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A Model for Large θ13 Constructed using the

Eigenvectors of the S4 Rotation Matrices

R Krishnan

Department of Physics, University of Warwick, Coventry CV4 7AL, UK

E-mail: k.rama@warwick.ac.uk

Abstract. A procedure for using the eigenvectors of the elements of the representations of a
discrete group in model building is introduced and is used to construct a model that produces
a large reactor mixing angle, sin2 θ13 = 2

3
sin2 π

16
, in agreement with recent neutrino oscillation

observations. The model fully constrains the neutrino mass ratios and predicts normal hierarchy
with the light neutrino mass, m1 ≈ 25 meV. Motivated by the model, a new mixing ansatz is
postulated which predicts all the mixing angles within 1σ errors.

1. Introduction
We use the group SU(3) and its discrete subgroup S4 for model building. Both of these groups
had been studied extensively as flavour symmetry groups. The S4 group has the presentation

〈a, b|a2 = b3 = (ab)4 = e〉. (1)

S4 is the symmetry group of the cube (Fig. 1) and the elements of the group can be represented
as the orientation preserving rotations of the cube. The matrices representing the generators
can be written as

a =

0 0 1
0 -1 0
1 0 0

 , b =

0 0 1
1 0 0
0 1 0

 . (2)

Here the basis vectors e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T form the symmetry axes
of the cube passing through face centres. If we define the left-handed leptons, L = (Le, Lµ, Lτ )T

where Le = (νeL, eL)T etc., as a triplet in this basis, the flavour states Le, Lµ, Lτ correspond
to e1, e2, e3 respectively. Usually in models a set of flavons are introduced whose vacuum
expectation values (vevs) produce the desired texture for the fermion mass matrices. In other
words, the orientation of fermion flavour states as well as the flavon vevs in the flavour space
determines the form of the mass matrices.

Axes of the orientation preserving rotations of the cube are nothing but eigenvectors of the
corresponding rotation matrices with eigenvalue equal to +1. The basis vectors e1, e2 and e3 are
examples. There are also other vectors like the ones passing through the opposite edge centres
(e.g. axisa in Fig. 1) and the ones passing through the opposite vertices (e.g. axisb in Fig. 1).
Compared to vectors pointing in random directions, these vectors are “special” in the context
of the S4 symmetry. The rotation matrices are unitary and so their eigenvalues in general are
complex numbers with unit modulus. If non-degenerate, these eigenvalues also correspond to
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unique eigenvectors and the author argues that these eigenvectors are also “special” like the
rotation axes.

x

y
z

axisb axisa

e1

e2 e3

Figure 1. The generators a and b represent π-rotation about axisa and 2π
3 -rotation about axisb

respectively.

As an example consider v = 1√
3
(1, ω̄, ω)T , the normalised (v†v = 1) eigenvector of the matrix

b in Eq. (5), corresponding to the eigenvalue ω, where ω = ei
2π
3 and ω̄ = e-i 2π

3 . Since eiθv, where
eiθ is an arbitrary phase, is also a normalised eigenvector, we impose the following condition to
uniquely fix the phase: The component of the eigenvector in the direction of one of the basis
vectors should have zero phase ie. arg(v†ei) = 0, where i = 1, 2 or 3. This is intuitive since the
basis vectors are used to define the fermion flavour states. Thus the allowed choices for v are

1√
3
(1, ω̄, ω)T , 1√

3
(ω, 1, ω̄)T and 1√

3
(ω̄, ω, 1)T .

Let g represent an element of the group and l be one of its non-degenerate eigenvalues.
The corresponding “special” eigenvector, eig(g, l)i, is defined using the following normalisation
condition and the phase condition:

eig(g, l)†i eig(g, l)i = 1, arg
(

eig(g, l)†i ei

)
= 0. (3)

For example, the basis vector e3 is eig(ab, 1)3. Such eigenvectors which will be used later in the
model are listed below:

eig(b, 1)1 = 1√
3

(1, 1, 1)T , eig(a, 1)1 = 1√
2

(1, 0, 1)T ,

eig(b, ω)1 = 1√
3

(1, ω̄, ω)T , eig(c, i)1 = 1√
2

(1, 0, i)T ,

eig(b, ω̄)1 = 1√
3

(1, ω, ω̄)T , eig(c, i)3 = 1√
2

(-i, 0, 1)T ,

eig(d, 1)1 = 1√
2

(1, 0, -1)T , eig(c, -i)1 = 1√
2

(1, 0, -i)T ,

eig(d, 1)3 = 1√
2

(-1, 0, 1)T , eig(c, -i)3 = 1√
2

(i, 0, 1)T

(4)

where

c = bab =

 0 0 1
0 1 0
-1 0 0

 , d = a(bab)2 =

 0 0 -1
0 -1 0
-1 0 0

 . (5)
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2. The Model
Daya Bay reactor neutrino experiment [1] showed that the reactor mixing angle, θ13, is non-zero.
In this paper we propose a flavour model to accommodate the observed non-zero θ13. We use
the Standard Model (SM) framework with the addition of the right-handed neutrino triplet,
νR = (ν1R, ν2R, ν3R)T in the context of the type-1 seesaw mechanism. We postulate a global
flavour symmetry group,

Gf = SU(3)1 × SU(3)2 × U(1)f . (6)

The fermion fields and a set of postulated flavons belong to specific representations of Gf as
shown in Table 1. The U(1) group is introduced to ensure that the flavons couple to only the
desired fermions. We write the mass terms at the lowest order, containing the fermions and the
minimum number of flavons, invariant under Gf and the SM gauge group. The eigenvectors
of the elements of the S4 subgroup of the SU(3) group are used to construct the vevs of the
flavons. The vevs break the flavour symmetry and the required mass matrices are obtained.

L eR µR τR νR φe φµ φτ φ ξ1 ξ2

SU(3)1 3 1 1 1 3̄ 3 3 3 3 6 1

SU(3)2 1 1 1 1 1 1 1 1 3 1 6̄

U(1)f fl fl + fe fl + fµ fl + fτ 0 −fe −fµ −fτ 0 fl 0

Table 1. The fields φe, φµ, φτ , φ, ξ1, ξ2 are the flavons. For the U(1) group the tabulated
values are the generators, e.g. fl ≡ eiflθ . The SM Higgs is a flavour singlet.

The tensor product expansion of the fundamental representations of SU(3) are

3⊗ 3 = 3̄⊕ 6, 3̄⊗ 3̄ = 3⊕ 6̄, 3⊗ 3̄ = 1⊕ 8. (7)

For the charged leptons, the lowest order mass term is

L (yeφeeR + yµφµµR + yτφττR)H 1
Λφl

+H.C. (8)

where yα are the coupling constants, H is the SM Higgs, Λφl is the cut-off scale for the flavons
φe, φµ and φτ . The S4 group has four irreducible representations: 1, 2, 3 and 3′ [2]. The
orientation preserving rotations of the cube discussed earlier belong to 3′. The flavon triplets
φe, φµ and φτ belong to the representation 3 of SU(3)1. The restriction of the representation 3
of SU(3) to its subgroup S4 is the representation 3′ of S4. Therefore the “special” eigenvectors
of the representation matrices of 3′ of S4 are used to construct the vevs of the flavons. We
assign:

〈φe〉 = eig(b, 1)1, 〈φµ〉 = eig(b, ω)1, 〈φτ 〉 = eig(b, ω̄)1 (9)

where the angular brackets are used to denote vevs. We do not discuss the mechanism of flavour
symmetry breaking in this paper. To avoid Goldstone bosons, it is necessary to add explicit
symmetry breaking terms for the flavon potentials, which break the continuous flavour group
Gf , Eq. (6), into an unknown discrete group. The flavon vevs spontaneously break this discrete
flavour symmetry. Also the Higgs vev, (0, ho)

T , breaks the weak gauge symmetry. After the
symmetry breaking, the charged-lepton mass term, Eq. (8), takes the form

lLT †MdlR +H.C (10)
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where

T † =
1√
3

1 1 1
1 ω̄ ω
1 ω ω̄

 , (11)

lL = (eL, µL, τL)T , lR = (eR, µR, τR)T and Md = diag(me,mµ,mτ ) with me = yeho
Λφe

etc. The

charged-lepton mass matrix, T †Md, when left-multiplied with T , is diagonalised giving the
charged-lepton masses me, mµ, mτ . T is the Trimaximal mixing matrix [3]. For later use we
define 2× 2 maximal matrices, B2 and B3:

B2 =


1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2

 , B3 =


1√
2
−1√

2
0

1√
2

1√
2

0

0 0 1

 . (12)

For the neutrinos, the lowest order Dirac mass term is

2ywLξ1νRH̃
1

Λξ1
+H.C. (13)

where H̃ is the conjugate Higgs and yw is the coupling. The flavon ξ1 belongs to the
representation 6 of SU(3)1 and can be written as a 3 × 3 complex-symmetric matrix. The
restriction of 6 of SU(3) to the S4 subgroup is the direct sum of 1, 2 and 3 of S4. We assign a
very simple choice of vev for ξ1 where 2 and 3 parts vanish, ie. 〈ξ1〉 becomes the identity when
written in the matrix form. After the symmetry breaking, the Dirac mass term, Eq. (13), takes
the form

mw

(
νLνR + (νR)c(νL)c

)
+H.C. (14)

where νL = (νeL, νµL, ντL)T , mw = ywho
Λξ1

.

The lowest order Majorana mass term for the neutrinos is

yG(νR)cφξ2φ
T νR

1
Λξ2Λ2

φ
+H.C. (15)

Note that φ transforms as a 3 under both SU(3)1 and SU(3)2. Therefore φ can be written as
a 3 × 3 matrix, φij , the row index i representing SU(3)1 and the column index j representing
SU(3)2. The flavon ξ2 belongs to the representation 6̄ of SU(3)2. A 6̄ of SU(3), just like a 6,
contains a 1, a 2 and a 3 of the S4 subgroup. As was done earlier for the case of 〈ξ1〉, here we
assign 〈ξ2〉 also to be equal to the identity. After the symmetry breaking, the Majorana mass
term, Eq. (15), takes the form

mG(νR)c〈φ〉〈φ〉T νR +H.C. (16)

where mG = yG
Λξ2Λ2

φ
. The matrix 〈φ〉〈φ〉T is complex-symmetric and 〈φ〉〈φ〉T contains all the

interesting physics in our model. The reason why we use two SU(3)s in the flavour group Gf ,
Eq. (6), is to ensure that the mass matrix, Eq. (16), contains the symmetric product of two 〈φ〉s.

To assign vev for the flavon φij , we use (S4)1× (S4)2, the subgroup of SU(3)1×SU(3)2. The
group (S4)1×(S4)2 has 24×24 = 576 elements. Let g1 and g2 be the elements of (S4)1 and (S4)2

respectively. If v1 and v2 are the eigenvectors of g1 and g2 corresponding to the eigenvalues a1

and a2, then the direct product v1×v2 will be an eigenvector of g1× g2 with an eigenvalue a1a2.
Now we make the following assumption:

〈φ〉 = v1
1 × v1

2 + v2
1 × v2

2 + v3
1 × v3

2 + v4
1 × v4

2 (17)

where the RHS of Eq. (17) is the sum of four eigenvectors. Based on the choices for vi1× vi2s we
get a set of similar cases of solutions described in the following sections. The assumed form of
〈φ〉 given in Eq. (17) and the choices for vi1 × vi2s were obtained through educated guesses and
also through trial and error to fit the experimental data.
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2.1. Case 1
Here we assign

v1
1 = e2, v2

1 = eig(a, 1)1, v3
1 = eig(d, 1)1, v4

1 = eig(d, 1)3,

v1
2 = e2, v2

2 = e1, v3
2 = e1, v4

2 = eig(c, -i)1.
(18)

Using Eq. (17), Eqs. (18) and Eqs. (4), we get

〈φ〉 =

−1
2 +
√

2 0 i
2

0 1 0
1
2 0 − i

2

 (19)

in matrix form, where the row and the column indices of the matrix correspond to the (S4)1

and the (S4)2 indices respectively. If mG >> mw, the Majorana mass matrix, mG〈φ〉〈φ〉T
from Eq. (16), becomes much larger than the Dirac mass matrix, mw × Identity from Eq. (14),
resulting in the type-1 see-saw mechanism. We get an effective see-saw mass matrix [4], Mss,
proportional to the inverse of 〈φ〉〈φ〉T :

Mss = −k
(
〈φ〉〈φ〉T

)−1
= −k

2−
√

2 0 1√
2

0 1 0
1√
2

0 0


−1

where k =
m2
w

mG
. (20)

Mss is diagonalised using the unitary matrix Uν :

U †νMssU
∗
ν = −diag (m1,m2,m3) (21)

where the neutrino masses m1, m2, m3 are given by

m1 =
k
(
2 +
√

2
)

1 +
√

2(2 +
√

2)
, m2 = k, m3 =

k
(
2 +
√

2
)

−1 +
√

2(2 +
√

2)
(22)

and
Uν = B2IB2EBT2 P (23)

with
I = diag(1, 1, i), E = diag(ei

π
8 , 1, 1), P = diag(e−i

π
16 , 1, e−i

π
16 ). (24)

The PMNS matrix becomes
U = T Uν = T B2IB2EBT2 P. (25)

The mixing obtained is a constrained form of the Trichimaximal (TχM) mixing [5] with
χ = π

16 :

|U | = |TχM(χ= π
16)| where TχM =


√

2
3 cosχ 1√

3

√
2
3 sinχ

− cosχ√
6
− i sinχ√

2
1√
3

i cosχ√
2
− sinχ√

6

− cosχ√
6

+ i sinχ√
2

1√
3
−i cosχ√

2
− sinχ√

6

 . (26)

The modulus sign is used throughout this paper to indicate that the expression for the mixing
matrix is valid only upto right and left multiplication with diagonal phase matrices (which do not
affect the phenomenon of neutrino oscillation). The right multiplying diagonal phase matrices,
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like P in Eq. (25), do contribute to Majorana phases, the study of which is beyond the scope of
this paper. From Eq. (26) and using Eq. (12) in [5] we get

|Ue3|2 =
2

3
sin2 π

16
⇒ sin2 θ13 = 0.025, (27)

|Ue2|2 =
1

3
⇒ sin2 θ12 = 0.342, (28)

sin2 θ23 =
1

2
, (29)

δCP =
π

2
. (30)

From Eq. (22) we get the ratios of the neutrino masses, m1 : m2 : m3 = 0.945 : 1 : 2.117. These
ratios are compatible with the mass-squared differences measured experimentally [6, 7] within
1σ errors and thus we can predict the light neutrino mass:

24.7 meV . m1 . 25.5 meV. (31)

Even though the set of eigenvectors given in Eqs. (18) results in the matrix 〈φ〉 given in
Eq. (19), other choices of eigenvectors also exist which produce the same 〈φ〉. The matrix
T †〈φ〉〈φ〉TT ∗ is a highly constrained form of the complex-symmetric “Simplest” texture [8, 9].

Let x = in where n is an integer and let

Φx =

 ix2 + 1−ix√
2

0 −x
2

0 1 0
−ix2 + 1+ix√

2
0 x

2

 . (32)

Using Φx, Eq. (19) can be rewritten as

〈φ〉 = Φ∗i . (33)

2.2. Case 2
Assigning

v1
1 = e2, v2

1 = eig(c, i)1, v3
1 = eig(c, i)3, v4

1 = eig(d, 1)1,

v1
2 = e2, v2

2 = e1, v3
2 = e1, v4

2 = eig(c, -i)3.
(34)

we get
〈φ〉 = Φ∗i2 . (35)

In this case, the resulting PMNS matrix is

U = T Uν = T B2I2B2EBT2 P (36)

and it is a constrained form of the Triphimaximal (TφM) mixing [5] with φ = − π
16 :

|U | = |TφM(φ=− π
16)| where TφM =


√

2
3 cosφ 1√

3

√
2
3 sinφ

− cosφ√
6
− sinφ√

2
1√
3

cosφ√
2
− sinφ√

6

− cosφ√
6

+ sinφ√
2

1√
3
− cosφ√

2
− sinφ√

6

 . (37)

From Eq. (37) and using Eq. (9) in [5] we get

|Uµ3|2 =
2

3
sin2

(
2π

3
− π

16

)
⇒ sin2 θ23 = 0.613, (38)

δCP = π. (39)

Here, as well as in the next two cases, Eq. (22) which gives the neutrino masses and Eqs. (27, 28)
which give sin2 θ13 and sin2 θ12 remain valid.
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2.3. Case 3
Assigning v1

1 = e2, v1
2 = e2, v2

1 = eig(a, 1)1, v2
2 = e1, v3

1 = eig(d, 1)3, v3
2 = e1, v4

1 = eig(d, 1)1 and
v4

2 = eig(c, -i)1 we get

〈φ〉 = Φ∗i3 (40)

U = T B2I3B2EBT2 P ⇒ |U | = |TχM(χ=− π
16)|, (41)

sin2 θ23 =
1

2
, (42)

δCP =
3π

2
. (43)

2.4. Case 4
Assigning v1

1 = e2, v1
2 = e2, v2

1 = eig(c, -i)1, v2
2 = e1, v3

1 = eig(c, -i)3, v3
2 = e1, v4

1 = eig(d, 1)3 and
v4

2 = eig(c, -i)3 we get

〈φ〉 = Φ∗i4 (44)

U = T B2I4B2EBT2 P ⇒ |U | = |TφM(φ= π
16)|, (45)

|Uµ3|2 =
2

3
sin2

(
2π

3
+

π

16

)
⇒ sin2 θ23 = 0.387, (46)

δCP = 2π. (47)

The values predicted by all the four cases of the model are within 3σ errors of the experimental
best fits [6, 7, 10]. In fact the generic prediction sin2 θ13 = 0.025, Eq. (27), is within 1σ errors.
However the global analysis [6] shows more than 2σ tension with sin2 θ23 = 1

2 , the TχM value

(Cases 1 and 3, Eqs. (29, 42)). On the other hand the TφM values, sin2 θ23 = 0.613 from Eq. (38)
in Case 2 and sin2 θ23 = 0.387 from Eq. (46) in Case 4, are well within 1σ errors calculated in [7]
and [6] respectively. All the cases predict sin2 θ12 = 0.342, Eq. (28), which is at the edge of the
2σ error range in [6]. A new mixing ansatz called the VS mixing 1 is proposed in the following
section which modifies θ12 as well as δCP .

3. The VS Mixing Ansatz
The mixing obtained using the model, Eqs. (25, 36, 41, 45), is of the form

|U | = |T B2InB2EBT2 |. (48)

The matrix |T B2In| gives the Tribimaximal (TBM) mixing [11]. Multiplying T B2In with B2EBT2
mixes the first and the third columns of the TBM matrix. Similarly we may also mix the first
and the second columns resulting in the new ansatz defined by

|VSin(α)| = |T B2InB2EBT2 B3E ′BT3 | (49)

where
E ′ = diag(eiα, 1, 1). (50)

Note that the Cases 1 to 4 are simply VSin(0) with n = 1 to 4 respectively. Eq. (49) on
simplification gives

|VSin(α)| = |T B2InH2SH′3| (51)

1 Dedicated to my father K Venugopal and mother J Saraswathi Amma
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where

S = diag(ei
π
16 , 1, 1), H2 =

 c 0 is
0 1 0
is 0 c

 , H′3 =

 c′ is′ 0
is′ c′ 0
0 0 1

 (52)

with
c = cos

π

16
, s = sin

π

16
, c′ = cos

α

2
, s′ = sin

α

2
. (53)

We get sin2 θ12 within 1σ errors for 0.08π . α . 0.26π. Table 2 lists a few cases of the VS
mixing along with the predicted values of the mixing angles. The author finds the choice α = π

8
to be aesthetically pleasing. When α = π

8 we get E ′ = E and also c′ = c, s′ = s.

VS-1(π4 ) VS1(π4 ) VS-1(π6 ) VS1(π6 ) VS-1(π8 ) VS1(π8 )

sin2 θ23 0.613 0.387 0.613 0.387 0.613 0.387

sin2 θ12 0.323 0.323 0.317 0.317 0.319 0.319

δCP 1.27π 0.27π 1.18π 0.18π 1.13π 0.13π

Table 2. Note that sin2 θ13 = 0.025 is a generic feature of the VS mixing. Conjugation, VS∗in(α),
changes the sign of δCP without affecting the mixing angles θ12, θ23 and θ13.

4. Summary
The symmetries represented by a discrete group are related to the eigenvectors of the group
elements. We develop a notation to uniquely identify the eigenvectors and use it to assign vevs
for the flavons. An orthonormal set of eigenvectors define the fermions’ flavour states. The
model thus constructed predicts the reactor mixing angle, sin2 θ13 = 0.025, as well as the ratios
of the neutrino masses, m1 : m2 : m3 = 0.945 : 1 : 2.117. The TφM versions of the model
provide solutions for θ23 in the first octant, sin2 θ23 = 0.387, as well as in the second octant,
sin2 θ23 = 0.613. The TφM as well as the TχM versions give sin2 θ12 = 0.342. A new mixing
ansatz, VSin(α), is introduced which gives reduced values for θ12. The ansatz also predicts
various values for δCP .
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