are accepted with

the usual Metropolis-Hastings acceptance probability. This leads to Algorithm 4.5.

There are several approaches of the global move [82]. Two more widely used are the

following.
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Exchange The exchange move selects two chains at random, say 𝑘1 and 𝑘2, and

propose to exchange the states between them. That is, the proposal distribution

𝑞𝑘1(𝑦𝑘1|𝑥𝑘2) is defined by Pr(𝑌𝑘1 = 𝑥𝑘2|𝑥𝑘2) = 1 (similarly for 𝑞𝑘2(𝑦𝑘2|𝑥𝑘1)). The

proposed exchange is accepted or rejected according to the Metropolis-Hastings

acceptance probability,

𝛼(𝑥𝑘1 , 𝑥𝑘2) = min{
𝜋𝑘1(𝑥𝑘2)𝜋𝑘2(𝑥𝑘1)
𝜋𝑘1(𝑥𝑘1)𝜋𝑘2(𝑥𝑘2)

, 1}. (4.25)

For this to work, usually the two chains are chosen such that they are adjacent to

each other in the sense that one is chosen randomly and the other is selected to be

the one most close to it. For example, in the tempering scheme, usually a chain with

index 𝑘1 ∈ {0, 1,… , 𝑇 − 1} is chosen randomly and it is proposed to be exchanged

with the chain with index 𝑘2 = 𝑘1 + 1. The delayed rejection approach in [65] (see

Section 4.3.4) can also be used in the exchange moves. Thus two chains in some

sense that are very different can also be chosen. In either case, the key is that the

chains chosen to be exchanged are chosen uniformly over all chains.

Crossover Another type of global move, called crossover was mentioned in [107].

Instead of proposing to exchange the whole states𝑋𝑘1 and𝑋𝑘2 , after the two chains

are chosen, only parts of the two states are proposed to be exchanged. Suppose the

state 𝑋 can be partitioned into 𝑋 = (𝑋1,… ,𝑋𝑝) in the same way for each chain.

Then a random position, say 𝑙 is chosen and the position 𝑙 of 𝑋𝑘1 is proposed to

be exchanged with its counter-part in𝑋𝑘2 . The acceptance probability is the same

as Equation (4.25) with suitable notation changes. Let 𝑋𝑘𝑖 = (𝑋𝑘𝑖,1,… ,𝑋𝑘𝑖,𝑝) for

𝑖 = 1 and 2 denote the current states and

𝑋𝑘1′ = (𝑋𝑘1,1,… ,𝑋𝑘1,𝑙−1, 𝑋𝑘2,𝑙, 𝑋𝑘1,𝑙+1,… ,𝑋𝑘1,𝑝)

𝑋𝑘2′ = (𝑋𝑘2,1,… ,𝑋𝑘2,𝑙−1, 𝑋𝑘1,𝑙, 𝑋𝑘2,𝑙+1,… ,𝑋𝑘2,𝑝)

denote the proposed states. Then the acceptance probability is,

𝛼(𝑥𝑘1 , 𝑥𝑘2 , 𝑥𝑘1′, 𝑥𝑘2′) = min{
𝜋𝑘1(𝑥𝑘1′)𝜋𝑘2(𝑥𝑘2′)
𝜋𝑘1(𝑥𝑘1)𝜋𝑘2(𝑥𝑘2)

, 1} (4.26)
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In [82] it was found that the cross over move can bemore efficient than the exchange

move.

Population mcmc algorithm can bemore efficient than simulating from a sin-

gle chain. Consider the situation where the mcmc algorithm targeting distributions

𝜋1 and 𝜋2 might be trapped. If 𝜋1 and 𝜋2 are similar in the sense of the shape of

the locations of local modes. And each of them are trapped within different modes.

The global move, say the exchange move, proposes to exchange the values from one

high probability region with those in another high probability region. It is more

likely that such an exchange is accepted than the mcmc algorithm jumps into the

other modes itself. Those chains that mix fast can explore the parameter space more

efficiently than those mix slower and are more likely to visit all the high probability

regions. Through the global moves they propose values in other high probability

regions to slowly mixing chains to help them avoid trapping states.

Optimal placement of distributions As discussed earlier, population mcmc allows

efficient simulation of previously difficult problem, though at a cost of increasing

computational cost. However, the algorithm requires another layer of optimization

in addition to themixing speed of each localmove – the placement of the sequence of

distributions {𝜋𝑡}𝑇𝑡=0. If too many chains are present, the information can take many

global moves to transfer from fast mixing chains to slowly mixing ones. If there

are too few chains and they are placed far apart from each other, the global moves

are likely to have small acceptance rates. In [13], based on the idea of maximizing

the average information exchanged at each iteration, it was recommended that an

optimal placement of the distributions should have global acceptance rate of around

0.234. The optimal placement of the distributions can be obtained iteratively if

{𝜋𝑡}𝑇𝑡=0 belongs to a family of distributions, say 𝜋𝛼 = 𝜋(⋅|𝛼), indexed by 𝛼. The

algorithm first finds 𝛼0 and 𝛼1 such that the population mcmc algorithm operating

on {𝜋𝛼𝑡}
1
𝑡=0 has a global acceptance rate close to 0.234. For example, if a tempering

scheme is used, one can set 𝛼0 = 0 and use a binary search algorithm to find 𝛼1
since the smaller 𝛼1, the higher the acceptance rate. The algorithm proceeds in the

73



monte carlo methods

same way to find 𝛼𝑡 for 𝑡 > 1.

4.3.6 Convergence diagnostic

One important issue of mcmc algorithms is their speed of convergence. It is well

understood yet sometimes overlooked in practice. In the previous sections we

demonstrated for many algorithms, under fairly general conditions, the chains

produced are ergodic, or even geometrically ergodic (random walk). In some cases

the chain can be uniformly ergodic (independent Metropolis-Hastings algorithm).

However, such development provides little insight on how many iterations the

algorithm should be run to produce accurate estimates.

Convergence of an mcmc algorithm is assessed by monitoring certain statis-

tics of samples. This process is also called convergence diagnostic. There are two

types of convergence [135, chap. 12] widely used in practice. As we will see later, a

convergence diagnostic can at best determine that a chain has not converged yet.

One cannot be certain that a chain does converge.

Convergence to the stationary distribution

It might seem that a minimal requirement for samples from an mcmc algorithm

to be used to approximate a target distribution 𝜋, is that the chain converges to

this stationary distribution. However, 𝜋 is only the limiting distribution and the

stationarity is at best achieved asymptotically. Nonetheless, one possible assessment

of such convergence is to obtain bounds on the total variation norm,

‖𝐾𝑛(𝑥, ⋅) − 𝜋‖𝑇𝑉

where𝐾𝑛(𝑥, ⋅) is the distribution of samples at the 𝑛th iteration. However, obtaining

analytical bounds can be prohibitively difficult.

74



monte carlo methods

.

.

.

    
Iteration

𝜃 1











. . . . .
𝜃1

Co
un

t

Figure 4.3 Trace and histogram plots of parameter 𝜃1 from a mcmc sampler for pet
model with three components and non-informative priors without order-
ing. The trace plot has 1,000 samples and the histogram plot has 10,000
samples. The sampler is not well calibrated.

Graphical approach A natural empirical approach is to draw plots of simulated

samples to detect non-stationary behaviors. For instance, [53] drew sequence of the

samples {𝑋𝑡}𝑡≥1 against the time 𝑡, which is a functionality now commonly seen in

softwares that implement mcmc algorithms.

It should be emphasized that, even when the plots appears to show stationary

behavior, it is still possible that the algorithm has not converged or explored the

support of the target distribution surface efficiently. For example, consider the

three-compartments pet model and non-informative priors without ordering (that

is, parameters such as (𝜙1, 𝜃1) and (𝜙2, 𝜃2) are exchangeable, see Section 2.2). We use

one of the real data sets and constructed a randomwalk algorithm (see Section 4.3.2).

Figure 4.3 shows the trace and histogram plots of parameter 𝜃1. It appears that the

mcmc chain has converged well. However, from the properties of the model, it is

known that this parameter has at least three local modes. In fact, this sampler has

been trapped into one of them. In Figure 4.4 the trace and histogram plots of the

same sampler but with better calibrated proposal scales are shown.
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Figure 4.4 Trace and histogram plots of parameter 𝜃1 from a mcmc sampler for pet
model with three components and non-informative priors without order-
ing. The trace plot has 1,000 samples and the histogram plot has 10,000
samples. The sampler is well calibrated.

Non-parametric test Standard non-parametric tests can be applied in stationarity

assessment. This is based on the idea that, if the chain is stationary, then 𝑋𝑡1 and

𝑋𝑡2 have the same distribution for any two arbitrary time points 𝑡1 and 𝑡2. Therefore

standard tests can be used to compare the distribution of samples (𝑋𝑡,… ,𝑋𝑡+𝑝−1)

and (𝑋𝑡+𝑝,… ,𝑋𝑡+2𝑝). It should be noted that the correlations between samples

should be taken into consideration. One solution is to use sub-samples. A batch

size 𝐺 is introduced. Quasi-independent samples (𝑋𝑡1+𝐺, 𝑋𝑡1+2𝐺,… ,𝑋𝑡1+𝑝𝐺) and

(𝑋𝑡2+𝐺, 𝑋𝑡2+2𝐺,… ,𝑋𝑡2+𝑝𝐺) are used to conduct the tests. See [135, sec. 12.2.2] for

some examples of such tests.

A simpler statistic to use, as seen in [55], is the ratio of the variance of the

last few samples to that of all samples. Formally, for some function 𝜑, define the

following ratio,

𝑅𝑁𝑇 =
var[𝜑(𝑋𝑁−𝑇+1,… ,𝑋𝑁]
var[𝜑(𝑋1,… ,𝑋𝑁]

(4.27)

A value of 𝑅𝑁𝑇 between 0.9 and 1.1 was recommended. For example, Figure 4.5
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Figure 4.5 Convergence diagnostics for the three-compartments pet using ratio of
variance of 𝑉𝐷 estimates using final 1,000 samples to that of all 10,000
post burn-in samples. A value of the ratio close to one indicates that there
are no apparent signs that the mcmc algorithms do not converge well. A
value within the range of [0.9, 1.1] is considered to be acceptable.

shows the ratios of the variance of 𝑉𝐷 estimated using the final 1,000 samples to

that of all 10,000 post burn-in (the iterations used to adapt the sampler to optimal

acceptance rates) samples, for real pet scan data sets. For the majority of data sets,

the ratios fall in the desired interval.

Convergence of averages

In [165] it was proposed to use the cumulative sums and plot the partial differences,

𝐷𝑡𝑁 =
𝑡

∑
𝑖=1
(𝜑(𝑋(𝑖)) − 𝑆𝑁), 𝑡 = 1,… ,𝑁, (4.28)

where

𝑆𝑁 = 1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑋(𝑖)) (4.29)

is the final average. A simple variant of this method is to plot the average of the

first 𝑡 samples, 𝑆𝑡. The use of these quantities can be appealing because they directly

measure the stability of the estimator of interest. For instance, Figure 4.6 shows the

posterior mean estimate of 𝑉𝐷 for a three-compartments pet model. The posterior

mean from five samplers initialized with different values converge to the same value.
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Figure 4.6 Estimates of𝑉𝐷 when starting the mcmc chain from different values for a
typical data set of a pet model with three component. Three slice of the
brain are shown in the plot. Each are close to the middle of the brain along
each of the three axises in the three-dimensional space.

A more robust approach was proposed in [133]. The idea is to use several

convergent estimators based on the same samples. The chain is first iterated until all

estimators are close to each other in the sense that the differences are smaller than

a preset tolerance value. And then onwards simulations are used for inferences.

One obvious estimator is the empirical average of all samples used for estimation.

Another one is similar to the importance sampling estimator,

𝜑𝑁mcmc−is =
𝑁

∑
𝑖=1
𝜑(𝑌(𝑖)) 𝜋(𝑌

(𝑖))
𝑞(𝑌(𝑖)|𝑋(𝑖))

(4.30)

where {𝑌(𝑖)}𝑁𝑖=1 are samples from 𝑞(𝑦𝑡|𝑥𝑡), a distribution that depends on the current

state𝑋𝑡. When the distributions are known only up to some normalizing constants,

then a variant similar to that in Equation (4.7) is used. Unlike the importance

sampling in Section 4.2, this estimator is based on dependent samples instead of

i.i.d samples. However, as shown in [135, Lemma 12.11], the weighted terms in the

sum are uncorrelated.

In the particular case of the Gibbs sampling, the distribution,

𝑞(𝑦𝑡|𝑥𝑡−1) ∝
𝑝

∏
𝑖=1
𝜋𝑖(𝑦𝑡𝑖 |𝑦

𝑡
1∶𝑖−1, 𝑥

𝑡−1
𝑖+1∶𝑝) (4.31)

is a natural choice to be used as the proposal distribution and samples from Gibbs

sampler can be used. In this case, 𝑌(𝑖) = 𝑋(𝑖).
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For the generic Metropolis-Hastings algorithm, the samples simulated from

the proposal distributions (both those accepted and rejected) can be recycled to

calculate the importance sampling estimate. In this case, 𝑌(𝑖) is the proposed value,

𝑋(𝑖) are the accepted values and the distribution 𝑞(⋅|𝑥𝑡) is simply the proposal distri-

bution. This approach is more robust in the sense that a Markov chain in a trapping

state is more likely to be detected than the simple plots of averages.

For example, consider an independent Metropolis-Hastings algorithm whose

proposal 𝜂 has only one high probability region 𝐴 while the target 𝜋 has two high

probability regions 𝐴 and 𝐵 such that 𝑃𝑟(𝑥 ∈ 𝐴) ≈ Pr(𝑥 ∈ 𝐵). The chain is likely

to be trapped in 𝐴 and 𝑆𝑁 might appear to be stable. However, 𝜑𝑁mh−is is much less

stable since those values occasionally proposed within 𝐵, though very likely to be

accepted, they also have extreme large value of the weight 𝜋(𝑌(𝑖))/𝜂(𝑌(𝑖)). This leads

to a large variance of estimator 𝜑𝑁mcmc−is. In this case, 𝜑𝑁mh−is is stable when values

of high target density values are also proposed frequently.

4.3.7 Application to Bayesian model comparison

It is clear that rjmcmc can be used directly for the purpose of Bayesian model

selection, as it generates samples from the full posterior with the model posterior

distribution 𝜋(ℳ𝑘|𝑦) as a marginal.

For within model simulations, that is the algorithms generate Markov chains

targeting the posterior distribution 𝜋(𝜃𝑘|𝑦,ℳ𝑘) ∝ 𝑓(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘), the

dependent samples can be used for the purpose of Bayesian model comparison for

a finite a set of models through approximating the marginal likelihood and thus

the Bayes factor, which is the ratio of the marginal likelihood of two models. A few

methods are discussed here.
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Generalized harmonic mean estimator

Recall that, the marginal likelihood is written as,

𝑝(𝑦|ℳ𝑘) = ∫ 𝑓(𝑦|𝜃𝑘,ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘) d 𝜃𝑘.

For the purpose of simplicity, in this section we drop the dependency on the model

ℳ𝑘 and simply write 𝑝(𝑦) = ∫ 𝑓(𝑦|𝜃)𝜋(𝜃) d 𝜃. With samples generated by an

mcmc algorithm targeting the posterior distribution𝜋(𝜃|𝑦) ∝ 𝑓(𝑦|𝜃)𝜋(𝜃) available,

say {𝜃(𝑖)}𝑁𝑖=1, an estimator of 𝑝(𝑦) can be obtained by the harmonic mean [121],

𝑝(𝑦)
𝑁
hm = (
1
𝑁

𝑁

∑
𝑖=1

1
𝑓(𝑦|𝜃(𝑖))

)
−1

(4.32)

Unfortunately this estimator can suffer instability problem when samples with small

likelihoods are generated. In fact this estimator does not always have a finite vari-

ance and therefore in general does not satisfy a Central Limit Theorem (clt). An

improvement seen in [96] is,

𝑝(𝑦)
𝑁
ghm = (

1
𝑁

𝑁

∑
𝑖=1

𝛾(𝜃(𝑖))
𝑓(𝑦|𝜃(𝑖))𝜋(𝜃(𝑖))

)
−1
, (4.33)

where 𝛾 is a proper density function. This is based on the identity,

1
𝑝(𝑦)
= ∫
𝛾(𝜃)
𝑝(𝑦, 𝜃)
𝑝(𝑦, 𝜃)
𝑝(𝑦)
d 𝜃 = ∫

𝛾(𝜃)
𝑝(𝑦, 𝜃)
𝜋(𝜃|𝑦) d 𝜃 (4.34)

It can be seen that the distribution 𝛾 plays a role similar to that of the target dis-

tribution for the importance sampling in the sense that the posterior distribution

now acts as a proposal distribution. For similar reasons, high efficiency is most

likely to be obtained when 𝛾 is roughly proportional to 𝑓(𝑦|𝜃) [96]. The above

equation suggests that the estimator has a finite variance if the tails of 𝛾 are thin

enough compared to the posterior distribution 𝜋(𝜃|𝑦). In particular, the choice

of 𝛾 shall ensures that the value 𝛾(𝜃)/𝑝(𝑦, 𝜃) is at least bounded and vanishes to

zero at the tails of the likelihood function. In [52] the use of a multivariate Normal

distribution with moments approximated from the samples as a natural choice of 𝛾
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was suggested. Though Normal distributions often have thinner tails than others, it

is not generally true and it shall be considered when applied to specific algorithms.

On the other hand, if more knowledge of the structure of the posterior or the likeli-

hood function is available, other distributions such as a multivariate 𝑡 distribution,

can be used in place of the multivariate Normal distribution. Even though it has

heavier tails, it might be more flexible in the sense that it is possible to mimic the

posterior distribution more closely.

The variance of the estimator can also be estimated for 1/𝑝(𝑦)
𝑁
ghm from the

posterior samples through,

v̂ar[ 1

𝑝(𝑦)
𝑁
ghm

] = 1
𝑁2

𝑁

∑
𝑖=1
(
𝛾(𝜃(𝑖))

𝑓(𝑦|𝜃(𝑖))𝜋(𝜃(𝑖))
− 1

𝑝(𝑦)
𝑁
ghm

)
2
. (4.35)

The above estimator provides a way of monitoring the convergence of the estimator.

Though more stable than the harmonic mean estimator 𝑝(𝑦)
𝑁
hm, this generalized

estimator still requires considerable care in the implementation, especially the choice

of the density 𝛾, to ensure good performance and indeed a finite variance estimator.

More discussion of the stability of the harmonic mean and related estimators can

also be found in [131].

The method described above can be used for most mcmc algorithms, such as

the Metropolis-Hastings algorithm, the Gibbs sampling and population mcmc (by

only using the sub-chain that corresponds to the distribution of interest).

Results for pet compartmental model We conclude the discussion on the general-

ized harmonic mean estimator with results for the pet compartmental model with

real data. For a 𝑟-compartments pet model (see Section 2.2), a Student 𝑡 distributed

error structure (see Section 2.4), and informative priors (see Section 3.2.3), we con-

struct a randomMetropolis-Hastings algorithm with four blocks. Again, recall the

parameterization in Section 2.2,

1. Update 𝜙1∶𝑟 with a multivariate Normal random walk proposal.

2. Update 𝜃1∶𝑟 with a multivariate Normal random walk proposal.
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3. Update 𝜏 with a Normal random walk proposal on the logarithm scale, i.e.,

on log 𝜏.

4. Update 𝜈 with a Normal random walk proposal on the logarithm scale, i.e.,

on log 𝜈.

There are a 10,000 iterations used for adaptation (the burn-in period) and 10,000

iterations are used for estimation. Results in [167] showed that the long burn-in

period is more than enough for the majority of the samplers to converge well. The

generalized harmonic mean estimator 𝜑̂𝑁ghm is used to compute the Bayes factor.

The model selection results, along with those from aic and bic methods for the

purpose of comparison, are shown in Figure 4.7. It can be seen that the Bayesian

model selection results showsmore plausible structure than the information criteria.

With the information criteria, the distribution of the model orders across the image

appears to be more or less random while the Bayesian results show some structure

with more active regions within the brain having higher order models. See also the

discussions in [167] and references therein.

As usual for real data, it is difficult to determine if the selected models are

indeed the “true model”. However, the Bayesian model selection results are more

plausible for two reasons. First, in this experiment, those regions with higher model

orders are also regions where the concentrations of the tracers are higher. The

greater uptake of tracers usually indicates higher level biochemical activities and

hence models with two or three compartments are more plausible than a model

with one compartment. Second, the regions outside the brain are regions where

no biochemical reactions could possibly happen (they are not actually part of the

brain). They are not masked out in the three-dimensional images to avoid masking

out regions that are actually of interest. The Bayesian model comparison method is

able to correctly identify that there is only one compartment in those regions while

other methods fail to do so.

The convergence results for this simulation were already shown in Figure 4.5.

It should be noted that, though as shown in Figure 4.6, accurate estimation of

the parameter 𝑉𝐷 does not really need this many iterations. However, accurate
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Figure 4.7 Model selection results for petmodel using real data set. In each row, three
slice of the brain are shown in the plot. Each are close to the middle of the
brain along each of the three axises in the three-dimensional space. From
top to bottom: Model order selected by aic𝑐 (see Section 3.1.3); Model
order selected by bic (see Section 3.2.2); Model order selected by using
Bayesian model comparison with marginal likelihood approximated by
generalized harmonic mean estimator; The posterior model probability
𝜋(ℳ𝑘|𝑦) (see Section 3.2.1) with uniform prior model probability 𝜋(ℳ𝑘).
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estimation of the marginal likelihood requires considerably more samples.

Estimator using the Gibbs sampling

In the particular case of the Gibbs sampling, [28] provides an alternative estimator

based on that the identity,

𝑝(𝑦) =
𝑓(𝑦|𝜃)𝜋(𝜃)
𝜋(𝜃|𝑦)

, (4.36)

holds for any value of 𝜃. Therefore an estimator can be obtained by substituting 𝜃

with a specific value, say 𝜃∗, which is usually chosen from the high probability region

of the posterior distribution and approximating the denominator using outputs from

the Gibbs sampler.

Formally, assume it is possible to construct a Gibbs sampler for the decom-

position 𝜃 = (𝜃1,… , 𝜃𝑝). Write 𝜋(𝜃|𝑦) as,

𝜋(𝜃|𝑦) = 𝜋(𝜃1|𝑦)
𝑝

∏
𝑖=2
𝜋(𝜃𝑖|𝑦, 𝜃1∶𝑖−1) (4.37)

and given 𝜃∗, we have the estimator,

𝑝(𝑦)
𝑁
gs =

𝑓(𝑦|𝜃∗)𝜋(𝜃∗)

𝜋(𝜃∗1 |𝑦)∏
𝑝
𝑖=2 𝜋(𝜃

∗
𝑖 |𝑦, 𝜃
∗
1∶𝑖−1)
. (4.38)

The value of 𝜋(𝜃∗1 |𝑦), the marginal ordinate of 𝜋(𝜃|𝑦) can be approximated with

output from the Gibbs sampler. For example,

𝜋̂𝑁(𝜃∗1 |𝑦) =
1
𝑁

𝑁

∑
𝑖=1
𝜋(𝜃∗1 |𝑦, 𝜃

(𝑖)
2∶𝑝) (4.39)

since

𝜋(𝜃∗1 |𝑦) = ∫ 𝜋(𝜃
∗
1 , 𝜃2∶𝑝|𝑦) d 𝜃2∶𝑝

= ∫ 𝜋(𝜃∗1 |𝑦, 𝜃2∶𝑝)𝜋(𝜃2∶𝑝|𝑦) d 𝜃2∶𝑝

= 𝔼[𝜋(𝜃∗1 |𝑦, 𝜃2∶𝑝)|𝑦]

where the expectation is taken with respect to the marginal distribution of 𝜃2∶𝑝
conditional on the data.

The term 𝜋(𝜃∗𝑖 |𝑦, 𝜃
∗
1∶𝑖−1) can be approximated based on the identity,

𝜋(𝜃∗𝑖 |𝑦, 𝜃
∗
1∶𝑖−1) = ∫ 𝜋(𝜃

∗
𝑖 , 𝜃𝑖+1∶𝑝|𝑦, 𝜃

∗
1∶𝑖−1) d 𝜃𝑖+1∶𝑝

= ∫ 𝜋(𝜃∗𝑖 |𝑦, 𝜃
∗
1∶𝑖−1, 𝜃𝑖+1∶𝑝)𝜋(𝜃𝑖+1∶𝑝|𝑦, 𝜃

∗
1∶𝑖−1) d 𝜃𝑖+1∶𝑝 (4.40)

and using a Gibbs sampler operating on 𝜃𝑖∶𝑝 with 𝜋(𝜃𝑖∶𝑝|𝑦, 𝜃∗1∶𝑖−1) as the target

distribution and an estimator similar to that in Equation (4.39). This is possible

because all the full conditionals required to construct such a Gibbs sampler can be

sampled from, otherwise the original Gibbs sampler cannot be constructed.

In addition to the usual requirement of a Gibbs sampler, that all the full

conditionals can be sampled from, this method also requires that all these densi-

ties are known including their normalizing constants, and thus can be computed

point-wise. The advantage is that this estimator does not suffer from the instability

problem like the harmonic mean estimator and its generalizations. Only averages of

full conditionals are involved in the calculation, which are less sensitive to extremely

small values.

A generalization to the generic Metropolis-Hastings algorithm was provided

by [29], where the proposal distributions are required to be known including their

normalizing constants.

Population mcmc with path sampling

For population mcmc, as proposed in [24], aMonte Carlo approximation to the path

sampling estimator [56] can be used for the purpose of approximating the marginal

likelihood. Given an (arbitrary) family of distributions indexed by a parameter

𝛼, {𝜋𝛼 = 𝛾𝛼/𝑍𝛼}𝛼∈[0,1] which moves smoothly from 𝜋0 = 𝛾0/𝑍0 to 𝜋1 = 𝛾1/𝑍1 as

𝛼 increases from zero to one, one can estimate the logarithm of the ratio of their

normalizing constants via a simple integral relationship,

log(
𝑍1
𝑍0
) = ∫

1

0
𝔼𝜋𝛼[
d log 𝛾𝛼(𝑋)
d 𝛼
] d𝛼. (4.41)

where the inner expectation is taken with respect to 𝜋𝛼 and 𝑍𝛼 is the normalizing

constant for the unnormalized density 𝛾𝛼. The path sampling estimator for the ratio

of the normalizing constants 𝑍1 and 𝑍0 are based on Monte Carlo approximations

of the above integration. One direct approach, as seen in [56] is to simulate samples

(𝛼,𝑋)where 𝛼 are uniformly distributed on the interval [0, 1] and conditional on 𝛼,

𝑋 is distributed with 𝜋𝛼. As we will see, with some modifications of the evaluation

of the outer integration, this estimator can be approximated using samples from a

population mcmc.

There are various ways of constructing such a family of distributions, for

example, the sequence of distributions in Equation (4.24), 𝛼 = 𝛼(𝑡/𝑇). Population

mcmc provides samples that can be used to approximate this path sampling esti-

mator. Given samples {𝑋(𝑖)0 ,… ,𝑋
(𝑖)
𝑇 }
𝑁
𝑖=1 from 𝑁 iterations of a population mcmc

sampler, one can approximate the expectation under distribution 𝜋𝛼 = 𝜋𝛼(𝑡/𝑇) = 𝜋𝑡
by the empirical average of the sub-chain {𝑋(𝑖)𝑡 }

𝑁
𝑖=1. The integration (4.41) can be

approximated with a numerical integration scheme such as the Trapezoidal rule.

This leads to the following estimator,

𝑝(𝑦)
𝑁
ps =
𝑇

∑
𝑡=1

1
2
(𝛼𝑡 − 𝛼𝑡−1)(𝑈𝑁𝑡 + 𝑈

𝑁
𝑡−1) (4.42)

where 𝑈𝑁𝑡 is the estimate of d log 𝛾𝛼(𝑋)/ d 𝛼 evaluated at 𝛼 = 𝛼𝑡 using samples

{𝑋(𝑖)𝑡 }
𝑁
𝑖=1.

As shown in [24], the use of path sampling can reduce the variance of the

estimator significantly compared to the harmonic mean estimator and its general-

izations. However, the estimator 𝑝(𝑦)
𝑁
ps is biased because of the use of numerical

integration. It is clear that the smaller the interval [𝛼𝑡−1, 𝛼𝑡] (closer the distribu-

tion 𝜋𝑡−1 and 𝜋𝑡), the smaller the bias. However, this can come into conflict with

the convergence speed of the population mcmc algorithm. As discussed earlier,

in this setting, the global moves can potentially mix slowly. For example, for the

one-compartment pet model and using the sequence of distributions (4.24), the

optimal placement that results in an acceptance rate of globals close to 0.234 has

only six chains. The path sampling estimate has a 60% relative bias. With 30 chains

and a sensible placement, the bias can be reduced to be negligible. However, the

global move has an acceptance rate about 0.85, which implies that the sampler is

not mixing well.

The use of path sampling for approximating the Bayes factor will be revisited

in Chapter 5 for sequential Monte Carlo. More results for the pet model and other

examples can also be found in the same chapter.

4.4 discussions

In this chapter, a few Monte Carlo algorithms have been reviewed. One of the more

important class of algorithms, Markov chain Monte Carlo has been widely used for

Bayesian modeling.

TheMetropolis-Hastings algorithm provide a generic solution to a large array

of applications. There are established results for tuning the algorithm for optimal

performance. The Gibbs sampler can be more appealing when there are decompo-

sitions of the parameter vector that lead to easy to sample full conditionals. Both

algorithms can benefit from reparameterization that leads to less correlated pa-

rameters. The difficulty of rjmcmc is that the cross-model move is often difficult

to design. The population mcmc algorithm can provide robust solution for high

dimensional multimodal problems where the other algorithm may be inefficient

due to the difficulty of exploring local modes separated by small probability regions.

Its performance depends on both the design of the mcmc algorithm that update

each chain and the placement of the sequence of distributions.

The rjmcmc algorithm can be used for Bayesian model selection through

the simulation of the posterior model probabilities. It can be difficult to implement

though conceptually appealing. Other algorithms can be used to approximate the

marginal likelihood and thus the Bayes factor using various estimators. The har-

monic mean estimator and its generalizations can be calculated for most mcmc

algorithms. However, they suffer stability issues. For the Gibbs sampling and the

Metropolis-Hastings algorithm, there exist more stable estimators. However, they

require knowledge of certain distributions that are not always available. Popula-

tion mcmc can also use the path sampling estimator. There is a trade-off between

convergence speed and the accuracy of the estimator in term of its bias.

It should be noted that, the application of Monte Carlo methods is not limited

to integration. They have also found application in areas such as optimization (see

[135, chap. 5] and references therein). In addition, Monte Carlo integration is also

not limited to the Bayesian paradigm. For instance, Monte Carlo integration can be

used for hypothesis tests when various asymptotic assumptions, such as normality,

are not suitable. For examples, see [135, sec. 3.2] and references therein.

There are many other Monte Carlo algorithms not reviewed in this chapter.

Notable examples are slice sampling and perfect sampling (see [135, chap. 8 and 13]).

Another class of algorithms, sequential Monte Carlo (smc) operates by iteratively

constructing efficient proposal distributions for the importance sampling. A recent

development, particle mcmc [7] combines the strength of mcmc and smc by us-

ing smc samplers as proposal in the Metropolis-Hastings algorithm or the Gibbs

sampling. This chapter is far from a complete review of the topic on Monte Carlo

methods. The algorithms reviewed are widely used for the purpose of Bayesian

model comparison. They have become standard tools of statisticians for Bayesian

computation. In the next chapter, we will study the use of smc for this purpose in

detail. Some novel algorithms will be introduced.
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As reviewed in Chapter 4, mcmc algorithms, though widely used for the purpose

of Bayesian computation, have many limitations. Algorithms such as rjmcmc are

conceptually appealing, yet often difficult to design in practice. Other algorithms

such as the Metropolis-Hastings algorithm and the Gibbs sampling, though provide

generic frameworks, within which problems inmany fields can be solved, the design

of efficient, high performance algorithms still requires considerable expertise and

sometimes extensive experience.

In recent years, there is a tendency of considering population based algo-

rithms. A common theme in these algorithms is that, instead of simulating directly

from a complex target distribution, related yet simpler distributions are used to

“help” the simulation. One such algorithm, which is essentially a generalization of

the Metropolis-Hastings algorithm, population mcmc is reviewed in Section 4.3.5,

in which the easier to simulate distribution “lends” information to the target and

accelerates its mixing. Another population based algorithm, smc sampler, is the

central topic of this chapter

Sequential Monte Carlo (smc) samplers, in various forms have been around

for many years and are widely used in many fields. Until recently there has been

little interest in using them for Bayesian model comparison for a few reasons. One

of the more important one is that, when mcmc algorithms are available, an smc

sampler could cost more computational resources than a well designed mcmc sam-

pler. However we believe there are at least two important reasons that smc can be

preferable to mcmc for the purpose of Bayesianmodel comparison inmany interest-

ing problems. First, it provides a generic and robust framework for simulation from

complex distributions that are difficult for mcmc algorithms, especially for high

dimensional multimodal ones. Though it is not impossible to design mcmc algo-

rithms for these problems, it can be hugely difficult in practice. The smc framework
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provides an alternative that is easy to use. It has the potential to enable statisticians

to construct more realistic, useful models that were previously difficult to use due

to the computational complexity. Second, most Monte Carlo algorithms has to be

implemented on computers to be useful. Therefore it is realistic to consider the

trend of today’s computer technologies, in particular, parallel computing. smc is

much more suitable for this kind of computing than conventional mcmc. As we

will see later, smc has certain advantages over some other parallelized algorithms.

In this chapter, we first give a review of smc algorithms in Section 5.1. It is

followed by a section that details the use of smc in the context of Bayesian model

comparison. Next, Section 5.3 develops some extensions and refinements of existing

practices. It is followed by a discussion of how the presented framework leads

to automatic and generic algorithms. This chapter is concluded with extensive

empirical performance study of various proposed strategies.

5.1 sequential monte carlo samplers

smc samplers allow us to obtain, iteratively, collections of weighted samples from

a sequence of distributions {𝜋𝑡}𝑡≥0 over essentially any random variables on some

spaces {𝐸𝑡}𝑡≥0. It is an extension to the sequential importance sampling (sis) and

resampling algorithms. In the remainder of this section, sequential importance

sampling and resampling algorithms are introduced. Then, how they are generalized

to smc samplers for the purpose of the current work is discussed. To simplify the

discussion, we will assume that the distributions are continuous and their density

functions will also be denoted by {𝜋𝑡}𝑡≥0.

5.1.1 Sequential importance sampling and resampling

Sequential importance sampling (sis) generalizes the importance sampling (see

Section 4.2) technique for a sequence of distributions {𝜋𝑡}𝑡≥0 defined on spaces

{∏𝑡𝑘=0 𝐸𝑘}𝑡≥0. The algorithm operates as the following.
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At time 𝑡 = 0, draw {𝑋(𝑖)0 }
𝑁
𝑖=1 from 𝜂0 and compute the weights 𝑊(𝑖)0 ∝

𝜋0(𝑋
(𝑖)
0 )/𝜂0(𝑋

(𝑖)
0 ). At time 𝑡 ≥ 1, each sample𝑋(𝑖)0∶𝑡−1, usually termed particles in the

literature, is extended to𝑋(𝑖)0∶𝑡 (𝑋
(𝑖)
0∶0 = 𝑋

(𝑖)
0 ) by sampling from a proposal distribution

𝑞𝑡(⋅|𝑋
(𝑖)
0∶𝑡−1). The weights are recalculated as𝑊(𝑖)𝑡 ∝ 𝜋𝑡(𝑋

(𝑖)
0∶𝑡)/𝜂𝑡(𝑋

(𝑖)
0∶𝑡) where

𝜂𝑡(𝑋
(𝑖)
0∶𝑡) = 𝜂𝑡−1(𝑋

(𝑖)
0∶𝑡−1)𝑞𝑡(𝑋

(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1) (5.1)

and thus

𝑊(𝑖)𝑡 ∝
𝜋𝑡(𝑋
(𝑖)
0∶𝑡)

𝜂𝑡(𝑋
(𝑖)
0∶𝑡)
=

𝜋𝑡(𝑋
(𝑖)
0∶𝑡)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)

𝜂𝑡−1(𝑋
(𝑖)
0∶𝑡−1)𝑞𝑡(𝑋

(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)

=
𝜋𝑡(𝑋
(𝑖)
0∶𝑡)

𝑞𝑡(𝑋
(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)
𝑊(𝑖)𝑡−1. (5.2)

The importance sampling approximation of 𝔼𝜋𝑡[𝜑𝑡(𝑋0∶𝑡)] can be obtained using

{𝑊(𝑖)𝑡 , 𝑋
(𝑖)
0∶𝑡}
𝑁
𝑖=1, where 𝜑𝑡 is some function of interest.

However, this approach fails as 𝑡 becomes large. The weights tend to become

concentrated on a few particles as the discrepancy between 𝜂𝑡 and𝜋𝑡 becomes larger.

Resampling techniques are applied such that, a new particle system {𝑊̄(𝑖)𝑡 , 𝑋̄
(𝑖)
0∶𝑡}
𝑀
𝑖=1

is obtained with the property,

𝔼[
𝑀

∑
𝑖=1
𝑊̄(𝑖)𝑡 𝜑𝑡(𝑋̄

(𝑖)
0∶𝑡)] = 𝔼[

𝑁

∑
𝑖=1
𝑊(𝑖)𝑡 𝜑𝑡(𝑋

(𝑖)
0∶𝑡)] (5.3)

where 𝜑𝑡 is the function of interest and both {𝑊̄(𝑖)𝑡 }
𝑁
𝑖=1 and {𝑊

(𝑖)
𝑡 }𝑖=1 are normalized

weights, that is they are scaled such that they sum up to one. In other words, the

resampling step does not change the expectation of the estimate. In practice, the

resampling algorithm is usually chosen such that 𝑀 = 𝑁 and 𝑊̄(𝑖) = 1/𝑁 for

𝑖 = 1,… ,𝑁. Resampling can be performed at each iteration 𝑡 or adaptively based

on some criteria of the discrepancy between the distribution of the particles and the

target distribution 𝜋𝑡, accumulated since the last time resampling was performed.

One popular quantity used to monitor this discrepancy is effective sample size (ess),

introduced by [108], defined as

ess𝑡 =
1

∑𝑁𝑖=1(𝑊
(𝑖)
𝑡 )2

(5.4)
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where {𝑊(𝑖)𝑡 }
𝑁
𝑖=1 are the normalized weights. Resampling can be performed when

ess ≤ 𝛼𝑁 where 𝛼 ∈ [0, 1].

The common practice of resampling is to replicate particles with large weights

and discard thosewith small weights. In otherwords, instead of generating a random

sample {𝑋̄(𝑖)0∶𝑡}
𝑁
𝑖=1 directly, a random sample of integers {𝑅(𝑖)𝑡 }

𝑁
𝑖=1 is generated, such

that 𝑅(𝑖)𝑡 ≥ 0 for 𝑖 = 1,… ,𝑁 and ∑𝑁𝑖=1 𝑅
(𝑖)
𝑡 = 𝑁. Each particle value 𝑋(𝑖)0∶𝑡 is then

replicated 𝑅(𝑖)𝑡 times in the new particle system. The distribution of {𝑅(𝑖)𝑡 }
𝑁
𝑖=1 should

fulfill the requirement of Equation (5.3). One such distribution is a multinomial

distribution of size 𝑁 and weights (𝑊(𝑖)𝑡 ,… ,𝑊
(𝑁)
𝑡 ) and the resulting algorithm

is called the multinomial resampling. See [40] for some widely used resampling

algorithms. Here we briefly review some of the most commonly used algorithms

besides multinomial resampling.

Residual resampling This was introduced in [108]. In this approach, for 𝑖 =

1,… ,𝑁, we have

𝑅(𝑖)𝑡 = ⌊𝑁𝑊
(𝑖)
𝑡 ⌋ + 𝑅̄

(𝑖)
𝑡 (5.5)

where ⌊⌋ denotes the integer part and {𝑅̄(𝑖)𝑡 }
𝑁
𝑖=1 is distributed according to a multi-

nomial distribution with size𝑁 − 𝑁̄𝑡 and weights (𝑊̄(𝑖)𝑡 ,… , 𝑊̄
(𝑁)
𝑡 ) with

𝑁̄𝑡 =
𝑁

∑
𝑖=1
⌊𝑁𝑊(𝑖)𝑡 ⌋ and 𝑊̄(𝑖)𝑡 =

𝑁𝑊(𝑖)𝑡 − ⌊𝑁𝑊
(𝑖)
𝑡 ⌋

𝑁 − 𝑁̄𝑡

It was shown that residual resampling can lead to significant variance reduction for

the importance sampling estimator when compared to the multinomial resampling

[40]. It is easy to see that, unlike multinomial resampling, in residual resampling,

the replication number 𝑅(𝑖)𝑡 will be no less than𝑁𝑊(𝑖)𝑡 −1. The next two resampling

algorithms also share this property.
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Stratified resampling This can be seen in [99]. Let𝑄 denote the generalized inverse

function of the cumulative distribution function of a multinomial distribution with

size 𝑁 and weights (𝑊1,… ,𝑊𝑁). That is 𝑄(𝑥) = 𝑖 for 𝑥 ∈ (∑𝑖−1𝑗=1𝑊𝑗, ∑
𝑖
𝑗=1𝑊𝑗].

The stratified resampling proceeds by first drawing uniform random variates𝑈(𝑖)𝑡 on

((𝑖 − 1)/𝑁, 𝑖/𝑁] for 𝑖 = 1,… ,𝑁, and then setting 𝐼(𝑖)𝑡 = 𝑄(𝑈
(𝑖)
𝑡 ). The new particle

system is formed by {𝑋(𝐼
(𝑖)
𝑡 )
0∶𝑡 }
𝑁
𝑖=1. This algorithm also results in smaller variance of

the importance sampling estimator than that of the multinomial resampling [40].

Systematic resampling This was mentioned in [163]. Similar to the stratified re-

sampling, the systematic resampling also uses the inversion method. However,

instead of generating 𝑁 uniform random variates, it only generates one 𝑈𝑡 from

(0, 1/𝑁] and deterministically set 𝑈(𝑖)𝑡 = (𝑖 − 1)/𝑁 + 𝑈𝑡 for 𝑖 = 1,… ,𝑁. Though it

has the most straightforward implementation among all the algorithms introduced

so far, it is more complicated to study the behavior of the conditional variance of

the generated samples. As shown in [40], there exists counter-examples that the

systematic resampling does not outperform the multinomial resampling.

Combination of residual and stratified/systematic resampling Both the stratified and

systematic resampling can be used together with the residual resampling. It operates

by first computing the integer part and the residual of𝑁𝑊(𝑖)𝑡 for 𝑖 = 1,… ,𝑁, and

then stratified or systematic resampling is performed using the residuals as weights.

It has the advantage that the resulting algorithm provides better performance than

each of the algorithms involved [40].

There are other specialized resampling algorithms. The algorithms shown

above have a common drawback. They require the knowledge of all the weights

being available before the algorithm can proceed. Therefore, in some situations the

performance of smc algorithms can be limited by the fact that the resampling step

cannot be parallelized. Parallelized resampling is an area being actively researched

(e.g., [94, 118]). However, we will not discuss such specialized algorithms in this

thesis.
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5.1.2 smc samplers

smc samplers generalize the sis algorithm for a sequence of distributions {𝜋𝑡}𝑡≥0
over essentially any random variables on some spaces {𝐸𝑡}𝑡≥0, by constructing a

sequence of auxiliary distributions {𝜋̃𝑡}𝑡≥0 on spaces of increasing dimensions,

𝜋̃𝑡(𝑥0∶𝑡) = 𝜋𝑡(𝑥𝑡)
𝑡−1

∏
𝑠=0
𝐿𝑠(𝑥𝑠+1, 𝑥𝑠), (5.6)

where the sequence of Markov kernels {𝐿𝑠}𝑡−1𝑠=0, termed backward kernels, is formally

arbitrary but critically influences the estimator variance. See [39] for further details

and guidance on the selection of these kernels (also see Section 5.1.5).

Standard sis and resampling algorithms can then be applied to the sequence

of synthetic distributions, {𝜋̃𝑡}𝑡≥0. The calculation of the importance weights is

straightforward. At time 𝑡 − 1, assume that a set of weighted particles approximat-

ing 𝜋̃𝑡−1 is available, {𝑊
(𝑖)
𝑡−1, 𝑋
(𝑖)
0∶𝑡−1}
𝑁
𝑖=1, then at time 𝑡, the path of each particle is

extended with a Markov kernel say, 𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) and the set of particles {𝑋(𝑖)0∶𝑡}
𝑁
𝑖=1

reach the distribution 𝜂𝑡(𝑥
(𝑖)
0∶𝑡) = 𝜂0(𝑥

(𝑖)
0 )∏
𝑡
𝑘=1𝐾𝑡(𝑥

(𝑖)
𝑡−1, 𝑥
(𝑖)
𝑡 ) (assuming no resam-

pling has occurred), where 𝜂0 is the initial distribution of the particles. To correct

the discrepancy between 𝜂𝑡 and 𝜋̃𝑡, Equation (5.2) is applied to calculate the new

weights,

𝑊(𝑖)𝑡 ∝
𝜋̃𝑡(𝑋
(𝑖)
0∶𝑡)

𝜂𝑡(𝑋
(𝑖)
0∶𝑡)
=
𝜋𝑡(𝑋
(𝑖)
𝑡 )∏
𝑡−1
𝑠=0 𝐿𝑠(𝑋

(𝑖)
𝑠+1, 𝑋
(𝑖)
𝑠 )

𝜂0(𝑋
(𝑖)
0 )∏
𝑡
𝑘=1𝐾𝑘(𝑋

(𝑖)
𝑘−1, 𝑋

(𝑖)
𝑘 )
∝ 𝑤̃𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )𝑊
(𝑖)
𝑡−1 (5.7)

where 𝑤̃𝑡, termed the incremental weights, are calculated as,

𝑤̃𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝜋𝑡(𝑋
(𝑖)
𝑡 )𝐿𝑡−1(𝑋

(𝑖)
𝑡 , 𝑋
(𝑖)
𝑡−1)

𝜋𝑡−1(𝑋
(𝑖)
𝑡−1)𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )
. (5.8)

If 𝜋𝑡 is only known up to a normalizing constant, say 𝜋𝑡(𝑥𝑡) = 𝛾𝑡(𝑥𝑡)/𝑍𝑡, then we

can use the unnormalized incremental weights

𝑤𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝛾𝑡(𝑋
(𝑖)
𝑡 )𝐿𝑡−1(𝑋

(𝑖)
𝑡 , 𝑋
(𝑖)
𝑡−1)

𝛾𝑡−1(𝑋
(𝑖)
𝑡−1)𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )

(5.9)
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for importance sampling estimation. Further, with the normalizedweights of the last

generation of the particle system, {𝑊(𝑖)𝑡−1}
𝑁
𝑖=1, we can estimate the ratio of normalizing

constant 𝑍𝑡/𝑍𝑡−1 by
𝑍̂𝑡
𝑍𝑡−1
=
𝑁

∑
𝑖=1
𝑊(𝑖)𝑡−1𝑤𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ). (5.10)

Iteratively, the ratio of the normalizing constants between the initial distribution

𝜋0 and some target 𝜋𝑇, 𝑇 ≥ 1 can be estimated. The incremental weights clearly

depend on the choice of the backward kernels. See [39] and Section 5.1.5 for details

on calculating the incremental weights.

5.1.3 Sequence of distributions

There aremanyways to specify the sequence of distributions. Formany applications,

such a sequence arises from the problem setting naturally.

In [30] a data tempering scheme was considered in the context of Bayesian

inference for static parameters. Suppose data 𝑦 = (𝑦1,… , 𝑦𝑛) are available and it

is of interest to inference the posterior distribution of some parameter vector 𝜃,

𝜋(𝜃|𝑦). Then one can construct the following sequence of distributions {𝜋𝑡}𝑛𝑡=1,

𝜋𝑡(𝜃) = 𝜋(𝜃|𝑦1,… , 𝑦𝑡). (5.11)

That is, the data is introduced one by one into the posterior. However, this scheme

can be sensitive to the order of data being introduced. Amodification is to introduce

a batch of data at each iteration, also introduced in [30]. The number of data points

to be incorporated in each iteration can still be difficult to determine. The more

data points introduced at each step, the more degeneracy (measured by, e.g., ess)

will be induced. It is natural to consider introducing data such that a constant level

of degeneracy is maintained. It is intuitive to see that with enough data (large 𝑡)

already introduced, the addition of the same amount of data will have less influence

on the posterior than when there have only been a few data points (small 𝑡). It was

shown in [30] that, to maintain a constant level of degeneracy, it can be expected

that the number of data points at each step increases geometrically.
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Another generic scheme is called the geometric path. Given the target distri-

bution 𝜋 and another distribution 𝜂, which usually has the same support but heavier

tails than that of 𝜋, a sequence of distributions {𝜋𝑡}𝑇𝑡=0 can be constructed,

𝜋𝑡(𝑥) = 𝜋(𝑥)𝛼(𝑡/𝑇)𝜂(𝑥)1−𝛼(𝑡/𝑇) (5.12)

where 𝛼 ∶ [0, 1] → [0, 1] is a monotonically increasing mapping with 𝛼(0) = 0 and

𝛼(1) = 1. Some variants of this scheme adapted particularly for the purpose of

Bayesian modeling can be seen in Section 5.2.1 and 5.2.2. The sequence of distribu-

tions moves smoothly from 𝜂, which is usually easy to sample from or to construct

an efficient proposal distribution for, towards the target distribution 𝜋. However,

this scheme has one important drawback. For a high dimensional target with many

well separated modes, it can be difficult for 𝜂 (or its proposal distribution) to pro-

duce samples within each of all the modes and the sampler may never reach part

of the support of the target distribution 𝜋. This problem can be partially solved by

increase the number of particles.

Despite this limitation, the geometric scheme has a significant advantage as

we will see later (Section 5.1.5 and 5.3.2). In short, when combined with certain

transition kernels and backward kernels, it allows easy computation of the weights

using quantities already computed in the last iteration without actually simulating

the samples of the current iteration. Therefore it provides a way to conduct adaptive

sampling with low computational cost.

There are other sequences, which often have particular use for certain applica-

tions. For example, for global optimization of a function 𝑓, such that ∫ 𝑓(𝑥) d 𝑥 <

∞ (that is, it can be normalized into a density function), one can simulate from a

sequence of distributions, {𝜋𝑡}𝑡≥0, defined by,

𝜋𝑡(𝑥) ∝ 𝑓(𝑥)𝛼(𝑡) (5.13)

where 𝛼 ∶ [0,∞) → [0,∞) is a monotonically increasing mapping with 𝛼(𝑡) → ∞

as 𝑡 → ∞. The sequence of distributions will concentrate more and more around

the modes of 𝑓 (see also [111]).
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5.1.4 Sequence of transition kernels

It is easy to see that, the optimal proposal kernel is 𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) = 𝜋𝑡(𝑥𝑡), in the

sense of minimizing the Monte Carlo variance of the importance weights. However,

this choice is not possible except for trivial cases. Some sensible alternatives have

been proposed in the past.

One approach is to use independent proposals,𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) = 𝜇𝑡(𝑥𝑡) for some

distribution 𝜇𝑡 at each iteration. Usually, 𝜇𝑡 belongs to a family of distributions

with parameters determined by certain statistics of the particle system of the last

generation, for example, a multivariate Normal distribution with the mean vector

and the covariance matrix estimated from current samples. For general use, this

can be overly restrictive and the performance can be difficult to calibrate, especially

in high dimensional problems. In this situation, it is difficult for the independent

proposal to capture the characteristics of the target distribution without knowing it

in advance. And thus it can lead to large variance of importance weights and poor

performance of the estimator.

An important alternative, advocated in [39] is to use mcmc kernels targeting

𝜋𝑡. This strategy is particularly justified if the sequence of distributions moves

smoothly or the kernel is fast mixing. When the sequence of distributions moves

slowly fromone to another, that is𝜋𝑡 is not very different from𝜋𝑡−1, and thus samples

from 𝜂𝑡−1 is a good approximation to 𝜋𝑡, the kernel is likely to successfully move

particles towards high probability regions of 𝜋𝑡. What makes it more attractive is the

fact that we can use the vast literature on the design of efficient mcmc algorithms

to build the proposal distributions. In addition, as we will see very soon, when

combined with certain backward kernels, this approach enables us to calculate the

importance weights without actually simulating samples. And therefore it leads

to low computational cost adaptive algorithms that can improve the performance

considerably.
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5.1.5 Optimal and suboptimal backward kernels

The sequence of backward kernels {𝐿𝑡}𝑇−1𝑡=0 should be optimized with respect to the

sequence of transition kernels {𝐾𝑡}𝑇𝑡=1. Let 𝜂𝑡(𝑥𝑡) denote the marginal distribution

of𝑋𝑡. That is,

𝜂𝑡(𝑥𝑡) = 𝜂0(𝑥0)
𝑡

∏
𝑘=1
𝐾𝑘(𝑥𝑘−1, 𝑥𝑘) (5.14)

if no resampling has occurred and,

𝜂𝑡(𝑥𝑡) = 𝜋𝑙(𝑥𝑙)
𝑡

∏
𝑘=𝑙+1
𝐾𝑘(𝑥𝑘−1, 𝑥𝑘) (5.15)

if the last resampling occurs at time 𝑙.

As shown in Proposition 1 in [39], the backward kernel 𝐿𝑡−1(𝑥𝑡, 𝑥𝑡−1) that

minimizes the variance of unnormalized importance weights is given by,

𝐿opt𝑡−1 (𝑥𝑡, 𝑥𝑡−1) =
𝜂𝑡−1(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)
𝜂𝑡(𝑥𝑡)

(5.16)

and in this case the weights are,

𝑊(𝑖)𝑡 ∝
𝜋𝑡(𝑋
(𝑖)
𝑡 )

𝜂𝑡(𝑋
(𝑖)
𝑡 )
. (5.17)

The marginal 𝜂𝑡(𝑥𝑡) is typically not available and thus the above optimal backward

kernel cannot be used in practice.

One sensible alternative is to substitute 𝜋𝑡−1 for 𝜂𝑡−1, that is,

𝐿𝑡−1(𝑥𝑡, 𝑥𝑡−1) =
𝜋𝑡−1(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)

∫ 𝜋𝑡−1(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) d 𝑥𝑡−1
. (5.18)

This approach is justified if the particle systemhas has been resampled at time 𝑡−1, in

which case 𝜂𝑡−1 is indeed equal to 𝜋𝑡−1 or when resampling was at least performed

occasionally such that the degeneracy between 𝜂𝑡−1 and 𝜋𝑡−1 is controlled. The

incremental weights can be computed if the integration above can be computed.

Usually this is done through the unnormalized distribution 𝛾𝑡−1 instead of 𝜋𝑡−1.

When 𝛾𝑡−1 is known analytically, the unnormalized incremental weights are,

𝑤𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =

𝛾𝑡(𝑋
(𝑖)
𝑡 )

∫ 𝛾𝑡−1(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑋
(𝑖)
𝑡 ) d 𝑥𝑡−1

. (5.19)

94



sequential monte carlo for bayesian computation

The requirement of the knowledge of the above integration can limit the use of the

kernel in some applications.

When using an mcmc kernel𝐾𝑡 that is invariant to 𝜋𝑡 as the transition kernel,

and when 𝜋𝑡−1 ≈ 𝜋𝑡, by substitute 𝜋𝑡 for 𝜋𝑡−1, Equation (5.18) becomes,

𝐿𝑡−1(𝑥𝑡, 𝑥𝑡−1) =
𝜋𝑡(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)

∫ 𝜋𝑡(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) d 𝑥𝑡−1

=
𝜋𝑡(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)
𝜋𝑡(𝑥𝑡)

(5.20)

where the second equation is due to the fact that𝐾𝑡 is invariant to 𝜋𝑡. It is easy to

see that the unnormalized incremental weights are,

𝑤𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝛾𝑡(𝑋
(𝑖)
𝑡−1)

𝛾𝑡−1(𝑋
(𝑖)
𝑡−1)
. (5.21)

Note that, the incremental weights no longer depend on the samples from iteration

𝑡, {𝑋(𝑖)𝑡 }
𝑁
𝑖=1. Therefore, it can be calculated before the sampling step, whichmoves the

particles according to the kernel𝐾𝑡. Since the incremental weights solely depends

on the specification of 𝛾𝑡, which usually can be computed point-wise, given the

current samples, it is possible to specify 𝛾𝑡 (and therefore 𝜋𝑡) according to the

calculated weights using information from the current samples before carrying out

the actual simulation of the current iteration.

However the expression (5.21) is not without drawbacks. Compared to the

expression (5.19), which is more intuitive since it considers the transition kernel𝐾𝑡,

which depends on the current samples, it benefits less from fast mixing kernels. If

𝜋𝑡 is not close to 𝜋𝑡−1, then the variance of the incremental weights is likely to be

large even when the kernel 𝐾𝑡 mixes fast. Indeed, later we will show empirically

that, it is preferable to use more distributions rather than using multiple passes of

mcmc moves in a single iteration, provided that they use the same computational

resources.
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5.2 application to bayesian model comparison

The application of smc samplers to Bayesian model comparison is straightforward.

However, it has been overlooked in recent years. In this section, we outline common

strategies of using smc samplers for Bayesianmodel comparison. In the next section,

we introduce some innovative extensions and refinements to existing practices.

As reviewed in Section 3.2.1, the problem of interest is characterizing the

posterior distribution over {ℳ𝑘}𝑘∈u�, a set of possible models, with model ℳ𝑘
having parameter vector 𝜃𝑘 ∈ 𝛩𝑘 which also usually need to be inferred. Given

prior distributions 𝜋(ℳ𝑘) and 𝜋(𝜃𝑘|ℳ𝑘) and the likelihood function 𝑝(𝑦|𝜃𝑘,ℳ𝑘),

we seek the posterior distribution 𝜋(ℳ𝑘|𝑦) ∝ 𝑝(𝑦|ℳ𝑘)𝜋(ℳ𝑘). There are three

fundamentally different approaches to the computations,

1. Calculate posterior model probability distribution 𝜋(ℳ𝑘|𝑦) directly.

2. Calculate the evidence, the marginal likelihood 𝑝(𝑦|ℳ𝑘), of each model.

3. Calculate pairwise evidence ratios, the Bayes factor 𝐵𝑘1𝑘2 for twomodels ℳ𝑘1
and ℳ𝑘2 directly.

Each approach admits a natural smc strategy.

5.2.1 smc1: An all-in-one approach

One could consider obtaining samples from the same distribution employed in the

rjmcmc (see Section 4.3.4) approach to model comparison, namely,

𝜋(1)(ℳ𝑘, 𝜃𝑘) ∝ 𝜋(ℳ𝑘)𝜋(𝜃𝑘|ℳ𝑘)𝑝(𝑦|𝜃𝑘,ℳ𝑘) (5.22)

which is defined on the disjoint union space⋃𝑘∈u�({ℳ𝑘} × 𝛩𝑘).

One obvious smc approach is to define a sequence of distributions {𝜋(1)𝑡 }
𝑇
𝑡=0

such that 𝜋(1)0 is easy to sample from, 𝜋(1)𝑇 = 𝜋
(1) and the intermediate distributions

move smoothly between them. In the remainder of this section, we use the notation

(ℳ𝑡, 𝜃𝑡) to denote a random sample on the space⋃𝑘∈u�({ℳ𝑘} × 𝛩𝑘) at time 𝑡. One

simple approach, which might be expected to work well, is the use of an annealing
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Initialisation: Set 𝑡 ← 0.

Sample𝑋(𝑖)0 = (𝜃
(𝑖)
0 ,ℳ
(𝑖)
0 ) ∼ 𝜈 for some proposal distribution 𝜈 (usually the

joint prior).

Weight𝑊(𝑖)0 ∝ 𝑤0(𝑋
(𝑖)
0 ) = 𝜋(ℳ

(𝑖)
0 )𝜋(𝜃

(𝑖)
0 |ℳ
(𝑖)
0 )/𝜈(𝜃

(𝑖)
0 ,ℳ
(𝑖)
0 ).

Apply resampling if necessary (e.g., if ess less than some threshold; see

Section 5.1.1).

Iteration: Set 𝑡 ← 𝑡 + 1.

Weight𝑊(𝑖)𝑡 ∝𝑊
(𝑖)
𝑡−1𝑝(𝑦|𝜃

(𝑖)
𝑡−1,ℳ

(𝑖)
𝑡−1)
𝛼(𝑡/𝑇)−𝛼([𝑡−1]/𝑇).

Apply resampling if necessary.

Sample𝑋(𝑖)𝑡 ∼ 𝐾𝑡(⋅|𝑋
(𝑖)
𝑡−1), a 𝜋

(1)
𝑡 -invariant kernel.

Repeat the Iteration step until 𝑡 = 𝑇.

Algorithm 5.1 smc1: An All-in-One Approach to Model Comparison.

scheme such that,

𝜋(1)𝑡 (ℳ𝑡, 𝜃𝑡) ∝ 𝜋(ℳ𝑡)𝜋(𝜃𝑡|ℳ𝑡)𝑝(𝑦|𝜃𝑡,ℳ𝑡)
𝛼(𝑡/𝑇), (5.23)

for some monotonically increasing 𝛼 ∶ [0, 1] → [0, 1] with 𝛼(0) = 0 and 𝛼(1) = 1.

Other approaches are possible and might prove more efficient for some problems

(such as the “data tempering” approach (see Section 5.1.3), which [30] proposed

for parameter estimation which could easily be incorporated in our framework),

but this strategy provides a convenient generic approach. These choices lead to

Algorithm 5.1.

This approach might outperform rjmcmc when it is difficult to design fast-

mixing Markov kernels. There are many examples of such an annealed smc strategy

outperforming mcmc at a given computational cost – see, for example, [43, 92, 44].

Such trans-dimensional smc has been proposed in several contexts such as [126],

and an extension was proposed and analyzed by [85].

We include this approach for completeness and study it empirically later.

However, the more direct approaches described in the following sections lead more
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For each model 𝑘 ∈ u� perform the following algorithm.

Initialisation: Set 𝑡 ← 0.

Sample 𝜃(𝑘,𝑖)0 ∼ 𝜈𝑘 for some proposal distribution 𝜈𝑘 (usually the parameter

prior).

Weight𝑊(𝑘,𝑖)0 ∝ 𝑤0(𝜃
(𝑘,𝑖)
0 ) = 𝜋(𝜃

(𝑘,𝑖)
0 |ℳ𝑘)/𝜈𝑘(𝜃

(𝑘,𝑖)
0 ).

Apply resampling if necessary.

Iteration: Set 𝑡 ← 𝑡 + 1.

Weight𝑊(𝑘,𝑖)𝑡 ∝𝑊
(𝑘,𝑖)
𝑡−1 𝑝(𝑦|𝜃

(𝑘,𝑖)
𝑡−1 ,ℳ𝑘)

𝛼𝑘(𝑡/𝑇𝑘)−𝛼𝑘([𝑡−1]/𝑇𝑘).

Apply resampling if necessary.

Sample 𝜃(𝑘,𝑖)𝑡 ∼ 𝐾𝑡(⋅|𝜃
(𝑘,𝑖)
𝑡−1 ), a 𝜋

(𝑘,2)
𝑡 -invariant kernel.

Repeat the Iteration step until 𝑡 = 𝑇𝑘.

Algorithm 5.2 smc2: A Direct-Evidence-Calculation Approach.

naturally to easy-to-implement strategies with good performance.

5.2.2 smc2: A direct-evidence-calculation approach

An alternative approach would be to estimate explicitly the evidence associated with

each model. We propose to do this by sampling from a sequence of distributions for

each model, starting from the parameter prior and sweeping through a sequence of

distributions to the posterior.

Numerous strategies are possible to construct such a sequence of distribu-

tions, but one option is to use for each model ℳ𝑘 ∈ℳ, the sequence {𝜋(2,𝑘)𝑡 }
𝑇𝑘
𝑡=0,

defined by,

𝜋(2,𝑘)𝑡 (𝜃𝑡) ∝ 𝜋(𝜃𝑡|ℳ𝑘)𝑝(𝑦|𝜃𝑡,ℳ𝑘)
𝛼𝑘(𝑡/𝑇𝑘). (5.24)

where the number of distributions, 𝑇𝑘, and the annealing schedule, 𝛼𝑘 ∶ [0, 1] →

[0, 1], may be different for each model. This leads to Algorithm 5.2.

The estimator of the posteriormodel probabilities depends upon the approach
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taken to estimate the normalizing constant. Direct estimation of the evidence can

be performed using the output of this smc algorithm and the standard estimator,

termed smc2-ds (see also Equation (5.10)), given by,

𝑁

∑
𝑖=1

𝜋(𝜃(𝑘,𝑖)0 |ℳ𝑘)

𝜈𝑘(𝜃
(𝑘,𝑖)
0 )
×
𝑇

∏
𝑡=2

𝑁

∑
𝑖=1
𝑊(𝑘,𝑖)𝑡−1 𝑝(𝑦|𝜃

(𝑘,𝑖)
𝑡−1 ,ℳ𝑘)

𝛼𝑘(𝑡/𝑇𝑘)−𝛼𝑘([𝑡−1]/𝑇𝑘) (5.25)

where𝑊(𝑘,𝑖)𝑡−1 is the normalized importance weight of the 𝑖th particle during iteration

𝑡 − 1 for model ℳ𝑘. An alternative approach to computing the evidence is also

worthy of consideration. As has been suggested, and shown to perform well empir-

ically previously [91], it is possible to use all of the samples from every generation

of an smc sampler to approximate the path sampling estimator and hence to obtain

an estimate of the ratio of normalizing constants. Section 5.2.4 provides details for

the use of path sampling for both this and other smc algorithms discussed later.

This approach is appealing for several reasons. One is that it is designed to

estimate directly the quantity of interest, the evidence, producing samples from

that distribution at the same time. Another advantage of this approach over smc1

and the rjmcmc is that it provides as good a characterization of each model as is

required: It is possible to obtain a good estimate of the parameters of every model,

even those for which the posterior probability is small. Perhaps most significant

is the fact that this approach does not require the design of proposal distributions

or Markov kernels which move from one model to another: Each model is dealt

with in isolation. Whilst this may not be desirable in every situation, there are

circumstances in which efficient moves between models are almost impossible to

devise.

This approach also has some disadvantages. In particular, it is necessary to run

a separate simulation for eachmodel – rendering it impossible to deal with countable

collections of models (although this is not much of a substantial problem in many

interesting cases). The ease of implementation may often offset this limitation.
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5.2.3 smc3: A relative-evidence-calculation approach

A final approach can be thought of as sequential model comparison. Rather than

estimating the evidence associated with any particular model, we could estimate

pairwise evidence ratios directly. The smc sampler starts with an initial distribution

being the posterior of one model (which could comes from a separate smc sampler

starting from its prior) and moves towards the posterior of another related model.

Then the sampler can continue towards another related model.

Given a finite collection of models {ℳ𝑘}𝑘∈u�, suppose the models are ordered

in a sensible way (e.g., ℳ𝑘−1 is nested within ℳ𝑘 or 𝜃𝑘 is of higher dimension than

𝜃𝑘−1). For each 𝑘 ∈ u�, we consider a sequence of distributions {𝜋(3,𝑘)𝑡 }
𝑇𝑘
𝑡=0, such that,

𝜋(3,𝑘)0 (ℳ, 𝜃) = 𝜋(𝜃|𝑦,ℳ𝑘)𝕀{ℳ𝑘}(ℳ)

𝜋(3,𝑘)𝑇𝑘 (ℳ, 𝜃) = 𝜋(𝜃|𝑦,ℳ𝑘+1)𝕀{ℳ𝑘+1}(ℳ) = 𝜋
(3,𝑘+1)
0 (ℳ, 𝜃).

where (ℳ, 𝜃) denote a random variable on the disjoint union space ({ℳ𝑘} × 𝛩𝑘) ∪

({ℳ𝑘+1} × 𝛩𝑘+1). When it is possible to construct an smc sampler that iterates over

this sequence of distributions, the estimate of the ratio of normalizing constants is

the Bayes factor estimate of model ℳ𝑘+1 in favor of model ℳ𝑘.

This approach is conceptually appealing, but requires the construction of a

smooth path between the posterior distributions of interest. The geometric anneal-

ing strategy which has been advocated as a good generic strategy in the previous

sections is only appropriate when the support of successive distributions is non-

increasing. This is unlikely to be the case in interestingmodel comparison problems.

Here we consider a sequence of distributions on the disjoint union space

({ℳ𝑘} × 𝛩𝑘}) ∪ ({ℳ𝑘+1} × 𝛩𝑘+1}), with the sequence of distributions {𝜋(3,𝑘)𝑡 }
𝑇𝑘
𝑡=0

defined proportional to that of the full posterior (see Section 3.2.1) restricted to the

space of these two models,

𝜋(3,𝑘)𝑡 (ℳ𝑡, 𝜃𝑡) ∝ 𝜋𝑡(ℳ𝑡)𝜋(𝜃𝑡|ℳ𝑡)𝑝(𝑦|𝜃𝑡,ℳ𝑡) (5.26)
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where ℳ𝑡 ∈ {ℳ𝑘,ℳ𝑘+1} and the prior of models at time 𝑡, 𝜋𝑡(ℳ𝑡) is defined by

𝜋𝑡(ℳ𝑘+1) = 𝛼𝑘(𝑡/𝑇𝑘) (5.27)

for some monotonically increasing 𝛼𝑘 ∶ [0, 1] → [0, 1] such that 𝛼𝑘(0) = 0 and

𝛼𝑘(1) = 1. It is clear that the mcmc moves between iterations need to be similar to

those in the rjmcmc or smc1 algorithms. The difference is that instead of efficient

exploration of the whole model space, only moves between two models are required

and the sequence of distributions employed helps to ensure exploration of both

model spaces. The algorithm for this particular sequence of distributions is outlined

in Algorithm 5.3. It can be extended to other possible sequence of distributions

between models.

An advantage of this approach is that it provides direct estimate of the Bayes

factor which is of interest for model comparison purpose while not requiring ex-

ploration of as complicated a space as that employed within rjmcmc or smc1. The

estimator of normalizing constants in smc3 follows in exactly the same manner as

in the smc2 case. In smc3, the same estimator provides a direct estimate of the Bayes

factor.

5.2.4 Path sampling via smc2/smc3

The estimation of the normalizing constants associated with our sequences of dis-

tributions can be achieved by a Monte Carlo approximation to the path sampling

formulation given by [56]. This is similar to the technique for population mcmc as

described in Section 4.3.7. In the context of smc, this approach is also very closely

related to the use of annealed importance sampling (ais) for the same purpose [120]

but as will be demonstrated below the incorporation of some other elements of more

general smc algorithms can improve performance at negligible cost. Recall that,

given a parameter 𝛼 which defines a family of distributions, {𝜋𝛼 = 𝛾𝛼/𝑍𝛼}𝛼∈[0,1]
which move smoothly from 𝜋0 = 𝛾0/𝑍0 to 𝜋1 = 𝛾1/𝑍1 as 𝛼 increases from zero to

one, one can estimate the logarithm of the ratio of their normalizing constants via a
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Initialisation: Set 𝑘 ← 1.

Use Algorithm 5.2 to obtain weighted samples for 𝜋(3,1)𝑇1 , the parameter pos-

terior for model ℳ1
Relative Evidence Calculation

Set 𝑘 ← 𝑘 + 1, 𝑡 ← 0.

Let {𝑊(𝑘,𝑖)0 , 𝑋
(𝑘,𝑖)
0 }
𝑁
𝑖=1 where 𝑋

(𝑘,𝑖)
0 = (𝜃

(𝑘,𝑖)
0 ,ℳ

(𝑘,𝑖)
0 ) denote the current sam-

ples.

Apply resampling if necessary.

Iteration: Set 𝑡 ← 𝑡 + 1.

Weight𝑊(𝑘,𝑖)𝑡 ∝𝑊
(𝑘,𝑖)
𝑡−1 𝜋𝑡(ℳ

(𝑘,𝑖)
𝑡−1 )/𝜋𝑡−1(ℳ

(𝑘,𝑖)
𝑡−1 ).

Apply resampling if necessary.

Sample (𝜃(𝑘,𝑖)𝑡 ,ℳ
(𝑘,𝑖)
𝑡 ) ∼ 𝐾𝑡(⋅|𝜃

(𝑘,𝑖)
𝑡−1 ,ℳ

(𝑘,𝑖)
𝑡−1 ), a 𝜋

(3,𝑘)
𝑡 -invariant kernel.

Repeat the Iteration step up to 𝑡 = 𝑇𝑘.

Repeat the Relative Evidence Calculation step until sequentially all relative evi-

dences are calculated.

Algorithm 5.3 smc3: A Relative-Evidence-Calculation Approach to Model Compari-

son.

simple integral relationship which holds under very mild regularity conditions,

log(
𝑍1
𝑍0
) = ∫

1

0
𝔼𝜋𝛼[
d log 𝛾𝛼(𝑋)
d 𝛼
] d𝛼,

where the inner expectation is taken with respect to 𝜋𝛼. Note that the sequence of

distributions in the smc2 and smc3 algorithms above, can both be interpreted as

belonging to such a family of distributions, with 𝛼 = 𝛼𝑘(𝑡/𝑇𝑘), where the mapping

𝛼𝑘 ∶ [0, 1] → [0, 1] is again monotonically increasing with 𝛼𝑘(0) = 0 and 𝛼𝑘(1) = 1.

The smc sampler provides us with a set of weighted samples obtained from a

sequence of distributions suitable for approximating this integral. At each iteration 𝑡

we can obtain an estimate of the expectation within the integral for 𝛼 = 𝛼𝑘(𝑡/𝑇) via

the usual importance sampling estimator, and this integral can then be approximated
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via numerical integration. Whenever the sequence of distributions employed by

smc3 has appropriate differentiability it is also possible to employ path sampling to

estimate, directly, the Bayes factor via this approach. In general, given an increasing

sequence {𝛼𝑡}𝑇𝑡=0 where 𝛼0 = 0 and 𝛼𝑇 = 1, a family of distributions {𝜋𝛼}𝛼∈[0,1] as

before, and an smc sampler that iterates over the sequence of distribution {𝜋𝑡 =

𝜋𝛼𝑡 = 𝛾𝛼𝑡/𝑍𝛼𝑡}
𝑇
𝑡=0, then with the weighted samples {𝑊(𝑖)𝑡 , 𝑋

(𝑖)
𝑡 }
𝑁
𝑖=1, and 𝑡 = 0,… , 𝑇,

a path sampling estimator of the ratio of normalizing constants 𝛯𝑇 = log(𝑍1/𝑍0)

can be approximated (using an elementary Trapezoidal scheme) by,

𝛯̂𝑁𝑇 =
𝑇

∑
𝑡=1

1
2
(𝛼𝑡 − 𝛼𝑡−1)(𝑈𝑁𝑡 + 𝑈

𝑁
𝑡−1), (5.28)

where

𝑈𝑁𝑡 =
𝑁

∑
𝑖=1
𝑊(𝑖)𝑡
d log 𝛾𝛼(𝑋

(𝑖)
𝑡 )

d 𝛼
|
𝛼=𝛼𝑡
. (5.29)

We term these estimators smc2-ps and smc3-ps in the followings. The combi-

nation of smc and path sampling is somewhat natural and has been proposed before,

e.g., [91] although not there in a Bayesian context. Despite the good performance

observed in the setting of rare event simulation, the estimation of normalizing con-

stants by this approach seems to have received little attention in the literature. We

suspect that this is because of widespread acceptance of the suggestion of [39], that

smc doesn’t outperform ais when normalizing constants are the object of inference

or that of [24] that all simulation-based estimators based around path sampling can

be expected to behave similarly. We will demonstrate below that these observations,

whilst true in certain contexts, do not hold in full generality.

5.3 extensions and refinements

The algorithms introduced in the last section can be seen as straightforward ap-

plication of the well established smc algorithms to Bayesian model comparison.

By construction, smc algorithms can be more robust than many mcmc and other

algorithms. However, as with any Monte Carlo algorithms, without careful design,
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the performance can be far from satisfactory for realistic applications. In this sec-

tion, we introduce some extensions and refinement that can further improve the

presented framework. Of course, they cannot guarantee that the algorithms will

perform well for all possible situations. However, they provide robust and reliable

solutions for many realistic applications with minimal manual tuning. For more

difficult problems, they also provide solid foundations on top of which algorithms

with higher performance can be built.

We will use the pet compartmental model example for illustrative purpose

in this section. More comprehensive performance comparisons can be found in

Section 5.5. We will consider both the simulated and the real data (see Section 2.3).

For the real data, to ease the presentation, instead of visualizing results for a quarter

of a million data sets, we consider three typical voxels, shown in Figure 5.1. As we

can see, they vary considerably in characteristics though all can be described as

“typical” pet data. Most graphical presentations will be for these three data sets

while summarizing statistics such as the reduction of variances will be based on

simulations for all the real data sets. The purpose of the current work is to advocate

robust and self-tuning algorithms. The variability in the data sets provides excellent

test examples. In addition, in this section, the models are configured with the

non-informative priors without ordering (see Section 3.2.3) and thus the parameters

are exchangeable, similar to that of a mixture model. This creates a multimodal

posterior surface for models with two or more compartments.

5.3.1 Improved univariate numerical integration

As seen in the last section, the path sampling estimator requires evaluation of the

expectation,

𝔼𝜋𝛼[
d log 𝛾𝛼(𝑋)
d 𝛼
]

for 𝛼 ∈ [0, 1], which can be approximated by importance sampling using samples

generated by an smc sampler operating on the sequence of distributions {𝜋𝑡 =
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Figure 5.1 Typical real pet data.

𝜋𝛼𝑡 = 𝛾𝛼𝑡/𝑍𝑡}
𝑇
𝑡=0 directly for 𝛼 ∈ {𝛼𝑡}

𝑇
𝑡=0. For arbitrary 𝛼 ∈ [0, 1], finding 𝑡 such

that 𝛼 ∈ (𝛼𝑡−1, 𝛼𝑡), the expectation can be easily approximated using existing smc

samples – the quantities required in the importance weights to obtain such an

estimate have already been calculated during the running of the smc algorithm and

such computations have little computational cost.

As noted by [48] we can use more sophisticated numerical integration strate-

gies to reduce the path sampling estimator bias. For example, higher order Newton-

Cotes rules rather than the Trapezoidal rule can be implemented straightforwardly.

In the case of smc it is especially straightforward to estimate the required expecta-

tions at arbitrary 𝛼 and thus we can use higher order integration schemes. We can

also use numerical integrations whichmake use of a finer mesh {𝛼𝑡′}𝑇′𝑡=0 than {𝛼𝑡}
𝑇
𝑡=0.

Since higher order numerical integrations based on approximations of derivatives

obtained fromMonte Carlomethodsmay potentially be unstable in some situations,

the second approach can be more appealing in some applications. A demonstration

of the bias reduction effect is provided in Section 5.5.3.
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5.3.2 Adaptive specification of distributions

In settings in which the importance weights at time 𝑡 depend only upon the sam-

ples at time 𝑡 − 1, such as that considered here, it is relatively straightforward to

consider sample-dependent, adaptive specification of the sequence of distributions

(typically by choosing the value of a tempering parameter, such as 𝛼𝑡 = 𝛼𝑘(𝑡/𝑇𝑘)

in Algorithm 5.2) based upon the current samples. In [84] such a method of adap-

tively placing the distributions in smc algorithms based on controlling the rate at

which the effective sample size (ess; [100]) falls was proposed. With very little

computation cost, this provides an automatic method of specifying a tempering

schedule in such a way that the ess decays in a regular fashion. In [140, Algorithm

2] a similar technique is used but by moving the particle system only when it re-

samples. They are in a setting which would be equivalent to resampling at every

time step (with longer time steps, followed by multiple applications of the mcmc

kernel) in our formulation. We advocate resampling only adaptively when ess is

smaller than a certain preset threshold, and here we propose amore general adaptive

scheme for the selection of the sequence of distributions which has significantly

better properties when adaptive resampling is employed.

The ess was designed to assess the loss of efficiency arising from the use of

simple weighted samples (rather than random samples from the distribution of

interest) in the computation of expectations. It is obtained by considering a sample

approximation of a low order Taylor expansion of the variance of the importance

sampling estimator of an arbitrary test function to that of the simple Monte Carlo

estimator; the test function itself vanishes from the expression as a consequence of

this low order expansion.

In our context, the ess calculated using the current weight of each particle is

simply,

ess𝑡 = [

[

𝑁

∑
𝑖=1
(
𝑊(𝑖)𝑡−1𝑤

(𝑖)
𝑡

∑𝑁𝑗=1𝑊
(𝑗)
𝑡−1𝑤
(𝑗)
𝑡

)
2

]

]

−1

=
(∑𝑁𝑖=1𝑊

(𝑖)
𝑡−1𝑤
(𝑖)
𝑡 )
2

∑𝑁𝑗=1(𝑊
(𝑗)
𝑡−1)
2
(𝑤(𝑗)𝑡 )

2 (5.30)
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where {𝑊(𝑖)𝑡−1}
𝑁
𝑖=1 denote the normalized weights at the end of iteration 𝑡 − 1, and

{𝑤(𝑖)𝑡 }
𝑁
𝑖=1 denote the unnormalized incremental weights during iteration 𝑡. It is clearly

appropriate to use this quantity (which corresponds to the coefficient of variation

of the current normalized importance weights) to assess weight degeneracy and to

make decisions about appropriate resampling times [38] but it is rather less apparent

that it is the correct quantity to consider when adaptively specifying a sequence of

distributions in an smc sampler.

The ess of the current sample weights tells us about the accumulated mis-

match between proposal and target distributions (on an extended space including

the full trajectory of the sample paths) since the last resampling time. Fixing ei-

ther the relative or absolute reduction in ess between successive distributions does

not lead to a common discrepancy between successive target distributions unless

resampling is conducted after every iteration as will be demonstrated below.

When specifying a sequence of distributions it is natural to aim for a similar

discrepancy between each pair of successive distributions. In the context of our

setting, the natural question to ask is consequently, how large can we make 𝛼𝑡 −𝛼𝑡−1
whilst ensuring that 𝜋𝑡 remains sufficiently similar to 𝜋𝑡−1. One way to measure the

discrepancy would be to consider how good an importance sampling proposal 𝜋𝑡−1
would be for the estimation of expectations under 𝜋𝑡 and a natural way to measure

this is via the sample approximation of a Taylor expansion of the relative variance

of such an estimator exactly as in the ess.

The exact ess of an importance sample of size𝑁with proposal 𝜋𝑡−1 and target

𝜋𝑡 is defined as [100],

Exact ess𝑡 =
𝑁

1 + var𝜋𝑡−1[
𝜋𝑡(𝑋)
𝜋𝑡−1(𝑋)
]

(5.31)

which is widely approximated by the empirical equivalent, replacing the denomi-

nator with the empirical mean squared normalized importance weights.

In the context of adaptive specification of an smc tempering schedule, we are

interested in the discrepancy between adjacent distributions, 𝜋𝑡−1 and 𝜋𝑡, and so

the ess defined in Equation (5.31) is a natural quantity to consider.
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However, the ess as used in the recent smc literature is invariably computed

using the empirical mean of squared normalized importance weights of the cur-

rent population. If these importance weights have been accumulated over several

iterations, then they coincide with an ess based on the excursion since the last

resampling epoch. A new quantity, termed cess later, proposed in this work instead

uses a weighted sample from 𝜋𝑡−1 to approximate exactly the quantity described by

Equation (5.31). The different name is used to distinguish this quantity from that

usually termed the ess in the smc literature.

The approximation leading to the cess, given samples {𝑊(𝑖)𝑡−1, 𝑋
(𝑖)
𝑡−1}
𝑁
𝑖=1 and

normalized incremental weights 𝑤(𝑖)𝑡 = 𝜋𝑡(𝑋
(𝑖)
𝑡−1)/𝜋𝑡−1(𝑋

(𝑖)
𝑡−1) is simply,

Exact ess𝑡 =
𝑁

1 + var𝜋𝑡−1[
𝜋𝑡(𝑋)
𝜋𝑡−1(𝑋)
]
≈ 𝑁

∑𝑁𝑖=1𝑊
(𝑖)
𝑡−1(
𝜋𝑡(𝑋
(𝑖)
𝑡−1)

𝜋𝑡−1(𝑋
(𝑖)
𝑡−1)
)
2

≈ 𝑁

∑𝑁𝑖=1𝑊
(𝑖)
𝑡−1(

𝑤(𝑖)𝑡
∑𝑁𝑗=1𝑊

(𝑗)
𝑡−1𝑤
(𝑗)
𝑡
)
2
.

The first approximation is obtained by replacing the expectation under 𝜋𝑡−1 with

its weighted sample average. That is, given the last generation of the particle system

{𝑊(𝑖)𝑡−1, 𝑋
(𝑖)
𝑡−1}
𝑁
𝑖=1, which approximates 𝜋𝑡−1, the variance is expressed and approxi-

mated as,

var𝜋𝑡−1[
𝜋𝑡(𝑋)
𝜋𝑡−1(𝑋)

] = 𝔼𝜋𝑡−1[(
𝜋𝑡(𝑋)
𝜋𝑡−1(𝑋)

)
2
] − (𝔼𝜋𝑡−1[

𝜋𝑡(𝑋)
𝜋𝑡−1(𝑋)

])
2

≈
𝑁

∑
𝑖=1
𝑊(𝑖)𝑡−1(
𝜋𝑡(𝑋
(𝑖)
𝑡−1)

𝜋𝑡−1(𝑋
(𝑖)
𝑡−1)
)
2
− (∫ 𝜋𝑡−1(𝑥)

𝜋𝑡(𝑥)
𝜋𝑡−1(𝑥)

d 𝑥)
2

=
𝑁

∑
𝑖=1
𝑊(𝑖)𝑡−1(
𝜋𝑡(𝑋
(𝑖)
𝑡−1)

𝜋𝑡−1(𝑋
(𝑖)
𝑡−1)
)
2
− 1

The second approximation is simply obtained by rewriting the normalized inre-

mental weights, 𝜋𝑡(𝑋𝑡−1)/𝜋𝑡−1(𝑋𝑡−1) as (𝛾𝑡(𝑋𝑡−1)/𝛾𝑡−1(𝑋𝑡−1))(𝑍𝑡−1/𝑍𝑡) where 𝑍𝑡
and 𝑍𝑡−1 are the normalizing constants of 𝜋𝑡 and 𝜋𝑡−1, respectively. Then the ratio

of the normalizing constant is replaced by the approximation 5.10
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Figure 5.2 A typical plot of 𝛼𝑡 −𝛼𝑡−1 against 𝛼𝑡 for the two-compartments pet model
with the simulated data set using the smc2 algorithm. The threshold is the
value of ess/𝑁 below which resampling is performed. The specifications
of the adaptive parameter (ess or cess) are adjusted such that all four
samplers use roughly the same number of distributions (about 100).

Such a procedure leads us to a quantity which we have termed the conditional

ess (cess). By scaling the above approximation,

cess𝑡 = [
𝑁

∑
𝑖=1
𝑁𝑊(𝑖)𝑡−1(

𝑤(𝑖)𝑡
∑𝑁𝑗=1𝑁𝑊

(𝑗)
𝑡−1𝑤
(𝑗)
𝑡

)
2
]
−1
=
(∑𝑁𝑖=1𝑊

(𝑖)
𝑡−1𝑤
(𝑖)
𝑡 )
2

∑𝑁𝑗=1
1
𝑁𝑊
(𝑗)
𝑡−1(𝑤
(𝑗)
𝑡 )
2 (5.32)

which is equal to the ess only when resampling is conducted during every itera-

tion. The factor of 1/𝑁 in the denominator arises from the fact that {𝑊(𝑖)𝑡−1}
𝑁
𝑖=1 is

normalized to sum to unity rather than to have expectation unity. The bracketed

term coincides with a sample approximation (using the actual samples which are

properly weighted to target 𝜋𝑡−1) of the expected sum of the unnormalized weights

squared divided by the square of a sample approximation of the expected sum of

unnormalized weights when considering sampling from 𝜋𝑡−1 and targeting 𝜋𝑡 by

simple importance sampling.

More specifically, in practice, when using cess to adaptively place distribu-

tions, a value cess⋆ ∈ (0, 1) is chosen, and at each iteration 𝑡, 𝛼𝑡 is chosen such
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that cess𝑡 = cess⋆ (with a preset numeric error tolerance). This can be done using

an algorithm such as binary search in our setting of smc1–smc3, since it is clear

that cess𝑡 is monotonically decreasing when 𝛼𝑡 increases. Figure 5.2 shows the

variation of 𝛼𝑡 when fixed reductions in ess and cess are used to specify the se-

quence of distributions, both when resampling is conducted during every iteration

(or equivalently, when the value of ess/𝑁 falls below a threshold of 1.0, where

𝑁 is the number of particles) and when resampling is conducted only when the

value of ess/𝑁 falls below a threshold of 0.5. It is found that for the simulated pet

data sets, the cess-based scheme leads to a reduction in estimator variance around

20% relative to a manually tuned (𝛼𝑘(𝑡/𝑇) = (𝑡/𝑇)5) schedule while the ess-based

strategy provides little improvement over the linear case (𝛼𝑘(𝑡/𝑇) = 𝑡/𝑇) unless

resampling is conducted during every iteration. The effect for the real data sets,

which vary considerably from each other as seen in Figure 5.1, is more prominent.

The variance reduction can be more than 50% when using the cess-based strategy.

More performance comparisons for various settings of the samplers can be found

in Section 5.5.2 and 5.5.3.

Relationship of cess⋆, number of distributions, and estimator variance

It is intuitively seen that, when using a cess-based adaptive scheme, where at each

iteration 𝑡, cess𝑡 is fixed with a value cess⋆, the more close cess⋆/𝑁 is to 1, the

larger the number of distributions that will be placed and better estimates can

be obtained. Unfortunately it is not trivial to establish a quantitative relationship

among these three quantities even asymptotically. However, it is straightforward to

conduct an empirical study of these relations.

We consider the simulated pet data set using the smc2 sampler with 1,000

particles. Figure 5.3 plots the average number of distributions (from 100 simula-

tions for each value of cess⋆) against the value of (1 − cess⋆/𝑁) on log scales. It

can be seen that the number of distributions is proportional to (1 − cess⋆/𝑁)−1.

This relation holds even for sampler configurations where a very small number of
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Figure 5.3 Relationship between average number of distributions and cess⋆ for the
two-compartments pet model with the simulated data set using the smc2
algorithm (on logarithm scale). The averages are calculated from 100 simu-
lations for each sampler configuration.

distributions are used. Similarly, Figure 5.4 shows the relation between the variance

of path sampling estimator and the value of cess⋆. Similar relationship can be

observed for the standard estimator (Equation (5.25)), which is not shown here.

Though the coefficient of the proportionality varies for different applications

or data sets, the relation shown in Figures 5.3 and 5.4 provide a useful guideline

to select the value of cess⋆. A small sample experiment can be conducted before

using a value of cess⋆ more close to 1 to obtain satisfactory estimates or to utilize

given computational resources.

5.3.3 Adaptive specification of proposals

The smc sampler is remarkably robust to the mixing speed of the mcmc kernels

employed as can be seen in the empirical study later. However, as with any sam-

pling algorithms, faster mixing does not harm performance and in some cases will

considerably improve it. In the particular case of Metropolis random walk kernels,
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Figure 5.4 Relationship between the variance of the path sampling estimator and
cess⋆ for the two-compartments pet model with the simulated data set
using the smc2 algorithm (on logarithm scale). The variances are calculated
from 100 simulations for each sampler configuration.

the mixing speed relies on adequate proposal scales.

We use a simple approach based on [84]. They applied an idea used within

adaptive mcmc methods [9] to smc samplers by using variance of parameters es-

timated from its particle system approximation as the proposal scales for the next

iteration, suitably scaled with reference to the dimensions of the parameters to be

proposed. Although, in practice we found that such an automatic approach does

not always lead to optimal acceptance rates, it generally produces satisfactory results

and is simple to implement. In difficult problems alternative approaches to adapta-

tion could be employed; one approach demonstrated in [84] is to simply employ a

pair of acceptance rate thresholds and to alter the proposal scale from the simply

estimated value whenever the acceptance rate falls outside those thresholds.

More sophisticated proposal strategies could undoubtedly improve perfor-

mance further and warrant further investigation. One possible approach is using

the Metropolis adjusted Langevin algorithm (mala; see [138]). In summary, mala

derives a Metropolis-Hastings proposal kernel for a target 𝜋 which satisfies suitable
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differentiability and positivity conditions, from the Langevin diffusion,

d𝐿𝑡 =
1
2
∇ log 𝜋(𝐿𝑡) d 𝑡 + d𝐵𝑡

where 𝐵𝑡 is the standard Brownian motion. Given a state 𝑋𝑡−1, a new state is

proposed by discrete approximation to the above diffusion. That is, for a fixed

ℎ > 0,

𝑋𝑡 ∼u�(𝑋𝑡−1 + 1
2
∇ log 𝜋(𝑋𝑡−1), ℎ𝐼𝑑) (5.33)

where 𝐼𝑑 is the identity matrix and 𝑑 is the dimension of the state space. The

new proposed state is accepted or rejected through the usual Metropolis-Hastings

algorithm. Compared to a “vanilla” random walk, which often has very robust

theoretical properties, mala is attractive when it is possible and its convergence

conditions [138] can be met, because only one discrete approximation parameter ℎ

needs to be tuned for optimal performance. In addition, results from [137] suggested

that mala can be more efficient than a random walk when using optimal scalings.

We could also use the particle approximation at time 𝑡−1 to estimate the covariance

matrix of 𝜋𝑡 and thus tune the scale ℎ on-line. As these algorithms are known to be

somewhat sensitive to scaling, and we seek approaches robust enough to employ

with little user intervention, we have not investigated this strategy further in this

work.

An adaptive specification of proposals is most useful when manual tuning

is difficult or even impossible. We consider the three real pet data sets shown in

Figure 5.1. When using adaptive proposal scales, the average acceptance rates of the

four randomwalk blocks (for parameters 𝜙1∶𝑟, 𝜃1∶𝑟, 𝜏 and 𝜈, respectively), are shown

in Figure 5.5.The results are not close to the optimal value 0.234, which is commonly

used in practice, but they are more than acceptable. In contrast, in Figure 5.6 we

show the average acceptance rates when using a scheme of proposal scales which

is obtained from another typical real pet data set. The scheme is tuned such that

for that particular data set and for all parameters, the acceptance rates fall within

the range [0.2, 0.4] for 𝛼𝑡 ∈ [0, 1]. It can be seen that, not only do the results vary

considerably due to the variety of the data sets, which is expected, but also for one of
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Figure 5.5 Average random walk acceptance rates for the two-compartments pet
model with data sets in Figure 5.1 using adaptive proposal scales.

the data sets, the parameter 𝜈 fails to move at all. Considering that there are about

a quarter of a million such data sets to be estimated in a single pet scan, adaptively

specifying the proposal scales is the only feasible approach. Note that, this problem

is not unique to the pet compartmental model at all. In many realistic applications,

there are a large number of data sets which vary considerably from each other.

5.3.4 An automatic and adaptive algorithm

With the above refinements, we are ready to implement the smc2 algorithm with

minimal tuning and application specific effort while providing robust and accurate

estimates of the model evidence 𝑝(𝑦|ℳ𝑘). First the geometric annealing scheme

that connects the prior 𝜋(𝜃𝑘|ℳ𝑘) and the posterior 𝜋(𝜃𝑘|𝑦,ℳ𝑘), provides a smooth

path for a wide range of problems.

Second, the actual annealing schedule under this scheme can be determined

through the adaptive schedule as described above. The advantage of the adaptive

schedule will be shown empirically later.
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Figure 5.6 Average random walk acceptance rates for the two-compartments pet
model with data sets in Figure 5.1 using fixed proposal scales. The proposal
scales are calibrated for a single data set other than the three shown in
Figure 5.1. It is clear that clear that proposal scales calibrated for a single data
set cannot be applied other data sets efficiently. Adaptive and automatic
scheme is required in this situation.

Third, we can adaptively specify the Metropolis random walk (or mala)

proposal scales through the estimation of their scaling parameters as the sampler

iterates. In contrast to the mcmc setting, where such adaptive algorithmswill usually

require a burn-in period, which will not be used for further estimation, in smc, the

variance and covariance estimates come at almost no cost, as all the samples will

later be used for marginal likelihood estimation. Additionally, adaptation within

smc does not require separate theoretical justification in the sense that in principle

the Strong Law of Large Numbers (slln) holds directly – something which can

significantly complicate the development of effective, theoretically justified schemes

in the mcmc setting. Nonetheless, some asymptotic results can be found in [21],

including a version of the Central Limit Theorem for adaptive resampling among

other results. Alternatively, we can also specify the proposal scales in a deterministic,

but sensible way. Since smc algorithms are relatively robust to the change of scales,
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Accuracy control

Set constant cess⋆ ∈ (0, 1), using a small pilot simulation if necessary.

Initialization: Set 𝑡 ← 0.

Perform the Initialization step as in Algorithm 5.1 or 5.2

Iteration: Set 𝑡 ← 𝑡 + 1

Step size selection

Use a binary search to find 𝛼⋆ such that cess𝛼⋆ = cess⋆

Set 𝛼𝑡 ← 𝛼⋆ if 𝛼⋆ ≤ 1, otherwise set 𝛼𝑡 ← 1

Proposal scale calibration

Computing the importance sampling estimates of first two moments of

parameters.

Set the proposal scale of the Markov proposal 𝐾𝑡 with the estimated

parameter variances.

Perform the Iteration step as in Algorithm 5.1 or 5.2 with the found 𝛼𝑡 and

proposal scales.

Repeat the Iteration step until 𝛼𝑡 = 1 then set 𝑇 = 𝑡.

Algorithm 5.4 An Automatic, Generic Algorithm for Bayesian Model Comparison

such deterministic scales will not require the same degree of tuning as is required

to obtain good performance in mcmc algorithms.

Though we described the algorithm in the setting of smc2, it can also be

applied to other smc strategies. smc1 is less straightforward as the between model

moves still require efforts to design and implement. In smc3, the specification

of the sequences between posterior distributions are less generic compared to the

geometric annealing scheme in smc2. However, the adaptive schedule and automatic

tuning of mcmc proposal scales, both can be applied in these two algorithms in

principal. We outline the strategy in Algorithm 5.4.

As laid out above, the algorithms require minimal tuning. Theirs robustness,
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Table 5.1 The standard Bayes factor estimates for a simulated pet data set using the
smc2 algorithm.

Proposal scales

Fixed Adaptive

Fixed annealing (𝛼𝑘(𝑡/𝑘) = (𝑡/𝑇𝑘)5) 1.6 ± 0.27 1.6 ± 0.22
cess-based adaptive annealing 1.6 ± 0.19 1.6 ± 0.15

All four samplers are configured such that about 200 distributions are used. The
estimates (log 𝐵2,1 ± s.d.) are obtained from 100 simulations for each sampler.

accuracy and efficiency will be shown in Section 5.5 through comprehensive em-

pirical studies. Here we show some interesting yet intuitively expected results. We

consider the simulated pet data sets, using an smc2 sampler with 1,000 particles. It

is already shown that using either the adaptive specification of distribution place-

ment or the mcmc proposal scales can give better results. The combination of the

two can lead to even better results. The use of the cess-based schedule scheme

will not only place more distributions where the target distributions changes more

rapidly, but also it will place more distributions where the mcmc algorithm mixes

more slowly. To illustrate the idea, we consider four configurations of the sampler.

The proposal scales are specified either adaptively or using a fixed scheme which is

manually tuned. The placement of the distributions is either cess-based or using a

fixed schedule 𝛼𝑡 = 𝛼𝑘(𝑡/𝑇𝑘) = (𝑡/𝑇𝑘)5.

The results are shown in Table 5.1. More comprehensive results can be found

in Section 5.5.3. However, from this particular example, we can see that the com-

bination of the two adaptive schemes provides superior performance at very little

computational cost. Table 5.2 shows actually equivalent results. Instead of fixing

the number of distributions, we configured the samplers such that they all give

roughly the same precision of the estimates. It is rather obvious to see that the use

of adaptive methods actually give a considerable reduction of computational cost

for a given desired precision of the estimates.
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Table 5.2 The number of distributions used for a simulated pet data set using the
smc2 algorithm.

Proposal scales

Fixed Adaptive

Fixed annealing (𝛼𝑘(𝑡/𝑇𝑘) = (𝑡/𝑇𝑘)5) 200 182
cess-based adaptive annealing 175 157

All four samplers are configured such that the standard Bayes factor estimates
(log 𝐵2,1 ± s.d.), obtained from 100 simulations for each sampler, have a standard
deviation of approximately 0.27.

Although further enhancements and refinements are clearly possible, we

focus in the remainder of this chapter on this simple, generic algorithm which can

be easily implemented in any application and has proved sufficiently powerful to

provide good estimation in the examples we have encountered thus far.

5.4 theoretical considerations

The convergence results for the standard estimator can be found in [39] and refer-

ences therein. In this work, given our advocation of smc2-ps, we extend the results

for the path sampling estimator from smc samplers. Here we present Proposition 5.1,

which is specific to path sampling estimator using the simplest Trapezoidal approach

to numerical integration. It follows as a simple corollary to a more general result

given in Appendix b.1 which could be used to characterize more general numerical

integration schemes.

Proposition 5.1. Under the same regularity conditions as are required for the

central limit theorem given in [39] to hold, given an smc sampler that iterates over

a sequence of distributions {𝜋𝑡 = 𝛾𝛼𝑡/𝑍𝛼𝑡}
𝑇
𝑡=0 and applies multinomial resampling at

each iteration, the path sampling estimator, 𝛯̂𝑁𝑇 , as defined in Equation (5.28) obeys

a central limit theorem in the following sense: Let 𝜉𝑡(⋅) =
d log 𝛾𝛼(⋅)
d 𝛼 |𝛼=𝛼𝑡

, 𝛽0 = 𝛼0/2,
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𝛽𝑇 = 𝛼𝑇/2 and for 𝑡 = 1,… ,𝑇−1, 𝛽𝑡 = (𝛼𝑡+1−𝛼𝑡−1)/2, then, provided 𝜉𝑡 is bounded,

lim
𝑁→∞
√𝑁(𝛯̂𝑁𝑇 − 𝛯𝑇)

𝐷
−−→u� (0, 𝑉𝑇(𝜉0∶𝑇)) (5.34)

where
𝐷
−−→ denotes convergence in distribution and 𝑉𝑡, 0 ≤ 𝑡 ≤ 𝑇 is defined by the

following recursion,

𝑉0(𝜉0) =𝛽20 ∫ 𝜋0(𝑥0)(𝜉0(𝑥0) − 𝜋0(𝜉0))
2𝑑𝑥0 (5.35)

𝑉𝑡(𝜉0∶𝑡) =𝑉𝑡−1(𝜉0∶𝑡−2, 𝜉𝑡−1 +
𝛽𝑡
𝛽𝑡−1

𝜋𝑡(⋅)
𝜋𝑡−1(⋅)
∫ 𝐾𝑡(⋅, 𝑥𝑡)(𝜉𝑡(𝑥𝑡) − 𝜋𝑡(𝜉𝑡)) d 𝑥𝑡)

(5.36)

+ 𝛽2𝑡 ∫
𝜋𝑡(𝑥𝑡−1)2

𝜋𝑡−1(𝑥𝑡−1)
𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)(𝜉𝑡(𝑥𝑡) − 𝜋𝑡(𝜉𝑡))2) d 𝑥𝑡−1 d𝑥𝑡.

Application of similar arguments to those used in [39] to the historical process

associated with the smc sampler would lead to essentially the same result, but we

find this approach more transparent. We note that much recent analysis of smc

algorithms has focused on relaxing the relatively strong assumptions used in the

results uponwhich this result is based – looking atmore general resampling schemes

[38] and relaxing compactness assumptions [162] for example. However, we feel that

this simple result is sufficient to show the relationship between the path sampling

and simple estimators and that in this instance the relative simplicity of the resulting

expression justifies these stronger assumptions.

5.5 performance comparison

In this section, we will use three examples to illustrate the algorithms. The Gaussian

mixture model is discussed first, with implementations for all three smc algorithms

with comparison to rjmcmc and population mcmc. It will be shown that all five

algorithms agree on the results while the performance in terms of Monte Carlo vari-

ance varies considerably. It will also be demonstrated how the adaptive refinements

of the algorithms behaves in practice. We will reach the conclusion that considering
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ease of implementation, performance and generality, the smc2 algorithm is most

promising among all three strategies.

Then two more realistic examples, a nonlinear ode model and the pet com-

partmental model are used to study the performance and robustness of algorithm

smc2 compared to ais and population mcmc. Various configurations of the algo-

rithms are considered including both sequential and parallelized implementations.

The C++ implementations, which make use of the vSMC library of [166], of

all examples can be found at https://github.com/zhouyan/vSMCExample and

the library is also introduced in Chapter 6.

5.5.1 Gaussian mixture model

Since [132], the Gaussian mixture model (gmm) has provided a canonical example

of a model-order-determination problem. We use the model formulation of [39]

to illustrate the efficiency and robustness of the methods proposed in this chapter

compared to other approaches. The model is as follows; data 𝑦 = (𝑦1,… , 𝑦𝑛) are

independently and identically distributed as

𝑦𝑖|𝜃𝑟 ∼
𝑟

∑
𝑗=1
𝜔𝑗u� (𝜇𝑗, 𝜆−1𝑗 )

where u� (𝜇𝑗, 𝜆−1𝑗 ) denotes the Normal distribution with mean 𝜇𝑗 and precision

𝜆𝑗; 𝜃𝑟 = (𝜇1∶𝑟, 𝜆1∶𝑟, 𝜔1∶𝑟) and 𝑟 is the number of components in each model. The

parameter space is thusℝ𝑟×(ℝ+)𝑟×𝛥𝑟 where 𝛥𝑟 = {𝜔1∶𝑟 ∶ 0 ≤ 𝜔𝑗 ≤ 1;∑𝑟𝑗=1 𝜔𝑗 = 1}

is the standard 𝑟-simplex. The priors which are the same for each component are

taken to be 𝜇𝑗 ∼ u� (𝜉, 𝜅−1), 𝜆𝑗 ∼ u�𝑎(𝜈, 𝜒) and 𝜔1∶𝑟 ∼ u�(𝜌) where u�(𝜌) is the

symmetric Dirichlet distribution with parameter 𝜌 and u�𝑎(𝜈, 𝜒) is the Gamma

distribution with shape 𝜈 and scale 𝜒. The prior parameters are set in the same

manner as in [132]. Specifically, let 𝑦min and 𝑦max be the minimum and maximum

of data 𝑦, the prior parameters are set such that

𝜉 = (𝑦max + 𝑦min)/2, 𝜅 = (𝑦max − 𝑦min)−2, 𝜈 = 2, 𝜒 = 50𝜅, 𝜌 = 1
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The data is simulated from a four components model with 𝜇1∶4 = (−3, 0, 3, 6), and

𝜆𝑗 = 2, 𝜔𝑗 = 0.25, 𝑗 = 1,… , 4.

We consider several algorithms. First the rjmcmc algorithm as in [132], and

second an implementation of the smc1 algorithm. Next ais, population mcmc and

smc2 are used for within-model simulations. The last is an implementation of the

smc3 algorithm. In all the algorithms, the local move which does not change the

dimension of the model is constructed as a composition of Metropolis-Hastings

random walk kernels:

1. Update 𝜇1∶𝑟 using a multivariate Normal random walk proposal.

2. Update 𝜆1∶𝑟 using a multivariate Normal random walk on logarithmic scale,

i.e., on log 𝜆𝑗, 𝑗 = 1,… , 𝑟.

3. Update 𝜔1∶𝑟 using a multivariate Normal random walk on logit scale, i.e., on

𝜔𝑗/𝜔𝑟, 𝑗 = 1,… , 𝑟 − 1.

The rjmcmc, smc1 and smc3 algorithms use two additional pairs of reversible jump

moves. The first is a combine and split move; the second is a birth and death move.

Both are constructed in the samemanner as in [132]. Also in these implementations,

an adjacency conditionwas imposed on themeans𝜇1∶𝑟, such that𝜇1 < 𝜇2 < ⋯ < 𝜇𝑟.

No such restriction was used for other algorithms.

In the smc1, smc2, ais and population mcmc implementations, the distri-

butions are chosen with a geometric schedule, i.e., as in Equation (5.23) for smc1

and Equation (5.24) for the other three. This annealing scheme has been used in

[39, 82] and many other works. The geometric scheme can also be seen in [24] for

population mcmc tempering. A schedule 𝛼(𝑡/𝑇) = (𝑡/𝑇)𝑝, with 𝑝 = 2 was used.

The rationale behind this particular schedule can be seen in [24] and other values of

𝑝 were also tried while 𝑝 ≈ 2 performs best in this particular example. The adaptive

schedule was also implemented for smc2 and ais algorithms.

The proposal scales for each block of the random walks are specified dy-

namically according to values of 𝛼(𝑡/𝑇) for the smc2 and ais algorithms and also

manually tuned for other algorithms such that the acceptance rates fall in [0.2, 0.5].

Later for the smc2 and ais algorithms, we also consider adaptive schedule of the
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distribution specification parameter 𝛼(𝑡/𝑇) and the proposal scales of the random

walks.

For smc2, smc3 and ais we consider both the direct estimator and the path

sampling estimator. For population mcmc we consider the path sampling estimator.

Results

The smc1 implementation uses 10,000 particles and 500 distributions. The rjmcmc

implementation uses five million iterations in addition to one million iterations of

burn-in period for adaptation. The resulting estimates of model probabilities are

shown in Table 5.3.

The smc2, smc3 and ais implementations use 1,000 particles and 500 iter-

ations. Population mcmc implementation uses 50 chains and 10,000 iterations in

addition to 10,000 iterations used for adaptation (the burn-in period) – these im-

plementations have approximately equal computational costs. For all algorithms

where resampling is needed, the stratified resampling algorithm is applied (see

Section 5.1.1).

From the results obtained under the smc1 and rjmcmc algorithms it is clear

that, in this particular example, simulations for models with fewer than ten compo-

nents are adequate to characterize the model space. Therefore, under this config-

uration, the cost is roughly the same in terms of computational resources as that

of the smc1 and rjmcmc algorithms. From the results of rjmcmc and smc1, we

consider the four and five components models (i.e., the true model and the most

competitive one amongst the others). The estimates are shown in Table 5.4 which,

like all of the other tables in this section, summarizes the Monte Carlo variability of

100 replicate runs of each algorithm.

From Tables 5.3 and 5.4, it can be seen that the standard estimators (rjm-

cmc, smc1, smc2-ds, smc3-ds and ais-ds) agree with each other. Among the path

sampling estimators, smc2-ps and ais-ps have little bias. smc3-ps shows a little

more bias. The population mcmc algorithm has a considerably larger bias as the
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Table 5.3 Gaussian mixture model posterior model probability estimates obtained
via smc1 and rjmcmc.

Number of components

Quantity Algorithm ≤ 2 3 4 5 6 7 ≥ 8

ℙ(ℳ𝑘|𝑦) smc1 0 0.0022 0.89 0.10 0.0064 0.0014 0
rjmcmc 0 0.0013 0.89 0.10 0.0062 0.0025 0

log 𝐵4,𝑘 smc1 ∞ 6.00 0 2.15 4.93 6.45 ∞
rjmcmc ∞ 6.53 0 2.15 4.97 5.87 ∞

Table 5.4 Gaussian mixture model the Bayes factor estimates obtained via smc2, smc3,
ais and population mcmc.

Algorithm smc2 smc3 ais pmcmc

Estimator ds ps ds ps ds ps ps

log 𝐵4,5 2.15 2.15 2.16 2.21 2.16 2.17 2.63
s.d. 0.25 0.22 0.61 0.62 1.12 1.10 0.41

number of distributions is relatively small (as noted previously, a larger number will

negatively affect the mixing speed). In terms of Monte Carlo variance, in Table 5.4,

smc2 clearly has an advantage compared to its no-resampling variant, ais. The

differences of Monte Carlo standard deviation between smc2, smc3 and population

mcmc, although they do not affect model selection in this particular example, are

considerable.

Effects of resampling It is clear from these results that resampling (when required)

can substantially improve the estimation of normalizing constants within an smc

framework. This does not contradict the statement in [39] which suggests that

resampling may not much help when the normalizing constant is the object of

interest, the theoretical argument which supports this relies upon the assumption
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Figure 5.7 Monte Carlo variance of standard estimator and path sampling estimator
using different threshold of ess/𝑁 for Gaussian mixture model using the
smc2 algorithm and the stratified resampling (on logarithm scale). The vari-
ances are calculated from 100 simulations for each sampler configuration.

that the Markov kernel used to mutate the particles mixes extremely rapidly and the

result is obtained under the assumption that resampling is performed after every

iteration. When the Markov kernel is not so rapidly mixing, the additional stability

provided by the resampling operation can out-weight the attendant increase in

Monte Carlo variance and that is what we observed here (and in the case of the

other examples considered below; results not shown.)

On the other hand, in this work we advocate resampling adaptively instead

of resampling every iteration. The proposed adaptive schedule also has signifi-

cant advantage in this situation. It is of interest to see if adaptive resampling has

performance improvement when compared to resampling every iteration. We con-

sider using the smc2 algorithm with 1,000 particles, 100 distributions scheduled

as 𝛼(𝑡/𝑇) = (𝑡/𝑇)2, and various threshold of ess/𝑁 under which resampling is

performed. The Monte Carlo variance of both the standard estimator and the path

sampling estimator is shown in Figure 5.7. It can be shown that neither performing

resampling every iteration or never performing resampling (i.e., the ais algorithm),
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gives optimal results. Though it may be difficult to determine an optimal value,

the commonly used value 0.5 seems to be suitable for this particular example, in

the sense that the variance is only slightly higher than that of sampler performing

resampling at every iteration while the computational cost is reduced. The reduc-

tion in computational cost might be negligible for some applications. However, as

noted before, when parallel computing is considered, frequent resampling can be a

bottleneck of performance in reality.

Effects of adaptive schedules To assess the evolution of distributions with an adap-

tive schedule, we consider the relation between 𝛼𝑡 − 𝛼𝑡−1 and 𝛼𝑡. As stated before,

one of the motivations of using cess for adaptive placement of distribution is to

ensure that 𝛼𝑡 evolves the same path regardless of the resampling strategies. Earlier

in Figure 5.2 (page 5.2) we showed the evolution of 𝛼𝑡 when fixing ess or cess and

resampling every iteration or only when ess/𝑁 < 𝑁, where 𝑁 is the number of

particles. As shown in the plot, when fixing cess, the evolution of the distributions

is not affected by the resampling strategy. In contrast, fixing ess yields a sequence

of distributions which depends strongly upon the resampling strategy.

In terms of the actual performance when using the cess adaptive strategy

in the smc2 and ais algorithms, a reduction of standard deviation of 20% was

observed comparing to 𝛼(𝑡/𝑇) = (𝑡/𝑇)2, the one shown in Table 5.4. When applied

to the smc3 algorithm, 50% reduction was observed. If the ess adaptive strategy is

used instead, similar standard deviation reduction is observed when resampling is

performed every iteration but no significant effect was observed when resampling

was only performed when ess/𝑁 < 0.5 (i.e., using ess rather than cess entirely

eliminated the benefit.)
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Effects of adaptive proposal scales When using the smc2 algorithm, if the adaptive

strategy of [9] is applied, where the important sampling estimates of the variance of

parameters are included in the adaptation, the acceptance rates fall within [0.2, 0.5]

dynamically without manual tuning as for the results in Table 5.4. It should be noted

that in this particular example, it is the variance of log 𝜆1∶𝑟 being estimated as the

corresponding random walk block operates on the log scale. The same principle

applies to the weight parameters 𝜔1∶𝑟, which have random walks on the logit scale.

Approximately 20% reduction in standard deviation was observed.

5.5.2 Nonlinear ordinary differential equations

In this section, this will now be further explored in a more complex model, a non-

linear ordinary differential equations (ode) system. This model, which was studied

in [24], is known as the Goodwin model. The ode system, for an 𝑟-component

model, is,

d𝑋1(𝑡)
d 𝑡
=
𝑎1

1 + 𝑎2𝑋𝑟(𝑡)𝜌
− 𝛼𝑋1(𝑡)

d𝑋𝑖(𝑡)
d 𝑡
= 𝑘𝑖−1𝑋𝑖−1(𝑡) − 𝛼𝑋𝑖(𝑡) 𝑖 = 2,… , 𝑟

𝑋𝑖(0) = 0 𝑖 = 1,… , 𝑟

The parameters {𝛼, 𝑎1, 𝑎2, 𝑘1∶𝑟−1} have common prior distribution u�𝑎(0.1, 0.1). Un-

der this setting,𝑋1∶𝑟(𝑡) can exhibit either unstable oscillation or a constant steady

state. The data are simulated for 𝑟 = 3 and 5 at equally spaced time points from

0 to 60, with time step 0.5. The last 80 data points of (𝑋1(𝑡), 𝑋2(𝑡)) are used for

inference. Normally-distributed noise with standard deviation 𝜎 = 0.2 is added to

the simulated data. Following [24], the variance of the additive measurement error

is assumed to be known. Therefore, the posterior distribution has 𝑟 + 2 parameters

for an 𝑟-component model.

As shown in [24], when𝜌 > 8, due to the possible instability of the ode system,

the posterior can have a considerable number of local modes. In this example, we
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set 𝜌 = 10. Also, as the solution to the ode system is somewhat unstable, slightly

different data can result in very different posterior distributions.

The example from the previous section suggests that smc2 performs well

relative to the other smc possibilities. Given the wide range of settings in which

it can be easily deployed, we will now concentrate further on this method. It also

suggests that in the simple case of Gaussian mixtures, a complete adaptive strategy

for both distribution specification and proposal scales works well.

Results

We compare results from the smc2 and population mcmc algorithms. For the smc

implementation, 1,000 particles and 500 iterations were used, with the distributions

specified specified by Equation (5.24), with 𝛼𝑘(𝑡/𝑇𝑘) = (𝑡/𝑇)5, or via the completely

adaptive specification. For population mcmc algorithm, 50,000 iterations are per-

formed for the adaptation of the proposal scales (the burn-in period), and another

10,000 iterations are used for inference. The same tempering as was used for smc is

used here. Note that, in a sequential implementation of population mcmc, with each

iteration updating one local chain and attempting a global exchange, the computa-

tional cost of after burn-in iterations is roughly the same as the entire smc algorithm.

In addition, changing 𝑇 within the range of the number of cores available does not

substantially change the computational cost of a generic parallel implementation

of population mcmc algorithm. We compare results from 𝑇 = 10, 30, and 100. For

the smc algorithms, stratified resampling is applied.

The results for data generated from the simple model (𝑟 = 3) and complex

model (𝑟 = 5), again summarizing variability amongst 100 runs of each algorithm,

are shown in Table 5.5 and 5.7, respectively. The model selection results, displayed

as the frequencies of each model being selected by the Bayes factor using estimators

from each algorithm, are shown in Table 5.6 and 5.8, respectively. It can be seen that

all smc algorithms and population mcmc algorithms with sufficient large numbers

of distributions can give accurate results of model selection. With a smaller number
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of distributions, the population mcmc algorithm may occasionally choose a wrong

model. However, the accuracy of the estimators differs considerably among these

algorithms.

As shown in both cases, the number of distributions can affect the perfor-

mance of population mcmc algorithms considerably. When using 10 distributions,

large bias from numerical integration for path sampling estimator was observed, as

expected. With 30 distributions, the performance is comparable to the smc2 sam-

pler, though some bias is still observable. With 100 distributions, there is a much

larger variance because, with more chains, the information travels more slowly from

rapidly mixing chains to slowly mixing ones and consequently the mixing of the

overall system is inhibited.

The smc algorithmprovides results comparable to the best of three population

mcmc implementations in essentially all settings, including one in which both the

annealing schedule and proposal scalingwere fully automatic. In fact, the completely

adaptive strategy was the most successful.

It can be seen that increasing the number of distributions not only reduces

the bias of numerical integration for path sampling estimator, but also reduces the

variance considerably. On the other hand increasing the number of particles can

only reduce the variance of the estimates, in accordance with the Central Limit

Theorem (see [39] for the standard estimator and extensions for path sampling

estimator, Proposition 5.1). The bias arises mostly from the numerical integration

scheme and cannot be reduced by using more particles. Though there exists the

trade-off between the number of particles and the number distributions, increasing

either of them can always benefit the accuracy of the estimators. We will study this

trade-off more carefully with the next more realistic example.
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Table 5.5 Nonlinear odemodel marginal likelihood and the Bayes factor estimates with data generated
from a simple (three components) model.

Marginal likelihood Bayes factor
log 𝑝(𝑦|ℳ𝑘) ± s.d. log 𝐵3,5 ± s.d.

𝑇 Proposal Annealing Algorithm 𝑟 = 3 𝑟 = 5

10 Manual Prior (5) pmcmc −109.7 ± 3.2 −120.3 ± 2.5 10.6 ± 3.8
30 -105.0±1.2 -116.1±2.2 11.2±2.5
100 −134.7 ± 7.9 −144.1 ± 6.2 9.4 ± 11.2

500 Manual Prior (5) smc2-ds −104.6 ± 2.0 −112.7 ± 1.8 8.1 ± 2.8
smc2-ps −104.5 ± 1.8 −112.7 ± 1.5 8.2 ± 2.5

500 Manual Adaptive smc2-ds −104.5 ± 1.1 −112.7 ± 1.1 8.1 ± 1.6
smc2-ps −104.6 ± 1.0 −112.8 ± 1.0 8.2 ± 1.5

500 Adaptive Adaptive smc2-ds −104.5 ± 0.5 −112.7 ± 0.4 8.1 ± 0.8
smc2-ps -104.6±0.4 -112.8±0.3 8.1±0.6

𝑇: The number of distributions.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
Red: The estimate with the smallest variance among all algorithms settings.
Green: The estimate with the smallest variance for a single algorithm (smc2 or pmcmc) among
different settings.
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Table 5.6 Frequencies of models selected by the Bayes factor (%) for the nonlinear ode model with
data generated from a simple (three components) model.

Number of components

𝑇 Proposal Annealing Algorithm 2 3 4 5 6

10 Manual Prior (5) pmcmc 2 96 2 0 0
30 0 100 0 0 0
100 0 100 0 0 0
500 Manual Prior (5) smc2-ds 0 100 0 0 0

smc2-ps 0 100 0 0 0
500 Manual Adaptive smc2-ds 0 100 0 0 0

smc2-ps 0 100 0 0 0
500 Adaptive Adaptive smc2-ds 0 100 0 0 0

smc2-ps 0 100 0 0 0

𝑇: The number of distributions.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
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Table 5.7 Nonlinear odemodel marginal likelihood and the Bayes factor estimates with data generated
from a complex (five components) model.

Marginal likelihood Bayes factor
log 𝑝(𝑦|ℳ𝑘) ± s.d. log 𝐵3,5 ± s.d.

𝑇 Proposal Annealing Algorithm 𝑟 = 3 𝑟 = 5

10 Manual Prior (5) pmcmc −1651.0±27.9 −85.1 ± 36.6 1565.9 ± 42.1
30 -1639.7±7.4 -78.9±11.2 1560.8±12.8
100 −1624.6±15.7 −75.7 ± 24.8 1548.9 ± 25.6

500 Manual Prior (5) smc2-ds −1640.7±10.8 −78.5 ± 9.8 1562.2 ± 10.1
smc2-ps −1640.8 ± 8.4 −79.2 ± 7.9 1561.6 ± 8.5

500 Manual Adaptive smc2-ds −1639.7 ± 6.9 −78.6 ± 4.8 1561.1 ± 7.1
smc2-ps −1640.1 ± 5.4 −78.8 ± 3.7 1561.3 ± 6.8

500 Adaptive Adaptive smc2-ds −1639.8 ± 2.2 −79.4 ± 1.7 1560.4 ± 3.1
smc2-ps -1640.2±1.9 -78.5±1.5 1561.7±2.3

𝑇: The number of distributions.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
Red: The estimate with the smallest variance among all algorithms settings.
Green: The estimate with the smallest variance for a single algorithm (smc2 or pmcmc) among
different settings.
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Table 5.8 Frequencies of models selected by the Bayes factor (%) for the nonlinear ode model with
data generated from a complex (five components) model.

Number of components

𝑇 Proposal Annealing Algorithm 2 3 4 5 6

10 Manual Prior (5) pmcmc 0 0 6 94 0
30 0 0 2 98 0
100 0 0 0 100 0
500 Manual Prior (5) smc2-ds 0 0 0 100 0

smc2-ps 0 0 0 100 0
500 Manual Adaptive smc2-ds 0 0 0 100 0

smc2-ps 0 0 0 100 0
500 Adaptive Adaptive smc2-ds 0 0 0 100 0

smc2-ps 0 0 0 100 0

𝑇: The number of distributions.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
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5.5.3 pet compartmental model

It is now interesting to compare the proposed algorithm with other state-of-art

algorithms using the more realistic pet compartmental model example.

As mentioned before, real neuroscience data sets involve a very large number

(about a quarter of a million per brain) of time series, which are typically somewhat

heterogeneous (also see Figure 5.1). Robustness is therefore especially important.

An application-specific mcmc algorithm was developed for this problem in [167]

and its results are shown in the Section 4.3.7.1. A significant amount of tuning of

the algorithms was required to obtain good results. The results shown in Figure 5.8

and discussed later are very close to those of [167] but, as is shown later, they were

obtained with almost no manual tuning effort and at similar computational cost.

For the smc and population mcmc algorithms, the requirement of robustness

means that the algorithm must be able to calibrate itself automatically to different

data (and thus different posterior surfaces). A sequence of distributions which

performs well for one time series may not perform even adequately for another

series. Specification of proposal scales that produces fast-mixing kernels for one

data seriesmay lead to slowmixing for another (as we already see in Section 5.3.3.) In

the following experiment, we will use the simulated data sets, and choose schedules

that perform both well and poorly for this particular time series. The objective is

to see if the algorithm can recover from a relatively poorly specified schedule and

obtain reasonably accurate results.

Results

In this example we focus on the comparison between smc2 and population mcmc.

We also consider parallelized implementations of algorithms. In this case, due to

its relatively small number of chains, population mcmc can be parallelized com-

pletely (and often cannot fully utilize the hardware capability if a naïve approach to

parallelization is taken; while we appreciate that more sophisticated parallelization
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Figure 5.8 Volume of distribution estimates of real pet compartmental model data.
Three slice of the brain are shown in the plot. Each are close to the middle
of the brain along each of the three axises in the three-dimensional space.

strategies are possible, these depend intrinsically upon the model under investi-

gation and the hardware employed and given our focus on automatic and general

algorithms, we don’t consider such strategies here.) Population mcmc algorithm

under this setting is implemented such that each chain is updated at each iteration.

Further, for the smc algorithms, we consider two cases. In the first we can parallelize

the algorithm completely (in the sense that each core has a single particle associated

with it.) In this setting we use a relatively small number of particles and a larger

number of time steps. In the second, we need a few passes to process a large number

of particles at each time step, and accordingly we use fewer time steps to maintain

the same total computation time. These two settings allow us to investigate the

trade-off between the number of particles and time steps. In both implementations,

we consider three schedules, 𝛼(𝑡/𝑇) = 𝑡/𝑇 (linear), 𝛼(𝑡/𝑇) = (𝑡/𝑇)5 (prior), and

𝛼(𝑡/𝑇) = 1 − (1 − 𝑡/𝑇)5 (posterior). The linear schedule can be seen as an off-the-

shelf choice while the prior schedule is expected to perform generally well for many

applications. The posterior schedule is expected to perform poorly compared to the

others. It places more distributions close to the posterior than the prior, where with

the introducing of the likelihood function, the intermediate distributions are likely

to change more dramatically with respect to the change of 𝛼. This is included there
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to test if the algorithm is capable of producing sensible results when the sequence

of distributions is specified poorly, which is quite a possible scenario in realistic ap-

plications. In addition, the adaptive schedule based upon cess is also implemented

for the smc2 algorithm. For the smc algorithms, stratified resampling is applied.

Result from 100 replicate runs of the two algorithms under various regimes

can be found in Table 5.9 and 5.10 for the marginal likelihood and Bayes factor

estimates, respectively. The smc algorithms consistently outperforms population

mcmc algorithms in the parallel settings. The Monte Carlo standard deviation of

smc algorithms is typically of the order of one fifth of the corresponding estimates

from population mcmc inmost scenarios. In some settings with the smaller number

of samples, the two algorithms can be comparable. Also at the lowest computational

costs, the samplers with more time steps and fewer particles outperform those with

the converse configuration by a fairly large margin in terms of estimator variance.

It shows that with limited resources, ensuring the similarity of consecutive distri-

butions, and thus good mixing, can be more beneficial than a larger number of

particles. However, when the computational budget is increased, the difference

becomes negligible.

In the particular case of the posterior schedule, it is not surprising that all

path sampling estimates suffer considerably large biases. The standard estimator

using the smc2 algorithm is able to give relatively accurate results (though with a

larger variance compared to other schedules). In summary, the smc algorithm is

much more robust than population mcmc algorithm in this example.

Effects of adaptive schedule A set of samplers with adaptive schedules are also

used. Due to the nature of the schedule, it cannot be controlled to have exactly the

same number of time steps as non-adaptive procedures. However, the cess was

controlled such that the average number of time steps are comparable with the fixed

schedules and in most cases slightly less than the fixed numbers.

It is found that, with little computational overhead, adaptive schedules do

provide the best results (or very nearly so) and do so without user intervention.
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Table 5.9 Marginal likelihood estimates of two components pet model.

Proposal scales Manual Adaptive

Annealing scheme Prior (5) Posterior (5) Adaptive

𝑇 𝑁 Algorithm Marginal likelihood estimates (log 𝑝(𝜃𝑘|𝑦) ± s.d.)

500 30 pmcmc −39.1 ± 0.56 −926.8 ± 376.99
500 192 smc 2-ds -39.2±0.25 -39.7±1.06 -39.2±0.18 -39.1±0.12

smc 2-ps -39.2±0.25 −91.3 ± 21.69 -39.2±0.18 −39.1 ± 0.13
100 960 smc 2-ds −39.3 ± 0.36 −40.6 ± 1.41 −39.2 ± 0.31 −39.2 ± 0.19

smc 2-ps −39.3 ± 0.35 302.1 ± 46.29 −39.3 ± 0.31 −39.2 ± 0.18

1000 30 pmcmc −39.3 ± 0.46 −884.1 ± 307.88
1000 192 smc 2-ds -39.2±0.19 -39.4±0.68 -39.2±0.17 -39.1±0.10

smc 2-ps -39.2±0.19 −66.0 ± 13.26 -39.2±0.17 -39.1±0.10
200 960 smc 2-ds −39.2 ± 0.22 −39.8 ± 1.21 −39.2 ± 0.18 −39.1 ± 0.11

smc 2-ps −39.2 ± 0.22 175.5 ± 26.84 −39.2 ± 0.18 −39.2 ± 0.11

2000 30 pmcmc −39.3 ± 0.28 −928.7 ± 204.93
2000 192 smc 2-ds −39.2 ± 0.14 -39.3±0.41 −39.1 ± 0.12 −39.1 ± 0.07

smc 2-ps −39.2 ± 0.14 −51.2 ± 4.30 −39.2 ± 0.12 −39.1 ± 0.07
400 960 smc 2-ds -39.2±0.13 −39.4 ± 0.73 -39.2±0.11 −39.2 ± 0.07

smc 2-ps -39.2±0.13 106.0 ± 14.36 -39.2±0.11 -39.2±0.06

5000 30 pmcmc −39.3 ± 0.21 −917.6 ± 129.54
5000 192 smc 2-ds −39.2 ± 0.09 -39.2±0.20 −39.2 ± 0.08 −39.1 ± 0.04

smc 2-ps −39.2 ± 0.09 −43.8 ± 2.13 −39.2 ± 0.08 −39.1 ± 0.04
1000 960 smc 2-ds -39.2±0.08 −39.2 ± 0.31 -39.2±0.07 -39.2±0.03

smc 2-ps -39.2±0.08 −65.7 ± 5.54 -39.2±0.07 -39.2±0.03

𝑇: The number of distributions.
𝑁: The number of particles.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
Red: The estimate with the smallest variance among all algorithms settings.
Green: The estimate with the smallest variance for a single algorithm (smc2 or pmcmc) among
different settings.
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Table 5.10 The Bayes factor estimates of two-compartments pet model.

Proposal scales Manual Adaptive

Annealing scheme Prior (5) Posterior (5) Adaptive

𝑇 𝑁 Algorithm Bayes factor estimates (log 𝐵2,1 ± s.d.)

500 30 pmcmc 1.7 ± 0.62 −70.9 ± 525.79
500 192 smc 2-ds 1.6±0.27 1.3±1.13 1.6±0.20 1.6±0.15

smc 2-ps 1.6±0.27 −3.9 ± 30.02 1.6±0.20 1.6±0.15
100 960 smc 2-ds 1.6 ± 0.37 0.5 ± 1.55 1.6 ± 0.34 1.6 ± 0.21

smc 2-ps 1.6 ± 0.37 −13.1 ± 66.30 1.6 ± 0.33 1.6 ± 0.21

1000 30 pmcmc 1.6 ± 0.49 −67.3 ± 400.21
1000 192 smc 2-ds 1.6±0.21 1.5±0.79 1.6 ± 0.20 1.6 ± 0.13

smc 2-ps 1.6±0.21 −0.6 ± 15.47 1.6 ± 0.20 1.6 ± 0.13
200 960 smc 2-ds 1.6 ± 0.25 1.1 ± 1.25 1.6 ± 0.19 1.6 ± 0.12

smc 2-ps 1.6 ± 0.24 −11.7 ± 34.68 1.6±0.18 1.6±0.11

2000 30 pmcmc 1.6 ± 0.31 −95.5 ± 264.74
2000 192 smc 2-ds 1.6±0.14 1.6±0.44 1.6 ± 0.13 1.6 ± 0.09

smc 2-ps 1.6±0.14 1.6 ± 6.06 1.6 ± 0.13 1.7 ± 0.09
400 960 smc 2-ds 1.6 ± 0.16 1.5 ± 0.74 1.6±0.12 1.6±0.08

smc 2-ps 1.6 ± 0.16 −4.2 ± 17.15 1.6±0.12 1.6±0.08

5000 30 pmcmc 1.6 ± 0.24 −60.3 ± 198.10
5000 192 smc 2-ds 1.6 ± 0.10 1.6±0.23 1.6 ± 0.09 1.6 ± 0.05

smc 2-ps 1.6 ± 0.10 1.3 ± 2.98 1.6 ± 0.09 1.6 ± 0.05
1000 960 smc 2-ds 1.6±0.09 1.6 ± 0.33 1.6±0.08 1.6±0.04

smc 2-ps 1.6±0.09 −0.2 ± 6.63 1.6±0.08 1.6±0.04

𝑇: The number of distributions.
𝑁: The number of particles.
Proposal: The proposal scales of the mcmc kernels.
Annealing: The annealing scheme of the distributions, 𝛼𝑘(𝑡/𝑇𝑘) in Equation 5.24.
Red: The estimate with the smallest variance among all algorithms settings.
Green: The estimate with the smallest variance for a single algorithm (smc2 or pmcmc) among
different settings.
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The reduction of Monte Carlo standard deviation varies among different config-

urations. For moderate or larger number of distributions, a reduction about 50%

was observed. In addition, it should be noted that, in this example, the bias of the

path sampling estimates are much more sensitive to the schedules than the previous

Gaussian mixture model example. A vanilla linear schedule does not provide a

low bias estimator at all even when the number of distributions is increased to a

considerably larger number. The prior schedule though provides a nearly unbiased

estimator, there is no clear theoretical evidence showing that this should work for

other situations. Even it has more general usage, as suggested in [24], the power still

has to be chosen (in the previous gmm example, 𝑝 = 2 was the best choice while

in this pet example 𝑝 = 5 is more suitable). In contrast, The adaptive schedule,

without anymanual calibration, can provide a nearly unbiased estimator, even when

path-sampling is employed, in addition to potential variance reduction.

Bias reduction for path sampling estimator As seen in Table 5.9 and 5.10, a bad

choice of schedule 𝛼(𝑡/𝑇) can results in considerable bias for the basic path sampling

estimator, here for smc2-ps but the problem is independent of the mechanism by

which the samples are obtained. Increasing the number of iterations can reduce this

bias but at the cost of additional computation time. As outlined in Section 5.3.1, in the

case of the smc algorithms discussed here, it is possible to reduce the bias without

increasing computational cost significantly. To demonstrate the bias reduction

effect, we constructed smc sampler for the above pet example with only 1,000

particles and about 20 iterations specified using the cess based adaptive strategy.

The path sampling estimator was approximated using Equation (5.28) as well as

other higher order numerical integration or by integrating over a grid that contains

{𝛼𝑡} at which the samples was generated. The results are shown in Table 5.11
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Table 5.11 Path sampling marginal likelihood estimates bias reduction for a simulated
pet data set.

Number of grid points (compared to sampled iterations)

Integration rule ×1 ×2 ×4 ×8

Trapezoid −52.2 ± 5.01 −45.5 ± 1.93 −42.1 ± 1.21 −40.5 ± 1.06
Simpson −43.2 ± 1.39 −41.0 ± 1.10 −40.0 ± 1.04 −39.4 ± 1.04
Simpson 3/8 −42.1 ± 1.21 −40.5 ± 1.06 −39.7 ± 1.04 −39.3 ± 1.04
Boole −40.9 ± 1.09 −39.9 ± 1.04 −39.4 ± 1.04 −39.2 ± 1.05

The estimator (𝑝(𝑦|𝜃𝑘,ℳ𝑘) ± s.d.) was approximated using samples from smc2
algorithm with 1,000 particles and 20 iterations, with different numerical integra-
tion strategies. Large sample result (see Table 5.9) shows that the accurate value
is about −39.2.

Trade-off between the number of particles and distributions It can be seen through

the nonlinear ode and the pet examples that, there is a trade-off between the

number of particles and distributions. Increasing either of them can improve the

accuracy of estimates. We consider a range of number of particles (from 100 to

more than 10,000) and a range of number of distributions using the prior schedule

(𝛼(𝑡/𝑇) = (𝑡/𝑇)5; from as small as 10 to more than 1,000.) When applied to the

simulated data sets, the variance of the path sampling estimates is plotted against

the total number of samples (the product of these two quantities) in Figure 5.9. It

can be seen that, for the same total number of samples, samplers with larger number

of distributions outperform those with larger number of particles by a considerable

large margin. However, as the number of samples increase, the difference becomes

smaller and smaller. This suggests that it will be better to first allocate a fixed number

of particles, which is at least large enough to approximate the initial distribution

well, according to considerations such as computation hardwares. And then use the

number of distributions as a performance parameter to tune the sampler for desired

accuracy. When using the adaptive algorithms proposed in this work, it is equivalent

to tune the value of cess⋆. As shown in Section 5.3.2, the relation between cess⋆
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Figure 5.9 Variance of path sampling estimator and total number of samples using
the smc2 algorithm. Multiple samplers are used to evluate the trade-off
between the number of particles 𝑁 and the number of distributions 𝑇.
They are configured such that the total number of samples𝑁𝑇 is a con-
stant. In this figure, the variance of the path sampling estimator from 100
simulations of each sampler is plotted against the total number of samples
𝑁𝑇 on the logarithm scale. Different configurations of 𝑇 are indicated
with different sizes of the dots, larger dots representing larger 𝑇 (and thus
smaller𝑁). It can be seen that for a particular value of𝑁𝑇, changing 𝑇
may change the variance considerably and larger 𝑇 is preferred for most
values of𝑁𝑇.

and the variance of estimators provides a predictable way to configure the samplers,

at least for the particular examples considered in this chapter.

Fast mixing mcmc kernels and number of distributions As mentioned in Sec-

tion 5.1.5, the suboptimal backward kernel and its associated incremental weights

used in the above examples could perform poorly if the adjacent distributions are

not close, even when the transition kernel mixes well. However, both fast mixing

kernels and more intermediate distributions (and thus a smoother sequence), can

improve the performance of the sampler. To improve themixing speed of the kernel,
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Figure 5.10 Variance of the path sampling estimates and total number of samples us-
ing the smc2 algorithm (on logarithm scale). The variances are calculated
from 100 simulations for each sampler configuration. All samplers use
1,000 particles but with different number of distributions 𝑇 and passes of
mcmc moves at each iteration𝐾. And 𝑇𝐾 is the number of total samples
generated. Samplers with the same value of 𝑇𝐾 have roughly the same
computational cost.

one can apply multiple passes of mcmc moves at each iteration. Here we compare

two samplers using the simulated data sets, both with 1,000 particles. One sampler

uses 10 mcmc moves at each iteration. The other only use one mcmc move but ten

times the number of distributions. The annealing scheme, for simplicity, is chosen

to be 𝛼(𝑡/𝑇) = (𝑡/𝑇)5. The results of the path sampling variance is shown in Fig-

ure 5.10. It can be seen that, given the same total number of samples simulated, using

more distributions almost always outperforms using more mcmc moves. However,

with a sufficiently large number of samples, the difference is minimal.
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Real data results Finally, the methodology of smc2-ps was applied to measured

positron emission tomography data using the same compartmental setup as in the

simulations. The data that lead to the 𝑉𝐷 estimation as shown in Figure 5.8 comes

from a study into opioid receptor density in Epilepsy, with the data being described

in detail in [89] (also see section 2.3). It is expected that there will be considerable

spatial smoothness to the estimates of the volume of distribution, as this is in line

with the biology of the system being somewhat regional. Some regions will have

much higher receptor density while others will be much lower, yielding higher and

lower values of the volume of distribution, respectively. While we did not impose

any spatial smoothness but rather estimated the parameters independently for each

time series at each spatial location, as can be seen, smooth spatial estimates of

the volume of distribution consistent with neurological understanding were found

using the approach. This method is computationally feasible for the entire brain on

a voxel-by-voxel basis, due to the ease of parallelization of the smc algorithm. In the

analysis performed here 1,000 particles were used, along with an adaptive schedule

using a constant cess⋆/𝑁 = 0.999, resulting in about 180 to 200 intermediate

distributions. The model selection results are very close to those obtained by a

previous study of the same data [167], although the present approach requires much

less implementation effort and has roughly the same computational cost.

5.5.4 Summary

These three illustrative applications have essentially shown three aspects of using

smc as a generic tool for Bayesian model selection. Firstly, as seen in the Gaussian

mixture model example, all the different variants of smc proposed, including both

direct and path sampling versions, produce results which are competitive with other

model selectionmethods such as rjmcmc and populationmcmc. In addition, in this

somewhat simple example, smc2 performs well, and leads to low variance estimates

with no appreciable bias. The effect of adaptation was studied more carefully in

the nonlinear ode example, and it was shown that using both adaptive selection
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of distributions as well as adaptive proposal variances leads to very competitive

algorithms, even against those with significant manual tuning. This suggests that an

automatic process of model selection using smc2 is possible. In the final example,

considering the easy parallelization of algorithms such as smc2 suggests that great

gains in variance estimation can be made using settings such as gpu computing for

application where computational resources are of particular importance (such as in

image analysis as in the PET example). It is also clear that the negligible cost of the

bias reduction techniques described means that one should always consider using

these to reduce the bias inherent in path sampling estimation.

5.6 discussions

It has been shown that smc is an effectiveMonteCarlomethod for Bayesian inference

for the purpose of model comparison. Three approaches have been outlined and

investigated in several illustrative applications including the challenging scenarios

of nonlinear ode models and pet compartmental systems. The proposed strategy

is always competitive and often substantially outperforms the state of the art in this

area.

It has been demonstrated that it is possible to use the smc algorithms to esti-

mate the model probabilities directly (smc1), or through individual model evidence

(smc2), or pair-wise relative evidence (smc3). In addition, both smc2 and smc3

algorithms can be coupled with the path sampling estimator.

Among the three approaches, smc1 is applicable to very general settings. It

can provide a robust alternative to rjmcmcwhen inference on a countable collection

of models is required (and could be readily combined with the approach of [85] at

the expense of a little additional implementation effort). However, like all Monte

Carlo methods involving between model moves, it can be difficult to design efficient

algorithms in practice. The smc3 algorithm is conceptually appealing. However, the

existence of a suitable sequence of distributions between two posterior distributions

may not be obvious.
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The smc2 algorithm, which only involves within-model simulation, is most

straightforward to implement in many interesting problems. It has been shown to

be exceedingly robust in many settings. As it depends largely upon a collection of

within-model mcmc moves, any existing mcmc algorithms can be reused in the

smc2 framework. However, much less tuning is required because the algorithm

is fundamentally less sensitive to the mixing of the Markov kernel and it is pos-

sible to implement effective adaptive strategies at little computational cost. With

adaptive placement of the intermediate distributions and specification of the mcmc

kernel proposals, they provide a robust and essentially automatic model comparison

method.

Compared to population mcmc, smc2 has greater flexibility in the specifica-

tion of distributions. Unlike population mcmc, where the number and placement

of distributions can affect the mixing speed and hence performance considerably,

increasing the number of distributions will always benefit an smc sampler given

the same number of particles. When coupled with a path sampling estimator, this

leads to less bias and variance. Compared to its no-resampling variant (i.e., aic),

it has been shown that smc samplers with resampling can reduce the variance of

normalizing constant estimates considerably.

Even after three decades of intensive development, no Monte Carlo method

can solve the Bayesianmodel comparison problem completely automatically without

any manual tuning. However, smc algorithms and the adaptive strategies demon-

strated in this chapter show that even for realistic, interesting problems, these sam-

plers can provide good results with very minimal tuning and few design difficulties.

For many applications, they could already be used as near automatic, robust solu-

tions. For more challenging problems, the robustness of the algorithms can serve

as solid foundation for specific algorithm designs.
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The vSMC library was developed during the research to assist the implementations of

various smc algorithms, including but not limited to the illustrative and performance

comparison examples in previous chapters. It evolves into a sophisticated C++

framework. Generic smc samplers and other related algorithms can be implemented

using the library with relative ease. In addition, the library supports building both

sequential and parallel programs using the same user implementation of a given

algorithm.

The library makes use of some modern C++ techniques, ranging from basic

object-oriented programming to template metaprogramming. One should not need

to be an expert on most of them to use the library. Most of the examples in this

chapter are self-explanatory to readers with some basic knowledge of C++. For

those interested, Appendix c.3 serves as a brief introduction to C++ templates and

callable objects, two elementary features used extensively in the interface of the

vSMC library.

Section 6.1 gives background on parallel computing and the state of softwares

for Monte Carlo computing. Section 6.2 provides an overview of the library and

the structure of a program written with the library that implements a generic smc

sampler. Section 6.3 to 6.6 discuss the implementations of the four main com-

ponents of a generic smc sampler: the particle system, initializing, updating and

monitoring a sampler. Parallelization is not difficult with vSMC. However, it could

be an unfamiliar subject to some. Therefore, instead of a more technical discussion,

we introduce this feature through an example in Section 6.4 and demonstrate it by

examples throughout this chapter. In Section 6.7, we use a realistic example to show

the performance of the library. In the same section, the productivity of the library,

considering the performance gain, is also discussed. This chapter is concluded by a

discussion of techniques introduced and future directions.
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6.1 background

6.1.1 Parallel computing

Parallel computing is a form of computation in which many calculations are carried

out simultaneously. It operates on the principle that large problems can be divided

into independent smaller ones and can be solved concurrently (“in parallel”). Each

smaller problem is solved by an individual computing unit, also called an worker.

They can be individual cores in a multicore processor or nodes in a cluster. In the

remaining of this chapter, we will use these two terms interchangeably.

Parallelismhas been practiced formany years in the formof high performance

computing. In recent years, it has also become the dominant paradigm for desktop

computing in the form of multicore processors. However, many of today’s popular

statistical softwares are writtenwith serialization inmind; and they do not easily take

advantage of contemporary computer architectures. A discussion on the commonly

used parallel computers can be found inAppendix c.1. Though it is possible to obtain

superior performance by using hardware specific features, we are more concerned

with providing a generic solution that can be used by non-experts while offering

better performance through parallelization.

Parallelism strategies

The best overall strategy for scalable parallelism is data parallelism [73]. There are

various definitions of data parallelism. Narrower definitions only permit collection-

oriented operations, such as applying the same function to all elements in an array.

A wider view is that the parallelism grows (preferably linearly) as the data size or the

problem size grows. For example, parallelizing a vanilla Monte Carlo integration

algorithm belongs to this strategy. As the number of samples increases, one can

always use more parallel computing resource to run the sampler with the same

amount of time without increasing the speed of each computing unit. Note that,
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here we ignored issues such as generating random numbers in parallel, which will

be discussed later, and other factors that may slow down the performance when

the number of parallel computing units increases beyond certain limit. The smc

algorithms can also use increased parallelism in a similar fashion by increasing

the number of particles to improve accuracy of estimators. In contrast, an mcmc

algorithm usually cannot be parallelized in a scalable way. To obtain better statis-

tical results, often the only way is to increase the number of iterations, and thus

no matter how much parallel computational resources are available, the computing

time will increase without increasing the speed of the processors. There are also

algorithms that fall between the two extremes. For example, the population mcmc

algorithm can be parallelized. And the parallelism grows linearly as the number of

distributions grows. However, unlike smc algorithms, increased parallelism does

not always lead to better accuracy of estimators.

The opposite of data parallelism is functional parallelism, an approach that

runs different functional parts of a program in parallel. At best, functional paral-

lelism can improve performance by a constant speedup. For example, say a program

performs functions 𝑓1,… , 𝑓𝑘, then at best the computing time can be reduced

by 𝑘-fold through parallelism. In the remainder of this chapter, we focus on data

parallelism.

For specific problems, there are various design patterns to parallelize the

computation. Interested readers can read Appendix c.2 for a discussion on this

topic.

Importance of parallel computing

Parallel computers have been developed for decades. Several reasons have led to an

increased level of parallel computing in individual, mainstream personal computers.

The most significant one is the hardware trend. From 1973 to 2003, clock

rates of processors increased from 1 MHz to 1 GHz. Since then there have been little

improvement on this front. Now most high-end workstations have processors with
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clock rates at around 2.5 GHz. However, virtually all processors produced now have

multiple cores [113]. Eight to twelve cores configurations are common in middle to

high-end workstations and personal computers often have at least two cores with

quadric configurationsmore andmore commonly seen. The clock rates did not only

increase significantly, but also has the trend of decreasing. These changes are due

to various technical difficulties in increasing the clock rates among other reasons,

which we will not elaborate further here.

Scientists are ever seeking to solve more complex problems, which often re-

quire more computations. The only way to solve larger problems without using

significantly longer computing time in the foreseeable future, is to use parallelism.

Parallel computing is also much more economically efficient in both power con-

sumption and processors’ production than sequential computing [113]. In reality,

it means researchers can invest the same or less amount of funding, yet get more

computational work done with the same or less amount of time.

Performance measurement

Unlike sequential computing, the performance of parallel computing is more diffi-

cult to study. In sequential situations, the computational cost can often be deduced

from the algorithms easily. For example, a Monte Carlo algorithm can use the total

number of samples to be generated as a measure of its computational cost. However,

in the case of parallel computing, the total amount of computation, either measured

as the number of arithmetic operations or data operations, cannot reflect the cost

in reality. This is due to the fact that, today’s parallel computers are much more

cost efficient when more work is parallelized [113] and parallelization has its own

overhead cost. In practice, instead of the total amount of computation, one is more

interested in the speedup of a parallel program, defined as the ratio between com-

puting time of a sequential program and the one of a parallel program that does the

same amount of computational work.

Let 𝑃 be the number of hardware workers, e.g., cores in a multicore processor
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or nodes in a cluster, and𝑇𝑃 be the total time of computation. 𝑇1 is usually called the

work of the program and𝑇∞ is called the span. The speedup, defined as 𝑆𝑃 = 𝑇1/𝑇𝑃,

is upper bounded,

𝑆𝑃 ≤
𝑇1
𝑇1/𝑃
= 𝑃 (6.1)

In addition, assuming that adding processors never slows down the program (in

reality, it is only the case when 𝑃 is modest),

𝑆𝑃 ≤ 𝑇1/𝑇∞ (6.2)

Implementations on different hardwares often concern one of the three quan-

tities, 𝑇1, 𝑇𝑃 and 𝑇∞. For sequential implementations, clearly 𝑇1 is the only one of

interest. Formulticore and smp systems,𝑇𝑃 is of interest for a particular value𝑃, and

attaining a speedup of 𝑃 (𝑇𝑃 = 𝑇1/𝑃) is desired. In the context of smc algorithms,

it is often the case that 𝑇∞ ≪ 𝑇𝑃 and thus 𝑇∞ (attaining the second upper bound

of speedup) was previously of less interest. However, the recent development on

massive parallel computers (see Appendix c.1) has made it close to a reality for many

algorithms to attain a speedup 1/𝑇∞. In this form of parallel computing, there are

often hundreds or even thousands parallel computing units working concurrently.

For many applications, this effectively means that all computational work can be

parallelized as long as the algorithm permits.

Limitations

Parallel computing is not without drawbacks. Two main factors that limit its

widespread use in practice is the difficulty in reasoning of the program and the

tuning of performance.

Parallel programs are more difficult to construct correctly than an equiva-

lent sequential program. Because of its parallel nature, many operations may be

performed concurrently and may happen at random orders or at the same time.

However, due to reasons such as data dependency, some operations have to be per-

formed in a deterministic order to give meaningful results. Informally, when two
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workers try to modify the same location of data, the behavior is undefined. This is

also called data race.

Another difficulty of parallel computing is the tuning and portability of per-

formance. Since the development of languages such as Fortran and C, scientists

have relied on them to develop portable softwares. There are two sides of portability.

One is the programming portability, meaning that the same source code can be

used to build softwares for different platforms with little or no modifications. The

other one is the performance portability, meaning that the softwares built from the

same source code for different platforms have comparable performance. In the early

days, people needed to optimize programs for each platform individually. However,

with the development of modern compiler techniques, such practices are much less

seen.

In the era of parallel computing, many low level details need to be taken

care of to obtain reasonable performance. For example, while using the OpenMP

programming model, which is widely used by scientists to write parallel programs,

issues such as thread affinity (associate each thread with a particular processor) can

often cause large performance differences. More recently, devices such as gpus are

even less performance portable. The author has seen that the same OpenCL [101]

program can have an order of magnitude difference in performance when running

on devices from different vendors even though they have similar raw computational

power.

We believe that with the development of developer tools for parallel com-

puting, such issues will become less common and it will help the wider spread of

parallel computing.

The last but not least problem with parallel computing is that, not all algo-

rithms can be parallelized or at least not efficiently. Many mcmc algorithms are

typical examples. And they can hardly benefit much from future computer tech-

nology advancement. This issue can be better solved by developing new algorithms

that are more suitable for today’s and future computers.
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6.1.2 Software for Monte Carlo computing

Over the decades there are many softwares developed for the purpose of Monte

Carlo computing, especially for more established algorithms such as mcmc. It

is impossible to give a complete review of even those most important ones here.

Most of them can be characterized by three aspects – application areas, software

environments and implementation level.

Some softwares are designed with general application in mind. They can be

used to solve a large array of problems. Some others target specific applications and

some of them are designed to implement a particular model.

There are also the differences in software environments. Some are standalone

software. They are often the easiest to use. Others depend on a larger software

environment. For example, many numerical tools are developed usingMatLab [157].

In recent years, the R programming language [129] has gain substantial popularity

among statisticians. These softwares often require at least basic knowledge of the

environment (e.g.,MatLab or R) to use. There are also softwares developed for low

level languages such as C++, distributed in the form of libraries. They may have an

even steeper learning curve.

By implementation level, we mean how much of a given algorithm is imple-

mented by the software and how much is left to be implemented by users. This is

closely related to the application area of the software. At the lowest level, some soft-

wares used to solve a particular problem requires the user to implement algorithms

from the ground up. The softwares themselves only provide basic facilities such as

linear algebra computations. Some softwares provide frameworks on top of which

users only need to fill in problem specific information.

In the following, we review some more important development for Monte

Carlo computing. Most of those that are relevant to the work in this thesis can be

categorized by whether they solve mcmc or smc problems.
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Software for mcmc computing

The most well known software for using mcmc algorithms is perhaps bugs [148,

110]. It provides an easy to use environment for Bayesian modeling using the Gibbs

sampling. Users only need to specify the models using the bugsmodel specification

language, which describes the model parameters in a direct acyclic graph (dag)

and the data in a similar language. The software analyzes the model and chooses

mcmc algorithms to do the sampling. It is an easy to use practical tool for Bayesian

analysis. The output of bugs is usually analyzed with R, using packages such as coda

[128].

The limitation of bugs is that the resulting algorithms may not be well tuned

and it can take a long time to get reasonable results. In particular, it is very difficult

for users to provide input to the algorithm design process. The software chooses the

algorithm tuning parameters, such as the proposal scales for Metropolis random

walk algorithms. Even if users have insights such as what values of the proposal

scales are more likely to lead to good performance, it is difficult for such insights to

be used by the software. In addition, it does not allow more flexible design of data

structures and thus it can be significantly inefficient for some applications.

There are also many packages for the R environment that implement mcmc

algorithms. TheMCMCpack [112] package providesmodel specific mcmc algorithms

for a wide range of models commonly used in social and behavioral science. The

mcmc [60] package can be used to implement Metropolis random walk algorithms

for continuous distributions. There are also many more application specific pack-

ages. For example, the R project’s task view on Bayesian inference1 lists dozens

of packages among which many implement mcmc algorithms for specific mod-

els. These packages are often very useful in their application areas but with less

generality.

1http://cran.r-project.org/web/views/Bayesian.html
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Another interesting development is PyMC [46]. It is distributed as a module

for the Python programming language. It is highly influenced by bugswhile provid-

ing more flexibility and better performance through the integration with Python.

The CppBugs [12] is similar to PyMC but is a library for C++. It is possible to obtain

much better performance using CppBugs compared to bugs while only a little more

programming effort is required. Both PyMC and CppBugs give users access to a

general programming language in the process of designing the algorithms. Much

flexibility and better performance are gained through this integration with a gen-

eral purpose programming language. On the other hand, to use them to their full

potential, users do need to have some experiences of the programming languages.

Overall, for mcmc algorithms, it is often not very difficult to develop applica-

tion specific software using a general purpose programming language such as R or

C++ coupled with a suitable package or library. These widely used softwares tend to

solve a particular class of problems instead of providing a more general framework

for implementation of algorithms. Bayesian inference is certainly one of the more

important application areas of mcmc. And many softwares have been developed

for this purpose, with bugs being perhaps the most influential one and relatively

more general than others such as the various R packages targeting specific models.

Software for smc computing

Unlike mcmc algorithms, even the simplest smc algorithms can be difficult to

implement in general purpose programming languages for researchers, as the im-

plementations of resampling and other aspects of the algorithms are not always

straightforward. There is a demand for softwares that help researchers to implement

complex generic smc algorithm.

Many smc algorithms are often more computational intense than typical

mcmc applications. This can be partially attributed to the fact that smc algorithms

are often used to simulate complex high dimensional distributions, for which mcmc

algorithms often perform poorly. Therefore, applications of interest for smc algo-
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rithms requires highly efficient implementations.

There is relatively little development of softwares for smc algorithms. There

has been some development usingMatLab for the purpose of particle filtering, such

as, the PFLib [27] toolbox.

More recently, the smctc library [90] was developed. It provides a framework

for implementation of generic smc algorithms in C++. It is possible to implement

many realistic algorithms using the library with relative ease. It also provides very

good performance. The generic framework was built with C++ template techniques.

It allows a wide range of applications while requires some expertise in C++. These

are two traits also shared by the vSMC library.

There are also a few R packages that provides implementations of smc algo-

rithms. For example the smc [62] package can be used to implement some generic

smc algorithms. However it is more of a skeleton of smc algorithms with much

of the implementation details such as resampling needed to be provided by users.

Overall, R packages for smc algorithms are much less common than those for mcmc

algorithms.

As smc algorithms gain more attentions in research areas, such as Bayesian

inference, some application specific softwares have been also developed. The BiiPS

[25] package aims to provide users an interface similar to that of bugs with smc as

the underlying algorithms for inference instead of mcmc. It is built on top of smctc

among other softwares. It can be used as a drop-in replacement of bugs in many

applications.

Another interesting development is the LibBi library [117]. It is particularly

suited for Bayesian state-space modeling. It provides an easy to use interface using

the Perl programming language. One does not need to know much of the language

to use LibBi’s interface. However, proficiency in Perl allows much flexibility in the

design of the algorithm. This is similar to the PyMCmodule for mcmc algorithms.

The library can also construct parallelized sampler for a wide range of hardware.
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Parallelized Monte Carlo computing

Parallel computing can be used to accelerate Monte Carlo applications. However,

due to its very sequential natural, mcmc algorithms have seen little development

on this front. All softwares for mcmc computing discussed before are built with

sequential implementations.

Driven by the need to simulate complex distributions efficiently and the

desire to use parallel computing to solve larger problems, many algorithms that are

particularly suitable for parallelization have been developed in the past decade. The

smc and related algorithms are clearly among them. The population mcmc (see

Section 4.3.5) algorithm can also be parallelized though less efficiently. For example,

see results in Section 5.5.2 and 5.5.3. More recently the particle mcmc algorithm [7]

is also well suited for parallel computing.

There is no lack of interest in using parallel computing for these algorithms.

For example, [104] studied the implementation of smc algorithms on massive-

parallel hardware (e.g., gpu). The results are encouraging. However, there are few

softwares for the purpose of implementation of generic smc algorithms in parallel

computers. The LibBi library is a notable exception.

There is also some fundamental work done in this area. One more impor-

tant aspect is generating random numbers in parallel. Conventional pseudo-rng

generates random numbers using an internal state, say 𝑥𝑡 and iterates it with a

deterministic transformation, 𝑥𝑡+1 = 𝑓(𝑥𝑡). A data dependency exists between

𝑥𝑡+1 and 𝑥𝑡, which prevents scalable parallelization. For example, algorithms in

[104] used to generate random numbers have a cost greater than 𝑂(𝑁) where 𝑁

is the number of parallel computing units. One solution to this problem is using

state-less rng. Informally, given a collection of values {𝑥𝑖}𝑁𝑖=1, the collection {𝑦𝑖}
𝑁
𝑖=1

where 𝑦𝑖 = 𝑓(𝑥𝑖), appears to be random. There are no dependencies among {𝑥𝑖}𝑁𝑖=1.

Therefore the collection {𝑦𝑖}𝑁𝑖=1 can be generated in parallel efficiently. The work

by [139] provides accessible, high performance state-less rng. It is also used by the

vSMC library.
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We believe there is demand of softwares similar to smctc, which provides a

framework for implementation of generic smc algorithms (in contrast to applicable

for only a class of models) and for taking full advantages of today’s parallel comput-

ers. The vSMC library aims to fill this gap. It is less easy to use than softwares such

as LibBi or BiiPS. But it is possible to use it to obtain more flexibility in the design of

the algorithm and better performance.

6.2 the vSMC library

To obtain and install the library, see detailed instructions in [166], which also doc-

uments the third-party dependencies and compiler support. A Doxygen [72] gener-

ated reference manual can be found at http://zhouyan.github.io/vSMC/doc/

html/index.html. It is beyond the scope of this chapter to document every feature

of the vSMC library. In many places we will refer to this reference manual for further

information.

A more systematic tutorial of the library can be found in [166] and the refer-

ence manual. The remainder of this chapter is structured according to the common

tasks performed by generic smc samplers. Many features of the library are intro-

duced in examples. Interested readers can see the tutorial [166] and the reference

manual for details.

The vSMC library makes use of C++’s template generic programming to

implement general smc algorithms. The library is formed by a few major modules.

In the remainder of this chapter, unless stated otherwise, all public classes and

functions of the library reside in the namespace vsmc. Brief discussions of the most

important modules are discussed below.
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Core The highest level of abstraction of smc samplers. Users interact with classes

defined within this module to create and manipulate general smc samplers. Classes

in this module include Sampler, Particle and others. These classes use user de-

fined callback to perform application specific operations, such as updating particle

values and weights.

Symmetric Multiprocessing (smp) This is the form of computing most people use

everyday, including multiprocessor workstations, multicore desktops and laptops.

Classes within this module make it possible to write generic operations which

manipulate a single particle that can be applied either sequentially or in parallel

through various parallel programming models. A method defined through classes

of this module can be used by Sampler as callback objects.

Message Passing Interface mpi is the de facto standard for parallel programming on

distributed memory architectures. This module enables users to adapt implemen-

tations of algorithms written for the smp module such that the same sampler can

be parallelized using mpi. In addition, when used with the smp module, it allows

easy implementation of hybrid parallelization such as mpi/OpenMP.

OpenCL This module is similar to the two above except it eases the parallelization

through OpenCL, such as for the purpose of General Purpose gpu Programming

(gpgpu). OpenCL is a framework for writing programs that can be executed across

heterogeneous platforms. OpenCL programs can run on either cpus or gpus.

6.2.1 Core classes

There are over two hundred classes, large and small, in the vSMC library. It is beyond

the scope of this chapter to document most of them. However, a few of them play

central roles in the implementation of smc algorithms. In this section, we provide

an overview of them. Many of them are feature rich. Instead of documenting their
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interfaces here, we will introduce useful features through examples later.

Value collection type This is actually not a type defined by vSMC, but a user de-

fined class that abstracts the collection of values {𝑋(𝑖)}𝑁𝑖=1. The library allows much

flexibility in the definition of this type. The important thing to note here is that this

class needs to at least abstract the whole collection of all values instead of a single

particle. In Section 6.3, we introduce a readily usable implementation provided by

the vSMC library, on top of which users can build application specific classes.

Most core classes in the library are class templates with this value collection

type as their template parameter. In the following, we use the generic name T to

denote this value collection type.

Sampler A Sampler<T> object is used to execute various operations of an smc

algorithm. It is used to initialize the particles and to update them. It is also used to

perform resampling and importance sampling approximation. In the body of a pro-

gram, this is usually the only class that users need to interact with. In Section 6.2.2,

we show how each step of a generic smc algorithm is mapped to the operations

provided by a Sampler<T> object.

Particles A Sampler<T> object contains, among other things, an object of type

Particle<T> that abstracts the particle system. A particle system is formed by both

the values {𝑋(𝑖)}𝑁𝑖=1 and the importance weights {𝑊(𝑖)}𝑁𝑖=1. The former is abstracted

by user defined value collection type T. The later is abstracted by a WeightSet<T>

object.

The Particle<T> object also provides various methods that manipulate the

particle system, for example, it can perform the resampling algorithm on the particle

system when required by the Sampler<T> object.
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Weights As said, the importance weights in a particle system are manipulated

through a sub-object of type WeightSet<T>. In addition to common weights ma-

nipulations, such as setting the weights directly or using the incremental weights, it

also provides ways to query properties of the weights. For example, it can calculate

the ess and cess values.

For most applications, the default WeightSet<T> is sufficient. However, like

the value collection type, there could be special requirement of this class. It can

be replaced by user defined classes through C++ template metaprogramming. The

details are documented in the reference manual.

Monitors Given a real-valued function ℎ, the library can use Monitor<T> type ob-

jects to compute the importance sampling approximation of 𝔼[ℎ(𝑋)] automatically

as the sampler progresses. The function value of ℎ is allowed to be a vector. And it is

possible to use optimized linear algebra library to accelerate the computation in that

case. There are also special support for path sampling, which requires essentially a

simple importance sampling approximation and a numerical integration.

6.2.2 Program structure

Recall the smc algorithms discussed in Section 5.1, regardless of specific applications

or algorithm settings, in practice they can be dissembled into the following steps.

1. Initialize values {𝑋(𝑖)}𝑁𝑖=1 and calculate importance weights {𝑊(𝑖)}𝑁𝑖=1.

2. For 𝑡 = 1,… , 𝑇, where 𝑇 may not be finite (for example, a particle filter

processing incoming data on-line), repeat

(a) Update either values {𝑋(𝑖)}𝑁𝑖=1 or importance weights {𝑊(𝑖)}𝑁𝑖=1 or both.

(b) Resampling.

(c) Update either values {𝑋(𝑖)}𝑁𝑖=1 or importance weights {𝑊(𝑖)}𝑁𝑖=1 or both.

Note that steps 2.(a)-(c) are all optional, though it is unlikely that all three of them

are absent. For example, an ais algorithm does not have the resampling step. An
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smc algorithm such as Algorithm 5.2 only updates the weights before the possible

resampling and only update the values after it while a particle filter might update

both the values andweights at step 2.(a). Both step 2.(a) and 2.(c)may be formed by a

few sub-steps. For example, theMarkov kernel may be constructed as a composition

of multiple Metropolis random walks.

In addition, after each iteration of step 2, we may be interested to evaluate

some importance sampling estimates. For example, the path sampling estimator, as

seen in Section 5.2.4, requires the importance sampling estimates of d log 𝛾𝛼(𝑋)/ d 𝛼

where 𝛾𝛼 is the unnormalized density function of the family of distributions that the

smc sampler operates on. Another example is particle filters, which often requires

estimates of certain parameters at each iteration.

For demonstration purpose, let us assume that our program has all those

steps and need to calculate both the path sampling and other importance sampling

estimates. In the vSMC library, all these tasks are performed through the Sampler

class. Below is an example of such a program,

int main ()

{

Sampler<T> sampler(N, Stratified, 0.5);

sampler.init(init_f); // Step 1.

sampler.move(move_f, false); // Step 2.(a)

sampler.mcmc(mcmc_f1, true); // Step 2.(c)

sampler.mcmc(mcmc_f2, true); // Step 2.(c)

// Path sampling

sampler.path_sampling(path_eval);

// Importance sampling estimates of moments

sampler.monitor("moments", 2, moments_eval);
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// Runing the algorithm

sampler.initialize(param);

sampler.iterate(IterNum);

// Results of path sampling

std::cout << "Path sampling: " << std::endl;

std::cout << sampler.path_sampling() << std::endl;

// Output importance sampling approximation

// and other aspects of the history of the sampler

std::ofstream output("sampler_file");

output << sampler << std::endl;

output.close();

return 0;

}

We will explain each line of this program in detail. For now, it is sufficient to point

out that the following objects used in this program are user defined callback that

implement application specific operations.

init_f Initialize the particle values. (Section 6.4)

move_f Update the particles. For example, updating the weights. These

updates are performed before the possible resampling. (Section 6.5)

mcmc_f1 and mcmc_f2 Update the particles. For example, moving the par-

ticles with an mcmc kernel. These updates are performed after the possible

resampling. (Section 6.5)

path_eval Evaluate the value of path sampling integrands, d log 𝛾𝛼(𝑋)/ d 𝛼.

(Section 6.6)

moments_eval Evaluate importance sampling estimate integrands, for ex-
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ample moments of parameters. (Section 6.6)

6.3 the particle system

At the core of each implementation of smc algorithms using the vSMC library is the

definition of the value collection type that abstracts {𝑋(𝑖)}𝑁𝑖=1. vSMC does not restrict

how the values should be actually stored. They can be stored in the main memory,

spread among nodes of a cluster, in gpu memory or even in a database. Users can

define their own value collection type to fulfill various application specific needs.

For full details on the requirement of the value collection type, see [166].

Given a value collection type T, one can construct a sampler,

Sampler<T> sampler(N, Stratified, 0.5);

The first argument is the number of particles. The second is the resampling meth-

ods. There are six built-in resampling schemes in the library. And user defined

resampling algorithms can also be used. See the reference manual for details. The

last argument is the threshold of ess/𝑁 at each iteration, below which resampling

will be performed. The later two parameters are optional.

A Sampler<T> object has a sub-object, Particle<T>, which contains the

type T object along with other data such as the importance weights. Each can be

accessed as the following,

Sampler<T> sampler(N);

sampler.particle(); // Reference to Particle<T> object

sampler.particle().value(); // Reference to type T object

6.3.1 A matrix of state values

Many typical problems’ value collections can be viewed as a matrix of certain type.

For example, a simple particle filter whose state is a real-valued vector of length

𝑀 can be viewed as an 𝑁 by 𝑀 matrix of type double where 𝑁 is the number
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of particles. A trans-dimensional problem (e.g., [85]) can use an 𝑁 by 1 matrix

whose type is a user defined class, say StateType. For this kind of problems, a class

template is provided by the library,

template <MatrixOrder Order, std::size_t Dim, typename StateType>

class StateMatrix;

The first template parameter (possible value RowMajor or ColMajor) specifies how

the values are ordered inmemory. Usually one should choose RowMajor to optimize

data access. The second template parameter is the number of variables, an inte-

ger value no less than 1 or the special value Dynamic, in which case StateMatrix

provides a member function resize_dim such that the number of variables can be

changed at runtime. The third template parameter is the type of the state values.

Each particle’s state is thus a vector of length Dim, indexed from 0 to Dim - 1. To

obtain the value at position j of the vector of particle i (the element at the ith raw

and jth column of the matrix), one can use the statemember function,

StateBase<RowMajor, Dim, StateType> value(N);

StateType val = value.state(i, j);

There are other ways to obtain and manipulate the values, see the reference manual

for details. Note that, one can derive from the StateMatrix class to extend its

functionality, as we will see in examples later.

6.3.2 A single particle

If the value collection type T satisfies certain requirements2, then for a Particle<T>

object, one can construct a SingleParticle<T> object that abstracts one of the

particle from the collection. For example,

2See the reference manual for technique details. It is sufficient to note here that StateMatrix and

any of its derived classes satisfy those requirements.
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Particle<T> particle(N);

SingleParticle<T> (i, &particle);

create a SingleParticle<T> object corresponding to the particle i. There are a few

member functions of SingleParticle<T> that make access to individual particles

easier than through the interface of Particle<T>. For instance, for each particle,

a Particle<T> object construct an independent C++11 rng engine. For example,

the following uses it to generate standard Normal random variates,

std::normal_distribution<double> rnorm(0, 1);

std::vector<double> z(particle.size());

for (std::size_t i = 0; i != particle.size(); ++i)

z[i] = rnorm(particle.rng(i));

If we access each particle through SingleParticle<T>, then we can write

z[i] = rnorm(sp.rng());

Here sp.rng() is equivalent to particle.rng(i).

The functionality of a SingleParticle<T> can be enhanced through tem-

plate metaprogramming. For instance, if T is StateMatrix or its derived class, then

sp.state(j) is equivalent to particle.value().state(i, j).

6.3.3 Example: The value collection of gmm

The StateMatrix is a minimalistic class template. Users can derive from it and

build application specific value collection classes. Here we demonstrate how the

value collection, named GMM, in the smc2 algorithm for the Gaussian mixture model

(gmm; see Section 5.5.1) is designed.

Recall that, a gmm with 𝑟 components has a parameter vector of length 3𝑟,

𝜃𝑟 = (𝜇1∶𝑟, 𝜆1∶𝑟, 𝜔1∶𝑟). In the smc2 algorithm, we use the sequence of distributions

{𝜋𝑡}𝑇𝑡=0 taking the form,

𝜋𝑡(𝜃𝑡) = 𝜋0(𝜃𝑡|ℳ)𝑝(𝑦|𝜃𝑡,ℳ)𝛼(𝑡/𝑇).
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The GMM class will abstract the gmm in addition to the state of all particle values at

any given generation. Therefore, we have the following design goals for this class,

1. The data, which is associated with the model should be stored in and can be

accessed through this class.

2. The calculation of the likelihood and the prior densities, which are charac-

teristics of the model should be possible through this class.

3. The distribution specification parameter 𝛼 and the mcmc proposal scales,

which are properties of a given generation of the particle system, should be

associated with this class.

This class is outlined as below.

template <std::size_t R>

class GMM :

public StateMatrix<RawMajor, 3 * R, double>

{

public :

GMM (std::size_t N) :

StateMatrix<RawMajor, 3 * R, double>(N),

mu_scale_(1), lambda_scale_(1), omega_scale_(1) {}

static const std::size_t ComponentNumber = R;

static std::size_t mu_idx (std::size_t j)

{ return j; }

static std::size_t lambda_idx (std::size_t j)

{ return R + j; }

static std::size_t omega_idx (std::size_t j)
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{ return R * 2 + j; }

double mu_scale () const { return mu_scale_; }

double &mu_scale () {return mu_scale_; }

double lambda_scale () const { return lambda_scale_; }

double &lambda_scale () {return lambda_scale_; }

double omega_scale () const { return omega_scale_; }

double &omega_scale () {return omega_scale_; }

double alpha (std::size_t t) const;

double &alpha (std::size_t t);

void read_data (const std::string &data_file);

double log_likelihood (std::size_t i) const;

double log_prior (std::size_t i) const;

private :

double mu_scale_, lambda_scale_, omega_scale_;

std::vector<double> alpha_;

std::vector<double> data_;

};

First the number of components is set through a template parameter R. Of course,

it is possible to make this parameter dynamic and changeable at runtime by using

Dynamic for the second template parameter of StateMatrix.

Second, the static member functions mu_idx, etc., returns the index of the 𝜇𝑗,
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etc., in each row of the StateMatrix. For example, to access 𝜆𝑗 of the 𝑖th particle,

we can use

particle.value().state(i, GMM<R>::lambda_idx(j));

or with the SingleParticle interface

sp.state(GMM<R>::lambda_idx(j));

instead of the much more difficult to read expression,

sp.state(GMM<R>::ComponentNumber * 2 + j);

It is trivial to see that the parameters are arranged as if in such a matrix,

(

𝜃(1)𝑟
⋮

𝜃(𝑁)𝑟

) =(

𝜇(1)1 ,… , 𝜇
(1)
𝑟 , 𝜆

(1)
1 ,… , 𝜆

(1)
𝑟 , 𝜔

(1)
1 ,… , 𝜔

(1)
𝑟

⋮ ⋮ ⋮

𝜇(𝑁)1 ,… , 𝜇
(𝑁)
𝑟 , 𝜆

(𝑁)
1 ,… , 𝜆

(𝑁)
𝑟 , 𝜔

(𝑁)
1 ,… , 𝜔

(𝑁)
𝑟

)

Third, the setter and getter member functions such as mu_scale provide

access to the proposal scales. In addition, the member function alpha provides

access to 𝛼(𝑡/𝑇).

Fourth, the read_datamember function, whose definition is omitted here,

provides a way to read data into the data_member data.

And last, the log_likelihood and log_priormember functions calculate

the log-likelihood and log-prior densities for a given particle. They accept the

particle’s index number as input. The actual implementations of these functions,

distributed with the library, use more sophisticated data structures to ensure that

the computation only occurs when the parameter values are changed. From a user’s

perspective, one only needs to know that these member functions will return the

value of likelihood and prior densities for the current particle values when called,

while the actual computation may or may not happen when the functions are called.
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6.4 initializing

The particles are initialized by a user defined callback. The callable object has the

following signature,

std::size_t init_f (Particle<T> &, void *);

It is added to the sampler by

sampler.init(init_f);

And it will be called when the following in the program (Section 6.2.2) is executed,

sampler.initialize(param);

where the input parameter param is optional and the default value is NULL. It will

be passed on as the second argument of init_f with sampler.particle() being

the first. The return value of init_f will be recorded as the acceptance count and

can be later retrieved by,

sampler.accept_history(0, 0);

The optional parameter can be used to provide additional information needed to

initialize the sampler.

If users do not do anything special, the sampler will also initialize the weights

{𝑊(𝑖)}𝑁𝑖=1 to be equal and normalized to 1/𝑁. In addition, any information recorded

for previous generations of the particle system will be erased during the initializa-

tion.

6.4.1 Example: Simulation of a Normal distribution

We show here a very simple example, simulation of Normal random variables. And

we will introduce an important feature of the library through it – parallelization.

Suppose for an smc algorithm with a parameter vector of length 𝑘, we want

to initialize each of the parameter to u� (𝜇, 𝜎2), where u� denotes the Normal dis-

tribution. We can implement it as the following,
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// Definition of constants: N, K

typedef StateMatrix<RawMajor, K, double> T;

struct Param { double mean; double sd; };

std::size_t init_f (Particle<T> &particle, void *param)

{

const Param *p = static_cast<const Param *>(param);

std::normal_distribution<double> rnorm(p->mean, p->sd);

for (std::size_t i = 0; i != particle.size(); ++i) {

for (std::size_t k = 0; k != K; ++k) {

particle.value().state(i, k) =

rnorm(particle.rng(i));

}

}

}

In this example, we used the second parameter param to pass information about the

Normal distribution, its mean and standard deviation. In the body of the program

(the main function), we can use it as the following,

sampler.init(init_f);

Param param = {Mean, Sd};

sampler.initialize(param);

6.4.2 Parallelized implementation

In the above example, we looped over all particles. The inner loop is repeated for

each particle. There are no data dependencies among particles in this operation. It
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is perfectly reasonable to have the outer loop parallelized.

This kind of parallelization, not only for initializing particles, but also for

updating particles, are supported in the vSMC library through a set of class templates.

Here we introduce the ones specific to initialization,

template <typename T, typename D = Virtual> class InitializeSEQ;

template <typename T, typename D = Virtual> class InitializeOMP;

template <typename T, typename D = Virtual> class InitializeTBB;

Each of the above three implement sequential,OpenMP parallelization and Intel TBB

parallelization, respectively. There are a few other similar classes for other parallel

programming models not listed here. We first use InitializeSEQ as an example

to demonstrate how it is used. The interface of InitializeSEQ given the second

template parameter being Virtual is,

template <typename T, typename D = Virtual>

class InitializeSEQ

{

virtual std::size_t initialize_state (SingleParticle<T>) = 0;

virtual void initialize_param (Particle<T> &, void *);

virtual void pre_processor (Particle<T> &);

virtual void post_processor (Particle<T> &);

std::size_t operator() (Particle<T>, void *);

};

The existence of the non-virtual member function operator() and the form of its

signature ensures that an object of its derived class can be used just as init_f. It is

implemented as if,

std::size_t operator() (Particle<T> &particle, void *param)

{

this->initialize_param(particle, param);
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this->pre_processor(particle);

std::size_t acc = 0;

for (std::size_t i = 0; i != particle.size(); ++i) {

acc += this->initialize_state(

SingleParticle<T>(i, particle));

}

this->post_processor(particle);

return acc;

}

Different class templates listed above differ at how they implement the loop. For

example, InitializeOMP uses OpenMP to parallelize this loop.

The user can derive from this class and use the virtual functions to provide

application specific behaviors of this operator. For example, the simulation of

Normal random variates can now be re-implemented as,

class init_c : public InitializeSEQ<T>

{

public :

init_c () : mean_(0), sd_(1) {}

std::size_t initialize_state (SingleParticle<T> sp)

{

std::normal_distribution<double> rnorm(mean_, sd_);

for (std::size_t k = 0; k != K; ++k)

sp.state(k) = rnorm(sp.rng());

}

void initialize_param (Particle<T> &, void *param)
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{

const Param *p = static_cast<const Param *>(param);

mean_ = p->mean;

sd_ = p->sd;

}

private :

double mean_, sd_;

};

// In the main function, replace

// sampler.init(init_f); with

sampler.init(init_c());

At a first glance, it takes quite a few more lines than the original implementation

of init_f. However, by replacing InitializeSEQ with InitializeOMP, without

changing anything else, the sampler will be usingOpenMP for parallelization during

the initialization step.

There are also other benefits of this implementation. First, if OpenMP is not

available in users’ C++ environment (e.g., using the popular Clang [156] compiler),

one can use the same implementation with other parallel programming models.

For instance, to use Intel TBB instead of OpenMP, only InitializeOMP needs to be

changed to InitializeTBB.

Second, this implementation is also scalable. A few changes allows it to use

mpi for parallelization on distributed memory computers. All that needs to be done

is to wrap the value collection type with the adapter class StateMPI,

typedef StateMPI<StateMatrix<RawMajor, K, double> > T

In summary, with almost identical implementations, we can build programs

running on single threaded sequential mode, on multicore processors with various
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parallel programming models or on a distributed memory computer with mpi.

6.5 updating

The addition of methods that update the particles is more flexible than initialization.

There are two kinds of updating methods. One is simply called move in vSMC, and

is performed before the possible resampling at each iteration. The other is called

mcmc, and is performed after the possible resampling. They are often mcmc type

moves. Multiple moves or mcmcs are also allowed. In fact a vSMC sampler consists

of a queue of moves and a queue of mcmcs.

All these are implemented using user defined callbacks similar to the init_f

function in the last section, with a slight different signature,

std::size_t move_f (std::size_t, Particle<T> &);

This is the same for both move’s and mcmc’s. The first argument is the iteration

number, counting from zero for the initialization step. The second argument is

passed by the sampler, which is sampler.particle().

To add move_f into the queue of move’s, call

sampler.move(move_f, false);

The second argument, a boolean value, indicates whether the new move should be

appended to the existing (possibly empty) queue (if it is set to false); or the queue

should be cleared before set a new one. The queue of the mcmc’s is manipulated

similarly.

6.5.1 Example: Updating the weights in the smc2 algorithm

Recall Algorithm 5.2, the updating of weights should be performed before possible

resampling at each iteration. And the change of the weights are calculated with the
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incremental weights,

𝑊(𝑖)𝑡 ∝𝑊
(𝑖)
𝑡−1𝑤𝑡(𝜃

(𝑖)
𝑡−1, 𝜃
(𝑖)
𝑡 )

𝑤𝑡(𝜃
(𝑖)
𝑡−1, 𝜃
(𝑖)
𝑡 ) = 𝑝(𝑦|𝜃

(𝑖)
𝑡−1,ℳ)

𝛼(𝑡/𝑇)−𝛼([𝑡−1]/𝑇).

This is quite generic for different applications. All we need here is the calculation of

the log-likelihood function. It is natural to write a function template for it,

template <typename T>

std::size_t smc_move (std::size_t iter, Particle<T> &particle)

{

// Calculate 𝛼diff = 𝛼(𝑡/𝑇) − 𝛼([𝑡 − 1]/𝑇)

const double alph_diff =

particle.value().alpha(iter) -

particle.value().alpha(iter - 1);

// Calculate the logarithm of the incremental weights

// 𝑤̃𝑡 = 𝛼diff log 𝑝(𝑦|𝜃𝑡,ℳ)

std::vector<double> log_inc_w(particle.size());

for (std::size_t i = 0; i != particle.size(); ++i) {

log_inc_w[i] =

alpha_diff * particle.value().log_likelihood(i);

}

particle.weight_set().add_log_w(log_inc_weight.begin());

return 0;

}

// in main function

sampler.move(smc_move<T>, false);
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The assumption about the value collection type T is,

1. It provides access to 𝛼(𝑡/𝑇) in the same way as the GMM class in Section 6.3.3.

2. It provides access to the log-likelihood in the same way as the GMM class.

The first part of the function template smc_move calculates 𝛼(𝑡/𝑇)−𝛼([𝑡−1]/𝑇). The

second part calculates the logarithm of the incremental weights for each particle.

The last part manipulates the weights.

Weights aremanipulated through a object of type WeightSet. There are other

ways to manipulate them, such as,

std::vector<double> weight(particle.size());

particle.weight_set().set_equal_weight();

particle.weight_set().set_weight(weight.begin());

particle.weight_set().mul_weight(weight.begin());

particle.weight_set().set_log_weight(weight.begin());

particle.weight_set().add_log_weight(weight.begin());

The set_equal_weightmember function sets all weights to be equal, i.e., 1/𝑁. The

set_weight and set_log_weightmember functions set the values of weights and

logarithm weights, respectively. The mul_weight and add_log_weight member

functions multiply the weights or add to the logarithm weights by the given values,

respectively. All these member functions accept general input iterators as their

arguments.

6.5.2 Example: The mcmc move in gmm

In this example, we show an implementation of the mcmc moves in the gmm ex-

ample (Section 5.5.1). We will only detail the implementation of random walk block

on 𝜇1∶𝑟. The others are similar. Recall that, we perform a Normal random walk on

the mean parameters. The mcmc algorithm’s implementation can be summarized

as the following steps,

1. Calculate the value of the target density for the parameter values, say 𝑓.
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2. Propose new values according to the proposal distribution. In our imple-

mentation, this proposal step are carried in place, meaning that the particle

values are updated when new values are proposed.

3. Calculate the value of the target density for the proposed parameter values,

say 𝑓′.

4. Generate a uniform random variate on the [0, 1] interval, say 𝑢,

5. Accept the proposed values if 𝑢 < 𝑓′/𝑓. Otherwise, restore the old values.

The implementation of these five steps are straightforward,

template <std::size_t R>

class GMM_MCMC_Mu : public MoveOMP<GMM<R> >

{

public :

std::size_t move_state (

std::size_t iter, SingleParticle<GMM<R> > sp)

{

// Step 1.

double log_target =

sp.particle().value().log_likelihood(sp.id()) +

sp.particle().value().log_prior(sp.id());

// Step 2.

double backup[R];

std::normal_distribution<double> rnorm(

0, sp.particle().value().mu_scale());

for (std::size_t j = 0; j != R; ++j) {

std::size_t mu_idx = GMM<R>::mu_idx(j);

backup[mu_idx] = sp.state(mu_idx);

sp.state(mu_idx) += rnorm(sp.rng());
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}

// Step 3.

double log_target_proposed =

sp.particle().value().log_likelihood(sp.id()) +

sp.particle().value().log_prior(sp.id());

// Step 4.

std::uniform_distribution<double> runif(0, 1);

double log_u = std::log(runif(sp.rng()));

// Step 5.

double log_prob = log_target_proposed - log_target;

if (log_u > log_prob) {

for (std::size_t j = 0; j != R; ++j) {

std::size_t mu_idx = GMM<R>::mu_idx(j);

sp.state(mu_idx) = backup[mu_idx];

}

return 0;

}

return 1;

}

};

First, we derived our class from a class template called MoveOMP. It is similar to the

InitializeSEQ class template introduced in Section 6.4.2. It provides OpenMP

parallelization.

Second, we used a few new features of the SingleParticle class template.

Recall that, it is created from a reference to a Particle<T> object and an index

of the individual particle. The Particle<T> object can be obtained, by a constant
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reference, through

sp.particle();

and the index can be obtained through

sp.id();

These are used in the calculation of the values of the log-likelihood and the log-prior

densities.

Otherwise, the implementation is a straightforward translation of the mathe-

matical representation of the algorithm. The whole algorithm has three blocks of

random walks. Say we implemented the other two similarly as GMM_MCMC_Lamba

and GMM_MCMCM_Omega, then in the body of the program we can add them to the

sampler by,

sampler

.mcmc(GMM_MCMC_Mu(), false)

.mcmc(GMM_MCMC_Lambda(), true)

.mcmc(GMM_MCMC_Omega(), true);

Note that the mcmc member function call return a reference the sampler itself.

Therefore we can chain these calls. When we call,

sampler.iterate(IterNum);

the sampler will iterate IterNum steps and at each step, all three of these random

walks will be applied to the particle system.

6.6 monitoring

Before initializing the sampler or after a certain time point, one can add monitors

to the sampler. The concept is similar to bugs’s monitor statement, except it does

not monitor the individual values but rather the importance sampling estimates.
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Consider approximating𝔼[ℎ(𝑋)], where ℎ(𝑋) = (ℎ1(𝑋),… , ℎ𝑚(𝑋)) is an𝑚-vector

function. The importance sampling estimate can be obtained by 𝐴𝑊 where 𝐴 is an

𝑁 by𝑚matrix where 𝐴(𝑖, 𝑗) = ℎ𝑗(𝑋(𝑖)) and𝑊 = (𝑊(𝑖),… ,𝑊(𝑁))𝑇 is the𝑁-vector

of normalized weights. To compute this importance sampling estimate, one needs

to define the following evaluation function (or other kinds of callable objects),

void monitor_eval (std::size_t iter, std::size_t m,

const Particle<T> &particle, double *res);

and adds it to the sampler by calling,

sampler.monitor("variable.name", m, monitor_eval);

When the function monitor_eval is called, iter is the iteration number of the

sampler, m has the same value as the one users passed to Sampler<T>::monitor;

and thus one does not need global variables or other similar techniques to access

this value. The output pointer res points to an𝑁 × 𝑚 output array of row major

order. That is, after the calling of the function, the value of res[i * dim + j]

should be ℎ𝑗(𝑋(𝑖)).

Implementation of the path sampling estimator (Section 5.2.4) can be viewed

as a special kind of monitor. In addition to the evaluation of ℎ(𝑋(𝑖)), where ℎ(𝑋) =

d log 𝛾𝛼(𝑋)/ d 𝛼 in this special case, the interval length of the numerical integration

as in Equation (5.28) also needs to be obtained. The vSMC library provides special

support for path sampling. First one needs to define a function, say path_evalwith

the following signature,

double path_eval (std::size_t iter,

const Particle<T> &particle, double *res);

It is not unlike the monitor_eval function above. It only differs by,

1. The output array res is always of length𝑁, and thus there is no argument to

pass the dimension of the monitor

2. It returns a value, which should be 𝛼𝑡.
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To use it, one can add it to the sampler by,

sampler.path_sampling(path_eval);

And the estimate can be obtained by

sampler.path_sampling();

6.6.1 Example: Path sampling in the smc2 algorithm

In Algorithm 5.2, the path sampling integrands is simply the log-likelihood, and 𝛼𝑡 =

𝛼(𝑡/𝑇). Therefore the implementation of a generic path_eval is straightforward.

Again, we assume that the value collection type 𝑇 provides access to 𝛼(𝑡/𝑇) and the

log-likelihood in the same way as the GMM class. We can implement the function

template as the following,

double path_eval (std::size_t iter,

const Particle<T> &particle, double *res)

{

for (std::size_t i = 0; i != particle.size(); ++i)

res[i] = particle.value().log_likelihood(i);

return particle.value().alpha(iter);

}

Other smc algorithms such Algorithm 5.3 may have different path sampling esti-

mator expressions. But the implementation is similar.

6.6.2 Example: Adaptive specification of proposal scales

Now we demonstrate the implementation of a slightly more complex monitor and

the use of it for the purpose of adaptive specification of proposal scales. Consider
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the gmm example, as outlined in Section 5.3.3. We can use the moments of the

parameters to set the proposal scales adaptively.

First, we need to create a monitor that records the first two raw moments of

each parameter. We can make this problem more general as estimating the first

𝑀 raw moments. We use a parallelized monitor, MonitorEvalOMP for the imple-

mentation of the evaluation function. It is not unlike the MoveOMP class template

introduced earlier. The main difference is that now we need to define the following

member function,

void monitor_state(std::size_t, std::size_t,

ConstSingleParticle<GMM<R> > csp, double *res)

where the first argument is the iteration number and the second is the dimen-

sion of the monitor. The third, a ConstSingleParticle type object, is similar to

SingleParticle except that now one does not have write access to the particles. In

other words, one cannot change the particle values through it. The last, the output

parameter res is of length the dimension of the monitor. The function call needs

only to store the values of ℎ(𝑋(𝑖)) for a single particle. The complete implementation

is given as below,

template <std::size_t R, std::size_t M>

class GMM_Moments : MonitorEvalOMP<GMM<R> >

{

public :

static const std::size_t Dim = R * Order * 3;

static std::size_t mu_idx (std::size_t j, std::size_t m)

{ return j * Order + (m - 1); }

static std::size_t lambda_idx (std::size_t j, std::size_t m)

{ return j * Order + (m - 1) + R * Order; }
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static std::size_t omega_idx (std::size_t j, std::size_t m)

{ return j * Order + (m - 1) + R * Order * 2; }

static double mu_scale (const double *res);

static double lambda_scale (const double *res);

static double omega_scale (const double *res);

void monitor_state(std::size_t, std::size_t,

ConstSingleParticle<GMM<R> > csp, double *res)

{

// Record the first raw moment

for (std::size_t j = 0; j != R; ++j) {

res[mu_idx(j, 1)] = csp.state(GMM<R>::mu_idx(j));

res[lambda_idx(j, 1)] = csp.state(GMM<R>::lambda_idx(j));

res[omega_idx(j, 1)] = csp.state(GMM<R>::omega_idx(j));

}

// Record the second and up to Order 𝑀 raw moments

// Using the simple recursion 𝑋𝑚 = 𝑋1𝑋𝑚−1

for (std::size_t m = 2; m <= Order; ++m) {

for (std::size_t j = 0; j != R; ++j) {

res[mu_idx(j, m)] =

res[mu_idx(j, 1)] * res[mu_idx(j, m - 1)];

res[lambda_idx(j, m)] =

res[lambda_idx(j, 1)] * res[lambda_idx(j, m - 1)];

res[omega_idx(j, m)] =

res[omega_idx(j, 1)] * res[omega_idx(j, m - 1)];

}

}
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}

};

In addition to the monitor_statemember function, we also provide a few utilities

in this class. First, similar to the GMM class, we use functions to return the index of

a given order of moment for a specific parameter of a certain components inside

the output parameter res. This makes the implementation more readable. Second,

we also provide functions, whose definitions are trivial and not shown here, that

calculate the proposal scales for each random walk given an array of moments

estimates. We can add this monitor to the sampler by,

sampler.monitor("moments", GMM_Moments<R, 2>::Dim,

GMM_Moments<R, 2>());

We choose only to estimate the first two raw moments.

Now we only need a method to set the proposal scales using this monitor.

Since this should be set before the updating of weights and possible resampling, we

can construct a move for this job.

template <std::size_t R>

class GMM_AdaptiveScale

{

public :

GMM_AdaptiveScale (const Sampler<GMM<R> > *sampler_ptr) :

sampler_ptr_(sampler_ptr) {}

std::size_t operator() (std::size_t, Particle<GMM<R> > &particle)

{

double res[GMM_Moments<R, 2>::Dim];

for (std::size_t j = 0; j != GMM_Moments<R, 2>::Dim; ++j)

res[j] = sampler_ptr_->monitor("moments").record(j);
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particle.value().mu_scale() =

GMM_Moments<R, 2>::mu_scale(res);

particle.value().lambda_scale() =

GMM_Moments<R, 2>::lambda_scale(res);

particle.value().omega_scale() =

GMM_Moments<R, 2>::omega_scale(res);

}

private :

const Sampler<GMM<R> > *sampler_ptr_;

}

And in the main function, we change the move queue to

sampler.move(GMM_AdaptiveScale(&sampler), false);

sampler.move(smc_move<GMM<R> >, true);

Note that, we initialize the move with a pointer of the sampler itself, and use this

pointer to access the record in the monitor named "moments". There are many ways

to retrieve the importance sampling estimates from a monitor. The one we used

here is

res[i] = sampler_ptr_->monitor("moments").record(j);

which returns the importance sampling estimate of 𝔼[ℎ𝑗(𝑋)] for the latest genera-

tion of the particle system.

6.7 performance

One of themainmotivation behind the creation of vSMC is to ease the parallelization

with different programming models. The same implementation can be used to

build different samplers based on what kinds of parallel programming models are
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supported on users’ platforms. In this section we compare the performance of

various smp parallel programming models and OpenCL parallelization. We use the

gmm with smc2 algorithm as shown in Section 5.5.1 for benchmarking. Many major

parts of its implementation have been shown through this chapter. For a complete

documentation on its implementation with vSMC, see [166].

6.7.1 Using the smp module

Weconsider five different parallel programmingmodels supported by Intel C++Com-

poser XE 2013: sequential, Intel TBB, Intel Cilk Plus, OpenMP and C++11 <thread>.

The program was built and run on a Ubuntu 12.10 workstation with an XeonW3550

(3.06GHz, 4 cores, 8 hardware threads through hyper-threading) cpu. A four com-

ponents model and 100 iterations with a prior annealing scheme is used for all

implementations. A range of numbers of particles are tested, from 23 to 217.

For different number of particles, the wall clock time and speedup are shown

in Figure 6.1. For 10,000 or more particles, the differences are minimal among

all the programming models. They all have roughly 550% speedup. With smaller

number of particles, vSMC’s C++11 parallelization is less efficient than other industry

strength programming models. However, with 1000 or more particles, which is less

than typical applications, the difference is not very significant.

6.7.2 Using the OpenCLmodule

The implementation of the same algorithm using OpenCL is quite similar to those

using the smp module. OpenCL implementations are also compared on the same

workstation, which has an NVIDIA Quadro 2000 graphic card. OpenCL programs

can be compiled to run on both cpu and gpu. For cpu implementation, there

are Intel OpenCL [80] and AMD APP OpenCL [1] platforms. We use the Intel TBB

implementation as a baseline for comparison. The same OpenCL implementation

are used for all the cpu and gpu runtimes. Therefore they are not particularly
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Figure 6.1 Performance of C++ implementations of Bayesian modeling for Gaussian
mixture model (Linux; Xeon W3550, 3.06GHz, 4 cores, 8 threads). The top
plots the wall clock time against the number of particles. The bottom
plots the the speedup relative the sequential implementation against the
number of particles.
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optimized for any of them. For the gpu implementation, in addition to double

precision, we also tested a single precision configuration. Unlike modern cpus,

which have the same performance for double and single precision floating point

operations (unless simd instructions are used, the performance gain of which can

vary considerably among different applications), gpus penalize double precision

performance heavily.

For different number of particles, the wall clock time and speedup are plotted

in Figure 6.2. With smaller number of particles, the OpenCL implementations have

a high overhead when compared to the Intel TBB implementation. With a large

number of particles, AMD APP OpenCL has performance similar to that of the Intel

TBB implementation. Intel OpenCL is about 40% faster than the Intel TBB imple-

mentation. This is due to more efficient vectorization and compiler optimizations.

The double precision performance of the NVIDIA gpu has a 220% speedup and

the single precision performance has nearly 1600% speedup. As a rough reference

for the expected performance gain, the cpu has a theoretical peak performance of

24.48 gflops (floating point operations per seconds, measured in the unit 109).

The gpu has a theoretical peak performance of 60 gflops in double precision and

480 gflops in single precision. This represents 245% and 1960% speedup compared

to the cpu, respectively.

6.7.3 Performance and productivity

Performance alone is not enough for a software to be useful. The productivity, the

efforts needed to develop new algorithms, should also be taken into consideration.

Due to the low level natural of C++, it certainly takes more effort to develop an

algorithm using vSMC than, say LibBi or BiiPS. However, smc does provide a some

advantages. First, some application of smc algorithms may not fit into the frame-

work of those softwares. The framework of smc is general enough for them to be

implemented with relative ease.

Second, one can choose various parallel programming models while using
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the same implementation, as we have seen in Section 6.4.2. This can be particularly

useful in a few scenarios,

1. Many parallel programming models do not coexist in the same program

well. Some of them such as Intel TBB and Intel Cilk Plus has explicit support

for OpenMP. Much less so can be said for the others. Often, some other

part of the program may also be parallelized with a particular programming

model familiar to users. In this case, using vSMC one can often freely choose

the same one for the smc algorithm’s parallelization. See [166] for all the

programming models supported by the library.

2. Often an algorithm is first developed on a desktop or laptop with only mul-

ticore processors. Later it may be deployed on larger computers to process

bigger data. With vSMC it is possible to use the implementation on a smp

system, with little modifications, for the larger computer. In [166] there is a

full fledged example showing the use mpi.

Overall, we found the productivity of vSMC is at a similar level of smctc.

For example, the particle filter example in [90] can be implemented in vSMC using

roughly the same number of lines of code. Considering that there is a significant

performance gain through parallelization, as seen in Section 6.7.1, we believe the

effort of using a C++ library is adequate.

The library also support OpenCL parallelization. The performance is impres-

sive as seen in Section 6.7.2. It is widely believed that OpenCL programming is

tedious and hard. Limited by the scope of this chapter, the OpenCL implementa-

tion (distributed with the vSMC source) is not documented in this chapter. Overall

the OpenCL implementation has about 800 lines including both host and device

code. It is not an enormous increase of effort when compared to the 500 lines

smp implementation. Less than doubling the code base but gaining more than 15

times performance speedup, we consider the programming effort is relatively small.

Moreover, the gpu used in the examples is relatively lower end and outdated. With

better hardware, the same implementation has the potential to gain hundreds of

times performance speedup.
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In addition, the OpenCL language is essentially a variant of the C program-

ming language. For the intended users of vSMC, those with some knowledge of

C++, writing OpenCL kernels (the part of the program that are executed on the de-

vice, such as gpus) is not a difficult task. What often makes OpenCL programming

difficult is the management of the devices. It involves the understanding an array

of layers of the underlying hardware. There are examples3 where a major part of

the program is irrelevant to the algorithm itself. This is not the case when using

vSMC. The library provides facilities to manage OpenCL platforms and devices as

well as common operations. The implementations of smc algorithms usingOpenCL,

compared to using the smp module, only requires a marginal addition of efforts to

manage the OpenCL platform.

6.8 discussions

For C++ proficient researchers that are interested in developing new algorithms,

the vSMC library can be appealing for a few reasons. First, it provides an easy to use

interface that can be used to implement standard algorithms with minimal efforts.

Second, it is extensible. Limited by the scope, in this chapterwe did not introduce the

more technical part of the library that allows users to write non-standard algorithms.

However, it is sufficient to note here that many parts of the library can be replaced by

user implementations. For example, users can provide new resampling algorithms

or non-standard numerical integration scheme for approximating the path sampling

estimator, while reusing the library to perform other steps of the algorithms.

For users more interested in the application of smc algorithms, basic C++

knowledge is sufficient to start using the library. Apart from a framework for the

implementation of generic smc algorithms, the library also provides utilities such

as templates for the implementation of common Metropolis random walks.

3See https://developer.apple.com/library/mac/samplecode/OpenCL_FFT for examples

190

https://developer.apple.com/library/mac/samplecode/OpenCL_FFT


vsmc: a c++ library for parallel smc

Through the examples, we have shown that the implementation of parallelized

samplers is not more difficult than that of an serialized one. The performance is

more or less close to ideal situations. This may not always be the case in reality.

However, through all the examples in Chapter 5, we have found that there are

always considerable speedup compared to serialized implementations. The OpenCL

module further provides superior performance compared to the smc module.

There are at least two interested directions of the future development of the

library. The first is to provide an easier to use interface. The bugs software and others

certainly contributed to the popularity of mcmc algorithms among statisticians.

In this thesis, we advocate the use of smc algorithms for the purpose of Bayesian

model comparison. It will almost certainly help to provide a easier to use software

that enables researchers to develop new algorithms. The second is to include some

important parallel programming models that are currently absent due to technical

difficulties. One of them is the popular cuda framework [122].

In summary, we believe the vSMC library provides an adequate balance among

performance, ease of use, flexibility and extensibility.
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7 CONCLUSIONS

This thesis is concerned with the use smc for the purpose of Bayesian model com-

parison. A generic framework was developed. Practical implementation tools for

generic smc algorithms are also presented.

It is found that, compared to mcmc approach to Bayesian model comparison,

the smc approach is often more robust. Both the standard and the path sampling

estimators are more stable when compared to the generalized harmonic mean esti-

mator used in the mcmc setting. Though there are also estimators used for some

specific mcmc algorithms such as the Gibbs sampling, that is more stable than the

generalized harmonic mean estimator, they often require knowledge of the models

that are often absent in reality. In contrast, the smc algorithm and its estimators are

more generic and therefore applicable in more areas of interest.

There are considerable performance gain of the adaptive smc algorithms, in

particular the cess-based adaptive specification of distributions. Unlike adaptive

mcmc algorithms, such strategies have little computational cost. In addition, it is

also generic in the sense that it does not depend on a specific form of the interme-

diate distributions. It is recommended that such strategies should be employed for

complex models, where the characteristics of the posterior distribution is hardly

known and it is difficult to manually specify a smooth path from the prior towards

the posterior.

In summary, the smc framework for Bayesian model comparison presented

in this thesis has the potential to solve many realistic problems which are previously

difficult with the mcmc algorithms or requires significantly less efforts to optimize

the algorithm.
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7.1 contributions

In Chapter 5, the algorithms presented can accurately approximate the Bayes factor

with little or no human tuning for many applications of interest. Some theoretical

results of the use of path sampling estimator within this framework was developed

as extension to the results of the standard estimator. A novel adaptive algorithm for

specification of the placement of distributions in the smc2 algorithm is introduced.

It provides better (andmore sensible) results than using the ess as a criterion of how

to introduce a new distribution. This method can be extended to other algorithms

such as smc3 straightforwardly. The performance of the presented algorithms is

studied in detail through various empirical experiments.

In Chapter 6, a C++ library is introduced. It provides a tool for the imple-

mentation of generic smc algorithms. Compared to some established softwares, it

has either a higher level of flexibility in the sense of enabling the implementation

of general algorithms instead of particular models; or higher performance through

the use of parallel computing.

7.2 future directions

Though many convincing results have been shown in Chapter 5, theoretical devel-

opment is also needed. In particular, the better performance of cess-based adaptive

scheme has only been shown empirically. It might be of interest to establish if it is

better in some sense when compared to some commonly used deterministic scheme

and under what conditions.

Some algorithms have potential applications in scenarios different than those

shown in this thesis. For example, the smc3 algorithm may be used for Bayesian

model expansion. It may be of interest to see if the approach presented in this thesis

has any significant advantage when compared to alternatives in terms of accuracy

and computational efficiency.

In this thesis, most examples use a geometric annealing scheme to specify
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the intermediate distributions. However, the adaptive strategies proposed are not

limited to this setting. There are other forms of the sequence of distributions, such

as the data tempering mentioned before. The adaptive strategies proposed. It is of

interest to see if strategies studied in this thesis can benefit more general situations.

The work presented in Chapter 6 can be useful for many researchers. How-

ever, it still requires considerable expertise in C++. It is of interest to provide a

easier to use interface on top of the library. Some popular parallel programming

models are not included in this library, such as cuda [122]. Further work is needed

to include them in the presented framework so the library can be more useful to

those familiar with them.
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A MONTE CARLO METHODS

a.1 discrete time markov chain

A Markov chain can be defined in terms of transition kernels. In general, consider a

measurable space, say (𝐸, ℰ), a transition kernel 𝐾 is a function defined on 𝐸 × ℰ

such that 𝐾(𝑥, ⋅) is a probability measure for every 𝑥 ∈ 𝐸 and 𝐾(⋅, 𝐴) is measurable

for every 𝐴 ∈ ℰ.

A discrete time Markov chain, denoted by (𝑋𝑡) is a sequence of random vari-

ables 𝑋0, 𝑋1,… ,𝑋𝑡,… such that conditional on (𝑥𝑡−1,… , 𝑥0), 𝑋𝑡 has the same

distribution as it has conditional on 𝑥𝑡−1. Clearly a transition kernel is such a con-

ditional distribution. In the context of mcmc algorithms, we are mostly concerned

with time homogeneous Markov chains. A Markov chain (𝑋𝑡) is said to be time

homogeneous if it satisfies the following (weak)Markov property: For every initial

distribution of𝑋0, 𝜇, and every (𝑡 + 1) samples (𝑋0,… ,𝑋𝑡), and some measurable

function 𝜑,

𝔼𝜇[𝜑(𝑋𝑡+1, 𝑋𝑡+2,… )|𝑥0,… , 𝑥𝑛] = 𝔼𝑥𝑡[𝜑(𝑋1, 𝑋2,… )], (A.1)

where 𝔼𝜇 denotes the expectation with respect to the law of the chain given the

initial distribution of𝑋0 and 𝔼𝑥𝑡 denote the expectation with respect to the law of

the chain conditional on𝑋𝑡 = 𝑥𝑡.

In the remaining of this section, we define a few properties of Markov chains

that are particularly relevant in the study of mcmc algorithms.

a.1.1 Irreducibility

AMarkov chain (𝑋𝑡) with transition kernel 𝐾 on (𝐸, ℰ) is said to be 𝜓-irreducible,

for a given measure 𝜓, if for every 𝐴 ∈ ℰ such that 𝜓(𝐴) > 0, there exists 𝑡 such that

211



monte carlo methods

𝐾𝑡(𝑥, 𝐴) > 0 for all 𝑥 ∈ 𝐸. This chain is said to be strongly 𝜓-irreducible if 𝑡 = 1 for

every 𝐴 ∈ ℰ such that 𝜓(𝐴) > 0.

An equivalent way of saying irreducibility is that for 𝑥 ∈ 𝐸, 𝐴 ∈ ℰ, 𝑃𝑥(𝜏𝐴 ≤

∞) > 0, where 𝜏𝐴 = inf{𝑡 ≥ 1;𝑋𝑡 ∈ 𝐴} is the smallest value of 𝑡 that the chain

enters the set𝐴, namely the first hitting time at𝐴 and 𝑃𝑥 denote the law of the chain

conditional on the initial state 𝑥. In other words, the probability of reach any set 𝐴

in finite many steps is positive.

Two related concepts, atom and small set, are useful for formally defining

aperiodicity and ergodicity later. A Markov chain (𝑋𝑡) is said to have an atom 𝛼 ∈ ℰ

if there exists an associated nonzero measure 𝜂 such that, 𝐾(𝑥,𝐴) = 𝜂(𝐴) for all

𝑥 ∈ 𝛼 and 𝐴 ∈ ℰ. A set 𝐶 is said to be small if there exists 𝑚 ∈ ℕ and a nonzero

measure 𝜂𝑚 such that 𝐾𝑚(𝑥, 𝐴) ≥ 𝜂𝑚(𝐴), for all 𝑥 ∈ 𝐶 and 𝐴 ∈ ℰ.

a.1.2 Cycles and aperiodicity

A 𝜓-irreducible chain (𝑋𝑡) has a cycle of length 𝑑 if there exists a small set 𝐶, an

integer𝑀, and a probability distribution 𝜂𝑀 such that 𝑑 is the greatest common

denominator of

{𝑚 ≥ 1; There exists 𝜀𝑚 > 0 such that 𝐶 is small for 𝜂𝑚 ≥ 𝜀𝑚𝜂𝑀}.

A chain is aperiodic if 𝑑 = 1. If there exists a small set 𝐶 and an associated measure

𝜂1 such that 𝜂1(𝐶) > 0, that is it is possible to go from 𝐶 to 𝐶 in a single step, the

chain is said to be strongly aperiodic.

A sufficient condition for aperiodicity is that the kernel is positive in a neigh-

borhood of a state 𝑥. Then the chain can stay in this neighborhood for an arbitrary

time. If a chain is not aperiodic, then the return from one state to its own neigh-

borhood will requires a forced passage through another part of the space, which is

clearly an undesired property for an mcmc algorithm. It will be shown that for the

algorithms discussed in this chapter, they are aperiodic.
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a.1.3 Recurrence

For a Markov chain (𝑋𝑡) on (𝐸, ℰ), a set 𝐴 ∈ ℰ is said to be recurrent if for all 𝑥 ∈ 𝐴,

𝔼𝑥[𝑁𝐴] = ∞ where𝑁𝐴 = ∑∞𝑡=1 𝕀𝐴(𝑋
𝑡) is the number of passages through 𝐴. The

Markov chain is said to be recurrent if there exists a measure 𝜓 such that the chain

is 𝜓-irreducible and for all 𝐴 ∈ ℰ such that 𝜓(𝐴) > 0, 𝐴 is recurrent.

A sufficient condition for a 𝜓-irreducible chain to be recurrent is that there

exists a small set 𝐶 with 𝜓(𝐶) > 0 such that 𝑃𝑥(𝜏𝐶 < ∞) = 1 for all 𝑥 ∈ 𝐶 where

𝜏𝐶 is the first hitting time at 𝐶.

A stronger property is called the Harris recurrence. A set 𝐴 ∈ ℰ is said to

be Harris recurrent if for all 𝑥 ∈ 𝐴, 𝑃𝑥(𝑁𝐴 = ∞) = 1. The 𝜓-irreducible Markov

chain is said to be Harris recurrent if for all 𝐴 ∈ ℰ such that 𝜓(𝐴) > 0, 𝐴 is Harris

recurrent.

Informally, Harris recurrence says that starting from everywhere in the space

𝐸, every part of the space will be visited for infinite instances with probability

one. This is important for mcmc algorithms in the sense that Harris recurrence

guarantees unique limiting distribution (up to a multiplicative factor).

a.1.4 Invariant measure

A 𝜎-finite measure 𝜋 is invariant for a Markov chain with transition kernel𝐾 if,

𝜋(𝐴) = ∫ 𝐾(𝑥,𝐴)𝜋(d 𝑥) (A.2)

for all 𝐴 ∈ ℰ. When an invariant probability measure exists for a 𝜓-irreducibility

chain, the chain is said to be positive. A positive chain is always recurrent. Also the

invariant measure is unique for a recurrent chain, up to a multiplicative factor. It is

trivial to see that, for a invariant probability measure 𝜋 of a Markov chain (𝑋𝑡), if

𝑋0 ∼ 𝜋, then𝑋𝑡 ∼ 𝜋 for all 𝑡 ≥ 1. Thus this distribution is also often referred to as

the stationary measure.

A related concept is the reversibility. A stationary Markov chain (𝑋𝑡) is said
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to be reversible if the distribution of𝑋𝑡+1 conditional on𝑋𝑡 = 𝑥 is the same as the

distribution of𝑋𝑡 conditional on𝑋𝑡+1 = 𝑥. Intuitively, this says that the direction

of time is irrelevant. The chain has the same stationary if it travels backward in

time. A sufficient condition for a Markov chain to have an invariant probability

distribution 𝜋 and be reversible is the existence of the detailed balance condition,

𝜋(𝑥)𝐾(𝑥, 𝑦) = 𝜋(𝑦)𝐾(𝑦, 𝑥). (A.3)

a.1.5 Ergodicity

As stated in the beginning of this section, mcmc algorithms relies on the limiting

𝜋 of a Markov chain (𝑋𝑡), which has the property that, if 𝑋𝑡 ∼ 𝜋, then 𝑋𝑡+1 ∼ 𝜋.

In other words, we are interested in the convergence of the distribution 𝑃𝑡𝜇 = 𝜇𝐾𝑡

where 𝜇 is the initial distribution of 𝑋0. More importantly, we are interested in

the independence of initial condition 𝜇 of its limiting behavior when 𝑛 → ∞.

In the following we establish that the invariant distribution 𝜋 is such a limiting

distribution.

For a Harris recurrent and positive Markov chain (𝑋𝑡) with transition kernel

𝐾 and invariant distribution 𝜋, an atom 𝛼 is ergodic if

lim
𝑡→∞
|𝐾𝑡(𝛼, 𝛼) − 𝜋(𝛼)| = 0, (A.4)

where𝐾(𝛼, 𝛼) = ∫𝛼𝐾(𝑥, 𝛼)𝜋(d 𝑥) and𝐾
𝑡 = 𝐾 ∘ 𝐾𝑡−1. For more general situations,

the convergence is established through the total-variation norm, defined for two

measure 𝜇1 and 𝜇2 on the space (𝐸, ℰ),

‖𝜇1 − 𝜇2‖𝑇𝑉 = sup
𝐴∈ℰ
|𝜇1(𝐴) − 𝜇2(𝐴)|. (A.5)

Two important results are that, if a Markov chain (𝑋𝑡) is Harris recurrent, positive

and aperiodic, with transition kernel 𝐾 and invariant distribution 𝜋, then

lim
𝑡→∞
‖𝜇𝐾𝑡(𝑥, ⋅) − 𝜋‖𝑇𝑉 = 0 (A.6)
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for every initial distribution 𝜇. And this total-variation norm decreases in 𝑡. From

here, it becomes clear why the recurrence and aperiodicity discussed before are

important for mcmc algorithms. Note that the above results also implies that, for

bounded function 𝜑,

lim
𝑡→∞
|𝔼𝜇[𝜑(𝑋𝑡)] − 𝔼𝜋[𝜑(𝑋)]| = 0, (A.7)

where the first expectation is with respect to 𝑃𝑛𝜇, and the second is for a random

variable distributed with 𝜋. This result establishes the validity of using dependent

samples from mcmc algorithms for the approximation of integration with respect

to 𝜋.

However, the above results only states that the Markov chain will converge.

It does not imply how fast the chain converges to its limiting distribution. Two

stronger form of convergence is geometric and uniform ergodicity.

A Markov chain (𝑋𝑡) with transition kernel 𝐾 on (𝐸, ℰ) and invariant dis-

tribution 𝜋, is said to be geometrically ergodic, if there exists 𝑟 > 1 such that for all

𝑥 ∈ 𝐸,
∞

∑
𝑡=1
𝑟𝑛‖𝜇𝐾𝑡(𝑥, ⋅) − 𝜋‖𝑇𝑉 < ∞. (A.8)

This implies that,

‖𝜇𝐾𝑡(𝑥, ⋅) − 𝜋‖𝑇𝑉 ≤ 𝑟−𝑡𝑀(𝑥) (A.9)

where𝑀(𝑥) = ∑∞𝑡=1 𝑟
𝑡‖𝜇𝐾𝑡(𝑥, ⋅) − 𝜋‖𝑇𝑉. In other words, the chain converges at

least at a speed of a geometric sequence. We emphasize that𝑀(𝑥) is a function of

the initial value 𝑥.

A stronger form of convergence, uniform ergodicity requires that the conver-

gence speed is the same for all 𝑥 ∈ 𝐸, or in other words𝑀(𝑥) is bounded. That is,

the above convergence holds for a finite constant𝑀 = sup𝑥𝑀(𝑥).

215



B SEQUENTIAL MONTE CARLO FOR BAYESIAN COMPUTATION

b.1 proof of proposition 5.1

We begin by making some identifications which allow the connection between the

smc sampler algorithm presented above and Feynman-Kac formula to be made ex-

plicit as the proof relies on approaches pioneered in [37]. Throughout this appendix

we write 𝜂𝐾(⋅) = ∫ 𝜂(𝑑𝑥)𝐾(𝑥, ⋅) for any compatible measure 𝜂 and Markov kernel

𝐾 and 𝜂(𝜑) = ∫ 𝜂(𝑑𝑥)𝜑(𝑥) for any 𝜂-integrable function 𝜑.

A Feynman-Kac formula describes the law of a Markov chain on {(𝐸𝑡, ℰ𝑡)}𝑡≥0
(with initial distribution ̂𝜂0 and transitions𝑀𝑡) evolving in the presence of a (time-

varying) potential (described by 𝐺𝑡) such that the marginal law of the 𝑡th coordinate

is:

̂𝜂𝑡(𝐴) =
∫𝐸1×…×𝐸𝑡−1×𝐴 ̂𝜂0(𝑑 ̃𝑥0)∏

𝑡
𝑖=1𝑀𝑖( ̃𝑥𝑖−1, 𝑑 ̃𝑥𝑖)𝐺( ̃𝑥𝑖)

∫𝐸1×…×𝐸𝑡 ̂𝜂0(𝑑 ̃𝑥
′
0)∏
𝑡
𝑖=1𝑀𝑖( ̃𝑥

′
𝑖−1, 𝑑 ̃𝑥

′
𝑖)𝐺( ̃𝑥
′
𝑖)

for any measurable set 𝐴. It is convenient to define the operator

𝛷̂𝑡(𝜂)(d ̃𝑥𝑡) = 𝐺𝑡( ̃𝑥𝑡)𝜂𝑀𝑡(d ̃𝑥𝑡)/𝜂𝑀𝑡(𝐺𝑡)

which allows us to write, recursively, ̂𝜂𝑡 = 𝛷̂𝑡( ̂𝜂𝑡−1) and to define the intermediate

distributions 𝜂𝑡 = ̂𝜂𝑡−1𝑀𝑡 such that ̂𝜂𝑡(d ̃𝑥𝑡) = 𝐺𝑡( ̃𝑥𝑡)𝜂𝑡(𝑑 ̃𝑥𝑡)/𝜂𝑡(𝐺𝑡).

If u� denotes the space upon which an smc sampler with mcmc proposal 𝐾𝑡
at time 𝑡 and sequence of target distributions 𝜋𝑡 operates, then we obtain 𝜋𝑡 as the

final coordinate marginal of the Feynman-Kac distribution at time 𝑡 if we identify

𝐸𝑡 = u� 𝑡 and

𝑀𝑡( ̃𝑥𝑡−1, 𝑑 ̃𝑥𝑡) = 𝛿 ̃𝑥𝑡−1(𝑑 ̃𝑥𝑡,1∶𝑡−1)𝐾𝑡( ̃𝑥𝑡,𝑡−1, 𝑑 ̃𝑥𝑡)

𝐺𝑡( ̃𝑥𝑡) = 𝜋𝑡( ̃𝑥𝑡,𝑡−1)/𝜋𝑡−1( ̃𝑥𝑡,𝑡−1).
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To provide symmetry between the simulation system and the ideal system

which it targets, it is convenient to let 𝑋̃𝑖𝑡 denote the extended sample corresponding

to 𝑋𝑖𝑡 at iteration 𝑡 together with the full collection of values which its ancestors

took during previous iterations (i.e., 𝑋̃𝑖𝑡 corresponds to the particle system obtained

by sampling according to𝑀𝑡 above rather than 𝐾𝑡 at each iteration). It is then

convenient to write the particle approximation at time 𝑡 as

̂𝜂𝑁𝑡 (𝑑 ̃𝑥𝑡) =
𝑁

∑
𝑖=1

𝐺𝑡(𝑋̃𝑖𝑡)

∑𝑁𝑗=1𝐺𝑡(𝑋̃
𝑗
𝑡)
𝛿𝑋̃𝑖𝑡(𝑑 ̃𝑥𝑡).

We refer the reader to [37] for further details of the connection between such particle

systems and the Feynman-Kac formula.

In order to proceed, we prove the following more general result to which

Proposition 5.1 is a direct corollary.

Proposition b.1. Under the regularity conditions given in [37, sec. 9.4,], a weighted

sum of integrals obtained from successive generations of the particle approximation

of a Feynman-Kac flow { ̂𝜂𝑡}𝑇𝑡=0, with the application of multinomial resampling at

every iteration, obeys a central limit theorem in the following sense, for a collection of

finite weights 𝛽𝑡 ∈ ℝ and bounded measurable functions 𝜉𝑡 ∶ 𝐸𝑡 → ℝ (where, in the

historical process case described above it is required that 𝜉𝑡( ̃𝑥𝑡) = 𝜉𝑡( ̃𝑥𝑡,𝑡)):

lim
𝑁→∞
√𝑁
𝑇

∑
𝑡=0
𝛽𝑡( ̂𝜂𝑁𝑡 (𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡))

𝐷
−−→u� (0, 𝑉𝑇(𝜉0∶𝑇)) (B.1)

where 𝑉𝑡, 0 ≤ 𝑡 ≤ 𝑇 is defined by the following recursion,

𝑉0(𝜉0) =𝛽0 ∫ ̂𝜂0(𝑥0)(𝜉0(𝑥0) − 𝜂0(𝜉0))2𝑑𝑥0

𝑉𝑡(𝜉0∶𝑡) =𝑉𝑡−1(𝜉0∶𝑡−2, 𝜉𝑡−1 +
𝛽𝑡
𝛽𝑡−1

𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)])
̂𝜂𝑡−1𝑀𝑡(𝐺𝑡)

)

+ 𝛽2𝑡 ̂𝜂𝑡(
𝐺𝑡(⋅)(𝜉𝑡(⋅) − ̂𝜂𝑡(𝜉𝑡))2

̂𝜂𝑡(𝐺𝑡)
). (B.2)

The strategy of the proof is to decompose the error as that propagated forward

from previous times and that due to sampling at the current time, just as in [37].
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First note that the term ̂𝜂𝑁𝑡 (𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡) can be rewritten as

̂𝜂𝑁𝑡 (𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡) = ̂𝜂
𝑁
𝑡 (𝜉𝑡) − 𝛷̂𝑡( ̂𝜂

𝑁
𝑡−1)(𝜉𝑡) + 𝛷̂𝑡( ̂𝜂

𝑁
𝑡−1)(𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡) (B.3)

and the weighted sum,

𝑇𝑁𝑡 (𝜉0∶𝑡) = √𝑁
𝑡

∑
𝑗=0
𝛽𝑗( ̂𝜂𝑁𝑗 (𝜉𝑗) − ̂𝜂𝑗(𝜉𝑗)) (B.4)

can therefore be written as

𝑇𝑁𝑡 (𝜉0∶𝑡) = 𝑇
𝑁
𝑡−1(𝜉0∶𝑡−1) + √𝑁𝛽𝑡( ̂𝜂

𝑁
𝑡 (𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡))

= 𝑇̄𝑁𝑡 (𝜉0∶𝑡) + 𝜒
𝑁
𝑡 (𝜉𝑡) (B.5)

where

𝑇̄𝑁𝑡 (𝜉0∶𝑡) = 𝑇
𝑁
𝑡−1(𝜉0∶𝑡−1) + √𝑁𝛽𝑡(𝛷̂𝑡( ̂𝜂

𝑁
𝑡−1)(𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡)) (B.6)

𝜒𝑁𝑡 (𝜉𝑡) = √𝑁𝛽𝑡( ̂𝜂
𝑁
𝑡 (𝜉𝑡) − 𝛷̂𝑡(𝜂

𝑁
𝑡−1)(𝜉𝑡)) (B.7)

Lemma b.1 shows that error propagation leads to controlled normal errors;

Lemma b.2 shows that the act of sampling during each iteration also produces a

normally-distributed error and Lemma b.3 shows that these two normal errors can

be combined leading by induction to Proposition b.1.

Lemma b.1. Under the conditions of Proposition b.1, if

𝑇𝑁𝑡−1(𝜉0∶𝑡−1)
𝐷
−−→u� (0, 𝑉𝑡−1(𝜉0∶𝑡−1)),

then

𝑇̄𝑁𝑡 (𝜉0∶𝑡)
𝐷
−−→u� (0, 𝑉̄𝑡(𝜉0∶𝑡)) (B.8)

where

𝑉̄𝑡 = 𝑉𝑡−1(𝜉0∶𝑡−2, 𝜉𝑡−1 +
𝛽𝑡
𝛽𝑡−1

𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)])
̂𝜂𝑡−1𝑀𝑡(𝐺𝑡)

). (B.9)

Proof. We begin by re-expressing the difference of interest in a more convenient

form:

𝛷̂( ̂𝜂𝑁𝑡−1)(𝜉𝑡) − ̂𝜂𝑡(𝜉𝑡) =
1
̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡)

{ ̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡𝜉𝑡) − ̂𝜂
𝑁
𝑡−1𝑀𝑡(𝐺𝑡) ̂𝜂𝑡(𝜉𝑡)}

= 1
̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡)

{( ̂𝜂𝑁𝑡−1 − ̂𝜂𝑡−1)𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)])} (B.10)
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where the final equality is a simple consequence of the fact that for any integrable

test function 𝜑:

̂𝜂𝑡−1𝑀𝑡(𝐺𝑡𝜑) = 𝜂𝑡(𝐺𝑡) ̂𝜂𝑡(𝜑) ⇒ ̂𝜂𝑡−1𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)]) = 𝜂𝑡(𝐺𝑡) ̂𝜂𝑡(𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

.

Substituting this representation into Equation (B.6),

𝑇̄𝑁𝑡 (𝜉0∶𝑡) = 𝑇
𝑁
𝑡−1(𝜉0∶𝑡−1) +

√𝑁𝛽𝑡
̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡)

{( ̂𝜂𝑁𝑡−1 − ̂𝜂𝑡−1)𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)])}

= 𝑇𝑁𝑡−1(𝜉0∶𝑡−2, 𝜉𝑡−1 +
𝛽𝑡
𝛽𝑡−1

𝑀𝑡(𝐺𝑡[𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡)])
̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡)

) (B.11)

The proof is completed by using the result [37, sec. 7.4.3], that if 𝐺𝑡 is essentially

bounded below then,
1
̂𝜂𝑁𝑡−1𝑀𝑡(𝐺𝑡)

𝑃
−−→ 1
̂𝜂𝑡−1𝑀𝑡(𝐺𝑡)

together with the induction hypothesis.

Lemma b.2. Under the conditions of Proposition b.1,

lim
𝑁→∞
𝜒𝑁𝑡 (𝜉𝑡)

𝐷
−−→u� (0, 𝑉̂𝑡(𝜉𝑡)) (B.12)

where

𝑉̂𝑡(𝜉𝑡) = 𝛽2𝑡 ̂𝜂𝑡((𝜉𝑡 − ̂𝜂𝑡(𝜉𝑡))
2) (B.13)

Proof. Consider first the particle system before reweighting with the potential func-

tion 𝐺𝑡:

√𝑁𝛽𝑡
𝑁

∑
𝑗=1

𝜉𝑡(𝑋̃
(𝑗)
𝑡 ) − ̂𝜂

𝑁
𝑡−1𝑀𝑡(𝜉𝑡)
𝑁

=
𝑁

∑
𝑗=1
𝑈𝑁𝑡,𝑗 (B.14)

where 𝑈𝑁𝑡,𝑗 =
𝛽𝑡
√𝑁
{𝜉𝑡(𝑋̃
(𝑗)
𝑡 ) − ̂𝜂

𝑁
𝑡−1𝑀𝑡(𝜉𝑡)}. Define, recursively, the 𝜎-algebras ℋ𝑁𝑡 =

ℋ𝑁𝑡−1 ∨ 𝜎({𝑋̃
(𝑗)
𝑡 }
𝑁
𝑗=1), ℋ𝑡−1 = 𝜎(∪∞𝑁=0ℋ

𝑁
𝑡−1) and the increasing (in 𝑗) sequence of

𝜎-algebras ℋ𝑁𝑡,𝑗 = ℋ𝑡−1 ∨ 𝜎({𝑋̃
(𝑙)
𝑡 }
𝑗
𝑙=1). It is clear that

𝔼[𝑈𝑁𝑡,𝑗|ℋ
𝑁
𝑡,𝑗−1] = 𝔼[𝑈

𝑁
𝑡,𝑗|ℋ𝑡−1] = 0 (B.15)
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and so the sequence 𝑈𝑁𝑡,𝑗, 𝑗 = 1,… ,𝑁 comprises a collection of ℋ𝑁𝑡,𝑗-martingale

increments. Further it can be verified that these martingale increments are square

integrable,

𝔼[(𝑈𝑁𝑡,𝑗)
2|ℋ𝑁𝑡,𝑗−1] = 𝔼[(𝑈

𝑁
𝑡,𝑗)
2|ℋ𝑡−1]

=
𝛽2𝑡
𝑁
{ ̂𝜂𝑁𝑡−1𝑀𝑡(𝜉

2
𝑡 ) − [ ̂𝜂

𝑁
𝑡−1)(𝜉𝑡)]

2} < 𝑐𝑡
𝛽2𝑡
𝑁

where 𝑐𝑡 < ∞ exists by the boundedness of 𝜉𝑡. The conditional Linderberg condition

is also clearly satisfied. That is, for any 0 < 𝑢 ≤ 1 and 𝜀 > 0,

lim
𝑁→∞

⌊𝑁𝑢⌋

∑
𝑗=1
𝔼[(𝑈𝑁𝑡,𝑗)

2𝕀(𝜀,∞)(|𝑈𝑁𝑡,𝑗|)|ℋ
𝑁
𝑡,𝑗]
𝑃
−−→ 0.

Thus we have

𝑁

∑
𝑗=1
𝔼[(𝑈𝑁𝑡,𝑗)

2|ℋ𝑁𝑡,𝑗−1] =
𝛽2𝑡
𝑁

𝑁

∑
𝑗=1
{ ̂𝜂𝑁𝑡−1𝑀𝑡(𝜉

2
𝑡 ) − [ ̂𝜂

𝑁
𝑡−1𝑀𝑡(𝜉𝑡)]

2}

= 𝛽2𝑡 { ̂𝜂
𝑁
𝑡−1𝑀𝑡(𝜉

2
𝑡 ) − [ ̂𝜂

𝑁
𝑡−1𝑀𝑡(𝜉𝑡)]

2}

and we can invoke the martingale central limit theorem [146, pp. 543],

lim
𝑁→∞
𝜒𝑁𝑡 (𝜉𝑡)

𝐷
−−→u� (0, 𝑉̌𝑡(𝜉𝑡)) (B.16)

where the asymptotic variance, 𝑉̌𝑡(𝜉𝑡), may be written as the limit of the sequence

defined by

𝑉̌𝑁𝑡 (𝜉𝑡) = 𝛽
2
𝑡 { ̂𝜂
𝑁
𝑡−1𝑀𝑡(𝜉

2
𝑡 ) − [ ̂𝜂

𝑁
𝑡−1𝑀𝑡(𝜉𝑡)]

2} (B.17)

and as (again, see [37, sec. 7.4])

𝑉̌𝑁𝑡 (𝜉𝑡)
𝑃
−−→ 𝛽2𝑡 { ̂𝜂𝑡−1𝑀𝑡(𝜉

2
𝑡 ) − [ ̂𝜂𝑡−1𝑀𝑡(𝜉𝑡)]

2}

the proof is completed using Slutzky’s lemma and applying [31, Lemma a2] which

yields that:

lim
𝑁→∞

u�𝑁𝑡
𝐷
−−→u� (0, 𝑉̂𝑡(𝜉𝑡))
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with

𝑉̂𝑡(𝜉𝑡) = 𝑉̌𝑡(
𝐺𝑡(⋅)
̂𝜂𝑡−1𝑀𝑡(𝐺𝑡)

(𝜉𝑡(⋅) − ̂𝜂𝑡(𝜉𝑡)))

= 𝛽2𝑡 ̂𝜂𝑡(
𝐺𝑡(⋅)
̂𝜂𝑡−1𝑀𝑡(𝐺𝑡)

(𝜉𝑡(⋅) − ̂𝜂𝑡(𝜉𝑡)))

Lemma b.3. Under conditions of Proposition b.1, and the inductive assumption of

Lemma b.1, 𝑇𝑁𝑡 (𝜉0∶𝑡) is asymptotically normal with variance stated as in Proposi-

tion b.1.

Proof. Consider the characteristic function,

𝜑(𝑇𝑁𝑡 (𝜉0∶𝑡))(𝑠) = 𝔼[exp(𝑖𝑠𝑇
𝑁
𝑡 (𝜉0∶𝑡))]

= 𝔼[exp(𝑖𝑠𝑇̄𝑁𝑡 (𝜉0∶𝑡)) exp(𝑖𝑠𝜒
𝑁
𝑡 (𝜉𝑡))]

= 𝔼[exp(𝑖𝑠𝑇̄𝑁𝑡 (𝜉0∶𝑡)) 𝔼[exp(𝑖𝑠𝜒
𝑁
𝑡 (𝜉𝑡))|ℋ

𝑁
𝑡−1]]

= 𝔼[(𝐴𝑡 − exp(−𝑠2𝑉̂𝑡(𝜉𝑡)/2))𝐵𝑡] + exp(−𝑠2𝑉̂𝑡(𝜉𝑡)/2) 𝔼[𝐵𝑡]

where 𝐴𝑡 = 𝔼[exp(𝑖𝑠𝜒𝑁𝑡 (𝜉𝑡))|ℋ
𝑁
𝑡−1] and 𝐵𝑡 = exp(𝑖𝑠𝑇̄

𝑁(𝜉0∶𝑡)). The first term can

easily be shown to converge a.s. to zero as𝑁 →∞ by the asymptotic normality of

𝜉𝑁𝑡 and the conditional independence of the particles at iteration 𝑡 given ℋ𝑁𝑡−1. The

second term is the product of two Gaussian characteristic functions and thus we

have that 𝑇𝑁𝑡 also follows a Gaussian distribution (see detail in Lemma 10 in [93],

for details).

Using Lemma b.1 to b.3, the proof of Proposition b.1 follows by mathematical

induction and a trivial base case (the first iteration is simple importance sampling).
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c.1 classes of parallel computers

There are a few types of parallel computers. Here we introduce the four types of

hardware parallelism that are most commonly seen. Parallel computers can be

nested. In a multicore cpu, each core can perform instruction level parallelism. On

the other hand, a distributed system can be formed by multiple multicore cpus.

c.1.1 Instruction level

Modern cpus all implement the so called simd instructions, short for single instruc-

tion, multiple data. The cpu can execute a single instruction on different data in

a single cycle. However, unlike the higher level parallelism discussed later, simd

often has strict requirement on the arrangement of the data. In addition, the imple-

mentation often requires using low level assembly language or intrinsics functions.

Though vSMC does not directly implement this level of parallelism, it can be

used by the user nonetheless. In addition, many operations within vSMC can be

performed using libraries that are implemented with simd parallelization, such as

Intel MKL. Also note that, most modern C++ compilers perform simd optimizations

on simple loop and some of them, such as Clang [156] performs simd optimizations

for non-loop structures. This kind of optimization is also called vectorization.

c.1.2 Multicore processors and symmetric multiprocessing

In the late 1990s, computer cpus are advanced by increasing the clock speed. How-

ever, this strategy soon hit some bottlenecks, mainly the control of heat and power.

The industry started to develop multicore processors. Each cpu has several cores,
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each running at a modest clock rate. By executing different threads on different

cores, the cpu can process the same amount of work with less time without increas-

ing the clock rate.

When a computer has multiple cpus and each of them has the same speed

to access the memory, the system is often called symmetric multiprocessing (smp).

Most higher end workstations are smp systems. The programming tools are usually

the same for smp and multicore processors.

The vSMC library support various smp programming models. In addition,

vSMC allows the same user implementation source code to be compiled into different

parallel samplers using different programming models.

c.1.3 Distributed computing

Distributed computing usually refers to the form of computing where both memory

and computing processors are spread among computing nodes. It can take different

forms, such as grids and clusters. The de facto programming model for distributed

computing is mpi. This is also supported by vSMC. In addition, the library also

allows easy integration of mpi and various smp programming models.

c.1.4 Massive parallel computing

In recent years, there is a new trend of using specialized massive parallel devices,

such as gpus for scientific computing. Modern gpus often have hundreds or thou-

sands co-processors. The main difference between gpu and cpu is that, cpu has

more logic control units, and thus is more suited for general programs. In contrast,

gpu are better at applying the same arithmetic operations on a collection of data. It

performs the best if each computing unit are executing exactly the same instructions.

In addition, it is often much more efficient if there are a large amount data to be

processed. Another significant feature of these devices is that they provide much

higher local memory bandwidth and can use various technologies to reduce local

223



vsmc: a c++ library for parallel smc

data latency than traditional cpu.

Massive parallel computing is extremely suitable for the smc algorithms,

which can have a large number of particles, while each of them needs to be updated

using the same mcmc kernel.

There are twomajor programmingmodels for general purpose gpu program-

ming (gpgpu), Nvidia’s cuda framework and theOpenCL [101] standard. The vSMC

library provides direct support for the OpenCL programming model.

c.2 parallel patterns

In a more micro level, parallelism can be implemented with different patterns. The

term pattern in computer science, introduced and popularized by [50], is a way

of codifying best practices for software engineering. We found patterns are more

useful to statisticians for reasoning the parallel structure of a given algorithm. This

section is not an exhaustive discussion of parallel patterns. Instead, we choose some

of the most commonly seen in practice, in particular those relevant to Monte Carlo

algorithms.

c.2.1 Map

This is perhaps the simplest form of parallelism. A function, called elemental func-

tion, is replicated for each element of a data collection concurrently. The elemental

function must have no side-effects in order for the map to be implementable in

parallel while achieving deterministic results. In particular, it cannot modify global

data that other instances of that function depend on.

In smc algorithm, the updating of particle values is clearly implementable

using a map pattern. The operation of the kernel𝐾(𝑥𝑡−1, 𝑥𝑡) depends only on the

history of the particle that it will be used to update, but not other particles at a given

generation.
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c.2.2 Fork-join

This pattern lets control flows fork into multiple parallel flows that rejoin later. The

major difference between fork-join and map is that fork-joint does not necessarily

apply the same function on different data. Instead, usually different functions are

applied to different or the same data. There are different programming models that

implement this pattern. The OpenMP parallel region fork control into multiple

threads that all execute the same statements and use other constructs to determine

which thread does what. The Intel Cilk Plus [79] spawn fork a new thread to execute

the calling function on a new thread and it is later joined with the callee.

The fork-join pattern are often used by programming models to implement

other patterns and is widely used in practice itself. One example is numerical

integrations, especially for adaptive schemes. Whenever a new segment of the

integral interval is chosen, the program can fork a new thread to compute the

results. And after all segments are computed, the program can join all threads and

sum up the final result.

c.2.3 Reduction

This pattern uses an associative operator to combine every element in a collec-

tion into a single element. Given the associativity of the operator, many different

orderings are possible and hence multiple threads can be used to parallelize the

computation. This is most often used for parallelization of computations such as

summations.

For example, the computation of ess, cess, normalizing of weights, etc., are

all parallelized using the reduction pattern within vSMC.
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c.2.4 Pipeline

A pipeline connects tasks in a producer-consumer relationship. A few computation

units are active at the same time. The first one consume the data, and produce new

data to be used by the second, and so on. As the data flows into the pipeline, each

unit has its own work to do and thus computations are carried out in parallel while

the data dependencies are correctly maintained.

There are several applications of pipeline in Monte Carlo computing. For

example, an mcmc algorithm often needs to compute various convergence statistics,

say ℎ(𝑋0∶𝑡). Often, this statistic can be written as ℎ(𝑋0∶𝑡) = ℎ(𝑋𝑡, ℎ(𝑋0∶𝑡−1)). Instead

of compute it after all iterations, one can use one thread to update the mcmc chain

and another one to compute the statistics, using the pipeline pattern. In this case,

the Markov kernel that update the states is the producer and the thread that update

the statistics is the consumer.

c.3 modern c++

The C++ programming language [152] was first created to support object-oriented

programming (oop) on top of the C programming language [153]. The features,

such as templates, come to the language fairly late. However, it was found that

the C++ template feature provides a complete sub-language [161]. This leads to

various new metaprogramming techniques. Many of them are documented in [4]

and characterize the modern usage of C++. In this section, we introduce two of

these techniques. They are widely used inside the vSMC library and the contents

here should ease the reading of the following sections for those less familiar with

them. However, we assume the reader has at least some working knowledge of C++,

including concepts such as oop.
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c.3.1 Templates

C++ is a static strong type language. It requires the user to declare variables, func-

tions, and most other kinds of entities using specific types. However, a lot of code

looks the same for different types, especially for implementation of algorithms.

The C++ template technique allows one to write generic code to solve a class of

problems, while the involved types can be seamlessly replaced at compile time.

Templates are useful for a few reasons. It reduces duplication of the same

code for multiple types. Though conventional oop also supports polymorphism

behaviors, they rely on runtime decisions. In contrast, templates rely on compile

time decisions and are more type safe. Templates emphasize that the same operation

can be applied to many types. It allows unlimited extension of existing functionality.

It is possible to have any combination of the allowed operations on a certain type

and the allowed types of a certain operations. More specifically, given a collection of

operations and a collection of types, each operation may support any subset of the

types and each type can support any subset of the operations. Such combinatorial

behavior is difficult to implement using conventional oop, where a collection of

types have a common interface that provides a fixed set of operations.

There are two main types of templates in C++, function template and class

template.

Function template

The following lines define a simple function template,

template <typename T>

inline T max (const T &a, const T &b)

{

return a < b ? b : a;

}
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This template definition specifies a family of functions that returns the maximum

of two values, which are passed as function parameters a and b. The type of these

parameters is left open as template parameter T.

In this template definition, the assumption about T is that the operator < is

properly defined. It does not matter whether T is a fundamental type or a class type

with this operator defined by the user. The actual types are deduced at compile time

when the function template is used.

Class template

Class template is similar to function template. A class template define a family of

classes. For example,

template <typename T>

class Stack

{

public :

void push (const T &val) {elems_.push(val);}

void pop () {elems_.pop_back();}

T top () const {return elems_[0];}

bool empty () const {return elems_.empty();}

private :

std::vector<T> elems_;

};

defines a Stack class template. For simplicity, some edge cases and exceptional

situations such as calling top on an empty Stack is not handled here. This class

template can be used as the following,
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Stack<std::string> sstack;

sstack.push_back("foo");

sstack.push_back("bar");

sstack.pop();

if (!sstack.empty())

std::cout << sstack.top() << std::endl;

As we can see, to use a class template, one explicitly supply the type of the template

parameter. Unlike function template, there is no template parameter deduction

here.

c.3.2 Callable objects

vSMC is a framework for constructing generic smc samplers. It relies on the user to

write callback functions to perform application specific operations, such as updating

particles. In this section, we introduce the few forms of callback that are supported

by the library. Collectively, they are also called callable objects, meaning that they

support the function calling syntax though they may not be functions.

A callable object, say callable, is similar to a function in the sense that it has

a return type and a parameter list as its signature. It can be used with the syntax,

callable( /* arguments */ );

However, the object may or may not be a function. There are three ways to define a

callable objects, function pointer, functor and C++11 lambda expression. Function

pointer is the main way of passing callback in C.The other two are introduced later.

The library also use type erasures, introduced later in this section, to en-

force certain interfaces. The benefits of techniques introduced below increases the

productivity and flexibility of the library compared to conventional techniques of

passing callback through function pointer.
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Functors

Consider the simple problem, sort a vector {𝑥𝑖}𝑁𝑖=1 according to the values𝑦𝑖 = 𝑓(𝑥𝑖).

We may define a function template to solve this problem,

template <typename F>

void sort_f (std::size_t N, const double *input,

double *output, const F &f)

{

for (std::size_t i = 0; i != N; ++i)

output[i] = f(input[i]);

std::sort(output, output + N);

}

The function template sort_f expects input and output as pointers. In addition, it

expects a callable object f, which accepts a variable of type double as its input and

return a number that can be assigned to a variable of type double.

One way to define such a callable object is to use functor, a class type with

operator() properly defined. For example,

struct F

{

double operator() (double x) const { return x * x; }

};

sort_f(input, output, F());

Here we created this object in the function call of sort_f. It can also be used as,

F f;

double y = f(3); // y <- 9
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Lambda expressions

Another way, introduced in C++11, is a new feature called lambda expression. It is

also called local function or closure in other programming languages. It allows us to

define callable object on site. Here is an example,

sort_f(input, output, [] (double x) { return x * x; });

The full declaration of a lambda expression is as the following,

[ /* capture */ ] ( /* parameters */ ) /* mutable */

/* exception specification */

/* attribute specification */

-> /* return type */ { /* body * };

The /* mutable */ part can be either empty or the keyword mutable, which al-

lows the body to modify captured parameters (explained soon). The exception

specification is similar to a normal function and the attribute specification is a

new feature for all functions in C++11, that specifies things like parameter pass-

ing conventions among other things, which we will not go into details. The part

-> /* return type */ specifies the return type of the lambda expression. If omit-

ted, it is deduced from the body. And if the body does contain any return statement,

it is deduced to be void. If the expression takes no arguments, the parameter list

can also be omitted.

The /* capture */ specifies which symbols visible at the scope of the defi-

nition of the lambda expression will be visible inside the body. There are a few

forms,

[a, &b] captures a by value and b by reference.

[this] captures the this pointer by value.

[=] captures all automatic variables used in the body by value.

[&] captures all automatic variables used in the body by reference.

[] captures nothing.
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Type erasures

In the example above, the function template sort_f does not actually enforce the

signature of the function or functor, in contrast to the definition of it that takes a

function pointer as an argument. For example, the following is perfect valid C++,

int h (int x) { return x * x };

sort_f(input, output, &h);

while it may not be what one wants. The use of h with sort_f is perhaps an typo.

The type erasure in C++11, std::function, provides a solution to this problem. A

type erasure can convert various types of objects into a single type. Below is a basic

usage of std::function,

#include <functional> // the header that defines std::function

std::function<double (double)> f;

F f_obj;

f = f_obj; // Correct

f = &h; // ERROR: h does not has the required signature.

Now we can redefine the function sort_f as,

double sort_f (std::size_t N, const double *input,

double *output,

const std::function<double (double)> &f)

{ /* same as before */ }

The vSMC library makes extensive use of the type erasure to enforce certain callback

interfaces. When C++11 features are not available, the Boost library provides the

same functionality through boost::function. See [166] for details of how vSMC

choose between C++11 and Boost libraries.
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