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ABSTRACT

The manufacture of carbonates and carbamates is essential due to their wide

range of applications from polymers in foams, elastomers and engineering

plastics to agrochemicals. Since there is a high demand for both types of

compound, there is a commercial justification for use of phosgene in their

synthesis. However, phosgene is highly toxic in small quantities. The

development of an alternative reagent is therefore most desirable.

This thesis relates our attempts to overcome the problem of phosgene use by

utilising C02. Chapter One highlights previous research concerning the synthesis

of carbonates and their derivatives from CO2. Chapter Two details the

development of the reaction of CO2 to form methanesulfonyl carbonates

(RO(CO)OS02Me) and carbamates (R2N(CO)OS02Me),which are precursors of

carbonates and carbamates respectively. Alcohols or amines are reacted with

CO2 at atmospheric pressure in acetonitrile to generate carbonate and carbamate

anions in situ. Reaction with methanesulfonic anhydride leads to the

methanesulfonyl carbonates and carbamates which are observed

spectroscopically but are not isolable. Chapter Three explains the successful

conversion of methanesulfonyl carbonates and carbamates to carbonates and

carbamates, as well as testing the scope of the reaction. Chapter Four

demonstrates the transfer of the synthetic methodology to multifunctional

compounds to generate dendritic carbamates and highlights the various

approaches used to achieve this goal. Chapter Five is the experimental section.

viii
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CHAPTER 1 - INTRODUCTION

1.1 Introduction

Carbonate esters and carbamate esters (trivially known as urethanes) have proven to

be useful functional groups both in small molecules and in macromolecules. 1,2

Carbonate Carbamate

Figure 1.1: Carbonate and carbamate

Carbonates and carbamates are the esters of carbonic and carbamic acid (R = R'= R"

= H) respectively (figure 1.1). Both acids decompose in the presence of a catalytic

amount of water to carbon dioxide, accompanied by water in the case of carbonic acid

3 and ammonia in the case of carbamic acid. Thus, these functional groups are most

commonly seen in the form of the esters mentioned above or as salts of the acids.

The monoesters of the acids are formed by the reaction of an alcohol or an amine with

carbon dioxide, but both of these decompose spontaneously like the parent acids. One

exception is a report of the isolation of dibenzyl carbamic acid. 4

The diesters are normally referred to as the respective carbonate or carbamate. They

are more prone to hydrolysis and saponification than esters'" or amides, but will

undergo analogous reactions to these compounds. Due to the nature of the synthesis

of carbonates and carbamates within molecules, which involves hazardous or

expensive reagents, their occurrence is much less common than that of esters and

amides.

1



1.2 Carbonate and Urethane Synthesis

As can be noted from the structure of carbonates and carbamates, they are derived

from alcohols and amines respectively. Virtually all laboratory reagents used to effect

the transformation to carbamate or carbonate esters are derived from toxic phosgene

(figure 1.2):b,5 Furthermore, in the case of triphosgene, two moles of phosgene are

produced in the process, so even more care is required (scheme 1.1). 6 A versatile use

of 1,1'-carbonyl diimidazole (COl). was demonstrated by Rannard and Davis." By

reacting primary, secondary and tertiary alcohols with COl, they generated imidazole

carboxylic esters which are chloroformate analogues. Depending which alcohol the

esters were derived from, they could selectively react with diols, triols and aminodiols

at specific sites without protection. The same researchers applied this methodology to

the synthesis of carbonates, carbamates and amides.

The introduction of carbamates is usually via isocyanates (by reaction with alcohols),

chloroformates or dicarbonates (by reaction with amines). Isocyanates can only form

secondary carbamate esters. 2

Phosgene

o
Cl Jl_ Cl
CI7-- 0/ O-<-CI
Cl Cl

Triphosgene

o
("~N/;"'-I
NccJ "cc-N

Carbonyl Diimidazole

o
)l

MeO OMe

Di-I-butyl Dicarbonate Benzyl chloroformate Dimethyl Carbonate

R-N-CO
o

R
2
N)lCI

Carbamoyl ChlorideDiphenyl Carbonate Isocyanate

Figure 1.2: Commercial carboxylating reagents and phosgene substitutes
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Cl Yt.: (Cl
CI-:r-O iO~(CI
Cl/Cl

ROH

-HCI o
CL. )1
Cl) 00 R
Cl

+

o
)J, +

RO XR'

o
Jl.

CI/ 'Cl

Scheme 1.1:The reaction of triphosgene

On the industrial scale, phosgene itself is used more than 80% of the time for the

synthesis of carbonates, dimethyl carbonate is used for the other 20%.8 Due to the

extremely toxic nature of phosgene and isocyanates (synthesised in situ from

phosgene), its use is hazardous to workers and populace alike. For example methyl

isocyanate leaked by Union Carbide killed 8000 people in Bhopal, India 9 and

phosgene use in World War I prompted the abolition of chemical weapons under the

Geneva Protocol." Thus the replacement of phosgene is a highly desirable goal.

Alternative carbonylation technology, using carbon monoxide in place of phosgene, is

applicable only to symmetrical carbonates, mainly dimethyl carbonate.!" However,

carbon monoxide is toxic as well as flammable.

While alicyclic carbonates originate from phosgene, or, (in the case of dimethyl

carbonate) carbon monoxide, cyclic carbonates can be synthesised by reaction of

epoxides with carbon dioxide in the presence of a catalyst." This last instance is most

commonly used on an industrial scale.

The carbonate functionality is seen most commonly in high impact resistance

polymers based on bisphenol A or as a diethylene glycol diallyl dicarbonate unit for

lens, compact disc and toughened glass applicarions.v'? In this case, phosgene use

3



can be moderated by first reacting it with phenol to form diphenyl carbonate which is

used in the actual polymerisation (scheme 1.2).

HO-o--t-O-OH
Bisphenol A

+ O-OH
Polycarbonate

Scheme 1.2: Synthesis of polycarbonate

1.3 Applications of Carbonates and Derivatives

Carbamate esters are familiar in organic synthesis as protecting groups in peptide':' or

natural product synthesis'", or as agrochemicals such as pesticides and herbicides. IS

The most commonly used are t-butyl carbamate (Boc) and benzyl carbamate (Cbz or

Z) esters, introduced using di-t-butyl dicarbonate and benzyl chloroformate

respectively (scheme 1.3).

+ RR'NH

o
-1-0)lNRR'

00J(CI + RR'NH 00)~NRR'
Scheme 1.3: (Top) Introduction of the Boc group. (Bottom) Introduction of the CBz

group

4



Carbamate esters are also found in polyurethane polymers where they are useful as

foams and coatings, the monomers being diols and diisocyanates such as toluene

diisocyanate." Trace water is used as a foaming agent due to carbon dioxide being

generated on the reaction of water with isocyanates.

Organic carbonates are used less frequently than carbamates in natural product

synthesis; again the main use is as a protecting group.l" Dimethyl carbonate and

higher homologues can be used as chloroformate equivalents'" or as synthons for

esters when reacted with carbanions.

Carbonates are most commonly used within polymers. I As mentioned above,

polycarbonate (Lexan®) is synthesised via diphenyl carbonate. These type of

polymers are used as engineering resins for CDs and DVDs Ib and where high

abrasion resistance is required, lightweight protective helmets being another example.

A bio-degradable polycarbonate derived from 1,4 -pentanediol is routinely used in

medicine as temporary sutures which dissolve after a given time period."

Simple carbonates are frequently found as fuel additives and stable, high boiling point

solvents.I•12 Despite all the uses, the large majority of carbonates still are made from

phosgene and this has prompted the search for alternative synthetic routes.

1.4 Synthesis of Carbonate Derivatives using CO2

1.4.1 Introduction

Only in the last 20 years has carbon dioxide received serious attention as a carbonyl

source, the main impetus being the need to eliminate the use of dangerous chemicals

such as phosgene. Carbon dioxide is a carbonyl electrophile, albeit a poor one, and is

relatively non-toxic, easy to handle and cheap.l" Replacing a very toxic reagent such

as phosgene is an important advance but utilising a greenhouse gas 19 meets two ends.

5



This idea is not new as the reaction between amines and carbon dioxide has been

known for some time. Even in 1911 ammonium carbamate salts were made by

bubbling carbon dioxide through primary amine solutions.i" The reaction of alcohols

with carbon dioxide is not as widespread because of their lower nucleophilicity.

However, carbon dioxide is a thermodynamically stable end product of many

processes, such as fermentation, respiration, and combustion and, as such, special

techniques or reactive species need to be used to incorporate the carbonyl unit into

products, typically carbonates, carbamates and their derivatives.

1.4.2 Reaction with Epoxides

+

R
Scheme 1.4: Polymerisation of C02 with epoxides

As mentioned in Section 1.2, cyclic carbonates can be synthesised by reaction of

epoxides with carbon dioxide in the presence of a catalyst. This reaction is used on an

industrial scale. The other possible reaction of CO2 with epoxides is formation of

carbonate co-polymers, although this has only been in the research lab at high

pressure (scheme 1.4).11.21

1.4.3 Reaction of CO2 via Ammonia

Ball made symmetrical alkyl carbonatesf and polymers using harsh conditions. Urea

reacts with alcohol at 150 -200°C, the most efficient reagents being Ph3P and DIBAL,

liberating two equivalents of ammonia which can be envisaged to recombine with

6



carbon dioxide to make urea again (scheme 1.5). Such conditions are unlikely to

tolerate other functional groups.

0 DIBAL 0

)l RO)lOR2ROH + • + 2NH3
H2N NH2 Ph3P

-.
cO2 + 2NH3

Scheme 1.5: Carbonate synthesis via urea

1.4.4 Use of Catalysts to make Dimethyl Carbonate

OMe

Me-f-OMe

OMe

o

~
MeO OMecat. BU2Sn(OMeh

Scheme 1.6: Formation of DMC from orthoesters

Attempts to catalyse the formation of dialkyl carbonates from the corresponding

alcohol and carbon dioxide have been most successful using tin-based catalysts, such

as BU2Sn(OMeh, but the by-product, water, deactivates the catalyst. Also, the high

pressures (25-66 atm) involved prevent this procedure being used in most

laboratories.23.24 Japanese workers have used dehydrated methanol derivatives (e.g.

trimethyl orthoesters, dimethyl ether) with the same catalyst to successfully yield

dimethyl carbonate+' (70%) (scheme 1.6) but the pressure (300 atm) puts this route

mainly into the industrial domain. The group of Vahrenkamp used a carbonic

anhydrase mimic based on zinc and tested its catalytic activity. Diethyl carbonate was

7



made from ethanol and supercritical carbon dioxide in 1% yield (scheme 1.7).26 This

work was primarily aimed at mimicking the enzyme rather than being a serious

attempt at phosgene replacement.

ScC02

NaOEt
EtOH + cat.

Scheme 1.7: Zinc Tris(pyrazolyl)borate catalyst as a carbonic anhydrase mimic

1.4.5 Use of Phosphines in Synthesis using C02

The first example of a synthesis of carbonates using alcohols and carbon dioxide was

reported by Hoffman", who transferred the Mitsunobu reagents Ph3P and DEADC

from esterifications to carbonation without elevated pressure (scheme 1.8 (iii». This

was led to the first example of a synthesis with no special conditions that made

carbonates, albeit only symmetrical ones, in good yield from carbon dioxide and an

alcohol.

8



ii) RNH2 R-N=C=O

iii) 2ROH

Scheme 1.8: Use ofphosphines with CO2; i) Oxazolidinones by Kodaka; ii)

Isocyanates by Jackson; iii) Symmetrical carbonates by Hoffman

Another group adopted this approach using phosphine reagents in conjunction with

carbon dioxide in a new method for the synthesis of oxazolidones (cyclic urethanes)

from amino alcohols, either with DEADC or CCl4 as co-reagents (scheme 1.8(i».28

Other researchers have made isocyanates from primary amines (scheme 1.8 (ii»29 and

symmetrical dialkyl carbonates using Ph3P, CBr4 and pentaalkyl guanidines.Y This

last method is even less atom economic than the Hoffman route, uses DMF, which is

less convenient to work up, and does not develop the reaction any further. None of

the above examples are useful for unsymmetrical carbonate or tertiary carbamate

synthesis.

9



1.4.6 Use of Multiple Bonds as "Handles" for CO2 as a Reagent

Other methods use alkynes as a "handle" to drive the reaction. Dixneuf and Bruneau

used propargylic alcohols with a catalytic amount of Ph3P to synthesise a-methylenic

cyclic carbonates (scheme 1.9)_Jl This method is unsuitable for saturated alcohols as

the alkyne group is required as a "handle".

Scheme l.9 :Use of a triphenyl phosphine catalyst with carbon dioxide

Acetylene itself can be used to generate vinyl carbamates, requiring the use of RuCh

to catalyse the reaction with carbon dioxide and secondary amines." Another method

uses acetylene, an alcohol, a tertiary amine and carbon dioxide at ca. 49 atmospheres.

(scheme l.lD)?3 Symmetrical carbonates were produced as well as carbamate by-

products. If the alcohol substituent was different to the amine substituents, that is R -

R', mixtures of carbonates and carbamates were formed. So there was no selectivity

or control. Furthermore, these methods do not further the search for a general

carbamate synthesis.

McGhee and co-workers used palladium as an activator for nucleophilic attack of

carbamate anions at 5-7 atmospheres on dienes'" and subsequently allylic chlorides

(scheme 1.11).35 The alkenes were coordinated to the metal, which made them

relatively more electrophilic and gave the unsaturated urethanes.

10



-
R'OCOz

HC-CH

~ [R'OCO,- R,N-CH=CHZ

[ RzN-CH=CH, I~
~

R2NH + polymers

Scheme 1.10: Acetylene promoted formation of carbonates

+
1) R'RNC02 R3NH

2) H2 or NaBa.

R'RNC02

Scheme 1.11: Palladium activated carbamate synthesis
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1.4.7 Use of CO2 with "Dehydrating", Halogenating and Sulfonating Reagents

RNCO

- +
RNHC02 EI3NH + EI3N

Electrobydrolysis

Heat

Scheme 1.12: o-Benzosulfonic anhydride as "dehydrating" reagent in isocyanate

synthesis

A "waste-free" process to make isocyanates was envisaged by the same workers from

Monsanto by using o-benzosulfonic anhydride, with acids and bases regenerating

reagents which were in tum reformed by electrolysis (scheme 1.12).36

Benzenesulfonic anhydride was also mentioned in passing as a dehydrating reagent,

but no examples or experimental details were given.

.... RN=C=O

Scheme 1.13: Isocyanate synthesis from primary amines and CO2

12



Another method of isocyanate formation by Monsanto was to use "dehydrating"

agents such as SOClz or POCh with carboxylated primary amines (scheme 1.13).

-

Scheme 1.14: Carbamoyl chloride synthesis from CO2

If secondary amines were used instead, the carbamoyl chloride was produced (scheme

I.14)_38 The advantage of the reaction, as compared with previous carbamate

syntheses using carbon dioxide, was that the gas could be bubbled through the

solution rather than added using elevated pressure. This new reaction did not require

any special equipment such as an autoclave and circumvented the need for using

phosgene, which previously was the only way to make these type of compounds. The

best yields were when toluene was the solvent, DBU (pKa 12-13) or guanidine bases

(pKa 13-16) were used.39 However, (comparing the GC results) there was a dramatic

drop in yield ( > 30%) on isolation of the product and a stoichiometric amount of

pyridine was necessary, the reason why not being convincingly explained. Another

group used this reaction to make isotopically labelled carbamoyl chlorides using

14C02but yields were no better than 35%.40

Very recently Casadei and co-workers applied the chemistry of an electrogenerated

base, to synthesise oxazolidinones (cyclic urethanes)." Intramolecular reaction takes

place between the hydroxy group and in situ generated toluenesulfonyl carbamate

(scheme 1.15). There have been previously published oxazolidinone syntheses from

carbon dioxide and phosphines" (see section 1.4.5) which are superior and do not

need specialist electrochemical apparatus. Results shown here later will demonstrate

13



that use of p-toluenesulfonyl chloride does not translate to synthesis of acyclic

carbamates or carbonates, but dicarbonates, which verifies the work of Rosnati.f By

adding one equivalent of p-toluenesulfonyl chloride to two equivalents of sodium

ethylcarbonate, diethyl dicarbonate was made, ethyl toluene sulfonyl carbonate being

suggested as an unisolated intermediate. Acyl chlorides and thionyl chloride gave no

dicarbonate.

+ (yO ° °H2)-_r Et4N rOTS HNAO• HN OH •
CO2; TsCI J--l J--lR

R R

Scheme 1.15: Synthesis of oxazolidinones using electrogenerated base

A novel amine protecting group using carbon dioxide has been developed by workers

at the University of California. The carbamate anion was trapped at -78°C with

triisopropylsilyl triflate (TIPSOTt), giving the triisopropylsilyloxycarbonyl (Tsoc)

group (figure 1.3).43 The functional group is stable to trifluoroacetic acid (TFA),

hydrogen over Pd/C and morpholine, typical reagents for cleavage of carbamate

protecting groups. Deprotection to regenerate the amine was carried out using

tetrabutylammonium fluoride.

Figure 1.3: Tsoc protecting group
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1.4.8 Alkylations of Anions Generated Using CO2

1.4.8.1 Introduction

The majority of other carbonate forming reactions have been variations on the theme

of alkylating the carbonate anion with an alkyl halide or an epoxide, whether the

reactions were intermolecular or intramolecular. The carbamate or carbonate anion is

made more nucleophilic by use of strong, delocalisable bases which can enhance the

nucleophilicity of the charged oxygen atom (vs. the nitrogen atom in the case of

carbamates), phase transfer catalysts and dipolar aprotic solvents such as DMF,

acetonitrile and N-methylpyrrolidone, which solvate the cation more effectively and

"free-up" the anion.

1.4.8.2 Alkylation of Carbonate Salts

Metal carbonate salts can also be used as a source of the carbonyl group. Under

normal conditions, the carbonate anion is not very nucleophilic. Lissel and Dehmlow

successfully used K2C03 to make symmetrical carbonates in good yields with the aid

of a catalytic amount of KHC03, primary alkyl bromides and a ten-fold excess of

methyl tri-n-octyl ammonium chloride in toluene (figure 1.4).44 Alkyl chlorides were

not tested and attempts at preparing unsymmetrical carbonates gave low yields of

mixed carbonates.

A similar method using tin catalysts and K2C03 was effective only in DMF. One

example using acetonitrile was reported, but only with a co-catalyst 18-crown-6 and

using 1,2-dibromoethane as the substrate to give ethylene carbonare." Researchers at

General Electric improved this approach however, by managing to synthesise

symmetrical carbonates in good yield above 100 °C.46 They used both primary

bromides and chlorides with tetrabutylammonium bromide and KHC03 in
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dimethylacetamide. Use of two different alkyl halides gave mixtures of products.

Using activated aryl halides led only to ethers due to decarboxylation of the

intermediate aryl carbonate ions.

Whilst trying to alkylate secondary amines with alkyl bromides under phase transfer

catalysed conditions Sanchez and co-workers discovered that there was a small

amount of carbamate by-product.V Increasing the amount of tetrabutylammonium

hydrogensulfate catalyst from 5% to 80% in the presence of K2C03 reversed this

result to yield the carbamate as the major product with no added carbon dioxide. The

proposed mechanism is that the dialky1carbonate forms first due to excess alkyl

bromide, followed by substitution of the alcohol by the amine. Surprisingly, using a

polar solvent such as acetonitrile favoured the N-alkylation product and n-heptane was

the solvent of choice.

AQUEOUS

Figure 1.4: Carbonate synthesis by phase transfer catalysis

Similarly, during attempted tertiary amine synthesis from secondary amines and

potassium carbonate as a base, carbamates were observed as by-products in up to 40%
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yield." The proposed explanation was that alkylation of secondary amines occurred

first, assisted by potassium carbonate. The carbon dioxide generated then reacted

with unreacted secondary amine to form the carbamate anion which was itself

alkylated (scheme 1.16). Bubbling carbon dioxide into the reaction mixture increased

yields of carbamates by 20%. Change of base to caesium carbonate increased this

further, typically up to 70-96% and decreased tertiary amine yield to between 0-3%.

Change of solvent from DMF gave no carbamate products.

+ 1/2 CO2

Scheme 1.16: Carbamate synthesis promoted by caesium carbonate

1.4.8.3 Metal Alkoxides as Nucleophiles, Alkyl Halides and Epoxides as

Electrophiles

Alcohols do not react appreciably with carbon dioxide due to their low basicity and

there is no isocyanate analogue as oxygen is not capable of isolable trivalent states, so

slightly different methods have been devised to make carbonates from carbon dioxide.

Most involve metal alkoxides, which are generated from an alcohol and strong base

such as BuLi, rather than alcohols themselves reacting with carbon dioxide, forming
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the metal hemicarbonate. Subsequently the compound is alkylated with an alkyl

halide. The larger the cation, the better the yield, for example the silver (I) cation is

better than the lithium cation." Examples include use of allylic or homoallylic

alcohols that undergo iodocarbonation (analogous to iodolactonisation). The alcohol

is carbonated, the double bond reacts with iodine and the carbonate anion cyclises to

form the iodocarbonate (scheme 1.17).50 The principle is the same for epoxy alcohols,

which after carbonation, cyclise to hydroxycarbonates."

R

I

R
R' R'

Scheme 1.17: lodocarbonation

1.4.8.4 Alkylation Using High Pressure

+-----II... [ R2NH2 I [R2NC02

Scheme 1.18: Ammonium carbamate formation

On reaction of carbon dioxide with primary or secondary amines, an alkyl ammonium

carbamate salt forms (scheme 1.18).20 The carbamate salt can then be used as a

nuc1eophile with alkyl halides to form urethanes in low yield, as alkylation of the

nitrogen atom is the main reaction, with carbon dioxide being evolved. Whether

alkylation occurs as a result of the ambident nature of the carbamate anion or whether
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it is due to uncarboxylated amine reacting directly with the alkyl halide is not known

(scheme 1.19).52

o
r>:..)l-~

Hal-RI R2N 0 RI-Hal

Scheme 1.19: Amine vs. carbamate formation

Improvements can be made by using higher pressure to force the equilibrium to the

right, hence reducing the amount of starting material. More extensive work has been

done using carbamate salts, the reaction of carbonate anions being less

widespread.55,S5 The formation of carbamate esters by alkylation was initially

improved by using high pressure (in excess of 40 atm).53 These reactions are

restricted to autoclaves and give low yields, unless alkyl bromides are used, in which

case the upper limit on the yield is in the region of 40%, moving up to around 50%

specifically for secondary amines reacting with secondary alkyl bromidesr'"

A superior series of methods for alkylation of carbamate anions was developed when

McGhee and co-workers at Monsanto turned their attention to the synthesis of

urethanes. They developed the methodology so palladium was no longer needed and

instead strong, bulky guanidine bases were used to drive pressurised carbon dioxide

reactions (5-10 atm) to form carbamate and carbonate anions from the respective

alcohol or amine, which were alkylated in high yield (scheme 1.20).52,55However, the
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methodology did not extend to tertiary alkyl or aromatic alcohols or the analogous

halides, that is any molecule that would not normally react via an SN2 mechanism.

Also, pentaalkylguanidine bases are not commercially available but have to be

synthesised (usually from phosgene or other oxychloride halogenating agents) and the

range of alkyl halides available is less than that of alcohols. Amidine and tertiary

amine bases caused more than a 25% drop in yield. Generally, however, the yields

were very good and the process efficient.

CyTMG

~-
RX 0

R'Hal o

RX)lOR'RXH + co, -
Scheme 1.20: Alkylation of anions using alkyl halides; X = 0, NR

1.4.8.5 Cation Complexation to Enhance Carbamate Anion Nucleophilicity

The usual products of the reaction between a carbamate salt and an alkyl halide are N-

alkylated tertiary amines or quaternary ammonium salts,56 accompanied by evolution

of carbon dioxide. Regardless of the cation, attempts to form carbamate esters have

involved complexing the counterion. The reasoning behind this is to reduce the ion-

pairing between ions by lowering cationic charge density. The relative

nucleophilicity of a "naked" carbamate ion increases. Belforte and Calderazzo first

demonstrated the approach of preforming alkali metal carbamates (Et2NC02M, M =

Na, K), followed by complexation of the metal cation with crown ethers or

cryptands.57 This reversed the selectivity of metal carbamates reacting with methyl

iodide, so that carbamates were the major product instead of tertiary amines or

ammonium salts. Transfer of the carbamate group was similarly accomplished very

soon afterwards by Aresta and Quaranta. Carboxylation of aminophosphines and then
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reaction of phosphocarbamate products with alkyl halides in the presence of KF and

crown ethers gave carbamates (scheme 1.21).58 No other metal halides proved useful.

In the same vein, a few years later, the same researchers used crown ethers to complex

primary alkylammonium carbamates which were formed by bubbling carbon dioxide

into a solution of a primary amine with a stoichiometric amount of crown ether.56

Further reaction of the carbamate-crown ether complex yielded the alkyl carbamate.

The disadvantages are that expensive crown ethers are required, in stoichiometric

quantities, the processes are not atom-economic and aminophosphines are difficult to

synthesise.

R'X
---- ....~~ R2NC(O)OR'

Scheme 1.21: Phosphocarbamates as intermediates to carbamates

1.4.8.6 Electrochemical Activation of C02

Scheme 1.22: Use of electrolysis in cyclic carbonate synthesis

The groups of Casadei and Inesi in collaboration have used a different approach to

carbonate synthesis. Instead of using high pressure, complexing or phase-transfer

agents, carbon dioxide is electrochemically activated with oxygen simultaneously

bubbling into the reaction. Reaction of the anion can occur with either ethyl iodide to

yield the carbonate," or an intramolecular reaction takes place with ~-halo or ~-
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sulfonate alcohols, to give the cyclic carbonate (scheme 1.22).60 GC yields of acyclic

carbonates were more than 30% lower than cyclic carbonates (80-90%). This is not

unsurprising for an intermolecular vs. an intramolecular reaction. The same groups

further developed the reaction by electrochemically generating the base (2-

pyrrolidone) instead of activating carbon dioxide. Again, ethyl iodide was the

alkylating reagent." Yields were extremely variable and the reaction very non-

specific for dials giving three carbonate products, monosubstituted, di-substituted and

cyclic, as well as starting material. Aromatic or tertiary alkyl carbonates were not

accessible (scheme 1.23; R = alkyl). Further development used amines converted to

carbamate anions which were then alkylated with ethyl iodide.62• 63 Though

interesting, none of this work really improved on the work of McGhee's group as

yields were generally worse, the approach was the same (alkylation of the anion) and

the method does not seem appropriate for scale-up as electrochemistry is expensive.

~-++H
OH OH

l~
+ +

Scheme 1.23: Electrochemical synthesis using CO2
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1.5 Further Developments

The direct synthesis of unsymmetrical acyclic organic carbonates from alcohols and

carbon dioxide has not been reported to our knowledge and neither have aromatic

carbonates in any form. This would be most advantageous as it would allow

replacement of phosgene whilst retaining the versatility of its reactions; two different

alcohols could be used to make unsymmetrical carbonates. Furthermore, urethanes

could be made by starting with an alcohol and adapting the said method to use an

amine instead of a second alcohol.

As yet, reactions using carbon dioxide have not moved away from the use of alkyl

halides, toxic halogenating reagents or isocyanates. Furthermore, very little general

utility has been demonstrated, all examples have been restricted to alkyl carbonates

and carbamates in various guises.

A further gap in the ensemble of routes to carbonates from carbon dioxide is that

phenols can not be incorporated. Variations have only been based on longer alkyl

chains with benzene rings located remotely at the terminus, using CS2C03•64 This

latter approach was also used on solid phases.

At the moment, the most general and reproducible routes for carbonate and urethane

formation are based on reagents originating from phosgene such as isocyanates,

chloroformates or carbamoyl chlorides. These latter intermediates all have a good

leaving group adjacent to the carbonyl group. Obvious substitutes for halogen leaving

groups are sulfonates, which would be expected to react in a similar fashion to

produce carbonate derivatives.

23



Carboxylic-Sulfonic Anhydride Carbonic/Carbamic Sulfonic Anhydride

Figure 1.5: Acyl and alkoxycarbonyl sulfonates; R = Alkyl, aryl; R' = alkyl, aryl; X =

O,NR"

Th f . d b Ii 1&' 65-68 boni 1&' 68-70 barnie occurrence 0 rmxe car oxy IC-SU rome, car oruc-su rome or car armc

sulfonic anhydrides (figure 1.5),71 where a sulfonate group is adjacent to a carbonyl

group, is sparse. The reason for this may be due to no synthetic advantage being

gained in their formation compared to the precursors that have been used to make

them. These would be carboxylic acid derivatives in the former case, chloroformates

or isocyanates in the latter. The mixed anhydrides would give the same products on

reaction with nucleophiles as acid chlorides, chlorofonnates or isocyanates.

Excluding rearrangements, chloroformates and isocyanates have been the only

reagents used to make carbonic or carbamic sulfonic mixed anhydrides of any type

thus far.
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CHAPTER 2· SYNTHETIC METHODOLOGY FOR THE

PREPARATION OF SULFONYL CARBONATE DERIVATIVES

2.1 Synthesis of Diethyl Carbamoyl Chloride Using the Monsanto Procedure

2.1.1 Introduction

soci,

Scheme 2.1: Carbamoyl chloride synthesis by Monsanto

This project arose from our group's programme in synthesis of dendritic

polycarbonates and polycarbamates. To synthesise carbamates, it was decided to

initially follow the Monsanto synthesis of carbamoyl chlorides from amines,

carbon dioxide and thionyl chloride (scheme 2.1).38 The procedure seemed to be

reproducible, simple and only required carbon dioxide to be bubbled into the

reaction rather than specialised pressure equipment. Instead of using penta-alkyl

guanidines, which have to be made using a non-trivial synthesis, we proposed to

use commercially available DBU. Guanidine and amidine bases are strong, and

on protonation form delocalisable cations, which form weak ion pairs and so

enhance nuc1eophilicity of the anion. Even though bases such as triethylamine

are of comparable strength and sterically hindered, this latter attribute does not

seem to be a dominant contributing factor to the reaction.

The reaction could be followed as initially the solution is clear and, as carbon

dioxide is bubbled in, becomes more turbid. This is in agreement with reports of

carbamate salts with triethylammonium'" or guanidinium cations." In dipolar
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aprotic solvents, the ammonium salts are insoluble and the guanidinium salt

completely soluble, so the amidinium salt would be expected to be somewhere in

between.

2.1.2 Results and Discussion

Using diethylamine, the Monsanto procedure was followed but isolation of the

carbamoyl chloride proved difficult as at the end of the reaction as thick tars

were recovered. Work up had to be carried out quickly to prevent hydrolysis of

carbamoyl chloride product, which was troublesome if unreacted thionyl chloride

had to be neutralised. Thus, to isolate the crude product by vacuum distillation

the reaction had to be done on a multi-gram scale and yields were low. This was

also in line with findings by another group using secondary amines, achieving

maximum yields of 35%.40

Instead of isolating the carbamoyl chloride, it was decided to react the compound

in situ with an alcohol. Since dendrimer synthesis was a goal, phenol was used

as a model for the proposed branched monomer, 4,4 - bis (4'-hydroxyphenyl)

valeric acid (BPVA) (figure 2.1). This monomer had been previously used in

dendritic ester construction.P

HO

OH

o
OH

Figure 2.1: ,4,4 - Bis (4'-hydroxyphenyl) valeric acid (BPVA)
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On initial formation of diethyl carbamoyl chloride, addition of phenol and an

equivalent amount of pyridine gave phenyl N,N-diethyl carbamate 1, isolated in

20% yield. As a comparison, reaction of phenol with diethyl carbamoyl chloride

purchased from Aldrich yielded the urethane in 61% yield, identical to the

product using carbon dioxide. This would mean that formation of die thyI

carbamoyl chloride from diethylamine occurs in approximately 33% yield.

2.2 Triftuoromethanesulfonyl Carbonates and Carbamates as Synthetic

Targets

2.2.1 Introduction

ROH + CO2

DBU
0

X • ]
-:

Ra Cl
SOCl2/

Scheme 2.2: Transfer of carbamoyl chloride methodology to alcohols

A number of factors arising from experimental observation prompted the search

for a milder procedure for carbamate and carbonate synthesis; thionyl chloride is

volatile, unpleasant to handle and produces sulfur dioxide when it reacts;

commercial diethyl carbamoyl chloride could not be selectively reacted with

BPVA to form the dicarbamate; earlier work in the group concerned with
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applying the Monsanto carbamoyl chloride synthesis to synthesise

chloroformates from alcohols had been shown not to work, as dialkyl sulfites

were the only products (scheme 2.2).73 These products arise probably due to

thionyl chloride reacting only with alcohol and not the carbonate anion. Once

the chlorosulfite ester has been formed, a second alcohol can displace a chloride

ion adjacent to the sulphur-oxygen bond, giving rise to a dialkyl sulfite.

°
-S02 \ A

-------II ..~ N Cl

-Cl __/

Scheme 2.3: Mechanism of the Monsanto carbamoyl chloride synthesis

The patented Monsanto method38 involves a rearrangement of the initially

formed chlorosulfite ester (similar to alkyl chloride synthesis from alchohols), to

the carbamoyl chloride with loss of sulfur dioxide and a chloride ion (scheme

2.3).

\ I) CO2, DBU
NH

__) 2)SOQ2
NaH

l:R=H
2:R=OH

Scheme 2.4: Urea formation using the Monsanto carbamoyl chloride synthesis
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Concurrent work had shown that this method was incompatible with

functionalised amines, such as diethanolamine (scheme 2.4).73 Whether this was

due to the steric crowding of the amine or harshness of thionyl chloride

decomposing the molecule was not known; there was also an indication of

tetraethyl urea by-product arising from the reaction of unreacted diethyl amine

with diethylcarbamoyl chloride. The evidence for this was a deshielded carbonyl

signal around 165 ppm in a 13CNMR spectrum and a parent ion at 172 in mass

spectroscopic data.

So, we decided to use an alternative strategy using carbon dioxide. A milder

reaction procedure was required that complemented both amines' and alcohols'

reaction with carbon dioxide to make carbonates as well as urethanes. The

intention was to eventually apply the reaction to dendrimer synthesis using

commercial polyfunctional molecules, not any containing halides as they would

probably have to be synthesised and are not very versatile. Alkylation was an

option if no other methods were developed, but a change of monomer would be

required that contained functional groups that would not interfere with the

alkylation, which ruled out aryl halides.

Cl

o

)l
Et2N OS02CF3

4
Scheme 2.5: Chlorosulfite rearrangement (Bottom) Sulfonation of a carbamate

-TfO

anion
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It was envisaged that conversion of the charged oxygen atom, in a carbamate or

carbonate ion, to a triflate group would be easier than introducing a chlorine

atom into the molecule via a rearrangement, as the carbamate oxygen atom

would immediately be incorporated into the leaving group via an SN2 reaction

(scheme 2.5). Also, a suitably reactive precursor to a carbamate ester (analogous

to carbamoyl chlorides) would be formed.

We decided to change the solvent used in the Monsanto procedure from toluene

to acetonitrile, which was expected to be superior for SN2 reactions due to good

cation and poor anion solvation, as well as being easier to remove.

Due to the lower nudeophilicity of alcohols as compared with amines, it was

anticipated that bubbling carbon dioxide through the reaction mixture would not

be sufficient, as most examples of carboxylation at ambient pressure have to use

metal alkoxides.i" 49

2.2.2 Results and Discussion

DBU

PrOH + CO2

3.5 bar

Scheme 2.6: Attempted synthesis of n-propyl triflyl carbonate

The first experiment was carried out in a pressure vessel under 3.5 bar carbon

dioxide pressure with DBU in acetonitrile. n-Propanol was chosen as a test

alcohol as dipropyl carbonate has a sufficiently high boiling point ( 167°C) so

as not to be removed with solvent in vacuo, but any unreacted n-propanol would
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easily be removed. After being pressurised with carbon dioxide, the reaction was

cooled before addition of triflic anhydride (scheme 2.6). Initially it was thought

that the product was propyl triflyl carbonate 2 as there were three proton NMR

signals indicative of a propyl group, the most deshielded triplet at b 4.23

suggesting a very electron poor environment. Also four carbon NMR signals

supported these conclusions as three were identical to propyl signals and there

was a carbonyl signal (148 ppm), suggesting carboxylation had actually

occurred. 19F NMR and mass spectroscopy failed to confirm this inference.

Comparison with authentic dipropyl carbonate also ruled this compound out. It

took several experiments to discover what compound had been made (see section

2.3.2).

After this initial failure it was decided to switch to using amines, since they could

be reacted by bubbling carbon dioxide into the reaction. Triflic anhydride was

used in place of thionyl chloride and the Monsanto procedure for formation of

carbamoyl chloride was followed, except at lower temperature ( -40°C internal

temperature using MeCN cold bath ) to account for the greater reactivity of the

sulfonating reagent. Subsequent in situ reaction with phenol at the same

temperature gave phenyl N,N-diethyl carbamate ester 1 in 35% yield on isolation

(scheme 2.7). The spectra of the product matched those from an authentic

sample synthesised from diethyl carbamoyl chloride.

DBU PhOH ~-~.~
Et2N OPh

I4

Scheme 2.7: Synthesis of phenyl N,N-diethyl carbamate from CO2
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Based on this successful experiment, several other amines were reacted using the

same conditions, isolation of half of the intermediate was attempted and phenol

was reacted with the other half. None gave analogous carbamate esters as judged

from the absence of aromatic signals.

Attempted isolation of the intermediate triflyl carbamates from these reactions at

first hinted at success. In long relaxation time 13CNMR experiments, two types

of carbonyl signal were seen, around 165 and 150 ppm; the latter is in the right

region for a sulfonyl carbamate. Also present was a quartet at 119 ppm

indicative of a trifluoromethyl group. However, triflyl carbamates should be at

least as reactive as carbamoyl chlorides, but synthesis of carbamates was

unsuccessful for all amines except diethyl amine.

The reaction using dibutyl amine showed the same signals at 166 and 119 ppm,

suggesting a carbonyl group and CF3 moiety respectively, but the carbonyl signal

at 150 ppm was missing. This suggests that the signal at 150 ppm and CF3 signal

are not connected as first thought, in fact they are not even in the same molecule.

This hypothesis was confirmed when analysing mass spectra of the reaction

involving diethyl amine, carbon dioxide and triflic anhydride. No parent ion was

present for either diethyl triflamide or N,N-diethyl triftyl carbamate 4. Parent

ions present were m/z = 216, 172 and 149, with the largest fragment at m/z =

100. This fragment is very likely to be a diethyl carbamoyl group (Et2NC=O),

seen in the mass spectrum of diethyl phenyl urethane using authentic commercial

diethyl carbamoyl chloride and carbon dioxide chemistry. From these results, it

was apparent that the amine was being carboxylated but no trifluoromethyl

groups were present in the products. In the absence of adding a different

nucleophile to the reaction mixture, the data suggested that unreacted
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diethylamine was attacking triflyl carbamate to yield tetraethyl urea (m/z = 172)

and N,N-diethyl carbamate anion was reacting faster with triflyl carbamate 4 than

triflic anhydride to produce tetraethyl carbamic anhydride 5 (m/z = 216) (scheme

2.8). The CF3 quartet in the 13CNMR spectrum is explained by triflate ion (m/z

= 149). These findings also explain the carbon NMR signals, with urea

carbonyls typically occurring around 165 ppm and carbamic anhydride

displaying an unusually placed signal at 150 ppm."

\
NH

_/

\
NTf

_/
+

m/z = 216
5

m/z = 172
TfO

m/z = 148

Scheme 2.8: Attempted synthesis of a triflyl carbamate

1) CO2, DBU, Tf20

It was obvious that carboxylation of alicyclic amines was occurring, even though

the intermediate could not be isolated. It was decided to re-investigate n-propanol

as carboxylation had occurred with this alcohol before and this was a novel

approach to potential synthesis of carbonates and related compounds. This time,

after addition of a stoichiometric amount of triflic anhydride, the pressure was
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released and more n-propanol was added. Still, no dipropyl carbonate was

formed, as judged by comparison with the proton and carbon NMR of the

commercial product. Rather, the unidentified product was identical to the one

synthesised in the previous experiment using n-propanol. A hypothesis was that

the aqueous hydrochloric acid work up could be displacing the triflate with a

chloride ion to give the chloroformate. To rule this out, the reaction was

repeated and aqueous sulphuric acid was used in work up on half the reaction and

the same result was found. Addition of diethylamine to the remainder after

addition of triflic anhydride, produced the expected n-propyl N,N-diethyl

carbamate 6 as identified by MS and proton NMR of the crude product (scheme

2.9). Unfortunately, the high reactivity of triflic anhydride and triflate

intermediates seemed to be causing many side reactions and by-products and

purification was thus not possible.

PrO" + c~
2)PrOH

Scheme 2.9: Attempted carbamate and carbonate synthesis using Tf20

Even reactions conducted with bubbling carbon dioxide, as opposed to under

pressure, were unsuitable. Adding one or more equivalents of triflic anhydride to

a solution of propyl carbonate salt at -42 °C gave dipropyl dicarbonate 3 with

unknown by-products increasing on using more triflic anhydride. Adding half

the amount of triflic anhydride gave an unexpected result with the appearance of

i-propyl signals in the spectrum. Dipropyl carbonate was the major product but
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there were also signals present to suggest n-propyl-i-propyl carbonate had

formed (scheme 2.10) by comparison with other experiments. There was no i-

propyl triflate as the signals were all below 5.0 ppm in the IH NMR spectrum,

whereas the methine septet would be expected to occur above 5.0 ppm. This

procedure was unsatisfactory as presumably a rearrangement was occurring. 19F

NMR experiments showed more than ten fluorine containing organic compounds

in all instances so this approach was discontinued.

-TfO

~OTf - ~+ \CV ~

fastI~)lo~
>-o~o~

slow

Scheme 2.10: Possible Mechanism of Isomeric Dipropyl Carbonate Formation

The very high reactivity of our proposed intermediates is consistent with a report

of carbonyl ditriflate (figure 2.2)75 (the only reported compound with a carbonyl

and triflate group connected together) decomposing above -20°C. We thus

looked for a somewhat less reactive reagent.

Figure 2.2: Carbonyl Ditriflate
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2.3 Methanesulfonyl Carbamates and Carbonates as Synthetic Targets

2.3.1 Introduction

A different sulfonating agent seemed a good idea as preliminary results with

triflic anhydride had been encouraging. Methanesulfonic anhydride was chosen

for the following reasons: its products could be easily identified

spectroscopically in the proton and carbon NMR spectra with no special

experiments required and connectivity more easily determined by chemical shift

change when attached to an alkyl or carbonyl group; the methanesulfonate ion

by-product should not displace anything due to its poor nucleophilicity; it is more

atom efficient than triflic anhydride and p-toluenesulfonyl chloride; the mesylate

group is less reactive than the triflate group, so any sulfonyl carbonate

intermediates should be more stable at room temperature and to the reaction

conditions.

2.3.2 Results and Discussion

We decided first to test an amine substrate, as it would be easier to control the

reaction using only bubbling carbon dioxide. Adapting the triflic anhydride

procedure, diethyl amine and DBU were stirred below 0 °C in acetonitrile with

carbon dioxide bubbling subsurface. Methanesulfonic anhydride was added and

the reaction allowed to warm overnight. Half the reaction was worked up for

analysis and the other half added to phenol (scheme 2.11) (see section 3.1.2.2).

PhOH

Scheme 2.11: N,N-Diethyl Mesyl Carbamate Reaction with Phenol
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Analysis of the intermediate showed a mixture of products, the most interesting

of which showed a sharp singlet at b 3.4 ppm. A signal was already present at b

2.8, consistent with diethyl methanesulfonamidc." so it had to be another

methanesulfonyl containing compound. Previous reports of carboxyl mesylates

had the methane sulfonyl singlet in the same position (figure 2.3).66.67 The Be

NMR spectrum showed a shielded carbonyl resonance at 148.00 ppm. Like the

result using triflic anhydride, the alternative explanation could be down to two

different moieties, one being a mesylate ion or unreacted methanesulfonic

anhydride and diethyl carbamic anhydride being responsible for the carbonyl

resonance.

The experiment was repeated, but no phenol was added, with a view to positively

identifying the intermediates of the three compounds observed. The major

component was tentatively assigned as N,N-diethyl mesyl carbamate 7. As before

the same singlet at 3.4 ppm integrated in the correct ratio with the major N-

methylene signals and two signals in the 13C NMR spectrum, at 148.00 and at

40.65 ppm (where the methanesulfonyl signal should come) supported the

assignments.

o

)l
R OS02CH3

IH NMR: s 3.42
13C NMR: s 40.3

Figure 2.3: Generic NMR shift of the mesyl signal in carboxylic mesylates

The methane sulfonyl and carbonyl NMR signals were both in good agreement

with values for similar compounds, cumbersomely named, carboxylic
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methanesulfonic mixed anhydrides.f The other products were matched with

literature values for diethyl methanesulfonamide;" tetraethyl urea77 and possibly

some carbamic anhydride 5 (scheme 2.12).74

\
NH

_j

CO2;MszO

o

\)li
N N

_j \_

Scheme 2.12: Possible Products from the Formation of N,N-Diethyl Mesyl

Carbamate

The intermediate was subjected to different work up procedures, which gave

differing results. If the reaction mixture was washed with acid and brine, there

was much more mesylate compound at 3.4 ppm present than compared to diethyl

methanesulfonamide. If a neutral water wash was carried out first, sulfonamide

content was higher suggesting the other mesyl compound was being removed or

even hydrolysing in the isolation procedure. All the methyl signals for a

proposed N,N-diethyl methanesulfonyl carbamate intermediate 7 were still

present in the correct ratios in both 1Hand l3C NMR spectra in both instances.

This implies that they are all part of the same molecule. If tetraethyl carbamic

anhydride 5 was the active intermediate, the extra methanesulfonyl signal would
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not be reduced in intensity to the same extent as the N-methylene signals, if

hydrolysis was occurring. This was clearly not the case as the methyl singlet at

3.4 ppm was consistently in the same ratio as the N-methylene signals.

R'Ha1
o

R'Ha1
------I~~

R2N 0-
NR'R2

Kinetic
Product

Thermodynamic
Product

Scheme 2.13: Kinetic and thermodynamic products of the reaction between

carbamate anions and alkyl halides

Belforte and Calderazzo claim that the equilibrium of diethylamine and carbon

dioxide lies almost exclusively to the side of the carbamate salt.57 They further

suggest that in alkylation reactions, N-alkylation of carbamate anions to form

tertiary amines is thermodynamically favoured but slow and carbamates are the

kinetically controlled products (scheme 2.13). Whether adding a different base

to the system affects the amine-carbon dioxide equilibrium is not mentioned.

Nevertheless, our observations show that sulfonation occurs quite easily on the

nitrogen atom of carbamate anions at cool temperatures.

We thus had good evidence of the existence of a target carbonyl sulfonate

intermediate. Formation of N,N-diethyl methanesulfonyl carbamate 7 using a

more concentrated methanesulfonic anhydride solution followed by reaction with

n-propanol (see section 3.1.2.3), gave n-propyl N,N-diethyl carbamate 6 and only

trace amounts of diethyl methanesulfonamide and tetraethyl urea (scheme 2.14).

It had already been shown that reaction with phenol yielded the corresponding
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carbamate ester 1 and thus, the beginnings of a carbamoyl chloride and phosgene

alternative seemed to be emerging.

2) Ms20

n-PrOH

o

)l
Et2N OPr

6

\ 1)C02,DBUNH __;_-__;_-----I ..~

_/ pyridine

Scheme 2.14: Synthesis of n-Propyl N,N-Diethyl Carbamate

Since n-propyl N,N-diethyl carbamate 6 could also be envisaged to be

synthesised from diethyl amine and n-propyl mesyl carbonate (see section 3.1.5),

attention was turned to the reaction of carbonate anions with methanesulfonic

anhydride to attempt to form a methanesulfonyl carbonate (scheme 2.15). This

intermediate would be a precursor to both carbamates and carbonates, leading to

greater synthetic utility than mesyl carbamates. However, due to the nature of

the set-up of the pressure vessel, methanesulfonic anhydride had to be added

from an attached addition funnel to the carbonate salt solution. Addition of the

carbonate anion to methanesulfonic anhydride was not possible.

0
0

a Jl b b
0

)l a AEt2N~ topr
MsO 8 OPr 6 Et2N 7 OMs

+ Et2NH +PrOH

Scheme 2.15: Retrosynthesis of n-propyl N,N-diethyl carbamate
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After pressurising n-propanol and DBU with carbon dioxide at 0 "C, the resulting

carbonate salt was reacted with methanesulfonic anhydride and after warming

and release of pressure, an aliquot was removed and the remainder reacted with

diethylamine (see section 3.1.3.1). Analysis of the aliquot indicated a mixture of

two methanesulfonyl compounds, dipropyl carbonate and a further unidentified

compound. n-Propyl mesylate was identified as one of the components and n-

propyl mesyl carbonate 8 speculated to be the other. This still left a propyl

derivative that hadn't been identified.

1) 3.5 bar CO2,
DBU

PrOH ------1~
2)M~O

+

o

p,()~OP'
17

+ PrOMs + unidentified
compound

Scheme 2.16

The reaction with n-propanol, DBU and carbon dioxide followed by mesylation

was repeated and the intermediate analysed. The addition time of

methanesulfonic anhydride, changed from instantaneous to 2 minutes had shown

drastic differences. Comparing the NMR spectra of the intermediate with that of

the n-propanol reaction above showed no singlet at 3.4 ppm, yet the reaction had

still proceeded to form carbamate and carbonate products. The only difference

between them had been the addition rate of methanesulfonic anhydride. We

attempted to optimise the procedure with respect to dipropyl carbonate 17, but

yields were sporadic and low. Dipropyl carbonate 17 still formed without

addition of n-propanol after reaction of methanesulfonic anhydride, which was

detrimental for synthetic purposes, so another approach was needed.
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At this point, there were problems with the pressure vessel so the reaction was

attempted by just bubbling carbon dioxide subsurface to a stirring mixture of n-

propanol and DBU in MeCN at -42 "C. A low temperature was chosen to

maximise carbon dioxide solubility in the absence of pressure. Adding 1.1

equivalents of methanesulfonic anhydride without addition of another

nuc1eophile gave an unexpected result. The reaction had actually worked to an

extent, but four compounds were apparent, not two as was originally predicted

(the mesyl carbonate and the mesylate). Two had methanesulfonyl groups and

three had shielded carbonyl signals in the 13C NMR spectrum (155.5, 148.7 and

147.9 ppm). Three were immediately identified by integration of signals, as

dipropyl carbonate 17, n-propyl mesylate and n-propyl mesyl carbonate 8

(scheme 2.17). The carbonyl NMR signal for n-propyl mesyl carbonate is

consistent with more shielding than normal and is in a similar position as the

. al J: imid I b li 7c dSIgn ror irm azo e car oxy IC esters. .

PrOH

1) 3.5 bar CO2•

DBU
+ + PrOMs + unidentified

compound2)~O

Scheme 2.17

The fourth compound remained elusive, a shielded carbonyl signal was the only

clue, until GC-MS (Appendix) clarified matters. There were two minor peaks

which were shown to be n-propyl mesylate (rn/z = 138) and dipropyl carbonate

(m/z = 146), confirming the NMR interpretation. Two major peaks then

appeared about 3 minutes later but the mass spectrum of each showed them to be
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propyl mesylate and dipropyl carbonate as well! What appeared to be happening

was decarboxylation of the major compounds which by inference were therefore

propyl mesyl carbonate 8 and dipropyl dicarbonate 3. It was only at this point

that the formation of this latter compound had even been considered. When care

was taken, these latter two compounds could be seen in the mass spectrum ( at

m/z = 182 and 190 respectively) but after the third scan they disappeared and the

two minor compounds' mass ions (m/z = 138 and 146 respectively) increased to

become the major ions, suggesting decarboxylation of the two compounds as the

difference between the parent ions was 44 mass units. From these results, we

were also able to deduce exactly what was occurring in this reaction. Now all

four products had been identified, the IH NMR could be fully interpreted

(Appendix).

The ratios of propyl mesyl carbonate/ dipropyl dicarbonate / propyl mesylate/

dipropyl carbonate were calculated to be roughly 7 : 3.5 : 2 : 1 and a mechanistic

scheme could now be constructed (figure 2.4).

As shown, the alcohol/alkyl carbonate equilibrium means that mesylation of

two compounds can occur. If alkyl mesyl carbonate forms, two reactions can

take place. Alkyl carbonate salt can react to yield a dicarbonate 3 or unreacted

alcohol can displace mesylate to yield dialkyl carbonate. This latter route is

more unlikely than the former as excess methanesulfonic anhydride is always

present, so any unreacted alcohol would be minimal. Dicarbonate can react in

exactly the same way as alkyl mesyl carbonate with alcohols, carbonates being

the product.

If uncarboxylated alcohol is mesylated, it can then further alkylate alkyl

carbonate salt to produce dialkyl carbonate.
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With a proposed mechanism, experiments could be carried out to confirm its

validity and attempt to maximise a particular component, in our case n-propyl

methanesulfonyl carbonate 8.

DBU +
ROC02 HDBUROH + CO2

dROMs ............--

R'OH

ROCO; I
o

RO)lOR1

17

...

Carbonate Dicarbonate

Figure 2.4: Possible reaction routes using mesyl carbonates

A series of test experiments were carried out using n-propanol, DBU and

methanesulfonic anhydride in, primarily, acetonitrile. Factors such as reaction

and addition temperature, method of addition, concentration, reactant

stoichiometry and reaction time were altered (table 2.1). All reactions carried out

below room temperature had C02 bubbled subsurface and were slowly cooled.
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It was discovered that by slowing addition of methanesulfonic anhydride to the

carbonate anion, unreacted carbonate anion had time to react with the mesyl

carbonate 8 to form the dicarbonate 3 (entries 1, 3 and 4). That is, the rate of

dicarbonate formation is faster than the rate of mesylation in this case, so

dicarbonate formation was a dominant factor (scheme 2.18). Fast addition of

methanesulfonic anhydride gave more of a mixture (entries 2 and 6) as

mesylation of the anion was occurring, in all likelihood, at a faster rate, implying

the concentration dependance of methanesulfonic anhydride in the rate of

mesylation.

o
~o)lo

3

Scheme 2.18

Addition and rate of addition of reagents became important, as the rate of

mesylation of the alkyl carbonate anion appears to be faster, compared to

reaction of mesyl carbonate with alkyl carbonate anion to form a dicarbonate. If

this hypothesis was correct, then addition of the preformed carbonate anion to a

solution of methanesulfonic anhydride (the reverse of previous reactions) should
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greatly reduce the yield of dipropyl carbonate 17 and dipropyl dicarbonate 3 in

relation to n-propyl mesyl carbonate 8.

2.4 Optimisation of Synthesis of n-Propyl Mesyl Carbonate

Addition of the preformed carbonate anion to methanesulfonic anhydride did

lead to total exclusion of dipropyl carbonate and dipropyl dicarbonate (scheme

2.19), being dependant on reaction temperature, duration of addition and ratio of

methanesulfonic anhydride to n-propanol. Thus, difficult to remove symmetrical

carbonate by-product could be eliminated in future experiments (entries 8-15).

Dicarbonate could be eliminated to further extents by increasing the ratio of

mesyl anhydride to n-propanol.

Tetrahedral
mechanism

-OMs

-OMs

Scheme 2.19: Mechanism of formation of n-propyl mesyl carbonate and dipropyl

dicarbonate
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Every reaction led to propyl mesylate as a by-product but the selectivity in

mesylation of n-propanol vs the carbonate anion varied according to reaction

temperature and order of addition. At room temperature the ratio was 1.2: 1 in

favour of mesyl carbonate (after 48 hours only n-propyl mesylate was present,

entry 8) and at -42 °C the ratio was even more in favour of mesyl carbonate (3:1

to 4:1, entry 9). Mesyl carbonate ratio increased from 3.4:1 (entry 1) to 11.6:1

when transferring the carbonate, instead of the mesyl anhydride, over the same

length of time at -20°C instead of -42°C (entry 11). Dicarbonate would form in

very small quantities, reducing selectivity, if concentration of methanesulfonic

anhydride was too low (entries 2 and 4). Addition of methanesulfonic anhydride

to carbonate anion could give high selectivity and moderate yield (entries 5 and

7) so long as: it was in concentrated solution; in two-fold excess; below -20°C;

the reaction was quenched and isolated within five minutes. This procedure

would not be enhanced by reducing the mesyl anhydride ratio, as this had already

been shown to increase side reactions. Equally good yield and selectivity could

be attained by adding carbonate anion to methanesulfonic anhydride (entries 11,

14 and 15), but there was more control over this procedure and it could lend itself

more readily to further development, for example by reducing the excess of

reagent. Three steps could be combined in one experiment without isolation

procedures being required in between.

A possible explanation of mesylation selectivity in relation to temperature is that

as temperature decreases, carbon dioxide solubility increases so mesylation of

the carbonate anion occurs rather than mesylation of the alcohol. However, the

ratios of mesyl carbonate 8 to mesylate at temperatures in between the top and

bottom are higher. This could be due to the reaction rate of mesyl carbonate
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formation from the anion increasing more than the decrease in the rate of alcohol

carboxylation.

The more concentrated anhydride solutions (typically >1 M) gave higher

selectivity with less propyl mesylate (entries 5, 7, 10, 11, 13-15). Due to the

above findings, the reactions were continued without the pressure vessel as its

construction did not allow addition of carbonate anion under pressure to

methanesulfonic anhydride, as well as being less convenient.

Change of base (e.g. pyridine) gave no carboxylation whatsoever. Change of

solvent to DMF or DMAC gave no selectivity advantage (as well as being more

cumbersome solvents to remove) and using acetone or THF gave propyl

mesylate as the major product.

2.4.1 Summary

The conditions settled on were carbon dioxide bubbling subsurface to an alcohol

(ca. 0.35-0.5M) and 1-1.25 molar equivalents of DBU in acetonitrile, cooling the

solution to -42 °C for 30-45 minutes, then warming to -20°C for transferral to

an acetonitrile solution of methanesulfonic anhydride (2 eq.; 2.6-3.3 M) over 30-

120 minutes (entry to), depending on volume. Entries 11 and 14 gave similar

yields and selectivities but entry 11 gave propyl mesylate in much lower yield.

Concentrations were dependant on how much alcohol and anhydride were

actually used.

Whilst carrying out the reactions with carbon dioxide, it was noticed that

continued bubbling to an acetonitrile solution at -42°C for several hours

produced no cloudiness, but on warming above -30°C, a slight precipitate

formed. The precipitate formed at room temperature within 5 minutes in
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acetonitrile and almost instantaneously in DMF and acetone. However, it was

also noted that a precipitate formed when no alcohol but just DBU was present in

solution with bubbling C02. If DBU was in slight excess and no precipitate

formed, typically yield and selectivity of mesyl carbonate (and carbonate /

carbamate synthesis) was very poor (0-5%). If DBU was used in stoichiometric

quantities, the solution turned cloudy but no solid precipitated. Even so,

reactions were usually successful in these instances. This can be explained by

the reaction of the amidine base (DBU) with CO2 to form a salt. This reaction is

known but has not been published in the literature.

2.5 Re-investigation of Methanesulfonyl Carbamate Synthesis

Until now, mesyl carbamates had been made by addition of mesyl anhydride to

the carbamate anion. Itwas likely that this led to more by-products such as ureas,

than carbonate anions, as amines are better nucleophiles. So, in close analogy

with alcohols, subsequent reactions were carried out by addition of pre-formed

carbamate salts to mesyl anhydride. This approach was not useful if addition of

the carbamate anion occurred above -20°C, as either the yield was very low or

mesyl carbamate was the minor product A greater mixture of products was

apparent, tetraethyl urea usually being the major one, indicated by a quartet at

3.15 ppm. Other by-products were diethyl methanesulfonamide and another set

of signals similar to N,N-diethyl mesyl carbamate but no mesyl singlet was

present in the IH-NMR spectrum. Comparison with earlier experiments that had

the same pattern, chemical shift and carbonyl at 150 ppm, confirmed that the

compound was tetraethyl carbamic anhydride. Adding carbamate salt all at once

at -8 °C to methanesulfonic anhydride yielded only diethyl
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methanesulfonamide. Clearly, different conditions were needed compared to

alcohols, probably due to the more nucleophilic nature of the amines and hence

higher reactivity with mesyl carbamate and methanesulfonic anhydride. Also,

the possibility that the amine was acting as a base and decomposing the product

could not be ruled out (see section 2.6.2) (scheme 2.20), as two reactions gave

almost no organic product. Adding methanesulfonic anhydride instead to the

carbamate anion produced mesyl carbamate 7, the mixture of products increasing

the warmer the addition temperature. Addition at -42 DCgave no product, the

range of -20 to -25 DCbeing best over a few hours. Adding n-propanol gave a

good yield of carbamate 6 (see section 3.1.2.3) and few by-products. This

procedure was the one used for attempted dendron synthesis.

PrOH o

~
Et2N OPr

6

1-
- +

Et2NH + cO2 + MsO BH
Scheme 2.20: Side reactions of N,N-diethyl mesyl carbamate

Change of solvent to toluene gave no product, whereas adapting a procedure for

silylation of a carbamate anion43 substituting methanesulfonic anhydride for

TIPS and triethyl amine for DBU in dichloromethane, yielded mesyl carbamate

but in worse yield compared to the carboxylation of alcohols.

Due to the mixtures of by-products using diethylamine, it was decided to follow

the cleaner route of adding amines to mesyl carbonates for future carbamate

synthesis.
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2.6 Possible Mechanisms and Side Reactions

2.6.1 Introduction

The use of methanesulfonyl chloride as a mesylating reagent in the presence of

base, usually a tertiary amine, frequently has a sulfone" cited as the active

intermediate. The sulfene arises from base-induced attack on mesyl chloride to

form a cumulene type compound, with a chloride ion as the leaving group

(scheme 2.21).

.mr cr

H
/

ROSO-C-D
2 \

H

Scheme 2.21: Sulfene mechanism of sulfonation

Experiments with deuterated alcohols have given much support to this

mechanism. The simple sulfene in this case is not isolable, being very reactive,

but usually reacts as an electrophile with any nucleophile present.

Methanesulfonic anhydride would be expected to react in a similar way as

mesylates are better leaving groups than chlorides/"

52



2.6.2 Results and Discussion

Only once was the propyl carbonate salt added to a solution containing

methanesulfonic anhydride and DBU. Addition of the base to mesyl anhydride

solution was highly exothermic and reaction of carbonate anion gave low yield of

mesyl carbonate, dicarbonate and mesylate .

••
B

o~ n
ROH j S=CH2"---../ /1o

- +
RO + BH +

Scheme 2.22: Possible base catalysed decomposition of sulfonyl carbonates

Since bases react with mesyl compounds.I'" 80 it is also conceivable that base

could react with mesyl carbonates. Alkoxide ion, carbon dioxide and sulfene

would be the products and given the reactivity of sulfene, it is possible it reacts

with alkoxide to produce the alkyl mesylate (scheme 2.22). This explanation

would support observations of reactions that contain slight excesses of base only
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yielding propyl mesylate after 48 hours at ambient temperature. If all the base is

removed, mesyl carbonates still remain after 72 hours. Working on this premise,

all reactions making and further reacting mesyl carbonates had amounts of base

kept to a minimum.

It was thought that stoichiometric amounts of base would be needed to

decompose mesyl carbonates, but only slight excess of strong base present in the

reaction gave alkyl mesylates if the reaction was stirred for over two days. A

couple of explanations were possible. The mesyl carbonate could decarboxylate

at ambient temperature, analogously to 1,3-ketoacids. However, propyl mesyl

carbonate seemed to be stable for at least a few days when isolated with varying

ratios of propyl mesylate.

Another possibility was that base decomposition was actually catalytic. This

hypothesis was supported when triethyl amine was added to an excess of benzyl

mesyl carbonate. The singlets indicating an oxycarbonyl methylene group and a

carbonyl mesylate had both disappeared completely. A new singlet indicative of

either an alkyl mesylate or mesylate anion had appeared. Triethyl amine could

have acted as a nucleophile on the mesyl carbonate, followed by dealkylation,

but this would not explain complete absence of mesyl carbonate NMR signals as

triethyl amine was the limiting reagent. To rule out nucleophilic attack, DBU

was added to methyl mesyl carbonate. Both signals of this compound

disappeared by the time a proton NMR experiment had taken place and two new

singlets had appeared at 3.7 and 2.8 ppm. The latter signal is usually where

mesylate ions are found in solution. Such a decomposition could be considered

catalytic if the base is subsequently deprotonated by any alkoxide or alkyl
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mesylate anion, as the pKa of alcohols (_16)81 is higher than all bases used (12-

13).39

2.7 Use of Other Sulfonating Reagents

2.7.1 Introduction

Methanesulfonic anhydride is more expensive per mole than other common

sulfonating reagents. So different reagents'j" were used to determine whether

similar results with respect to the synthesis of sulfonyl carbonates were possible.

Also, it was hoped that if other types of sulfonyl carbonates could be made, their

stability could be compared with a view to possible isolation and

characterisation. The three sulfonating reagents used were: methanesulfonyl

chloride as this would directly show whether leaving group attached to the

sulfonyl moiety affected the rate of reaction or distribution of products; p-

toluenesulfonyl chloride as it would not be susceptible to base effects since it has

no a proton and so had the potential to be more stable; p-nitrobenzenesulfonyl

chloride, because it would be a good comparison to p-toluenesulfonyl chloride

and there was a likelihood the intermediate nosy I carbonate would be solid and

hence easier to isolate.

2.7.2 Reaction of Propylcarbonate Anion with Methanesulfonyl Chloride

o

)l
n-PrO 8 OMs

Scheme 2.23: Nucleophilic attack of mesylating reagents; X = Cl, OMs
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Use of methanesulfonyl chloride subsequent to the carboxylation of n-propanol

(scheme 2.23) gave n-propyl mesylate as the major product in two experiments.

The insinuation is that direct nucleophilic attack on the sulfonating agent by the

carbonate anion takes place as opposed to a sulfene mechanism.i" and since a

mesylate group is a better leaving group than a chloride ion, methanesulfonic

anhydride is a better reagent than methanesulfonyl chloride. Formation of the

reactive sulfene species by an ~ mechanism cannot be ruled out, but it is more

likely to form when excess or unreacted base is present. If sulfene formation

occurs, it is likely to occur faster from methanesulfonic anhydride than

methanesulfonyl chloride. The reaction would follow a nucleophilic addition

pathway. If this is the case, the product distribution would not be expected to

change with the different sulfonating reagents. However, the experimental

evidence counters this view since n-propyl mesyl carbonate was the major

product when methanesulfonic anhydride was used.

2.7.3 Reaction of n-Propylcarbonate Anion with p-Toluenesulfonyl Chloride

o
o ~II
)l_; H,c~l~

n-PrO 0 0

o

)l
n-PrO lOOTs

Scheme 2.24: Attempted synthesis of a p-tosyl carbonate

On substitution of methanesulfonic anhydride with p-toluenesulfonyl chloride

(scheme 2.24), two compounds were isolated after the reaction on two occasions.

One was p-toluenesulfonic acid and the other was dipropyl dicarbonate. No p-
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toluene sulfonyl carbonate was isolated as confirmed by integration in the 'n.

NMR spectrum and long range proton-carbon correlation (HMBC) experiments.

Just as no triflyl carbonates were detected because they reacted to form

dicarbonates too quickly, so is the case usingp-toluenesulfonyl chloride, but with

cleaner products.

2.7.4 Reaction of Propylcarbonate Anion with p-Nitrobenzenesulfonyl

Chloride

-~.~
n-PrO ONs

9

Scheme 2.25: Attempted synthesis of a p-nosyl carbonate

Both experiments involving the attempted nosylation of the n-propylcarbonate

anion (scheme 2.25) yielded almost no n-propanol derived products on

comparison of the p-nitrobenzenesulfonyl integration and chemical shifts of n-

propyl type signals in the tH NMR spectra. These results would suggest that

under the same conditions as used in the standard reaction, no nosylation was

occurring, which could be due to a side reaction. This could arise from

activation of the sulfonyl group by the nitroaromatic, making the reagent much

more reactive than the analogous p-tosyl chloride.

2.7.5Summary

Since the same conditions were maintained for the sulfonating reagents

mentioned above as for methanesulfonic anhydride, these experiments
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highlighted the fact that leaving group, the nature of the sulfonyl substituent and

possibly steric bulk of the sulfonyl group affect the reaction of the carbonate

anion. This is especially true of p-toluenesulfonyl chloride, which gave the

dicarbonate product, compared to methanesulfonyl chloride which gave mainly

n-propyl mesylate. The only difference between these two reagents is the bulk of

the methylphenyl group compared to a methyl group. The unhindered nature of

the charged oxygen atom in the carbonate ion in relation to n-propanol could

explain why no n-propyl tosylate was observed.
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CHAPTER 3 - REACTIONS OF METHANESULFONYL CARBAMATES

AND METHANE SULFONYL CARBONATES WITH NUCLEOPHILES

3.1 Synthesis of Carbamates

3.1.1 Introduction

The use of acyl mesylates65-67and sulfonyl carbonates'f 70 as acyl chloride and

chloroformate replacements (scheme 3.1) respectively is not unprecedented.

There are a few reports of sulfonyl carbonates being synthesised and two

examples of carbamate synthesis being further exhibited from such

intermediates.P" 70 However, the methods used to synthesise such molecules

were either low yielding with a long reaction time or involved chloroformates.

In the latter case, no synthetic advantage could be gained by this approach.

o
II Nu

R~OMS ------~~
Nu

Nu Nu

Scheme 3.1: Acyl mesylates and mesyl carbonates as acyl chloride and

chloroformate analogues

Very similar compounds comprising of a sulfonyl group attached to an ester

(alkoxycarbonyl sulfones)82 have been made and one example shows their

conversion to carbonates on addition of methanol (scheme 3.2). However, the

products could not be isolated.
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Oy TCNE / EtOAc MeOH

Scheme 3.2: Alkoxy carbonyl sulfones as precursors to carbonates

There are three examples in the literature of conversion of carboxylic acids to

carboxylic mesylates followed by reaction with nucleophiles.65-67 In one

instance, the intermediates were reacted with amines and alcohols to form amides

and esters respectively." Carboxylic mesylates have even been cited in the

synthesis of ceftazidime't" where an acyl chloride procedure has been less

successful, However, work by the group of Nicolaou" has suggested an

alternative mechanism to acetylation of nucleophiles when fairly simple

carboxylic acids are used (scheme 3.3). Instead of carboxylic mesylates being

the active intermediate, this compound reacts very quickly with another

carboxylic acid molecule to form the acid anhydride. It is contested that it is the

anhydride that acylates, then the newly formed acid is sulfonated with remaining

reagent and forms the anydride in situ again. However, if in their case the

carboxylic acid is complex, for example a vancomycin derivative and very

hindered, the anhydride is prevented from forming and the acyl mesylate is the

active reagent. It is claimed that they could not synthesise acyl mesylates of

simple carboxylic acids, such as cinnamic and benzoic acid. A similar

observation has been reported when using TsCI. 83
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These precedents gave impetus to the method in principle, as both examples were

not very structurally different to the molecules we intended to synthesise; mixed

anhydrides of carboxylic and sulfonic acids in the former case,6S-67carbonic and

sulfmic acids in the latter.82

MsCl

- RCOz

Scheme 3.3: Nicolaou's explanation of acylation using acyl mesylates

Some comparisons and contrasts can be made with our observation and that of

Nicolaou's group. If methanesulfonic anhydride was added to alkyl carbonate

anion over more than five minutes and allowed to react over more than one hour,

not insubstantial amounts of dicarbonate was formed. This was especially true if

less than 10% excess methanesulfonic anhydride was used or its concentration

was less than 1.1 M. If alkyl carbonate anion was added to methanesulfonic

anhydride, no dicarbonate was observed if either concentration of

methanesulfonic anhydride was more than 2 M, or a two-fold excess was used.

It would be envisaged that methanesulfonyl carbonates would be less reactive

than acyl mesylates, in the same way that chloroformates are less reactive than

acyl chlorides, due to the lone pair of electrons on the saturated oxygen atom
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increasing the electron density on the carbonyl group and decreasing its

electrophilicity. Thus, this would explain the possibility of our observations and

spectral evidence of mesyl carbonates without concurrently observing

dicarbonates. Also, addition of excess amounts of the chosen nucleophile, for

example an amine, would react with all unreacted Ms20 which would prevent

further reaction with unreacted carbonate anion.

If the propyl mesyl carbonate reaction mixture is left without addition of a

nucleophile, dipropyl carbonate will form. Generally, the tendency for a

carbonate to form in the reaction increases the more reactive the alcohol is. For

example, using the same conditions to synthesise benzyl mesyl carbonate as for

n-propyl mesyl carbonate, dibenzyl carbonate was present in a higher ratio

compared to the main product. If addition of benzyl carbonate anion to

methanesulfonic anhydride was carried out at -30 °C, then a much lower ratio of

dibenzyl carbonate was formed.

We decided to start our investigation with carbamates as targets, since it had

already been shown that their synthesis using carbon dioxide20·29.36.38.48was

possible without elevated pressure, unlike the majority of work on carbonates.

Carbamoyl chlorides can react with most alcohols, including aromatic ones, to

form carbamates, so it made sense to adapt this methodology. As explained in

Chapter 2, carboxylation of diethyl amine followed by further reaction yielded

phenyl N,N-diethyl carbamate 1. However, earlier work in our group showed the

Monsanto procedure to be less versatile than we hoped. Carbamoyl chloride

synthesis from more complex amines failed, either because the reaction was

unsuccessful or because ureas formed as well as when using polyfunctional

compounds (scheme 2.4).
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Using our methodology, the generation of mesyl carbonates and mesyl

carbamates would give simple precursors to carbonates and related compounds

which usually require noxious reagents. The intention would be to extend the

scope and versatility of the reaction so that various nucleophiles could be used to

generate not just simple carbamates, but also di-substituted and branched

products. This approach could lead to construction of molecules with a dendritic

character that would be impossible to prepare by an isocyanate route.

3.1.2 Reaction of Alcohols with Sulfonyl Carbamates

ROH

Scheme 3.4: Conversion of mesyl carbamates to carbamates

3.1.2.1 Introduction

In Chapter 2 it was reasoned that conversion of carbamate anions to sulfonyl

carbamates should offer two advantages: firstly, the reaction is a simple

substitution, unlike the rearrangement required with thionyl chloride which may

require more forcing conditions; secondly, the sulfonyl carbamate products

should be excellent electrophiles, allowing subsequent reactions to be carried out

under milder conditions.

We had originally attempted to use triflyl carbamates 4, but with little success.

Following our work on carbonates, we now suspected that triflyl carbamates

were too reactive. A second carbamate anion could react to form a carbamic

anhydride and then react with phenol in an analogous way, halving any yields
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(scheme 3.5). Hence, we decided to prepare and react methanesulfonyl

carbamates 7.

DBU

4

Scheme 3.5: Carbamates via carbamic anhydrides

3.1.2.2 Synthesis ofPhenyIN,N-Diethyl Carbamate 1

o PhOH 0)l .)l
Et2N 7 OMs Et2N 1 OPh

Scheme 3.6: Successful synthesis of phenyl N,N-diethyl carbamate

Adding a solution of mesyl anhydride to diethyl carbamate anion at reduced

temperature and then reacting the mesyl carbamate in situ with phenol (scheme

3.6) at reflux temperature produced phenyl N,N-diethyl carbamate 1 at the first

attempt in 21% yield (based on phenol), with only traces of by-products seen in

the NMR spectrum. Analysis of the IH and 13CNMR spectra of the intermediate

gave support for the existence of mesyl carbamates. Two overlapping triplets at

1.21 ppm integrated in the ratio 3:2 with two identical overlapping multiplets at

3.35 ppm. A singlet at 3.42 ppm was in the ratio 1:2 with the signals that

occurred where methyl groups would be expected to appear. This signal is about

0.5 ppm higher than where common methanesulfonyl signals would be apparent,
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adding weight to the hypothesis of it being adjacent to a carbonyl group. The

carbonyl signal in the 13CNMR spectrum at 148 ppm was very low, indicative of

either a carbamic anhydride or other carbamoyl group adjacent to an

electronegative environment (such as carbamoyl chloride). The methylene

signals were at a higher chemical shift than those seen for tetraethyl carbamic

anhydride and rather than observing one signal due to symmetry, two signals

were apparent (42.9 and 43.0 ppm). This would arise from restricted rotation due

to delocalisation of the carbamoyl group, leading to inequivalent chemical shifts.

3.1.2.3 Synthesis of n-Propyl N,N-Diethyl Carbamate 6

o 0)l PrOH. )l
Et2N OMs Et2N OPr7 6

Scheme 3.7: Successful synthesis of n-propyl N,N-diethyl carbamate

Deprotonated phenols are more nucleophilic than alcohols, so the scope of the

reaction was tested by using n-propanol. On reaction with N,N-diethyl mesyl

carbamate (generated in situ by addition of mesyl anhydride) propyl N,N-diethyl

carbamate 6 was produced (scheme 3.7) as determined by analysis of NMR and

mass spectra and comparison with published data." The yield was in excess of

60% as judged by the 1H NMR spectrum and the reaction was cleaner than

observed on synthesis of the same product using triflic anhydride. It was clear

that methanesulfonic anhydride was the reagent of choice for trapping carbamate

anions and it had been shown that carbamates could be synthesised from the

respective amine and alcohol, with CO2 providing the carbonyl function.
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Extending the addition time of methanesulfonic anhydride to the diethyl

carbamate salt at -20°C, followed by addition of n-propanol, gave no product

within 16 hours as judged by tIc. However, addition of triethylamine and heating

to reflux temperature, gave comparable yield to above within two hours with

very little urea or sulfonamide. This procedure was the one that would be used

for making branched carbamates (see Chapter 4).

3.1.3 Reaction of Amines with Mesyl Carbonates

R'R''NH

Scheme 3.8: Conversion of mesyl carbonates to carbamates

3.1.3.1 Synthesis of n-Propyl N,N.Diethyl Carbamate Under Pressure

By disconnecting n-propyl N,N-diethyl carbamate, it could be envisaged that an

equally valid synthesis was to make n-propyl mesyl carbonate using carbon

dioxide and react this compound further with diethyl amine. A solution of the

alcohol and DBU was pressurised with carbon dioxide and reacted in situ with a

solution of mesyl anhydride. An aliquot was removed and the remainder was

reacted with diethylamine (scheme 3.8) so direct comparisons could be made

between reactions before and after addition of a nucleophile, to observe if the

intermediates were similar between mesylation of carbonate anion compared to

carbamate anions.

The major product was n-propyl N,N-diethyl carbamate 6 in over 30% yield by

1H NMR spectroscopy. A minor product was di-n-propyl carbonate 17, which
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was present in a 3:1 ratio with the major carbamate product The carbamate was

identical to the one synthesised from diethylamine, carbon dioxide and n-

propanol respectively.

Analysis of the removed aliquot indicated a mixture of two methanesulfonyl

compounds, di-n-propyl carbonate 17 and di-n-propyl dicarbonate 3. On

examination of the product from the reaction of n-propyl mesyl carbonate 8 with

diethylamine, the major component was n-propyl N,N-diethyl carbamate, albeit

in lower yield and with more impurities, (one of which was dipropyl carbonate)

than the reaction of n-propanol with N,N-diethyl mesyl carbamate 7. On

comparison with the reaction mixture from before the amine was added, it was

clear that the unidentified product and n-propyl mesyl carbonate 8 had been

consumed. Column chromatography gave both di-n-propyl carbonate and n-

propyl N,N-diethyl carbamate together. Nevertheless, in principle the

methodology had been proven.

3.1.4 Attempted Synthesis of Dicarbamates

o

,"N~O>U~

o

E~N)lo~OH
U

+

Scheme 3.9: Two attempted syntheses of dicarbamates
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A previously attempted synthesis of the 1,5 dicarbamic ester 11 from the reaction

of 1,5-pentanediol with N,N-diethyl mesyl carbamate occurred in very low yield

and the product was not isolated, the mono substituted product 12 was the main

isolated component as confirmed by NMR and mass spectral data. Amines are

better nucleophiles than alcohols, so it was decided to synthesise a di-mesyl

carbonate from 1,5-pentanediol and then addition of excess diethylamine would

ensure some disubstituted product (scheme 3.9). Reduced yields were speculated

to be due to diethylamine acting as a base, driving carbamate formation, as well

as acting as a nucleophile. To overcome this, it was decided to use triethylamine

as this was a strong enough base to deprotonate any intermediates. It was not

known if pyridine was a strong enough base to drive the reaction to completion,

so this was not considered in the first instance. After two days there was no

change in the reactions by tic. Substantial amounts of methanesulfonyl derived

by-products were arising from the use of two equivalents of methanesulfonic

anhydride, which hampered purification as the minority of the crude product was

the required compound. A comparison between identical reactions was made,

using I,S-pentanediol as the starting material. One reaction used two equivalents

of methanesulfonic anhydride as usual, the other used 1.2 equivalents. Using

two equivalents of methanesulfonic anhydride produced more material than

using 1.2 equivalents, though analysis of the IH-NMR of the two reactions

showed that both had comparable conversions of diol to dicarbamate, by

comparing the ratios of methylene and mesyl signals of the products. Less

monocarbamic ester was produced using methanesulfonic anhydride in two-fold

excess because the second hydroxy group had been mesylated. So, using less

mesylating reagent and not more was shown to be more advantageous as the
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product made up more than 50% of the material recovered by mass with less

impurities. Purification led to mono and disubstituted carbamate esters 11 and

12, confirmed by high resolution mass spectra, in 33% and 31% yield

respectively. This result demonstrated good reproducibility of the above

procedure making n-propyl N,N-diethyl carbamate from n-propanol just by

bubbling carbon dioxide into the reaction.

Repeating the reaction with 1,5-pentanediol and a stoichiometric amount of

triethyl amine in the carbamate forming reaction gave less dicarbamate ester and

more mono-substituted product, again hinting that excess base could be

detrimental to the mesyl carbonate intermediate.

Later work using bis(2-hydroxyethyl) 4-nitrobenzenesulfonamide 27 instead of

1,5-pentanediol (section 4.2.2), showed that side by side carbamate forming

reactions comparing pyridine with triethylamine as the base, gave more of the

desired product and less by-products using pyridine.

3.1.5 Synthesis of Carbamates Using n-Propyl Mesyl Carbonate 8

3.1.5.1 Introduction

Initally, n-propyl mesyl carbonate was formed using carbon dioxide under

pressure, then split into three fractions after the pressure had been released. n-

Propylamine and diethylamine were then reacted with equal fractions to see if

there was any difference between the formation of carbamates derived from a

primary amine against a secondary amine. n-Propanol was added to a third

fraction as a standard.
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Scheme 3.10: In situ reaction of n-propyl mesyl carbonate with n-propylamine

The amines, which are better nucleophiles, gave mixtures of products. The

reaction of diethylamine with n-propyl mesyl carbonate yielded the respective

carbamate and diethyl methanesulfonamide as by-product. The reaction of n-

propyl amine had almost equal amounts of di-n-propyl carbonate and n-propyl N-

n-propyl carbamate (scheme 3.10). This reaction gave less than 10% of the

amount of organic material possible. Analysis of the aqueous layer showed that

all organic products had been extracted, so incomplete conversion must be the

answer. Directly comparing the control reaction of n-propanol to form di-n-

propyl carbonate showed that much less of the carbonate had been made as by-

product than was possible. A destructive side reaction must be occurring such

that a secondary amine is less detrimental than a primary amine and alcohols not

detrimental to the reaction at all. Both reactions were successful in so far as the

respective carbamates were made, but both had di-n-propyl carbonate by-

product, which it was not possible to remove, due to the similarity in polarity and

boiling points of carbamates and carbonates.

One explanation is that propyl mesylate alkylated the propylcarbonate anion.

Propyl mesyl carbonate and dipropyl dicarbonate both reacted with n-propanol to

form dipropyl carbonate. In this way, all products of the mesylation step could

react to form the symmetrical carbonate (scheme 3.11), although how much of a
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contribution the alkylation route made compared to nucleophilic attack on the

mesyl carbonate was not known.

Symmetrical carbonate formation had to be reduced as far as possible. As shown

in Chapter 2, reactions did not have to be carried out using elevated pressure to

form propyl mesyl carbonate in moderate yield or with good selectivity. Thus,

using standard equipment it was possible to add the carbonate anion to mesyl

anhydride under various conditions which prevented symmetrical carbonate

formation.

o
PrOMs II. ~

PrO OPr
17

Scheme 3.11: Side reactions leading to dipropyl carbonate formation

Following the new procedure of generating n-propyl mesyl carbonate by

bubbling carbon dioxide into an alcohol and DBU solution and adding the

carbonate anion to mesyl anhydride, diethylamine was subsequently added at

room temperature. Thin layer chromatography (tlc) after 20 hours showed no

product, so a stoichiometric amount of pyridine was added. This would act as a

base to drive the reaction but be sufficiently weak as to not decompose the n-

propyl mesyl carbonate. After another 24 hours, n-propyl N,N-diethyl carbamate

6 had formed in 35% yield as judged by IH-NMR. However, an equal amount of
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diethyl methanesulfonamide was also present. The reduced yield could be due to

diethylamine also acting as a base, decomposing the mesyl carbonate

intermediate (section 2.6.2), or concurrently acting as a base in promoting

sulfonamide formation.

Work described in section 3.1.4 meant that all subsequent reactions used only 1.2

equivalents of methanesulfonic anhydride and pyridine as the base in reactions of

mesyl carbonates. Analogously to reactions of acid anhydrides and

chloroformates, pyridine presumably increased the reaction rate by acting as a

nucleophile with the mesyl carbonate (scheme 3.12) and generating a more

reactive intermediate in situ. Rapid displacement of the pyridinium ion leaves

the protonated product which is deprotonated by pyridine. Usually when

acylating-type reagents are used with alcohols, pyridine is also used.so Due to

the supposition that mesyl carbonates were base sensitive, it was decided to use

pyridine when amines were used as nucleophiles also.

0).jv
R'XH

o

RO~XRI

Scheme 3.12: Pyridine promoted reaction of mesyl carbonates
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3.1.5.2 Synthesis of n-Propyl N-n-Butyl Carbamate 13

o

)l
BuNH OPr13

Pyridine

Scheme 3.13: Synthesis of n-propyl N-n-butyl carbamate

Generating n-propyl mesyl carbonate with carbon dioxide and 1.2 equivalents

methane sulfonic anhydride, followed by addition of n-butylamine and a

stoichiometric amount of pyridine gave n-propyl N-n-butyl carbamate 13 in 42%

yield (scheme 3.13) after flash chromatography. The estimated crude yield from

comparison of IH-NMR signals of all products was about 44%, which is in the

right region of conversion that had been observed when making mesyl carbonate

from n-propanol. The implication is that the conversion of mesyl carbonate to

carbamate is very nearly quantitative.

3.1.5.3 Synthesis of Benzyl N-Phenyl Carbamate 14

Pyridine

14

Scheme 3.14: Synthesis of benzyl N-phenyl carbamate

That conversion of mesyl carbonate to carbamate is quantitative is supported by

the formation and reaction of benzyl mesyl carbonate with excess aniline

(scheme 3.14). Analysis of the crude product by IH-NMR spectroscopy and tIc
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indicated only three compounds; benzyl N-phenyl carbamate 14, phenyl

methanesulfonamide and benzyl alcohol. As for 13, flash chromatography gave

the required product in 43% yield. In theory, this still leaves more than 0.5

equivalents of aniline, which easily reacts with the slight excess of

methanesulfonic anhydride, to form the methanesulfonamide as confirmed by the

IH-NMR spectrum after isolation from the chromatographic column. The lack of

other benzyl derived compounds, including benzyl mesylate, cannot be

explained. Concurrent reaction of benzyl mesyl carbonate with phenol and n-

propanol (see section 3.2.3.2) did contain dibenzyl carbonate in both cases and a

small amount of benzyl mesylate in the latter reaction.

3.1.5.4 Synthesis of n-Propyl N-Phenyl Carbamate 15

PhNH2
o

PhNH)loP,
15

Pyridine

Scheme 3.15: Synthesis of n-propyl N-phenyl carbamate

The reaction of aniline with n-propyl mesyl carbonate (scheme 3.15) was

successful but results were mixed. The reaction was carried out twice under

similar conditions, the only difference being the amount of DBU used. The first

time the reaction was carried out, 1.14 equivalents of DBU was used to assist

carboxylation of n-propanol, resulting in 38% yield as calculated from the 1H-

NMR spectrum of n-propyl N-phenyl carbamate 15 after addition of aniline.

After purification and crystallisation, the final yield had fallen to 21% due to

removal of phenyl sulfonamide impurity by crystallisation, which had persisted
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after chromatography. Repetition of the reaction but using a stoichiometric

amount of DBU with n-propanol gave a crude yield of 68%, but with more

sulfonamide impurity and less n-propyl mesylate. This observation adds more

weight to the hypothesis of decomposition of mesyl carbonates by base. Excess

strong base seems to be detrimental to the reaction.

In both reactions, aniline was added first, followed by pyridine. In both cases,

after aniline addition, the reactions were noted to be very exothermic and

required cooling in an ice bath. The reactions also became extremely viscous, to

the extent of a gel-like state and stirring became difficult. Addition of more

solvent and reaction overnight gave rise to a solution again with a precipitate

present. This consisted of mesylate salts and was filtered and washed to remove

any adsorbed products.

3.1.5.5 Synthesis of Benzyl N-n-Propyl Carbamate 16

Pyridine

Scheme 3.16: Synthesis of benzyl N-n-propyl carbamate

The first attempt at the reaction of n-propylamine with benzyl mesyl carbonate

(scheme 3.16) was successful but the yield by NMR spectroscopy of 18% was

much lower than usual. This was judged to be due to the storage of the mesyl

carbonate intermediate in a freezer at -30°C not being sufficiently cold to

prevent gradual decomposition. Surprisingly, there was no benzyl mesylate

formed in this reaction, only n-propyl methanesulfonamide and unreacted benzyl
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alcohol. Repetition of the reaction with immediate addition of n-propylamine

and pyridine on formation of benzyl mesyl carbonate gave about a 39% yield

after 45 minutes as judged by the IH NMR spectrum. This time the yield was

higher, but benzyl mesylate and dibenzyl ether had formed, the latter compound

confirmed by comparison with authentic material. No adequate resolution could

be achieved by thin layer chromatography. Attempts to crystallise the material

were mixed. Formation of two layers was achieved on heating the oil in hexane.

Residue that did not dissolve in hot hexane still contained benzyl N-n-propyl

carbamate and n-propyl methanesulfonamide, but much less benzyl alcohol. On

cooling of the hexane layer, a white precipitate appeared. On analysis by IH

NMR and high resolution mass spectroscopy, benzyl N-n-propyl carbamate was

still the major component with less n-propyl methanesulfonamide but more

benzyl derived products. This was also confirmed in the t3C NMR spectra but no

more resources could be dedicated to finding an alternative recrystallisation

procedure.

3.1.6 Summary of Carbamate Synthesis

An unambiguous synthesis of carbamates from carbon dioxide, the first to use

either amines or alcohols as starting materials has been demonstrated. This

method does not use phosgene or use isocyanates as intermediates nor does the

mechanism involve nucleophilic attack of the carbon dioxide adduct, that is

formation of carbamates by alkylation of the carbamate anion. Evidence for this

comes from the use of amines and phenol as nucleophiles, which under the

reaction conditions, cannot act as or be converted to electrophiles capable of

reacting by a SN2 mechanism.
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Yields of carbamates were typically between 20-45%, lower yields occurring in

cases where there was a purification problem. This was usually due to

sulfonamide impurities which arose from the reaction of excess methanesulfonic

anhydride with excess amine. If decomposition of mesyl carbonate intermediates

was occurring, sulfenes could be generated which would increase the likelihood

of mesylation of substrated occurring and hence, increasing impurity levels.

3.2 Synthesis of Carbonates

3.2.1 Introduction

Since conditions had been optimised for the synthesis of propyl methanesulfonyl

carbonate, we decided to investigate the reactions of this type of compound as it

was a suitable precursor to carbonates and their derivatives. It was not known at

this time whether synthesis of unsymmetrical carbonates was possible without

also forming the symmetrical compound as a by-product. It was already known

that to make any use of n-propyl mesyl carbonate, it had to be reacted with a

nucleophile within 48 hours if kept under reaction conditions, as after this time

only propyl mesylate remained (see Chapter 2).

The next stage of development was to find conditions for the synthesis of

carbonates by subsequently adding an alcohol to the mesyl carbonates. The

majority of reactions were carried out using DBU and n-propanol in acetonitrile.

Initially, reactions were carried out under 3.5 bar of carbon dioxide to generate

the mesyl carbonate, the second stage of the reaction to make carbonates was

carried out at atmospheric pressure.
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3.2.2 Synthesis of Unsymmetrical Carbonates

3.2.2.1 Development from Symmetrical Carbonate Synthesis - Unsuccessful

Attempts

R'QH

Scheme 3.17: Attempted unsymmetrical carbonate synthesis

Adding mesyl anhydride to n-propanol and DBU pressurised with carbon

dioxide, followed by an excess of more n-propanol reacted at reflux temperature

for 3 days, led to dipropyl carbonate 17 in 36% yield with no other products

present in the gas chromatogram or IH NMR spectrum. Following the same

procedure it was envisaged that adding a different alcohol should yield an

unsymmetrical carbonate (scheme 3.17), as should reacting a different alcohol

with carbon dioxide.

By generating substantial amounts of n-propyl methanesulfonyl carbonate,

improvement of conditions needed for subsequent nucleophilic attack on the

carbonyl compound could be accelerated by splitting the mixture and using

different nucleophiles on each aliquot. In this way direct comparisons could be

made between each nucleophile on the activated carbonyl compound.

The previous experiment was repeated, pressurising n-propanol with carbon

dioxide, but three different alcohols were added to the reaction, once it had been

split into three aliquots, to directly compare the reactivity of a primary alcohol

(n-propanol), a secondary alcohol (i-propanol) and benzyl alcohol (scheme 3.18).

Barely any organic material was recovered from the reaction of n-propanol. i-
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Propanol barely reacted, the major product was di-n-propyl carbonate with only a

trace amount of the unsymmetrical carbonate.

Benzyl n-propyl carbonate was made, but due to the large excess of benzyl

alcohol remaining, the material was lost on attempts at purification.

On another attempt with faster addition of methanesulfonic anhydride to n-propyl

carbonate anion, results were better, but still not useful. Di-n-propyl carbonate

formed, but whether this was due to added n-propanol or it had formed in situ

was not known. i-Propanol yielded equal amounts of n-propyl-i-propyl

carbonate'f" and di-n-propyl carbonate, the isomers being inseparable. Benzyl n-

propyl carbonate had no other carbonates present, but again, excess benzyl

alcohol could not be completely removed.

Generally reactions using i-propanol were worse compared to n-propanol. i-

Propanol gave mixtures following the carboxylating and mesylating procedure as

for n-propanol. On addition of n-propanol to the reaction mixture, the

unsymmetrical carbonate was produced but in the same ratio as i-propyl mesylate

and a small amount of di-n-propyl carbonate, which could not be separated.

Formation of di - i-propyl carbonate was poor, yielding i-propyl mesylate and i-

propyl carbonate in less than 2% yield by NMR. Adding benzyl alcohol to a

similar aliquot did give benzyl i-propyl carbonate, but over three-quarters of

recovered material was benzyl alcohol, which would not have been a useful

general procedure to adopt.
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Scheme 3.18: Initial results of unsymmetrical carbonate formation

Attempts at unsymmetrical carbonate formation (using n-propanol, i-propanol

and benzyl alcohol) gave mixed results. Either the symmetrical carbonate

formed or as a mixture with the required product making isolation of the pure

required product difficult. Reaction of benzyl alcohol was good but there was a

trace amount of dibenzyl carbonate30,87 and so much benzyl alcohol as to give

<10% yield after isolation and not enough material for microanalysis.

3.2.2.2 Optimisation of Di-n-Propyl Carbonate Synthesis

It was decided to focus on optimising the conditions for the synthesis of di-n-

propylcarbonate, as it was easily identified by spectroscopy and distinguishable

from by-products, which it was hoped, would speed up optimisation. The first

reaction of n-propanol and DBU pressurised with carbon dioxide followed by
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addition of methanesulfonic anhydride and a second amount of n-propanol gave

dipropyl carbonate and propyl mesylate in 26% and 13% yield respectively.

However, even though the reaction worked in low yield, it was noticed that using

bubbling carbon dioxide and no further addition of n-propanol still yielded

dipropyl carbonate. The indication was that not all the n-propanol was being

carboxylated and furthermore, propyl mesyl carbonate was being consumed as it

was being synthesised. Further attempts at carbonate synthesis were halted until

the procedure for propyl mesyl carbonate formation had been optimised.

Otherwise, all attempts at unsymmetrical carbonate synthesis would have

symmetrical carbonate contaminating the product.

It was decided to follow the procedure which gave the minimum amount of by-

products (Table 2.1, entry 11), balanced with the highest yield of mesyl

carbonate. Then, alcohols could be added under a variety of conditions to see

what the best method for carbonate synthesis from mesyl carbonates was.

As a comparison reaction, n-propyl mesylate was synthesised and isolated, then

later slowly added to an excess of preformed n-propyl carbonate salt in

acetonitrile in a cold bath. Di-n-propyl carbonate was produced in 51% yield, in

unoptimised conditions. Unlike the Monsanto procedure, where pressure and

heat were required using alkyl chlorides as electrophiles," alkyl mesylates did

not need either. This result would go some way to explaining earlier mixtures of

symmetrical and unsymmetrical carbonates.

3.2.2.3 Attempted Synthesis of Tertiary Carbonates

As the stability of the mesyl carbonates was still speculative, initial experiments

that used t-butanol were carried out without base. After two hours n-propyl
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mesyl carbonate was still the major component in the reaction. So, 10 mol% 4-

dimethylamino pyridine (DMAP) was added to the reaction and it was heated to

40 "C. After 3 days, t-butanol still hadn't reacted, the only change being the

increase of n-propyl mesylate in relation to n-propyl mesyl carbonate.

o

~oAo ...
8

Scheme 3.19: Unsuccessful conversion to tertiary carbonates

The experiment was repeated but the carbonate anion transfer time was

decreased from 2 hours to 30 minutes and no DMAP was added. Again r-butanol

still had not reacted after 3 days (scheme 3.19), the major product being n-propyl

mesylate with minor products of dipropyl carbonate, dicarbonate and some

residual mesyl carbonate. Since it was likely that the steric bulk of the z-butyl

group was responsible for no reaction occurring with propyl mesyl carbonate, the

same reasoning suggests that z-butanol shouldn't yield I-butyl mesylate with

methanesulfonic anhydride" but, the less sterically encumbered r-butyl carbonate

anion should have no difficulty in being mesylated. Also, r-butanol should be a

better nucleophile with carbon dioxide than n-propanol. However, on reaction of

r-butanol with carbon dioxide and methanesulfonic anydride, almost no organic

product was recovered. Repetition of the reaction, followed by addition of n-

propanol gave propyl mesylate and t-butanol only. In light of these results it was

decided to concentrate on primary and secondary alcohols only.
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3.2.2.4 Synthesis of Aromatic Carbonates - Phenyl n·Propyl Carbonate 18

18

Scheme 3.20: Synthesis of phenyl n-propyl carbonate

Under identical conditions to the reactions using r-butanol, phenol had reacted

with n-propyl mesyl carbonate successfully to yield the required carbonate 18

(scheme 3.20). By inspection of the proton NMR, there was less phenyl propyl

carbonate than n-propyl mesylate, which was contrary to the results that had

been observed developing the reaction thus far.

By decreasing the transfer time of the carbonate anion, after further reaction for

22 hours at 40°C, phenyl propyl carbonate 18 was the major product in 35%

yield. No mesyl carbonate remaining as judged by absence of a singlet at 3.4

ppm in the IH NMR spectrum. Doing the same experiment at 50°C for 20 hours

gave n-propyl mesylate as 90% of the product as determined by 1H NMR

spectroscopy.

3.2.3 Development of the Reaction of Alcohols with a-Propyl Mesyl

Carbonate8

All reactions that involved the synthesis of n-propyl mesyl carbonate, followed

by attempted carbonate formation with benzyl alcohol or i-propanol, following

the same procedure as for phenyl n-propyl carbonate, failed to give the

unsymmetrical carbonate as the major product in any instance. The highest yield
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was - 8% of benzyl n-propyl carbonate along with di-n-propyl carbonate, which

was inseparable

The probable reason for low yields and mixtures were either no added base to

drive the reaction or not enough alcohol was being added to react with all

mesylate compounds (it was assumed, incorrectly, that the mesyl carbonate

would be more reactive than the mesyl anhydride). The excess of

methanesulfonic anhydride was leading to large amounts of alkyl mesylates of

both the starting alcohol and added alcohol which was reducing carbonate

formation. Mesylation of the added alcohol seemed to be occurring to a greater

extent than the carbonate forming reaction even though no extra base was being

added.

The reactions of n-propyl mesyl carbonate with i-propanol and benzyl alcohol

were repeated but 10 mol% DMAP was added since its participation in

acetylation reactions is well documented," but gave no advantage in carbonate

formation. Adding excess benzyl alcohol and i-propanol with stoichiometric

amounts of triethyl amine did produce small quantities of benzyl propyl

carbonate (typically less than 5%), but no i-propanol derived carbonates.

o

~oAoM.s
8

o

~oAo~Ph
21

Scheme 3.21: Side reaction of dibenzyl carbonate formation
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The problem with the synthesis of benzyl n-propyl carbonate was that small

amounts of dibenzyl carbonate were being produced also, probably due to the

large excess of benzyl alcohol used and the heating of the reaction (scheme

3.21). Flash chromatography isolated the two compounds together (due to

almost identical polarity), but the low recovery ruled out further purification by

vacuum distillation, as the two carbonates have very similar boiling points.

A satisfactory method for carbonate synthesis still had not materialised due to

low yield and many by-products. Mesylate by-products were easily separated by

chromatography but carbonate by-products were not. Similarly, the reaction of

i-propanol with n-propyl mesyl carbonate gave the inseparable mixture of di-n-

propyl carbonate and the isomeric n-propyl-i-propyl carbonate. Still, it had been

shown that base definitely led to an improvement in the reaction.

3.2.3.1 Reactions of Benzyl Mesyl Carbonate 32

Initial reactions of benzyl alcohol with carbon dioxide fared the same as for n-

propyl mesyl carbonate. In the absence of base, no benzyl phenyl carbonate was

synthesised after addition of phenol, the main products were dibenzyl

dicarbonate, inferred from the 13C NMR spectrum, and benzyl mesylate. Using

n-propanol as a nucleophile on the supposed benzyl mesyl carbonate gave no

carboxylated products at all. Adding 10 mol% DMAP gave little improvement.

Only when the reaction was done with triethylamine as a base after the second

alcohol was added, was a difference made. However, less than 5% benzyl propyl

carbonate was produced from analysis of the lH NMR spectrum. In the presence

of base, phenol proved to be the better nucleophile as expected, yielding benzyl
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phenyl carbonate along with dibenzyl carbonate. Repeated chromatography

could not separate these two compounds.

3.2.3.2 Reactions of i-Propyl Mesyl Carbonate 33

Reactions making i-propyl mesyl carbonate suffered similar problems. n-

Propanol and phenol did not react with i-propyl mesyl carbonate in the absence

of base, the only products were mesylates of the alcohols. Using pyridine

improved conversion to benzyl i-propyl carbonate on reaction with benzyl

alcohol, but dibenzyl ether could not be separated from the product. Reaction of

phenol with i-propyl mesyl carbonate gave no required products either at room

temperature or at reflux temperature.

The approach of using the less nucleophilic alcohol as the reactant with carbon

dioxide was also successful using i-propanol to yield benzyl i-propyl carbonate

19 (scheme 3.22), with very little di-i-propyl carbonate and no dibenzyl

carbonate.

33 19

Scheme 3.22: Synthesis of benzyl i-propyl carbonate

The nature of the benzyl derived products, viscous oils, made isolation in

sufficient quantities for full characterisation impossible due to poor yields after

two chromatographic separations trying to remove dibenzyl ether.
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3.2.4 Improved Synthesis of Unsymmetrical Carbonates

3.2.4.1 Introduction

It was observed from carbamate synthesis that in side-by-side reactions of mesyl

carbonates, using triethylamine in one reaction and pyridine in the other, that

pyridine gave the cleaner reaction. It was decided that after adding the second

alcohol to the mesyl carbonate, pyridine would be added and the reaction would

not be heated at all.

3.2.4.2 Reactions of Benzyl Mesyl Carbonate 32

ROH

+xs~O

32
+ ROMs + BoOMs

+ BoOH

Scheme 3.23: Synthesis and reaction of benzyl mesyl carbonate using excess

Using benzyl alcohol as the substrate to react with carbon dioxide, benzyl mesyl

carbonate was generated using 1.8 equivalents of methanesulfonic anhydride and

was added to n-propanol, i-propanol and phenol. All reactions gave the

respective unsymmetrical carbonates, but also mesylates of both alcohols in each

reaction, dibenzyl carbonate and residual benzyl alcohol (scheme 3.23).

Attempts to separate the carbonates always gave some dibenzyl carbonate

remaining in the product. Nevertheless, the reaction using pyridine at no higher

87



than room temperature had shown promise. However, even when a four-fold

excess of n-propanol was added, dibenzyl carbonate persisted as a by-product. It

was not possible to isolate pure benzyl n-propyl carbonate as repeated

chromatography proved futile. The purest fraction obtained still contained about

10% dibenzyl carbonate as judged by the 1H NMR spectrum.

3.2.4.2.1 Synthesis of Benzyl Phenyl Carbonate 20

PhD"

Pyridine

32 20

Scheme 3.24: Synthesis of benzyl phenyl carbonate

Repeating the reaction using only 1.2 equivalents of methanesulfonic anhydride,

but at higher concentration, at -30 QC followed by addition of phenol and n-

propanol to equal aliquots seemed to reduce a lot of negative factors. The cooler

transfer temperature limited dibenzyl carbonate formation in between finishing

carbonate anion transfer and adding the second alcohol. Less methanesulfonic

anhydride reduced the yields of mesylates, thus making the crude product easier

to isolate by flash chromatography, as a higher proportion of loaded material

would be product. Indeed, benzyl phenyl carbonate 20 was isolated and fully

characterised in 25% yield (scheme 3.24). Some remaining product was not

isolated due to the extremely similar polarity to dibenzyl carbonate.
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3.2.4.3 Reactions of n-Propyl Mesyl Carbonate 8

Using a method that seemed to give good results, the synthesis of i-propyl-n-

propyl carbonate was attempted. However, even when a four fold excess of i-

propanol was used, a mixture of the symmetrical and unsymmetrical carbonates

was produced. Tertiary alcohols still did not react with n-propyl mesyl

carbonate. Addition of amyl alcohol gave no amyl derived products. Only di-n-

propyl carbonate and n-propyl mesylate were observed (scheme 3.25).

o

An-PrO OMs
8

o

A+
n-PrO OPr-n17

o

A.n-PrO OPr-1

Scheme 3.25: Reaction of amyl alcohol with n-propyl mesyl carbonate

3.2.4.3.1 Synthesis of Benzyl n-Propyl Carbonate 21

o

~oAo ...
8 21

Scheme 3.26: Synthesis of benzyl n-propyl carbonate
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Since benzyl alcohol tended to react with benzyl mesyl carbonate when

generated in situ unless a more nucleophilic substrate was added to the reaction,

the logical conclusion was to react the less nucleophilic alcohol with carbon

dioxide and add benzyl alcohol to the mesyl carbonate. When n-propyl mesyl

carbonate was prepared and reacted, benzyl n-propyl carbonate 21 was the major

product (scheme 3.26) along with residual benzyl alcohol. Some dipropyl

carbonate was present but the product was easily separated by flash

chromatography in 28% yield and in more than 99% purity.

3.2.4.4 Reaction of Methyl Mesyl Carbonate 22

3.2.4.4.1 Introduction

Since methyl phenyl carbonate has been cited as an alternative to phosgene

derived reagents,89 it was decided to attempt its synthesis from carbon dioxide.

The aim was to demonstrate the utility of the reaction, not by just synthesising an

unsymmetrical carbonate from C02, since this in itself had already been

demonstrated and was precedented,55,64 but to take another step forward and

make a useful carbonate which was derived from phenol.

3.2.4.4.2 Synthesis of Methyl Phenyl Carbonate 23

PhOH

Scheme 3.27: Synthesis of methyl phenyl carbonate

90



Using methanol, carbon dioxide and 1.2 equivalents of methanesulfonic

anhydride, methyl mesyl carbonate 22 was synthesised. Addition of 1.2

equivalents of phenol and pyridine at 7 °C immediately led to a rise in

temperature to 24°C, such that the reaction needed further cooling. However,

the result was a very clean reaction with only two products detected by tic, IH_

NMR and mass spectroscopy. Methyl phenyl carbonate 23 had been produced

(scheme 3.27) in 25% yield in a ratio of 27:1 with phenyl mesylate. This was the

first synthesis of methyl phenyl carbonate from carbon dioxide and one of the

few reports of this product being synthesised from phenol at ambient

temperature."

3.3 Synthesis of Thiocarbonates

3.3.1 Introduction

Thiocarbonates have been shown to be useful as pesticides", insecticides" and

antibiotics.F In the same way that carbonates and carbamates can be synthesised

from alkyl mesyl carbonates analogously to chloroformates, so too can

thiocarbonates simply by using any suitable thiol as a nucleophile." Thiols are

better nucleophiles than amines, so it was trivial to extend the scope of the

reaction to synthesise thiocarbonates.

In analogous fashion to alcohols and amines, both aromatic and aliphatic thiols,

3,5-dichlorothiophenol and ethane thiol respectively, were used in reactions with

propyl and benzyl mesyl carbonate. As a result, using 1.1-1.2 equivalents of

methanesulfonic anhydride, three new thiocarbonates 24, 25 and 26 were made

from carbon dioxide in varying yields.
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3.3.2 Synthesis of n-Propyl S-3,5-Dichlorophenyl Thiocarbonate 24

Cl

A
HsUCt

Ct

"~/'vJ's11a
24

Scheme 3.28: Aryl thiocarbonate formation from n-propyl mesyl carbonate

The best example of using a thiol nucleophile was formation of propyl S-3,5-

dichlorophenyl thiocarbonate 24 (scheme 3.28) in 37% yield (based on n-

propanol). This demonstrated that mesyl carbonates could still react with

relatively electron deficient nucleophiles in respectable yield. If, as was

suggested earlier that the optimised mesyl carbonate yield was in the region of

45%, attack on the carbonyl compound would be occurring in excess of 80%

yield. The reaction would best be utilised synthetically then if the cheapest or

more abundant component was carboxylated and sulfonated, followed by

reaction with a pre-made nucleophile, for example, an intermediate thiol or

amine. In this way, biologically active compounds, such as pesticides, could be

made simply with no need for phosgene or isocyanates.

3.3.3 Synthesis of Benzyl S-Ethyl Thiocarbonate 2S

o 0
II EtSH A

Ph~O~OMS Ph~O s~
n ~

Scheme 3.29: Synthesis of benzyl S-ethyl thiocarbonate
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Ethanethiol reacted as expected with benzyl mesyl carbonate to yield benzyl S-

ethyl thiocarbonate 25 within one hour of its addition (scheme 3.29). The

reaction and isolation in 25% yield were successful at the first attempt and so

were not optimised.

3.3.4 Synthesis of Benzyl S-3,5-Dichlorophenyl Thiocarbonate 26

~

HS~CI

Scheme 3.30: Synthesis of benzyl S-3,5-dichlorophenyl thiocarbonate

Standard formation of benzyl mesyl carbonate followed by reaction with 3,5-

dichlorobenzene thiol successfully produced the corresponding thiocarbonate

(scheme 3.30) as proven by high resolution mass spectroscopy and NMR spectra.

However, repeated chromatography could not separate the product from 3,5-

dichlorophenyl disulfide, which was a by-product of the reaction and very

prominent in the mass spectra.

3.4Summary

Generating mesyl carbamates gave a precursor which could react analogously to

carbamoyl chlorides. This meant that it was possible to synthesise both alkyl and

aryl carbamates. The reaction was not restricted solely to simple carbamates but

to difunctionalised molecules also (scheme 3.31).
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Scheme 3.3l: Reactions of mesyl carbamates

By a simpJe adaption of the methodology, alcohols could also be made to react

with carbon dioxide and the intermediate trapped as a reactive mesyl carbonate.

A viable synthetic analogue to chloroforrnates has been demonstrated using C02

as a carbonyl source under mild conditions. Exhibited for the first time are the

syntheses of unsymmetrical carbonates derived from the alcohols, including aryl

carbonates which typically require heat to be formed.

Carbonates and carbamates are easy targets by reaction of mesyl carbonates with

alcohols and amines respectively; it is viable to use aliphatic as well as aromatic

nucleophiles. Less common but no less viable products are thiocarbonates and

functionalised carbamates (scheme 3.32). As would be expected, amines are

better nucleophiles than alcohols and this can be demonstrated simply by the

reaction of diethanolamine with n.-propyl mesyl carbonate (see section 4.3.2).
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The scope of the reaction was fairly broad so applying the new reaction more

specifically to carbamates in the context of dendrimer synthesis was the next

goal.

»<: /OH

"~

o

RO~N~OH

~OH

o
R'OH A

RO OAr-:

J R,NH
o

RoANHR'

Scheme 3.32: Reactions of mesyl carbonates
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CHAYfER 4 - ATTEMPTED APPLICATION OF METHODOLOGY TO

DENDRIMER SYNTHESIS

4.1 Introduction

Dendrimers are highly branched molecules that have a regular geometrical

structure.95-99 Like polymers, they have repeating units but their main

characteristics are that they have regular and symmetrical branching within the

molecule and each molecule has the same molecular weight, that is dendrimers

are monodisperse.

The concept of hyperbranched macromolecule formation was first postulated by

Flory,too suggesting the reaction of AB2 type monomers, where only functional

groups A and B can react together. If the synthesis is controlled such that only

one type of functional group reacts on each molecule, that is to say either A or B

but not both, then highly regular and controlled structures are possible, named

dendrimers.

There are two main methods of synthesising dendrimers, convergently or

divergently. The first dendrimers were synthesised independently by Newkome'"

and Tomalia96,97 by divergent methods. This usually involves beginning with a

molecule that has 2,3 or 4 fold symmetry and identical functional groups, which

are then completely reacted with an AB2 monomer, whether A or B reacts being

dependant on the reaction chosen. Every repeating unit that increases the number

of branches is referred to as a generation. So, the exhaustive reaction of the core

forms the first generation as the branching usually increases from two to four, or

three to six. The sequence is then repeated, although sometimes protection-

deprotection or activation steps are required in between, until the required

generation number is reached. Generation four or five is usually the upper
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practical limit to most dendrimers,'?' although higher generations have been

~H'

o ~NH

N~NII~N~NH~NH'),

o
Scheme 4.1: Tomalia's Starlsurst'" PAMAM Dendrimer

reported.

o

~OMe

o

~oMe

OMe

Newkome and co-workers coined the term arborols99 as their compounds were

tree-like molecules with alcohol functional groups. Dendrimers (Gr: dendr =

branched, mer = unit) suggested by Tomalia," was a more fully encompassing

term and is widely accepted. The synthesis of the Tomalia group's PAMAM

(polyamidoamine) dendrimer (scheme 4.1), also called Starburst™ dendrimer, is
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simple and hence the dendrimer is one of only two in commercial production.

The other, Astramol by DSM, utilises an improved process of the original

approach by Vogtle95 to synthesise polyamines. Tomalia's approach was to react

ammonia with methyl acrylate in a pseudo-Michael addition, to yield the N-

branched tri-ester. Subsequent reaction with excess ethylene diamine yielded the

tri-amide-triamine. The sequence of reactions with methyl acrylate and ethylene

diamine is then repeated. Variations are possible using different amines and/or

cores.

The convergent approach to dendrimer construction was first described by

Frechet and Hawker.102 Instead of beginning with a core and increasing the

degree of branching by iterative sequences, dendritic wedges or dendrons are

synthesised by reacting two terminal units with one monomer, usually possessing

a protected functionality. After the deprotection step, the new molecule is

attached to 0.5 equivalents of monomer. When required, each dendron can be

tethered to a common core. This method uses less reagents but careful selection

of protecting group is required as build up of the dendron leads to greater steric

hindrance, which can affect reactivity.

Dendrimers now appear with many different functional groups, at different

generation numbers and have different surface functional groups which affects

reactivity and solubility.l03, 104 However, given the variety and breadth of

research in this field, there have been very few reports of urethane and carbonate

dendrimers. The fact that excessive amounts of phosgene would normally have

to be used and lack of discrimination when reacting with different functional

groups may have precluded this line of work thus far. Also, there would normally
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be more than three reactive sites per molecule which could add in the problem of

crosslinking.

Frechet demonstrated accelerated dendritic wedge construction by using different

functional groups between generations, lOS one of which was the urethane linkage,

generated from phosgene. In this way, generation three wedges were made from

first generation monomers in one pot.

+

o
ij-N)lN~

N~ l::::.;N

cm

HEAP

l)CDI
2)HEAP

Scheme 4.2: Carbonate dendrimer synthesis using CDI

Rannard and Davis used carbonyl diimidazole (CDI) in a convergent synthesis

(scheme 4.2),106 as a safer and more selective phosgene substitute, to selectively

react between primary and second alcohols. Initial isolable intermediates were

imidazole carboxylic esters which could then react further with branched alcohols

to give up to third generation carbonate dendrimers. No aromatic carbonates can

be generated via this method as phenoxides are better leaving groups than

imidazolides.l'"
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Scheme 4.3: Hyper branched polyurethanes; (Top) By Curtius Rearrangement.

(Bottom) By Decomposition of Aryl Carbamates to Isocyanates

The only other example of a urethane functional group in a hyperbranched

macromolecule also utilised CD!. Woolley's group used this reagent to make

aryl carbonate polymers in this instance, but silver fluoride had to be used to
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simultaneously drive the reactions by precipitating silver imidazolide and remove

silyl ether protecting groups.i'"

Other examples of urethane hyperbranched polymers use benzyl alcohol diaryl

carbamates which decompose on heating to form isocyanates and then self

polymerise. lOS Similarly, decomposition of dihydroxybenzoyl azides to

isocyanates by the Curtius rearrangement yielded hyperbranched urethanes

(scheme 4.3).109

As mentioned above, the scarcity of carbamates in dendrimers or hyperbranched

polymers was a reason to attempt their synthesis adapting our procedure.

4.2 Attempted Convergent Approach

4.2.1 Diethanolamine as Monomer

The previously attempted synthesis of bis(1,5-pentyl)-N,N-diethyl carbamate II

led to isolation of mono-substituted product 12 in 34% yield (scheme 4.4). This

could be due to the lower nucleophilicity of 1,5-pentanediol with mesyl

carbamate than with unreacted diethylamine, which would react faster than the

diol, to give a urea.

Scheme 4.4: Attempted synthesis of a dicarbamate
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Since the reaction of N,N-diethyl mesyl carbamate with 1,5-pentanediol was

successful, a simple extension of the procedure was to use a branched diol, such

as diethanolamine, but selectively react the less nucleophilic hydroxy sites

instead of the more nucleophilic amine by forming the di-alkoxide in situ. Even

though yields of mesyl carbamates so far were variable, the cost of the reagents

did not make scale up of the reaction a problem.

The goal was to generate carbamates with a free amine group, available for

subsequent reaction with carbon dioxide. To realise this, diethyl mesyl

carbamate would be generated and transferred to the metal salt of diethanolamine

(scheme 4.5). No protection would be required if the addition was carefully

monitored and controlled.

+-
Nao~

NH

+-~
Na 0

Scheme 4.5: Intended route to convergent dendrimers

Initially, diethyl carbamate anion was generated and the mesyl carbamate made

from it. This was subsequently added to a hot, stirring suspension of sodium

hydride and diethanolamine in acetonitrile. Following the reaction by tlc over

two days gave no diethanolamine derived products, in the organic or aqueous

layers. The only products determined by IH NMR were diethyl

methanesulfonamide." urea 77 and carbamic anhydride.I" The reaction was
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repeated using sodium hydride in DMF, but again, the reaction was unsuccessful

as there was no methylene triplet at or above 4.00 ppm, which would indicate the

carbamate. All significant signals were at or below 3.80 ppm in the 1H NMR

spectrum. Also, the 13C NMR spectrum showed a signal at 150 ppm, which is too

low for a carbamate ester and is more likely to be the carbamic anhydride.

Earlier work within the group had shown the convergent approach using carbon

dioxide to be problematic and in the process the exhaustive reaction of

diethanolamine had occurred, yielding a dicarbamate ester urea (scheme 4.6).

This compound had been used to monitor reactions of diethanolamine by

detecting when its reaction had proceeded too far.

1) NaH

o
2) II
E~N~X

X=CI,OMs

Scheme 4.6: Attempted carbamoylation of diethanolamine

Instead of trying to selectively form the free amine of a dicarbamate, it was

decided to deliberately make the tri-substituted product using sodium hydride to

determine whether this approach was suitable and see if a more inherent problem

was occurring, for example, very low mesyl carbamate yields. Assuming less

than 50% yield for conversion of diethylamine to mesyl carbamate, a sufficient
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amount was used so as still to be present to react and form either the dicarbamate

ester, urea derivative or mixture thereof. However, on analysis of the crude

product after one day, no carbamate was present as compared with the

trisubstituted product above. The problem seemed to be the deprotonation of the

hydroxy groups of diethanolamine. The reaction was repeated using potassium

hydride and using sodium ethoxide. On comparison of the respective 1H NMR

spectra with the carbamate signals of the trisubstituted diethanolamine, the

reaction was deemed to have failed in both instances. To assist in understanding

what some problems might be, it was decided to acetylate diethanolamine

selectively with acetyl chloride to make the diester without making the amide

(scheme 4.7).

HO~

NHHr
1) NaH

o
2) )l
CH3 Cl

o

Scheme 4.7: Attempted reaction of selective acetylation of diethanolamine

Since two solvents had been used in the attempt to synthesise a carbamate from

diethanolamine, acetonitrile for the carboxylation step and DMF for the

deprotonation, single solvents were used next for both reactions to eliminate any

negative effect that using a binary solvent system might have. Three reactions

were run in parallel as direct comparisons. Sodium hydride was the base and
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diethanolamine the substrate used in all three instances but the reaction

conditions were different. Two reactions were run in THF, one of which was

sonicated to activate the sodium hydride before stirring. The third reaction was

run in DMF. To each stirring solution was slowly added 1.1 equivalents of acetyl

chloride to minimise the chance of amide formation. After stirring overnight,

none of the reactions showed any signals in the IH NMR spectrum above 3.9

ppm, strongly suggesting no ester had formed. However, for the stirred reaction

in THF, a singlet around 2 ppm and a parent ion of 148 in the Cl mass spectrum

indicated the possibility of mono-acetylation occurring, albeit most likely on the

nitrogen atom. No selectivity had occurred.

Another attempt to form the dianion of diethanolamine using a literature

procedure.l'" followed by acetylation also failed, again, judged by no ester signal

relating to the methylene group in the NMR spectrum. After this, selective

acetylation was abandoned as it was possible that it was not a suitable model for

the reaction of N,N-diethyl mesyl carbamate with diethanolamine.

A procedure for generating N,N-diethyl mesyl carbamate as the major product

was repeated in acetonitrile and added to a stirring suspension of sodium hydride

in DMF with diethanolamine. As before, no carbamate was formed as compared

to the trisubstituted product. Using DMF as the solvent for both the reaction with

carbon dioxide and sodium hydride gave no improvement. A hypothesis was that

the sodium or potassium cation was coordinating to diethanolamine which could

act as a podand. This coordination would lower the reactivity of the hydroxy or

alkoxide moiety of diethanolamine. Thus, this route to selective reaction at the

oxygen atoms of diethanolamine was stopped and other routes to branched

molecules devised instead.
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4.2.2 Use of a Protecting Group bis(2-hydroxyethyl) 4-

nitrobenzenesulfonamide as a monomer

excess NsCI
N~

~NN'

NsO

o

/"---N)lO) ~'I ~NN'

~N~O

28 II
o

PhSH

Scheme 4.8: Dendron synthesis using nosyl activating and protecting groups

4.2.2.1 Reaction with N ,N-Diethyl Mesyl Carbamate

Earlier work done by the group had shown that the amine of diethanolamine

could be protected as a 4-nitrobenzenesulfonamide group (nosylarnide),'!'

chemistry carried out on the substrate and the 4-nitrobenzene sulfonyl group

removed to give the free amine by the action of thiophenol (scheme 4.8).113 It

was the intention to selectively protect the amine group of diethanolamine,

leaving the hydroxy functional groups untouched, so later the molecule could be

effectively used as a diol to react with N,N-diethyl mesyl carbamate. Once the

dicarbamate had been made (scheme 4.9), the nosyl group would be removed and

the free amine would be available for further reaction. Ideally this reaction would
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occur with carbon dioxide and methanesulfonic anhydride to generate a reactive

dendron intermediate.

HO~

NNs-:
HO 27

o..
Et2N 7 OMs•

o

~N)lO) ~
NNs

'I ~
~N~O

II 28
o

Ns= S02-Q-N02

Scheme 4.9: Carbamoylation of protected diethanolamine

The first attempt at this approach, using diethyl amine to make the mesyl

carbamate followed by reaction with Ns-protected diethanolamine and

triethylamine as the base, gave no IH NMR signals above 3.9 ppm, suggesting no

reaction at the alcohols of the protected amine to give carbamates, much like the

attempted acetylations of diethanolamine.

Carboxylation of diethylamine was carried out again, but at -lOoC. The mesyl

carbamate was split into equal portions and reacted with Ns-protected

diethanolamine at 70°C but using two different bases, triethylamine in one

reaction and pyridine in the other. Both reactions successfully yielded

carbamates as indicated by NMR experiments and mass spectral data, which gave

two distinct parent ions, corresponding to mono and di-substituted carbamate

esters.
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The reaction using pyridine as a base gave a cleaner reaction, with much less

diethyl methanesulfonamide as a by-product. However, due to the small scale,

low yield and large number of products indicated by tic for both reactions,

isolation was not practical. Nevertheless, the reaction had shown that making

carbamates this way was possible, but complete reaction of the protected

aminodiol would be required for it to be a viable option for dendrimer synthesis.

Repeating the reaction was problematic as the bis (2-hydroxyethyl) nosylamide

had to be the limiting reagent, but the free hydroxy groups competed for reaction

with excess methanesulfonic anhydride instead of diethyl carbamoyl mesylate

(scheme 4.10). No evidence of carbamates was found. Also, amines had not

been as consistent as alcohols thus far upon carboxylation and mesylation,

perhaps due to the effect of amine acting as a base and, hence decomposing the

intermediate (scheme 2.22).

27
exre~

CARBAMATE

MsO,,\
NNs.:

MsO

Scheme 4.10: Side reaction of attempted carbamoylation
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The reaction was attempted again using a stoichiometric amount of

methanesulfonic anhydride to minimise the side reaction with protected

diethanolamine. Pyridine was used to help drive the carbamoylation by

displacing the mesylate group and activating the carbamoyl group. However,

very little material was recovered.

It was not known what effect the presence the nosyl group was having on the

reactivity of the hydroxy groups. If the reaction of the alcohols was being slowed

down with carbamoyl mesylate, then it was possible that after pyridine displaced

mesylate from the molecule, the intermediate was decomposing. So, carbamoyl

mesylate was made again and split into two fractions. Nosyl protected

diethanolamine was added to both fractions, one with pyridine and the other with

potassium carbonate.l+' Reaction of both overnight at ambient temperature gave

no carbamate signals in the IH-NMR spectrum, even though the aromatic signals

were still present. There seemed to be tetraethyl urea and carbamic anhydride as

in earlier reactions, so evidently, unreacted diethylamine was excluding

carbamate formation by reacting with mesyl carbamate first (scheme 4.11). This

route to dendrimers was proving troublesome and so was abandoned.

HO~

27 NNs

? CARBAMATE

+

Scheme 4.11: Side reactions of N,N-diethyl mesyl carbamate
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4.2.2.2 Reaction of nosyl protected diethanolamine with carbon dioxide

Since it had already been shown that simple carbamates could successfully be

made from mesyl carbonates and extended to diols, it was decided to use nosyl

protected diethanolamine as a diol and form a di-mesyl carbonate (scheme 4.12).

Diethylamine had been used before as a nucleophile with mesyl carbonates, using

stoichiometric amounts of pyridine to successfully make carbamates. It seemed

that the effect of the amine as a base, which could decompose the intermediate,

was lessened if the amine was utilised as the second substrate. Another

advantage was that diethylamine was inexpensive and commercially available, so

scale wasn't a problem and excesses could be used to ensure disubstitution.

~s 1) CO2• DBU
HO~ ~OH ------I~

27

o 0/
/"---N~OCH CH/~~CH CHO)lN~

) 2228 22 l

Scheme 4.12: Proposed route to protected carbamate dendrons

Initially, compared to simple alcohols, more acetonitrile than usual had to be used

to dissolve nosyl protected diethanolamine and on introduction of carbon dioxide,

no turbidity was observed at all, even with excess DBU, suggesting no reaction as

explained above. Even on extended reaction at cold temperatures, no cloudiness

was observed at all, which compared to all previous reactions indicates no

carboxylation. The reaction was repeated with less nosyl protected
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diethanolamine and kept at --42 QC until a precipitate formed. This time,

methanesulfonic anhydride was added to the solution in portions and when this

reaction was complete, diethylamine was slowly added with pyridine after the

reaction had warmed to -25 QC. The aim was to minimise any chances of the

intermediate decomposing. After the reaction, methylene signals were observed

that were in the correct region of the IH-NMR spectrum that could be adjacent to

a carbamate group. By comparison, the 13C-NMR spectrum showed one major

electronegative methylene signal that could be part of a carbamate but, two mesyl

signals were also present. Since direct mesylation of the substrate always seemed

to occur as well as mesylation of the carboxylated species, it was more than likely

that the signal at 67.09 ppm was that of the mesylated nosylamide diol, the same

product as in scheme 4.10. Comparing the proton NMR spectrum of the crude

nosyl protected generation one dendron 28, evidence for the formation of the

product is increased by the shift of the methylene signals. Looking at the methyl

region of the spectrum, two major signals can already be accounted for by diethyl

methanesulfonamide by both chemical shift and integration ratio with a

methanesulfonyl signal at 2.77 ppm. On comparison of the integration of the

smaller methyl signal with the minor methylene peaks, it is highly unlikely that

disubstitution has occurred, if the reaction occurred at all. If so, the low yield and

material recovery made this route unviable also.

Using protected diethanolamine was creating more problems than it was solving,

so a route to dendrimers was planned that wouldn't need any protecting groups.
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4.3 Divergent Dendrimer Synthesis

4.3.1 Introduction

Due to the higher nucleophilicity of amines, a convergent approach to a

carbamate dendrimer was problematic since there was a lot of urea, sulfonamide

and carbamic anhydride by-products from the carboxylation reaction. Also, the

selective reaction of the hydroxy groups of diethanolamine without protection of

the amino function had been shown to be unsuccessful, even using a variety of

methods.

A simple step forward would be to see if selectivity was possible in the reaction

of diethanolamine with a mesyl carbonate at the amino group instead of trying to

reverse the normal reactivity. Diethanolamine was chosen as it is an example of

an AB2 type monomer and would be an appropriate model for divergent

dendrimer synthesis. In theory, the amine function would react preferentially to

give the carbamate, the hydroxy groups should remain unreacted and hence, be

available for carboxylation in another reaction. It had already been shown earlier

that using 1,5-pentanediol and diethylamine could give carbamates by generating

mesyl carbonates. This time, there would be other alcohols present in the

molecule, which should be less reactive than the amine.
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4.3.2 Use of diethanolamine as a repeat unit

HO~OH

H
HO~N~OH

~

Scheme 4.13: Proposed divergent synthesis of functionalised carbamates

The di-mesyl carbonate was made in situ using the same method as before. A

neat excess of diethanolamine was added at about -30°C and the reaction kept

cool, then allowed to warm to ambient temperature (scheme 4.13). The mixture

was warmed for 24 hours and work-up attempted with different solvents. Results

observed from NMR spectra indicated that a sulfonamide-type product was in an

eight-fold excess by integration compared to a carboxylated product.

Comparison of the carbamate O-methylene signals with those in the alkyl region

showed them to be too disparate for carboxylation of both ends to have occurred

solely. The ratio of O-methylene to alkyl methylene integrals should be 4:6 but

was in fact 1:10. The 13CNMR spectrum displayed two carbonyl signals. The

formation of oligomers of 1,5-pentanediol could not be ruled out.

Since all reactants and products would contain pendant hydroxy groups and the

mode of addition of diethanolamine increased the chance of side reactions,

purification was not attempted as conclusive proof of the product was not found.
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Other problems were the oiling out of diethanolamine from acetonitrile at cold

temperatures, diethanolamine acting as a base in the reaction as no base was

added and the possibility of decomposition postulated earlier due to a medium

strength base being present.

The reaction was modified so the concentration of 1,5-pentanediol was decreased

to reduce the chance of oligomerisation. Once the di-mesyl carbonate was made,

it was transferred to a stirring, dilute solution of diethanolamine (due to solubility

problems) so both mesyl carbonate groups would react with the local excess of

amine groups. Excess diethanolamine was used as the base for the reaction also.

Results were more encouraging this time as one carbonyl signal was present in

the correct chemical shift region of the 13e NMR spectrum. One other carbonyl

type signal was present around 165 ppm, but whether this was due to a urea or

DBU could not be determined. Morpholine-type signals were present in the

proton NMR spectra, but these could not be rationalised in the mass spectrum.

Mass spectroscopy did indicate major peaks at 367 and 368 in the El and Cl

spectra respectively, whether this was due to excess protonation in the ionisation

chamber or the product was somehow already protonated is a matter of

conjecture. The data was not conclusive or corroborative.

Other peaks of note were at 335, indicating a drop of 31 mass units pertaining to

potential loss of CH20H from the tetrol dicarbamate 30. A peak at 236 was

apparent which could be either the M+l ion for the monocarbamate or the urea of

diethanolamine. This latter suggestion would account for the second carbonyl

signal at higher chemical shift.

It was surmised that the peak at 132 could be the M+ 1 parent ion for an

oxazolidinone, arising from internal transesterification of the monosubstituted
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carbamate.i'" but the same peak of value 132 was both El and Cl spectra so it is

also possible to arise from a fragmentation of a larger molecule (scheme 4.14).

/
+

Scheme 4.14: Hypothesised reactions to explain the presence of an oxazolidinone

Again, purification was unsuccessful as flash chromatography gave no

recognisable isolated products, probably due to the nature of all reactants and

products being so similar. What is more, DBU was among the first compounds to

elute, suggesting a strong affinity of the products for silica, so an alternative

purification would probably be needed. Attempting the same reaction at a

wanner temperature (-18°C) indicated little evidence of carboxylated products.

Transferral of the mesyl carbonate to diethanolamine at room temperature was

one way in which the solubility problem was remedied. Extracting the crude

product however did not give any leads no matter what solvent was used.

Chromatography through a silica column with ethyl acetate did not yield anything

useful until 50% methanol was added, then evidence of the correct product was

very strong, albeit as an inseparable mixture with 1,5-pentanediol. NMR

115



spectroscopy produced the following clues: carbamate methylene signals were

present in the correct region (4.10 ppm); a very large carbonyl signal was present

at 157 ppm and all major alkyl peaks fit in with a dicarbamate of structure 30;

HMQC and COSY two dimensional spectra indicated the correct connectivity for

IH_IH and IH_ 13Clinkages. The parent ion was present but not much larger than

noise in the mass spectrum. Addition of water to the mixture, separation and

removal of water showed removal of impurities but there was a strong indication

of 1,5-pentanediol still remaining. Chromatography or solvent extraction could

not separate the product from the diol. Using CH2Ch and acetonitrile to

solubilise diethanolamine gave no improvements in yield or selectivity.

Extracting the crude oil with either CH2Clz or diethyl ether, followed by aqueous

dissolution of the residue gave clearer spectra but, again, no product

improvements. More morpho line-type signals were seen, that is to say a cyclic

structure was most likely, but no other evidence supported this hypothesis.

To simplify matters, n-propyl mesyl carbonate was to be made rather than using a

diol, as there would be only one site of reaction and it would be easier to

determine how the reaction had proceeded. This would be a suitable model for

developing the reaction for diols and increasing the degree of branching from two

to four. Also, some general properties of such a molecule might be ascertained

on isolation, which it was theorised, would be easier. On reaction of n-propyl

mesyl carbonate with diethanolamine, the di-hydroxy terminated carbamate ester

(scheme 4.15) was successfully separated as indicated by IH and I3C NMR

spectroscopy and mass spectrometry. IR signals also confirmed the presence of

both hydroxy and carbonyl groups. This reaction also scaled up to gram scale in

31 % yield, after extractions of the crude residue with ethyl acetate and diethyl
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ether, followed by column chromatography on alumina. The small scale reaction

was purified on silica but the product had to be obtained by flushing the column.

Alumina had a lower affinity for the carbamate diol and so a purer product was

retrieved.

1) CO2• DBU

~OH

Scheme 4.15: Synthesis of a hydroxy terminated carbamate

Using 1,3-propanediol as the starting material was unsuccessful in carbamate

synthesis. No cyclised or linear products were found. Transferring the

carboxylation and mesylation reaction to 1,5-pentanediol was successful,

followed by reaction with diethanolamine and pyridine. Triethylamine could

potentially decompose the mesyl carbonate intermediate, so pyridine was used to

generate a more reactive intermediate and also act as a weak base. After

completion of the reaction, the NMR spectra indicated a very strong possibility of

the a tetrahydroxy-dicarbamate having been made, but the mass spectrum gave no

satisfactory parent ion or prominent fragments that matched up in El and Cl
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experiments. The product was derivatised with a large excess of acetyl chloride

and subsequently, the parent ion of the tetra-acetate of the dicarbarnate 30 (figure

4.1) was confirmed in the Cl mass spectrum at 535 (M+1)and 552 (M+18). All

corresponding peaks in the NMR spectra (including 2-dimensional connectivity

experiments) were consistent with the proposed structure. However, whilst trying

to remove solvent from the bulk sample, a completely insoluble solid formed

which was hypothesised to be polymer arising from crossJinking of unreacted

hydroxy groups with the ester termini.

o 0

AcO~ )l~ A ~OA'
N 0 0 N

AcO~ ~OAc

Figure 4.1: Ester terminated dicarbamate

Complications in identification of the product came about to part fr m the

unresolvable peaks attributed to the alkyl chains. By u ing 1,4-

benzenedimethanol.U'' it was hoped this substrate would implify th NMR

spectra and be a more reactive substrate with carbon dioxide. On reacti n of

benzene dimethanol, spectroscopic analysis of the product gave no indicati n f

the dibenzyl dial derived carbamate, either from integration in the NMR p trurn

or fragments in the mass spectrum. One parent ion was observed at mlz = 132

(M+1) that was corroborated by a M+18 peak in the Cl spectrum, that w uld

correspond to N-(2-hydroxyethyl) oxazolidinone. This could ari fr m

formation of the carbamate between diethanolamine and benzenedimethan I,

followed by an intramolecular transesterification of one of the aminoaJcoh
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groups leading to the N-substituted oxazolidinone (scheme 4.14). Peaks

consistent with a cyclised product were present in the crude tH NMR spectrum;

two triplets from the hydroxyethyl group and pseudo-triplets indicative of protons

bonded in a ring from the oxazolidone moiety. No further work was carried out

using this substrate.

4.4 Summary of Dendrimer Synthesis

On observation of reactions of diethanolamine and derivatives in attempted

carbamate formation from the reaction of diethanolamine, very mixed results

were obtained with various mesyl carbonates. From the analytical data presented,

synthesis of a hydroxy terminated dicarbamate molecule was possible but

subsequent isolation from impurities was the major stumbling block.

Yields from the use of nosyl-protected diethanolamine were too low to usefully

be able to purify the products and carry through another reaction stage. With

regards to a strategy based on diethanolamine as the major branching unit, a

divergent route seemed to suit this reaction methodology best, as well as

obviating the need for protecting group chemistry which would possibly reduce

the usefulness of the reaction.

For future consideration, a better methodology would be to separate the formation

of mesyl carbonates from the reaction of multi-nucleophiles with mesyl

carbonates until a better grasp of the chemistry could be had. Purification of the

reaction to yield just mesyl carbonate and propyl mesylate would eliminate many

side reactions, such as mesylation of the added nucleophile. In this way, there

would be a clearer indication of how difunctionalised mesyl carbonates react with

multifunctional nucleophiles.
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The potential to create hydroxy terminated carbamates from CO2 is present. 116

This has been achieved by discriminating between the reactivity of the amine and

hydroxy functional groups of diethanolamine, whilst requiring no protecting

groups. Whether this approach is best served by creating dendrimers or

attempting to create hyperbranched polymers from diethanolamine and carbon

dioxide in one step needs further research.
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CHAPTER 5 - EXPERIMENTAL

Materials

All chemicals were used as received from Aldrich chemical company.

Anhydrous acetonitrile was purchased from Aldrich chemical company. "Hi-

Dry" methanol was supplied by Romil. Trifluoromethanesulfonic anhydride was

used as received from Avocado. Carbon dioxide was supplied by BOC gases

(99%+). NMR spectra were obtained in CDCl3 or acetone-d" with TMS as

internal standard. THF was dried over calcium hydride.

Analytical

Elevated pressure reactions were carried out in a Buchi glasuster autoclave. IH

NMR spectra were carried out on Broker ACF 250, DPX 300 and ACP 400

spectrometers running at 250,300 and 400 MHz respectively, 13Cat 50.6, 75.5 or

100.6 MHz and 1~ at 376.5 MHz. NMR spectra were assigned using COSY,

HMQC, PENDANT or HMBC experiments. IR spectra were acquired from a

Mattson 1000 or Perkin-Elmer Paragon 1000 Ff-IR spectrometer and run on 16

and 4 scans respectively. Mass spectrometry data were run on a MicroMass

AutoSpec machine using NH3 as a carrier gas for Cl experiments.
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5.1 Experimental Procedures (Chapter 2)

5.1.1 Experimental for Section 2.1.2

Phenyl N,N.Diethyl Carbamate 1117

Method A: A solution of E~NH (2.6 mL, 25 mmol), pyridine (2.1 mL, 26 mmol)

and DBU (3.8 mL, 25.5 mmol) in toluene (40 mL) was stirred with CO2 bubbling

subsurface. The solution was cooled to -10°C in an ice-salt bath and CO2 was

bubbled continuously for 30 minutes, whereupon the solution turned cloudy

white. The solution was then added by cannula to a solution of SOCl2 in toluene

at -10 °C and stirred at this temperature for 45 min. The reaction mixture was

warmed to ambient temperature and then heated with phenol (2.98 g, 32 mmol)

and DMAP (1.15 g, 9.4 mmol) in pyridine (75 mL) at 95°C under N2 for 24

hours. The mixture was added to ice (30g), diethyl ether (30 mL ) and 1M HCI

(20 mL). The mixture was extracted with diethyl ether (3 x 30 mL), the ethereal

layers were combined and washed with 2M NaOH solution (30 mL) and a

solution of saturated aqueous KCl. The solution was dried (MgSO.), filtered and

solvent removed in vacuo to give a light yellow oil. Phenyl N,N-diethyl

carbamate was isolated after flash chromatography (Si02, CH2CI2) as a yellow oil

(0.97 g, 20%): lH NMR (250 MHz, CDCI3) l) 1.22 (6H, 2 overlapping br t, J = 7

Hz, CH3), 3.40 (4H, 2 overlapping br q, J = 7 Hz, CH2), 7.08 -7.20 (3H, m, J = 8

Hz, Ar), 7.30 - 7.38 (2H, m, J = 8 Hz, Ar); 13C NMR (100.6 MHz, CDCIJ)

513.39 (CH3), 14.22 (CH3),118 41.92 (CH2), 42.25 (CH2), 121.77 (C-2), 125.00
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(C-4), 129.20 (C-3), 151.57 (C-1), 154.27 (C=O); MS (El) m/z = 193 (M+),

100% (100).

Method B: In pyridine (40 mL), N,N-diethyl carbamoyl chloride (12.7 mL. 0.10

mol) was stirred with phenol (9.55 g, 0.10 mol) under N2• The solution was

heated to 90°C and left overnight. The hot mixture was then added to diethyl

ether (50 mL), ice (50 g) and 1 M HCI (20 mL) and extracted with diethyl ether

(3 x 20 mL). The combined etliereallayers were washed successively with 1 M

NaOH solution (20 mL) and saturated aqueous KCI solution (20 mL). The

solution was dried (MgS04), filtered and the solvent was removed in vacuo to

give a light yellow oil. Phenyl N,N-diethyl carbamate was isolated after flash

chromatography (Si02, 5:1 hexane/EtzO)as a yellow oil (11.95 g, 61.5 %).

5.1.2 Experimental for Section 2.2.2

Dipropyl Dicarbonate 3119 via propyl triOuoromethanesulfonyl carbonate 2

o 0

~o)lo)lo~

DBU (7.5 mL, 0.05 mol) was added to n-propanol (3.8 mL, 0.05 mol) in MeCN

(30 mL) in an autoclave and stirred under CO2 (3.5 bar) at -40°C for 30 min.

Trifluoromethanesulfonic anhydride (8.5 mL, 0.05 mol) in MeCN (10 mL) was

added dropwise over 20 min at -40 DC. The mixture was kept at this temperature

for 1h then allowed to warm to RT and the pressure released. Solvent was

removed in vacuo from a portion and the mixture diluted with CH2CI2• The

solution was then washed with 10% HCI (3 x 10 mL), saturated aqueous

NaHC03 (2 x 10 mL) and brine (10 mL). The solution was dried (MgSO.),
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filtered and solvent again removed in vacuo1H NMR (400 MHz, CDCl,) b 0.99

(6H, t, J = 7 Hz, CH3), 1.75 (4H, tq, J = 7 Hz, 7 Hz, CH2CH20), 4.23 (4H, r,J = 7

Hz CH20); BC NMR (100.6 MHz, CDCI3) 0 9.98 (CH]), 21.68 (OCH2CH2CH,),

71.39 (OCH2), 148.64 (C=O); MS (El) m/z = 190.

Phenyl N,N-Diethyl Carbamate 1

Method C: E~NH (1 mL, 9.65 mmol) was added to DBU (1.5 mL, 10 mmol) in

MeCN (15 mL). Carbon dioxide was bubbled subsurface, the solution was cooled

to -40°C and CO2 addition continued at this temperature for I h.

Trifluoromethanesulfonic anhydride (1.6 mL, 9.47 mmol) in MeCN (10 mL )

was transferred by cannula at -40 °C to the carbamate solution and the mixture

stirred under CO2 for a further 90 min. A 25% aliquot was removed and added to

phenol (206 mg, 2.19 mmol) in MeCN (10 mL) by cannula, allowed to warm to

RT and stirred overnight. The solvent was removed in vacuo, the mixture

dissolved in CH2CI2 (20 mL) and washed with 1 M NaOH solution (3 x 20 mL).

The solution was dried (MgSO.), filtered and solvent removed in vacuo to give a

light yellow oil. The O-phenyl carbamate product was isolated after flash

chromatography (Si02, 30: 1 CH2CIJEtOAc) as a yellow oil (0.15 g, 35%). IH

and l3CNMR data and mass spectrometric data as for method A above.

N, N, N', N'-Tetraethyl Carbamic Anhydride 57. via N,N-Dletby. TrlOy.

Carbamate4
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E!zNH (1.1 mL, 10.6 mmol) and DBU (1.6 mL , 10.7 mmol) were stirred in

anhydrous MeCN (20 mL ) with CO2 bubbling subsurface. The mixture was

cooled to -40 QCfor 1h. The solution was then transferred by cannula to triflie

o
anhydride (1.8 mL, 10.6 mmol) in anhydrous MeCN (10 mL) at -40 C. The

solution was kept at this temperature for 20 min under CO2 atmosphere, then

allowed to warm to RT. The solvent was removed in vacuo and the mixture

diluted with CH2CI2• The solution was then washed with 1 M HCI (2 x 20 mL),

saturated aqueous NaHC03 (2 x 20 mL) and brine (20 mL). IH NMR (CDCI,) b

1.19 (12H, 2 overlapping t, J = 7 Hz, CH3), 3.29 (4H, q, J = 7 Hz, CH2), 3.37

(4H, q, J = 7 Hz, CH2). 13C NMR (CDCIJ s 12.79 (CH]CH2N), 13.90

(CH3CH2N), 42.07 (CH2N), 42.16 (CH2N), 150.42 (C=O); MS (El) mlz = 216.

The product was identified as N,N,N',N'- tetraethyl carbamic anhydride.

n-PropyJ N,N-Diethyl Carbamate 6S4

o

/"-N)lO~

)

Method A: DBU (0.45 mL, 3 mmol) was added to n-propanol (0.2 mL, 2.67

mmol) in anhydrous MeCN (30 mL) in an autoclave and stirred under CO2 (3.5

bar) at -40 QCfor 30 min. Trifluoromethanesulfonic anhydride (0.45 mL, 2.66

mmol) in MeCN (10 mL ) was added dropwise over 10 min at -40 QC. The

mixture was kept at this temperature for 30 min then allowed to warm to RT and

the pressure released after 20 min. E!zNH (0.3 mL, 2.9 mmol) was added to

anhydrous MeCN (5 mL). The system was pressurised with CO2 (0.5 bar) and

stirred overnight. The solvent was removed in vacuo from an aliquot of the
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reaction and the mixture diluted with CH2CI2• The solution was then washed

with 10% H2S04 (3 x 10 mL), saturated aqueous NaHC03 (2 x 10 mL) and brine

(10 mL). The solution was dried (MgS04), filtered and solvent again removed in

vacuo. The product was not isolated but NMR and mass spectroscopy data

matched the literature compound.

5.1.3 Experimental for Section 2.3.2

N,N-Diethyl Methanesulfonyl Carbamate 7

o

/"--N~oso,Ol'

)

E~NH (0.5 mL, 4.8 mmol) and DBU (0.9 mL, 6.03 mmol) were added to

anhydrous MeCN (10 mL). The system was purged with CO2 then CO2 was

bubbled subsurface whilst the mixture was cooled to -10°C and stirred for 40

min. A solution of methanesulfonic anhydride (0.85 g, 4.88 mmol) in acetonitrile

(4 mL) was transferred by cannula at -10°C to the carbonate solution. The

mixture was stirred at this temperature for a further 25 min and then stirred at 0

"C for 25 min. The stream of CO2 was halted and the mixture was allowed to

warm overnight. The crude mixture was split into two aliquots and the solvent

was removed in vacuo and diluted with CH2CI2• One aliquot was washed with

H2S04 (0.5 M, 2 x 25 mL) and brine (30 mL). The second aliquot was washed

with distilled water (2 x 25 mL), H2S04 (0.5 M, 2 x 25 mL) and brine (30 mL).

The product could not be separated from diethyl methanesulfonamide: 'H NMR

(250 MHz, CDCI3) s 1.21 (6H, 2 overlapping t, J = 7 Hz, CH3CH2N), 3.35 (4H, 2

overlapping q, J = 7 Hz, CH3CH1N), 3.42 (3H, s, CH3S02); 13CNMR (CDCIJ)
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()14.01 (CH3CH2N), 14.25 (CH3CH2N), 40.65 (CH3S02), 42.86 (CH2N), 42.96

(CH2N), 148.00 (C=O).

Propyl Methanesulfonyl Carbonate 8

n-Propanol (0.4 mL, 5.35 mmol) and DBU (1 mL, 6.70 mmol) were dissolved in

anhydrous MeCN (12 mL). CO2 was bubbled subsurface and the solution was

cooled to -42 °C for 45 minutes. The mixture was allowed to warm to -20°C

and was transferred by cannula over 30 minutes to methanesulfonic anhydride

(1.86 g, 10.7 mmol; 2 eq.) in MeCN (4 mL) at the same temperature. The

mixture was stirred for 10 min then diluted with EtzO (50 mL) and washed with

H2S04 (0.5 M, 2 x 50 mL) and brine (60 mL). The ethereal solution was dried

with anhydrous potassium carbonate, filtered and the solvent was removed in

vacuo to give an oil (493 mg). The product could not separated from n-propyl

mesylate.P' Integration of the methanesulfonyl signals of the product and n-

propyl mesylate in the IH-NMR spectrum showed that the product was 90% of

the oil, overall yield 451H NMR (CDCI) () 1.00 (3H, t, J = 7 Hz, CH)CH2CH20),

1.77 (2H tq, J = 7Hz, 7 Hz, CH)CH2CH20), 3.39 (3H, s, CH3S02). 4.27 (2H. t, J

= 7 Hz, CH3CH2CH20); 13CNMR (CDCI) s 9.94 (CH)CH2CH20), 21.61

(CH3CH2CH20), 39.65 (CH3S02), 72.37 (CH)CH2CH20), 147.83 (C=O); MS

(El) m/z = 182. Addition of 1 drop of Et3Nor DBU to the NMR sample gave no

n-propyl mesyl carbonate on re-analysis.
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5.1.4 Experimental for Section 2.7: Attempted Synthesis of Sulfonyl

Carbonate variants

n-Propyl Mesyl Carbonate 8a

n-Propanol (0.2 mL, 2.67 mmol) and DBU (0.5 mL, 3.35 mmol) were dissolved

in anhydrous MeCN (4 mL). CO2 was bubbled subsurface and the solution was

cooled to -42 °C for 30 minutes. The mixture was allowed to warm to -25°C

and transferred to 1.4 molar eq. of methanesulfonyl chloride in MeCN (5 mL).

The stirring mixture was allowed to warm to RT overnight and analysed by 'H

NMR spectroscopy. The major product was n-propyl mesylate as compared with

literature data.12O

n-Propyl Nosyl Carbonate 9

As for 8a using 1.4 molar eq. of 4-nitrobenzenesulfonyl chloride. IH NMR

spectroscopy indicated no presence of any n-propanol derivatives.

n-Propyl Tosyl Carbonate 10

As for 8a but the carbonate was anion added to TsCI (0.56g, 2.94 mmol; 1.1 eq)

in MeCN (2.5 mL) over the course of 50 minutes. After warming to RT, the

reaction was stirred for 75 min. 1HNMR spectroscopy indicated a 1:1 mixture of

dipropyl dicarbonate!" and TsOH only.
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5.2 Experimental Procedures (Chapter 3)

5.2.1 Experimental for Section 3.1

Phenyl N,N-Diethyl Carbamate 1

Method D: E~NH (0.5 mL, 4.8 mmol) and DBU (0.8 mL, 5.36 mmol) were

added to anhydrous MeCN (10 mL). The system was purged with CO2 and then

CO2 was bubbled subsurface with stirring whilst the solution was cooled to 0 "C,

This was continued for 40 min, then methanesulfonic anhydride (0.85 g, 4.88

mmol) in dry MeCN (5 mL) was transferred by cannula to the carbamate mixture

at 0 QC. The solution was kept cool for 15 min then allowed to warm to RT and

stirred overnight in the dark. Two-thirds of the solution was added to phenol

(0.21 g, 2.23 mmol) and pyridine (ImL), stirred for 5 min and then heated to

reflux for a further 42 h. The mixture was allowed to cool and the solvent was

removed in vacuo, diluted with CH2Cl2 (20 mL) and washed with H2SO. (0.5 M,

2 x 25 mL), NaOH (1 M, 2 x 25 mL) and brine (25 mL). The solution was dried

(MgS04), filtered and solvent removed in vacuo. No further purification was

required. The O-phenyl carbamate product was isolated as a yellow oil ( 92 mg,

21%). IH and 13e NMR data and mass spectral data as for method A above.

n.Propyl N,N-Diethyl Carbamate 6

o

/'--N)lO~
)

Method B: Diethylamine (0.5 mL, 4.83 mmol) and DBU (0.9 mL, 6.03 mmol;

1.25 eq) were stirred in anhydrous MeCN (8 mL). The flask was purged with

CO2 before cooling to -20°C, then CO2 bubbled subsurface for 1h.

Methanesulfonic anhydride (0.96 g, 5.51 mmol) in anhydrous MeCN (3 mL) was
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then transferred dropwise to the carbamate solution. After addition was complete,

the solution was kept cool for 30 minutes, then allowed to warm to RT with

stirring. n-Propanol (0.4 mL, 5.35 mmol) and E~N (0.7 mL, 5.02 mmol) were

added and, after stirring for Ih, the reaction was heated at reflux overnight. After

cooling, the solvent was removed in vacuo and the residue was dissolved in

CH2Cl2 (100 mL), solids were fIltered off and the organic solution was washed

with H2S04 (0.125 M, 2 x 100 mL) and brine (100 mL). The crude product was

dried (MgS04) , filtered and' concentrated to dryness (510 mg). lH NMR

spectroscopy indicated a 24:1:1 ratio of carbamate/tetraethyl ureal diethyl

methanesulfonamide. Flash chromatography (SiOz, 4:1 hexane/EtOAc) gave the

product as a clear oil (200 mg, 26%): 1HNMR (250 MHz, CDCI3) [\ 0.95 (3H, t,

J = 7 Hz, CH3CH2CH20), 1.12 (6H, t, J = 7 Hz, CH3CHzN), 1.65 (2H, tq, J = 7

Hz, 7 Hz, CH3CH2CHzO), 3.29 (4H, br m, CH3CHzN), 4.03 (2H, t, J = 7 Hz,

CH3CH2CH20); BC NMR (CDCI3) s 10.54 (CH3CHzCHzO), 14.25 (CH3CHzN),

14.39 (CH3CH2N), 22.49 (CH3CHzCHzO), 41.43 (CH3~N), 41.74 (CH3CHzN),

66.59 (CH3CH2CHzO), 156.20 (C=O); MS (Cl) m/z = 160 (MH+). Anal. Calcd.

for CsH17N02: C, 60.35; H, 10.76; N, 8.80. Found: C, 59.90; H, 10.76; N, 8.55.

n-Propyl N,N-Dietbyl Carbamate 6

Method C: DBU (1.75 mL, 11.72 mmol) was added to n-propanol (0.7 mL, 9.36

mmol) in anhydrous MeCN (10 mL) in an autoclave and stirred under CO2 (3.5

bar) at 0 "C for 60 minutes. Methanesulfonic anhydride (1.67, 9.58 mmol) in

MeCN (4 mL ) was added all at once to the stirring mixture. The mixture was

kept at 0 ·C until no more precipitate remained, then allowed to warm to RT (60

minutes) then the pressure was released after a further 15 min. The reaction

mixture was transferred to a two-necked flask and then added to it were Et2NH (1

130



mL, 9.65 mmol) and pyridine (1.7 mL, 21 mmol). The reaction was then heated

to reflux for 21h. Solvent was removed in vacuo and the mixture was diluted

with CH2Cl2 (30 mL). The solution was then washed with H2S04 (0.5 M, 3 x 30

mL), saturated aqueous NaHC03 (2 x 40 mL) and brine (40 mL). The solution

was dried (MgS04), filtered and solvent again removed in vacuo. The product

was not isolated but NMR and mass spectroscopy data matched the literature

cornpound'" and material synthesised from E~NH and CO2'

1,5-Pentyl bis(N,N-diethylcarbamate) 11

o 0

/"-N)l_O~O)lN~
) ~

1,5-Pentanediol (0.14 mL, 1.34 mmol) and DBU (0.5 mL, 3.35 mmol) were

dissolved in anhydrous MeCN (4 mL). CO2 was bubbled subsurface and the

solution cooled to -200 C for 1h. The carbonate salt solution was transferred to a

solution of methanesulfonic anhydride (0.56g, 3.2 mmol) in MeCN (2 mL) at the

same temperature over 5 min. After 5 min, E~NH (0.35 mL, 3.38 mmol) was

added and the reaction was kept cool for 20 min under N2• The reaction was then

allowed to warm to ambient temperature. TIc showed incomplete reaction. EtJN

(0.2 mL, 1.43 mmol) was added and the mixture stirred for 2 days. Heating the

reaction after this time showed no change by tic. EtOAc (3OmL) was added, the

organic layers washed with HCI (0.5 M, 2 x 30 mL) and brine (2 x 30 mL). The

solution was dried (MgS04)' solvent removed in vacuo and purification by flash

chromatography (Si02, 3:1 EtOAc / hexane) gave an oil (127mg, 31%): IR (film)

1698 cm' (C=O); IH NMR: s 1.12 (12H, t, J = 7 Hz, CH3), 1.45 - 1.68 (6H,

overlapping m, OCH2CH2CH2CH2CH20), 3.24 (8H, br m, CH2N), 4.08 (4H, t, J
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= 7 Hz, CH20); 13C NMR: s 13.57 (CH3CH2N), 14.15 (CH3CH2N), 22.62

(CH2CH2CH20), 28.76 (CH2CH20), 41.15 (CH2N), 41.64 (CH2N), 64.79 (CH20),

155.92 (C=O); HRMS (El) Calculated 302.2206 Found 302.2208

The mono substituted product below was also isolated.

1-Hydroxypentyl 5-N ,N-diethylcarbamate 12

o

~N~O~OH

)

The product was isolated as an oil (90mg, 33%): IR (film) 3428 cm" (OH), 1682

cm:' (C=O); IH NMR ~ 1.11 (6H, t, J = 7 Hz, CH3), 1.39 - 1.72 (6H, overlapping

m, OCH2CH2CH2CH2CH20), 2.10 (IH, br, OH), 3.26 (4H, br rn, CH2N), 3.65

(2H, t, J = 6 Hz CH20H), 4.08 (2H, t, J = 7 Hz, NC02CH2); l3C NMR: s 13.46

(CH3CH2N), 13.91 (CH3CH2N), 22.16 (OCH2CH2CH2CH2CH20), 28.83

(OCH2CH2CH2CH2CH20H), 32.21 (OCH2CH2CH2CH2CH20H), 41.18 (CHzN),

41.59 (CH2N), 62.52 (CH20H), 64.84 (E~NC02CH2)' 156.11 (C=O); HRMS (El)

n-Propyl N-n-Butyl Carbamate 13

o
~O~N~

H

n-Propanol (0.7 mL, 9.36 mmol) and DBU (1.75 mL, 11.57 rnmol; 1.24 eq) were

dissolved in anhydrous MeCN (12 mL), CO2 was bubbled subsurface and the

solution cooled to -42 "C for 45 minutes. The mixture was allowed to warm to -

30°C and was transferred by cannula over 60 minutes to methanesulfonic
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anhydride (2.03g, 11.65 mmol; 1.25eq.) in MeCN (6 mL ) at the same

temperature. Once the reaction reached RT, it was split into three equal fractions

and had added butylamine (1.3 eq) and pyridine (1.4 eq) dissolved in MeCN (1

mL). The resulting reaction was exothermic and required cooling in ice-water.

The reaction was subsequently stirred at ambient temperature overnight. EtOAc

(50 mL) was then added and the solution was washed with H2S04 (0.2 M, 2 x 50

mL) and brine (50 mL). The organic layer was dried (K2C03), filtered and

solvent removed in vacuo. Purification by flash chromatography (SiOz, CH2CI2)

yielded a clear oil (208 mg, 42%); IR (film) 3336, 1695; 1H NMR (CDCl]) l)

0.89-0.96 (6H, 2 overlapping t, CH3), 1.27-1.55 (4H, 2 overlapping m,

CH2CH2CH2N), 1.62 (2H, tq, J = 7 Hz, 7 Hz, CH2CH20), 3.17 (2H, m, J = 6 Hz,

CH2N), 4.01 (2H, t, J = 7 Hz, CHzO), 4.69 (1H, br, N-H); 13CNMR (50.6 MHz,

CDCI3) 010.29 (CH3CH2CHzO), 13.69 (CH3CH2CH2CH2NH), 19.84

(CH3CHzCHzCH2NH), 22.34 (CH3CH2CH20), 32.05 (CH3CH2CH2CH2NH),

40.62 (CH3CH2CH2CH2NH), 66.25 (CH3CH2CH20), 156.79 (C=O); HRMS (Cl)

calcd. 160.1337, found 160.1332. Anal. Calcd. for CsH17N02: C, 60.35; H, 10.76;

N, 8.80. Found: e, 60.05; H, 10.71; N, 8.68.

Benzyl N.Phenyl Carbamate 145Z
,121

Followed procedure as for 13 but using benzyl alcohol in place of n-propanol and

aniline in place of n-butylamine. Purification by flash chromatography (Si02,

CH2CI2) and recrystallisation from diethyl ether/hexane gave a white solid

(316mg, 43%): IR 1726 em"; 1H NMR (CDCl]) 0 5.21 (2H, s, CH2), 6.65 (1H,
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br, N-H), 7.04 - 7.09 (lH, m, J = 7 Hz, para H of PhNH), 7.28 - 7.40 (9H,

overlapping m, Ar); 13CNMR (CDCI3) b 66.89 (CH2), 118.70 (Ph C-4), 123.40

(Bn C-2), 128.16 (Ar), 128.21 (Ar), 128.49 (Ar), 128.91 (Ar), 135.92 (Bn C-l),

137.68 (Ph C-1), 153.44 (C=O); HRMS (El) calcd. 227.0946 , found. 227.0945

Anal. Calcd. for C14H13N02: C, 73.99; H, 5.77; N, 6.16. Found: C, 74.02; H,

5.81; N, 6.17

n-Propyl N-Phenyl Carbamate 15122

Followed procedure as for 13 using aniline instead of n-butylamine and a

stoichiometric amount of DBU. Crystallisation from cyclohexane yielded a

white solid (88 mg, 21 %): IR (CH2CI2) 1709 cm" (C=O); 1H NMR (CDCl) b

0.98 (3H, t, J = 7 Hz, CH3), 1.70 (2H, tq, J = 7 Hz, 7 Hz, CH2CH20), 4.13 (2H, t,

J = 7 Hz, CH2), 6.64 (lH, br, NH), 7.03 - 7.08 (IH, apparent t, J = 7 Hz, H-4),

7.27 - 7.40 (4H, m, Ar); 13CNMR (CDCI3) e 10.33 (CH), 22.24 (CH2), 66.83

(CH2), 118.58 (C-2), 123.29 (C-4), 129.01 (C-3), 137.93 (C-l), 153.69 (C=O);

MS (El) rn/z = 179. Anal. Calcd. for C1oH13N02:C, 67.02; H, 7.31; N, 7.82.

Found: C, 67.05; H, 7.33; N, 7.81.

Benzyl N-n-Propyl Carbamate 16123
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Procedure as for 13 using benzyl alcohol in place of n-propanol. Crystallisation

from hexane gave 292mg, no further purification was possible. Yield by 'H

NMR was 48% (204 mg) and purity was 70%. lH NMR (CDCI3) s 0.91 (3H, t, J

= 7 Hz, CH3), l.51 (2H, tq, J = 7 Hz, 7 Hz, CH2CH2N), 3.15 (2H, br m, CH2N),

5.09 (2H, s, CH20), 7.28 - 7.37 (5H, m, Ph); 13CNMR (CDCI) s 11.15 (CH3),

23.13 (CH2), 66.52 (CH2), 126.92 (Ar), 127.93 (Ar), 128.36 (Ar), 136.53 (C-l),

156.37 (C=O); HRMS (Cl) calcd. 194.1180, found 194.1181

5.2.2 Experimental for Section 3.2

Di-n-propyl carbonate 1730

o

~o)lo~

Procedure as for 13 but n-propanol was added instead of an amine. The product

was extracted with E~O. 17 was also synthesised by two other similar methods.

1) n-Propyl mesylate was synthesised by a standard procedure using

methanesulfonic anhydride.P' n-propanol (0.4 mL, 5.35 mmol) and DBU (1 mL,

6.70 mmol) were stirred in anhydrous acetonitrile (6 mL). Carbon dioxide was

continually bubbled subsurface and the mixture cooled to -42 QC. After SO

minutes, propyl mesylate (0.5 mL, 4.03 mmol) in acetonitrile (5 mL) was added

dropwise over three minutes. After 15 minutes, the mixture was allowed to

warm to room temperature slowly, whilst stirring over 2.5 hours. The reaction

was then heated to 40°C for 3 days. Dipropyl carbonate was the only product

(300 mg, 51%).

2) n-Propanol (0.4 mL, 5.35 mmol) and DBU (1 mL, 6.70 mmol) were stirred in

anhydrous MeCN (6 mL) and cooled to 0 QC. Methanesulfonic anhydride (311

135



mg, 1.78 mmol) was dissolved in MeCN (4 mL) and added dropwise over 10 min

to the stirring alcohol solution. After addition was complete, the mixture was

cooled to - 40°C and CO2 was bubbled subsurface for 1 h, then warmed to -20

"C with CO2 bubbling subsurface for another hour. The mixture was stirred for a

further 30 min after warming to RT. TIc showed some propyl mesylate. The

reaction was heated to 50°C overnight and after cooling, extracted with Et20

following the procedure for 13. The product was identified as dipropyl carbonate

with residual propyl mesylate, Integration of mesyl signals in the 1H NMR

spectrum indicated a 28 % yield of dipropyl carbonate.

All products were identical to authentic material with matching NMR signals.

1R NMR (400 MHz, CDCI3) l) 0.97 (6H, t, J = 7 Hz, CHl), 1.70 (4H, tq, J = 7

Hz, 7 Hz, CH2CH20), 4.09 (4H, t, J = 7 Hz, CH20); 13CNMR (100.6 MHz,

CDCI3): l) 10.21 (CH3), 22.08 (CH2), 69.45 (CH2), 155.48 (C=O); HRMS (El)

calcd. 146.0943, found 146.0949.

Phenyl n-Propyl carbonate 18124

~o
~o)lo~

Procedure as for 13, but phenol was added instead of an amine with no pyridine.

The reaction was heated with phenol to 40°C for 22h. The crude oil was

purified by flash chromatography (Si02, CH2CI2) and isolated as a clear oil: (170

mg, 35%): IR (film) 1761 cm" (C=O); IH NMR: s 1.00 (3R, t, J = 7 Hz, CHJ),

1.77 (2R, tq, J = 7 Hz, 7 Hz, CH2CH20), 4.22 (2H, t, J = 7 Hz, CH20), 7.16 -

7.48 (5R, overlapping m, Ph); 13CNMR: l) 10.20 (CH), 22.00 (CH2), 70.34

(CH2), 121.10 (Ar), 125.97 (C-4), 129.47 (Ar), 151.19 (C-l), 153.81 (C=O); MS
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(El) m/z = 180 (M+). Anal. Calcd. for CtOHI203: C, 66.65; H, 6.71. Found C,

66.31; H, 6.66.

Benzyl i-Propyl Carbonate 19125

i-Propanol (0.4mL, 5.22 mmol) was dried over 4A molecular sieves and then

stirred with DBU (0.78mL, 5.22 mmol) in MeCN (7mL). CO2 was bubbled

subsurface and then the reaction was cooled to -42 QC. CO2 was bubbled for a

further 45 minutes at this temperature. The resulting carbonate suspension was

transferred to a solution of methanesulfonic anhydride (1.052g, 6.04mmol;

1.16eq) in MeCN (3.5mL) at the same temperature, over 90 minutes, by cannula.

After warming to 5 QC,the reaction was split into two aliquots. Benzyl alcohol

(0.35mL, 3.38mmol) and pyridine (0.25 mL, 3.13 mmol) were added to an

aliquot. After one minute, a precipitate formed and the temperature rose to 23

QC. The reaction was cooled to 5 QCagain and stirred overnight. The reaction

was filtered and added to E~O (30mL). The organic layer was washed with Hel

(O.2M, 2 x 30mL) and brine (30mL). The solvent was removed in vacuo to give

282 mg. Analysis indicated the required product, benzyl alcohol, benzyl

mesylate and a small amount of di-i-propyl carbonate in the ratio 26:39:2: I.

Yield by IHNMR was 108 mg (21%): IHNMR (CDCI) b 1.30 (6H, d,l = 6 Hz.

CH3), 4.89 (IH, septet, J = 6 Hz, CH), 5.14 (2H, s, CH2), 7.35-7.39 (5H.

overlapping m, Ar); t3C NMR (CDCI3) s 21.73 (CH3)' 69.25 (CH2), 72.10 (CH).

128.27 (Ar), 128.40 (C-4), 128.51 (Ar), 135.32 (C-l), 154.59 (C=O); HRMS (Cl)

Calcd. for Cl1HI403 195.1021 , found 195.1019
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Benzyl Phenyl Carbonate 20131

Procedure as for 13 using benzyl alcohol in place of n-propanol and phenol

instead of an amine. The product was extracted with E~O. Yield by IH NMR

was 31%. The crude oil was purified by flash chromatography (Si02, 5:4

cyclohexane/ CH2Cl2) and isolated as clear oil (25%, 182mg): IR (thin film)

1762; IH NMR (300 MHz, CDCI3) b 5.27 (2H, s, CH2), 7.16 - 7.47 (10H,

overlapping m, Ar); 13CNMR (75.5 MHz, CDCI3) 70.32 (CH2), 121.01 (Ar),

126.04 (Ar), 128.54 (Ar), 128.67 (Ar), 128.75 (Ar), 129.46 (Ar), 134.73 (Bn, C-

1), 151.08 (Ph, C-1), 153.65 (C=O); MS (El) mlz = 228. Anal. Calcd. for

CI4H1203: C, 73.67; H, 5.30. Found: C, 73.49; H, 5.23.

Benzyl n-Propyl Carbonate 21126

Procedure as for 13 using benzyl alcohol in place of n-propanol and n-propanol

in place of an amine. A 5 mL (2.3 mmol) aliquot of the reaction was removed

when at 0 QC , followed by addition of benzyl alcohol (0.3 mL, 2.90 mmol;

1.3eq.) and then pyridine (0.25 mL, 3.09 mmol; 1.3geq.) to the aliquot removed.

Tic after 1h showed a product spot. There was no further change in the reaction

during 3d. The reaction was diluted with E~O (40 mL), washed with HCI
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(0.125 M, 2 x 40 mL), brine (40 mL), dried (~C03) and filtered. Isolation by

flash chromatography (Si02, 1:1 cyclohexane / CH2Cl2 ) yielded a colourless oil

(122 mg, 28%): IR (film) 1745 cm' (C=O); IH NMR (300 MHz, CDCI3) b 0.96

(3H, t, J = 7 Hz, CH3CH2CH20), 1.69 (2H, tq, J = 7 Hz, 7 Hz, CH)CH2CHzO),

4.10 (2H, t, J = 7 Hz, CH3CHzCHzO), 5.15 (2H, s, PhCHzO), 7.31 -7.41 (5H, m,

Ph); l3C NMR (CDCI3) s 10.18 (CH3CHzCH20), 22.01 (CH3CHzCH20), 69.81

(PhCH20), 70.08 (CH3CH2CH20), 128.32 (Ar), 128.49 (C-4), 128.59 (Ar),

135.36 (C-l), 155.27 (C=O); MS (El) m/z = 194; Anal. Calcd. for CIIHI403: C,

68.02; H, 7.27. Found: C, 67.68; H, 7.18

Methyl Methanesulfonyl Carbonate 22

"Hi-Dry" MeOH (0.15 mL) and DBU (0.55 mL, 3.86 mmol) were stirred in

anhydrous MeCN (5 mL). Carbon dioxide was bubbled subsurface and the

reaction was cooled to - 42°C for 45 min. The carbonate solution was allowed

to warm to - 30 °C and was transferred at the same temperature by cannula to a

solution of methanesulfonic anhydride (768 mg, 4.41 mmol) in MeCN (3 mL)

over 75 min. An aliquot of the reaction was quenched with distilled water (4

mL), extracted with CH2Cl2 (2mL) and solvent removed in vacuo to yield crude

22 which could not be purified further: IH NMR (CDCI3) B 3.39 (3H, s, CH3S02),

3.96 (3H, s, CH30); l3C NMR: b 39.45 (CH3S02), 54.92 (CH30), 146.62 (C=O);

MS (Cl) mlz = 172 (M+ + 18).
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Methyl Phenyl Carbonate 23127

The procedure was followed as for 22 with the following amendment. After the

addition of the carbonate salt was complete, the reaction was allowed to warm to

7°C. Phenol (424 mg, 4.51 mmol) was dissolved in MeCN (1 mL) with pyridine

(0.35 mL, 4.33 mmol) and added to the mesyl carbonate. A temperature increase

to 24°C was noted and the reaction was cooled back to 7°C. A precipitate had

formed within 30 s, no further change was observed within 48 hours. The

reaction was diluted with Et20 (40 mL) and washed with HCl (0.2 M, 2 x 40 ml),

NaOH (0.125 M, 40 mL) and brine (40 mL). The product was isolated as a

colourless oil (147 mg, 26%), purity by IH NMR spectroscopy was >95%: IR

(film) 1763 cm" (C=O); IH NMR (CDCI3) s 3.91 (3H, s, CH3), 7.16-7.41 (5H, m,

Ph); 13CNMR (CDCl3) b 55.37, 121.01 (Ar), 126.06 (C-4), 129.48 (Ar), 151.07

(C-l), 154.28 (C=O); HRMS (El) Calcd. 152.0473, found 152.0429.

5.2.3 Experimental for Section 3.3

n-Propyl S-3,5-Dichlorophenyl Thiocarbonate 24

Jl _;={I
~o s~

Cl
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Procedure as for 13 but 1.25 eq 3,5-dichlorothiophenol was added instead of an

amine. The reaction needed cooling after addition of the thiol. Analysis by tic

after 1h showed a negligible amount of thiol remaining. The reaction was stirred

overnight at ambient temperature. The crude mixture was diluted with Et20

(5DmL), washed with H2S04 (D.2 M, 2 x 5DmL), NaOH (D.1 M, 2 x 5DmL) and

brine (5DmL). The solution was dried (K2C03), filtered and the solvent was

removed in vacuo. Purification by flash chromatography (SiOz, 24:1

cyclohexane/Clf.Cl.) yielded a clear oil (3D7mg, 37%): IR (film) 1731 cm"

(C=O); IH NMR (25D MHz, CDCI3) s 0.96 (3H, t, J = 7 Hz, CH3), 1.72 (2H, tq, J

= 7 Hz, 7 Hz, CH2), 4.23 (2H, t, J = 7 Hz, CH2), 7.4D (1H, t, J = 2 Hz, H-4), 7.44

(2H, apparent d, J = 2 Hz, H-2 and H-6); t3C NMR (75.5 MHz, CDCI3) l) 1D.21

(CH3), 22.00 (CH2CH20), 7D.15 (CH2CH20), 129.67 (C-4), 130.92 (C-l), 132.57

(C-2), 135.14 (C-3), 168.05 (C=O); HRMS (El) caIcd. 263.9779, found

263.9774. Anal. Calcd. for C1Jil0C1202S: C, 45.30; H, 3.80. Found: C, 45.25; H,

3.71.

Benzyl S-Ethyl Thiocarbonate 25

Procedure as for 13 using benzyl alcohol in place of n-propanol and ethanethiol

in place of an amine. Purification by flash chromatography (SiOz, 24: 1

cyclohexane/Clt.Cl.) gave the isolated product as a clear oil (118 mg, 25%): IR

(film) 17D2 cm" (C=O); IH NMR (CDCI3) s 1.32 (3H, t, J = 7 Hz, CH3CH2S),

2.88 (2H, q, J = 7 Hz, CH2S), 5.23 (2H, s, CH20), 7.32-7.37 (5H, m, Ph); ne
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NMR (CDCI3) b 14.96 (CH3), 25.38 (CH2S), 68.71 (CH20), 128.56 (Bn), 128.52

(Bn), 128.44 (Bn), 135.23 (C-1), 164.31 (C=O); HRMS (El) calcd. 196.05580,

found 196.05581. Anal. Calcd. for C1oH1202S:C, 61.20; H, 6.16. Found: C,

61.05; H, 6.11.

Benzyl S-3,5-Dichlorophenyl Thiocarbonate 26

Procedure used as for 13 using benzyl alcohol in place of n-propanol and 3,5-

dichlorothiophenol in place of an amine. A NaOH wash (0.1 M, 40 mL) was also

carried out. Crude yield was 675 mg containing a 1:2 ratio of the product to the

aromatic disulfide, yield by 1HNMR spectroscopy 33%. Flash chromatography

(Si02, 24:1 cyclohexane/Clt-Cl-) of the crude oil gave 127 mg (19%) of product:

IR (film) 1731 cm" (C=O); IH NMR (CDCI3) b 5.27 (2H, s, CH2), 7.35 - 7.41

(6H, overlapping rn, Ar), 7.44 (2H, apparent d, J = 2 Hz, H'-2 and H'-6); DC

NMR (CDCI3) 70.01 (CH2), 128.59 (Bo), 128.71 (Bo), 128.83 (Bo), 129.80 (Ar,

C-4), 130.62 (Ar C-1), 132.60 (Ar C-2), 135.19 (Ar C-3, C-CI), 135.76 (Bo C-l),

168.09 (C=O); HRMS (Cl) calcd. (M+ +18) 330.0122, found 330.0127.

5.3 Experimental Procedures (Chapter 4)

5.3.1 Experimental for Section 4.2

Bis-(2-hydroxyethyl)-4-nitrobenzenesulfonamide 27111
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Diethanolamine (0.6mL, 6.26 mmol) was dissolved in CH2Cl2(20 mL) with Et3N

(0.7 mL, 5.02 mmol). An addition funnel was connected to the flask containing

4-nitrobenzenesulfonyl chloride (1.00 g, 4.51 mmol) in CHzCl2 (50mL). The

reaction was purged with N2 and cooled in an ice bath. The sulfonyl chloride

solution was added dropwise to the diethanolamine solution over 3 hours. The

reaction was kept cool for a further hour, then allowed to warm to ambient

temperature. The solvent was removed in vacuo and the solid was recrystallised

twice from water at 70°C to yield white needles (1.118 g, 85%): m.p. 120-121

QC;lH NMR (300 MHz, CDCI3) b 3.15 (2 x OH), 3.35 (4H, t, J = 5 Hz, CH2N),

3.90 (4H, t, J = 5 Hz, CH20), 8.03 (2H, d, J = 9 Hz, Ar), 8.39 (2H, d, J = 9 Hz,

Ar); 13CNMR (CDCI3) b 51.05 (CH2N), 60.13 (CH20H), 123.36 (Ar), 127.75

(Ar), 144.19 (C-l), 149.13 (C-4); HRMS (Cl) calculated 291.0651 found

291.0647; Anal. Calcd. for C1Ji14N06S C, 41.38; H, 4.86; N, 9.65. Found C,

41.20; H, 4.79; N, 9.54.

Bis-(2-ethylenediethylcarbamate )-4-nitrobenzenesulfonamide 28 t 28

E~NH (0.2mL, 1.93 mmol) and DBU (0.36 mL, 2.4mmol; 1.25eq) were both

added to anhydrous MeCN (8 mL) in a 3-neck flask with a pressure-equalising

addition funnel. The mixture was cooled in an ice-salt bath to -15°C with CO2

bubbling subsurface for 1h. Methanesulfonic anhydride (0.355 g, 2.04 mrnol)
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was dissolved in anhydrous MeCN (2mL ) and transferred to the addition funnel.

The solution was added dropwise to the carbamate salt solution over lh keeping

the reaction below -to DC.

The reaction was allowed to warm to ambient temperature after addition was

complete and split into two portions. Bis(2' -hydroxyethyl) 4-

nitrobenzenesulfonamide (40mg, 0.138 mmol) was added to each aliquot with

Et3N (2.1 eq) in one and pyridine (2.2 eq) in the other and heated to 70DC

overnight. No bis(2'-hydroxyethyl) 4-nitrobenzene sulfonamide remaining by

tlc. Added EtOAc (25 mL) to each and washed with HCI (0.1 M, 2 x 25 mL)

and brine (25 mL). Tentatively assigned IH NMR (d6-acetone): ~ 1.14 (12H, t, J

= 7 Hz, CH3), 3.21 (, 8H, br q, J = 7 Hz, CH2N), 3.75 (4H, br t, J = 6 Hz,

CH2NNs), 4.38 (4H, br t, J = 6 Hz , CH20), 8.04 (2H, d, J = 11Hz, Ar), 8.32 (2H,

d, J = 11Hz, Ar); MS (Cl) mlz = 489 (M+ + 1), 506 (M+ + 18).

5.3.2 Experimental for Section 4.3

n-Propyl bis-(2-hydroxyethyl) Carbamate 29

o
~)l ~OHo N

~OH

n-Propanol (1 mL, 13.4 mmol) and DBU (2.5 mL, 16.75 mmol) were dissolved

in anhydrous MeCN (20 mL). Carbon dioxide was bubbled subsurface and the

solution was cooled to -42 QC. After lh, the solution was allowed to warm to

-25 QC and transferred at this temperature over 100 min to methanesulfonic

anhydride (2.83 g, 16.25 mmol) in dry MeCN (18 mL). When addition was

complete, the reaction was allowed to warm to RT and purged with N2• An

addition funnel was attached and an acetone solution (50 mL) of diethanolamine
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(2 mL, 20.9 mmol) and Et3N (2 mL, 14.35 mmol) added slowly dropwise over

several hours. The solvents were removed in vacuo, the crude residue was taken

up in EtOAc 4-5 times and solvent was removed in vacuo again. The crude oil

was extracted with EtzO, followed by removal of the solvent in vacuo of this

extract. Purification by flash chromatography twice (alumina, EtOAc, then 8:1

EtOAc/MeOH) gave a clear oil (0.79 g, 31%): IR (film) 3046 cm:' (OH), 1678

cm' (C=O); IH NMR (d6
- acetone) b 0.92 (3H, t, J = 4 Hz, CH3), 1.61 (2H, tq, J

= 7 Hz, 7 Hz, CH3CH2CH20), 3.42 (4H, t, J = 4 Hz, CH2N), 3.68 (4H, t, J = 4

Hz, CH20H), 3.98 (4H, overlapping t, CH3CH2CH20 and 2 x OH); 13CNMR: b

10.76 (CH3), 23.04 (CH3CH2CH20), 51.84 (CH2N), 52.36 (CH2N), 61.23

(CH20H), 61.46 (CH20H), 67.18 (CH3CH2CH20), 157.18 (C=O); HRMS (Cl)

Calcd for CSH17N04 192.1236, found 192.1232

1,5-Pentyl bis-(2-hydroxyethyl) Dicarbamate 30

o 0

HO~N)lO~O)lN~OH
HO~ ~OH

1,5-pentanediol (0.15mL, 1.43 mmol) was dissolved with DBU (0.5 mL, 3.35

mmol; 2.4 eq.) in anhydrous MeCN (3mL). CO2 was bubbled subsurface and the

solution cooled to -42 "C. After 30 minutes, methanesulfonic anhydride (0.837

g, 4.8 mmol; 3.36eq) in MeCN (2.5mL ) at -42 °C was added all at once to the

carbonate solution. This solution was transferred by cannula to diethanolamine

(0.45 mL, 4.7 mmol; 3.3 eq) and pyridine (0.35 mL, 4.33 mmol; 3 eq) in

anhydrous MeCN (5 mL)at 0 °C over 45 minutes. After addition was complete,

the reaction was kept at 0 "C for 10-15 minutes, then allowed to warm to RT
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overnight. The solvent was removed in vacuo, saturated aqueous brine added to

the crude oil and the aqueous was extracted twice with THF. Found (Cl) mlz =
236 (M+ + 1), indicating mono substituted product. Removed solvent in vacuo

and dissolved the residue in MeCN with 20 mol % pyridine. Acetyl chloride (0.9

mL, 12.66 mmol; 8.8eq) in MeCN (10 mL) was added over 20 minutes to the

reaction in an ice bath. After warming to RT over 3 h, the reaction was diluted

with EtOAc (100 mL), washed with 1 M HCI (2 x 100mL), dried (K2C03), and

the solvent removed in vacuo. An insoluble solid formed with some oil. Oil: 1H

NMR (CDCI3) b 1.45 (2H, m, J = 7 Hz, OCH2CH2CH2CH2CH20), 1.68 (4H, m,

J = 7 Hz, OCH2CH2CH2CH1CH20), 2.07 (12H, s, CH3CO), 3.54-3.63 (8H, br t,

CH2N), 4.09 (4H, m, J = 7 Hz, CH20(CO)N), 4.22 (8H, m, J = 4 Hz, CH20Ac);

MS (Cl) mlz = 535 (M+ + 1), 552 (M+ + 18) indicating tetra-acetylation of the

dicarbamate tetrol product.

Attempted Synthesis of p-Xylylene bis-(2-bydroxyethyl)-dicarbamate 31

1,4-benzenedimethanol (116mg, 0.84 mmol) and DBU (0.3 mL, 2 mmol) were

dissolved in 5 mL anhydrous MeCN. CO2 was bubbled subsurface whilst the

solution was cooled to -42 °C for 30 min. The solution was then held as -30°C

and transferred by cannula over 90 min to a 5 mL anhydrous MeCN solution of

Ms10 (358 mg, 2.08 mmol; 2.48 eq) at the same temperature. The reaction

mixture was then warmed to ca. 0 QC.
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Diethanolamine (0.2 mL, 2.1 mmol) and pyridine (0.17 mL, 2.1 mmol) were

dissolved in 5 mL anhydrous MeCN. This solution was added dropwise to the

mesyl carbonate solution over 15-20 min. The reaction was kept cool and stirred

overnight. No expected product was found in NMR or mass spectra. Product

detected by mass spectroscopy was tentatively assigned as N-(2-hydroxyethyl)-2-

oxazolidinone; MS (Cl) m/z = 132 (M+ + 1), 149 (M++ 18).
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