
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/62116  

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/62116


M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS  WARWICENSIS

Electrical and Physical Characterization of

Ge Devices

by

Catarina Beatriz Antunes Casteleiro

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Physics Department

March 2014



Contents

List of Tables v

List of Figures vi

Acknowledgments xv

Declarations xvii

Abstract xviii

Publications xix

0.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

0.2 Participations/attendance in Conference . . . . . . . . . . . . xx

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic properties of Si and Ge . . . . . . . . . . . . . . . . . . 4

1.3 Strained layers . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Ge surface passivation . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Theoretical Background 12

2.1 Metal-Oxide-Semiconductor capacitors . . . . . . . . . . . . . 12

2.1.1 MOS CV characteristics. . . . . . . . . . . . . . . . . . 17

i



2.2 Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET). 18

2.3 Carrier Mobility and Scattering . . . . . . . . . . . . . . . . . 22

2.3.1 Scattering mechanisms . . . . . . . . . . . . . . . . . . 23

2.4 Magneto Transport theory . . . . . . . . . . . . . . . . . . . . 26

2.4.1 The Hall effect . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Shubnikov-de-Haas effect . . . . . . . . . . . . . . . . . 29

Chapter 3 Experimental Techniques 31

3.1 Sample growth and preparation. . . . . . . . . . . . . . . . . . 31

3.1.1 Chemical Vapour Deposition. . . . . . . . . . . . . . . 32

3.1.2 Evaporation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Lithography . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Atomic Layer Deposition. . . . . . . . . . . . . . . . . 36

3.2 Electrical and structural characterization. . . . . . . . . . . . . 37

3.2.1 Current-Voltage measurements . . . . . . . . . . . . . 40

3.2.2 Capacitance-Voltage measurement . . . . . . . . . . . . 41

3.2.3 Resistivity and Hall measurements. . . . . . . . . . . . 42

3.2.4 X-Ray Photoemission Spectroscopy. . . . . . . . . . . . 45

3.3 Data analyses techniques . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Threshold Voltage . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Subthreshold Slope . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Parasitic Resistance and Resistivity . . . . . . . . . . . 49

3.3.4 Oxide Capacitance and Equivalent Oxide

Thickness . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.5 Flatband Voltage . . . . . . . . . . . . . . . . . . . . . 54

3.3.6 Effective mobility and effective field . . . . . . . . . . . 55

ii



3.3.7 Hall mobility and effective mass. . . . . . . . . . . . . 56

Chapter 4 Germanium pMOSFETs 60

4.1 Device description . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Effect of passivation. . . . . . . . . . . . . . . . . . . . 69

4.2.2 Effect of sGe channel thickness. . . . . . . . . . . . . . 75

4.2.3 Effect of doping. . . . . . . . . . . . . . . . . . . . . . 79

4.3 Series Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 5 High mobility strained Ge QW heterostructures. 86

5.1 2DHG grown by CVD and MBE. . . . . . . . . . . . . . . . . 87

5.2 Heterostructures grown by CVD. . . . . . . . . . . . . . . . . 94

5.2.1 Structural analysis. . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Hall Bar fabrication. . . . . . . . . . . . . . . . . . . . 96

5.2.3 Mobility measurements. . . . . . . . . . . . . . . . . . 98

5.2.4 Magnetotransport measurements. . . . . . . . . . . . . 99

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 6 Germanium Oxide 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Epitaxial Ge layer growth . . . . . . . . . . . . . . . . . . . . 112

6.3 GeO2 oxidation formation . . . . . . . . . . . . . . . . . . . . 113

6.3.1 GeO2 Oxidation System . . . . . . . . . . . . . . . . . 113

6.3.2 Ge surface preparation and GeO2 growth. . . . . . . . 114

6.3.3 Oxidation process . . . . . . . . . . . . . . . . . . . . . 115

iii



6.4 Characterization of Oxide layers . . . . . . . . . . . . . . . . . 116

6.4.1 XPS analysis . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Results of the GeOx layers. . . . . . . . . . . . . . . . . . . . . 119

6.5.1 Preliminary studies. . . . . . . . . . . . . . . . . . . . 119

6.5.2 Oxidation results. . . . . . . . . . . . . . . . . . . . . . 124

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 7 Conclusion 142

Bibliography 145

iv



List of Tables

1.1 Basic parameter of Semiconductors. . . . . . . . . . . . . . . . 5

1.2 Dielectric constant of candidate gate dielectrics. . . . . . . . . 10

4.1 Label of the different wafers, according to passivation type,

thickness and doping. . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Selected electrical parameters for the capacitors in test batch. 121

6.2 Matrix of oxidation times and oxidation temperatures used. . 124

6.3 Selected electrical parameters for the Al/GeO2Ge capacitors

from the third oxidation and a comparison of oxide thickness

measured by CV and TEM. The tox values were calculated as-

suming a dielectric constant of 5. . . . . . . . . . . . . . . . . 130

v



List of Figures

1.1 Energy band structure for Ge and Si. . . . . . . . . . . . . . . 6

1.2 Variation of the band gap of Si1−xGex, with Ge content. . . . 7

1.3 Critical thickness as a function of Germanium composition. . . 8

2.1 Schematic of a MOS capacitor. . . . . . . . . . . . . . . . . . 12

2.2 Energy band diagram for a MOS capacitor in flatband. . . . . 13

2.3 Energy band diagram for a MOS capacitor in accumulation. . 14

2.4 Energy band diagram for a MOS capacitor in depletion. . . . . 15

2.5 Energy band diagram for a MOS capacitor in inversion and

strong inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 CV characteristics for a MOS capacitor for both high frequency

and low frequency. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Schematic of a pMOSFET. . . . . . . . . . . . . . . . . . . . . 19

2.8 Ideal output characteristics of a MOSFET . . . . . . . . . . . 21

2.9 Schematic showing the difference between the acoustic and op-

tical phonons with the same wavelength. . . . . . . . . . . . . 24

2.10 Schematic representation of phonon acoustic and optical modes. 25

3.1 A simple illustration of the CVD process. . . . . . . . . . . . . 33

3.2 Lithography process: 1) sample to process, 2) photoresit coat-

ing, 3) exposing to UV light, 4) development, 5) etching and 6)

photoresit removal. . . . . . . . . . . . . . . . . . . . . . . . 35

vi



3.3 A scheme of ALD process. The first precursor will be chemisorbed

on the surface, as the surface saturates the second precursor is

introduced reacting with the new surface until saturation. This

process is repeated in order to get the desired thickness. . . . 37

3.4 Diagrams for measuring MOSFETs capacitances using the split-

CV method exhibiting both branches: gate-channel (a) and

gate-body (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Hall measurement set up (left) and in plane view of the sample

(right) for resistivity and Hall effect measurements. . . . . . . 43

3.6 Measurement configuration for measuring the Hall effect. On

the left the Van der Pauw structure and on the right the Hall

bar geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Diagram of a XPS measurement. . . . . . . . . . . . . . . . . 45

3.8 Drain current (left) and transconductance (right) curves of a

pMOSFET for the determination of threshold voltage. In both

methods an extrapolation of the linear region to the voltage axis

gives the threshold voltage. . . . . . . . . . . . . . . . . . . . . 47

3.9 Transmission line model test structure (TLM) and method to

extract the contact resistance (right). . . . . . . . . . . . . . . 50

3.10 Different contributions to the resistance in a MOSFET. . . . . 50

3.11 Split-CV characteristics for a pMOSFET. . . . . . . . . . . . . 55

4.1 Schematic diagram of the structures for relaxed germanium layers 62

4.2 Schematic diagram of the structures for strained germanium layers 62

4.3 Gate stack implemented by Atomic Laser Deposition at IMEC 64

4.4 Devices schematic (dimensions in µm). . . . . . . . . . . . . . 65

vii



4.5 Wafer map for uniformity study. . . . . . . . . . . . . . . . . . 66

4.6 Drain current curves for four devices, with the same dimensions

taken from different positions on the wafer, at room tempera-

ture. The wafer consisted of sGe layers, with a channel thickness

of 10 nm and a channel doping of 5× 10−17cm−3. . . . . . . . 67

4.7 Transconductance curves for the four devices shown in the pre-

vious figure. The wafer consisted of sGe layers, with a channel

thickness of 10 nm and a channel doping of 5× 10−17cm−3. . . 67

4.8 Capacitance characteristics used to extract the oxide thickness

at different temperatures. The CV curves were obtained using

the split-CV techniques. . . . . . . . . . . . . . . . . . . . . . 68

4.9 Oxide capacitance extracted from the gate-channel and gate-

body branches of the split CV taken at different temperatures. 69

4.10 Linear drain current taken for wafer with rGe layers and Si3H8

passivation scheme. The measurements were taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 Capacitance characteristics in function of frequency for wafer

with rGe layers and Si3H8 passivation scheme. Both the gate-

channel and gate-body branch are shown. A small bump can

be seen in the depletion region as indicated by the arrow. The

measurements were taken at room temperature. . . . . . . . . 70

4.12 Effective mobility extracted for wafer with rGe layers and Si3H8

passivation scheme. The measurements were taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



4.13 Linear drain current taken for wafer with rGe layers and SiH4

passivation scheme. The measurements were taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 Capacitance characteristics in function of frequency for wafer

with rGe layers and SiH4 passivation scheme. The measure-

ments were taken at room temperature. . . . . . . . . . . . . . 72

4.15 Effective mobility extracted for wafer with rGe layers and SiH4

passivation scheme. The measurements were taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 Effective mobility in function of the inversion charge for devices

with different passivation methods. Solid lines represent room

temperature data and dashed lines represent data taken at 77 K. 74

4.17 Drain current as a function of gate voltage for devices with

different passivation methods. Solid lines represent room tem-

perature data and dashed lines represent data taken at 77 K. . 75

4.18 Drain current for different channel thickness taken at room tem-

perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.19 Effective mobility for different channel thickness taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.20 Drain current for different channel thickness at 77 K. . . . . . 77

4.21 Effective mobility for different channel thickness at 77 K. . . . 78

4.22 Drain current for different doping concentrations taken at room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.23 Effective mobility for different doping concentrations taken at

room temperature. . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



4.24 Determination of series resistance by the method described in

section 3.3.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.25 Plot for series resistance determination from W−1 method for

devices in wafer D04 at room temperature. . . . . . . . . . . . 83

5.1 Schematic diagram of sample 12-28. . . . . . . . . . . . . . . . 88

5.2 Shubnikovde Haas and Quantum Hall Effects at a temperature

of 316 mK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 SdH oscillations in inverse magnetic field (inset) and their FFT

spectrum for sample 12-28 at 316 mK . . . . . . . . . . . . . . 89

5.4 Magnetic field dependence of magnetoresistance and spin-splitting

dependence with temperature. . . . . . . . . . . . . . . . . . . 90

5.5 Spin-splitting dependence on temperature with temperature. 91

5.6 Magnetic field dependences of Hall resistance measured at dif-

ferent temperatures. In the inset is shown the linear region of

the Hall resistance. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Plots for self-consistent extraction of effective mass m∗ and pa-

rameter α for different temperatures (a) and magnetic fields (b). 93

5.8 Schematic cross-section of sample 12-131. . . . . . . . . . . . . 94

5.9 Cross-section TEM of sample 12-447. . . . . . . . . . . . . . . 95

5.10 Hall bar fabricated for magnetoresistance measurements. . . . 96

5.11 Profilemeter graph after samples undergo dry etching. . . . . . 97

5.12 Hall mobility (solid lines) and sheet density (dash lines) as a

function of temperature for sample 12-131 and 12-447. Both

samples were etched until the substrate. . . . . . . . . . . . . 98

x



5.13 Magnetic field dependences of magnetoresistance and Hall Re-

sistance for a measurement at 300 mK. The landau levels are

represented in red dotted lines. . . . . . . . . . . . . . . . . . 100

5.14 Low field SdH oscilations for sample 12-447, measured at tem-

peratures from 300 mK to 900 mK. . . . . . . . . . . . . . . . 101

5.15 Temperature dependence characteristics of the magnetoresis-

tance, measured at different temperatures. . . . . . . . . . . . 101

5.16 Magnetoresistance of sample 12-447 at intermediate tempera-

ture and field showing the emergence of peaks from SdH minima.102

5.17 Filling factor as a function of inverse magnetic field for sample

12-447. Filled points are taken at SdH minima (from a range of

temperatures), open points are for peaks in resistivity seen at

lowest temperature. The straight line through the origin shows

that the filling factors have been correctly assigned. . . . . . . 103

5.18 Temperature dependence of the Hall resistance for sample 12-447.104

5.19 Magnetoconductivity for sample 12-447 at 300 mK. . . . . . . 105

5.20 Plots for self-consistent extraction of effective mass m∗ and pa-

rameter α for different temperatures (a) and magnetic fields (b). 106

6.1 An AFM schematic representation of the surface morphology of

sample of Ge grown by CVD, prior to oxidation. . . . . . . . . 112

6.2 System used to perform the oxidation. it is composed of an

inlet for the gases (1), a furnace (2), a quartz tube (3), gases

extraction tube (4) and box to storage the samples (5). N2 is

constantly passing through the box. . . . . . . . . . . . . . . . 114

6.3 XPS Ge 3d spectra for the sample with natural oxide as-grown 117

xi



6.4 XPS Ge 3d spectra for the sample with natural oxide as function

of annealed temperature. . . . . . . . . . . . . . . . . . . . . . 118

6.5 Thickogram for determining the Germanium Oxide thickness.

The ratio of kinetic energy of overlayer and substrate peaks is

1. The intensity ratios is 1.53. This gives an intersection for

C=0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 C-V characteristics of Al/GeO2/Ge capacitors at frequencies of

5k-500 kHz for samples grown at 450◦C for an oxidation time of

30 minutes. ND = 2.8×1018 cm−3, tox = 272.5 nm as measured

by the CV curve. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 C-V characteristics of Al/GeO2/Ge capacitors at frequencies of

1k - 100 kHz for samples grown at: a) 475 ◦C for 30 minutes,

NA = 4.5 × 1015 cm−3, tox = 58.4 nm as measured by CV

curves; and b) at 475 ◦C for 60 minutes, NA = 9.8× 1014 cm−3,

tox = 47.9 nm as measured by CV curves. . . . . . . . . . . . . 120

6.8 Oxidation at 450◦C for 30 minutes. . . . . . . . . . . . . . . . 122

6.9 Cross-sectional TEM images of the oxidized samples for samples

grown at 475◦C for 30 minutes. . . . . . . . . . . . . . . . . . 122

6.10 Cross-sectional TEM images of the oxidized samples for samples

grown at 475◦C for 60 minutes. . . . . . . . . . . . . . . . . . 123

6.11 C-V characteristics of Al/GeO2/Ge capacitors at frequencies of

1k-100 kHz for samples grown at 500◦C for 30 minutes. NA =

4.7× 1014 cm−3, tox = 7.2 nm as measured by CV curves. . . . 125

6.12 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 1k − 100 kHz for samples grown at 500◦C for 45 minutes.

NA = 4.1× 1014 cm−3, tox = 6.7 nm as measured by CV curves. 126

xii



6.13 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 500 - 100 kHz for samples grown at 500◦C for 60 minutes.

NA = 2.9× 1014 cm−3, tox = 5.8 nm as measured by CV curves. 126

6.14 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 500 - 100 kHz for samples grown at 550◦C for 30 minutes.

NA = 1.3× 1014 cm−3, tox = 8.7 nm as measured by CV curves. 127

6.15 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 500 - 100 kHz for samples grown at 550◦C for 45 minutes.

NA = 4.0× 1014 cm−3, tox = 22.6 nm as measured by CV curves.127

6.16 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 1k - 100 kHz for samples grown at 600◦C for 15 minutes.

NA = 4.2× 1014 cm−3, tox = 13.0 nm as measured by CV curves 128

6.17 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 1k - 100kHz for samples grown at 600◦C for 30 minutes.

NA = 6.8× 1014 cm−3, tox = 11.9 nm as measured by CV curves 128

6.18 C-V characteristics of Al/GeO2/Ge capacitors at frequencies

of 1k - 100kHz for samples grown at 600◦C for 45 minutes.

NA = 5.6× 1014 cm−3, tox = 17.0 nm as measured by CV curves 129

6.19 Cross-sectional TEM images of the sample oxidized at 500 ◦C

for 30 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.20 Cross-sectional TEM images of the sample oxidized at 500 ◦C

for 60 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.21 Cross-sectional TEM images of the sample oxidized at 550 ◦C

for 15 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.22 Cross-sectional TEM images of the sample oxidized at 550 ◦C

for 30 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xiii



6.23 Cross-sectional TEM images of the sample oxidized at 550 ◦C

for 45 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.24 Cross-sectional TEM images of the sample oxidized at 600 ◦C

for 15 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.25 Cross-sectional TEM images of the sample oxidized at 600 ◦C

for 30 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.26 Cross-sectional TEM images of the sample oxidized at 600 ◦C

for 45 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.27 XPS Ge 3d spectra for the as-grown sample oxidized at 500 ◦C

for 45 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.28 XPS Ge 3d spectra for sample oxidized at 500 ◦C for 45 minutes

after annealing at 500 ◦C. . . . . . . . . . . . . . . . . . . . . 136

6.29 XPS Ge 3d spectra for the as-grown sample oxidized at 550 ◦C

for 30 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.30 XPS Ge 3d spectra for the sample oxidized at 550 ◦C for 30

minutes after annealing at 550 ◦C. . . . . . . . . . . . . . . . . 137

6.31 XPS Ge 3d spectra as function of anneal temperature for sam-

ples oxidised at 500 ◦C for 45 minutes. . . . . . . . . . . . . . 138

6.32 XPS Ge 3d spectra as function of anneal temperature for sam-

ples oxidised at 550 ◦C for 30 minutes. . . . . . . . . . . . . . 138

xiv



Acknowledgments

This thesis would not be possible without the help of a number of peo-

ple. First of all, I would like to thank my supervisors Prof. David Leadley

and Dr. Maksym Myronov for all the help and guidance through this work.

The development of this work would have not been possible without

several other members of the Nano-Silicon group past and present. I would

like to thank Dr Andy Dobbie for introducing me to our labs and research.

I would also like to thank Prof. Evan Parker and Prof. Terry Wall for their

advice and supervision. I would like to thank Dr. Vishal Shah for is patience

in teaching me and answer all my questions. During my time in the lab I

realised I had a gift for breaking, for this reason I frequently need the help of

Tim Naylor, Alistair Julian and Dr. Alan Burton, so I would like to thank

them for all their help. I want to thank also to Dr Chris Morrison, Dr Martin

Prest and Dr. Stephen Rhead for their help. Our lunch time was always a

time of learning, my English has improved considerably due the teachings of

James, Jamie, Phil and Dave.

A special thanks goes to Amna Hassan, I’ll always remember our late

nights in the lab doing measurements together as well as our tea brakes where

we talk about everything and anything. Another special thank goes to John

Halpin who has been a friend in all occasions, from our first year in the office,

where we worked but also found time for our discussions on different topics,

to my last year helping me and encouraging me to finish this thesis.

My passage by Warwick would not have been the same without the

presence of Nessa, Natalia, Priyanka, Assma and Manuel, thank you for all

xv



the support and friendship. I would like to thank also my housemates Yan,

Alice, Carol, Mayada and Clara for your friendship, you made our house a

very good house. You are all my support group away from home.

In my corner it has always been my friends Sónia and Di, that even far

away always gave their support and encouragement through email, phone calls

and Skype calls when I needed the most. I don’t have the words to thank you

girls.

Um agradecimento muito especial vai para os meus pais que sempre me

apoiaram em todas as minhas loucuras, incluindo esta. Sem a vossa ajuda e

apoio não teria conseguido. Um agradecimento especial vai também para o

meu irmão Sérgio e para a minha cunhada Fátima pelo vosso apoio. Também

gostaria de agradecer ao meu sobrinho Miguel por ser capaz de sempre me

deixar com um sorriso.

xvi



Declarations

This thesis is submitted to the University of Warwick in support of my

application for the degree of Doctor of Philosophy. It has not been submitted

for a degree at any other University.

All of the work described in this thesis was carried out by the author, or

under her direction, in the Department of Physics at the University of Warwick

except in the following cases:

• The AFM and TEM images were taken by John E. Halpin.

• The XPS spectra were taken by Dr. Marc Walker and James Mudd.

xvii



Abstract

With continued scaling down of devices it is necessary to look into

new materials in order to improve device performance. Ge and SiGe are good

candidates for channel materials since they present high carrier mobility. Also,

in order to reduce the gate leakage as the dielectric thickness is reduced it is

necessary to look at high-κ materials to substitute the Si-SiO2 as it reaches its

limits. This thesis investigates different properties of Ge devices.

The first part of this work investigates Ge channel MOSFETs and the

effects of different growth parameters such as Ge surface passivation scheme,

channel thickness and doping concentration on device performance. It is shown

that, for these devices, strain can provide a 50% increase in mobility, but chan-

nel thickness and doping concentration do not show significant enhancement

in mobility.

The second part looks at the transport properties of very high mobil-

ity, strained Ge channel, modulation doped devices. A mobility of around

7 × 105 cm2V−1s−1 was measured at 300 mK for a Ge heterostructure grown

by CVD. Values for the hole effective mass of 0.083± 0.002 m0 were obtained

from the temperature and field dependence of Shubnikov-de Hass oscillations

in the magnetoresistance.

In the last chapter, developments on thermal growth of GeO2 are in-

vestigated using a simple oxidation process. It is shown that this process

demonstrates good device characteristics and a smooth Ge-GeO2 interface.

For devices under study an interface trap density around 1011eV−1cm−2 is

estimated using the low-high frequency method.
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Chapter 1

Introduction

1.1 Motivation

Gordon Moore (Intel’s co-founder) predicted, in 1965, that the number

of transistors on a chip would double every year [1] which became known as

Moore’s Law. This law has been the driving force behind the scaling down

of devices, in particular the metal-oxide-semiconductor-field-effect transistors

(MOSFET) that underpin the whole electronics industry through complimen-

tary MOS (CMOS) circuitry. Between each ‘technology node’ devices have

been scaled by a factor κ, which according to Moore’s law is 2. The param-

eters to be scaled are device dimensions (oxide thickness, width and channel

length and junction depth), by a factor of 1/
√
κ, substrate doping concentra-

tion by κ, and supply voltage by 1/
√
κ [2].

Initially, this scaling was simply performed by taking advantage of de-

velopments in the fabrication process, in the main through advances in lithog-

raphy techniques. However, in order to maintain the enhancements in per-

formance it has become necessary to look at new materials, and to develop

novel interface systems and alternative gate concepts, whilst still maintaining

compatibility with silicon based-technologies [3].
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Although the first transistor was made of germanium (Ge), silicon (Si)

is the main component in device fabrication mainly due to the good qual-

ity of the interface of Si with is natural oxide, silicon dioxide, SiO2 and it is

abundant therefore cheaper. Ge, on the other hand, is not abundant and does

not possess a good interface with its natural dielectric, GeO2. Also, since the

melting point of Ge, 937◦ C, is lower than for Si, a smaller thermal budget

can be used for CMOS processing. Nevertheless, Ge is again being considered

to be a good candidate for future MOSFETs, as it has a higher bulk mobility

being more than 4 times that of Si for holes and 2 times for electrons. The

principal aim of this thesis is to explore the possibilities offered by Ge channel

devices and how these can be realised in practice.

Ge channel MOSFETs are already a reality, presenting good results

for both n-channel and p-channel [4–7]. Because of the narrower band gap,

devices made with a Ge and/or SiGe channel present higher junction leak-

age current, which is a concern for low power applications. Also, Ge presents

a channel orientation dependency due to the anisotropy of the hole effective

mass. In scaling down the SiO2 layer used within the MOSFET gate stack to

a few monolayers, the gate leakage current increases which consequently leads

to devices degradation. Replacing the SiO2 with a high-κ dielectric can allow

the physical oxide thickness to be increased while maintaining a low equivalent

oxide thickness (EOT). In order to integrate high-κ dielectrics it is necessary

to take account a range of factors, such as the dielectric permittivity, oxide

to semiconductor barrier height, gate metal work function, charge trapping in

the oxide, as well as the effect on transport within the semiconductor channel

of the oxide-semiconductor interface. A high dielectric permittivity element is

associated with a low band gap and consequently lower barrier heights, which
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are responsible for the tunnelling process. There will be a trade-off between all

these parameters, but for a practical MOSFET, the high-κ dielectric constant

should be between 10 to 30, the band offset should be above 1eV also, in order

to attain a good electrical interface it is necessary for the high-k dielectric to

be thermally stable for thermal budget temperatures, that is, 1000K for 90s

[8, 9].

Another promising route for higher performing devices has been to de-

velop III-V compounds for the n-type devices in CMOS, because of their high

electron mobilities, for example 77,000 cm2/Vs, 40,000 cm2/Vs, 9,200 cm2/Vs

and 5,400 cm2/Vs for indium antimonide (InSb), indium arsenide (InAs), gal-

lium arsenide (GaAs) and indium phosphorus (InP), respectively. The en-

hancement factor in electron mobility compared to Si can reach 50 in the bulk

[10]. However, the integration of III-V devices with silicon infrastructure, while

maintaining the same quality, is not easy. Problems start with the high cost

of III-V substrates and the fact that these are simply not available at the sizes

used for silicon mass production (now 450 mm diameter). In addition, there

are difficulties with both the epitaxial growth of III-Vs directly on Si and with

a layer transfer/wafer bonding approach. Epitaxial growth is difficult because

of the high lattice mismatch between Si and the III-Vs, which means a high

dislocation density. Consequently, an additional strain-tuning buffer layer is

required, for which Ge-on-Si is a possible candidate because of the closer lat-

tice match to GaAs. On the other hand, integration via bonding has problems

concerning damage to the conducting channel, caused during the H+ implants,

and a mismatch of the thermal coefficients of expansion, which leads to wafers

bowing and/or cracking during the bonding process. A combination of the

two developments just mentioned, that is, co-integration of III-V n-type and
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Ge p-type devices on the same Ge-on-Si platform may provide the ultimate

solution for high performance CMOS [11, 12].

1.2 Basic properties of Si and Ge

Both Si and Ge are group-IV elements that crystallize in the diamond

lattice and have an indirect band gap, with silicon having the largest (EgSi
=

1.12 eV and EgGe
= 0.66 eV). In Si, the conduction band minima lie in the

[100] direction (∆ minima) and are sixfold degenerated, whereas in Ge they

are in the [111] direction (L minima) and are eightfold degenerated [2, 13–16],

see Figure 1.1. The valence band minima, Γ-point, consists of three bands: i)

heavy-hole (HH) band, ii) light-hole (LH) band and iii) a split off band due to

spin-orbit interaction. The effective mass, m∗ depends on the crystal direction.

When compared with Si, Ge possess a lower hole effective mass and has longer

relaxation times, which can explain the higher mobilities encountered for Ge.

Table 1.1 shows the basic properties of selected semiconductors.

Si and Ge are the only group IV elements that are miscible across the

alloy composition range. Si can be combined with Ge to form an alloy of

Si1−xGex, where x represents the Ge composition and takes values between

0 < x < 1, still with the diamond lattice structure. On changing x the

alloy characteristics are changed, such as the lattice parameter and band gap

value. Figure 1.2 shows how the band gap of the alloy varies with Ge content.

Although the lowest lying conduction band changes from the ∆-valley to the

L-valley once x exceeds 0.85, the band gap of SiGe alloys remains indirect for

all compositions.
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Figure 1.1: Energy band structure for Ge (left) and Si (right). Reproduced
from [2].

The lattice parameter of the alloy follows Kasper-corrected-Vegard’s

law, which states that the increase of lattice parameter with x follows equation

1.1 [15, 19].

aSi1−xGex = aSi · (1− x) + aGe · x− 0.00273x(1− x) (1.1)

where the lattice parameters for Si and Ge, aSi = 0.5431 nm and aGe =

0.5658 nm, differ by 4.2%. This is a linear interpolation between both lattice

parameters [20]. As can be seen in Figure 1.2, the band gap of the alloy

decreases with increasing Ge content, although it does not change linearly and

there is an additional bowing parameter which makes a significant difference

for the bulk alloy.
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Figure 1.2: Variation of band gap of Si1−xGex, with Ge content x. At x=0.85
it is possible to observe the alloy crossover from the Si-like to Ge-like band
structure for unstrained layers (top curve). For strain layers (bottom curves)
is depicted the valence band splitting. Taken from [15]

1.3 Strained layers

Figure 1.2 also shows the resulting band gap for Si1−xGex on Si for a

range of x. It can be seen that there are now two lines for the band gap, since

the degeneracy between heavy holes (HH) and light holes (LH) at the zone cen-

tre is lifted by the strain, with the heavy hole band being displaced upwards.

This is very important for charge transport in Ge because the scattering rate

for holes in the strained system is much less by having a reduced density of

states to scatter into. Furthermore, the strain also distorts the shape of the

hole bands which leads to a lighter effective mass for HHs under compressive

strain, again improving their transport properties and leading to an increase

in the hole mobility [13, 14, 21].
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In addition to the changes in material characteristics caused by alloying,

further desirable changes can be achieved by straining the material. The 4.2%

difference in lattice parameter between Si and Ge means that a thin epitax-

ial alloy layer grown pseudomorphically on a silicon substrate, i.e. retaining

the same in-plane lattice spacing in the epitaxial overlayer as the underlying

material, will be under biaxial compressive strain.

Figure 1.3: Critical thickness as a function of Germanium composition on a
SiGe alloy grown on Si. Both the theoretical limit and the experimental curve
for a metastable layer grown by MBE are shown. Reproduced from [15].

There is a limit to the amount of strain energy that can be built up in

an epilayer before relaxation occurs through the nucleation of dislocations in

the crystal [22–24]. Dislocations have a misfit segment that runs parallel to

the heterointerface, which serves to accommodate the lattice difference, and

also threading dislocations that can run up through the epilayer to terminate
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on the free surface. Threading dislocations are potentially very bad for device

properties as they can provide a leakage path and so their density must be

minimised, or avoided entirely by keeping the layer below the critical thick-

ness. For Ge grown directly on Si the critical thickness would be only a couple

of nanometres (see Figure 1.3), which would make device processing impossi-

ble as this layer would be entirely removed in the first cleaning step. Instead,

fully strained Ge layers that are thick enough to process devices on can be

grown on a relaxed Si1−xGex ‘virtual substrate’ [25–31].

It is also possible to produce Ge layers that are thicker than the critical

thickness, by growing in perfectly clean conditions and at sufficiently low tem-

perature so that there are no nucleation sites and insufficient thermal energy

for dislocations to appear. Such layers are in a metastable state, which means

they may start to relax if subject to further thermal processing so care for the

overall thermal budget is needed [22].

1.4 Ge surface passivation

A major concern when implementing high-κ materials is the Ge-high-κ

interface quality. To optimise this it is necessary to correctly passivate the Ge

surface. Several methods have been used to passivate the surface [8] such as

Si-based methods, sulphur, nitridation, and GeO2. Common high-κ dielectrics

used are HfO2, ZrO2, Al2O3 and GeO2 the native oxide. The majority of the

dielectrics used have oxygen in their composition, which forms an interlayer

(IL) of GeO2, and it has been shown that this IL is responsible for improving

device characteristics [32–34].

Sulphur passivation presented the worst results, not showing any en-
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hancement in the interface trap density, the lowest value obtained was 4.8 ×

1011 cm−2eV−1, which is at least an order of magnitude too large for practical

devices.

κ
SiO2 3.9
Si3N4 7
Al2O3 9
Ta2O5 22
TiO2 80

SrTiO3 2000
ZrO2 25
HfO2 25

HfSiO4 11
La2O3 30
Y2O3 15

a-LaAlO3 30
GeO2 5-6

Table 1.2: Dielectric constant of candidate gate dielectrics. Taken from[35].

According to Chui et al. [36, 37] nitridation of Ge oxides lowers the in-

terface trap density which can be reduced even further by annealling in forming

gas. However, this presents an abnormal behaviour of the gate leakage due to

charge trapping. Similarly, nMOSFETs treated in this way showed poor elec-

trical characteristics, although the electrical characteristics could be improved

by controlling the nitrogen concentration and the GeON thickness [38, 39]. It

was found that a GeON IL, with a low N/Ge ratio, could reduce the deterio-

ration caused by atomic laser deposition (ALD), a Dit of 4 × 1011 cm−2eV−1

was obtained.

Si passivation consists of growing a thin Si cap on top of the Ge and SiGe

surfaces. The Si cap reduces the gate leakage current, reduces the subthresh-

old slope (SS) and can enhance drive current, which leads to an improvement

10



in the mobility of Ge devices [33, 40–43]. The Si cap can be grown using two

precursors, SiH4 and Si3H8, which will be examined in some detail in Chapter

four.

More recently, the interest in GeO2 as a passivation layer has increased.

In order to passivate the surface several methods have been used, such as high

pressure oxidation (HPO) [44], with and without low temperature oxidation

annealing (LOA). The GeO2 layer can also be grown by ozone oxidation [45],

thermal oxidation [46], electron-cyclotron-resonance (ECR) plasma irradiation

[47] and by direct growth on Ge substrates [48, 49]. A more detail description

on different passivation methods will be given in Chapter six. Table 1.2 shows

dielectric constants of candidate gate dielectrics.

1.5 Thesis outline

This thesis will look into the effects of different growth conditions and

device fabrication processes on Ge devices. In chapter two a brief description

of concepts needed to understand this investigation is provided. Chapter three

introduces the experimental techniques and data analyses techniques used to

characterise the devices. The effects of Si cap growth, doping and channel

thickness in relaxed and strained Ge MOSFETs are investigated in chapter

four. In chapter five, results of magneto-transport measurements performed

on a 2DHG in a strained Ge quantum well will be shown. Chapter six will

describe thermally grown GeO2 on epitaxial Ge-on-Si(100) substrates. Finally,

in chapter seven, a summary of the main conclusions will be given as well as

an outlook on further work.
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Chapter 2

Theoretical Background

In this chapter an overview is presented of the theory necessary to

perform and interpret the experiments and their results. In the first two

sections a description will be given of the operation modes of MOS capacitors

and MOSFETs.

2.1 Metal-Oxide-Semiconductor capacitors

A metal oxide semiconductor (MOS) capacitor consist of a metal layer

(gate) on top of a dielectric grown or deposited on a semiconductor body or

substrate, see Figure 2.1.

Figure 2.1: Schematic of a Metal-Oxide-Semiconductor capacitor with the
back contact present. The semiconductor can be n- or p-type. The metal gate
act as a gate for the device.
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The substrate is usually grounded and the gate can be biased with a

voltage, VG. The substrate can be doped n-type (pMOS capacitor) or p-type

(nMOS capacitor). MOS capacitors are relatively simple devices to fabricate

and to measure which provide useful information about the properties of a

gate stack and channel that would be obtained after a full transistor fabrica-

tion process, but with some hundred fewer processing steps.

Below are shown the band diagrams of an nMOS capacitor in the flat-

band condition (Figure 2.2) and under different bias conditions: accumulation

(Figure 2.3), depletion (Figure 2.4), inversion and strong inversion (Figure

2.5).

In an ideal MOS capacitor no band bending is observed when the bulk

semiconductor and the dielectric are put in contact (see Figure 2.2), that is,

there is no charge either in the oxide or at the oxide-semiconductor interface.

Figure 2.2: Energy band diagram for a nMOS capacitor in flatband. In real
devices this condition is achieved by applying a voltage to the gate. ΦM and
ΦS are the metal and semiconductor work function respectively.

However, when the two interfaces are put together in real MOS capac-

itors band bending does occur, due to the difference in the work functions of

the materials. The band bending changes by applying a voltage to the gate,

so, in order to align the Fermi levels it is possible to apply a voltage that
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counterbalances the difference in work functions, called the flatband voltage,

VFB:

VFB = Φg − Φs (2.1)

where ψg and ψs are the gate work function and the semiconductor work func-

tion, respectively. These work functions are defined as the difference between

the vacuum level and the Fermi level. For simplicity, the contributions of in-

terface charge traps and any charge within the oxide are ignored in calculating

the band bending.

For an n-type (p-type) semiconductor applying a positive (negative)

voltage to the gate causes the conduction (valence) band to bend towards the

Fermi level causing electrons (holes) to move and accumulate at the surface:

the capacitor is said to be in ’accumulation’ (Figure 2.3).

If a negative (positive) voltage is now applied to the gate, the valence

(conduction) band bends towards the Fermi level causing the electrons (holes)

to be repelled from the surface: the device is said to be in ’depletion’ (see

Figure 2.4). By continuing to decrease (increase) the voltage to the gate,

the bands will bend even further causing the Fermi level to be closer to the

Figure 2.3: Sketch of energy band diagram for a nMOS capacitor in accumu-
lation condition.
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Figure 2.4: Sketch of energy band diagram for a nMOS capacitor in depletion
conduction.

conduction (valence) band and eventually reach the onset of inversion, when

the majority carrier concentration will be equal to the donor concentration.

Continuing to apply voltage to the gate causes the device to change from

n-type (p-type) to p-type (n-type) (see Figure 2.5) i.e. to become ’inverted’.

In inversion is possible to relate the voltage applied to the gate with

the flatband voltage, the oxide voltage (Vox) and the potential at the surface

of the semiconductor (ψs):

VG = VFB + Vox + ψs = VFB +
Qs

Cox
+ ψs (2.2)

where Cox is the oxide capacitance, and Qs is the total charge at the semiconductor-

oxide. The total charge is composed of the inversion and depletion charge, Qinv

and Qdep, respectively. The surface potential ψs is defined as the difference

between the Fermi level at the surface and the Fermi level in the bulk. The

band perturbation potential ψ is a function of the distance perpendicular to

the interface, that is, ψs ≡ ψs(z), and is parabolic. The minimum of this po-

tential is at z = Wd and at this point ψ(= Wd) = 0, where Wd is the depletion

layer width. At the surface, z = 0, the band perturbation potential is equal
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Figure 2.5: Energy band diagram for a nMOS capacitor in inversion and strong
inversion.

to the surface potential, that is, ψ(z = 0) = ψs. Solving the Poisson equation

and taking the depletion regime gives a depletion layer width:

Wdep =

√
2εscε0ψs
qNa

(2.3)

where εsc is the semiconductor relative permittivity, ε0 the permittivity of free

space, q the electron charge, ψs the surface potential and Na the density of

ionised acceptors. The depletion charge sheet density is given by

Qdep = qNWdep =
√

2ε0εscqNψs (2.4)

for which the surface potential at the onset of strong inversion is two times
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the bulk potential

ψs = 2ψb = 2
kBT

q
ln

(
N

ni

)
(2.5)

with the bulk potential also given by

ψb =
EF − Ei

q
(2.6)

where ni is the intrinsic carrier concentration, kB is the Boltzmann constant

and T the temperature.

In strong inversion the bands are no longer affected by the voltage

applied at the gate; the depletion layer width is at its maximum and is given

by

Wdep =

√
4εscε0kBT ln(N/ni)

q2N
(2.7)

2.1.1 MOS CV characteristics.

Figure 2.6 shows a schematic current-voltage (CV) characteristic for

a MOS capacitor, with measurements made at both low and high frequency.

The curve can be divided in the 3 regions: in accumulation the capacitor be-

haves as a regular parallel plate capacitor, so the capacitance measured is the

oxide capacitance; as the capacitor enters the depletion region the carriers are

repelled away from interface, so the oxide capacitance is in series with the

depletion region capacitance; when the capacitor enters inversion the carriers

from the bulk cannot respond to a high frequency AC signal, so the curve re-

mains constant at the bottom of the depletion region. However, at sufficiently

low frequencies the carriers can respond to the AC signal and the capacitance

becomes equal to the oxide capacitance again.
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Figure 2.6: CV characteristics for a MOS capacitor for both high frequency
and low frequency.

2.2 Metal-Oxide-Semiconductor Field-Effect-

Transistor (MOSFET).

The metal-oxide-semiconductor-field-effect transistor consist of a MOS

capacitor with highly doped contacts, source and drain on either side of the

channel, each with a metal contact. A p-channel MOSFET consist of an

n-doped body with highly p-doped source and drain, see Figure 2.7. In an

n-MOSFET, the doping is of the opposite polarity. The gate oxide is a thin

dielectric insulating layer that enables a vertical electric field to be established

between the gate metal electrode and the body, but not a leakage current be-

tween them. This electric field attracts charge carriers into the channel region

and in varying it the conductivity of the channel can be controlled. The ba-

sic parameters of the MOSFET are channel length L (the distance between

18



the drain and the source), channel width W , gate-oxide thickness d, junction

depth rj and substrate doping N [2, 50].

When no voltage is applied to the gate, the drain and source are

Figure 2.7: Schematic of a pMOSFET. A MOSFET is a four-terminal device:
source, drain, gate and substrate. For a pMOSFET the source and drain are
p+ doped and the substrate is n doped.

isolated so no current flows across the channel, the device is in the off-state.

The MOSFET behaves as two back-to-back diodes in series between drain

and source, that is, a pn junctions. When a negative voltage is applied to

the gate, the majority carriers will be repelled from the region under the gate

downwards into the substrate, reducing the electron density leading to the

formation of a positive charge, the depletion charge. The applied voltage at-

tracts the minority carriers, holes, from the metal contacts to the area under

the gate, the channel region, forming an inversion layer that connects the drain

and the source and current can now flow between the two (the MOSFET is

in the on-state). If a negative voltage continues to be applied there will be

a point where the substrate is depleted of electrons near the surface and the

conductivity of the semiconductor is inverted [2, 13, 14, 51].

MOSFET operation can be described using the charge sheet approxi-
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mation [13, 14, 51, 52], which assumes that the inversion charge is located in

a sheet at the semiconductor surface, with no potential drop or band bending

occurring across the inversion layer.

The inversion charge, Qinv, as function of the position along the channel

is written as

Qinv(x) = −Cox (VG − Vt − Vc(x)) (2.8)

where Cox is the oxide capacitance, Vc(x) is the potential at the surface in the

channel region, Vt is the threshold voltage, which is defined as the voltage need

to start inversion:

Vt = VFB + 2ΦB +

√
2εsqND(2ΦB)

Cox
(2.9)

The first term refers to the flatband voltage, which ideally should be zero, the

second term is the condition for the onset of the inversion layer, and the last

term is the necessary voltage at the oxide to form the depletion layer.

The inversion layer is populated by holes that are moving at a veloc-

ity, v(x), along the channel. The velocity, denominated carrier velocity, is

related to the longitudinal electric field, El, by the carrier mobility, µ, which is

considered constant and independent of the electric field through the channel:

v(x) = −µdVc(x)

dx
(2.10)

The drain current, ID, is defined via equations 2.8 and 2.10 by

ID = WQinv(x) · v(x) = CoxµW (VG − Vt − Vc(x))
dVc(x)

dx
(2.11)
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Figure 2.8: Ideal output characteristics of a MOSFET. Both operation regions
are represented: saturation region (VD << VG − Vt) and linear region (VD ≥
VG − Vt). Reproduced from [53]

.

Performing the integration from Vc(0) = 0 to Vc(Lc) = VD, the expression for

the drain current will be:

ID =
µCoxW

Lc

[
(VG − Vt)VD −

V 2
D

2

]
(2.12)

which describes the output characteristics of a MOSFET.

Figure 2.8 shows the drain current plotted as a function of the source-

drain voltage at different gate voltages. The curves can be divided into two

regions, the linear region and the saturation region. The linear region is char-

acterized by a linear increase of drain current with gate voltage and in this
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region equation 2.12 can be written as

IDlinear
≈ µ

W

L
Cox ((VG − Vt)VD) (2.13)

Increasing the drain voltage leads to a decrease in the inversion charge,

reaching a stage with no inversion charge which is the ’pinch-off’ point. An

increase in the drain current moves the physical position of the pinch-off point

in the channel towards the source. In this situation, the drain current depends

on the channel length, not on the source-drain voltage, and the device reaches

the saturation region. The drain current is then given by

IDsat = µ
W

L
Cox

(
VG − V 2

t

)
(2.14)

2.3 Carrier Mobility and Scattering

The carrier mobility is an important parameter in device performance

[14, 15], since a higher mobility translates into a higher drive current. The

mobility is determined by a range of processes that scatter the charge carriers

in the channel and is limited by the scattering mechanism with the highest

relaxation rate.

The mobility is related to the transport scattering time τ by

µ =
eτ

m∗
(2.15)

In the presence of multiple scattering mechanisms the mobility can be calcu-

lated by summing the inverse relaxation times for each mechanism to find an

average relaxation time. For each process, the relaxation rate (inverse relax-
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ation time) is given by solving the Boltzmann equation.

2.3.1 Scattering mechanisms

As the carrier moves along the channel it might encounter impurities, such as

defects, which are responsible for the delay in their motion. If the carrier goes

from the source and the drain without any impediment it is said to be in the

ballistic regime, but this is very rare. Usually the carriers will interact with

impurities in the lattice. The main mechanism responsible for scattering are

ionized impurities or Coulomb scattering; phonon scattering; surface roughness

scattering and alloy scattering.

2.3.1.1 Ionized impurities or Coulomb scattering

There will be a certain level of background impurities in any material,

dopants are introduced into the body of a MOSFET to set the electrostatics,

and in addition dopants can diffuse into the channel as a result of the heavy

doping of the source and drain regions. The amount of dopants in the channel

can also increase as a result of diffusion during high temperature stages of

device fabrication. What is important for carrier scattering is how many of

these impurities are ionised and thereby create an electrostatic potential.

Coulomb scattering can also arise from defects at the gate/semiconductor in-

terface that attract charge. The impurities will change the lattice periodicity

locally and consequently will change the potential. Since the Coulomb po-

tential is a static potential it is possible for high energy carries to screen this

effect. At low temperatures, when carriers have low energy, and for short

channel devices this scattering mechanism is more accentuated and will often
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be the limiting factor on the carrier mobility [14].

The matrix element Mq for Coulomb scattering is given by

|Mq| =
[

2πe2

κ0q

]2 ∫
Nl(z) [Fl(q, z)]

2 dz (2.16)

where Nl(z) is the impurity concentration.

2.3.1.2 Phonon scattering

Lattice vibrations (phonons) cause atoms to displace from their equilib-

rium positions, causing changes in the band structure and hence in the band

energies. Thus lattice vibrations act as a perturbation on the potential. There

are two branches of phonons: acoustic and optical phonons, see Figure 2.9.

Figure 2.9: Schematic showing the difference between the acoustic and optical
phonons with the same wavelength. Taken from [54].

Both Si and Ge have three acoustic phonon modes (one longitudinal

and two transverse) and three optical phonon modes (one longitudinal and

two transverse). In the longitudinal mode all atoms move in the direction of

the wave vector, while in the transverse mode atoms move in the perpendicular

direction [2, 55]. Acoustic phonons behave like sound waves with atoms moving

together in the same direction. The motion of adjacent atoms in optical mode
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is in opposite directions.

Scattering by acoustic phonons can be considered to be quasi-elastic,

as the phonon energy is small compared to the energy of the carrier. By

contrast, optical phonons have a minimum energy that is not small, making

optical phonon scattering an inelastic process that modifies the carrier energy.

Lattice vibrations behave as the vibrations of the harmonic oscillator,

with phonons having an associated energy E(k) and a momentum k.Figure

2.10 shows a schematic version of the phonon dispersion relation for the optical

mode ω(k) = ω0 and acoustic mode ω = vsk.

Phonon scattering is the dominant scattering mechanism at room

Figure 2.10: Schematic representation of phonon acoustic and optical modes.

temperature, since the scattering rate will increase with temperature as the

number of phonons increases.
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2.3.1.3 Surface roughness scattering

Since the interface between semiconductor and dielectric is never per-

fectly smooth, surface roughness causes carriers to scatter. The interface

roughness scattering process is parameterised by an average height ∆ and

a correlation length Λ [13, 14, 56]. It assumes a Gaussian distribution which

is valid when ∆ << L and Λ >> L.

2.3.1.4 Alloy scattering

An alloy implies the introduction of a different atom, for example Si

and Ge, which causes atomic disorder due to the change in the local band

structure. When the concentration of Ge is of 50% the alloy scattering has its

maximum [14, 56, 57]. However, in most cases for devices made of SiGe, alloy

scattering is not a dominant scattering mechanism because interface roughness

and impurity scattering are far more important processes in real materials [58].

2.4 Magneto Transport theory

2.4.1 The Hall effect

An electric field Ex is applied in the x direction and a current density

Ix flows through a cross section of a metal bar, A. A magnetic field Bz per-

pendicular to the surface is also applied. As a result, the Lorentz force will

deviate the electrons in the negative direction of y. Electrons will accumulate

at one end of the bar creating an electric field in the y direction, Ey (the Hall

field). This implies that the two forces are in balance and current will flow in

the x direction.

26



The sheet resistivity of the bar is given by

ρxx =
Vx
Ix

w

l
(2.17)

and has units of Ω/sq. The velocity of the carries is related to the current I

by I = nsqvw, where ns (= nt) is the sheet carrier density. The Hall voltage,

that is, the voltage across the bar produced by the electric field, is given by

[59]

VH =
IB

nsqw
(2.18)

where ns is the sheet carrier density, q the electron charge and w the width of

the bar. The Hall resistivity is given by

ρxy =
VH
I

=
B

nsq
= RHB (2.19)

From Equations 2.17 and 2.19 we deduce

ns =
IB

qVH
(2.20)

The conductivity σ is defined by nqµ and at low magnetic fields, that is,

µB << 1 [53, 59]:

ρxx =
1

nsqµ
(2.21)

µH =
1

nsqρxx
=

ρxy
Bρxx

=
1

B

VH
Vx

i

w
(2.22)

for high fields, that is µB >> 1, the conductivity is defined by

ρ(B) = ρxx =
σxx

σ2
xx + σ2

xy

(2.23)
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RH(B) = −ρxy
B

= − 1

B

σxy
σ2
xx + σ2

xy

(2.24)

where σ is the conductivity.

In the previous calculations we have assume a single carrier is present.

For multiple carriers we have

RH =
±n1µ

2
1 ± n2µ

2
2

q (n1µ1 + n2µ2)2 (2.25)

for low fields approximation. Which becomes

RH =
1

q (±n1 +±n2)
(2.26)

in high fields. In this approximation, carriers will complete many orbits around

the magnetic flux lines before being scattered. This orbits have an angular fre-

quency ωc = qB/m∗. This angular frequency is called the cyclotron frequency.

This frequency leads to the formation of Landau levels which are given by

En = h̄ωc

(
n+

1

2

)
(2.27)

with n = 0, 1, 2, ....

With increasing magnetic field, the separation between two adjacent

Landau levels will increase. The density of states associated with each level is

given by [60],

n2D =
eB

h
(2.28)

The number of levels occupied is given by the filling factor, ν:

ν =
hps
eB0

(2.29)
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where ps is the sheet carrier density and B0 is the fundamental field. For ν

integer the Fermi level is located in between two Landau levels so no scattering

occurs.

2.4.2 Shubnikov-de-Haas effect

The Shubnikov-de-Haas (SdH) effect occurs at low temperatures, where

while measuring the longitudinal resistance, Rxx, with varying magnetic field

oscillations appear. When the transversal resistance, Rxy, is measured with

varying magnetic field, plateau appears which is called of Quantum Hall effect.

In order to observe the SdH oscillations the 2 dimensional carrier gas,

2DCG, the carrier distribution needs to be degenerated, high field approxima-

tion, and the measurement needs to be performed at low temperatures.

It is assumed that the Landau levels have the shape of a Lorentzian,

the SdH oscillations can be described in function of ρxx(B) and ρxy(B) as

[57, 61, 62]:

ρxx =
1

σ0

(
1 + 2

∆g(T )

g0

)
(2.30a)

ρxy =
ωcτ

σ0

(
1− 2

1

(ωcτ)2

∆g(T )

g0

)
(2.30b)

∆g(T )

g0

= 2
∑∞

s=1

(
− πs

ωcτ

)
A

h̄ωc
.

1

sinh
(

A
h̄ωc

) .cos(2πsEF
h̄ωc

− πs
)

(2.30c)

with A = 2π2skBT , σ0 is the conductivity at zero field, g is the density of

states (DOS), ∆g is the oscillatory part of DOS, s is the Fourier harmonic

index, s takes values above 1 only for very high mobilities. In the following
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calculations, s=1 will be used:

σxx = σ0
1

1 + (ωcτ)2
.

[
1− 2.(ωcτ)2

1 + (ωcτ)2

A

h̄ωc
cosh

(
2A

h̄ωc

)
.cos

(
2πEF
ω̄c

)
.exp

(
− π

ωcτ

)]
(2.31)

The longitudinal resistance can be separated in 3:

∆ρxx ≈ A1(EF , ωc).A2(ωc, τ).A3(ωc, T ) (2.32)

with

A1(EF , ωc) = cos

(
2πEF
h̄ωc

)
(2.33a)

A2(ωc, τ) = exp

(
− π.s
ωcτ

)
(2.33b)

A3(ωc, T ) =
A

h̄ωc

1

sinh
(

A
h̄ωc

) (2.33c)

The period of oscillations is taken from A1 and is proportional to the inverse

of magnetic field, ∆(1/B), knowing the period the sheet density ns is known

ns =
q

πh̄∆(1/B)
(2.34)

The amplitude of oscillations in function of the applied magnetic field is con-

trolled by the second term, A2. The amplitude of oscillations depends on the

effective mass and relaxation time. A3 is used to determine the effective mass,

it changes with temperature and magnetic field. By varying the temperature,

the amplitude of oscillations vary but not its positions.
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Chapter 3

Experimental Techniques

In this chapter we will look at the experiments used to obtain the results

for this thesis. It is divided in three parts:

• Sample growth and preparation.

• Electrical and structural characterization.

• Data analyses techniques.

The majority of the experiments were performed at the University of Warwick.

3.1 Sample growth and preparation.

Ge epilayers were grown in an ASM Epsilon 2000 Reduced Pressure

Chemical Vapour Deposition (RP-CVD) reactor, on 100 mm diameter Si(100)

substrates. On top of these layers three types of devices were grown. The

simplest devices fabricated were capacitors using evaporated Al as a top con-

tact. Hall bars were fabricated by lithography and MOSFETs by atomic layer

deposition (ALD) at IMEC. In the next sections a brief overview of RP-CVD

and the device fabrication processes will be given.
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3.1.1 Chemical Vapour Deposition.

As mentioned earlier, the Ge epilayers were grown by RP-CVD. CVD

is a chemical process used to deposit materials onto a substrate. In the CVD

process the substrate is loaded into the reaction chamber where it is heated

by infra-red radiation; the substrate temperature is controlled by thermocou-

ples below the wafer. Precursors, gaseous chemicals, are then flowed over the

substrate surface and deposition occurs. The precursor flux is controlled by

valves that depending on the growth recipes open and close. Depending on the

desired end product different precursors will be used. The common precursors

used for Ge and Si are, respectively, germane (GeH4) and silane (SiH4). In the

epitaxial growth of our layers GeH4 and di-silane Si2H6. The most probable

reaction pathway of GeH4 on the surface is GeH4 → GeH2 +H2 [26, 63]. The

reaction scheme for this process is

GeH4(g) + 2(s) −→ H2(g) + 2H(s) +Ge(b) + e(b) (3.1)

2H(s)(s) + 2(b)←→ H2(g) + 2(s) (3.2)

where s is a free surface site and b is the solid bulk lattice atom. The decom-

position of disilane is done following the reaction Si2H6(g)→ 2Si(g) + 3H2(g)

[64]. The reaction pathway on the surface is described as [64, 65]:

Si2H6(g) + 2Si(s)→ 2SiH3(s) + 2Si(b) (3.3)

SiH3(s) + Si(s)→ SiH2(s) + SiH(s) (3.4)

SiH2(s) + Si(s)→ 2SiH(s) (3.5)

2SiH(s)→ 2Si(s) +H2(g) (3.6)
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The gas flow rate is usually given in standard cubic centimetres per minute

(sccm) and standard litres per minute (slm). The by-products are then re-

moved form the chamber [66]. In Figure 3.1 is shown a simplified illustration

of the CVD process. The temperature of the substrate is very important

because it will determine the reactions that will take place. In CVD both

temperature and gas flow determine the growth rate and consequently layer

thickness. There are two processes that limit the rate of CVD growth: either

the surface reaction rate or the mass transport rate. The first occurs when

there are an over abundance of reactants, so the growth rate is limited by

the reaction speed. The second occurs when the reactants are consumed at a

faster rate than they are supplied.

Figure 3.1: A simple illustration of the CVD process (taken from [26]).The
precursor is sent to the chamber where it reacts with the wafer, the precursors
used in this thesis were Si2H6 and GeH4 for Si and Ge, respectively.

3.1.2 Evaporation

Evaporation is a method of physical vapour deposition using resistive

heating, requiring high or ultra-high vacuum. In evaporation the metal, in

the solid state, is put in a crucible which acts as a resistor. A current is
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then applied to the crucible, heating it and the metal it contains. When the

metal reaches its melting point atoms will be ejected, covering the substrate

surface. Initially, the sample is protected by a shutter, since any impurities

on the metals sources surface will be evaporated when it is first melted by the

crucible. This shutter also determines the duration of the evaporation. The

coverage uniformity depends on the sample distance to the crucible.

3.1.3 Lithography

Lithography is the process by which a pattern is printed on a sample,

from that pattern structures are fabricated, devices. There are different types

of lithography, from the relatively simple optical contact or proximity lithog-

raphy to more complicated ones like projection printing and electron beam

lithography. All lithography techniques use a mask to transfer a pattern.

In optical lithography the process starts (see Figure 3.2) by applying

primer to the surface, the primer will remove any particulates on the surface,

which can cause poor surface adhesion. The surface is then coated with pho-

toresist which is then baked. The photoresist is a polymer and can be of two

types: positive or negative. The bake, known as a soft-bake, helps adhesion

and reduces contamination. The sample is then aligned with the mask and

put in contact with the mask. The photoresist is then exposed to UV light

and developed. If the photoresist is positive what has not been covered by

the mask will be removed during development, if it is negative we get the

inverse process. Afterwards it is necessary to etch the material uncovered by

the photoresist and remove the photoresist.
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Figure 3.2: Lithography process: 1) sample to process, 2) photoresit coating,
3) exposing to UV light, 4) development, 5) etching and 6) photoresit removal.
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3.1.4 Atomic Layer Deposition.

Like CVD, in ALD gas precursors are used, however, in ALD the pre-

cursors are separated by inert gas purges. By purging the system, between pre-

cursors, it is possible to avoid gas-phase reactions and it also removes volatile

by-products. In Figure 3.3 is present a sketch of the deposition process by

ALD.

The surface is covered with molecules from the first precursor, then

when the surface is saturated the excess gas is purged and a second precursor

is introduced to the growth chamber. The second precursor will react with the

layer formed previously, as the surface of the second layer saturates extra pre-

cursor gas will be purge. This process is repeated until the desired thickness is

achieved [9, 66]. A good ALD precursor should react rapidly with substrate in

a self limiting way, volatile, stable since thermal decomposition is not allowed

and its by products should not compete for surface states. Standard precursors

for HfO2 deposition are (C2H5)2N4Hf(TDEAH)/H2O [67–69] and HfCl4/H2O

[36, 67, 70–72]. As an example, the overall reaction for HfCl4/H2O is shown:

HfCl4(ad) + 2H2O(ad)→ HfO2(s) + 4HCl(g) (3.7)

where ad means the reactions take place between adsorbed molecules on the

surface.

The main advantage of ALD is the great control of the film thickness,

of the order Å as it is a layer by layer growth.
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Figure 3.3: A scheme of ALD process. The first precursor will be chemisorbed
on the surface, as the surface saturates the second precursor is introduced
reacting with the new surface until saturation. This process is repeated in
order to get the desired thickness.

3.2 Electrical and structural characterization.

Electrical characterization was performed using three different systems,

a room temperature probe station, a low temperature probe station and a mag-

netic cryo system. The electrical measurements performed were capacitance-

voltage (CV), current-voltage (IV), Hall and magneto-resistance. At room

temperature the electrical characterization was done using a Karl Suss probe

station, this probe station allows 4-point measurements. At low temperature

electrical characterization was performed using a Desert Cryogenics TT-Probe

Station for temperatures as low as 4 K. To perform the magnetotransport

measurements two systems were employed: the closed-cycle cryostat for tem-

peratures in the range 12 K to 300 K and the Heliox AC for temperatures as

low as 300 mK to room temperature.

The structural characterization consisted of performing X-ray photo-

electron spectroscopy, atomic force microscopy and transmission electron mi-

croscopy.
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3.2.0.1 Non-magnetic electrical measurement systems

The Suss probe station was designed to probe structures from a few

microns to 6” in diameter. It is composed of a chuck stage, which can be

moved in the x, y and z directions. In order to ensure the structure to be

measured does not move it is possible to switch on the vacuum pump. In

order to probe the devices there are 4 probe heads, which can also be moved

in x, y and z directions. In order to help in the probing process there is

a microscope. The probe needles used were Ti with 10 µm diameter. The

probe station was housed in an earthed Faraday cage to avoid electromagnetic

interference, which also excluded visible light.

In the Desert Cryogenics TT-Probe Station it is possible to perform up

to 4-point electrical measurements. The sample is immobilized on the sample

stage with cryogenic tape. The sample stage cannot be moved. The cryogenic

refrigerator, is supplied continuously with cryogen through a transfer tube

from a dewar. Before inserting the refrigerant the chamber needs to be in high

vacuum, 10−5 mbar, this prevents the formation of moisture in the chamber.

Two different vacuum systems are employed independently, for the chamber

and for the cryogenic liquid. On top of the chamber there is a glass window

to view the sample. To position the arms on small features on the sample, the

system has a optical system with a CCD. The probe needles used were BeCu

with 10µm diameter. To reach temperatures between room temperature and

77 K liquid nitrogen is used and for temperatures beloww 77 K to 4 K liquid

He is used.
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3.2.0.2 Magnetic electrical measurement systems

A closed-cycle cryostat is used for measurements between 12 K and 300 K.

The sample is mounted in a holder with the help of cryo wax to prevent a

short between the holder and the sample a glass piece is used. The contacts

are done mechanically using Cu pieces. The wires from the close cycle are

then soldered to the Cu pieces. To ensure that no wires touch the shield the

sample is covered with tape. The system is then put in vacuum. The system

needs to be in high vacuum around 10−5 mbar before the He3 compressor can

be turned on, providing a good thermal shield. Before initializing the tem-

peratures it is necessary to let the system reach the base temperature around

12 K. The system can be warmed up in steps, by a metal film heater, with the

temperature being controlled by a Lake Shore temperature controller.

The Heliox AC is a compact 3He system, for temperatures from 300 mK

to room temperature. In this system it is possible to perform Hall and Shub-

nikov de Haas measurements. Prior to loading the samples in the Heliox it is

necessary to wire bond the sample in a chip package. Afterwards the sample is

glued to the holder with the back of the chip package exposed. The wires are

then solder into contacts. In order to guarantee proper shielding, the sample is

covered with tape. Two metal shields are used to give further shielding. The

samples are loaded and brought to vacuum before the cry-cooler is started.

Afterwards, it is necessary to let the second stage reach a temperature below

10 K, this will make the sorption pump cool below 20 K and start pumping

the 3He. Prior to cooling the 3He pot it is necessary for all the gas to be

in the sorb. This is done by switching the heat switch. After 1h the heat

switch is switched off and the temperature should go below 7 K. When that
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temperature is reached, the sorb is heated to 35 K. This makes the adsorbed

3He go back into the pot, acting as a thermal link between the PTC2nd
stage

and the pot, stabilizing the temperature. If we want the temperature to go to

base temperature it is necessary to remove the heat from the sorb and close

the heat switch.

3.2.1 Current-Voltage measurements

IV measurements consist of sweeping a voltage while measuring a cur-

rent through a device. The IV sweeps were performed using an Agilent 4156C

semiconductor parameter analyser. From IV sweep measurements we can ob-

tain important characteristics, such as the simple device resistance or the

threshold voltage of a MOSFET.

While doing IV measurements some considerations should be taken.

When we connect the instrument to the device we are adding contributions

to the current due to noise, contacts, wires etc. which can be reduced by em-

ploying a number of techniques; there will however always be some noise in a

measurement that can not be removed. The noise due to wires and electrical

connections can be reduced by using coaxial or tri-axial cables to connect the

device and the instrument. Also the sample can be put in a box electrically

isolated, a Faraday box. By isolating the device in this way we ensure that

what we are measuring is not changed by electronics in the room or other

sources of noise. When it comes to the contribution due to the device con-

tacts, two courses of action can be taken. The first one is two perform a 4-point

measurement, by measuring separately the current and voltage it eliminates

the wires and contact contribution to the resistance. The second one is to
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determine the contact resistance and then removed it from the calculations.

The first approach is the easiest and more reliable but not always viable with

the equipment available, since when measuring MOSFETs all 4 probes are

needed, for the drain, source, gate and substrate.

3.2.2 Capacitance-Voltage measurement

CV measurement consists of applying a voltage across a capacitor while

simultaneously applying an AC signal. The CV sweeps were performed using

an Agilent E4980A precision LCR meter, capable of frequencies from 20 Hz

to 2 MHz. The measurements performed were most commonly performed at

frequencies between 100 Hz and 2 MHz. CV measurements are widely used to

study the quality of a device, from a simple capacitor to a more complicated

MOSFET.

In order to determine the effective mobility of a MOSFET the split-CV

technique was used. In this technique the gate-to-channel and the gate-to-

body components of the capacitance are separately measured. For the gate-

to-channel capacitance, the capacitance between the gate to source/drain is

measured while a voltage is applied to the gate. For the gate-to-body ca-

pacitance, the capacitance is measured across the body of the device, the

source and drain grounded and a voltage applied to the gate (see Figure 3.4).

When performing a CV measurement some considerations should be

taken. If the capacitance is too small it becomes difficult to measure, and

higher frequencies are necessary. If the capacitor is leaky it means that the

resistance in parallel with the capacitor is too low. In this case, the resistive

impedance is higher than the capacitive impedance and the capacitance gets
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Figure 3.4: Diagrams for measuring MOSFETs capacitances using the split-
CV method exhibiting both branches: gate-channel (a) and gate-body (b).

lost in the noise. Again, it is necessary to use high frequencies because then

the capacitive impedance will increase whereas the parallel resistive impedance

remains constant. Connections are also a concern so it is necessary to perform

corrections, a combination of open and short circuit corrections are usually

used.

3.2.3 Resistivity and Hall measurements.

From resistivity and Hall measurements it is possible to determine the

transport properties of samples, including carrier density, carrier type and the

carrier mobility. A simplified outline of the resistivity and Hall measurement

set up is given in Figure 3.5. It can be seen the surface of the sample is perpen-

dicular to the magnetic field. In measuring resistivity the longitudinal (Vxx)

voltage is taken as a function of the current without applying a magnetic field.

The transversal voltage, Vxy, or Hall voltage is taken across the sample as a

function of the current in the presence of a magnetic field. In order to under-

stand the behaviour of the carriers it is necessary to measure this quantities
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as a function of temperature.

It is also possible to determine the effective mass of the carriers from

Shubnikov-de Haas measurements. These measurements differ from standard

Hall measurement in that the voltages are taken while the magnetic field is

ramped.

Care should be taken while doing resistivity and Hall measurements to

Figure 3.5: Hall measurement set up (left) and in plane view of the sample
(right) for resistivity and Hall effect measurements.

avoid galvanomagnetic and thermoelectric effects. These effects can be min-

imized by putting the sample in a cryogenic bath and controlling the bath

temperature. During the measurement, the lowest current should be used in

order to avoid increasing the sample temperature. By performing measure-

ments in forward and reverse current and/or magnetic field directions, and

averaging the results, intrinsic and geometric problems with the sample can

be diminished and cancelled out.

The most popular geometries for performing Hall measurements are

the Van der Pauw and Hall bar geometries; in Figure 3.6 both geometries are

shown. The Van der Pauw structure is simpler to process, it only requires the

evaporation of metal contacts in the corners of a square sample. To obtain
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Figure 3.6: Measurement configuration for measuring the Hall effect. On the
left the Van der Pauw structure and on the right the Hall bar geometry.

better results, it is necessary to ensure that we have small enough contacts,

the contacts are placed at the edge of the sample, and that we have a uniform

sample. The Hall bar geometry used has eight contacts and for measurements

a minimum of six contacts are necessary. In this geometry it is necessary to

ensure a good alignment of the contact arms and it is necessary to ensure a

minimum l/w ratio of 4 to avoid shorting of the edges.

3.2.3.1 Magnetotransport measurements

The previous measurements provide us with information at a set field and

temperature. To have a better understanding of the sample behaviour it is

necessary to perform these measurements at different temperatures at each

magnetic field. Looking at the curves as a function of temperature gives us

information considering the ionization energies of the donors and acceptors

present. In Shubnikov-de Haas measurements transversal voltage (VH) and

longitudinal voltage (Vxx) are taken while performing a sweep in magnetic

field at a set temperature. The sample should have a high mobility in order

to observe these SdH oscillations over a range of temperatures, so that the
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effective mass and scattering times can be extracted (see below).

3.2.4 X-Ray Photoemission Spectroscopy.

In X-ray photoemission spectroscopy (XPS) the photoelectric effect is

used to give surface composition, layer thickness and surface behaviour of

the sample. The sample is bombarded by X-rays that interact with the core

electrons, releasing a photoelectron from a bound state and creating ionized

states [73]. The photoelectrons are ejected with an energy

Figure 3.7: Diagram of a XPS measurement.

EK = hν − Eb − Φ (3.8)

where EK is the kinetic energy, hν is the energy of the incoming photon, Eb

the binding energy of the electron and Φ is the work function of the mate-

rial. Usually, both the sample and the spectrometer are grounded making the

Fermi level of both at the same energy level so that only the spectrometer

work function, Φsp, is needed for determining the kinetic energy [74].

In Figure 3.7 a simplified diagram of an X-ray photoemission spec-
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troscopy measurement is given. The electrons are ejected to a hemispherical

analyser where a potential difference is used to select the energy of the elec-

trons that reach the detector.

As the binding energy of the different levels are unique for each ele-

ment it is possible to find out which element is present from the photoelectron

energy spectrum. It is also possible to determine the oxidation state of the

element by observing shifts in the photoelectron energy. These shifts occur

due to a change in the binding energy of a core electron of an element due to

changes in the chemical bonding of the same element. In addition, from the

intensity peaks of the elements present it is possible to determine the overlayer

thickness.

3.3 Data analyses techniques

3.3.1 Threshold Voltage

The threshold voltage Vt is usually defined as the voltage at which a

device is switched on. From the threshold voltage measurements it is possible

to calculate other parameters, such as channel length and width. Moreover

it is a useful comparison parameter between different devices. There are var-

ious methods to determine the threshold voltage, using both current-voltage

and capacitance-voltage measurements. For MOSFET analysis the threshold

voltage is most commonly calculated from IV measurements. The threshold

voltage is usually taken by extrapolating the drain current (ID) curves to zero

in the linear region.

There are several methods that use linear extrapolation techniques [75]
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such as: i) linear extrapolation, ii) transconductance, iii) constant drain cur-

rent iv) transconductance derivative, among others. Methods i) and ii) will

now be analysed in more detail.

The extrapolation in the linear region method uses the drain current

Figure 3.8: Drain current (left) and transconductance (right) curves of a
pMOSFET for the determination of threshold voltage. In both methods an
extrapolation of the linear region to the voltage axis gives the threshold volt-
age.

versus the gate voltage curve in the linear region. An extrapolation of the curve

is performed and the threshold voltage will be the voltage value at which the

drain current is zero, as it can be seen on the left of Figure 3.8. This technique

assumes a very small series resistance, which is true for the majority of the

devices.

The transconductance method uses the transconductance versus the

gate voltage curve. The transconductance gm is a measure of how much the
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drain current changes when the gate voltage changes and is given by:

gm =
dID
dVG

(3.9)

The extrapolation will be taken from the point where the transconductance

is at maximum, as seen on the right of Figure 3.8. This technique assumes a

linearly dependence of the transconductance with the gate voltage when the

device goes from weak to strong inversion.

3.3.2 Subthreshold Slope

A figure of merit for MOSFETs is the subthreshold slope. By applying

a high or low voltage to the gate, the device can be switched between its on-

state (current flow) and off-state (current does not flow), between the source

and drain contact. In real devices in the the off-state a small current can flow

between the contacts. While for long channel devices this current is negligible,

as the channel length is decreased the off-current starts to increase. The

subthreshold slope is taken from the inverse of the slope of log10(ID) vs VG for

gate voltages below the threshold voltage and is given in units of mV/dec. We

have

ID = exp(qV/nkBT ) (3.10)

where kB is the Boltzmann constant, q the electron charge, T the temperature

and n the subthreshold ideality factor, is defined as

n = 1 +
CB
CG

(3.11)
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with n greater than 1. With CB the bulk capacitance and CG the gate capaci-

tance. Ideally n should equal to unity which leads to a subthreshold slope, S,

of

S = 2.3
kBT

q
≈ 60mV/dec (3.12)

60 mV/dec is the theoretical limit at room temperature. Typical values, at

room temperature are between 70 mV/dec and 100 mV/dec. High values on

the subthreshold slope are an indication of high interface trap density.

3.3.3 Parasitic Resistance and Resistivity

Parasitic resistances are present in all devices and while they may be

reduced, they are very difficult to eliminate. Parasitic resistance diminishes

the current drive of a device. This reduction in drive current becomes an issue

as device scaling continues.

3.3.3.1 Transmission line model.

A simple way to determine the contact resistance is to use transmission

line model (TLM) test structures [76]. A TLM line (see Figure 3.9 consist of

metal contacts spaced at different distances Li. In this method resistance is

measured between the first contact and all other contacts along the length of

the bar:

Ri = Rci +Rch +Rci+1
(3.13)

with Ri the total resistance, Rci+1
the contact resistance and Rch the channel

resistance. Since Rci = Rci+1
and Rch = ρsLi/W we have

Ri = 2Rc +
ρsLi
W

(3.14)
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Figure 3.9: Transmission line model test structure (TLM) and method to
extract the contact resistance (right).

Where ρs is the contact resistivity. Plotting the total resistance versus the

distance between contacts, the intercept on the y-axis gives 2RC and the slope

is ρs/W .

3.3.3.2 Source-Drain Resistance

In a MOSFET the source-drain resistance contributes to the drive cur-

rent so cannot be neglected [75, 77]. The major contributors are the metal

contacts and the doped regions under them. In Figure 3.10 a MOSFET is rep-

resented together with the different contributions to the resistance. In order to

Figure 3.10: Different contributions to the resistance in a MOSFET.
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evaluate the source-drain resistance, RSD, various methods can be employed.

The drain current IDin the linear region can be written as [77]

ID = Qinvµeff
Weff

Leff
(V
′

SD) (3.15)

with

V
′

SD = VSD − IRSD (3.16a)

Leff = L−∆L (3.16b)

Weff = W −∆W (3.16c)

Where Qinv is the inversion charge, µeff the effective mobility, Weff the efec-

tive width and Leff the effective length.

A widely used method to measure the soure-drain resistance requires

a set of devices with channels of different lengths but with the same width.

Taking Rm = VDS/ID = Rch +RSD we have

Rm =
V
′
DS

ID
+RSD (3.17a)

Rm =
Leff

QinvµeffWeff

+RSD (3.17b)

It is, now, necessary to measure Rm, the total resistance, for different

gate voltages. These values are then plotted versus the channel length. This

should give straight lines that intersect at a single point. This point corre-

sponds to Rm = RSD and to L = ∆L. If the lines do not intersect at one point
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the following correction must be applied:

Rm = RSD + ALeff = (RSD − A∆L) + AL = B + AL (3.18)

where A and B are determined from the slope and intersect of the previous

lines. Plotting B against A then gives RSD from the slope and ∆L from the

intersept. In both methods it is assumed a weak dependence of RSD and

channel length on the gate voltage. Since both methods depend on the gate

overdrive, VG − Vth, an accurate value of Vth must have been obtained.

Another method involves measuring a set of devices with L = 0 and

different widths [78, 79]. If we then plot the resistance measured as a function

of 1/W the intersection with the y-axis gives the RSD. However, this method

gives an under estimation of the value of the resistance since real MOSFET

possess a finite total contact length.

The real channel length of a device differs from the channel length

fabricated; this can be due to lithography and the diffusion of dopant into

the source and the drain. Bias conditions can also affect the channel length.

The effective channel length relates to the mask length by 3.16c and can be

extracted by applying the previous methods.

3.3.3.3 Van der Pauw technique

The resistivity can be measured by the Van der Pauw technique. The resis-

tivity for the Van der Pauw structure given on the left of Figure 3.6 will be

given by [62]

ρ =
πt

ln 2
.
VR
I
.f (3.19)
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where VR is an average of the Vxx through all contacts, I is the current, t the

thickness and f is a geometry dependent correction factor. For samples with

geometric symmetry f = 1, otherwise f is calculated by solving

Rr − 1

Rr + 1
=

f

ln2
arcosh

[
exp(ln2/f)

2

]
(3.20)

It is also possible to extract resistivity from a Hall bar geometry, this is given

by

ρ =
w

l
.
VR
I

(3.21)

now VR is the average between both arms of the bar and w/l is the width to

length ratio of the channel.

3.3.4 Oxide Capacitance and Equivalent Oxide

Thickness

The oxide capacitance is determined by

Cox =
ε0.κs.A

tox
(3.22)

where ε0 is the permittivity in free space, κs the dielectric constant of the

material, A the area of the capacitor and tox the oxide thickness. When the

device is in accumulation Cox = Cmax. This value can be used to determine

the equivalent oxide thickness, EOT, which is defined as the thickness a SiO2

layer would have in order to have the same characteristics of a high−κ layer.

EOT =
3.9

κhigh−κ
.thigh−κ (3.23)
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where 3.9 is the dielectric constant for SiO2.

3.3.5 Flatband Voltage

Due to the difference in the band structure of metals and semiconduc-

tors, when they are in contact there is an adjustment of the conduction and

valence bands so that the Fermi levels of both materials align. In order to

eliminate this band bending it is necessary to apply a certain voltage to the

device. This voltage is called as flatband voltage and is defined as

VFB = φms −
Qox

Cox
(3.24)

where φms is the metal-semiconductor work function, Cox the oxide capaci-

tance and Qox the different contributions to the oxide charge. At the flatband

condition the carrier concentration is in equilibrium. The flatband voltage can

be determined from the flatband capacitance Cfbfrom

Cfb =
κs
LD

(3.25)

where κsis the relative permittivity and LD is the Debye length.

In the case of uniform doping and thick wafers it is possible to use

3.25; however, in the case of non-uniformity it is necessary to determine the

flatband voltage by other means. One method consists of plotting the inverse

of the square of a high-frequency capacitance curve versus the gate voltage

and subsequently differentiating the curve. The maximum slope of this curve

occurs at the flatband voltage [14, 75].
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3.3.6 Effective mobility and effective field

In order to calculate effective mobility we need to perform both current-

voltage and capacitance-voltage measurements. It can be determined from

µeff =
ID.L

WVds.QInv

(3.26)

where ID is the drain current, L the channel length, W the channel width,

Vds the drain-source voltage and QInv is the inversion charge. The inversion

charge is determined by integrating the gate-channel branch of the CV curve,

see Figure 3.11:

Figure 3.11: Split-CV characteristics for a pMOSFET. The green curve show
the gate-to-channel branch, by integrating the area under the curve the inver-
sion charge is obtain. The red curve represents the gate-to-body branch, by
integrating the area under the curve the depletion charge is obtain.

QInv(VG) =

∫ VG

∞
CGC(VG)dVG (3.27)
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The effective field is determined from

Eeff =
QInv + η.QDep

ε0.κs
(3.28)

where η is an empirical factor, which was found to be 1/2 for electrons and 1/3

for holes and Qdep is the depletion charge. The depletion charge is evaluated

from the gate-to-body branch of the split-CV by

QDep(VG) =

∫ ∞
VFB

CGB(VG)dVG (3.29)

When considering the drain current both the diffusion and drift contributions

should be taken into consideration

ID = Q.QInv.µeff .Ex −WDp.
dQInv

dx
(3.30)

here Ex is the longitudinal electric field and Dp the diffusion coefficient given

by

Dp =
kB.T

q
.µeff (3.31)

Putting this in equation 3.26 gives us

µeff =
L

W
.
ID
Vds

1

QInv −Dp.CGC(V(G))
(3.32)

3.3.7 Hall mobility and effective mass.

The Hall mobility is extracted from Hall measurements and arises from

the Hall effect. As mentioned previously (see 3.2.3) the Hall voltage is mea-

sured in both Van der Pauw and Hall bar configurations. In the Van der Pauw

56



configuration the Hall coefficient is calculated from [80]:

RH =
t

B

VH
I

(3.33)

where VH is the average Vxy and B is the magnetic field. For the Hall bar

geometry this gives

RH =
1

B

Vxy
I

(3.34)

With the resistivity and Hall coefficient it is possible to determine the

carrier density (ps) and Hall mobility (µH):

ps =
1

RHe
(3.35a)

µH =
RH

ρ
(3.35b)

Shubnikov-de Haas (SdH) measurements also provide us with Hall mo-

bility and carrier density. The Hall coefficient is taken from the slope of the

magnetoresistance (ρxx) versus the magnetic field in the linear region. Substi-

tuting, afterwards, in equations 3.35 for magnetoresistance at zero field ρxx(0)

the carrier density and mobility is given.

The magnetoresistance has a periodicity that is proportional to the in-

verse magnetic field. By knowing this period it is possible to determine the

sheet carrier density ps, which can either be done by inspection or by plotting

magnetoresistance versus the inverse of magnetic field and performing a Fast

Fourier Transform, FFT. This is then used to obtain

p
SdH

=
e

πh̄∆(B−1)
(3.36)
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where p
SdH

is the carrier density extracted from the SdH oscillations.

The SdH oscillations are describe by [62, 81]

∆ρxx(B)

ρxx(0)
= exp

(
− πα

ωcτt

)
cos

(
2πEF
h̄ωc

)
Ψ

sinh Ψ
(3.37)

with

Ψ =
2π2kBT

h̄ωc
(3.38a)

ωc =
eB

m∗
(3.38b)

α =
τt
τq

(3.38c)

with ρxx(0) as the magnetoresistance at zero magnetic field, τt the transport

scattering time, τq the quantum scattering time, ∆ρxx(B) the amplitude of

the SdH oscillations, and EF the Fermi energy. The ratio of transport to

quantum lifetimes (α) is a useful parameter for interpreting the origin of the

dominant scattering mechanism. While the quantum scattering time is a mea-

sure of the rate of all scattring events, the transport scattering time depends

on momentum relaxation and so the ratio will be large when only small angle

scattering is involved (such as from remote ionised impurities) and the ratio

will be closer to unity for scattering from background impurities. The Fermi

energy of a 2DHG is given by

EF =
πh̄2ps
m∗

(3.39)

In order to determine m∗ it is necessary to perform a iterative method.

First it is necessary to take the magnetoresistance magnitude for each tem-
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perature. Secondly, we plot

ln

(
∆ρxx(T )

ρxx(0)
.
sinh (Ψ(T ))

Ψ(T )

)
versus

1

(µB)
(3.40)

for a initial value of m∗. This plot will provides a gradient of −πα from where

the value of α is taken. Knowing this value a new plot is made of

ln

(
∆ρxx(B)

ρxx(0)

)
versus ln

(
Ψ(B)

sinh (Ψ(B))

)
−
[
πα

µB

]
(3.41)

This plot should give a slope of 1. If the slope is different from 1 then we take

another value for m∗ and repeat the process.
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Chapter 4

Germanium pMOSFETs

The transistors in production nowadays, have a gate length of approx-

imately 22 nm. Devices with this dimensions need to address several issues:

high leakage currents, band-to-band tunnelling, gate stack reliability, channel

mobility degradation, etc. In order to keep up with Moore’s law new device

geometries have been developed: from planar to non-planar geometries, like

finFETs, tunnelFET; as well as new materials such as high-κ gate dielectrics,

Ge and III-V as channel materials [82].

The recent development in non-planar designs has been made possible

by the improvements in short channel behaviour on this type of devices, as

well as improving the scalability. Tri-gate devices are fully depleted, which

improves the subthreshold slope. If the channel length to channel width ratio

is kept above 0.5 then it is possible to reduce the channel doping and conse-

quently reduce scattering from impurities, hence achieving better performance.

Aggressive MOSFET scaling has required the thickness of the SiO2 layer

used as a gate dielectric to be reduced below 1nm. However, scaling below this

point makes the gate leakage current increase dramatically due to tunnelling

through the oxide, as well as devices being more susceptible to failure due to

imperfections causing oxide breakdown in these very thin layers. The use of
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high-κ dielectrics has allowed for a reduction of the gate leakage current, since

the dielectric layer can be physically thicker than the SiO2 layer that would

produce the equivalent electric field int he channel. Special attention has been

given to metal oxides as a replacement for SiO2, such as HfO2, ZrO2 and

TiO2. Of these, HfO2 is considered to be the best candidate, because it has

a large band gap and high dielectric constant [9, 83]. However, the electronic

properties of devices are affected by defects in these metal oxides, especially

charges trapped within the layers and modification of the Si (or Ge) surface

states at the high-κ interface. When growing a layer of HfO2 on Si a very thin

interfacial layer is usually created that can be SiO2, the ternary HfSiO2 or a

nitride. When putting a dielectric layer on Ge there are further complications

due to the need to passivate the Ge surface and avoid forming mixtures of Ge

sub-oxides. (This topic will be further explored in Chapter 6.) The electrical

properties of the interfacial layer change with the deposition method, with

ALD currently presenting the best results with a leakage current of 10−9 A

for an EOT of 0.5 nm and a dielectric constant of 20-25.

Despite multi-gate devices having seen an increase in research activity,

planar designs are still the back bone of CMOS. Much progress has been made

with Si-high-κ devices, but integrating the use of high-κ dielectrics with high

mobility material, such as Ge, for the channel has been shown to be an alter-

native with excellent future prospects [84].

This chapter presents results on Ge MOSFETs that were fabricated in

IMEC using strained Ge-on-Si(100) epi-wafers grown in Warwick.
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4.1 Device description

The batch consist of two wafers of relaxed Germanium (rGe), grown

directly on a silicon substrate, and six wafers of strained Germanium (sGe)

layers that were grown on reverse graded virtual substrates, as seen in Figure

4.1 and Figure 4.2, respectively.

Figure 4.1: Schematic diagram of the structures for relaxed germanium layers.
The rGe layers consisted of a thick Ge layer growm directly on a Si substrate.

Figure 4.2: Schematic diagram of the structures for strained germanium layers.
The sGe layers were grown on a reverse graded virtual substrate.
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The rGe layers have 2 µm nominal thickness and were epitaxially grown

at IMEC with a TDD of approximately 2 × 107 cm−2. For the sGe wafers,

600 nm of relaxed Ge was first grown at Warwick on a Si(100) wafer. Af-

terwards, a 1 µm Si0.2Ge0.8 reverse graded virtual substrate [25] was grown

terminating in a 500 nm constant composition Si0.2Ge0.8 layer. On the top a

thin layer of strained Ge was grown, the thickness of this and its doping con-

centration were varied. Both rGe and sGe wafers are n doped with boron and

possess a base doping concentration of 5×1017 cm−3. The layer thickness and

composition, as well as doping concentration are reported in previous studies

[85–87].

The final crucial layer was a silicon cap to passivate the Ge surface

before high-κ deposition. Two Si cap passivation schemes were employed. For

the rGe wafers, one was passivated by growing Si with SiH4 at 500 ◦C and

another with Si3H8 at 350 ◦C. All the sGe wafers were passivated using Si3H8.

The devices were fabricated at IMEC by Atomic Laser Deposition. The

gate stack (Figure 4.3) consist of passivating the Si cap at high temperature

(350 ◦C or 500 ◦C) afterwards a 4 nm layer of HfO2 with gate metallisation of

10 nm TaN followed by 70 nm of TiN was deposited.

Figure 4.4 shows the design of the transistors measured. The gate width

of the devices was varied between 10 µm and 80 µm, and the gate length be-

tween 3 to 100 µm.

The majority of the characterization was performed on devices with a

gate length and width of 10 µm. Table 4.1 summarizes the various wafers

studied, including variations in the channel thickness and doping density.
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Figure 4.3: Gate stack implemented by Atomic Laser Deposition at IMEC.
The gate stack consists of a SiO2 interlayer on top of the Si cap, HfO2 and for
metal gate TiN and TaN.

4.2 Device characteristics

The characterization started by performing a uniformity test in selected

areas of the wafer with strained layers, a 10 nm channel thickness and a doping

of 5×10−17 cm−3. All the measurements were taken from chips in the top 1/3

of the wafer, chips from different sites in the wafer were chosen to performed

IV measurements as shown in Figure 4.5. In Figure 4.5 six devices were cho-

sen, however, only four are shown in Figures 4.6 and 4.7, because some were

destroyed during measurements. Since no post-metallization treatment was

carried on, charge carriers induced by light will contribute to the current. As
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Figure 4.4: Devices schematic (dimensions in µm).

Wafer Strained or Channel Doping Si Cap

Number Relaxed Thickness Passivation

350◦C 500◦C

(nm) (×1017cm−3) Si3H8 SiH4

DO4 relaxed − − x

DO5 relaxed − − x

DO6 strained 10 0 x

DO7 strained 10 1 x

DO8 strained 10 5 x

D11 strained 20 0 x

D16 strained 30 0 x

D21 strained 40 0 x

Table 4.1: Label of the different wafers, according to passivation type, thick-
ness and doping.

a solution the devices were probed in dim light. The IV measurements con-

sisted of sweeping the gate voltage (VG) of the MOSFETs and measuring the

drain current (ID). Figures 4.6 and 4.7 show that the processing was extremely
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Figure 4.5: Wafer map for uniformity study. The devices study have a channel
length of (10 µm).

uniform with all the ID-VG curves being essentially identical. Processing of the

other wafers was similarly uniform.

In the following sections we will look at different factors that are re-

sponsible for mobility degradation in devices, such as the effect of the Si cap

passivation, the effect of the thickness of the strained Ge channel and the effect

of the doping. This study will be carried out at room temperature and 77 K

to extract the hole mobility, using the split CV method for selected devices.

The measurements at low temperatures reduce phonon scattering, leading to

a higher mobility and allowing the effect of other scattering mechanisms to

be identified. The results shown in the following section, using devices with

a gate length of 10 µm, are representative of the results obtained on devices
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Figure 4.6: Drain current curves for four devices, with the same dimensions
taken from different positions on the wafer, at room temperature. The wafer
consisted of sGe layers, with a channel thickness of 10 nm and a channel doping
of 5× 10−17cm−3.

Figure 4.7: Transconductance curves for the four devices shown in the previous
figure. The wafer consisted of sGe layers, with a channel thickness of 10 nm
and a channel doping of 5× 10−17cm−3.
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Figure 4.8: Capacitance characteristics used to extract the oxide thickness
at different temperatures. The CV curves were obtained using the split-CV
techniques.

with these dimensions, for all the wafers measured.

The mobility was extracted using the split CV technique see Figure

4.8. We found difficult to extract good gate-body CV characteristics at 77 K.

Figure 4.9 shows the variation of the oxide capacitance for the gate-body and

gate-channel branches with temperature. The oxide thickness were extracted

from the curves in Figure 4.8. The measurements were taken from 77 K up tp

140 K, since at 110 K it is possible to observe a change in the gate-to-body

capacitance. The freeze-out of carriers in the body (substrate) occurs between

100 K and 110 K. The capacitance value of Cox = 2.3 µFcm−2 means that

the devices have been fabricated with an EOT of 1.5 nm, which is close to

the design specification of 1.2 nm shown in Figure 4.3. The slight discrepancy

may be due to slightly thicker layers having been deposited or due to some

mixing between the SiO2 and HfO2 at their interface to produce a region of

HfSiO4 with a dielectric constant of around 11 instead of 25.
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Figure 4.9: Oxide capacitance extracted from the gate-channel and gate-body
branches of the split CV taken at different temperatures.

From the gate-to-body is extracted the depletion charge used in calcu-

lating the effective field. Since it is not possible to obtain reliable CGB curves,

in the next sections the mobility will be plotted as function od inversion charge.

4.2.1 Effect of passivation.

First, the effect of surface passivation will be studied on the relaxed Ge

wafers. Mitard et al. [88] has shown that reducing the passivation temperature

from 500◦ C to 350◦ C reduces the incorporation of Ge in the Si cap, so from the

point of view of scalability this passivation scheme is favourable [42]. Also, the

Si cap thickness plays an important role, it has been shown that for a thickness

lower than 8 MLs the peak mobility increases with the thickness and this is

independent of the precursor used. [89]. In addition, low process temperatures

avoid the strain relaxation expected at 500◦ C.
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Figure 4.10: Linear drain current taken for wafer with rGe layers and Si3H8

passivation scheme. The measurements were taken at room temperature.

Figure 4.11: Capacitance characteristics in function of frequency for wafer
with rGe layers and Si3H8 passivation scheme. Both the gate-channel and
gate-body branch are shown. A small bump can be seen in the depletion
region as indicated by the arrow. The measurements were taken at room
temperature.
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Figure 4.12: Effective mobility extracted for wafer with rGe layers and Si3H8

passivation scheme. The measurements were taken at room temperature.

The effective mobility was calculated using CV curves taken applying

a constant drain voltage, VDS, equal to -50 mV.

Figures 4.10, 4.11 and 4.12 show the typical room temperature be-

haviour for a device in wafer DO4 which consists of rGe layers with the Si3H8

passivation scheme. For the gate-channel branch of the capacitance, see Figure

4.11, there is no observable frequency dispersion, although at low frequencies

it is possible to observe a bump in the depletion region. The bump disappears

at higher frequencies, indicating the presence of interface traps.

Figures 4.13, 4.14 and 4.15 show the typical room temperature be-

haviour for devices passivated with SiH4 (Wafer D05). No frequency dispersion

is observed in accumulation; also in the depletion region we do not observe a

bump which is an indication of a well passivated surface, see Figure 4.14. The

gate-body branch of the capacitance shows more noise than for the rGe wafer

with Si3H8 passivation scheme at lower frequencies. It is possible to observe
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Figure 4.13: Linear drain current taken for wafer with rGe layers and SiH4

passivation scheme. The measurements were taken at room temperature.

Figure 4.14: Capacitance characteristics in function of frequency for wafer
with rGe layers and SiH4 passivation scheme. The measurements were taken
at room temperature.

frequency dispersion in the extracted mobility at low inversion charge density.
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Figure 4.15: Effective mobility extracted for wafer with rGe layers and SiH4

passivation scheme. The measurements were taken at room temperature.

From a comparison of the room temperature results for wafer DO4 and

DO5, taken for a drain voltage of -50 mV and 1 MHz, we see that passivation

with SiH4 shows a 74% higher drain current at a gate voltage of -2 V. This

translates into an enhancement in mobility both at low and higher charge den-

sity, see Figure 4.16, with a 36% enhancement for the SiH4 passivated wafers

at the peak mobility. This higher mobility may be a result of more effecitve

passivation of the surface states in the higher temperature process. It should

also be borne in mind that the SiH4 passivation process is very well estab-

lished, whereas the Si3H8 process was fairly recently developed in IMEC at

the time these devices were fabricated so may not have been fully optimised.

At 77 K, the difference in mobility becomes more pronounced, reach-

ing 50% higher at the peak for SiH4 passivation. Figure 4.17 shows the drain

current at room temperature and 77 K for the two types of wafer on a log-

arithmic scale that allows the subthreshold region to be seen more clearly
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Figure 4.16: Effective mobility in function of the inversion charge for devices
with different passivation methods. Solid lines represent room temperature
data and dashed lines represent data taken at 77 K.

than in the linear plots. The Ion/Ioff ratio is observed to increase for both

devices as they are cooled and a decrease in subthreshold slope is seen, as

expected. At 77 K, the off-current for the Si3H8 passivated devices is lower

then for the SiH4 passivation and the subthreshold slope is marginally better

at 28 mV/dec, compared to 36 mV/dec (at 77 K the ideal slope is 15 mV/dec).

At 300 K both devices show significant leakage and only manage subthreshold

slopes of 121 mV/dec and 117 mV/dec, respectively (compared to the ideal of

60 mV/dec).

The remaining results reported in this Chapter are for Si3H8 passivated

devices, because they include strained Ge layers for which the lower thermal

budget of 350◦C used in this passivation scheme compared to 500◦C for SiH4

passivation will be less likely to initiate strain relaxation. However, it should

be remembered that this scheme did produce devices with a significantly lower

mobility, so the actual mobility values reported in the following may represent

74



Figure 4.17: Drain current as a function of gate voltage for devices with dif-
ferent passivation methods. Solid lines represent room temperature data and
dashed lines represent data taken at 77 K.

a lower limit of what is possible in a fully optimised passivation scheme.

4.2.2 Effect of sGe channel thickness.

The devices used to obtain the following results differ in the thickness

of their strained Ge channel: 10 nm, 20 nm, 30 nm and 40 nm. The graphs

also show devices from the control wafer: relaxed Ge with the same Si3H8 cap

passivation.

Figure 4.18 shows the drain current for devices with different sGe chan-

nel thickness, measured at room temperature. The drain current curves show

that all the strained Ge devices performed better than the relaxed Ge control,
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Figure 4.18: Drain current for different channel thickness taken at room tem-
perature.

with higher Ion and lower Ioff leading a slightly improved subthreshold slope

of 100 mV/dec and a threshold voltage shift of +0.2 V. There is not a signifi-

cant difference between the different channel thickness, although the Ion/Ioff

ratio is highest for a channel thickness of 20 nm; similarly, the variation in

threshold voltage and subthreshold slope is small. The peak mobility (Figure

4.21) is highest for devices with higher channel thickness, namely 30 nm and

40 nm, and reaches 316 cm2/Vs.

Decreasing the temperature to 77 K leads to a diminished subthresh-

old slope, but again the variation between the different channel thickness is

not significant. Decreasing the temperature leads to an increase in mobility

of almost 50%, although this increases diminishes for higher charge densities,

see Figure 4.21. An increase in mobility of up to a factor of 3.7 is observed

for the strained Ge devices when compared with the relaxed Ge. The mobility
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Figure 4.19: Effective mobility for different channel thickness taken at room
temperature.

Figure 4.20: Drain current for different channel thickness at 77 K.
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Figure 4.21: Effective mobility for different channel thickness at 77 K.

increase is again observed both at low and high charge densities. At a charge

density of 5× 1012 cm−2 a mobility of around 660 cm2/Vs is obtained for de-

vices grown with a channel thickness of 30 nm.

The equilibrium critical thickness for a sGe channel grown on a Si0.2Ge0.8

buffer is 20 nm [90]. For sGe thickness much greater than the critical thickness

mobility degradation might be expected due to dislocations formed during re-

laxation. However, from this data the mobility in the 40n m channel is only

slightly less than in the 20 nm channel. This suggests that within these de-

vices the Ge remains fully strained in a metastable condition. For narrower

sGe layers the mobility might also be expected to reduce due to greater scat-

tering off the lower interface, and for very thin layers the carrier confinement

would be weaker. Again there is only a small drop in mobility for the 10 nm
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layer, which suggests that these mobility reducing effects are not too serious

for this thickness.

4.2.3 Effect of doping.

The devices used in this section have a channel thickness of 10 nm and

vary in the level of doping in the relaxed SiGe layer below the channel: no

doping, 1×1017 cm−3 and 5×1017 cm−3. Also, devices from control wafer were

employed, having the Si cap passivated with Si3H8. Only room temperature

measurements were taken for these samples.

Figure 4.22 shows the drain current for devices with different dop-

ing. The curve for the device with highest doping shows a marginally higher

Ion/Ioff ratio. However, the subthreshold slope does not vary much with the

doping. Again, it is above the ideal 60 mV/dec. The threshold voltage in-

creases slightly with doping concentration.

Figure 4.22: Drain current for different doping concentrations taken at room
temperature.
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Figure 4.23: Effective mobility for different doping concentrations taken at
room temperature.

Figure 4.23 shows that the sGe device doped at 1 × 1013 cm−3 has a

4% higher mobility than the undoped sGe device at low carrier concentration,

peaking at around 250 cm2/V.s, and its mobility remains at least as high over

the full density range studied. By contrast, the more highly doped sample, at

5× 1017 cm−3, has a lower peak mobility, but at high charge densities the mo-

bility is slightly higher which would be advantageous for increased on-current.

4.3 Series Resistance

Measurements of the mobility for the devices discussed in Section 4.2.2

were also made at 4 K, but there was no significant increase in mobility over

the values measured at 77 K. This may be a consequence of a high series re-

sistance. In order to determine this series resistance, the method described in

section 3.3.3.2 was applied. As can be seen from Figure 4.24 it was not possible

to find a point where all the lines intercept. After applying the correction the
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Figure 4.24: Determination of series resistance by the method described in
section 3.3.3.2.

linear extrapolation of the lines does not allow ∆L and RSD to be determined

accurately.

Therefore, another method is necessary to determine the series resis-

tance. Assuming the device is in strong inversion the drain current can be

defined by

ID =
WCox
L

.
µ0

[1 + θ (VG − Vt)]
. (VG − Vt) .VD (4.1)

where W and L are the effective channel width and length, Cox is the gate

oxide capacitance, µ0 is the low field mobility, θ is the mobility reduction

coefficient, Vt is the threshold voltage. The transconductance can be obtained

by differentiating equation 4.1:

gm =
W

L
.Cox

µ0

[1 + θ. (VG − Vt)]2
.VD (4.2)
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Ghibaudo developed a model in which the mobility dependence with gate

voltage is eliminated [91]. This can be achieved by creating a new function Y

which is constructed using the above equations:

Y =
ID√
gm

=

(
W

L
Coxµ0VD

)1/2

(VD − Vt) (4.3)

According to [91], the new Y-function is linear with gate voltage, so by plotting

the function against gate voltage it should be possible to determine the low field

mobility from the slope and the threshold voltage by the intercept. However,

the Y-function is not linear, in devices with thin oxides the effect of surface

roughness is always present which breaks the linearity of the Y-function. An

attenuation factor, Θ2, needs to be introduced. Fleury et al˙ [92] took this into

consideration and redefined the Y-function as

Y =

√
βVD

1−Θ2V 2
Gt

VGt (4.4)

with Θ2 defined as

Θ2 =
θ2

1 + θ∆V 2
th

(4.5)

Based on this new model Fleury et al. developed an iterative method to ex-

tracted device parameters. The extraction is done in three steps: 1) a recursive

method to extract β and Vth, 2) determination of Θ1 and Θ2, 3) extraction of

∆Vth.

Since the standard method did not give reliable results, this new method

was tested. The initial parameter given, Vth was determined using the method

described in section 3.3.1 to be (0.06±0.0.3) V for devices in wafer D04. This,

also, did not give us a reliable result since the final threshold voltage given by
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the recursive method converged on a higher value than initial input, that is

0.11 V, thus invalidating the method.

Since the previous methods did not gave reliable result for the thresh-

old voltage, the zero-length transistors in the chip were employed, see section

3.3.3.2. Applying this method it was possible to obtain a straight line, see

Figure 4.25. However this method does not take into consideration the con-

tribution of the highly doped regions, so the values obtained are an under

estimation of the series resistance.

Figure 4.25: Plot for series resistance determination from W−1 method for
devices in wafer D04 at room temperature.
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4.4 Conclusion

In summary, the effects on the performance of Ge pMOSFET of pas-

sivation scheme, channel thickness and doping were studied in this chapter.

The passivation scheme with SiH4 presented better results than using

Si3H8, showing an enhancement in mobility at both low and high charge den-

sity of factors 1.3 to 1.7. However, from the point of view of scalability, Si3H8

is still a passivation scheme to consider. The lower process temperatures allow

for limiting the Ge segregation in the Si cap, on the other hand it is the low

temperatures that are responsible for generating the defects which causing the

lower performance observed [93].

There is a large increase in mobility when comparing between relaxed

and strained Ge, which is approximately 50% at low charge density and at

high charge density decreases to around 30%. However, we do not observe

a significant variation with channel thickness for the sGe devices. Since the

mobility change in this channel thickness region is not significant it can be

deduced that surface roughness is the limiting factor in mobility [94]. Again,

a significant difference is not observed with different doping levels of the sGe

devices, although there is a slight increase when the doping is increased. For

higher doping concentrations the mobility limiting factor is Coulomb scatter-

ing [95].

When calculating the series resistance of the devices, traditional meth-

ods failed. So, the zero-length transistor method was used. However, this

method does not take into consideration the highly doped regions which con-

tribute to the resistance.

Our results show, for these devices, that mobility improvement is sig-
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nificant when comparing strained and unstrained Ge layers but that doping

level and channel thickness have little impact. A reason for this can be related

with defects originating from the formation of source and drain. Also, these

devices do not have any source/drain extensions or halo doping to prevent the

diffusion of dopants into the channel, which causes poor device performance.

In order to improve device performances it would be necessary to better de-

fine the source and drain, by implementing halo doping and extensions to the

drain and source. Also, germination of the surface has been shown to improve

device characteristics.
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Chapter 5

High mobility strained Ge QW

heterostructures.

Applying strain to Ge layers can improve the performance of devices,

both by splitting the heavy-hole and light-hole bands which reduces the car-

rier scattering rate [96] and by the changed bandstructure leading to a re-

duced effective mass. The effective mass m∗ of charge carriers is an important

parameter in determining the kinetic and thermodynamic properties of the

conduction system as the carrier mobility is inversely proportional to m∗ and

it affects the density of states, which in a 2D system is n2D = m∗/(πh̄2) [97].

The effective mass can be determined from the temperature dependence of the

amplitude of Shubnikov-de-Haas (SdH) oscillations [2].

In this work, modulation doped (MOD) heterostructures will be studied,

which enable the material properties to be studied in simple devices without

the need to create an elaborate gated structure. Modulation doped structures

typically consist of an undoped quantum well embedded in layers of semicon-

ductor material with carriers supplied to the quantum well from a doped region

that is physically seperated by an undoped spacer layer. A low temperature
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hole mobility of above 106 cm2/V.s at a sheet density of 2×1011 cm−2 has been

accomplished in such structures with strained Ge quantum wells [98]. In order

to study these structures, magnetotransport measurements were performed in

the temperature range 0.3 - 300 K, with a magnetic field swept from 0 to 12 T

in both directions of the field.

5.1 2DHG grown by CVD and MBE.

The first structure studied was a pGeQW/Si0.2Ge0.8/Ge/Si(100) MOD

heterostructure grown by RP-CVD and SS-MBE, see Figure 5.1, sample 12-28.

The reason behind this hybrid growth was to use MBE to create a delta-doped

supply layer, because at the time this process could not be done by CVD.

The epitaxial layers from the substrate through the strain tuning buffer

and Ge quantum well to the undoped spacer layer were grown using an ASM

Epsilon 2000 CVD system in Warwick. A reverse linearly graded (RLG) layer

Si0.2Ge0.8 buffer of 2.5 µm was grown on a Si substrate, followed by an undoped

compressive strained Ge QW layer (20 nm) and undoped Si0.2Ge0.8 spacer layer

(20 nm). The precursor used was germane (GeH4).

The B doped δ-layer, the 30 nm undoped Si0.2Ge0.8 layer and the un-

doped Si cap layer (1 nm) were grown in Tokyo using a VG Semicon V80 UHV

SS-MBE system.

The epitaxial layers show good structural properties with low RMS sur-

face roughness ∼ 2 nm and low TDD ∼ 2 × 106 cm−2. For this structure, a

Hall mobility of 90, 000 cm2V−1s−1 and carrier density of 5× 1011 cm−2 were

recorded at 3 K [85, 99].
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Figure 5.1: Schematic diagram of sample 12-28. The epitaxial layers were
grown by CVD and the delta layer doping was grown by SS-MBE. Figure
taken from [99]

The magnetic field dependence of the magnetoresistance at for the low-

est temperature, 0.316 K is shown as a black line in Figure 5.2, the blue

line corresponds to the transverse resistivity or Hall resistivity. The SdH os-

cillations appear at magnetic fields above 1 T and the oscillation amplitude

increases with increasing magnetic field. There is a single series of SdH os-

cillations, with minima appearing at even integer filling factor ν. From the

period of these oscillations, there is a fundamental field of 20.9 T, which corre-

sponds to a hole density of 5.06×1011 cm−2 (equation 2.28) in agreement with

the previous measurements, see Figure 5.3. Figure 5.4 shows the behaviour of

the magnetoresistance for different temperatures, as the temperature increases

the amplitude of the oscillations decreases and the oscillations start at higher

fields. For example, at 7.4 K the first oscillations start at fields around 2.3 T.

At 40 K no oscillations are observed. Figure 5.4(b) shows a detail of the SdH

oscillations up to 3 T.
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Figure 5.2: Shubnikovde Haas and Quantum Hall Effects at a temperature
of 316 mK. Minima in resistivity are labelled with their corresponding filling
factors.

Figure 5.3: SdH oscillations in inverse magnetic field (inset) and their FFT
spectrum for sample 12-28 at 316 mK
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(a) Magnetoresistance for fields up to 12 T .
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(b) Magnetoresistance for fields up to 3 T.

Figure 5.4: Magnetic field dependence of magnetoresistance and spin-splitting
dependence with temperature.
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At B > 4 T (Figure 5.5) spin-splitting is observable in the SdH oscilla-

tions, with SdH minima now also appearing at odd integer filling factors. As

the temperature increases the effect becomes less pronounced, at T = 3.2 K

the spin-split minima are no longer observable (not shown).
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Figure 5.5: Spin-splitting dependence on temperature with temperature.

Figure 5.6 shows the Hall resistance as a function of magnetic field

and temperature. Very clear quantum Hall effect plateaus are seen at integer

filling factors ν with resistance values of Rk/ν, where Rk = h/e2 is the Klitz-

ing constant of 25, 813 Ω, named after the discoverer of the integer quantum

Hall effect. At the highest magnetic fields the spin-degeneracy of the Landau

level energy spectrum is resolved, with odd-integer plateaus seen around 4.2 T

and 7 T, corresponding to ν = 5 and ν = 3 respectively. There is also an

inflexion seen at ν = 7, but no clear plateau. At lower magnetic field the

spin-degeneracy is not resolved and only even integer plateaus are seen. The
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Figure 5.6: Magnetic field dependences of Hall resistance measured at different
temperatures. In the inset is shown the linear region of the Hall resistance.

plateaus observed disappear with increasing temperature in a similar way to

the SdH oscillations. The inset of figure 5.6 shows that the linear region of the

Hall resistance goes up to B=1 T. By performing a linear fit on this region is

possible to determine the Hall coefficient RH = 1251 Ω/T , which corresponds

to a density of 5.00× 1011 cm−2, as found from the SdH positions.

The linear variation of Hall resistance at low magnetic field, well devel-

oped quantum Hall plateaus at high magnetic field, and single series of SdH

minima at integer filling factor all point to conduction from a single 2D channel

of high mobility charge carriers. The excellent quality of the data also show

that the Hall bar geometry is well constrained and the contacts are do not

introduce any spurious signals - this was ensured by inspection of the sample

under a microscope and scratching to remove possible leakage paths round the

contacts.
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Figure 5.7: Plots for self-consistent extraction of effective mass m∗ and pa-
rameter α for different temperatures (a) and magnetic fields (b).
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From the magnetoresistance measurements, a value for the hole effective

mass can be extracted using the self consistent method described in Section

3.3.7 [81]. For this method, only SdH oscillations that are approximately

sinusoidal can be used, which restricts the analysis to lower B/T before peak

sharpening and spin-splitting occur. Figure 5.7 shows the plots with the best

fit for an effective mass of m∗ = (0.085 ± 0.02) m0 (equation 3.40) and a

transport to quantum scattering time ratio α of 4.34 ± 0.02 (equation 3.41).

The Dingle plot shows a straight line with an intercept at 1.38 (log 4) which

is in accordance with the theory [61]; this is related to the broadening of the

Landau levels.

5.2 Heterostructures grown by CVD.

Heterostructures grown entirely by CVD have also been studied. A

typical layer configuration for these structures is shown in figure 5.8.

Figure 5.8: Schematic cross-section of sample 12-131.

The different epilayers were grown using the ASM Epsilon 2000 CVD
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system in Warwick. A relaxed Ge layer of approximately 600 nm was first

grown on a Si(100) wafer, followed by a reverse linearly graded strain re-

laxed Si1−xGex buffer, an undoped constant composition layer of Si1−xGex,

an undoped compressive strained Ge quantum well (QW) layer, an undoped

Si1−xGex spacer layer, a Boron doped Si1−xGex supply layer, an undoped

Si1−xGex cap layer and finally a Si cap at the surface. In order to grow the

layers the standard precursors GeH4 and Si2H6 were used.

5.2.1 Structural analysis.

The grown structures present a relatively low RMS surface roughness of

around 2nm and low threading dislocation density at the top surface of around

2× 106 cm−2 [25].

Figure 5.9: Cross-section TEM of sample 12-447.

Figure 5.9 shows a cross-section TEM of one of these Ge QW MOD
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heterostructures, wafer 12-447. It can be seen that dislocations stop at the

top of the reverse linearly graded buffer layer with the remaining layers being

smooth and defect-free. The Ge QW was measured to be 22 nm and does not

show a rough interface.

5.2.2 Hall Bar fabrication.

Figure 5.10: Hall bar fabricated for magnetoresistance measurements.

In order to study the magneto-transport properties of these structures

Hall bar devices were fabricated in a clean room using optical lithography

following the process described in subsection Section 3.1.3 (see Figure 5.10).

In order to clean the sample, the surface is cover with primer for 10 s. Next

it was+ covered with negative photoresist (AZ5124E) and spun for 35 s at

4000 rpm followed by a spread at 0.1 s at 1600 rpm. The sample is then baked

for 1 minute at 115◦C. It then undergoes an exposure of 6s followed by a reverse

bake at 120◦C for 2 minutes and a flood exposure of 10 s. The developer used
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was MF319 for 1 min and a 10 s rinse. Prior to Al evaporation, the sample

undergoes plasma ashing so as to remove leftover photoresist followed by a

2% HF dip. The Al evaporated should cover all the sample and then lift-

off is performed in order to reveal the pattern. In a second phase, positive

photoresist is applied (S1813), spun for 2 s at 500 rpm and spread for 7 s at

4000 rpm. It undergoes a 10 s exposure and is developed to leave the Hall bar

defined in resist. The final step of the lithography process is etching to isolate

the Hall bar. Dry etching is used for these samples to give an anisotropic

profile, it shows good results for small features. These samples were etched

right down to the substrate, to avoid parasitic conduction paths through the

virtual substrate, as confirmed by the height profile shown in Figure 5.11.

Figure 5.11: Profilemeter graph after samples undergo dry etching.
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5.2.3 Mobility measurements.

The samples were measured in the closed-cycled cryostat by performing

Hall and resistivity in the temperature range 10 K to 300 K. At low temper-

atures the values for Hall mobility and sheet carrier density are related to

carriers in the 2DHG located in the quantum well [100], whilst at higher tem-

peratures other parallel conducting channels appear.

Figure 5.12 shows the Hall mobility and carrier sheet density of sam-

ple 12-131 as function of temperature. Below 77 K, the hole density starts

to saturates at ∼ 3 × 1011 cm−2 indicating the presence of a 2DHG in the

strained Ge channel. The Hall mobility increases with decreasing temperature

to a maximum of 4.8× 105 cm2/Vs.

Figure 5.12: Hall mobility (solid lines) and sheet density (dash lines) as a
function of temperature for sample 12-131 and 12-447. Both samples were
etched until the substrate.
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Similar measurements for sample 12-447 are also shown in figure 5.12.

In this case, the carrier sheet density saturates, below 77 K, at 1.9×1011 cm−2

again indicating the presence of a 2DHG in the strained Ge channel. The

mobility increases with decreasing temperature to a maximum value of 6.3×

105 cm2/Vs, but without reaching saturation indicating the possibility of even

higher mobility at lower temperatures.

Although the two samples have the same intended layer structure, 12-

447 has a 30% lower hole density in the QW than 12-131 and an approximately

30% higher hole mobility. This decrease of mobility with increasing hole den-

sity suggests that the mobility in these samples is limited by remote impurity

or interface roughness scattering, rather than by background impurity scat-

tering for which the reverse trend would have been seen. The carrier density

difference in the quantum well arise from small differences in the actual layer

thickness and doping density of the two samples.

At higher temperatures the mobility decreases due to phonon scattering

and parallel conduction in the sample, reaching 1093 cm2/Vs at a total hole

density of 30× 1011 cm−2 at 300 K.

5.2.4 Magnetotransport measurements.

The higher mobility sample (12-447) was then measured at lower tem-

peratures, down to 300 mK, in a cryomagnetic system. For a set temperature

the field was continuously swept from 0 to 12 T in both directions. Shubnikov-

de-Haas were observed from these measurements and several parameters were

extracted by applying the method describe in section 3.3.7 [81].

Figure 5.13 shows the magnetoresistance and Hall resistance as a func-
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Figure 5.13: Magnetic field dependences of magnetoresistance and Hall Resis-
tance for a measurement at 300 mK. The landau levels are represented in red
dotted lines.

tion of magnetic field taken at 300 mK. The presence of SdH oscillations are

an indication of 2D carrier confinement; however, the shape of these magne-

toresistance curves are quite different from those observed in Figures 5.4(a)

and 5.6 from sample 12-28: the Hall resistance is not linear in magnetic field,

plateaus do not appear for the quantum Hall effect, there is an increasing

linear baseline to the magnetoresistance oscillations, and a simple series of

integers cannot be applied to all the minima seen. These issues could indicate

that there is parallel conduction in this sample, possibly through the B-doped

supply layer, or arise from issues of sample or contact geometry that mix the

two components of magnetoresistance ρxx and ρxy.

The magnetoresistance measurements were made at a range of temper-

atures. In the low field region, Figure 5.14 shows SdH oscillations are observed
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Figure 5.14: Low field SdH oscilations for sample 12-447, measured at tem-
peratures from 300 mK to 900 mK.
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Figure 5.15: Temperature dependence characteristics of the magnetoresis-
tance, measured at different temperatures.
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at fields as low as B = 0.235 T for the measurement at 300 mK, with spin

splitting appearing above B = 0.36 T (as indicated by the arrows in Figure

5.14). As the temperature increases the oscillation amplitude decreases in the

usual way and the field at which spin-splitting is resolved increases. The mag-

netoresistance behaviour at higher fields are shown in Figure 5.15 for different

temperatures. The main feature of this data is a set of peaks that start to

appear at around B = 0.6 T at 300 mK (with red arrows on Figure 5.15).

As the temperature increases, it is the peak amplitude that decreases against

a temperature independent background between them. This is the complete

opposite to the SdH behaviour usually observed for high mobility samples,

where the depth of minima vary with temperature and eventually reach zero

at integer filling factors for low enough temperature. At higher temperatures

these peaks also only start to appear at higher magnetic fields. In the inter-
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Figure 5.16: Magnetoresistance of sample 12-447 at intermediate temperature
and field showing the emergence of peaks from SdH minima.
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mediate temperature and field range, shown in Figure 5.16 it can be seen that

the SdH minima at higher temperatures (indicated by arrows coloured to the

1.7 K and 3.5 K data) transform into peaks at lower temperatures.

Using this knowledge, the filling factor for each feature in the SdH data

can be identified. Figure 5.17 shows the filling factor plotted against inverse

magnetic field up to ν = 36, with the filled points coming from the positions

of SdH minima, including those at higher temperatures, and the open points

from the sharp peaks seen at the lowest temperatures. The fact that these

points all fit to a straight line through the origin demonstrates that this is the

correct assignment of filling factors and gives a fundamental field of 8.45 T,

which corresponds to a 2DHG density of 2.04× 1011cm−2.
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Figure 5.17: Filling factor as a function of inverse magnetic field for sample
12-447. Filled points are taken at SdH minima (from a range of tempera-
tures), open points are for peaks in resistivity seen at lowest temperature.
The straight line through the origin shows that the filling factors have been
correctly assigned.
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Figure 5.18: Temperature dependence of the Hall resistance for sample 12-447.

The Hall resistance curves, shown in Figure 5.18, do not show the typ-

ical quantum Hall effect plateaus. In their place there are minima that have

a dependence with temperature like the peaks in the magnetoresistance. The

higher temperature background to the Hall resistance is also sub-linear in

magnetic field, which is a possible indication of parallel conduction. However,

there is a linear region until approximately 0.2 T. By performing a linear fit

on this region is possible to determine the Hall coefficient RH = 3162 Ω/T ,

which corresponds to a carrier density of 1.98× 1011cm−2. This value appears

in complete agreement with the value obtained from the filling factors of the

SdH oscillations (to within the experimental uncertainty) which would suggest

that all the carriers involved in conduction are those in the quantum well and

that there is therefore no parallel conducting channel.

In a further attempt to understand this sample, the conductivity σxx
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Figure 5.19: Magnetoconductivity for sample 12-447 at 300 mK.

was calculated from the resistivity components at 300 mK and is shown in

Figure 5.19. This shows that the rising background in ρxx has been replaced

by a constant background in σxx. Such a constant background does suggest a

parallel conducting channel with a conductivity of 3× 10−5Ω−1/sq, but is still

inconsistent with the Hall effect data and does not explain the appearance of

temperature dependent peaks in ρxx. The magnetoresistance of this sample

therefore remains a mystery and in need of further investigation!

Despite the strange behaviour described in the previous paragraphs,

the low field magnetoresistance behaves relatively normally and can be used

to extract an effective mass value.

To determined the effective mass a small range of magnetic field was

chosen in order to avoid the spin-splitting part or any regions where min-

ima become maxima with decreasing temperature. In Figure 5.20 are shown
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Figure 5.20: Plots for self-consistent extraction of effective mass m∗ and pa-
rameter α for different temperatures (a) and magnetic fields (b).
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the plots for a magnetic field range of 0.2 to 0.4 T. From these an effective

mass value of 0.085 m0 is obtained, although the plot has a negative intercept

rather than the expected log 4. This displaced intercept could be due to the

anomalous value for the absolute resistance (because of factors unknown in the

conduction in this sample), but the field and temperature dependence of the

oscillations can still give a reasonably trustworthy value for the effective mass.

A transport to quantum scattering times ratio α of 19.5 is also found. By

reducing the magnetic field range a little more, an effective mass of 0.081 m0

and an α of 26.5 result. This difference in values is due to the complexity

of the magnetoresistance curve and gives an indication of the uncertainty in

the values obtained. Nevertheless, the effective mass is found to be very simi-

lar to that measured for the more simple sample 12-28 earlier in the chapter.

The α value is about five times higher in 12-447 than the 4.3 recorded for

that sample, which is consistent with 12-447 having a much higher mobility

of 700,000 cm2/Vs as opposed to 90,000 cm2/Vs. This indicates that back-

ground impurity scattering has been reduced in 12-447 to leave the mobility

more affected by the small angle scattering from remote impurities.

5.3 Conclusion

In this section the magnetotransport properties were determined for

holes in the 2DHG found in strained Ge quantum wells of different heterostruc-

tures. The first set of samples were heterostructures grown partially by CVD

and partially by MBE, and the second set of samples were grown exclusively

by CVD. The magnetic field dependences of magnetoresistance and Hall re-

sistance were measured at temperatures in the range 0.3 to 300 K and in
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magnetic fields up to 12 T.

The SdH oscillations were observed at low magnetic fields, spin split-

ting was also seen in both samples. The carrier sheet density was determined

from the SdH oscillations and from the magnetic field dependence of Hall re-

sistance, agreeing well in both cases. From the temperature dependence of the

SdH oscillations effective mass values of (0.083± 0.002) m0 were found for the

holes in both of these 20% strained Ge quantum wells.

Despite fabricating a Hall bar to ensure that parallel conduction is di-

minished, the magnetoresistance of sample 12-447 had an odd behaviour with

temperature dependent resistance maxima at high magnetic fields where tem-

perature dependent minima would be expected. There was also a field depen-

dent background to the magnetoresistance that appeared to indicate different

paths for carries to go, but this is inconsistent with carrier density obtained

from the SdH oscillation period and Hall voltage slope at low fields being the

same.
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Chapter 6

Germanium Oxide

6.1 Introduction

This chapter describes the growth of GeO2 on epitaxial grown Ge on

Si(100) substrates. All the fabrication and characterization was performed at

Warwick. The samples were characterized electrically and/or structurally.

Germanium oxide is the natural oxide of Ge. Despite showing good

device performance, GeO2 still presents some challenges due to its hygroscopic

nature, solubility in water and thermal instability at temperatures used dur-

ing device fabrication [101]. These lead to the degradation of the Ge-GeO2

interface and consequently to poor device performance. Also when grown at

lower temperatures a combination of GeO2 and GeO is produced. Further-

more, GeO can desorb from the surface at temperatures as low as 500 ◦C

[102]. This desorption of GeO from the surface is related to degradation of

the buried Ge-GeO2 interface and consequently to poor device performance

[49]. In [49, 102–108], it is shown that the GeO desorption occurs from the

interaction of the GeO2 with the Ge by

GeO2 +Ge −→ 2GeO. (6.1)
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This was observed in Wang et al. [49], where lines were patterned in

GeO2/Ge structures. The samples were afterwards annealed and the Ge layer

under the GeO2 layer was measured by AFM and a reduction in the layer

thickness was observed, leading to the conclusion that Ge is consumed during

GeO formation and consequently the cause for interface degradation. This

results was obtain for different GeO2 thicknesses.

A model of oxygen vacancy diffusion has been proposed as the basis for

Ge consumption [106], since a flux of O vacancies from the interface to the bulk

should occur. In order to validate the model Wang et al. [106] grow a sam-

ple of Ge16O2 (40 nm)/Ge18O2(15 nm)/Ge by thermal oxidation at 530 ◦C in

18O2 ambient followed by sputtering Ge16O2. The structure was then partially

covered with Si. The samples where then annealed at 550 ◦C and measured

by SIMS and a sharper diffusion slope was observed for the sample without

Si. The O vacancies are consumed at the surface, making the concentration of

vacancies lower in this sample, and consequently the exchange rate between O

and GeO2 is lower.

In order to control the GeO desorption it is necessary to choose a reli-

able method to passivate the surface. Lee et al. [44] have demonstrated control

of GeO desorption by performing a high pressure oxidation (HPO) followed by

low temperature oxidation annealing (LOA). For GeO2 grown at 70 atm they

measured interface trap densities (Dit) of 2× 1011 eV−1cm−2 and a peak mo-

bility in Ge(110) of 1100 cm2V−1s−1 at room temperature. Bellenger et al. [46]

performed thermal oxidation at low temperatures between 350 ◦C and 450 ◦C,

and at an O2 partial pressure of 1 atm, this gave a Dit ≈ 1011 eV−1cm−2.

Kutsuki et al. [109] passivated the surface with nitrogen and found that the

current leakage was suppressed by a factor of 4 to 6 times, but at the ex-
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pense of the EOT. However, they did not observe an improvement in the Dit

(Ditmin
≈ 3.3 × 1011 and 3.4 × 1011 eV−1cm−2). An improvement in device

characteristics was also observed by Koumo et al. [110] while performing a

two-step oxidation, the first oxidation was done at 500◦C at 1 atm for 30 min

followed by the second oxidation at 400 ◦C 1 atm for another 30 mins. For a

one step oxidization process at 500 ◦C and 1 atm they observed a significant

shift in the flatband voltage (VFB), as well as a large hysteresis. With the

two-step oxidation the hysteresis was reduced significantly, but still with the

VFB shift. In order to reduce this shift they performed an annealing in UHV.

Another method of surface passivation used is ozone passivation [47] In this

method it was found that the optimized oxidation temperature is 400 ◦C with

a Dit of 3×1011 eV−1cm−2. At higher temperatures, GeO2(4+) transforms into

GeO2(2+) which favours the formation of GeO leading to degradation of the

Dit. Yet another method is to thermally oxidise the Ge substrate [48, 49, 111].

It was found that Dit diminishes for higher temperatures, but at 600 ◦C the

surface GeO starts to desorb leading to formation of pin holes at the surface. It

was found that the optimized oxidation temperature range is between 450 ◦C

and 575 ◦C.

Nakakita el al. [112] have shown a 2.0x enhancement in mobility com-

pared to the universal Si mobility-field curve for an Al2O3/GeO2/Ge device

with GeO2 thermally grown at 500 ◦C, with the mobility limiting factor at

low Ns being Coulomb scattering. However, this enhancement was obtained

for a relatively thick GeO2 layer. In order to reduce this layer, a gate stack

employing high-κ dielectrics was sought [6]. This paper showed high mo-

bilities µ = 515 cm2/V.s, and Dit = 1.6 × 1012 cm−2eV−1 for devices with

EOT=1.4 nm. The GeOx interfacial layer was grown by plasma post oxi-
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dation (PPO) by oxidizing the Ge layer using electron cyclotron resonance

(ECR), after ALD deposition of Al2O3. Zhang et al. [7] were able to in-

crease the mobility while reducing the EOT even further for gate stacks of

HfO2/Al2O3/GeOx/Ge. Again the GeOx IL was formed by PPO; it was shown

that good performances can be reached even with subspecies of GeO2. The

Al2O3 layer is needed to prevent the intermixing between HfO2 and GeOx

layers, which is responsible for interface degradation and consequently poor

device performance. They reported an electron mobility of 754 cm2/V.s and

a hole mobility of 596 cm2/V.s for an EOT of 0.82 nm.

6.2 Epitaxial Ge layer growth

The Ge epilayers were grown using the two-step technique [113]. In

this technique a Ge ‘seed’ is grown at lower temperature, between 330 ◦C and

Figure 6.1: An AFM schematic representation of the surface morphology of
sample of Ge grown by CVD, prior to oxidation.
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450 ◦C, followed by another layer deposition at higher temperature, 600 ◦C to

850 ◦C. The second Ge layer was grown with a final temperature of 670 ◦C with

a nominal thickness of 1 µm. Using low temperatures for the first Ge layer

relaxes the strain and avoids the formation of islands. The high temperatures

employed in the second layer reduces the dislocation density, by encouraging

dislocation glide and annihilation, and reduces the deposition time. A typical

image of the surface grown by this method is shown in Figure 6.1. The surface

morphology was measured by AFM in tapping mode, giving a low RMS surface

roughness of ∼ 0.6 nm.

6.3 GeO2 oxidation formation

6.3.1 GeO2 Oxidation System

The GeO2 was grown thermally in a furnace using a tube quartz, see

Figure 6.2. The gases were controlled by using mass flow controllers. The

quartz tube is only used for oxidation and only for GeO2 to minimise the

risk of contamination. Prior to the first oxidation the tube was cleaned with

isopropanol and dried with a N2 gun. After inserting the tube, the furnace

was heated to 900 ◦C for 1 hour, this will remove any remaining particles and

moisture. The heating is done at a low flux of N2. In order to reduce the

temperature the N2 is increased to maximum and the furnace is set to a lower

temperature. Prior to oxidation the wafers are kept in a clean environment. In

order to perform the oxidation it is necessary to cleave the sample into small

pieces, between (1×1) cm2 and (1×2) cm2, in order to fit a ceramic boat that

will be pushed to the middle of the furnace. For each oxidation 3 pieces are
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cut. After oxidation, one piece is used for electrical measurements and has Al

dots evaporated on to it, a second piece is covered with Al for TEM analysis,

and the third is kept for other types of analysis.

In Figure 6.2 it is possible to see the four main components of the

system: the gas inlet, the furnace, the quartz tube and the extraction of gases.

After oxidation the samples were kept in a box purged with a constant flux of

N2.

Figure 6.2: System used to perform the oxidation. it is composed of an inlet
for the gases (1), a furnace (2), a quartz tube (3), gases extraction tube (4)
and box to storage the samples (5). N2 is constantly passing through the box.

6.3.2 Ge surface preparation and GeO2 growth.

Natural oxides are responsible for degradation in devices, through in-

creasing the contact resistance and increasing the interface roughness which

causes mobility degradation [114]. Hence, it is necessary to remove the natural
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oxide. The native oxide might include contamination such as particles, metals

and organics. Although GeO2 is soluble in water, GeO is not, so cleaning with

DI is not the correct method. HF treatment of a Ge surface leads to a surface

terminated with hydrogen, but when left in ambient conditions for 5 minutes

re-oxidation occurs. If left in N2 ambient re-oxidation takes longer to occur.

HCl passivation of a Ge surface leaves a Cl terminated surface. If left in ambi-

ent conditions re-oxidation occurs after about 10 minutes [114]. Various other

process have been employed in order to remove the oxide, in [6] the cleaning

was performed using deionized water, acetone,and HF aqueous solution. Bel-

lenger et al. [46] the cleaning was done using NH4OH/H2O2/H2O followed

by a 2% HF dip. However, there is always a risk that chemical cleaning can

introduce further impurities. In this work, we chose instead to rely on thermal

desorption of the native oxide and avoid using a chemical cleaning process for

all the samples. The wafer used in this study are kept in a clean environment

so it is expected that only a small layer of natural oxide to be present at the

surface. The temperatures used for oxidation are enough for starting GeO

desortion from the surface leaving a surface clean. The first oxidation was

done in order to test the system. This resulted, in layers with good structural

and electrical characterization, to be seen in the next sections. So a simple

method for growing GeO2 will be shown.

6.3.3 Oxidation process

In order to perform oxidation it is necessary to set the furnace temper-

ature to the desired temperature at a flux 1000 sscm N2. In order to ensure

only O2 is present in the tube during the oxidation, 1000 sccm of O2 is sent
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through before inserting the sample. The samples are put in a ceramic boat at

the entrance of the tube for 5 min prior to oxidation to gently heat the sample

and reduce thermal shock. To start the oxidation, the sample is moved to the

middle of the tube, where the temperature is believed to be at its maximum.

The oxidation is performed at 1000 sccm. Before removing the sample, it was

cooled at the entrance for 5 min at 500 sccm. The parameters varied are ox-

idation time and oxidation temperature. The set of oxidation temperatures

chosen was between 450 ◦C and 600 ◦C. Below 450 ◦C the surface is too rough

and above 600 ◦C the formation of pin holes occurs [103, 115, 116]. After

oxidation Al dots were evaporated.

6.4 Characterization of Oxide layers

6.4.1 XPS analysis

In order to carry out an XPS study, a spectrum is first taken of an

as-grown sample. Then the sample is annealed in-situ and a new spectrum is

taken for each anneal temperature. The temperature interval at which anneal-

ing occurred was between 300 ◦C and 500 ◦C, with spectra taken of samples

for which the anneal temperature increased in steps of 50 ◦C.

Figure 6.3 shows a spectrum of a sample prior to oxidation, which has

been kept outside of a clean environment, which as mentioned previously leads

to natural oxidation. Looking at the data, two peaks can be clearly distin-

guished; however, by fitting the peaks with Voigt functions it is possible to

differentiate four curves that contribute to the spectrum. At lower energies

a peak can be identified at 30.12 eV corresponding to the elemental Ge peak
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Figure 6.3: XPS Ge 3d spectra for the sample with natural oxide as-grown

(green). A second peak is shifted by 0.64 eV corresponding to the Ge1+ oxi-

dation state (blue). A third peak is shifted by 3.37 eV which corresponds to

oxidation state Ge4+ (cyan), the final peak (magenta) is shifted by more than

5 eV which is attributed to oxides from the bulk. The different oxidation states

corresponds to the different Ge sub-oxides, for instance, Ge1+ corresponds to

the Ge2O oxide, Ge2+ to GeO, Ge3+ to Ge2O3 and Ge4+ to GeO2 [117, 118].

In Figure 6.4 is shown the envelope spectra taken for different anneal

temperatures, the annealing occurred in vacuum. The shift to lower binding

energies of the GeOx peak can be observed with increasing temperature which

is associated with the desorption of GeO. At 500◦C only the elemental Ge peak

is observed.

The thickness of the layer can be estimated from the XPS spectra, by

applying the thickogram method [119] (see Figure 6.5), to be around 2.1 nm.
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Figure 6.4: XPS Ge 3d spectra for the sample with natural oxide as function
of annealed temperature.

Figure 6.5: Thickogram for determining the Germanium Oxide thickness. The
ratio of kinetic energy of overlayer and substrate peaks is 1. The intensity
ratios is 1.53. This gives an intersection for C=0.9.
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6.5 Results of the GeOx layers.

6.5.1 Preliminary studies.

In order to test the tube furnace a set of samples, which have not gone

through any cleaning treatment, were oxidised at 450 ◦C for 30 minutes and at

475 ◦C for 30 and 60 minutes. Both n-and p-type substrates were used. The

samples were characterized by depositing an Al surface contact and performing

CV measurements.

For the first set oxidised at 450 ◦C it is possible to observe a small bump

in the CV profile (see Figure 6.6) at low frequencies indicating the presence of

interface traps. However, it is not possible to observe the inversion layer for

low frequencies.

Figure 6.6: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
5k-500 kHz for samples grown at 450◦C for an oxidation time of 30 minutes.
ND = 2.8× 1018 cm−3, tox = 272.5 nm as measured by the CV curve.
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(a) Oxidation at 475 ◦C for 30 minutes.

(b) Oxidation at 475 ◦C for 60 minutes.

Figure 6.7: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of 1k -
100 kHz for samples grown at: a) 475 ◦C for 30 minutes, NA = 4.5×1015 cm−3,
tox = 58.4 nm as measured by CV curves; and b) at 475 ◦C for 60 minutes,
NA = 9.8× 1014 cm−3, tox = 47.9 nm as measured by CV curves.
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Electrical (CV) Structural (TEM)

450 oC 475 oC 450 oC 475 oC

30 min 30 min 1 h 30 min 30 min 1h

VFB (mV) -88 -50 -113 − − −
tox (nm) 272.5 58.4 47.9 1200 58 82

EOT (nm) 204.3 43.8 35.9 − − −

Table 6.1: Selected electrical parameters for the capacitors in test batch.

For the devices grown at 475 ◦C we no longer see the bump in CV at low

frequencies, which suggest interface traps have been eliminated. The frequency

dispersion is non-existent for 30 minutes of oxidation time. The device quality

for capacitors grown at 475 ◦C for 1 h is poor (see Figure 6.7(b)), showing a

dispersion in frequency, but no bump for high frequencies. The sharp slopes

shown in the CV curves are an indication of low interface state density. In

this batch we cannot see formation of the inversion layer at low frequencies.

In Table 6.1 we can see parameters extracted from the CV measure-

ments, with the oxide thickness calculated using equation 3.22 and the EOT

using equation 3.23, as well as the thickness extracted from TEM. Comparing

the oxide thickness obtained by the CV and TEM we can see that the values

only agree for the sample grown at 475 ◦C for 30 minutes. From Figure 6.8

we can see that it is difficult to differentiate the oxide from the Ge layer. The

poor quality of the oxide contributed to the poor performance of the device,

see Figure 6.6.

In Figures 6.9 and 6.10 it is possible to observe a good Ge-GeO2 interface

for the samples grown at 475 ◦C. Considering both the CV measurements

and the TEM images it is possible to say that oxidation occurred for both

temperatures; however, from a device point of view, the lower temperature is
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Figure 6.8: Oxidation at 450◦C for 30 minutes.

Figure 6.9: Cross-sectional TEM images of the oxidized samples for samples
grown at 475◦C for 30 minutes.
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not adequate, there is no clear distinction between Ge and the GeO2, making

it difficult to determine the layer thickness. In order to have CMOS quality

devices it is necessary to reduce the oxide thickness while maintaining the good

quality interface, so in the second batch of oxidation the oxidation temperature

started at 475 ◦C and the oxidation time was reduced.

Figure 6.10: Cross-sectional TEM images of the oxidized samples for samples
grown at 475◦C for 60 minutes.
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A second oxidation was performed in order to test the repeatability of

the process, however, this oxidation failed. The position of the samples in the

tube is crucial so it is necessary to find the position at which the temperature is

at maximum. The maximum in temperature can be found in the middle of tube

with the temperature decreasing quite rapidly towards the ends. Therefore

positioning the sample exactly in the middle of the oxidation furnace is critical.

With this information a third oxidation was performed.

6.5.2 Oxidation results.

The new oxidations were carried out at 475 ◦C, 500 ◦C, 550 ◦C and

600 ◦C. Table 6.2 shows the oxidation times for each oxidation temperature.

CV characteristics for the new oxidation batch are shown in Figures

6.11 to 6.18. This time it was not possible to obtain good devices for the sam-

ples oxidized at 475◦C; we were not able to reproduce the results obtained in

the first oxidation. The voltage sweep was performed in both directions lead

to the dislocation of the curve by small amount, hysteresis. This hysteresis is

present in the CV curves for all the oxidations performed, which is between

40 mV and 80 mV (see Table 6.3). The curves show noise at low frequencies

independently of the oxidation temperature and oxidation time. Nevertheless,

Temperature (◦C)

475 ◦C 500 ◦C 550 ◦C 600 ◦C

45 30 15 15

Time 60 45 30 30

75 60 45 45

Table 6.2: Matrix of oxidation times and oxidation temperatures used.
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we were able to measure CV curves at frequencies as low as 500 Hz (which

indicates a good quality oxide without significant leakage) for oxidation per-

formed at 500 ◦C and 550 ◦C, see Figure 6.13, Figure 6.14 and Figure 6.15.

Figure 6.15 shows noise even at 1 kHz being the noisiest figure, with noise

even in the depletion region.

Figure 6.12 shows the CV curve for sample grown at 500 ◦C for 45

minutes. In accumulation it is possible to observe a frequency dispersion, this

frequency dispersion is associated to a high carriers concentration [120]. Also,

at high frequency a stretch-out of the curve is observed, indicating the pres-

ence of trapped charge at the interface. Figures 6.15 to Figure 6.18 show small

inversion even at high frequencies.

For an oxidation temperature of 500 ◦C, as the oxidation time

increases we are able to measure at lower frequencies showing that the oxide

Figure 6.11: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
1k-100 kHz for samples grown at 500◦C for 30 minutes. NA = 4.7×1014 cm−3,
tox = 7.2 nm as measured by CV curves.
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Figure 6.12: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
1k−100 kHz for samples grown at 500◦C for 45 minutes. NA = 4.1×1014 cm−3,
tox = 6.7 nm as measured by CV curves.

Figure 6.13: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
500 - 100 kHz for samples grown at 500◦C for 60 minutes. NA = 2.9×1014 cm−3,
tox = 5.8 nm as measured by CV curves.
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Figure 6.14: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
500 - 100 kHz for samples grown at 550◦C for 30 minutes. NA = 1.3×1014 cm−3,
tox = 8.7 nm as measured by CV curves.

Figure 6.15: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
500 - 100 kHz for samples grown at 550◦C for 45 minutes. NA = 4.0×1014 cm−3,
tox = 22.6 nm as measured by CV curves.
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Figure 6.16: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
1k - 100 kHz for samples grown at 600◦C for 15 minutes. NA = 4.2×1014 cm−3,
tox = 13.0 nm as measured by CV curves

Figure 6.17: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
1k - 100kHz for samples grown at 600◦C for 30 minutes. NA = 6.8×1014 cm−3,
tox = 11.9 nm as measured by CV curves
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Figure 6.18: C-V characteristics of Al/GeO2/Ge capacitors at frequencies of
1k - 100kHz for samples grown at 600◦C for 45 minutes. NA = 5.6×1014 cm−3,
tox = 17.0 nm as measured by CV curves

film quality improves as it grows. Also, with increasing oxidation time the

frequency dispersion in accumulation increases.

The sample grown at 550 ◦C for 30 minutes shows in accumulation

higher frequency dispersion but better CV characteristics. For higher oxida-

tion time the 100 kHz curve shows small inversion due to minority carriers

response. This curve shows more noise.

At an oxidation temperature of 600 ◦C, with an oxidation time of 45

minutes, the 100 kHz curve shows small inversion, but the frequency dispersion

is small. Also, we observe a decrease in the difference between accumulation

and depletion capacitance. For the sample grown for 30 minutes, it is still pos-

sible to observe a small inversion for 100 kHz. The inversion is smaller for the

sample grown for 15 minutes; however, the difference between accumulation

and depletion is greater.
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Electrical Structural

(CV) (TEM)

Temperatura Time ∆V VFB Cox EOT tox

(min) (mV) (V) (nF) (nm) (nm)

30 56 -0.83 1.2 5.6 7.2 6.0

500◦C 45 62 -0.63 1.3 5.3 6.7 -

60 46 -0.73 1.5 4.5 5.8 9.0

15 - - - - - 5.5

550◦C 30 65 -1.3 1.0 6.8 8.7 9.5

45 54 -1.5 0.4 17.7 22.6 5.5

15 53 -1.4 0.7 10.1 13.0 6.5

600◦C 30 100 -1.7 0.7 9.3 11.9 5.7

45 80 -1.8 0.5 13.3 17.0 35

Table 6.3: Selected electrical parameters for the Al/GeO2Ge capacitors from
the third oxidation and a comparison of oxide thickness measured by CV and
TEM. The tox values were calculated assuming a dielectric constant of 5.

Table 6.3 shows parameters extracted from the CV characteristics for

the last oxidation. The parameters extracted were capacitance in accumulation

(Cox), oxide layer thickness (tox), hysteresis (∆V ) and flatband voltage (VFB).

The flatband voltage is negative for all oxidation temperatures, with the shift

increasing with oxidation temperature. Also, the hysteresis can be seen to

increase with oxidation time, but does not exceed 100 mV.

Figure 6.20 to Figure 6.26 shows cross-sectional TEM images of the

samples oxidized. In all figures it is possible to distinguish the GeO2 layer,

and observe the good quality of the Ge-GeO2 interface. The images allow the

oxide thickness to be determined as can be seen in Table 6.3. As expected,

the thickness increases with the oxidation time and temperature. Moreover,

we see that layer quality increases with increasing oxidation time.
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Figure 6.19: Cross-sectional TEM images of the sample oxidized at 500 ◦C for
30 minutes.

There are discrepancies between the values obtained from the TEM

images and the CV curves (see Table 6.3). According to the cross-sectional

TEM, oxide thicknesses are less than 10 nm with the exception for the sample

grown at 600 ◦C, while extraction from electrical characterization gives higher

thickness for the majority of samples. The discrepancy in the values may be

due to non-uniformity of the oxidation across the samples.

In Figure 6.27 an XPS spectrum for a sample oxidised at 500 ◦C for 45

minutes is shown; after fitting two peaks are observed. The first peak shows a

chemical shift of 3.5 eV and the second 4.1 eV associated to the oxidation state

Ge+4 and to sub-oxides from the bulk-oxides [117, 118]. A sample oxidised at

550 ◦C for 30 minutes was also analysed by XPS. In the as-grown sample no

Ge peak can be distinguished (see Figure 6.29). After annealing at 500◦C for
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Figure 6.20: Cross-sectional TEM images of the sample oxidized at 500 ◦C for
60 minutes.

30 minutes the oxide composition changes for both samples. Figure 6.28 and

Figure 6.30 shows the spectrum for samples grown at 500 ◦C for 45 minutes

and grown at 550 ◦C for 30 minutes after annealing at 500 ◦C. In Figure 6.28 a

Figure 6.21: Cross-sectional TEM images of the sample oxidized at 550 ◦C for
15 minutes.

132



Figure 6.22: Cross-sectional TEM images of the sample oxidized at 550 ◦C for
30 minutes.

Figure 6.23: Cross-sectional TEM images of the sample oxidized at 550 ◦C for
45 minutes.

single peak is observable. In order to fit the peak, Voigt functions are used, as

a result two peaks can be distinguished, the elemental Ge peak at 29.5 eV and
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Figure 6.24: Cross-sectional TEM images of the sample oxidized at 600 ◦C for
15 minutes.

Figure 6.25: Cross-sectional TEM images of the sample oxidized at 600 ◦C for
30 minutes.

a second peak at 30.1 eV corresponding to the oxidation state Ge+1. In Figure

6.30 it is possible to observe the Ge peak at 28.8 eV. Three other peaks are

observable, after fitting with Voigt functions, the Ge+1, the Ge+4 and states

related to oxides from the bulk.

Figure 6.27 and Figure 6.28 represent the XPS spectra for the sam-

ple oxidised at 500 ◦C for 45 minutes, before and after additional annealing,
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Figure 6.26: Cross-sectional TEM images of the sample oxidized at 600 ◦C for
45 minutes.

Figure 6.27: XPS Ge 3d spectra for the as-grown sample oxidized at 500 ◦C
for 45 minutes.
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Figure 6.28: XPS Ge 3d spectra for sample oxidized at 500 ◦C for 45 minutes
after annealing at 500 ◦C.

Figure 6.29: XPS Ge 3d spectra for the as-grown sample oxidized at 550 ◦C
for 30 minutes.
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Figure 6.30: XPS Ge 3d spectra for the sample oxidized at 550 ◦C for 30
minutes after annealing at 550 ◦C.

respectively. The CV curves show good behaviour even though the XPS in-

dicates that two sub species of germanium oxide are present in the oxide. In

the sample grown at 550 ◦C it is not possible to observe the Ge peak for the

as-grown sample (Figure 6.29) and only the GeO2 peak is present. With in-

creasing annealing temperature for both samples, see Figure 6.31 and Figure

6.32, it is possible to observe a shift towards lower binding energies of the

GeOx peak indicating desorption of the GeO.

Figure 6.31 and Figure 6.32 shows the XPS spectra taken after each

annealing for samples grown at 500 ◦C and 550 ◦C. It is possible to observe

the behaviour of GeO2 with temperature. In Figure 6.32 only after annealing

at 500 ◦C it is possible to observe the Ge peak.
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Figure 6.31: XPS Ge 3d spectra as function of anneal temperature for samples
oxidised at 500 ◦C for 45 minutes.

Figure 6.32: XPS Ge 3d spectra as function of anneal temperature for samples
oxidised at 550 ◦C for 30 minutes.
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6.6 Discussion

In the test oxidation, see Figure 6.6 and Figure 6.7, we obtained very

good electrical characteristics especially for the sample grown at 475 ◦C for 30

minutes, with negligible frequency dispersion. However, at 450 ◦C a bump can

be seen in the depletion region indicating the presence of interface traps. The

interface trap density, Dit, was estimated by the high-low frequency method

to be of the order of 1010 cm−2eV−1 for the three samples. Looking at the

TEM images the GeO2 layer is not very well defined, not being possible to

exactly say where the layer starts. Looking at the samples grown at 475◦C it

is possible to observe an improvement in the quality of the GeO2, see Figure

6.8, Figure 6.9 and Figure 6.10. The frequency dispersion observed for the

sample oxidised at 475 ◦C for 60 minutes (Figure 6.7(b)) can be attributed to

a bad capacitor which can explain the discrepancy between the oxide thickness

values obtained by electrical and physical measurements. The flatland voltage

for the three devices shows a small shift from the ideal curve.

In the second oxidation, the oxidation failed and it was not possible

to obtain good device characteristics except for the sample treated at 500 ◦C

for 10 minutes. It was not possible to observe any oxide layers in the TEM

images. The lack of oxidation can be attributed to a bad position of the sample

in the tube since, as it was shown, at the ends of the tube the temperature

is much lower. Also, for this batch the oxidation times used were smaller,

and presumably too short for an oxide to be formed at the low temperatures

used in the tube. Instead all the characterisation measurements will be of a

low quality native oxide layer, either pre-existing or formed during the time

between (non-)oxidation and characterisation. Looking at Figure 1.8 no bump
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is observed, also a negligibility frequency dispersion is observed. The interface

trap density was estimated to be in the order of 1010 cm−2eV−1, by the high-

low frequency method. The significant characteristic is the hysteresis which

increases frequency. This hysteresis reaches 363 mV for 10 kHz demonstrating

just how poor this oxide layer is.

In the next oxidation batch, it was possible to obtain good quality

GeO2 layers. No bumps in the depletion region and no frequency dispersion

is observed for any of the samples. However, the stretch out of the high

frequency curve is an indication of the presence of interface traps in significant

densities. The Dit was estimated, from the high-low frequency method, to be

around 1010 cm−2eV−1. Hysteresis is observable for all samples, being highest

for the sample grown at 600 ◦C. There is some discrepancy between the oxide

thickness values obtained from electrical and physical characterization. The

values are general higher when obtained from the CV curves. It is expected

to have an increase in thickness with increasing oxidation temperature and

oxidation time, and this trend is partial seen if the values considered are the

ones determined from the CV curves. The TEM images show good quality

layers for all the samples measured, but the thickness values obtained must be

considered to be less reliable.

6.7 Summary

In summary, GeO2 have been thermally grown on an epitaxial Ge-

on-Si(001) substrate. We have shown a simple method to grow GeO2 while

achieving good electrical characteristics. The values of Dit estimated in this

work are of the same order as in previous works with more complicated pro-
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cesses. Lee et al. [44] has obtained a Dit = 2× 1011 eV−1cm−2 by performing

high pressure oxidation, Zhang et al. [6] obtained a Dit = 1.7×1011 eV−1cm−2

for an EOT of 1.2 nm. The samples were grown by Plasma Post Oxidation.

In [7] Zhang et al. maintained these values for lower values of EOT (0.8 nm).

From the TEM images taken of the oxide, it is clear that the layer

quality is good, as it does not show irregularities at the interface. The layers

appear to be smooth and no diffusion is observed.

The XPS data shows the presence of GeO2 on the layers grown, as well

as other sub-oxides that don’t seem to contribute to the device degradation.

After annealing it is possible to observe the peak shifts for lower binding en-

ergies showing the oxide desorption, with peaks due to lower oxidation states,

and consequently, different oxide peaks, appear. The difference in oxide thick-

ness measured by TEM and CV characterisation may be explained by the

non-uniformity of growth and the consumption of GeO2 during sample prepa-

ration.

In order to obtain a more reliable value for Dit, the full conductance

method should be employed. Also, there are still issues with reproducibility of

the results. The difference in oxide thickness between the different oxidations

can be due to the cleanliness of the quartz tube. Some residues from previous

oxidation might remain in the tube after purging and warming of tube. This

issue should also be addressed in future growths.

141



Chapter 7

Conclusion

In this investigation different types of Ge devices have been studied.

The epilayers for the devices were grown at Warwick by RPCVD, ex-

cept for the control relaxed wafer which was grown at IMEC. The devices

investigated in chapter 4 were deposited by ALD the dielectric used in these

devices was HfO2. For chapter 6, the GeO2 layers were grown at Warwick by

thermal oxidation, on top of the GeO2 Al was deposited. The samples were

characterised both electrically and physically.

In chapter 4, the effect of different growth parameters on the mobility

of holes in Ge MOSFETs was investigated: Ge passivation scheme, channel

thickness and doping concentration. For these devices, the SiH4 passivation

scheme showed better device performance, mobility for this passivation scheme

being 1.3 times higher than observed for the Si3H8 passivation scheme. The

devices with different channel thickness did not show a significant difference in

mobility. The same was observed for devices with different doping concentra-

tions. However, an enhancement of 50% in mobility was observed for strained

germanium devices relatively to the relaxed germanium ones. For the devices

under study the parameter that has most influenced device performance was

strain. This can be explained by the fact that these devices were fabricated
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without extensions and halos that are used to prevent the diffusion of Ge to

the channel, which is a factor known to degrade mobility.

In chapter 5, strained Ge heterostructures grown with different pro-

cesses were studied using magnetotransport measurements. The first sample

was an heterostructure grown partially by CVD and partially by MBE. The

mobility obtained for this sample was lower than expected, this can be due

to the fact that the contacts show some defects at the surface. Nevertheless,

it was possible to observe SdH oscillation until 7.4 K indicating good quality

layers. The second sample was completely grown by CVD and the device was

fabricated by etching all the layers until the substrate in order to minimize par-

allel conduction due to the fabrication process. From the magnetoresistance

curves it is possible to observe a background, almost, linear dependence with

field. For these sample it was possible to observe the SdH oscillations at lower

fields, around 0.2 T at 300 mK. There seems to have two different set of peaks

appearing. One at lower field and the second at higher fields. However, the

behaviour of these peaks is not the same at different temperatures. It seems

there are more than one path through which carrier can move; however, the

carrier density obtain by SdH oscillations and Hall voltage slope is the same

which contradicts this idea.

In chapter 6, GeO2 was thermally grown on epitaxial Ge-on-Si(100)

substrates. TEM images show good quality GeO2 layers, with a smooth Ge-

GeO2 interface. The CV characteristics do not show frequency dispersion and

the hysteresis was not significant, indicating a lower carrier concentration and

lower interface trap density. The XPS study shows the presence of GeO2 in

all samples as well the presence of sub-oxides, GeOx. The presence of these

sub-oxides do not seem to change the layer quality. It was also possible to
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observe the desorption of GeO after annealing the sample. With this simple

process it was possible to obtain devices with characteristics comparable with

early works.

In summary, this investigation has demonstrated many interesting fea-

tures of hole transport in germanium devices and how this is affected by the

sample and device processing. It has shown that strained Ge is an excit-

ing material for future device applications and that further work in this field

would be justified. In each section there have been new discoveries and yet

also unanswered questions that could be used to guide a future project in this

area.
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