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List of Figures 

 

Figure 1.1 The cell membrane forms an outer boundary of the cell and is essentially 

a double layer of lipid molecules that regulates the passage of substances in and out 

of the cell as well as its response to chemical signals such as hormones. Focal ad-

hesion points are high protein concentration points on the membrane, which are as-

sociated with the microfilament network in the inside and cell surface receptors or 

extracellular matrix on the outer side of the cell. The cytoplasm is a fluidic like media  

which forms a suspension for the organelles, including a network of protein filaments 

that maintains the shape called the cytoskeleton. 

 

Figure 1.2 The Young’s (elastic) moduli of different biological materials. 

 

Figure 1.3 A systematic sketch of cell nano-biomechanics associated with physio-

logical and pathological processes, which are important for the future progress in 

nanomedicine. 

 

Figure 1.4  Diagram showing the force range of force common nanomechanical test-

ing instruments, in relation to the range of major biological structures/processes. 

 

Figure 1.5  Schematics of common nanomechanical testing techniques. 

 

Figure 1.6 Basic components of AFM. During force spectroscopy experiments the 

cantilever is stationary in x-y direction but ramped at a given position in z-direction. A 

laser is used to read on a diode the deflection of a very soft cantilever equipped with 

a sharp tip. Mechanical contact is controlled via feedback between the piezo and the 

photodiode. 

 

Figure 1.7 A microscopic section of normal pancreas. Lighter staining cells, compare 

to exocrine tissue, in the centre are identified as the 'islet of Langerhans'(original 

magnification x350). 
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Figure 1.8 The adherens junction and the cadherin-catenin complex is crucial for 

cell-cell adhesion and facilitates cell communication via gap-junctions. Gap-junctions 

permit the direct transfer of small molecules and ions between coupled cells and 

their formation depends on E-cadherin based cell-cell adhesion. The pro-fibrotic cy-

tokine TGF-β1 is associated with elevated glucose and it is important in many 

tubulointerstitial diseases where disassembly of the adherens junction (AJ) repre-

sents the initial overt change in epithelial organisation ahead of cellular migration as-

sociated with EMT. 

 

Figure 2.1 Schematic diagram of the vertical tip movement during the approach and 

retract process in force spectroscopy for the measurement of F-d curves. As the 

probe approaches within a few tens of nanometers, it comes into a regime of an at-

tractive van der Waals forces. The probe is weakly attracted toward the sample sur-

face and as it approaches closer to the sample, it enters in the repulsive realm of 

Lennard-Jones potential, where the probe is strongly repelled from the surface.  As 

the cantilever is retracted from the sample, the tip remains in contact with the surface 

due to interaction forces, and the cantilever is deflected downwards. At some point of 

retraction, the force required to disrupt the adhesion is reached. The attractive or re-

pulsive forces can be measured by spring stiffness. 

 

Figure 2.2 A schematic illustration of a single cell indentation and a representation of 

a F-d curve obtained from a single cell. Various elements of the cell are contributing 

to the overall determination of the E modulus. Special considerations regarding the 

depth of indentation and the fitting of the curve to a mechanical model needs to be 

taken into account according to the purpose of investigation i.e. whole cell elasticity, 

membrane or CSK elasticity etc.  

 

Figure 2.3 Schematic of an AFM head capable of long range displacement pulling 

(100μm) to facilitate long distance force spectroscopy i.e. complete separation of ad-

herent cells during cell-to-cell adhesion experiments. The cantilever is mounted on 

the inclined part of the glass block holder using a spring. The incline of 10 degrees 

ensures that any contact between the sample and the holder will be prevented. The 

glass block remains locked on the AFM head during experiments. 
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Figure 2.4 A photo of the instrument set-up showing the AFM head and stage 

mounted on a inverted microscope. A CCD camera was mounted on the left-side 

port on the microscope to monitor the experiments. The cantilever glass holder is 

positioned on place by lifting up the AFM head  prior the experiments. Once the can-

tilever is mourned on the head the alignment of laser can take place. After calibration 

of the cantilever the head must not be lifted nor the alignment of laser should be 

changed. 

 

Figure 2.5 A schematic diagram showing the optical path of the laser. Initially the 

laser must be adjusted to get reflected from the end of the cantilever with the aid of 

the optical microscope. Then by adjusting both the mirror and the photodetector the 

laser spot must be adjusted to reach the centre of the photodetector to achieve 

maximum sensitivity.  

 

Figure 2.6 An optical image showing proper alignment of the infrared laser spot on a 

tipless functionalised cantilever. Any residuals left from the chemical modification will 

affect the sum value of the detector. As it can be seen from the photo soft cantilevers 

used for contact mode are relatively transparent.  

 

Figure 2.7 An Arrow series rectangular tipless cantilever with a triangular free end, 

made from monolithic silicon for special applications, i.e. they can be used for attach-

ing cells or spheres to the free end of the cantilever. The wide part of silicon is usu-

ally referred as 'chip', while the main of the cantilever has thickness: 1.0μm, width: 

100μm and length: 500μm. At the end of the cantilever the tip can be seen where a 

cell or a microbead can be attached (Nanoworld Arrow™ TL1). 

 

Figure 2.8 Measurement of force curve on a hard substrate (clean petri dish) in PBS 

solution for calibration. The linear part of the curve is chosen for the calculation of 

the gradient of the line. Here, the sensitivity is 55.3nm/V. 

 

Figure 2.9 Free fluctuations are plotted against frequency for the thermal noise 

measurement of an Arrow TL-1 contact mode cantilever in fluid. Three resonant 

peaks, corresponding to the resonance at around 1kHz, are shown. Both phase and 

amplitude are reduced with comparison to the spectrum in air. The second peak was 
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used to determine the spring constant by the use of a correction factor. The calcu-

lated value was 0.0206N/m, whilst the nominal value provided by the manufacturer is 

0.03N/m.    

 

Figure 2.10 Schematic design of the elements functionalising a tipless cantilever. 

The surface of the cantilever is first coated with PLL (25μg/ml in PBS, 30min in RT), 

which promotes the attachment of Fn molecules. The cantilever was next incubated 

in Fn solution (20μg/ml in PBS, 2h at 37°C), and finally brought in contact with the 

membrane of a suspended cell. Molecules in the surface of the cell that are involved 

in adhesion readily attach to Fn in the extracellular domain, while in the intracellular 

domain they are connected with actin filaments through adherens junction.    

 

Figure 2.11 Phase contrast images of a single HK2 (a) and MIN6 (b) cell attached to 

a TL1 arrow tipless cantilever. The cantilever-cell was brought in contact with a sub-

strate cell and a predefined contact time it was retracted to investigate functional 

tethering between two cells. Width of the cantilever (rectangular part): 100μm. Note 

the laser spot (purple) used for measuring the deflection of the cantilever.  

 

Figure 2.12 A force distance curve of two MIN6 cells that are brought in con-

tact.Initially the cells are bounded into a cantilever and the substrate (phase 1). Then 

they are approached to each other, and after a short period of contact the two cells 

are attached. During this time bonding is formed (phase 2). Next, the cantilever is 

retracted and force versus displacement is measured (phase 3) until they are com-

pletely detached (phase 4). Based on the F-d retraction curve adhesion parameters 

can be determined including maximum force of detachment from the highest nega-

tive deflection of the cantilever, work of removal from the area under the curve and 

distance of complete separation from maximum pulling range before separation. In 

addition unbinding steps that correspond to ligation rupture can be determined. 

Steps in the initial part of the curve, such as in 's' area, are followed after a bond rup-

ture while 't' steps are followed after a deformation of membrane tethering. 

 

Figure 2.13 Schematic diagram of a single cell indentation experiment. (a) The dis-

placement z of the piezo-actuator includes both the indentation height δ and the de-

flection of the cantilever x. (b)The deflection of the cantilever x, must be subtracted 
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from the z height measured during AFM indentation. The corrected tip-sample-

separation curve represents the actual F-d curve that can be used for calculation of 

elasticity. 

 

Figure 2.14 Single and clusters of Polystyrene microbeads on a glass coverslip. The 

mean diameter of the bead is10μm with coefficient of variance ≤10%.  

 

Figure 2.15 A spherical polystyrene microbead of 10μm in diameter attached on the 

very end of an Arrow TL-1 tipless cantilever. (a) An optical image showing the side view 

of the microsphere attached to the tip of the sensor. (b) An optical image showing the top 

view of the cantilever-bead and KH2 cells on the substrate. 

 

Figure 2.16 Indentation of a single cell using spherical indenter, where δ is the in-

dentation depth, α is the radius of the contact area between the probe and the 

plasma membrane, R is the radius of the probe and F the loading force.     

 

Figure 2.17 Schematic design of the surface of a probe and the sample. Dotted line 

represent the theoretical assumption, while continuous line is a representation of the 

actual micro-environment. Roughness at molecular level contributes to the uncer-

tainty of the determination of initial contact point and contact area during indentation. 

Various membrane extensions such as long chain molecules on the surface of the 

cell can cause a force jump indicating a false contact point.   

 

Figure 2.18 Optical image demonstrating the determination of cell height prior inden-

tation experiments. The target cell is marked with a circle while arrows show the 

points of clean substrate area that can be used as a reference point. A low set-point 

force of 0.2nN was used for the cantilever to  touch a point in a clean area next to a 

measuring cell and the surface of the cell. Their displacement difference was used to 

determine the height of the cell and subsequently the indentation depth. When a sin-

gle test within a cluster was tested one reference point was used for measuring the 

height of the cell (a). For cells in smaller cluster or individuals the reference values 

were obtained by measuring the area surrounding the cell. Single cell have more 

reference points (b & c).  
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Figure 2.19 Elasticity can be determined by fitting the model to the F-d curves in the 

range of 5-10% of indentation. The spherical probe has large area of contact and it is 

important to take under consideration the effects of the substrate. 

 

Figure 2.20 AFM indentation using force-controlled and height-controlled displace-

ment of a cell with thickness 3.5μm. Hertz theory assumptions require that the depth 

of indentation depth δ is maximum 10% of the cell height. As shown in the F-d 

curves, the contact point was determined by a positive ramp of the force sensor. In 

(a), a set-point force of 4.5nN was used to indent the sample resulting in a displace-

ment of approximately1500nm. As δ was increased the value of E modulus was in-

creased significantly, suggesting that stiffer elements (e.g. nucleus or substrate) are 

contributing to the calculation of elasticity. In (b) a set-point force of 100pN was used 

to determine sample thickness with regards to the reference substrate and indenta-

tion depth δ is fixed for the specific position on the cell. The procedure was repeated 

for each testing cell.     

 

Figure 2.21 Processing of cell-to-cell adhesion force curves. In (a) a raw F-d curve, 

as measured by AFM-SCFS, is shown. After applying the following functions: (1) 

smoothing, (2) set the x-axis Baseline, (3) detect the Contact point, (4) detect the 

Minimum Force value, (5) determine the Area under the curve and (6) Step fitting, 

the F-d retraction curve of (b) is resulted. As illustrated the determination of the point 

at which the cells are completely separated is the most important step, since the x-

axis baseline acts as a reference for further analysis. Fmax is the difference between 

the minimum force value and the baseline, while WD (grey region) is the integral of 

the continuous area under the baseline. In addition, ds can be determined by the dif-

ference between Fmax and the point of complete separation. Zooming in the x-axis 

displays detection of early unbinding events. 

 

Figure 2.22 Processing of indentation force curves. In (a) a raw F-d curve, as meas-

ured by AFM-FS, is shown. After applying the following functions on the approach 

curve: (1) smoothing, (2) substract the Baseline to set the zero force level, (3) detect 

the Contact point, (4) correct the height of the cantilever bending and (5) apply the 

Hertz model, the F-d extension curve of (b) is resulted. In order to calculate the elas-

ticity of a cell, an F-d curve was analysed as shown. Fitting in incremental and vari-
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ous parts of displacement confirmed that the experimental procedure was robust. A 

contact point of 118nm resulted in better fit of the data.   

 

Figure 3.1 The morphology of MIN6 cells cultured in low extracellular calcium 

(0.5mM). In (a), an optical image of MIN6 cells in monolayers demonstrates that cells 

are organised in low proximity between each others, forming clusters that enable 

cell-to-cell coupling and communication. In (b), a fluorescence microscopy image of 

a single cell illustrates the cobblestone morphology that is maintained by the CSK 

(stained in red colour). The nucleus of the cell, occupying a large area of the cyto-

plasm, is clearly shown (purple colour).  

 

Figure 3.2 Phase microscopy image showing a β-cell-to-β-cell SCFS adhesion ex-

periment. No morphological nor phenotypical changes between the samples were 

observed by optical images. The suspended cell was attached on the functionalised 

cantilever and then was brought in contact with a single substrate cell (within a clus-

ter of cells) for 5secs, while force versus displacement were measured simultane-

ously. In (a), an optical image showing MIN6 cells incubated for 48 hours in 0.5mM 

Ca2+ (Control) while in (b) cells were incubated in 0.5mM Ca2+ +R568.  

 

Figure 3.3 The effects of CaSR activation, followed by treatment with the calcimi-

metic R568, on E-cadherin mediated cell-to-cell adhesion were examined using 

AFM-SCFS. Fmax is the difference between the minimum force value and the point of 

complete detachment, WD (grey region) is the integral of the continuous area under 

the baseline of complete separation and ds is the difference between Fmax and the 

point of complete separation. Set-point force of 0.8nN, contact time of 5sec and pull-

ing speed of 5μm/sec were remained constant throughout the experiments. Altera-

tions of adhesion parameters such as Fmax, WD and ds provide an important insight 

about functional cell-to-cell adhesion. In (a) Fmax is 0.9nN, WD is  6.7 fJoule and ds is 

34.6μm  while in (b) Fmax is 1.3nN, WD is 16.9fJoule and ds is 54.2μm. 

 

Figure 3.4 Retraction force-distance curves obtained by MIN6 cell-to-cell adhesion 

measurements, showing the effects of CaSR activation on the tether rupture events. 

Unbinding of ligations that occur during the early pulling phase (10μm after the mini-

mum force value) are preceded by a force ramp ('j' events). As the pulling distance 
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increases an area is reached where the rupture events are preceded by a displace-

ment plateau as well ('t' events) due to the deformation of the cell. In (a) the number 

of TREs is 39, whilst most of the unbinding events occurred in the first 11μm of pull-

ing range, corresponding to the area of 'j' and mixed 'j' and 't' events. In (b) the num-

ber of TREs is 61, whilst most of the 'j' events occurred in the first 3.2μm. The arrows 

illustrating the displacement plateau combined with the fact that the initiation of 't' 

events occurred much earlier as shown in (b) indicates that MIN6 cells became more 

deformable after treatment with the calcimimetic. 

 

Figure 3.5 Histograms of control cells showing (a) distribution of frequencies of 

maximum unbinding forces and (b) distribution of frequencies of work of detachment. 

 

Figure 3.6 The effects of the calcimimetic R568 (1μM) on (b) the maximum unbind-

ing force (increased by 30%), (c) the number of tethering rupture events (increased 

by 48%), (d) the work of detachment (increased by 39%) and (e) the distance to 

complete separation (increased by 72%) are shown. Data are expressed as mean 

±SEM of more than 30 cells from 4 separate experiments, where key significances 

are shown, ***p<0.001. 

 

Figure 3.7 Phase microscopy image showing a β cell indentation experiment. The 

cantilever was modified using a 10μm polystyrene microbead cell to enable indenta-

tion of a single substrate cell (within a cluster of cells), while force versus displace-

ment were measured simultaneously. In (a), an optical image showing MIN6 cells 

incubated for 48 hours in 0.5mM Ca2+ (Control) while in (b) cells were incubated in 

0.5mM Ca2+ +R568. 

 

Figure 3.8 The effects of CaSR activation, followed by treatment with the calcimi-

metic R568, on E modulus as determined using AFM-FS indentation. For a cell of 

4.5 μm in height the depth of indentation was 450nm. The contact point for each cell 

was identified by fitting various parts of the extension F-d curve with Hertz model. A 

contact point at approximately 0.1nN was used for the calculation of E modulus. The 

extension speed of 5μm/sec was remained constant throughout the experiments. (a) 
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For control cells the E modulus was 512Pa   while (b) following treatment with R568 

E modulus was 297Pa. 

 

Figure 3.9 Histograms of control cells showing distribution of frequencies of E 

modulus (a) in Ca2+ cells and (b) in Ca2++R568. 

 

Figure 3.10 The effects of the calcimimetic R568 (1μM) on the E modulus (increased 

by 34%) of MIN 6. Data are expressed as mean ±SEM of more than 30 cells from 3 

separate experiments, where key significances are shown, ***p<0.001. 

 

Figure 3.11 Retraction F-d curves acquired by adhesion measurements of MIN6 

cells trated with +R568 with incremental pulling speed are shown. The effects of in-

creasing pulling speed on adhesion characteristics are clearly shown. For speeds 

higher than 5μm/sec partial separation was observed. The levels of incomplete sepa-

ration were increasing with the increase of pulling speed resulting in the total  rejec-

tion of measurements with pulling speed of 15μm/sec due to the limitation of 100μm 

in displacement range.  

 

Figure 3.12 The effects of increasing pulling speed on the cell-to-cell adhesion pa-

rameters of MIN6 cells obtained by SCFS retraction F-d curves. Data are expressed 

as mean ± SD and the effects of increasing pulling speed on (a) maximum unbinding force, 

(b) work of detachment and (c) number of tethering rupture events are illustrated.  

 

Figure 4.1 Phase microscopy showing cell morphology of (a) healthy (control) cells 

and (b) cells treated with TGF-β1 (48h, 10ng/ml). It is clear that TGF-β1 evoked 

changes in cell morphology, resulting in translucent elongated cells that exhibited 

clear demarcation between neighbouring cells.  

 

Figure 4.2 Phase microscopy images showing a HK2 cell-to-cell experiment. In (a), 

HK2 cells incubated for 48h in low glucose media (control). The suspended cell was 

attached on the functionalised cantilever and then was brought in contact with a sin-

gle substrate cell (within a cluster of cells) for 10 secs, while force versus displace-

ment was measured simultaneously. In (b), HK2 cells incubated for 48 hours in low 
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glucose media. Note that the substrate cells were elongated and were not organised 

in clusters. 

 

Figure 4.3 The effects of the cytokine TGF-β1 on E-cadherin mediated cell-to-cell 

adhesion of HK2 cells were examined using AFM-SCFS. Fmax is the difference be-

tween the minimum force value and the point of complete detachment, WD (grey re-

gion) is the integral of the continuous area under the baseline of complete separation 

and ds is the difference between Fmax and the point of complete separation. Set-point 

force of 1.0nN, contact time of 10sec and pulling speed of 5μm/sec were remained 

constant throughout the experiments. Alterations of adhesion parameters such as 

Fmax, WD and ds provide an important insight about functional cell-to-cell adhesion. In 

(a) Fmax is 0.9nN, WD is 8.6 fJoule and ds is 61.7μm  while in (b) Fmax is 0.68nN, WD 

is 2.7fJoule and ds is 28.2μm. 

 

Figure 4.4 Retraction force-distance curves obtained by HK2 cell-to-cell adhesion 

measurements, showing the effects of TGF-β1 on the tether rupture events. Unbind-

ing of ligations that occur during the early pulling phase (approximately 5μm after the 

minimum force value) are preceded by a force ramp ('j' events). As the pulling dis-

tance increases an area is reached where the rupture events are preceded by a dis-

placement plateau as well ('t' events) due to the deformation of the cell. In (a) the 

number of TREs is 73, whilst most of the unbinding events occurred in the first 

8.2μm of pulling range, corresponding to the area of 'j' and mixed 'j' and 't' events. 

After that point and until the complete detachment of the cells extended separation 

displacements occurred ('t' events), owing to the deformation of the cell. In (b) the 

number of TREs is 51, whilst most of the unbinding events occurred in the first 

3.85μm, and were not preceded by a displacement plateau. 

 

Figure 4.5 Histograms of control cells showing (a) distribution of frequencies of 

maximum unbinding forces and (b) distribution of frequencies of work of detachment. 

 

Figure 4.6 The effects of the cytokine TGF-β1(48h/10ng/ml) on (a) the maximum 

unbinding force (decreased by 19%), (b) the number of tethering rupture events (de-

creased by358%), (c) the work of detachment (decreased by 53%) and (d) the dis-

tance to complete separation (decreased by 46%) are shown. Data are expressed as 
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mean ±SEM of more than 40 cells from 5 separate experiments, where key signifi-

cances are shown, ***p<0.001. 

 

Figure 4.7 Phase microscopy images showing HK2 cells indentation experiment. 

The cantilever was modified using a 10μm polystyrene microbead probe to enable 

indentation of a single substrate cell (within a cluster of cells for control group), while 

force versus displacement were measured simultaneously. In (a), an optical image 

showing normal HK2 cells (control) while in (b) cells that were treated for 48 hours 

with TGF-β1 are shown. 

 

Figure 4.8 The effects of TGF-β1 treatment on E modulus as determined by the ex-

tension F-d curves acquired using AFM-FS indentation. 

 

Figure 4.9 Histograms of control cells showing distribution of frequencies of E 

modulus (a) in control cells and (b) in TGF-β1 treated cells. 

 

Figure 4.10 The effects of the cytokine TGF-β1 (10ng/ml) on the E modulus of HK2 

cells. Treated cells showed an increase of 71% compare to the untreated group. 

Data are expressed as mean ±SEM of more than 30 cells from 3 separate experi-

ments, where key significances are shown, ***p<0.001. 

 

Figure 4.11 Fluorescence microscopy images showing the effects of TGF-β1 on 

both cell morphology and cytoskeletal reorganisation. The changes in the arrange-

ment of the cytoskeleton (red) mainly affected the cell architecture. The nucleus of 

each cell is shown in purple. is  In (a), normal cells are shown that were grown in low 

glucose (5mM) alone, while in (b) cell treated with TGF-β1 (10ng/ml) are shown. 

 

Figure 4.12 Retraction F-d curves acquired by adhesion measurements of control 

HK2  cells with incremental pulling speed are shown. The effects of increasing pull-

ing speed on adhesion characteristics are clearly represented by the changes in the 

work of detachment. Further, for speeds higher than 5μm/sec partial separation was 

observed. The levels of incomplete separation were increasing with the increase of 

pulling speed resulting in the complete rejection of measurements with pulling speed 

of 12.5μm/sec due to the limitation of 100μm in displacement range.  
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Figure 4.13 Effects of increased pulling speed on cell-to-cell adhesion parameters 

as acquired by SCFS retraction F-d curves of HK2 cells. Data are expressed as 

mean ± SD and the effects of increasing pulling speed on (a) maximum unbinding 

force, (b) work of detachment and (c) number of tethering rupture events are illus-

trated.  

 

Figure 4.14 Cell-to-cell adhesion process of HK2 cells showing the changes in sur-

face molecular binding and re-arrangement of the cytoskeleton into the periphery 

upon treatment with TGF-β1. During phase 1 the cells are in contact with each other 

and E-cadherin ligation is formed. In (a), a schematic of control cells is shown while 

in (b), a schematic of cells after treatment with TGF-β1 is shown. In phase 2 the 

separation process between the two cells is illustrated. In (c), increased distance of 

separation due to cell deformation, corresponded to higher work of detachment for 

normal cells while in (d) cells became more rigid due to cytoskeletal reorganisation 

into the periphery after TGF-β1 resulting in decreased distance of separation inevita-

bly leading to a dramatic reduction of work of detachment. All in all, surface binding 

affinity was partially responsible for the changes in work of detachment that was 

mainly influenced by changes in the elastic properties of each cell.   
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Abstract 

Cell-to-cell adhesion is critically important for the improved secretory function of en-

docrine pancreatic beta (β)-cells and for the progression of fibrosis in the renal 

proximal tubule in Diabetic Nephropathy. In this research project the effects of spe-

cific biochemical treatment on functional cell-to-cell adhesion and single cell me-

chanics were systematically investigated. Atomic Force Microscopy (AFM) Single 

Cell Force Spectroscopy was applied to quantitatively characterise E-cadherin medi-

ated surface ligation and cytoskeletal reorganisation in the pancreatic mouse insuli-

noma MIN6 and human kidney proximal tubule HK2 cell model. AFM tipless cantile-

vers were functionalised with a single cell or a spherical microbead for performing 

cell-to-cell adhesion and single cell indentation experiments respectively. The impact 

of elastic deformation of single cells into cell-to-cell adhesion was examined by per-

forming adhesion experiments at various retraction speeds. The results illustrate that 

both adhesive and mechanical properties of single cells constitute important underly-

ing factors of the physiological and pathological conditions under investigation since 

they were significantly affected by biochemical changes. More specifically, it is sug-

gested that the enhanced secretory function of MIN6 cells upon calcium-sensing re-

ceptor activation is owned to a combination of increased E-cadherin mediated cell-

to-cell adhesion and decreased elastic (E)-modulus of single cells. In addition, it was 

shown that treatment of HK2 with the cytokine TGF-β1 decreased E-cadherin medi-

ated cell-to-cell adhesion and increased E modulus of single cells, suggesting a 

mechanism that initiates early fibrotic changes in the tubular epithelia. Overall, both 

studies demonstrate that alterations of biological states evoke complex interactions 

between E-cadherin and actin cytoskeleton as manifested by the interplay between 

the mechanistic behaviour and surface binding of the cells. Therefore single cell me-

chanics have profound effects on cell-to-cell adhesion characterisation, particularly 

when physiological versus pathological states are to be investigated. 
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1. Nanomechanics in Cellular Biology 

1.1 Introduction 

Understanding of the fundamental mechanisms for the development and progression 

of chronic diseases, such as diabetic nephropathy, was and still is directed by the 

advances of novel techniques that allow structural and functional investigation of liv-

ing cells. Moreover, advances in tissue engineering and organs replacement heavily 

depend on the understanding of how cells interact with each other and respond to 

their microenvironment. Besides, relation of the cellular adhesion to the abnormal 

growth and metastases of cancer cell necessitate the advancements of novel exper-

imental techniques in molecular biology (Cooper & Hausman, 2009). In addition, the 

adhesive behaviour of cell with other surfaces is crucial for the biocompatibility of 

implants (Elter et al., 2011). However, as a living system, the  cell represents a high-

ly complex organisational architecture that exhibits complicated mechanical and ad-

hesive behavior. Inevitably, for the past three decades, engineered materials, such 

as commercial polymers and metals, have been widely used in medical devices and 

implants, primarily owing to their well characterized mechanical and adhesive prop-

erties. However, recent advancements in cell biology and tissue engineering neces-

sitate the development of novel materials with mechanical properties that will resem-

ble those of soft parts of biological structures (Scott et al., 2004; Ikai, 2008). Unlike 

classical mechanics, several special considerations need to be taken into account in 

the characterization of the mechanical properties of biological cells, since they show 

a complex 3-D structure, and they are distinguished by their compex mechanical and 

interfacial behavior (Scott et al., 2004). For example, the cell cytoskeleton has a fi-

bre-like structure with a diameter less than 25nm, and is normally subjected to com-

plex chemical and mechanical environment, including cell-cell and cell-extracellular 
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matrix (ECM) interactions. Therefore, the cytoskeleton is the principal factor that de-

termines the deformation behaviour of a single cell (Bao & Suresh, 2003). In addi-

tion, the deformation behavior of cells and tissues is a result of integrated interaction 

between cytoplasmic elements such as the cytoskeleton (CSK) and the ECM. There-

fore, mechanical and adhesive properties are affected simultaneously both at local 

and whole cell scale (Puech et al., 2006; Bao et al., 2009).  Accurate determination 

of such complex material behaviour necessitates an understanding of the fundamen-

tal deformation behaviour in the nanoscale. Hence, nanomechanical characterization 

is critical for materials such as soft biological cells and tissues (Haque & Saif, 2002).  

 

1.2 General Background 

The cell is the basic building block of multicellular organisms, such as human tissue 

and organs. It is responsible for performing all the necessary functions of life includ-

ing metabolism, homeostasis, growth and reproduction. Although eukaryotic cells 

vary between organs and tissues in size, shape and function they all have similar 

structures. Typically their structure include the plasma membrane and various cyto-

plasmic organelles such as the CSK and the nucleus. A diagram showing the main 

structure of a cell is depicted in Figure 1.1. Genetic information is contained inside 

the nucleus, which is the largest subcellular element with a diameter of approxi-

mately 5μm. However, red blood cells have a biconcave disk shape with no nucleus 

since they are constantly subjected into mechanical deformation while moving into 

narrow capillaries (Scanlon & Sanders, 2002; Cooper & Hausman, 2009; Pocock & 

Richards, 2009).  
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Figure 1.1 The cell membrane forms an outer boundary of the cell and is essentially 

a double layer of lipid molecules that regulates the passage of substances in and out 

of the cell as well as its response to chemical signals such as hormones. Focal ad-

hesion points are high protein concentration points on the membrane, which are as-

sociated with the microfilament network in the inside and cell surface receptors or 

extracellular matrix on the outer side of the cell. The cytoplasm is a fluidic like media  

which forms a suspension for the organelles, including a network of protein filaments 

that maintains the shape called the cytoskeleton. Image adopted from Bao & Suresh, 

(2003). 

 

The cell is a dynamic system that interacts continuously  with its external environ-

ment, that is either other cells or extracellular matrix. This dynamic interaction is con-

trolled by the plasma membrane that surrounds the cell and serves as a barrier be-

tween cells with which they can interact via cell adhesion molecules (CAMs). CAM 

proteins however, are not simply involved in the formation of tethering between cells 

but they also respond to any changes in the extracellular microenvironment, affecting 

the intracellular domain as well. Essentially, CAMs are transmembrane molecules 

that are linked to cytoskeletal filaments at the adherens junction. The connection of 
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the extracellular domain to the cytoskeleton results in an intricate interplay of the 

mechanical and adhesive properties of the cell, which may lead to alterations in the 

elastic deformation of whole cell (Puech et al., 2006). Puech et al. (2005) measured 

the adhesive properties of single zebrafish cells to coated substrates and concluded 

that extracellular binding affects intracellular signalling. In addition, Bershadsky et al. 

(2003) highlighted that focal adhesion points act as mechanosensors responsible for 

the signalling cascade within the cell. Thus, it is no doubt that cell adhesion events 

are important in controlling various cellular functions such as differentiation, wound 

healing, cancer proliferation and metastasis (Chaudhuri et al., 2009; Puech et al., 

2006). 

 

As a living unit the cell adapts continuously to its microenviroment in an attempt to 

maintain an overall healthy state. In fact, living cells in the human body are con-

stantly subjected to mechanical stimulation throughout life. The changes of a cell in 

response to the environment can be of biochemical as well as biomechanical nature. 

The stresses and strains can arise from both the external environment and internal 

physiological conditions. Depending on the characteristics of the mechanical stimuli, 

cells will respond in a variety of ways altering their structure and consequently their 

functions. For example mechanical compression of chondrocytes modulates pro-

teoglycan synthesis, strongly suggesting that the structure and function of many liv-

ing cells depend directly on their global and local mechanical environment  

(Van Vliet et al., 2003; Lim et al., 2006; Kuznetsova et al., 2007). Ingber (2002) in-

vestigated the transduction of chemical signals to mechanical cues through focal ad-

hesion complexes in endothelial cells and highlighted the importance of mechanical 

control to variety of cell processes including growth, differentiation, motility and apop-
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tosis. Likewise, forces generated within the cell, for example during cytokinesis, have 

a biological implication. Although the importance of mechanical forces in biology is 

not a new concept, it is currently attracting more recognition for its contributing in 

several emerging biomedical fields, such as molecular biology and nanobioengineer-

ing (Pelling & Horton, 2008). Recent advancements in technology allow the detection 

of these forces, yet we are only in the first steps of decoupling forces of specific in-

terest from such a complex mechanochemical environment. Nevertheless, it is evi-

dent that mechanical cues are equally important for performing major cellular tasks, 

such as motility, division, intracellular secretion etc, as the biochemical cues (Bao et 

al., 2009). In addition the cell responds to the biochemical environment by continu-

ously changing its structure and morphology. Changes in deformation provide impor-

tant information about the normal and diseased states of the cell (Bao & Suresh, 

2003). Any changes of the resistance of the cell to elastic deformation can be meas-

ured and expressed as changes in the Elastic modulus E or Young's modulus. 

Hence, measurements of single cell mechanical properties can form the base for a 

correlation between morphological/structural defects with physio/pathological states.  

 

Furthermore, determination of the mechanical properties of soft tissues and cells has 

attracted significant scientific and commercial attention due to their importance in fu-

ture progress of biomedicine, including drug delivery, cell repair, wound healing etc 

(Sirghi et al., 2008). Studies of whole cell populations under mechanical stimulation, 

investigate how biomechanics regulate the structure and function of tissues and sub-

sequently organs. Besides, mechanical stimulation that exerts at the tissue level is 

transmitted to single cells, influencing their physiological function (Lim et al., 2006). 

However, the fact that most cells respond heterogeneously is a major challenge of 



Chapter 1 
 

7 
 

such studies. This is due to the difficulty in decoupling the response of a single cell 

from the response of the complete cell population, tissue or organ (Van Vliet et al., 

2003). After all, the structural integrity of tissues or entire organs arises from the 

mechanochemical interactions between the cells and the ECM (Lim et al., 2006). 

Therefore, elasticity and responses of single cells to external forces, as well as ad-

hesion forces between cells, have attracted tremendous attention in the modern bio-

engineering research (Lulevich et al., 2006). Figure 1.2 shows an overview of 

Young’s modulus for different biological materials.  

 

Figure 1.2 The Young’s (elastic) moduli of different biological materials, image 

adopted from Alonso & Goldmann, (2003). 

 

In addition, well known examples such as muscle atrophy and bone resorption indi-

cate the importance of the mechanical stimulus, which has been implicated at the 

cellular level in terms of processes including adhesion, motility and differentiation. 

However the intricate coupling between the biochemical and mechanical processes 

of the cells is still poorly understood. Particularly, application of external mechanical 

stimuli can induce biochemical reactions, and likewise changes in chemical stimuli 

can alter the structure and mechanical integrity of the cell, even in the absence of 

mechanical stimuli (Van Vliet et al., 2003; Kasas & Dietler, 2008).  Specific chemical 

agents can influence the interfacial and mechanical properties of living cells. This 



Chapter 1 
 

8 
 

may be useful for possible applications in clinical diagnostics or even therapy of cer-

tain types of diseases (Lim et al., 2006). Puech et al (2005) measured the unbinding 

forces of melanoma cells (Wistar Melanoma 115) from a fibronectin coated surface 

using atomic force microscopy to investigate the effect of the arginine-glycine-

aspartic acid (RGD) blocking agent, suggesting that chemical agents have an impact 

on the adhesive cell-substrate properties. 

 

 A fact of great significance is the competence of cells to recognise mechanical stim-

ulation, which is translated into a biological response (mechanotransduction). Inves-

tigation of cell-to-cell adhesion is important as a mediator of mechanotransduction 

(Ingber, 2006). However, adhesion between cells is related to the mechanical defor-

mation, through CAMs.  As the cell responds continuously to external environment 

by altering its structure, for instance during cell migration where contractile forces are 

produced inside the cell in order for the cell body to become motile (Bao & Suresh, 

2003; Bao et al., 2010), the mechanotransduction process between cells is affected 

by changes in their mechanical properties. Furthermore, a variety of biological pro-

cesses, such as cell growth, proliferation and even apoptosis are influenced by 

changes in cell shape and cellular adhesion ( Lim et al., 2006; Chaudhuri et al., 

2009). In fact, any deviation in the structural and mechanical properties of cells can 

result in a breakdown of the physiological processes and may possibly lead to dis-

eases (Lim et al., 2006). For example, endothelial cells can maintain a healthy endo-

thelium or lead to vascular diseases, such as thrombosis and atherosclerosis, when 

they sense a change in the magnitude, mode, type and duration of applied shear 

stress (Van Vliet et al., 2003; Bao et al., 2010). An additional important phenomenon 

in cell mechanics is that mechanical forces and deformation of a single cell can lead 
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to the guidance and regulation of major cellular functions, including motility and dif-

ferentiation (Zhu et al., 2000; Bao et al., 2009; Kam & Roy, 2010).  

 

Finally, of significant importance is the direct connection of the mechanical and ad-

hesive response of individual cells to certain pathologies. As biological information is 

transferred mechanically, mechanical forces not only induce biological responses in 

cells, but they also alter cell structure and function. Moreover, the mechanical prop-

erties of cells appear to be affected by transitions between healthy and diseased 

states. Mechanical detection of these states may indeed be a key for future progress 

in Nanomedicine  (Figure 1.3)  (Pelling et al., 2008). In support of that, Hoh and  

Schoenenberger (1994)   used  AFM to monitor the increase in stiffness in kidney 

cells under chemical influences (Kasas & Dietler, 2008). Recent experiments per-

formed using optical tweezers have shown that when the malaria parasite plasmodi-

um falciparum intestates human erythrocytes, the shear modulus of the cell mem-

brane can be increased up to tenfold as the disease state progresses (Van Vliet et 

al., 2003).  
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Figure 1.3 A systematic sketch of cell nano-biomechanics associated with physio-

logical and pathological processes, which are important for the future progress in 

nanomedicine. 

 

Subsequently, the mechanical properties of individual cells can determine the struc-

tural integrity of whole tissues arising from the mechanical interactions between cells 

and the surrounding ECM. Likewise, mechanical loads exerted at the tissue level are 

transmitted to individual cells influencing their physiological functions (Lim et al., 

2006). Conclusively, the investigation of single cell mechanics is essential for the 

characterization and control of the mechanical properties and functions of reconsti-

tuted tissues, an important task for the practical application of tissue engineering 

(Lulevich et al., 2006). 
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1.3 Mini-Review of Nanomechanical Tools 

To date, there exist a variety of testing techniques and associated models in the field 

of experimental nanomechanics of single cells. As well described in several compre-

hensive reviews in the literature (Bao & Suresh, 2003; Van Vliet et al., 2003; Lim et 

al., 2006; Liu, 2006), these techniques include optical tweezers (OT), and its varia-

tion optical stretcher (OS), atomic force microscopy (AFM), nanoindentation (NI), mi-

cropipette aspiration (MA), magnetic tweezers (MT) and its variation magnetic twist-

ing cytometry (MTC) and biomembrane force probe (BFP). Although the fundamental 

principal of these techniques is to measure the deformation of biological cells under 

an applied force, the developed instruments vary in their operating principles, cell 

manipulation, force and displacement maximum resolutions, and amount of defor-

mation (Van Vliet et al., 2003). Figure 1.4 shows the force range of important cellular 

processes with respect to the range of common nanomechanical instruments, while 

in Figure 1.5 the schematics of common experimental techniques are represented. 

 

Figure 1.4  Diagram showing the force range of force common nanomechanical test-

ing instruments, in relation to the range of major biological structures/processes. Im-

age adopted from Van Vliet et al. (2003). 
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In OT an attraction force is created between a dielectric bead of a higher refractive 

index than the suspending medium and a highly focused laser beam that attracts the 

bead towards the focal point of the trap. In a widely used version of OT, two mi-

crobeads are attached to the opposite ends of a cell (Figure 1.5a). OT has been ef-

fectively used for stretching, rotation and folding, as well as calculating the relaxation 

time of RBCs (Van Vliet et al., 2003, Zhang & Liu, 2008). Operating an AFM in force 

spectroscopy (AFM-FS) mode and with suitable cantilever tips, AFM can be used to 

indent specific points on the cell surface (Figure 1.5b) (Franz & Puech, 2008). The 

elastic   modulus   of   a    single  cell  can   be calculated  by  fitting   the   indenta-

tion  curve  with  an  appropriate theoretical model.      

 

Figure 1.5  Schematics of common Nanomechanical testing techniques. Image 

adopted from Lim et al. (2006). 
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Kasas & Dietler (2008) have reviewed the application of AFM indentation for measur-

ing the mechanical properties of numerous cell types. In MA (Figure 1.5c), a micro-

pipetter is used for drawing a part of the cell into a capillary under the application of 

negative pressure, while the length of membrane sucked into the micropipette is re-

corded optically (Bao et al., 2003). MA has been used to study elastic properties of 

soft cells, such as neutrophils and red cells, as well as harder cells such as teno-

cytes (Hochmuth, 2000; Qi et al., 2006). BFP is a related technique in which a bead 

is attached to the sucked cell that serves as the soft spring of a force transducer 

(Figure 1.5c) (Van Vliet et al., 2003). In MTC a magnetic bead that is attached to the 

surface of the cell, is twisted under the influence of a magnetic field causing defor-

mation of the cell (Figure 1.5d). By measuring the rotational frictional coefficient of 

the bead, viscoelastic properties of the cytoskeleton and cell’s surface have been 

examined (Bao et al., 2003; Van Vliet et al., 2003). 

 

Despite the variation of the means by which mechanical properties are examined, 

the fundamental principle among them is similar, that is to determine cell deformation 

under an applied load. However, direct comparison of the mechanical properties of 

the tested samples, as determined by the different techniques, is often scarce. This 

is mainly due to the diversion in assumptions during experimental procedures, sam-

ple preparation as well as the dependency of certain geometrical parameters of each 

technique, e.g. the contact area between the sample and the loading medium. 

Therefore, the most suitable for each individual experiment will be determined by the 

requirements of a situation, the type of application and the budget.  

 

Today, AFM based Force Spectroscopy (AFM-FS) has been recognized as one of 

the most versatile high-end instruments for studying biomechanics at the cellular 
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level. In addition by specific chemical modification of the AFM tip, the instrument can 

be effectively used for studying cell-to-cell/substrate adhesion. A significant advan-

tage over the other methods is that it allows high resolution force measurements 

(~pN) over a large dynamic range (~5pN to ~100nN) for displacements up to 100μm. 

Therefore, it can be effectively used in cellular adhesion studies to resolve the un-

binding events between single ligand-receptor interactions, while providing sufficient 

force and displacement ranges to ensure detection of maximum unbinding forces 

and complete cell-cell and cell-substrate separation (Chaudhuri et al., 2009; Frie-

drichs et al., 2010). Moreover, the AFM tip can be fitted with either a sharp or spheri-

cal tip, depending on the measurement of local or whole cell elasticity. Since a 

spherical probe indents a much larger area of the sample than the sharp tip does, 

thereby Young’s modulus of single cells can be calculated from the force-

displacement curves under spherical indentation. In this report the focus will be on 

the application of AFM based force spectroscopy to experimentally characterise 

physiological and pathological phenomena of biological cells, by quantifying adhe-

sion forces and elasticity of single cells. 

 

1.4 Atomic Force Microscopy  

The AFM belongs to the category of the scanning probe microscopes that has been 

in use since 1980. Although, it was introduced as a method to overcome the draw-

backs of the common scanning tunnelling microscope, AFM is one of the major 

techniques widely used in the nanotechnology research today.  
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1.4.1 AFM Basics 

Binning et al. (1986) first developed the AFM introducing a powerful tool that could 

provide 3-D images of the surface topography of biological samples in both liquid 

and gaseous environment. Soon, AFM emerged as a powerful tool to quantify the 

mechanical and interfacial properties of cells and to date it is commonly used in 

modern bioengineering research as a high-end instrument for measuring a relatively 

wide range of biological forces, from pN to nN  (Binning et al., 1986; Lulevich et al., 

2006; Franz & Puech, 2008; Ikai, 2008; Chaudhuri et al., 2009).  

 

The AFM comprises of the following major components: a probe, a microfabricated 

cantilever, a piezo base scanner, a laser source, a photodetector diode, the sample, 

and a computer that processes that output reading and providing feedback control to 

the piezo scanner (Figure 1.6). The microfabricated cantilever tip is usually made 

from silicon and silicon nitride and can be of various number of geometrical shapes. 

A pyramidal shape cantilever tip is commonly used for imaging because of its low 

mechanical resistance to vertical deflection and high resistance to lateral torsion. 

However, with certain modification of the cantilever tip, AFM can be configured as a 

nanoindentation system or a cell-to-cell adhesion assay. For example, the tip of the 

instrument can be fitted with either a sharp or spherical tips of various diameters, in 

order to characterise local or whole cell elasticity. When the probe is brought into 

close proximity of the specimen surface, the force between the probe and the sam-

ple results into a deflection of the cantilever. This force is measured by the reflected 

laser spot from the back of the cantilever beam that is collected in the photodetector 

diode, as illustrated in Figure 1.6.  
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Figure 1.6 Basic components of AFM. During force spectroscopy experiments the 

cantilever is stationary in x-y direction but ramped at a given position in z-direction. A 

laser is used to read on a diode the deflection of a very soft cantilever equipped with 

a sharp tip. Mechanical contact is controlled via feedback between the piezo and the 

photodiode (Franz & Puech, 2008; Van Vliet et al., 2003). 

 

1.4.2 Force Spectroscopy in Biology 

Cell mechanics of living cells are dynamic due to the fact that forces are generated 

within the cell during cellular processes including cytokinesis, differentiation and mi-

gration. Furthermore, changes in the biochemistry induce changes in the mechanics 

of biological cells. Characterisation of the alteration of the mechanical properties 

contributes to the understanding of the fundamental mechanisms regulating cell 

morphology and function (Franz & Puech, 2008). Young’s modulus of a single cell 

can be calculated by fitting the indentation curve with an appropriate theoretical 

model. A mechanical model that is widely used for the determination of elasticity is 
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the Hertz model, although it is valid for small indentation depths (Carl & Schillers, 

2008). Kasas & Dietler (2008) have reviewed the application of AFM indentation for 

measuring the mechanical properties of numerous cell types, such as cardiocytes, 

osteoblasts, fibroblasts, erythrocytes and cochlear hair cells. However, determination 

of Young’s modulus absolute values is still very challenging as there is no appropri-

ate theoretical model to accurately describe the complexity of biological samples. 

Moreover, the effects of adhesion force on the tip/indenter must be taken into ac-

count in AFM force-displacement curves. An indentation model that takes into ac-

count the effect of tip-cell adhesion force in nanoscale indentation when using py-

ramidal tips has been recently proposed (Kasas & Dietler, 2008; Sirghi et al., 2008). 

Wojcikiewicz et al. (2004) studied the compliance of 3A9 clonal T-cells (10µm in di-

ameter) assuming that the cell is an isotropic elastic solid and the AFM tip is a rigid 

cone, while Young’s modulus was calculated in accordance with a modification of the 

Hertz model proposed by Love and Hertz.  

 

Furthermore, AFM is a valuable tool to measure the mechanical forces between ad-

hesive cells (Kuznetsova et al., 2007). The predictive, diagnostic and therapeutic role 

of adhesion molecules, such as CAMs, in cardiovascular (Jaitovich & Etcheverry, 

2004) and Alzheimer's disease (Wennstrom & Nielsen, 2012)  has been addressed. 

Chaudhuri et al (2009) studied leukocyte to endothelial cell adhesion using AFM 

combined with side-view fluorescent imaging, which performs in-situ imaging of cel-

lular deformation on the loading axis. The major advantage of AFM lies in its capaci-

ty that it allows studying the mechanical properties of biological materials under both 

physiological-like and artificially (experimentally-induced) conditions with high spatial 
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and force resolutions. This made possible by introducing an optical deflection system 

and a fluid cell chamber into the AFM instrumentation (Franz & Puech, 2008).  

 

1.4.3 Application of AFM on Single Cell Elasticity 

Over the past twenty years, determination of the mechanical properties of cells dur-

ing cellular processes and diseased states has attracted remarkable attention. The 

increasing research interest is mainly due to the demands of novel tissue engineer-

ing materials and for the therapeutic interventions in cell biology. In AFM indentation 

a force-distance curve is recorded as a function of the deflection of the cantilever 

versus the height (indentation) of the cell. Elasticity can be then extracted by apply-

ing the Hertz contact theorem and its variations such as Sneddon, JKR and Tatara 

theories for elastic indentation (Radmacher, 2002; Liu, 2006; Franz & Puech, 2008; 

Ikai, 2008). However, the extraction (measurement and interpretation) of the elastic 

properties of the cell is challenging due to the complex nature of the testing material 

and undefined experimental parameters. The precise tip geometry, tip-sample con-

tact point, contact area and indentation depth, as well as the Poisson ratio of the 

sample are factors that influence the calculation of elastic properties, and induce er-

rors in the absolute determination of elasticity. Variations of elastic modulus, E, of 

different cell types measured by AFM indentation are in the range from <1kPa to 

several 100kPa. This has serious implications when trying to produce comparable 

values between physiological and pathological states, since the differences in E be-

tween normal and malignant tissue may coincide in this range. Kuznetsova et al. 

(2007) reviewed the elastic modulus of living cells measured by AFM probing con-

cluding that the values ranging widely from 0.2kPa (for leukocytes) up to 200kPa (for 

cardiocytes). The effects of sample preparation processes in the large scattering of 
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the E values were also underlined in the study. One such issue is the chemical im-

mobilisation of the substrate, since firm contact between cells and substrate is re-

quired. However, chemical changes in the environment affect the mechanical proper-

ties of living cells. A method to overcome this difficulty, by providing mechanical im-

mobilisation by placing the cells into microwells, was suggested by Rosenbluth et al. 

(2006). In this study the deformability of lymphoid leukemia cells was investigated. 

To test the effect of deformation rate during experiments, commercial pyramidal AFM 

tips and an indenter fitted with a 10μm diameter spherical bead were used at various 

piezo extension rates. The size of the cells was significantly smaller from the mi-

crowells, to avoid constrains by the walls during mechanical testing.  The data were 

analysed  using Hertz and liquid droplet models to investigate which model describes 

best the sample cell lines. The results showed that the Hertz model fit the data sig-

nificantly better than the liquid droplet model at low deformation rates when testing 

leukemia cells. 

 

Kiss et al. (2011) investigated the difference in elasticity of human embryonic stem 

cells (hESCs) during differentiation that were indented  by a pyramidal AFM tip. Dur-

ing the experiments, researchers measured force-indentation curves at different lo-

cations on the surface of the hESCs using a sharp pyramidal  tip. The results sug-

gested that the elasticity of the hESCs varied significantly at different developmental 

states, with range of Young’s modulus between 0.05Pa and 10kPa.  The authors 

also demonstrated the variation of the elasticity across the surface of the cell, owing 

to the contributions of the underlying structures. Harris et al. (2011) used AFM inden-

tation to test if there is a source of error to elasticity measurements on kidney cells 

when using pyramidal and spherical tipped cantilevers. Indentation measurements 
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were performed by using a standard unmodified pyramidal cantilever (0.05N/m), and 

by using the same cantilever modified with a spherical tip. The results suggested that 

measurements with the spherical tipped cantilever characterised the elasticity more 

correctly than measurements with pyramidal tipped cantilevers that provided an 

overestimation of the measured elasticity. Given such drawbacks in the determina-

tion of single cell elasticity, A-Hassan et al. (1998) discussed whether absolute val-

ues of elastic modulus can be acquired by AFM indentation experiments. They have 

examined epithelial madine-darby canine kidney (MDCK) cells cultured in monolay-

ers, addressed the issues of tip-sample contact point and geometry, and suggested 

an approach for analyses of AFM force displacement (F-d) curves to overcome these 

experimental uncertainties. Essentially, they performed F-d curves across a single 

cell and calculated relative variations of E, by assuming a relationship between the 

indentation work for a predetermined indentation force and the elastic constants 

along the indentation points (force integration to equal limits).  In addition, the ability 

of AFM to generate reproducible F-d the curves at scan rated <25μm/s, as long as 

the measurements are performed at the same position of the cell, was demon-

strated. Besides, scanning of the surface of a cell using the AFM either in contact or 

tapping mode provides information about local surface elasticity at each point of con-

tact. The differences of cantilever oscillation can produce a map of the relative E of 

cell surface. 

 

Another major challenge in the mechanical characterisation of soft biological cells is 

the fitting of the acquired data to an appropriate mathematical model (Kasas & 

Dietler, 2008). Ohashi et al. (2002) determined the elastic modulus of bovine endo-

thelial cells exposed to shear stress using both experimental and numerical meth-
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ods. Although that the values for control and sheared cell calculated by finite element 

modelling were higher in comparison to Hertz fitting, the tendency of the E modulus 

between control and sheared cells was the same. More importantly, this shows that 

E modulus can be used as a relative indicator/parameter in comparison experiments 

and since AFM measurements can be performed in near physiological conditions, 

this tool is useful to study a variety of biological phenomena including physiological 

versus pathological conditions of cells.  

 

Li et al. (2008) used AFM to investigate the elastic properties of benign and cancer-

ous human breast epithelial cells. During the experiments the researchers employed 

different loading rates from 0.03 to 1 Hz and used Hertz’s contact model, at a physio-

logical temperature of 37ºC in order to determine the mechanical characteristics of 

the sample cells. The AFM images showed that healthy cells have more well-defined 

stress fibers network than cancerous epithelial cells, with Young modulus being sig-

nificantly lower (1.4-1.8 times) for diseased cells. These findings have considerable 

implication on diagnosis and treatment of cancer metastasis. Furthermore, Li et al. 

(2009) investigated the elasticity changes in individual breast cancer cells. Specifi-

cally, they quantified and compared the elasticity of non-malignant (MCF-10A) and 

malignant (MCF-7) human breast epithelial cells using spherical AFM nanoindenta-

tion. They also investigated the influence of the different temperatures and different 

loading rates. During the study indentation was performed using loading rates from 

0.03 to 1 Hz, with constant indentation force (0.2nN) at temperatures of 24ºC and 37 

ºC. The Hertz model was used for small deformations and the results showed that 

higher values of the apparent elastic modulus were associated with increase loading 

rate for both MCF-7 and MCF-10A cells. Furthermore, the results showed that elastic 
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modulus is smaller at a higher temperature. The authors concluded that both loading 

rates and temperature need to be considered when performing mechanical tests of 

single cells using AFM. Cross et al. (2007) studied the stiffness variations of metas-

tatic lung cancer cells, obtained from pleural effusions of patients with metastatic 

ademocarcinoma, using AFM. Measurements were performed at 27ºC using a con-

stant speed. The results suggested that metastatic cancer cells were 70% softer 

than normal cells, when compared to other pleural effusions from patients with dif-

ferent clinical histories.  

 

Rotsch et al. (2000) investigated the importance of actin network for the mechanical 

stability of living cells by using drugs (Cytochalasin B and D, Latrunculin A)  to dis-

semble the structure of the cell. During drug action, AFM-based elasticity measure-

ments were performed by recording time series of force maps on the cells and the 

force-displacement curve data were analysed off-line. The results proved that disag-

gregation of F-actin resulted in a loss of cell rigidity but treatment with drugs that im-

pacted microtubules had no effect on elasticity. Finally, the authors concluded that 

the actin network is primarily responsible for the elastic properties of living cells.  

 

All in all, it is clear that there are a few factors that need to be considered in order to 

obtain meaningful results from AFM indentation. Sample preparation may ease or 

optimize the experiment, but it should not be performed in the cost of loss of physio-

logical characteristics of the cell. Another factor is the heterogeneity of the cell caus-

ing variations of the elastic modulus in different cell region. Therefore, probing of the 

cell should always be monitored during the experiments, to ensure that testing is per-

formed in the same location on the cell's surface. Indentation depth largely depends 
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on the mechanical model for E determination and should be carefully defined before 

the experiments or during analysis of F-d curves. In addition, changes in elasticity 

indicate CSK reorganisation, a phenomena that plays a significant role in cell signal-

ling, cell-to-cell adhesion and various cell processes such as motility, division and 

mitosis. 

 

1.4.4 Application of AFM on cellular adhesion 

AFM-FS was primarily used as an assay to quantify the molecular forces between 

single isolated receptor - ligand binding (Friedrichs et al., 2010). However, since the 

functions of surface receptors in isolation were different from their in vivo equivalent, 

AFM was applied as a single cell force spectroscopy (SCFS) tool to quantify surface 

ligation between living cells. AFM-SCFS allows different experimental set-ups, most 

commonly including  

(a) Adhesion of a tipless-, bead-coated cantilever to an immobilised substrate cell, 

(b) Adhesion of a cantilever-attached cell to a coated surface, and 

(c) Adhesion of a cantilever-attached cell to an immobilised substrate cell.  

Although set-up (a) has the advantage that a specific type of functionalisation can be 

tested sequentially on  various types of cells within an experiment, contamination of 

the functionalised tip after continuing cell contacts could finally result in only a few 

reliable measurements. Since characterisation of  the adhesion process necessitates 

the measurement of manifold Force vs distance (F-d) curves, this configuration is not 

an option for long or strong tip-cell contacts (Friedrichs et al., 2013). Grandbois et al. 

(2000) applied this approach to produce affinity images of RBCs by measuring the 

rupture force of adhesion events using a Helix pomatia lectin functionalised tip. Their 
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study suggested that the chemical wearing out of the cantilever was minimised for 

contact forces less than 40pN. Another major drawback of this method is the spread-

ing of receptor or ligand of interest across the surface of the cantilever, affecting 

strongly the local ligand-receptor binding density and can lead to data scattering over 

time (Friedrichs et al., 2013).  

  
Type (b) set-up, in which a single cell is attached on the cantilever, overcomes the 

problem of contamination as long as it is established that the suspended cells are 

not affected prior attachment. Nevertheless, the possibility of substrate's contamina-

tion still remains, hence it is suggested to probe different spots on the same surface 

in cell-to-ECM adhesion studies (Friedrichs et al., 2013). Friedrichs et al. (2010) de-

veloped an SCFS assay  to investigate cell adhesion to ECM in physiological condi-

tions. The study involved integrin-mediated adhesion of HeLa cells, attached on con-

canavalin (Con) A coated cantilevers, to collagen I substrate. The study demon-

strated that cell-substrate unbinding force decreased significantly when integrins on 

the cell surface were inhibited by ethylenediaminetetraacetic acid (EDTA), and de-

scribed a protocol that can be applied to other cell lines. Zhang et al. (2002) investi-

gated the mechanical binding between the leukocyte function-associated integrin-1 

(LFA-1), expressed on the T cell hybrid cell line 3A9, and its cognate ligand intercel-

lular adhesion molecule-1 (ICAM-1). In order for the cell to be attached on the canti-

lever, it was first chemically activated (functionalised) using ConA.  To study the indi-

vidual ligand-receptor complex contact duration and contact force were minimised 

(~50msec, <0.5nN). This study confirmed that the adhesion was mediated by LFA-1 

and ICAM-1 and that unbinding forces were increased with loading rate, demonstrat-

ing the viscoelastic nature of integrins' ligation.  
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Type (c) configuration, which is considered a special application of (b) (Friedrichs et 

al., 2013), was the most challenging set-up in terms of sample preparation and ex-

perimental procedure. However, since the adhesion molecules are functioning in 

situ, this method is considered as the most promising method to generate results in 

near physiological conditions. In addition, since the local geometry of both contact 

surfaces is of the same nature, differences in spread area between the cantilever-

attached system and substrate-cell are eliminated. Nevertheless, continuous obser-

vation of the morphology of the cantilever-attached cell is required. A drawback of 

this configuration is the procedure for immobilisation of a cell to the cantilever, since 

suspended cells tend to stick to the substrate cells than the cantilever. To overcome 

this difficulty, parts of the substrate can be coated with trypsin, an enzyme used for 

harvesting of cells. Furthermore, although single cell-to-cell adhesion measurements 

provide information about receptor-ligand interactions in their natural environment, 

this type of set-up has the disadvantage of being time consuming since only one in-

dividual substrate cell can be characterised at each time. In addition, long cell-to-cell 

contact times should be avoided (<20mins), due to the thermal drift of the AFM 

(Friedrichs et al., 2010). 

 

In general the most challenging task in cell-to-cell adhesion is the specificity of sur-

face molecular interactions, arising from the heterogeneous nature of the sample 

(Zhang et al., 2002). Therefore localisation of the binding protein of interest as well 

as its distribution must be well established prior SCFS experiments. In a recent study 

by Hills et al. (2013), a concentration-dependent progression of proximal kidney fi-

brosis under cytotoxic doses of ketamine was reported. Homegeneity of adhesion 

experiments was assured by using an established model cell line for human epithe-
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lial cells of the proximal tubule human kidney cell line (HK2). Localisation and distri-

bution of E-cadherin  was assessed by analytical techniques prior to SCFS experi-

ments. A single suspended cell was attached to the end of a tipless cantilever using 

poly-l-lysine (25μg/ml) and fibronectin (20μg/ml) and subsequently brought into con-

tact with a substrate cell using consistent values for contact force and time (1nN, 

10sces) throughout the experimental series. Changes in whole cell morphology and 

CSK re-organisation indicated the interplay between adhesion and mechanics.      

    

Furthermore, various studies demonstrate the competence and versatility of SCFS in 

investigating several aspects of cell-to-cell adhesion including severe pathological 

conditions, such as cancer. Hoffman et al. (2011) investigated interactions between 

jurkat T-cell and the breast cancer cells MCF7 that were induced by a bispecific anti-

body (bsAb HEA125xOKT3). A single cell was captured and attached to a Cell-Tak 

coated cantilever with a force of 0.8 nN for 10 sec. The attached cells was allowed to 

rest and establish contact to the cantilever for 10 min. Cell-to-cell contact time was 

varied (30secs-5mins), demonstrating the capability of SCFS to detect changes in 

specific adhesion molecules in early stages. Steffen et al. (2011) studied cell-to-cell 

adhesion of red blood cells treated with lysophosphatidic acid (LPA). It was reported 

that Cell-Tak was the most effective adhesive for attaching a single RBC to a canti-

lever. The results indicated a significant difference in adhesion behaviour between 

control and LPA-stimulated red blood cells. Mean value of the maximum unbinding 

force of control RBCs was 28.8±8.9 pN, whereas in the LPA induced experiments a 

significantly higher value of 100±84 pN was observed. In addition the study showed 

that the effective pulling range for complete unbinding increased with cell-to-cell con-

tact time. 
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1.5 Diabetes Mellitus   

This section covers the essentials of pancreatic physiology and provides a basic 

background of physiological versus pathological conditions of diabetes and diabetic 

nephropathy. The biological context for the research questions associated with the 

secretion function of β-cells and the fibrotic changes of renal proximal tubule in 

chronic kidney disease  is also covered. 

 

1.5.1 Pathophysiology of the Endocrine Pancreas 

Situated behind the stomach in the higher left quadrant of the abdominal cavity, pan-

creas is a glandular organ that performs both exocrine (digestive) and endocrine 

(hormone) functions (Scanlon & Sanders, 2002). However, since this study is mainly 

focused on the hormones secreting cells only the endocrine function will be dis-

cussed. The cells in the endocrine pancreas that synthesise and release hormones 

reside within the islet of Langerhans or pancreatic islets. The main function of the 

islet is to regulate and maintain glucose homeostasis (Bilous & Donnelly, 2010).  A 

microscopic section view of a healthy pancreas in which the islets can be distin-

guished by their discrete islet like morphology is presented in Figure 1.7.  Although a 

normal human pancreas has ~1 million islets, they constitute only 2-3% of the 

gland's mass (Bilous & Donelly, 2010; Castano & Eisenbarth, 1990). The islet of 

Langerhans is composed by several endocrine islet cell types (Shih et al., 2002), and 

while another cell type expression has been reported (Wierup et al., 2004), β-cell 

type is the most abundant, constituting approximately 60-70% of the islet mass 

(Bilous & Donelly, 2010).            
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Figure 1.7 A microscopic section of normal pancreas. Lighter staining cells, compare 

to exocrine tissue, in the centre are identified as the 'islet of Langerhans'(original 

magnification x350). Image from Bilous & Donelly (2010). 

 

The metabolism and other energy-requiring processes of the cells are basically rely-

ing on receiving a continuous  supply of carbohydrates, such as glucose, which will 

get oxidised (burned) inside the cell (Pocock & Richards, 2009; Cohen & Wood, 

2000). Therefore, it is essential that the amount of glucose in liquid blood (plasma 

glucose), is maintained within the normal range (4-8 mmol/l). Hormones produced by 

the pancreas, such as insulin and glucagon, provide minute-to-minute  regulation of 

glucose requirements. However, insulin is essentially the only hormone that acts to 

reduce the concentration of blood glucose (Pocock & Richards, 2009). As anticipated 

insulin impairment inevitably leads to elevated glucose concentrations in the blood-

stream (hyperglycamia) and sugar excretion in the urine (glycosuria) (Cohen & 

Wood, 2000; Bilous & Donelly, 2010).      

   

Diabetes mellitus, or plainly diabetes is the most common endocrine disorder (Yoon 

& Jun, 2005; Cohen & Wood, 2000) associated with chronic hyperglycaemia due to a 

deficiency in insulin secretion or insulin resistance (Sakuraba et al., 2002; Bilous & 
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Donelly, 2010). Based on the aetiology of diabetes can be classified into two major 

categories: Type 1 diabetes, also called insulin dependent, is characterised by β cell 

destruction resulting in complete insulin deficiency, and Type 2 diabetes, or non-

insulin dependent, in which reduced secretion and loss of insulin sensitivity/response 

is observed (Zimmet et al., 2001; Pocock & Richards, 2009; Bilous & Donnelly, 

2010).   

 

Type 1 is less common (5-10% of diabetic population), but it is considered to be 

more severe (Cohen & Wood, 2000; Shaw et al., 2010; Zhang et al., 2010). Type 1 

diabetes can be classified into two main types: 1a or autoimmune and 1b or idio-

pathic (Bilous & Donnelly, 2010). The islet fails to secrete normal amounts of insulin 

because of the progressive destruction of the β cells by autoreactive T cells (Yoon & 

Jun, 2005). It occurs by the age of 30-40 years old (Pocock & Richards, 2009; 

Cohen & Wood, 2000) and especially in children (Scanlon & Sanders, 2002), while 

the onset of the disease is connected to genetic predisposition (Castano & Eisen-

barth, 1990). 

 

Type 2 diabetes is becoming a serious healthcare issue in the 21th century as it ac-

counts for approximately 90% of the diabetic population (Zimmet et al., 2001). It de-

velops progressively due to a deterioration of β islet cells that results in reduced in-

sulin secretion and/or insulin resistance. Despite the fact that genetic tendency and 

obesity are potential risk factors, the exact disease causation is still poorly under-

stood (Pocock & Richards, 2009; Bilous & Donnelly, 2010). Dysfunction of β cell is 

already ~50% in recently diagnosed patients and keeps on declining rapidly despite 

of the therapy. In addition, although the mass of β islet cells decreased by only 20-
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40%, a >80% reduction in insulin is observed (Bilous & Donnelly, 2010). Additional 

functional defects such as decreased communication via surface ligation should be 

investigated. 

 

1.5.2 Historical Background & Implications 

Even though diabetes was ignored in Europe in the past, Thomas Willis, an English 

physician, noted the effects of diabetes in the urine in the 17th century. Later on,  in 

1889, Minkowski and Mering from Strasbourg connected the cause of this disorder 

with pancreas, by removing the organ from a dog. The description of a pancreas as 

small clusters of cells was completed by  Paul Langerhans in Berlin. The function of 

the cells was still unknown until Edouard Laguesse in France (1893) suggested that 

the islet cells were endocrine tissue of the pancreas that produced an hormone for 

glucose regulation and called the cells 'islets of Langerhans'. Insulin was discovered 

by Banting and Best in 1921 at University of Toronto. This discovery led immediately 

on the treatment of the first diabetic patient in 1922 by extracting and purifying insulin 

from pancreas. Today, human insulin can be produced by modern genetic engineer-

ing techniques and drugs that stimulate both insulin secretion and sensitivity are be-

ing developed. Indeed, there is intensive interest in converting research into thera-

pies for diabetes mainly due to the serious implications of the disease (Luft, 1989; 

Bilous & Donnelly, 2010). 

 

The total number of people with diabetes worldwide has been increased from 170 

million in 2000 to 220 millions in 2010, and projected to increase to more than 300 

million by 2030 (Zimmet et al., 2001; Bilous & Donnelly, 2010). In addition there are 

complicated relapses associated with diabetes, that make the disease a major health 
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concern with serious socioeconomical consequences.  Mortality caused by ketoaci-

dosis and coma  due to absolute deficiency of insulin is high in UK and other devel-

oped countries. Long-term micro-vascular implications include diabetic retinopathy, 

diabetic nephropathy and dry gangrene. Diabetes is the most common cause of 

blindness in those of working age and the most common single cause of end-stage 

renal failure worldwide (Scanlon & Sanders, 2002; Bilous & Donnelly, 2010).  

 

At the moment diagnosis of diabetes is accomplished by detecting chronic hypergly-

caemia. However, new methods for early diagnosis are absolutely necessary since 

approximately 20% of new patients with type 2 diabetes have already presented 

vascular implications. This means that the exact onset of the disease occurred al-

most 5-6 years before the serious implications of the disease have started to develop 

(Bilous & Donnelly, 2010). Cardiovascular complications due to uninhibited glucose 

fluctuations may increase 3 to 8 fold (Norhammar et al., 2002). Such important clini-

cal problems necessitate the development of novel therapies for the treatment of 

disease and/or prevention of its implications. 

 

1.5.3 Physiological Secretory Function & Islet Architecture      

Insulin is a vital hormone. It is synthesised in and secreted from the β cells within the 

islet of Langerhans in the pancreas. Although insulin secretion is the mainly stimu-

lated by glucose, its modulation is also associated with co-released factors including 

nutrients, such as amino- & fatty-acids, hormones and neurotransmitters (Sharp, 

1996; MacDonald et al., 2005).  
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Insulin is responsible for the transport of glucose through the plasma membranes 

inside the cell in order to be metabolised for energy. The rate at which excess glu-

cose is changed into fatty acids by the liver can also be increased by insulin. By per-

forming these actions, as well as by promoting the use of glucose for energy produc-

tion in the bloodstream, insulin manages to reduce the concentration of sugar in the 

blood. In addition, by increasing the uptake of amino acids into cells and by convert-

ing them into proteins, insulin contributes to the metabolic function of the cell (Cohen 

& Wood, 2000). 

 

Adjacent β cells are coupled by gap junctions that allow the direct passage of mole-

cules and electrical currents. Gap junctions are formed by transmembrane proteins 

and are important in cell-to-cell communication pathways for the coordination of insu-

lin secretion in the pancreatic islet (Benninger et al., 2011). Since cell-to-cell adhe-

sion leads the formation of gap junctions, enhanced cellular adhesion may improve 

cell communication and secretion responsiveness within the islet. 

 

E-cadherin is a surface adhesion molecule involved in the tethering of adjacent cells, 

which substantially contributes in maintaining the 3-dimensional structure of the pan-

creatic islets  (Dahl et al., 1996). E-cadherin ligation mediates β-cell-to-β-cell cou-

pling and regulates intercellular communication within islets (Brereton et al., 2006). A 

study by Rogers et al. (2007) suggested that E-cadherin mediated cell adhesion con-

tributes to the enhanced secretory function of β  cell clusters. Moreover, knock down 

of E-cadherin expression during islet dispersion reduced glucose-evoked insulin re-

lease (Halban et al., 1988; Meda, 2003). Recently, it has been shown that neutralisa-

tion of E-cadherin reduced glucose-evoked synchronicity in calcium signals between 
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adjacent cells apart from causing considerable reduction in insulin secretion (Rogers 

et al., 2007). Alteration of the pseudoislet architecture was substantial and was ac-

companied by a loss of the adhesive properties as indicated by the attenuation of 

dye transfer between adjacent cells. Their results suggested that there is a strong 

functional consequence in regulating intercellular communication via gap-junctions 

following neutralisation of E-cadherin. Thus, it may be  implied that E-cadherin medi-

ated cell adhesion has important repercussions for the islet function in terms of glu-

cose responsiveness and insulin secretion. It is therefore important to develop an 

experimental protocol to determine quantitatively the changes in adhesion forces be-

tween β cell-to-cell adhesion and elucidate  if an increase in E-cadherin improves the 

function of the islet by enhancing cell-to-cell communication.  

 

It is well reported that the higher glucose-evoked insulin secretion of mouse insuli-

noma MIN6 cells when organised as pseudoislets, is mediated by enhanced cell-to-

cell interactions and/or elevated expression of gap-junction proteins, such as E-

cadherin (Hauge-Evans et al., 1999; Calabrese et al., 2003; Brereton et al., 2006; 

Kelly et al., 2010). An appropriate model that resembles function of β islet cells along 

with a switch to increase E-cadherin expression were identified for the purpose of 

this study.  

 

1.5.4 The MIN6 Model Islet  

Primary human tissue is considered as the touchstone to investigate endocrine sec-

retory functions. However, human islets constitute a precious sample material with 

complex heterotypic interactions between islet cells; hence, it is not considered to be 

appropriate for the investigation of basic mechanisms by which cell-to-cell interac-
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tions occur. In contrast, a well established cell line for resolving mechanisms of  glu-

cose-evoked insulin secretion characteristics, such as the mouse insulinoma cell line 

(MIN6) (Ishihara et al., 1993), offer a continuous supply of unlimited growth homoge-

neous sample material. In addition, cell lines offer an animal-free opportunity for ex-

perimental manipulation without ethical concerns and therefore have the added ad-

vantage of being subjected to pathophysiological treatment. Moreover, the major ad-

vantage of using a clonal cell line is the ability to control the consistency and repro-

ducibility of experiments (Skelin et al., 2010). However, special cell culturing skills 

are required to guarantee the proper preservation of the cell line structure and func-

tion. In fact, the disadvantage of being amenable to changes of their characteristics 

is derived from their own ability to grow continuously (Skelin et al., 2010).  

 

Although MIN6 cells morphologically resemble primary islets, they do show differ-

ences in the insulin secretion response when compared to primary β cell. Kelly et al. 

(2010) reported enhanced response to glucose when treated as pseudoislets. In ad-

dition, the glucose-evoked secretory response of MIN6 cells is higher when they are 

cultured as pseudoislets rather than monolayers in a culturing substrate (Hauge-

Evans et al., 1999). In this project MIN6 cells were cultured in monolayers due to the 

experimental requirements of AFM-SCFS. 

 

1.5.5 The Extracellular Calcium-Sensing Receptor (CaSR)  

CaSR is involved in local paracrine signalling with great repercussions in insulin se-

cretion. Brown et al. (1993) was the first to identify and clone the CaSR in the bovine 

parathyroid gland. The role of this cationic ion binding receptor in the systemic circu-

lation is to sense local changes in extracellular Ca2+ from one cell and evoke appro-
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priate counter-regulatory responses into a neighbouring cell to regain Ca2+-

homeostasis (normocalcaemia). This is accomplished by regulating the secretion of 

parathyroid hormone and urinary calcium concentration (Brown, 2007). Since CaSR 

is directly involved with the propagation of signals, the receptor has an significant 

function in cell-to-cell coupling and communication. 

 

The functional link between the receptor and regulation of systemic calculation in 

normal physiology and disease has been extensively studied (Brown, 2007). How-

ever, CaSR expression is not restricted to the cells involved in the control of sys-

temic Ca2+ (Brown & MacLeod, 2001). It has been reported previously that CaSR is 

found on tissues not associated with normocalcaemia, such as oesophageal 

(Justinich et al., 2008), colonic epithelia (Cheng et al., 2004), the cardiovascular sys-

tem (Smajilovic et al., 2011) and pancreatic β islets (Rasschaert et al., 1999; Squires 

et al., 2000; Gray et al., 2006). Kato et al. (1997) in a study using insulinoma cells 

that were extracted from primary culture by surgery, suggested that insulin release 

was elevated when the level of Ca2+ was increase and that CaSR mediates calcium-

evoked insulin secretion. The expression of the receptor in pancreatic islets was con-

firmed by Bruce et al. (1999) and suggested that the receptor controls physiological 

function of insulin secretion. However, in their study the receptor was not localised to 

β cells, and it was Rasschaert & Malaisse (1999) who showed that the receptor was 

present in insulin-secreting β cells and suggested that CaSR mediates calcium-

evoked insulin secretion. Increase secretion of insulin in human islets upon CaSR 

activation was also suggested by Gray et al. (2006).  
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The role of CaSR in improving function of β islet cells by synchronisation of insulin 

release within the islet is achieved through enhanced cell-to-cell communication 

(Hauge-Evans et al., 1999; Jones et al., 2007; Kitsou-Mylona et al., 2008; Hills et al., 

2012b). It is firmly established that CaSR is expressed in pancreatic β cells where it 

is thought to improve the functional responsiveness of the β cells, by enhancing cell-

to-cell communication, and promote insulin secretion. In a study using MIN6 cells, 

Rogers et al. (2007) suggested that apart from playing an important role in the for-

mation of pseudoislets, E-cadherin facilitates their function by increasing gap junc-

tion communication. These data imply that E-cadherin mediated cell adhesion has 

important repercussions for the islet function in terms of glucose responsiveness and 

insulin secretion. However, the association between cell-to-cell communication and 

cell-cell contact or adhesion remained unclear (Hills et al., 2012b). The functional 

mechanism underlying intercellular communication between β cells through E-

cadherin upon CaSR activation has been investigated in this research project.   

 

1.5.6 CaSR Activation 

Activation of the receptor initiates calcium-evoked insulin release in human pancre-

atic islets (Gray et al., 2006). Since CaSR activation has an impact on β cell function,  

it is expected that changes in receptor expession/function are connected to the re-

sponse of insulin secretion. Secretion of insulin that was evoked by glucose was in-

hibited after knocking out the gene KCJN15 and inactivating the CaSR simultane-

ously (Okamoto et al., 2012). In addition, in diabetic cardiomyopathy it is suggested 

that expression of CaSR is decreasing with the progression of disease (Bai et al., 

2012).  
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 Although various ligands activate CaSR, the Ca2+ remains the main agonist of the 

receptor (Brown & MacLeod, 2001). Activation of the receptor using a phenylal-

kylamine agonist (calcimimetic) is accomplished by increasing the affinity of its 

ligands for Ca2+, having the advantage of avoiding the high number of non-specific 

events (Hills et al., 2012b). Activation of CaSR using calcimimetics was reviewed by 

Trivedi et al. (2008), while the enhanced insulin secretion functions was suggested 

by Gray et al. (2006). Direct measurements of extracellular spaces surrounding β 

cells using Ca2+-sensitive microelectrodes (Gerbino et al., 2012), support the con-

cept that local 'hot spots' of extracellular Ca2+ activate the CaSR on neighbouring 

cells (Hills et al., 2012b). In addition, calcimimetics were used to increase the secre-

tory response of glucose up to a maximum level in pancreatic of rats (Straub et al., 

2000). The use of calcimimetics for CaSR activation in the pancreas results in a 

transient increase of insulin secretion without the need for stimulation by certain glu-

cose concentration. The fact that insulin release is rising in the absence of pre-

stimulus activation by glucose, highlights that CaSR may has a key role in the secre-

tory function of primary β cell islets (Gray et al., 2006). 

 

 

1.6 Diabetic Nephropathy       

Disease complications in diabetes has been identified as one of the most pressing 

global challenges of the developed world. The proximal tubule area of the human re-

nal system is a complex system with active metabolic functions. In addition, proximal 

tubule plays an important role of internal homeostasis, since it acts as a regulator. 

Damage of the renal tubule after diagnoses of diabetes and in the absense of other 

obvious symptoms, is the main cause of acute dysfunction of the kidneys (Racusen 

et al., 1996). 
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Diabetic nephropathy (DN) accounts for approximately 50% of those patients pre-

senting an end stage renal failure and is the most common cause of entry into the 

renal replacement therapy programme. While multiple structural and functional 

changes are associated with DN, it is as well characterised by an accumulation of 

ECM in both the glomerular mesangium and tubular interstitium. Continuous  accu-

mulation of excessive fibrotic deposition, eventually leads to a reduced function of 

renal excretion. Renal fibrosis can be identified by the activation of phenotypical 

transformations. The phenotypical fibrotic change of  tubulointerstitial fibrosis is the 

crucial pathology underlying progressive chronic kidney disease in diabetes. Central 

to this process is epithelial-to-mesenchymal transition (EMT) or the trans-

differentiation of tubular epithelial cells into myofibroblasts (Hills et al., 2012a). Un-

derstanding early signals that control deposition of fibrotic material in the interstitium 

is essential for the  development of therapies that could alleviate the malignant trans-

formation of epithelial cells to fibroblasts. 

 

1.6.1 Molecular Mediators of Renal Fibrosis in DN: TGF-β1  

Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine of a family of 

polypeptide growth factors that can cause differentiation of various cell types (Coo-

per & Hausman, 2009). In addition, it is suggested that this cytokine acts as a mo-

lecular mediator for the fibrotic changes observed in DN (Sharma & Ziyadeh, 1995; 

Kanwar et al., 2008). In diabetic conditions, increased levels of glucose stimulate the 

production of TGF-β1 in the renal proximal tubule (Oldfield et al., 2001; Qi et al., 

2007). Since the production of epithelial cell recognition and organisational proteins 

is regulated by TGF-β1, stimulation of the cytokine by glucose contributes to the re-

ciprocal loss of tubular epithelial cells and accumulation of interstitial fibroblasts, 
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phenomena that are associated with reduced kidney excretory function (Zeisberg & 

Kalluri, 2004). Fibrosis involves an excess accumulation of ECM and usually results 

in loss of function as the normal tissue is replaced with scar tissue (Ban & Twigg, 

2008). All patients with chronic renal diseases subsequently show a progressive de-

cline in renal function. The process is largely irreversible and ultimately results to an 

end-stage renal failure. 

 

1.6.2 EMT & E-Cadherin in DN 

Upregulation of TGF-β1 in diseased renal states plays an important role during the 

EMT of renal proximal tubular cells (Hills et al., 2012b). The loss of epithelial charac-

teristics in this process, such as the epithelia adhesion protein E-cadherin, is con-

curred with the acquirement of proteins that are associated with a mesenchymal 

phenotype. In addition, this process is culminated by reorganistation of the CSK and 

disruption of the tubular basement membrane. Loss of cell-to-cell adhesion, associ-

ated with reduced E-cadherin levels, represents a critical step in the early phenotypi-

cal and morphological changes of epithelial proximal tubule cells to fibroblasts 

(Zheng et al., 2009). Cadherins are adhesion  proteins that have an important  role in 

forming the multi-protein adherens junction (AJ) that links the extracellular domain to 

the actin cytoskeleton and other downstream signalling molecules, such as the 

phosphoinositide 3-kinase PI3K (Vaezi et al., 2002; Moreno et al., 2005). The ex-

tracellular domain mediates ligation with E-cadherin on adjacent cells, while the cy-

toplasmic domain binds to β-catenin, linking cadherin to the actin cytoskeleton via 

the catenins (Figure 1.8). Interaction of cadherin with F-actin not only increases the 

adhesive strength of the junction, but also acts as a signalling ‘hub’ for proteins that 

influence adhesiveness and/or initiate intracellular signalling. Co-localised with E-



Chapter 1 
 

40 
 

cadherin and β-catenin at the sites of cell-to-cell contact, connexins are transmem-

brane proteins that connect the cytoplasm of adjoining cells and form gap junctions 

(GJs). Since intercellular adhesion precedes GJ formation and inhibition of cadherin-

based cell adhesion is known to inhibit GJ assembly, it is reasonable to hypothesise 

that glucose-evoked increases in TGF-β would compromise cell communication and 

function in the proximal tubule (Hills et al., 2012a). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 The adherens junction and the cadherin-catenin complex is crucial for 

cell-cell adhesion and facilitates cell communication via gap-junctions. Gap-junctions 

permit the direct transfer of small molecules and ions between coupled cells and 

their formation depends on E-cadherin based cell-cell adhesion. The pro-fibrotic cy-

tokine TGF-β1 is associated with elevated glucose and it is important in many tubu-

lointerstitial diseases where disassembly of the AJ represents the initial overt change 
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in epithelial organisation ahead of cellular migration associated with EMT. Image 

adopted from Hills, DUK 2012. 

 

1.6.3 Renal Proximal Tubule Cells: The Human Kidney Cell Line     

 (HK)2  

The advantages and disadvantages of using a clonal cell line instead of primary tis-

sue were discussed earlier (Skelin et al., 2010). HK2 cells retain functional charac-

teristics of proximal tubular epithelium (Ryan et al., 1994). This cell line is an estab-

lished model for studying diabetic nephropathy (Racusen et al., 1996). Panchapake-

san et al. (2013) used the HK2 cell line to study diabetic drugs. Han et al. (2006) 

used HK2 cells to study the role of high glucose and angiotensin-II  in the early pro-

gression of glomelular scleroses in DN. Tian et al. (2007) studied the effects of vari-

ous growth factors, including TGF-β1, on HK2 cell migration following EMT. Slattery 

et al. (2005) investigated the complication of renal tubulointerstitial fibrosis after suc-

cessful transplantation by stimulating the release of TGF-β1 in HK2 cells using cyc-

losporine A. Hills et al. (2009) studied reversed morphological changes of HK2 cells 

by blocking the fibrotic effects of TGF-β1 aiming to identify new therapy agents. In 

this project HK2 cells were cultured in monolayers and preserved at physiological 

temperature during AFM-SCFS experiments. 

 

1.7 Aims & Objectives 

Primary aim of this research project was to examine the biomechanical characteris-

tics of soft biological cells, such as HK2 and MIN6 cells, in a quantitative manner. 

More specifically, the study will be focused on the application and development of 

AFM-SCFS technique to characterise cell-to-cell adhesion and single cell mechan-
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ics, under chemical treatments that are associated with physiological and pathologi-

cal biological phenomena. The main objectives were as follows: 

 To perform AFM-SCFS experiments to examine cell-to-cell adhesion and 

single cell elasticity in two cell lines (MIN6 and HK2).  

 To characterise E-cadherin mediated cell-to-cell adhesion in order to investi-

gate the role of communication pathways, such as gap junctions, in (a) the 

coordination of insulin secretion of the endocrine cells, (b) the excessive con-

centration of fibrotic material in the proximal tubule.  

 To characterise single cell elasticity in order to correlate differences in 

Young's modulus with the physiological/pathological conditions and elucidate 

the effects of elastic deformation, upon cytoskeletal reorganisation, on cell-to-

cell adhesion. 

 To investigate the effects of increasing pulling velocities and hence the ef-

fects of viscoelastic deformation on maximum unbinding forces and work or 

energy of detachment.
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2. AFM Single Cell Force Spectroscopy 

The complex response of cells to a biochemical stimulus is a result of an integrated 

interplay between mechanical and adhesive properties. In this chapter the methodol-

ogy of characterising single cell mechanics and cell-to-cell adhesion is described.  

 

2.1 Introduction to Force Spectroscopy in Biology 

Based on AFM technology, AFM Force Spectroscopy is a powerful tool for high reso-

lution single cell force measurements. In general, AFM operates on the principle of 

mechanical interactions between the probe and the sample surface. Briefly, a piezo 

actuator moves the base of a cantilever towards the surface of the sample in the ver-

tical direction and then retracts it again, while the deflection of the cantilever is 

measured continuously (Ikai, 2008). Typically, the dimensions of a tip for scanning a 

sample are in the nanoscale (tip radius 5-50nm), which results in extremely small tip-

sample  interaction forces (pN). A simple way to understand force spectroscopy 

measurements is to consider the movement of a cantilever, in contact mode, on a 

hard, incompressible surface in air. The schematic of this process is represented in 

Figure 2.1, in which the vertical tip movement during the approach and retract proc-

ess for the measurement of F-d or simply force curves is illustrated. A force curve is 

the result of mechanical interaction between the tip of the cantilever and the surface 

of the sample. When the tip reaches the distance of a few tens of nanometers, the 

attractive forces due to the van der Waals forces between the tip and the sample, 

cause a weak attraction of the probe towards the surface of the sample. The cantile-

ver is deflected downwards resulting in a small 'jump to contact' peak. As the dis-

tance between tip and sample decreases further, a stage is reached where the tip 
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touches the surface causing the cantilever to deflect upwards, resulting in an in-

crease of the repulsive contact forces. When the cantilever is retracted from the 

sample the phenomena of adhesion occurs, in which the cantilever is still in contact 

with the sample.  During this process the cantilever is deflected downwards, and ad-

hesion can be detected in a force curve by a negative force peak. As the cantilever is 

further retracted from the surface, adhesion forces will be disrupted and the tip will 

be completely separated from the sample. Using spring stiffness the deflection of the 

cantilever provides information about the elastic properties of the sample and a di-

rect measure of the adhesion forces.     

 

Figure 2.1 Schematic diagram of the vertical tip movement during the approach and 

retract process in force spectroscopy for the measurement of F-d curves. As the 

probe approaches within a few tens of nanometers, it comes into a regime of an at-

tractive van der Waals forces. The probe is weakly attracted toward the sample sur-

face and as it approaches closer to the sample, it enters in the repulsive realm of 
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Lennard-Jones potential, where the probe is strongly repelled from the surface.  As 

the cantilever is retracted from the sample, the tip remains in contact with the surface 

due to interaction forces, and the cantilever is deflected downwards. At some point of 

retraction, the force required to disrupt the adhesion is reached. The attractive or re-

pulsive forces can be measured by spring stiffness (Ikai, 2008). 

 

However, unlike homogeneous hard samples, force spectroscopy of soft biological 

cells includes more complex interactions between the tip and the sample. Figure 2.2 

shows a typical F-d indentation curve when indenting a single soft biological cell. The 

force curve includes compression of several cell's components, such as the mem-

brane and CSK, hysteresis due to the viscous nature of the material and more com-

plex adhesion between the tip and the sample. Due to the heterogeneity of a sample 

material, the gradient of a force curve changes as the sample is probed deeper and 

various structures of the cell are compressed. The depth of indentation has to con-

form to the specifications of the mechanical model, otherwise substrate effects may 

contribute to the determination of the mechanical properties. As the cantilever is re-

tracted, a hysteresis phenomena is observed, which is common for viscoelastic ma-

terials such as cells.  In addition, adhesion of the tip with long surface molecules re-

quires an extended displacement range to avoid the issue of extendable contacts. 

Latest advancements of AFM-FS provide with an effective displacement range 

(100μm) that is sufficient to disrupt adhesion forces and facilitate the investigation of 

cell-to-cell contact. Another important consideration in AFM-FS experiments is the 

maintenance of biological cells in a physiological environment, which can be 

achieved by performing measurements in a fluid chamber. However, since force 

spectroscopy experiments have to be conducted in a liquid rather than air, the 'jump 
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to contact' phenomena is not observed, even in the case of hard samples. Instead, 

the force curve shows a gradual increase, which lacks the obvious sharp onset into 

contact. In fact, the contact point between the tip and the soft plasma membrane is 

difficult to define and requires the use of cantilevers with low spring constant (0.01-

10 N/m) (Ikai, 2008). In addition, performing F-d curves in liquid results in adding ex-

ternal forces to the cantilever, due to the hydrodynamic drag and speeds less than 

5μm/sec are recommended (Vinckier & Semenza, 1998).  

 

Figure 2.2 A schematic illustration of a single cell indentation and a representation of 

a F-d curve obtained from a single cell. Various elements of the cell are contributing 

to the overall determination of the E modulus. Special considerations regarding the 

depth of indentation and the fitting of the curve to a mechanical model needs to be 

taken into account according to the purpose of investigation i.e. whole cell elasticity, 

membrane or CSK elasticity etc. 
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Although AFM based nanoindentation is generally conducted by using a pyramidal 

tip, in several cases measurements of soft cells are conducted using spherical 

probes in order to avoid damage of the cell's membrane. Spherical probes commonly 

used for AFM-FS are typically in the μm range (1-11μm). Since, the purpose of this 

study is to use E modulus as a relative indicator between healthy and diseased 

treatments, the geometrical characteristics of the probe have been kept constant 

throughout the experiments. During cell-to-cell adhesion experiments tipless cantile-

vers were chemically modified so that a living cells can be attached at the free end of 

the lever. In this case, the attached cell was probing an adherent cell on the sub-

strate in order to investigate the disruption forces between two cells. However, the 

adhesion process between two cells that are brought into contact is far more com-

plex than the tip-cell contact, including several unbinding events, due to surface ad-

hesion proteins involved in tethering as well as membrane tethers due to deforma-

tion during the cell separation process by pulling forces (Puech et al., 2006). 

 

2.2 Hardware Overview  

2.2.1 AFM-FS Instrumental Set-up  

The primary aim of this project is to characterise single cell elasticity and cell-to-cell 

adhesion and to investigate the complex interplay between them. AFM-FS with an 

extended effective displacement range provides the core instrumentation to perform 

the long distance force spectroscopy experiments, required for this research, with 

certain modifications of the AFM cantilever. Figure 2.3 shows a schematic of the 

head of the AFM, designed to be used in combination with optical microscopy. Prior 

the experiments the cantilever is mounted on specially designed cantilever holder, 

an optical glass block. The glass block is chemically inert but very susceptible to 
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scratches, since it was polished on its top and bottom surfaces  to allow the trans-

mission of light to the objectives. Therefore, the polished surfaces should not be 

touched with tweezers and can only be used in buffer solutions as well as in low 

concentration bases and acids. The glass cantilever holder should only be cleaned 

while floating in an ultrasonic bath using mild detergents (2% Hellmanex solution, 5-

10 min). The glass block is locked into the AFM head during force spectroscopy 

measurements, with the cantilever in a downwards direction. Therefore, the cantile-

ver spring holder is also immersed during experiments. However, the glass holder 

can be immersed only until the upper edging of the opening in which the spring is 

inserted (4-5mm).    

 

Figure 2.3 Schematic of an AFM head capable of long range displacement pulling 

(100μm) to facilitate long distance force spectroscopy i.e. complete separation of ad-

herent cells during cell-to-cell adhesion experiments. The cantilever is mounted on 

the inclined part of the glass block holder using a spring. The incline of 10 degrees 

ensures that any contact between the sample and the holder will be prevented. The 

glass block remains locked on the AFM head during experiments. Image adapted 

from JPK instruments with permission.    
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The AFM head was integrated optically with a microscope. Figure 2.4 shows a photo 

of the complete system configuration. Experiments were performed using the Cell-

Hesion®200 module (JPK Instruments, Berlin, Germany) that was installed on an 

Eclipse TE 300 inverted microscope (Nikon, USA). During each experiment, cells 

were maintained at a physiological temperature (37°C) by incorporating the Bio-

Cell™ temperature controller (JPK, Berlin, Germany) into the AFM stage. Phase mi-

croscopy images were acquired using a CCD camera (DFK 31AF01 Firewire, The 

Imaging Source, Germany) connected on the side port of the microscope. The whole 

AFM-FS set-up with the CCD camera was driven by JPK's CellHesion200 software. 

Images were captured using a 20x magnification lens. Since such force measure-

ments are extremely sensitive and susceptible to noise, vibrations and environmental 

conditions were well controlled. The entire optical microscope and AFM headset-up 

was supported on an anti-vibration table (TMC 63-530, USA). Changes in the tem-

perature of the room were less than 0.5-1.0 ºC during experimental measurements. 

In addition, cables connecting the AFM head with the control station were firmly at-

tached to the antivibrational table. 
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Figure 2.4 A photo of the instrument set-up showing the AFM head and stage 

mounted on a inverted microscope. A CCD camera was mounted on the left-side 

port on the microscope for monitoring the experiments. The cantilever glass holder is 

positioned on place by lifting up the AFM head  prior the experiments. Once the can-

tilever is mourned on the head the alignment of laser can take place. After calibration 

of the cantilever the head must not be lifted nor the alignment of laser should be 

changed. 

 

2.2.3 Set-up of the Optical Detection System - Laser Path Alignment  

Force-extension curves can be compiled by measuring cantilever deflection as a 

function of the piezo-actuator position. Detection of the cantilever beam bending (de-

flection) is most important because the sensitivity of this operation is directly propor-

tional to the value of the interaction force between the probe and the sample. To 
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date, various methods are available to detect beam deflection (Ikai, 2008), although 

the most popular method is by the use of an optical lever. In this set-up the magni-

tude of deflection itself is not recorded but the slope of the cantilever at the position 

where the laser beam is irradiated (Figure 2.5). This method utilizes a focused laser 

beam irradiated on the back of the cantilever into a quadric-sected photodiode. 

When the slope of the cantilever changes, the incident angle of the laser beam to the 

back of the cantilever is changed and consequently the direction of the reflected 

beam is also changed. The difference between the intensity of light going into the 

upper or lower parts of the photodiode gives the cantilever deflection. 

 

Figure 2.5 A schematic diagram showing the optical path of the laser. Initially the 

laser must be adjusted to get reflected from the end of the cantilever with the aid of 

the optical microscope. Then by adjusting both the mirror and the photodetector the 

laser spot must be adjusted to reach the centre of the photodetector to achieve 

maximum sensitivity.  
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Each time a new cantilever is mounted on the glass holder and the laser path has to 

be calibrated, since manual attachment of the cantilever onto the holder results in 

slightly different positioning. The first step for a proper alignment of the laser is to ad-

just the spot towards the end of the cantilever as shown in Figure 2.6. The illumina-

tion of the microscope can be decreased in order to ease the view of the laser onto 

the cantilever. 

 

Figure 2.6 An optical image showing proper alignment of the infrared laser spot on a 

tipless functionalised cantilever. Any residuals left from the chemical modification will 

affect the sum value of the detector. As it can be seen from the photo soft cantilevers 

used for contact mode are relatively transparent.  

 

When the optical image confirms that the laser spot is properly positioned onto the 

cantilever, the mirror should be adjusted in order for the laser beam to fall into the 

region of the photodetector. As soon as the beam is sent by the mirror to the detec-

tor a relatively stable sum value in volts will be generated by the vertical and lateral 

deflection of the cantilever. However, since the whole procedure is conducted in cul-

turing media a small drift in sum value may appear. The mirror should be adjusted 
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until the maximum sum value is reached. Next, the detector should be adjusted until 

the spot hits the centre of the quadratic photodiode, meaning that equal light inten-

sity is reached to each diode. This will result in the maximum sum value (>1V for sili-

con cantilevers) and will ensure sufficient sensitivity for the feedback control of the 

piezo actuator. The vertical and lateral deflection of the cantilever at this point should 

be close to zero with a small drift due to fluidic movements of the media. If, after 

proper alignment of the laser,  the sum value is below 1V or in case there is a high 

drift in the deflection of the cantilever then a new cantilever or fresh media should be 

used. During cell-to-cell adhesion measurements where chemically modified cantile-

vers have to be used, it is important to choose a clean region for deflection. In some 

cases it may be necessary to wash the cantilever due to the potential risk of com-

promising functionalisation.  

 

2.2.4 Selection of the Cantilever Sensor 

The selection of the cantilevers is crucial for obtaining meaningful AFM-FS meas-

urements. Several requirements need to be considered before selection, mainly aris-

ing from the nature of the testing sample and the experimental specifications.  One 

special consideration is that during cell-to-cell adhesion experiments the probe that 

is attached to the cantilever is in fact a soft biological cell. While the cantilever-

attached cell is probing the substrate cell, it is the deflection of the cantilever during 

extension or retraction that is being measured. Since the sample cells are from soft 

tissues/organs, the cantilever to which they will be attached must be soft enough for 

detecting changes i.e. it should have a low spring constant. Generally in cellular ad-

hesion experiments of soft tissues, it is a rule-of-thumb that fragile biological samples 

require soft cantilevers. Moreover, the geometry of the cantilever must facilitate the 
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capture of a single cell. An arrow like geometry is designed to ease manipulation of a 

single cell among other cells in close proximity. Tipless cantilevers are more suitable 

for adhesion experiments since any contact of the tip with the surface of the cell or 

the substrate will disrupt the measurements. However, pyramidal cantilevers have 

been used for adhesion experiments in cases that AFM imaging was used as a 

complementary tool to force spectroscopy. This heavily depends on the size of the 

sample and the height of the pyramidal tip as any contact of the tip with the sub-

strate/cell will interfere with the adhesion forces.  Another major consideration for se-

lecting the force constant of a cantilever is that during AFM indentation experiments 

the probe is initially in contact with a soft element, such as the plasma membrane, 

which may result in the disorientation of the contact point and difficulties in E 

modulus determination (A-Hassan et al., 1998). Determination of cell elasticity re-

quires cantilevers with similar sample stiffness, i.e. very flexible, hence suitable can-

tilevers are those of contact mode with a low spring constant (0.01-0.06N/m) (Franz 

& Puech, 2008). 

 

Arrow sensors (TL1, Nanoworld AG, Switzerland) are tipless cantilevers with force 

constant of 0.03N/m, which are suitable for special biological applications, such as 

attaching spheres or cells to the free end of the sensor. They are made from mono-

lithic silicon that is highly doped to dissipate static charges.  An arrow TL1 cantilever  

is shown in Figure 2.7. The chip of the cantilever serves as support for handling the 

sensor with tweezers when placed on the glass holder, during cleaning the cantile-

ver's surface etc. The triangular free end of the cantilever serves as a tip or probe 

when a suspended cell or a microbead is attached at the very end. 
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Figure 2.7 An Arrow series rectangular tipless cantilever with a triangular free end, 

made from monolithic silicon for special applications, i.e. they can be used for attach-

ing cells or spheres to the free end of the cantilever. The wide part of silicon is usu-

ally referred as 'chip', while the main of the cantilever has thickness: 1.0μm, width: 

100μm and length: 500μm. At the end of the cantilever the tip can be seen where a 

cell or a microbead can be attached (Nanoworld Arrow™ TL1). Image adapted from 

NanoWorld Innovative Technologies, Neuchatel, Switzerland. 

 

Cantilevers are expendable items and they are very susceptible to damage. The 

force constant should be calibrated each time before measurements and if there are 

discrepancies between the values provided by the manufacturer, the cantilever 

Cantilever Data Value 

Thickness 1.0μm 

Width (rectangular part) 100μm 

Length 500μm 

Force Constant 0.03N/m 

Pitch 250μm 

Resonance Frequency 6kHz 
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should not be used. In addition, a cantilever that has been used for chemical modifi-

cation for more than 2-3 times is likely to give low sum values at the photodetector, 

even if the laser path was aligned correctly. Residue on the cantilever can be re-

moved by immersing the cantilever into a dish of sterilised water with alcohol or other 

mild detergent and then sonicated an ultrasonic bath for 5-10sec while inside the 

dish. However, the functionalisation of the cantilever will be compromised during this 

procedure and it is recommended to be performed only after the experimental meas-

urements, prior storage of the cantilever. However, washing for more than 10secs 

can be detrimental for the force constant of the cantilever, and hence mechanical 

testing of the sensor in a hard surface in air after ultrasound cleaning is always rec-

ommended. After experiments, each cantilever should be irradiated with UV for 5-10 

min to ensure that the surface is sterilised. For used cantilevers, optical inspection is 

necessary to certify that the surface of the cantilever is clean, apart from mechanical 

testing. Cantilevers with colloidal probes may suffer from sterilization issues since 

the ultraviolet (UV) treatment will dislocate the glued microbead. Therefore, it is criti-

cal to inspect the testing sample before measurements for bacteria, as well as mini-

mise experimental times to avoid dilution of the plasma membrane. In general, any 

treatment on the cantilever is likely to cause changes in the spring constant values 

and therefore the cleaning procedure must be kept at a minimum level. Besides, 

cantilevers for mechanical testing of soft cells, such as the Arrow TL1, are very deli-

cate and may be damaged by too high set-point values of force chosen for calibra-

tion or experimental measurements.      
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2.3 AFM Calibration 

For small deflections the cantilever approximately constitutes a Hookean spring, 

therefore the deflection is linearly related to the acting force. If the cantilever spring 

constant is known, the deflection can be converted into the corresponding force 

causing the deflection (Ikai, 2008; Franz & Puech, 2008). Initially the deflection of the 

cantilever is displayed as the output of the photodetector in Volts. Before each ex-

periment AFM cantilever must be calibrated, so that vertical deflection is converted 

from Volts in units of force (N). According to Hooke’s law, the deflection (x) of the 

cantilever, considered as a spring with a defined spring constant k, is proportional to 

the force (F) between the cantilever and the testing sample. 

 

                                                           F = kx                          equation 2.1 

 

Initially the cantilever’s vertical deflection, being the voltage difference between the 

different sections of the photodiode, is displayed in volts. Thus, the first step of canti-

lever’s calibration is to determine sensitivity, or the distance of cantilever deflection 

for a given voltage difference measured by the photodiode. When this factor is 

known, cantilever deflection can be converted to distance (nm). Subsequently, by 

determining the spring constant of the cantilever, the deflection can be converted to 

force (N) (Franz et al., 2007).  
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2.3.1 Measuring the Sensitivity 

Sensitivity depends on many parameters, such as the type of the cantilever and the 

mounting position of the cantilever on the AFM head. Therefore, it should be deter-

mined every time the cantilever is mounted or remounted. To determine sensitivity, it 

is necessary to perform a F–d curve on a stiff surface, such as clean glass, in order 

to achieve a robust approach. It is crucial that this measurement is performed in the 

same medium (buffer solution) and temperature as in the actual experiments. There-

fore, a clean petri dish with fresh PBS solution at 37ºC was used for performing a 

force curve. The deflection signal is then analyzed in the repulsive contact region, 

which rises steeply upwards, and is linear for a hard surface and a tip. This meas-

urement is the deflection of the tip in nanometers for a given movement of the detec-

tion laser on the photodetector. As a consequence, sensitivity strongly depends on 

the reflective characteristics of the cantilever as well as on the AFM laser system 

used to detect the cantilever deflection (Franz et al., 2007; Friedrichs et al., 2010). 

Figure 2.8 illustrates a F-d curve from a contact mode Arrow TL-1 cantilever on a 

clean petri dish surface under aqueous buffer solution (PBS) at 37ºC. This curve 

represents raw data and the cantilever deflection is displayed in volts. By calculating 

the sensitivity deflection can be converted into distance (nm). Typical sensitivity val-

ues, as given by the manufacturer, are in the range 30 - 100nm/V.  
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Figure 2.8 Measurement of force curve on a hard substrate (clean petri dish) in PBS 

solution for calibration. The linear part of the curve is chosen for the calculation of 

the gradient of the line. Here, the sensitivity is 55.3nm/V. 

 

2.3.2 Spring Constant Calibration in Fluid using the Thermal Noise 

Most manufacturers deliver data sheets to specify a nominal spring constant for a 

given cantilever. In general the value is given as a range, and usually it is calculated 

by the average cantilever geometry (length, width, thickness). Particularly, spring 

constant values are most affected by the thickness of the cantilever, which is difficult 

to control during the fabrication process. Hence, spring constants deviate from their 

nominal value and each cantilever has to be measured individually before experi-

ments. In general, the true spring constants of cantilevers frequently differ from the 

nominal values by a factor of up to 3, and in most cases the range of spring con-

stants supplied by the manufacturer gives some idea of the variability (Franz et al., 

2007; Friedrichs et al., 2010).  
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Most AFM systems provide a software option to measure the spring constant of can-

tilevers based on the thermal noise method. This method measures the thermal fluc-

tuations of the cantilever deflection and uses the equipartition theorem to calculate 

the cantilever spring constant. Essentially, the theorem equates the thermal energy 

at a given temperature with the energy within the oscillation of the cantilever. The 

assumptions and conditions of these calculations are described by Hutter & 

Bechhoefer (1993), and it can be argued that other calibration methods are more ac-

curate. However, the thermal noise method still remains the most versatile and im-

plementable method of cantilever calibration, as it can be performed in-situ using 

software analysis with no extra costs or equipment (Franz et al., 2007; Friedrichs et 

al., 2010). A study by Burnham et al. (2003) suggested that for silicon cantilevers 

with well defined geometry, 17% of the calculated calibration values agree with the 

nominal value of the manufacturer, regardless the calibration method. By calibrating 

all the cantilevers with a particular method, results are kept consisted and compara-

ble within the studies where the effects of chemical agents on mechanics are exam-

ined. 

 

Measuring of spring constant using the thermal noise is most suited to soft cantile-

vers where the free fluctuations due to thermal energy are more significant. The sen-

sitivity measurement is the first stage in the thermal noise measurement of the canti-

lever spring constant. An example of a thermal noise measurement is shown in Fig-

ure 2.9. For a given temperature, the amplitudes of the fluctuations depend only on 

the spring constant of the cantilever; hence the thermal resonance curve can be fit-

ted to a Lorenz function to allow spring constant calculation (Hutter & Bechhoefer, 

1993). However, the resonance of soft cantilevers in fluid is much lower and very 
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susceptible to noise due to drifting of the cantilever. Nevertheless, the nature of living 

cells usually dictates that the experiments should be conducted in an aqueous buffer 

solution (PBS, DMEM etc). In this case the procedure of measuring a spring con-

stant is slightly different and a correction factor should be used to calculate the true 

value of the spring constant (Butt & Jaschke, 1995). There are various sources of 

error when using the thermal noise spectrum for the determination of the spring con-

stant. The sensitivity is obtained by the measurement of a static and relatively large 

deflection of the cantilever in comparison with the bending of the cantilever during 

dynamic oscillations. Also, when using cantilevers for soft biological material in liquid 

the first resonant peak is largely affected by low frequency noise. In that case, the 

second peak should be used as long as a different correction factor is considered. 

Table 2.1 shows the correction factors for rectangular cantilevers as described by 

Butt and Jaschke (1995). These factors compensate for the difference of the bending 

shape between the sensitivity determination and thermal noise fluctuations. For that 

reason calibration is largely affected by the position of the laser spot on the cantile-

ver and the procedure of laser path alignment should be consistent between experi-

ments. Differences in geometry between the cantilevers also affect the analysis of 

thermal noise. A more accurate calibration requires further minor corrections for hy-

drodynamic drag differences that arise from geometrical discrepancies between the 

cantilevers. In general, different batches of cantilevers may result in different calcula-

tions of the spring constant. Therefore, the results from the same type and batch of 

the cantilever must be compared, so that  consistency between measurements can 

be maintained. In special cases where comparison of E modulus between physio-

logical versus pathological conditions is required, the same cantilever can be used 

across all measurements. However, for cell-to-cell adhesion measurements, where 
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the cantilever is subjected to chemical modification, this is not possible since a canti-

lever can be functionalised for not more than three times. 

 

 

Figure 2.9 Free fluctuations are plotted against frequency for the thermal noise 

measurement of an Arrow TL-1 contact mode cantilever in fluid. Three resonant 

peaks, corresponding to the resonance at around 1kHz, are shown. Both phase and 

amplitude are reduced with comparison to the spectrum in air. The second peak was 

used to determine the spring constant by the use of a correction factor. The calcu-

lated value was 0.0206N/m, whilst the nominal value provided by the manufacturer is 

0.03N/m.    
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Table 2.1 Correction factors for rectangular cantilevers as suggested by Butt and 

Jaschke (1995). 

Peak Correction Factor Comments 

1 0.817 Generally used 

2 0.251 
Used when first resonance fre-

quency is noisy or too low 

3 0.0863 Not generally used 

 

2.4 Tissue Culture 

Treatment of cells was focused upon two research questions; could an enhanced 

functional tethering via E-cadherin improves secretion responsiveness of pancreatic 

β-cells, and could TGF-β1 induced EMT instigates a loss of cell-to-cell adhesion via 

E-cadherin in the proximal nephron during diabetic nephropathy? Two established 

cell lines (MIN6 and HK2) were used as models to represent the primary functions of 

tissues under physiological and pathological conditions. Tissue culture was per-

formed by Dr. Claire Hills at the School of Life Sciences in the framework of my col-

laboration. 

 

2.4.1 Culture of HK2 Cells 

HK2 cells were purchased from the American Type Culture Collection (ATCC; 

Gaithersburg, MD 20878 USA). Recombinant human TGF-β1 was obtained from 

Sigma (Poole, UK). Fibronectin was obtained from Sigma. Tissue culture media and 

plastic ware were from Invitrogen Life Technologies (Paisley, UK). Immobilon P 
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membranes (Millipore, Watford, UK), ECL detection reagents (Amersham Biosci-

ences, Buckinghamshire, UK) and anti-fade Citifluor (glycerol/PBS solution: Agar 

Scientific, Essex, UK) were also obtained. For preparation of compartmental protein 

a Qproteome kit was obtained from Qiagen (Sussex, UK).   

 

HK2 cells (passages 18-30) were maintained in DMEM/Hams F12 (DMEM/F12) me-

dium, supplemented with 10% fetal calf serum (FCS), glutamine (2mM), and EGF 

(5ng/ml). Cells were seeded onto 40mm petri-dishes and cultured at 37oC in a hu-

midified atmosphere of 5% CO2 in air. Prior to treatment, cells were cultured in 

DMEM/F12 low glucose (5mM) for 48hr. Basal (5mM) glucose culture media was 

generated as described previously (Hills et al., 2009). For all experiments, cells were 

cultured in low glucose containing un-supplemented DMEM/F12 medium for 48hr. 

Cells then treated with TGF-β1 (2-10ng/ml) for 48hr. In all experiments, cells were 

serum starved overnight before agonist stimulation. 

 

2.4.2 Culture of MIN6 Cells 

MIN6 cells were obtained from Dr. Y. Oka and J.-I. Miyazaki (Univ. of Tokyo, Tokyo, 

Japan). DMEM, glutamine, penicillin-streptomycin, gelatin (from bovine skin), PBS, 

foetal bovine serum and trypsin-EDTA were from Sigma-Aldrich (Poole, Dorset, UK). 

Tissue culture media and plasticware were from Invitrogen Life Technologies (Pais-

ley, UK). Immobilon P membranes (Millipore, Watford, UK), ECL detection reagents 

(Amersham Biosciences, Buckinghamshire, UK). The calcimimetic R568 was 

granted from Amgen Inc (Thousand Oaks, CA, USA). BrdU, Alexa secondaries and 

Alexa Fluor 594 conjugated anti-BrdU were from Invitrogen (Molecular Probes, 

Eugene, Oregon, USA). 
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MIN6 cells (passage 35-40) were maintained at 37C in a humidified atmosphere of 

5% CO2 in air, in DMEM supplemented with 15% FCS, glutamine (2mM) and penicil-

lin/streptomycin (100U/ml/0.1mg/ml). Cells were split when 80% confluent, about 

every 3-4 days using Trypsin-EDTA. Prior to treatment, cells were seeded onto 

40mm petri-dishes and serum starved overnight. Cells were then placed for 48hrs in 

DMEM containing both low glucose (5mM) and low calcium (0.5mM) +/- the calcium 

mimetic R568 (1μM) (Hills et al., 2012b).  

 

2.5 Single Cell Force Spectroscopy for Cell-to-Cell Adhe-

sion 

In Single Cell Force Spectroscopy (SCFS) adhesion experiments a suspended cell is 

attached on chemically functionalised cantilever in order to be used as a probe to an 

adherent cell on the substrate or to any other sample substrate. Several experimen-

tal parameters, such as contact force and time, have to be considered and adjusted 

experimentally. Once those parameters were identified they were kept constant 

throughout the measurements for each type of cells. The contact force determines 

the force that is applied by the cantilever-cell probe to an adherent substrate cell. 

Higher contact forces result in a larger contact area and number of surface ligations. 

However, compression of the cells is larger with higher contact forces that results in 

flattening of the cell attached to the cantilever after a few measurements. Once the 

two cells are in contact, surface bonding is formed. The contact time is critical to this 

process since the cells tend to interact more with each other by increasing the num-

ber and strength of their adhesion molecules. Extended contact times may lead to 

insufficient pulling range for complete separation, inadequate detection area due to 

extreme beam bending and detachment of the cell from the cantilever due to higher 
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cell-to-cell adhesion forces than the cantilever-cell. Inevitably adhesion between cells 

strongly depends on contact force and time, hence several preliminary measure-

ments were necessary. In addition, the determination of pause time between suc-

cessive measurements is mainly based on contact force and time. Strong interac-

tions between cells may require recovery times of several minutes, resulting fewer 

measurements. Visual inspection of the cantilever-cell is required between consecu-

tive measurements.  

 

2.5.1 Functionalisation of Cantilevers with Fibronectin 

Tip-less cantilevers were chemically functionalised so that a single suspended cell 

could be attached. There are different methods of cantilevers functionalisation for 

different experimental set-ups. Weder et al. (2009) incubated TL-1 cantilevers in bio-

tin-labeled concavalin A solution to achieve strong cell-cantilever bonding for Saos-2 

cells. Since the method of functionalisation depends on the type of cells, preliminary 

experiments had to be done to investigate which protein binding suits HK2 and MIN6 

cells. Poly-L-lysine (PLL) and fibronectin (Fn) are adhesion molecules that are widely 

used for promoting attachment of cells to culturing plastics. PLL is a polyvalent 

cation that alters the electrostatic charge of the surface and provides a coating that 

enhances the attachment of Fn. The Fn protein, independent of the culture condi-

tions of the sample cells (unpublished data), binds to integrins and ECM. Various 

coatings, incubation times and temperatures were investigated.  For both HK2 and 

MIN6  the attachment of cell to the cantilever was more stable when a layer of PLL 

was applied to the surface of the cantilever. Figure 2.10 shows a schematic of the 

elements of functionalisation on a tipless cantilever in contact with the plasma mem-

brane. Initially the cantilevers were sterilised by UV treatment (10mins). Next, they 
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were incubated in poly-L-lysine (25μg/ml in PBS) for 30mins in room temperature 

(RT). Subsequently, the cantilevers were transferred in fibronectin solution (20μg/ml 

in PBS) and they were incubated for 2h at 37°C. After functionalisation cantilevers 

were stored in PBS solution at 4°C and used within 3 days. 

 

Figure 2.10 Schematic design of the elements functionalising a tipless cantilever. 

The surface of the cantilever is first coated with PLL (25μg/ml in PBS, 30min in RT), 

which promotes the attachment of Fn molecules. The cantilever was next incubated 

in Fn solution (20μg/ml in PBS, 2h at 37°C), and finally brought in contact with the 

membrane of a suspended cell. Molecules in the surface of the cell that are involved 

in adhesion readily attach to Fn in the extracellular domain, while in the intracellular 

domain they are connected with actin filaments through adherens junction.    

 

When the cantilever is in touch with a suspended cell,  Fn forms an attachment with 

the adhesion molecules at the surface of the cell. The method of functionalisation 

can be tested by the coarse moving of the cantilever-cell. This will indicate whether 

or not the cell is firmly attached to the cantilever. In general, if the method of func-

tionalisation is not appropriate for a specific cell type, the surface of the cantilever for 

attachment  will be rejected by the suspended living cell. In addition, a suspended 
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cell may be forced, by using high force and contact time settings, to attach to the 

cantilever, but remain unstable i.e. moving on the cantilever. In this case the func-

tionalisation method needs to be revised since the cell-cantilever attachment is weak 

and a serious error in cell-to-cell adhesion measurements will be introduced.     

 

2.5.2 Preparation of Suspended Cells - Scrape Delivery Procedure 

The suspended (free)  cells must be prepared in an identical chemical treatment as 

the substrate cells, however they must be released from the plastic culture surface 

prior the experiments. There are a number of points to be considered when prepar-

ing cells that will be attached to the cantilever. A key point is how the cells will be re-

leased from the substrate in which they are cultured. The cells can be detached by 

incubation with trypsin or other gentle cell detaching enzyme mixtures in the absence 

of any divalent metal ions. However, enzymatic digestion leads to the cleavage of 

proteins of the cell surface. Some of these membrane proteins may be involved in 

the adhesion process, therefore this method will seriously affect the experimental 

measurements when a specific adhesion protein is to be investigated. Incubation of 

cells in the absence of Ca2+ and Mg2+ will also release the cells from the substrate, 

although this might not be possible due to special experimental specifications i.e. 

treatment with Ca2+. If this is not possible, cells can be gently scrapped off the sub-

strate. Both HK2 and MIN6 monolayer cells were seeded onto T25 flasks for 80% 

confluence. They were sub-cultured overnight in serum-free media in T25 flasks.   

 

In this project, the cells were gently scrapped off from the flask using a sterile cell 

scrapper with a rubber blade and a low-force sweeping motion (manufactured for 

minimum damage of the cells). The use of a flask instead of a petri dish has a con-
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venient size for scrapping off the cells. Cells in petri dishes could not be effectively 

scrapped. Then the scrapped cells were transferred using the  pipette on a sterile 

flask for centrifugation. After harvesting by centrifugation the medium was removed 

and replaced with sterile DMEM CO2 free media. The use of CO2 independent media 

was necessary since SCFS experiments were performed in an instrument that is not 

equipped with a CO2 chamber. The cells were re-suspended by gently agitating up 

and down five times using the  pipette. Gentle pipeting breaks up sheets of cells to 

give a uniform distribution of the non-adherent cells in the flask. Cells were allowed 

to recover for 5 mins and were introduced to the testing chamber. This procedure 

was kept consisted for all experiments in a set. 

  

2.5.3 Single Cell Attachment 

Suspended cells were introduced into the petri dish using a pipette. Since free cells 

tend to stick on the substrate quickly, it was important that the cell-cantilever attach-

ment procedure was performed rapidly (within 2-5min). To reduce the likelihood of 

suspended cells re-attaching to the base of the dish rather than the cantilever, an 

anti adhesive coating (trypsin) had been applied to an area of the dish prior to cultur-

ing the cells on the petri-dish. With the aid of optical microscope the cantilever was 

pressed against a single free cell by performing a force curve. The set-point force 

and contact time was 1-1.5nN and 8-10secs for HK2 cells while for MIN6 cells it was 

0.5nN and 5secs. During the contact time, it was preferred to set the instrument in a 

constant force mode, in which the applied force was kept constant by adjustments of 

the piezo-actuator height. Once a single cell was attached to the cantilever, it was 

left to recover for at least 5 mins (Friedrichs et al., 2010). Figure 2.11 (a) shows a 

single HK2 and (b) MIN6 cell attached to a fibronectin coated cantilever. Calibration 
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of functionalised cantilevers was performed before attaching a cell. To record a force 

curve for calibration, the cantilever was approached to a hard surface only once to 

minimize the loss of coating (set-point 2V).            

 

                                         (a)                                          (b) 

Figure 2.11 Phase contrast images of(a) a single HK2 and (b) MIN6 cell attached to 

a TL1 arrow tipless cantilever. The cantilever-cell was brought in contact with a sub-

strate cell and a predefined contact time it was retracted to investigate functional 

tethering between two cells. Width of the cantilever (rectangular part): 100μm. Note 

the laser spot (purple) used for measuring the deflection of the cantilever.  

 

2.5.4 Cell-to-cell Adhesion Measurements 

The cantilever-attached cell was brought in contact with another cell attached on the 

substrate, until a preset contact force was reached (1nN for HK2 and 0.5nN for MIN6 

cells). The two cells remained in contact for a set period of time (10secs for HK2 and 

5sces for MIN6). During this time bonding between cells was formed. The cantilever 

was then retracted at a constant speed (5μm/sec) and force versus displacement 

was measured until the two cells were completely detached (pulling length 60-

80μm). The procedure was repeated three times for each tested cell, with 30s inter-
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vals to allow the cells to recover. Based on the experimental specifications as well as 

the type of cell, a single cantilever-attached cell was used to perform measurements 

on maximum 10 cells, before getting flattened on the cantilever. 

 

A force displacement curve from the retraction movement of the cantilever during a 

cell-to-cell measurement is shown in Figure 2.12. In the flat region of the curve 

(phase 1), there is no deflection of the cantilever to the photodiode since there is no 

contact between the cantilever-cell and the substrate-cell. As the cantilever is mov-

ing downwards towards the substrate cell, phase 2 is reached where the two cells 

are in contact and the cantilever deflects according to the predetermined force value. 

The piezo-actuator will remain static in that position for the set contact time. Then the 

cantilever is retracted (phase 3) and multiple unbinding events cause bending of the 

cantilever. As the cantilever is retracted further away from the sample bonding is dis-

rupted, until phase 4 is reached in which the cells are completely detached. Retrac-

tion F-d curves provide important information regarding the adhesion between two 

cells, such as the energy or work of complete detachment, the maximum unbinding 

force, the distance of complete separation and the number of unbinding events. 

Maximum unbinding force, Fmax is the maximum force required for the complete de-

tachment between two cells. Fmax can be determined by the minimum force value in 

phase 3 of the retraction curve. It corresponds to the difference between the highest 

negative deflection of the cantilever and the point of complete separation (baseline 

value). The total energy that is consumed until the two cells are completely de-

tached, during phase 3 until phase 4, can be determined by the integration of the re-

traction curve, and is generally known as energy or work of detachment WD. The 

pulling length from the highest negative deflection of the cantilever (phase 3) and the 
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point of complete separation (phase 4) represents the distance of complete separa-

tion ds between two cells. Unbinding of ligations during the pulling phase mainly falls 

in two areas, those events in which a ramp in the deflection of the cantilevers is pre-

ceded ('j' events) and those which a deformation of membrane tethering is preceded 

('t' events). Retraction F-d curves acquired during cell-to-cell adhesion experiments 

typically exhibit a step-like pattern that is resulted from the rupture of surface liga-

tions. In the early part of the retraction curve complex unbinding events occur, while 

as the pulling distance increases a plateau in the displacement indicates that mem-

brane tethering extrudes rupture of ligation (Friedrichs et al., 2010). 

 

Figure 2.12 A force distance curve of two MIN6 cells that are brought in con-

tact.Initially the cells are bounded into a cantilever and the substrate (phase 1). Then 

they are approached to each other, and after a short period of contact the two cells 

are attached. During this time bonding is formed (phase 2). Next, the cantilever is 

retracted and force versus displacement is measured (phase 3) until they are com-

pletely detached (phase 4). Based on the F-d retraction curve adhesion parameters 
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can be determined including maximum force of detachment from the highest nega-

tive deflection of the cantilever, work of removal from the area under the curve and 

distance of complete separation from maximum pulling range before separation. In 

addition unbinding steps that correspond to ligation rupture can be determined. 

Steps in the initial part of the curve, such as in 'j' area, are followed after a bond rup-

ture while 't' steps are followed after a deformation of membrane tethering. 

 

2.6 Single Cell Force Spectroscopy for Single Cell Elastic-

ity  

In AFM indentation the vertical deflection of a cantilever is measured as a function of 

the piezo-actuator height, in order to produce force-displacement curves and calcu-

late the E modulus of the sample. The position of the piezo-actuator, after the con-

tact point, corresponds to the indentation depth of the testing sample. Therefore, it is 

assumed that a force-displacement curve represents a force-indentation depth 

curve. However, the piezo-actuator movement during indentation does not represent 

the actual depth of indentation, due to the bending of the cantilever against a sample 

in the opposite direction of the indentation. As a consequence, an error is induced in 

the displacement axis z of the experimental measurements, since the indentation 

depth δ is deeper than it actually is. The experimental indentation depth δ measured 

using AFM is, 

δ=δdeflection+δindentation 

z=δ+x (Figure 2.13a) 

In fact, this is a source of a error in the determination of elasticity when a mechanical 

model, such a Hertz theory, is applied to the experimental F-d curves. It is therefore 
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important to correct the experimental data before fitting the curves to a model (Figure 

2.13(b)). 

 

(a) 

 

(b) 

Figure 2.13 Schematic diagram of a single cell indentation experiment. (a) The dis-

placement z of the piezo-actuator includes both the indentation height δ and the de-

flection of the cantilever x. (b) The deflection of the cantilever x, must be subtracted 

from the z height measured during AFM indentation. The corrected tip-sample-

separation curve represents the actual F-d curve that can be used for calculation of 

elasticity. Image adopted by JPK instruments with permission.  
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2.6.1 Colloidal Probe Preparation 

Spherical probes for measuring mechanical properties of soft biological samples are 

commercially available in precise monodisperse particle size distributions. Polysty-

rene microbeads are chemically inert and commonly used for biological studies. Ti-

pless cantilevers can be modified with spherical indenters of 1-10μm in diameter. 

Colloidal probes were prepared by gluing an 10μm polystyrene microsphere (Poly-

beads ®, Polysciences, Eppelheim, Germany) on a  tipless TL-1 cantilever. Micro-

spheres are packaged as an aqueous suspension with a minimum amount of surfac-

tant. Part of the stock was diluted in distilled water and vortexed using a pipette to 

eliminate aggregation. Besides, bead aggregation can be minimised by increasing 

the temperature of the dilution using the temperature controller of the AFM stage.  

Initially the microspheres were placed on a glass coverslip, which was positioned on 

the fine stage of the AFM. The coverslip was cleaned with ethanol and dried by air, 

and a drop of the bead stick was transferred on the surface of the glass using a fine 

pipette. A mixture of clusters and single beads is shown in (Figure 2.14). 

 

Figure 2.14 Single and clusters of Polystyrene microbeads on a glass coverslip. The 

mean diameter of the bead is 10μm with coefficient of variance ≤10%.  
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The procedure for mounting the microbead into the tipless cantilever is similar to that 

described by Carl & Schillers, (2008). In brief, after mounting the cantilever into the 

AFM head and perform alignment of the laser,  the attachment procedure was as fol-

lows; a small amount of two-part fast setting (5mins) epoxy glue was poured using a 

syringe next to the microspheres. In a short time period, an approach curve was per-

formed to slightly immerse the end of the cantilever into the glue with a relatively low 

setpoint (<0.5V). The cantilever was then swept along a clean area of the coverslip 

to remove excessive glue. Finally, using the stage positioning screws the tip of the 

cantilever was positioned directly above a microsphere and an approach curve was 

performed until contact was made. A setpoint of 1-1.5V and a contact time of 3-

5secs was necessary for the bead to be attached. It is very important not to creep 

the cantilever, when in contact with the sphere, to avoid slipping of the glue over the 

probing surface. The whole procedure was facilitated with the use of the inverted op-

tical microscope. Figure 2.15 (a)-(b) show optical images of a 10μm polymeric bead 

attached to a tipless cantilever. 

 

                                 (a)                                                             (b) 

Figure 2.15 A spherical polystyrene microbead of 10μm in diameter attached on the 

very end of an Arrow TL-1 tipless cantilever. (a) An optical image showing the side 
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view of the microsphere attached to the tip of the sensor. (b) An optical image show-

ing the top view of the cantilever-bead and KH2 cells on the substrate. 

 

2.6.2 Calculation of Elasticity using the Hertzian Mechanics Model 

The Hertz model is commonly used to extract the elastic or Young's modulus from a 

force-displacement curve acquired by indentation measurements. Although this 

model is widely used for biological samples, there are several assumptions that need 

to be considered in order to match certain experimental conditions. Different indenter 

geometries lead to different radius of contact area α, therefore different extensions of 

the original model must be used. As shown schematically in Figure 2.16, for spheri-

cal probes, loading force F is related to indentation depth δ as follows, 

 

where E and v are the Young’s Modulus and  Poisson’s ratio of the cell respectively, 

α is the radius of probe-cell contact circle, and RS is the radius of the spherical 

probe. 
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Figure 2.16 Indentation of a single cell using spherical indenter, where δ is the in-

dentation depth, α is the radius of the contact area between the probe and the 

plasma membrane, R is the radius of the probe and F the loading force.     

 

In addition, the Hertz model approximates the sample as a smooth, isotropic and 

linearly elastic homogeneous material and assumes that there is no interaction nor 

adhesion between the probe and the sample. If a biological cell is treated with trypsin 

then smoothness of the surface can be improved. However, in experiments where 

elastic and adhesive properties are studied simultaneously, the surface of a biologi-

cal cell has to remain intact. As shown schematically in Figure 2.17 the surface of 

the cell is rough and includes various long chain molecules. In fact, inhomogeneity of 

the surface can induce a serious in the calculation of elasticity, since it is very difficult 

to determine the exact contact point between the probe and a living cell. Also, the 

contact area between the plasma membrane and a penetrating probe is hard to de-

fine. Hertz theory approximates the sample as a linear, homogeneous sphere. How-

ever, soft biological materials are characterized by non-linearity and inhomogeneity. 

Therefore, the Poisson parameter does not describe such complex material re-

sponse and has to be approximated. Consequently, the Poisson’s ratio of incom-

pressible materials like rubber was assumed as 0.5 (Mahaffy et al., 2004). 
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Figure 2.17 Schematic design of the surface of a probe and the sample. Dotted line 

represent the theoretical assumption, while continuous line is a representation of the 

actual micro-environment. Roughness at molecular level contributes to the uncer-

tainty of the determination of initial contact point and contact area during indentation. 

Various membrane extensions such as long chain molecules on the surface of the 

cell can cause a force jump indicating a false contact point.   

 

Hertz theory assumes indentation on an infinitely extending space. This means that 

the depth of indentation is negligible compared to the height of the sample and that 

the deformation of the sample induced by the indentation is very small in contrast to 

the extremely thick sample. However, since cells have a very limited thickness and 

Hertz theory assumes that the sample occupies an infinite half-space, it is very im-

portant to define the indentation depth before experiments. As the substrate effects 

are not considered in the model, this may lead to significant errors in the determina-

tion of elasticity of soft cells. The significantly higher Young's modulus of a hard sub-

strate will induce a serious error in the calculation of  cell elasticity, resulting in high 

values of the cell E modulus. The Hertz model is only valid for indentations up to 

10% of the samples height, where substrate effects are considered insignificant 

(Dimitriadis et al., 2002). For that reason, all curves were fitted rigorously with the 
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restriction that the maximum depth of indentation is equal to or less than 10% of the 

height of each cell. To achieve that the thickness of the cell was measured with re-

spect to the substrate for each tested cell. However, as cells tend to form clusters 

with each other, determination of the height with respect to a reference substrate 

was not always possible. Nevertheless, the experimental specifications require test-

ing adherent cells that are in communication with neighbour cells. Therefore, deter-

mination of elasticity of cells inside a cluster was important to be valued. For that 

reason several preliminary measurements were taken to establish the general cell 

height for each cell line. In addition, cells that are situated in the side of a cluster are 

in contact with other cells and a clean substrate space is available for the measuring 

the height difference (Figure 2.18(a)). Figure 2.18 shows the procedure for determin-

ing the height of the cell prior conducting indentation measurements. A force set-

point of 0.2nN was used for the tip of the cantilever to touch the area adjacent to the 

cell, that is to used as a reference. Since cells in a small cluster (Figure 2.18(b)) or 

individual cells (Figure 2.18(c)) have more free space in their surrounding area, more 

reference points were measured.  Next, the cantilever was positioned above the test-

ing cell and was set to approach the surface of the cell. The height of each testing 

cell was subsequently determined by their displacement difference. The indentation 

measurements were performed immediately without moving the tip from the testing 

position in which the cell height was measured. However, even a small contact force 

(200pN) can induce deformation to the membrane, hence the cantilever was re-

tracted and a new F-d curve with a pre-set indentation depth was performed.  
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Figure 2.18 Optical image demonstrating the determination of cell height prior inden-

tation experiments. The target cell is marked with a circle while arrows show the 

points of clean substrate area that can be used as a reference point. A low set-point 

force of 0.2nN was used for the cantilever to  touch a point in a clean area next to a 

measuring cell and the surface of the cell. Their displacement difference was used to 

determine the height of the cell and subsequently the indentation depth. (a) When a 

single test within a cluster was tested one reference point was used for measuring 

the height of the cell. (b) &( c) For cells in smaller cluster or individuals the reference 
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values were obtained by measuring the area surrounding the cell. Obviously, individ-

ual cells had more reference points.  

 

Cells are complex with several elements in their compartment, such as the plasma 

membrane, the nucleus,  the cytoskeleton and various organelles, which all contrib-

ute to the overall stiffness of the cell. As the indentation depth increases the effects 

of the various parts of the cell will add to the slope of the F-d curve. Each part of a 

curve will correspond to a structure under investigation. By fitting discrete parts of 

the curve to the model,  the elasticity of different structures can be is represented 

(Figure 2.19). 

 

Figure 2.19 Elasticity can be determined by fitting the model to the F-d curves in the 

range of 5-10% of indentation. The spherical probe has large area of contact and it is 

important to take under consideration the effects of the substrate. 
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2.6.3 Force & Displacement Mode for AFM-FS Indentation 

AFM indentation can be conducted either by force-controlled indentation or by dis-

placement-controlled indentation. During force-controlled indentation the restriction 

for the indentation depth is not considered experimentally but while fitting the data to 

the model. The cell is indented according to a preset force value, without considering 

the height of the cell. As a result, the (corrected) displacement of the recorded curve  

corresponds to relatively high depths and may suffer from substrate effects when fit-

ting the Hertz model. By this means, the indentation depth is determined from the 

fitting range of a F-d curve. The curve is fitted in various incremental indentation 

depths in order to observe any large differences in E modulus. At some point of the 

displacement fitting range, E modulus reaches a plateau that corresponds to the 

whole cell elasticity, up to the fitted depth. Any obvious difference above that value 

indicates that the fitted indentation depth is too high and substrate effects are con-

tributing to the calculation. In this method the height of each tested cell does not 

have to be predetermined, and the height of a few cells would be enough to provide 

a general insight about the thickness of the sample (Figure 2.20(a)). This method 

has the advantage of a faster experimental procedure and as long as consistency is 

maintained during analysis the calculated elasticity values can be compared be-

tween different cell states. However, since cells are highly heterogeneous there 

might be no obvious plateau in the F-d curve. Especially when small indenters i.e. 

pyramidal, are used any movement of the cell or the cantilever will result in indenting 

a different area, thus resulting in different E modulus.  

 

In height-controlled indentation, the depth of indentation is determined based on the 

height measurements of each tested cell. The indentation is then performed directly 
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above the point where the height of the cell is measured, with maximum indentation 

depth up to 10% of the thickness of the sample (Figure 2.20(b)). By this method it is 

guaranteed that the substrate effects on the calculation of E modulus are minimised. 

One issue of consideration using this method is related to the accuracy of the deter-

mination of cell height. For cells inside a cluster only one reference point is available 

on the clean substrate. In addition, the contact force between the tip and the mem-

brane induces a deformation on the thin surface and it is absolutely necessary to use 

a low set point (<0.2nN). Higher set-points result in a significant deformation of the 

membrane, in a smaller value of cell height and consequently in shallow indenta-

tions.   

 

 

(a) 
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(b) 

Figure 2.20 AFM indentation using force-controlled and height-controlled displace-

ment of a cell with thickness 3.5μm. Hertz theory assumptions require that the depth 

of indentation depth δ is maximum 10% of the cell height. As shown in the F-d 

curves, the contact point can be determined by identifying a positive ramp of the 

force sensor. In (a), a set-point force of 4.5nN was used to indent the sample result-

ing in a displacement of approximately 1500nm. As δ was increased the value of E 

modulus was increased significantly, suggesting that stiffer elements (e.g. nucleus or 

substrate) are contributing to the calculation of elasticity. In (b) a set-point force of 

100pN was used to determine sample thickness with regards to the reference sub-

strate and indentation depth δ is fixed for the specific position on the cell. The proce-

dure is then repeated for each testing cell.     
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2.6.4 Single Cell Indentation Measurements 

The cantilever-bead was brought in contact with another cell on the substrate, until a 

preset contact force was reached (<0.2nN for both HK2 and MIN6 cells). A low set-

point force is necessary in order for the probe to just touch the extracellular domain 

of the membrane. This is followed by a corresponding ramp on the output force. If 

the peak on the output force is higher than the set-point, then the deformation of the 

membrane is too high and the proportional-integral gains of the controller have to be 

adjusted. Then the piezo-actuator was retracted by a known value d and the thick-

ness of the sample was determined. Next, the cantilever was extended exactly on 

the same point after adding in d, the calculated displacement, that corresponds to 

the depth of indentation based on cell thickness. 

 

Each cell was indented 5 times with an interval pause of 60secs, while force versus 

displacement was recorded simultaneously. All cells were indented on the area di-

rectly above the nucleus. Since, the indentation depth was pre-determined for each 

cell, displacement-controlled or simply height indentation experiments were per-

formed. The approach and retraction speeds were kept constant for all experiments 

at 5μm/sec to avoid hydrodynamic forces acting on the cantilever. Approximately 10 

cells per petri dish were tested, while only the extended part of the F-d curve was 

used for analysis due to the adhesion between the tip and the living cell. 
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2.7 Data Processing & Analysis 

Data of force spectroscopy measurements were recorded in a compressed binary 

format and they cannot be processed using a spreadsheet software. However, F-d 

curves can be converted one by one as a .txt file or into ASCII format, containing all 

the curve data, using the user interface or they can be converted as batches of force 

files using the Linux terminal. To process all force distance curves the JPK Data 

analysis software was used as described by Friedrichs et al. (2010). 

 

To signify statistical differences data was evaluated using one-way ANOVA test or a 

paired t-test. Data are expressed as mean±SEM and 'n' shows number of experi-

ments. P<0.05 was taken to indicate statistical significance.  

 

2.7.1 Adhesion Data Processing 

A raw F-d cell-to-cell adhesion curve as recorded from a force spectroscopy experi-

ment is shown in Figure 2.21(a). All processing functions were applied to the re-

tracted F-d curve. Initially the low frequency component caused by environmental 

noise was removed by smoothing the data (function 1). Next, the reference point that 

will be used for the determination of the adhesion parameters, such as Fmax, WD and 

ds, had to be determined. Essentially this is the point of complete separation be-

tween the two cells and it is specified by setting the baseline of the complete separa-

tion of the retraction curve to match the zero x-axis (function 2). The exact point 

where the two cells are in contact does not affect the calculation of the adhesion pa-

rameters. Besides,  the processing of F-d adhesion curves was performed on the re-

traction part of the curve. Therefore, detection of contact point (function 3) was only 

used for convenience of display, since hundreds of curves were analysed. The next 
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operation that performed was the detection of minimum value of force (function 4), 

which represents the maximum force required for the complete separation of the two 

cells. Fmax is calculated by detecting the minimum negative value of force with re-

spect to the x-axis baseline. In addition, by determining the area under the retracted 

part of the curve (function 5), work or energy of complete detachment was calcu-

lated. Unbinding of ligations  can be detected by identifying sharp steps of force that 

occur after a plateau in x-axis that corresponds to membrane tethering (function 6). 

This automated step-fitting method for detecting small force ramps that correspond 

to bond rupture was developed by Kerssemakers et al. (2006). During the retraction 

phase of cell-to-cell adhesion curves, only upward steps are anticipated. However, 

small drifts of the cantilever can be caused due to fluidic nature of the experiments. 

As a result errors may be introduced to the analysis and hence only positive steps 

were selected. After applying the operations from (1) to (6), the curve of Figure 

2.12(b) is obtained from which Fmax, WD and number of tether rupture events (TREs) 

can be determined. The determination of the point at which the cells are completely 

separated is the most important step, since the x-axis baseline will be derived upon 

that.  Besides, the distance of complete separation ds can be determined by the dif-

ference between Fmax and point of complete detachment of the two cells.  
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(a) 

 

(b) 

Figure 2.21 Processing of cell-to-cell adhesion force curves. In (a) a raw F-d curve, 

as measured by AFM-SCFS, is shown. After applying the following functions: (1) 

smoothing, (2) set the x-axis Baseline, (3) detect the Contact point, (4) detect the 
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Minimum Force value, (5) determine the area under the curve and (6) step fitting, the 

F-d retraction curve of (b) is resulted. As illustrated the determination of the point at 

which the cells are completely separated is the most important step, since the x-axis 

baseline acts as a reference for further analysis. Fmax is the difference between the 

minimum force value and the baseline, while WD (grey region) is the integral of the 

continuous area under the baseline. In addition, ds can be determined by the differ-

ence between Fmax and the point of complete separation. Zooming in the x-axis dis-

plays detection of early unbinding events. 

 

2.7.2 Indentation Data Processing 

A raw F-d indentation curve as recorded from a force spectroscopy experiment is 

shown in Figure 2.22(a). All processing functions were applied to the extended F-d 

curve. In order to detect the point in which the force ramps to a positive value, low 

frequency noise has to be removed from the baseline. Therefore, smoothing of data 

(1) was the first operation that needed to be applied. Then, any offset of the baseline 

in the vertical deflection had to be corrected (2), since movement of the aqueous 

buffer solution is likely to cause deflection of the cantilever. In general, the part of the 

curve on the right of the slope should be smooth and flat. However, environmental 

noises or particles on the media can cause a large deflection of the cantilever, which 

will be detected as notch peaks in the output or a drift on the baseline. After smooth-

ing and correcting the baseline of the curve, the contact point (3) was calculated by 

detecting the point where the curve is crossing the zero force axis. However, as dis-

cussed earlier this point does not represent the absolute contact point where the 

probe touched the membrane and hence served only as an indication point for fitting 

a mechanical model. The next operation (4) corrected the displacement values for 
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the bending of the cantilever as described earlier. This function is important to be 

performed before the determination of Young's modulus using Hertz theory. To cal-

culate elasticity function (5) was applied for a spherical indenter with radius of 5.0μm. 

The assumption for fitting the Hertz model were discussed earlier. After applying the 

operations from (1) to (5) various fitting ranges can be investigated to determine 

elasticity of a single cell (Figure 2.22(b)). 

 

(a) 
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(b) 

Figure 2.22 Processing of indentation force curves. In (a) a raw F-d curve, as meas-

ured by AFM-FS, is shown. After applying the following functions on the approach 

curve: (1) smoothing, (2) substract the baseline to set the zero force level, (3) detect 

the contact point, (4) correct the height of the cantilever bending and (5) apply the 

Hertz model, the F-d extension curve of (b) is resulted. In order to calculate the elas-

ticity of a cell, an F-d curve was analysed as shown. Fitting in incremental and vari-

ous parts of displacement confirmed that the experimental procedure was robust. A 

contact point of 118nm resulted in better fit of the data.  
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3. Nanomechanical Characterisation of Pancreatic MIN6 

cell-to-cell adhesion 

 
3.1 Introduction 
 

In this chapter, a force spectroscopy study of monolayer MIN6 cells treated with the 

calcimimetic R568 (1μM) is presented. The calcimimetic activates the receptor at a 

physiologically appropriate extracellular calcium concentration (Hills et al., 2012b). 

Activation of the extracellular calcium-sensing receptor (CaSR) on β-cells increases 

expression of the adhesion protein epithelial (E)-cadherin. Glucose-responsiveness 

of the pancreatic islet relies on the interactions and coupling between neighbour 

cells. In this study the changes in E-cadherin mediated cell-to-cell adhesion and sin-

gle cell elasticity in response to the calcimimetic R568 were quantified.   

 

Figure 3.1 shows the morphological shape of healthy MIN6 cells. The cells were cul-

tured in monolayers  in low extracellular calcium (0.5mM Ca2+) in order to enable ac-

tivation of the CaSR by the R568 (Figure 3.1(a)). In physiological conditions clusters 

of cells are formed, since they maintain their adhesiveness with neighbouring cells. 

The morphology of a single cell adhered on a petri dish substrate is shown at Figure 

3.1(b), illustrating a shape that resembles a cobblestone. However, the cobblestone 

shape may vary  when cells are organised within clusters. For consistency all force 

measurements were performed on cells that resemble this morphology. Testing was 

performed  above the central region of the cell, which normally corresponds to the 

area where the largest element of the cell, the nucleus (purple colour), is residing. 

The cytoskeleton (Figure 3.1(b); red colour) is the element of the cell that is princi-

pally responsible for maintaining its shape. 
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                          (a)                                                            (b) 

Figure 3.1 The morphology of MIN6 cells cultured in low extracellular calcium 

(0.5mM). In (a), an optical image of MIN6 cells in monolayers demonstrates that cells 

are organised in low proximity between each others, forming clusters that enable 

cell-to-cell coupling and communication. In (b), a fluorescence microscopy image of 

a single cell illustrates the cobblestone morphology that is maintained by the CSK 

(stained in red colour). The nucleus of the cell, occupying a large area of the cyto-

plasm, is clearly shown (purple colour).  

 

3.2 Effects of CaSR Activation on Functional β-cell-to-β-

cell Adhesion  

MIN6 cells were treated for 48h in low extracellular calcium (0.5mM) +/- the receptor 

specific calcimimetic R568 (1μM). Chronic activation of CaSR using the R568, ele-

vates E-cadherin expression while this is accompanied with relocalisation of the pro-

tein into the membrane and the CSK (Hills et al., 2012b; Younis, 2012). In order to 

relate the changes in expression/localisation of E-cadherin to functional tethering, 

SCFS was used to quantify cell-to-cell adhesion parameters, such as the forces re-

quired for the complete detachment of coupled cells. A single MIN6 cell was at-
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tached into the end of a functionalised arrow cantilever and subsequently brought in 

contact with a single substrate cell within a cluster. In Figure 3.2 an optical image 

taken from the force spectroscopy experimental measurements is presented. In (a), 

the control group (0.5mM Ca2+) is shown, while in (b) the treated sample (0.5mM 

Ca2+ +R568) is shown. The treatment did not cause any morphological or phenotypi-

cal changes of the cells.  

 

                            (a)                                                        (b) 

Figure 3.2 Phase microscopy image showing a β-cell-to-β-cell SCFS adhesion ex-

periment. No morphological changes between the samples were observed by optical 

images. The suspended cell was attached on the functionalised cantilever and then 

was brought in contact with a single substrate cell (within a cluster of cells) for 5secs, 

while force versus displacement were measured simultaneously. In (a), an optical 

image showing MIN6 cells incubated for 48h in 0.5mM Ca2+ (Control) while in (b) 

cells were incubated in 0.5mM Ca2+ +R568.  

 

A few set of measurements were performed to select the parameters prior adhesion 

measurements. The main criterion that determined the choice of the parameters was 

the displacement range of complete separation. As discussed in the adhesion data 
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processing section, the point of complete detachment between two cells acts as the 

baseline for the determination of adhesion characteristics. Therefore it is important 

that the experimental specifications allow complete detachment of the cells under the 

specified speed. A fixed set-point force of 0.8nN was used for the probe cell to touch 

the surface of the substrate cell. The contact period between the two cells was set at 

5 sec. During contact time E-cadherin surface ligation occurred. The cantilever was 

retracted at a constant speed of 5μm/sec and retraction F-d curves were recorded 

until the two cells were completely detached from each other. The procedure was 

repeated three times for each cell under investigation, with 30 sec intervals between 

each successive measurement. The attached cell was used to perform measure-

ments on approximately 5-10 cells for each cultured petri dish.     

 

Retraction curves acquired from adhesion measurements between two single β cells 

were analysed from multiple experiments in order to investigate the β cell function 

after chemical modification with the calcimimetic. Using identical experimental speci-

fications  more than 30 cells in separate experiments (n=4) were examined, resulting 

in the processing of more than 100 F-d retraction curves. The number of cells that 

were used for analysis for each treatment is shown in Table 3.1. As shown in the ta-

ble, there is a noticeable number of retraction curves that have been discarded from 

further processing. There are many reasons that can cause a disturbance while re-

cording a F-d curve. Since the attachment procedure between the suspended cell 

and the cantilever is performed in the cultured dish under testing, a large number of 

free floating particles into the media, such as cell debris, cause drifting in the meas-

urements of the sensor. Moreover, movement of free cells causes a serious drift of 

the cantilever, which may lead in the incorrect determination of unbinding forces. 
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Therefore large numbers of data sets are necessary in order to obtain a valid out-

come when comparing cells under chemical treatment. 

Table 3.1 A table showing the number of tested MIN6 cells and retraction curves ob-

tained using SCFS that were either processed or rejected. A total of 102 retraction 

measurements of 41 Ca2+ cells were analysed, while a total of 108 retraction curves 

of 41 Ca2++R568 cells were analysed. Approximately 1/3 of the curves were rejected 

due to disturbances when recording a retraction F-d curve. 

 

MIN6 cells SCFS retraction measurements 

n=4 Ca2+
 Ca2+ +R568 

Total No of Cells 48 45 

No of accepted cells 41 36 

Processed curves 102 108 

Discarded curves 42 27 

 

 

Retraction F-d curves provide important information regarding the adhesion parame-

ters between two cells. The most common indicator of adhesion is the negative force 

value of the curve, due to the downwards deflection of the cantilever when being re-

tracted from the sample signifies binding between the adherent cells. Functional 

changes in the expression of a protein under investigation in the surface of the cell 

can be shown by the detection of the maximum unbinding force. In fact, force of de-

tachment is the most common relative parameter for comparing control and treated  

cells in an adhesion assay (Friedrichs et al., 2010). However, extraction of parame-

ters such as work or distance to complete detachment from a retraction F-d curve, 

provide information  regarding the contribution of cellular deformation into the sur-
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face mediated cell-to-cell ligation. The retraction curves of Figure 3.3 illustrate the 

effects on adhesion parameters as resulted by CaSR activation, upon the treatment 

of MIN6 cells with the calcimimetic. As shown in the figure, cells treated with the cal-

cimimetic (Figure3.3(b)) exhibit increased adhesion characteristics in comparison to 

the control group (figure 3.3(a)). Detection of the changes between the control and 

the +R568 treated group provided quantitative information regarding the functional 

adhesiveness of cells and confirmed that the function of a system is indeed altered 

after the changes in surface protein expression. Complete separation between the 

probe and the substrate cell, under the 5μm/sec speed, was ensured by using an ef-

fective retraction range of at least 80μm. 

 

(a) 
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(b) 

Figure 3.3 The effects of CaSR activation, followed by treatment with the calcimi-

metic R568, on E-cadherin mediated cell-to-cell adhesion were examined using 

AFM-SCFS. Fmax is the difference between the minimum force value and the point of 

complete detachment, WD (grey region) is the integral of the continuous area under 

the baseline of complete separation and ds is the difference between Fmax and the 

point of complete separation. Set-point force of 0.8nN, contact time of 5sec and pull-

ing speed of 5μm/sec were remained constant throughout the experiments. Altera-

tions of adhesion parameters such as Fmax, WD and ds provide an important insight 

about functional cell-to-cell adhesion. In (a) Fmax is 0.9nN, WD is  6.7fJoule and ds is 

34.6μm  while in (b) Fmax is 1.3nN, WD is 16.9fJoule and ds is 54.2μm. 

 

In addition, changes in the expression/localisation of E-cadherin also affected the 

number of unbinding events that occurred during the retraction process of the two 

cells. The retraction F-d curves of figure 3.4 illustrate the number of rupture tethers 

as detected by the step fitting function. CaSR activation increased the density of E-
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cadherin ligands, corresponding to an increase of rupture bindings in the retraction 

curve of cells treated with the calcimimetic R568 (Figure 3.4(b)).  Sharp steps of 

force that are not preceded by a displacement plateau ('j' events) occurred in the first 

10-15μm of pulling range for the control cells, whereas in cells treated with calcimi-

metic 'j' events occurred during the first 5μm of pulling range. As the pulling range 

increased an area was reached in which unbinding of surface ligations was also pre-

ceded by a displacement plateau ('t' events), indicating small cellular deformations. 

During the retraction process the displacement plateau increased with higher pulling 

range, as illustrated in Figure 3.4. For control cells (Figure 3.4(a)), 'j' type unbinding 

events dominated the separation process between two cells. However, for cells 

treated with calcimimetic the number of 't' events that preceded a considerable dis-

placement range was higher, indicating that cellular deformation occurred at many 

instances before the complete detachment of the cells. Therefore, cells treated with 

the R568 became more deformable, which clearly had a significant impact on work 

and distance of complete detachment. 

 

(a) 
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(b) 

Figure 3.4 Retraction force-distance curves obtained by MIN6 cell-to-cell adhesion 

measurements, showing the effects of CaSR activation on the tether rupture events. 

Unbinding of ligations that occur during the early pulling phase (10μm after the mini-

mum force value) are preceded by a force ramp ('j' events). As the pulling distance 

increases an area is reached where the rupture events are preceded by a displace-

ment plateau as well ('t' events) due to the deformation of the cell. In (a) the number 

of TREs is 39, whilst most of the unbinding events occurred in the first 11μm of pull-

ing range, corresponding to the area of 'j' and mixed 'j' and 't' events. In (b) the num-

ber of TREs is 61, whilst most of the 'j' events occurred in the first 3.2μm. The arrows 

illustrating the displacement plateau combined with the fact that the initiation of 't' 

events occurred much earlier as shown in (b) indicates that MIN6 cells became more 

deformable after treatment with the calcimimetic. 
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The histograms of maximum unbinding force and work of detachment obtained from 

the F-d curve measurements of control cells are shown in Figure 3.5. Overall the 

data acquired from MIN6 cell-to-cell adhesion experiments were normally distributed, 

suggesting that the assumption for performing t-test has been satisfied. Table 3.2 

shows the descriptive statistics for the various adhesion parameters that were ex-

tracted from the β-cell-to-β-cell retraction F-d curves; (a) For the control cells, the 

maximum unbinding force had a mean of 0.84nN and standard error of 0.02. For the 

calcimimetic cells, the maximum unbinding force had a mean of 1.09nN and a stan-

dard error of 0.03. (b) For the control cells, the work detachment had a mean of 

11.10fJoule and a standard error of 0.46. For the calcimimetic cells, the work of de-

tachment had a mean of 16.36fJoule and a standard error of 0.78. (c) For the control 

cells, the number of tether rupture events had a mean of 48.54 and standard error of 

1.36. For the calcimimetic cells the tether rupture events had a mean of 70.38 and 

standard error of 1.53. (d) For the control cells, the distance of complete separation 

had a mean of 51.39μm and standard error of 1.55. For the calcimimetic cells, the 

distance of separation had a mean of 70.41μm and standard error of 2.20.  
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                                      (a)                                                         (b) 

Figure 3.5 (a) Distribution of frequencies of maximum unbinding forces and (b) dis-

tribution of frequencies of work of detachment. 

 

Table 3.2 Table presenting descriptive statistics for the adhesion parameters, (a) of 

maximum unbinding force for the control and for the +R568 cells, (b) of work detach-

ment for the control and for the +R568 cells, (c) of tether rupture events for the con-

trol and for the +R568 cells and (d) of distance separation for the control and for the 

+R568 cells. 

 

Fmax (nN) Mean N Std. Deviation Std. Error Mean 

 

Ca2+ 0.8437 102 0.17546 0.02176 

Ca2++R568 1.0891 108 0.25205 0.03126 

 

(a) 
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Wd (fJoule) Mean N Std. Deviation Std. Error Mean 

 

Ca2+ 11.1019 102 3.70880 0.46002 

Ca2++R568 16.3635 108 6.25498 0.77583 

 

(b) 

No of TREs Mean N Std. Deviation Std. Error Mean 

 

Ca2+ 48.5385 102 8.49720 1.36064 

Ca2++R568 70.3846 108 9.54660 1.52868 

 

(c) 

ds (μm) Mean N Std. Deviation Std. Error Mean 

 

Ca2+ 51.3886 102 9.14159 1.54521 

Ca2++R568 70.4143 108 13.03010 2.20249 

 

(d) 

 

The differences between control and +R568 treated cells for the various adhesion pa-

rameters obtained from retraction curves as analysed using paired samples t-test are 

shown in table 3.3. On average, Ca2++R568 cells showed to have higher maximum 

binding force (M=1.0891, SE=0.3126) than Ca2+ (M=0.8437, SE=0.02176) and this 

difference was statistical significant (t(105)=12.23, p<0.001). Also, Ca2++R568 

showed to have higher work detachment (M=16.3635, SE=0.7758) than Ca2+ 

(M=11.1019, SE=0.46), showing statistically significant differences (t(105)=5.98, 
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p<0.001). In addition, Ca2++R568 showed to have higher distance of separation 

(M=70.4143, SE=2.2025) than Ca2+ (M=51.3886, SE=1.5452). This difference was 

statistical significant (t(105)=9.5, p<0.001). Furthermore, Ca2++R568 showed to have 

higher numbers of tether rupture events  (M=70.3846, SE=1.5287) than Ca2+ 

(M=48.5385, SE=1.3606) that was statistically significant (t(105)=12.54, p<0.001).  

 

Table 3.3 Table presenting the differences between control and +R568 treated cells 

using paired wise t-test, (a) of the maximum unbinding force between control and 

+R568 cells, (b) of work detachment between the control and +R568 cells, (c) of the 

number of tether rupture events between the control and +R568 cells and (d) of the 

distance of separation between control and +R568 cells.  

Mean SD SE 95%CI t df Sig 

0.23 0.291 0.036 lower Upper 12.23 105 0.000 

0.514 0.370 

 

(a) 

Mean SD SE 95%CI t df Sig 

5.26 7.08 0.879 lower Upper 5.98 105 0.000 

7.01 3.50 

 

(b) 
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Mean SD SE 95%CI t df Sig 

21.84 10.87 1.74 lower Upper 12.544 105 0.000 

25.37 18.32 

 

(c) 

Mean SD SE 95%CI t df Sig 

19.03 14.9 2.52 lower Upper 9.50 105 0.000 

29.16 18.8  

 

(d) 

 

More than 100 curves from 4 separate experiments were analysed and the data are 

expressed as mean ± SEM in Figure 3.6. The results indicate that the calcimimetic 

R568 (1μM) increased the number of tether rupture events by 48%, resulting in an 

increase of the maximum unbinding force by 30%. However, the detachment energy 

was increased more significantly by 39%, consistent with the distance of separation 

increasing by 37% (>30 cells, n=4, p<0.001) (Figure 3.6(a)-(d)).  
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            (a)                                                                  (b) 

 

     

   (c)                                                      (d) 

Figure 3.6 The effects of the calcimimetic R568 (1μM) on (a) the maximum unbind-

ing force (increased by 30%), (b) the number of tethering rupture events (increased 

by 48%), (c) the work of detachment (increased by 39%) and (d) the distance to 

complete separation (increased by 37%) are shown. Data are expressed as mean 

±SEM of more than 30 cells from 4 separate experiments, where key significances 

are shown, ***p<0.001. 

 

Studying the cellular interactions is important for the understanding of improved islet 

function and insulin secretion (Hauge-Evans et al., 1999; Brereton et al., 2006). The 
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most characterised adhesion protein that mediates cell-to-cell adhesion and modu-

lates the adherens junction is the E-cadherin molecule (Perez-Moreno et al., 2003). 

The CaSR is expressed in primary pancreatic islets (Rasschaert & Malaisse, 1999; 

Squires et al., 2000) and its expression and localisation on the periphery of MIN6 

cells that are configured in monolayers was confirmed by Hills et al. (2012b) using 

whole-cell Western blot analysis. In addition it was shown that activation of the re-

ceptor increases the expression of E-cadherin at the surface of the cell. E-cadherin 

is a connective partner inside the AJ that facilitates cell-to-cell coupling and commu-

nication via signal transduction within the cell. One main concern when studying cell-

to-cell adhesion is the difficulty to control the expressions of the adhesion proteins, 

due to the inhomogeneous nature of the sample resulting in complex molecular in-

teraction between the cells (Zhang et al., 2002).  For that reason, expression of E-

cadherin on MIN6 cells had to be confirmed prior conduction of  the experiments.  

The distribution and localisation of the adhesion molecule to the membrane and cy-

tosol was confirmed using immunocytochemistry (Hills et al., 2012b). Detection of 

CaSR and E-cadherin confirms that the cell line is an appropriate model for investi-

gating CaSR-evoked changes in β-cell-to-β-cell adhesion. In addition E-cadherins 

along with a-catenins and β- catenins are forming the adherens junction that con-

nects the extracellular domain with the intracellular and acts as a 'hub' for down-

stream biological signalling. Therefore, chemical modification of the E-cadherin 

should have an impact in the intracellular domain as well, resulting in cytoskeletal 

reorganisation. In this study we have used AFM-SCFS to detect changes in func-

tional tethering between two individual β cells. The results suggest that the activation 

of the receptor improves β-cell function by increasing cell adhesiveness through en-

hanced expression of E- cadherin. Ligation of E-cadherin to a partner protein on an 
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adjacent cell, stimulates other down-stream cytoskeletal-binding proteins including 

the phosphoinositide 3-kinase PI3K (Vaezi et al., 2002).  Hence, CaSR activation 

could affect the intracellular domain via PI3K-dependent cytoskeletal reorganisation 

(Hills et al., 2012b). In this study, the changes in the elastic modulus upon activation 

of CaSR that reflect changes in the cytoplasmic domain have been detected. More-

over, for indentation depths at approximately 10% of the cell height it is suggested 

that the cytoskeleton is the main element of the cell that contributes to elasticity 

(Vinckier & Semenza, 1998; Leporatti et al., 2006). The average calculated value of 

E for the control cells is 503 Pa while for the treated cells is 331 Pa, indicating that 

the calcimimetic R568 (1μΜ) decreased the elastic modulus by 34%, hence resulting 

in higher elastic deformations during the separation process in cell-to-cell adhesion. 

 

Although that the CaSR is a receptor involved in the control of Ca2+ levels in the 

blood stream, it has been suggested that there is an interplay between in CaSR and 

insulin release in the human pancreatic β-cells (Squires et al., 2000). Combined with 

the fact that the calcimimetic R568 stimulates release of insulin from MIN6 pseu-

doislets (Gray et al., 2006) and that R568 activate CaSR by increasing the affinity of 

the receptor for Ca2+, then the role of the receptor as a mediator for an improved islet 

function was confirmed by the adhesion measurements between β cells. This is in 

agreement with Tu et al. (2008) who suggested that inactivation of the CaSR inhibits 

E-cadherin mediated cell-to-cell adhesion. The cell-to-cell adhesion results reported 

in this study provided quantitative data of the functional adhesion between β cells, by 

confirming that activation of the receptor in MIN6 cells increased E-cadherin medi-

ated adhesion, thus suggesting a mechanism that underlies improved β-cell function 

via increased adhesion and coupling. In conclusion, the β-cell-to-β-cell adhesion 
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data along with the study of Rogers et al. (2007) suggest that enhanced adhesion 

results in improved secretion response.  

 

3.3 Effects of CaSR Activation on Single Cell Elasticity 

MIN6 cells were treated for 48h in low extracellular calcium (0.5mM) +/- the receptor 

specific calcimimetic R568 (1μM). The calcimimetic activates the CaSR, which in-

creases the E-cadherin expression on the extracellular domain whist in the intracellu-

lar domain the trans-membrane protein binds to the actin cytoskeleton via the caten-

ins (Hills et al., 2012b). In order to relate the changes of cell deformation to E-

cadherin mediated functional adhesion measurements, single cell indentation was 

used to characterise cell elasticity. A spherical microbead of 10μm in diameter was 

attached into the end of a modified arrow cantilever and subsequently indented a 

single cell, according to a predetermined indentation depth based on cell height. In 

Figure 3.7 optical images showing a single cell force spectroscopy experiment for 

single cell elasticity are presented. In (a), the control group (0.5mM Ca2+) is shown, 

while in (b) the treated sample (0.5mM Ca2+ +R568) is shown. As mentioned earlier 

cells that resemble a cobblestone morphology residing within a cluster of cells were 

tested. 

 

                                        (a)                                                   (b) 
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Figure 3.7 Phase microscopy image showing a β cell indentation experiment. The 

cantilever was modified using a 10μm polystyrene microbead probe to enable inden-

tation of a single substrate cell (within a cluster of cells), while force versus dis-

placement were measured simultaneously. In (a), an optical image showing MIN6 

cells incubated for 48h in 0.5mM Ca2+ (Control) while in (b) cells were incubated in 

0.5mM Ca2+ +R568. 

Prior indentation of each cell, the height of the sample was determined as described 

earlier. Therefore the indentation depth was customised for individual cells according 

to their height. Although this methodology was found to be more time consuming in 

comparison with the force indentation method, the fact that sample height was 

known aided in the robust determination of E modulus, since substrate effects were 

minimised. Five F-d curves were performed on each cell under examination with 60 

sec intervals between successive measurements. The speed was maintained con-

stant at 5μm/sec throughout the experiments. Approximately 8-10 cells were tested 

for each cultured petri dish and extension curves from multiple experiments were 

analysed for the calculation of elasticity. The total number of cells that were used for 

analysis for each treatment is shown in Table 3.4. 

 

Table 3.4 A table showing the number of tested MIN6 cells and extension curves ob-

tained in AFM-FS indentation that were either processed or rejected. A total of 157 

extension F-d curves from 31 Ca2+ cells were analysed, while a total of 162 exten-

sion curves of 32 cells treated with +R568 cells were analysed.  
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MIN6 cells indentation measurements 

n=3 Ca2+
 Ca2+ +R568 

Total No of Cells 32 33 

No of accepted cells 31 32 

Processed curves 157 162 

Discarded curves 3 3 

 

 
Extension F-d curves provide important information regarding the elastic properties 

of a sample. E modulus is most commonly extracted by fitting the Hertz model for 

spherical beads (Vinckier & Semenza, 1998). As the cantilever is moving down-

wards, it reaches a point where the microbead is in contact with the plasma mem-

brane and the cantilever is deflected upwards, resulting in the positive force values. 

Since the displacement positions of the substrate and the plasma membrane were 

predetermined, the depth of indentation was fixed before testing and was readjusted 

every time before testing each cell. Figure 3.8 shows the extension F-d curve of a 

cell with height of 4.5μm acquired from an AFM indentation measurement. Figure 

3.8(a) shows the F-d extension curve of a Ca2+ cell and the elasticity values as de-

termined using the Hertz model. The contact point for fitting the data to the specific 

curve was approximately at 0.1nN, which is almost 450nm after the initial upwards 

deflection of the cantilever as determined by the software of the AFM system. How-

ever, by fitting the model into parts of the curve with displacement ranges less than 

10% of the cell height, the contact point was thoroughly investigated during the proc-

essing of the data and decided with correspondence to increases in E modulus. Fig-

ure 3.8(b) shows the F-d extension curve of a Ca2+ +R568 cell and the elasticity val-

ues as determined using the Hertz model and with the aid of incremental displace-
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ment fitting. The height of the tested cell was 4.5μm, the contact point was at 0.1nN, 

which is approximately 400nm after the initial deflection of the cantilever. The 

changes in E modulus value was obvious by the differences of the slope of the 

curve. Since at this moderate degree of indentation depth the effects of the various 

organelles of the cell are not introduced to the calculation of elasticity (Leporatti, 

2006), it is safe to assume that the differences in E modulus between control and 

+R568 treated cells are mainly contributed by changes in the cytoskeleton.   

 

(a) 

 

(b) 
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Figure 3.8 The effects of CaSR activation, followed by treatment with the calcimi-

metic R568, on E modulus as determined using AFM-FS indentation. For a cell of 

4.5μm in height the depth of indentation was 450nm. The contact point for each cell 

was identified by fitting various parts of the extension F-d curve with Hertz model. A 

contact point at approximately 0.1nN was used for the calculation of E modulus. The 

extension speed of 5μm/sec was remained constant throughout the experiments. (a) 

For control cells the E modulus was 512Pa, (b) following treatment with R568 E 

modulus was 297Pa. 

 

The histograms of E modulus obtained from the F-d curve measurements of control 

and +R568 treated cells are shown in Figure 3.9 (a) and (b) respectively. Since the 

data acquired from MIN6 AFM indentation experiments were normally distributed, t-

testing analysis was performed. Table 3.5 shows the descriptive statistics for the E 

modulus that was calculated from retraction F-d curves of MIN6 cells indentation. For 

the control cells, the E modulus had a mean of 503Pa and a standard error of 10.5. 

For the cells treated with R568, the E modulus had a mean of 327Pa and standard 

error of 9.29. The differences in E modulus between control and +R568 treated cells 

calculated from extension curves as analysed using paired samples t-test are shown 

in table 3.6. On average, Ca2++R568 cells showed to have lower E modulus 

(M=327.9924, SE=9.29) than Ca2+ cells (M=503.0382, SE=10.5). This difference 

was statistically significant (t(317)=12.53, p<0.001). Figure 3.10 shows the changes 

in elasticity between the two groups of cells, resulted from the processing and analy-

sis of than 150 curves for each treatment obtained from 3 separate AFM-FS indenta-

tion experiments. The results were analysed using paired samples t-test and the 

data are expressed as mean ± SEM. The data indicate that the calcimimetic R568 
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(1μΜ) decreased the elastic modulus by 34% (>30 cells, n=3, p<0.001) (Figure 

3.10),  suggesting that cells treated with the R568 became considerably softer.  

 

                               (a)                                                      (b)                   

Figure 3.9 Distribution of frequencies of E modulus (a) in Ca2+ cells and (b) in 

Ca2++R568. 

 

Table 3.5 Table presenting the descriptive statistics of the E modulus for the control 

cells and for the cells treated with R568. 

E modulus (Pa) Mean N Std. Deviation Std. Error Mean 

 

Ca2+ 503.0382 157 132.63424 10.58536 

Ca2++R568 326.9924 162 116.44312 9.29317 
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Table 3.6 Table presenting the differences in E modulus between control and +R568 

treated cells using paired wise t-test. 

Mean SD SE 95%CI t df Sig 

172.04 172.03 13.72 lower Upper 12.53 317 .000 

144.92 199.16 

 

 

 

Figure 3.10 The effects of the calcimimetic R568 (1μM) on the E modulus (de-

creased by 34%) of MIN6 cells. Data are expressed as mean ±SEM of more than 30 

cells from 3 separate experiments, where key significances are shown, ***p<0.001. 
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3.4 Effects of Pulling Speed on β-cell-to-β-cell Adhesion 

In order to assess the effects of cellular viscoelastic deformation on cell-to-cell adhe-

sion, SCFS retraction F-d curves were performed with incremental speed. The pa-

rameters of adhesion, such as contact force and time, were kept constant at 0.8nN 

and 5sec respectively. The cantilever was extended at constant speed of 5μm/sec 

and retracted at higher speeds, while retraction F-d curves were recorded for dis-

placements up to 100μm. Since the contact time was constant, no changes in the 

density of E-cadherin mediated ligation between incremental pulling speed meas-

urements were expected. The procedure was repeated three times for each cell un-

der examination at various speeds between 5-15μm/sec. A 30sec interval was pre-

ceded before each successive F-d measurement and a 60sec was preceded before 

measurements with different pulling speed. Considering that experiments were per-

formed using four different speeds, at least twelve F-d measurements were per-

formed in each cell. A single cell, attached on the end of the cantilever,  was used for 

testing up to 3 different substrate cells.    

 

The number of cells tested in SCFS adhesion experiment and the number of proc-

essed or rejected F-d curves for velocities higher than 5μm/sec is shown in table 3.7. 

Experiments with increased retraction pulling speed  was performed to a number of 

30 cells. The adhesion characteristics with pulling speed 5μm/sec is presented in the 

first section of this chapter. As the speed was increased many cells had to be re-

jected from further processing. In fact, more than half of the acquired curves were 

rejected, since the displacement range was insufficient to completely detach the two 

cells from each other as the speed was increased. Accurate determination of the 

point of complete separation is important for the processing of the retraction curves 
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and the calculation of adhesion characteristics.  As a consequence, measurements 

with speed 15μm/sec had to be rejected and maximal pulling speed in which analysis 

was performed was 12.5μm/sec.  

 

Table 3.7 A table showing the number of tested MIN6 cells and number of proc-

essed or rejected retraction F-d curves obtained by SCFS adhesion experiment with 

incremental retraction velocities. As shown, more than 1/2 of the curves of 10 and 

12.5μm/sec were rejected, while no cells at 15μm/sec were accepted for processing. 

 

MIN6 cells SCFS incremental speed retraction measurements 

n=3 Ca2+
 Ca2+ +R568 

Pulling Speed (μm/sec) 5 10 12.5 5 10 12.5 

Total No of Cells 48 30 30 45 30 30 

No of accepted cells 41 14 14 36 10 11 

Processed curves 102 41 40 108 29 32 

Discarded curves 42 49 50 57 61 58 

 

 

The effects of increasing pulling velocities to the retraction F-d curves of cells treated 

with +R568 are illustrated in Figure 3.11. Due to the soft nature of the cells, data 

were processed and analysed up to speed of 12.5μm/sec. As shown, the retraction 

curve of speed 15μm/sec of a Ca2+ +R568 cell exhibited large displacement pla-

teaus, corresponding to high cellular deformation, while less than 10 unbinding 

events occurred after the first 2.3μm of retraction, over the full range of displace-

ment. A significantly higher displacement range than 100μm was required for the 

complete separation of the cells in velocities higher than 12.5μm/sec. In fact, even at 
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pulling speed of 10μm/sec partial separation was observed, causing difficulties in the 

determination of the baseline for the calculation of adhesive parameters. In order to 

obtain correct values for maximum force work of detachment, in the instances of in-

complete separation the x-axis reference was determined using the baseline of the 

extension curve. Any drift of the extension curve would result in misleading values, 

ultimately leading to the rejection of a large number of data. Moreover, since more 

displacement range was required to completely detach the two cells, measurements 

of work of adhesion are actually higher than presented. However, even at the range 

of 100μm the changes in work of detachment are dramatic. 

 

Figure 3.11 Retraction F-d curves acquired by adhesion measurements of MIN6 

cells treated with +R568 with incremental pulling speed are shown. The effects of 

increasing pulling speed on adhesion characteristics are clearly shown. For speeds 

higher than 5μm/sec partial separation was observed. The levels of incomplete sepa-

ration were increasing with the increase of pulling speed resulting in the total  rejec-

tion of measurements with pulling speed of 15μm/sec due to the limitation of 100μm 

in displacement range.  
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Approximately 10 cells from 3 different experiments with increasing pulling speed 

were analysed and the data are expressed as mean ± SD. The results demonstrate 

a tenfold increase of the WD in comparison to the Fmax as the pulling speed in-

creases, up to the pulling distance of 100μm (Figure 3.12(a) & (b)). The decrease of 

number of TREs for a displacement range of 30μm after Fmax was two times higher 

for the cells treated with the calcimimetic in comparison to the untreated (Figure 

3.12(c)). This decrease on TREs does not reflect changes in the expression of E-

cadherin on the surface of the cell, since no chemical modification was applied in be-

tween measurements with increasing velocities. The decrease in the number of 

TREs in higher speeds than 5μm/sec, shows that the softer cell showed less unbind-

ing events, over the range of the first 30μm of pulling distance, due to its ability to 

deform further than the control cells.  

 

(a) 
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(b) 

 

(c) 

 

Figure 3.12 The effects of increasing pulling speed on the cell-to-cell adhesion pa-

rameters of MIN6 cells obtained by SCFS retraction F-d curves. Data are expressed 

as mean ± SD and the effects of increasing pulling speed on (a) maximum unbinding 

force, (b) work of detachment and (c) number of tethering rupture events are illus-

trated.  

 

The changes in elasticity of single cells upon CaSR activation together with the ad-

hesion results with incremental velocities suggest that elastic/viscoelastic deforma-

tion plays a key role in adhesion between β cells. Altering the pulling speed of the 
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coupled cells, affected dramatically the characteristics of the retraction F-d curves 

acquired by adhesion measurements. Work of detachment was mostly affected, re-

sulting in a tenfold increase when pulling speed was increased by a factor of 2, in 

comparison to the maximum unbinding force.  Surface protein binding affinity was 

responsible for the increase in maximum unbinding force, however the results sug-

gested that this was only partially responsible for the increase in work of detachment, 

which was dominated by the changes of the mechanical properties of the cell. An in-

crease in work of detachment could mirror changes in the compliance of cells, since 

it is partly contributed from the elastic deformation of an elastic sphere apart from the 

adhesion due to surface contact (Johnson & Greenwood, 1997). This is clearly dem-

onstrated in this study by the increase in E as well as by the dramatic increase of 

work of detachment when pulling speed was increased. The comparison between 

increasing pulling speeds also suggests that although the surface properties were 

significant for changes in maximum unbinding force, changes in the mechanical 

properties in response to cytoskeleton reorganisation rather than ligation binding af-

finity or surface density of E-cadherin, contribute to the dramatic changes of the work 

of detachment. Besides, the increase in Fmax  with an increased pulling speed could 

be contributed to the viscoelastic deformation of the surface proteins themselves and 

membrane tethers. Diz-Munoz et al. (2010) measured the dynamics of tethering 

force between the AFM tip and cell membrane, also concluding that the unbinding 

force increased as the pulling velocity increased. Both the adhesion and indentation 

measurements clearly suggest that the viscoelastic deformation has a significant in-

fluence on the adhesion energy between two adherent cells and that cytomechanics 

contribute to the E-cadherin mediated adhesion in system under investigation.      
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3.6 Conclusion 

The endocrine pancreatic islet is mainly constituting by β-cells that represent almost 

60-70% of the islet. The aim of this study was to make use of an in vitro cell model 

that resembles the β-cell structure and function. MIN6 cells preserve physiological 

glucose-responsiveness and have been used in studies aiming to investigate the 

maintenance of insulin secretion (Hauge-Evans et al., 1999; Kelly et al., 2010; Skelin 

et al., 2010). In addition, the use of a simplified cell line, such as the MIN6, had the 

advantage that homotypic interactions between the cells were ensured (Miyazaki et 

al., 1990, Persaud, 1999). Hence, the study of β-cell-to-β-cell coupling by quantita-

tively determining their functional adhesiveness using AFM was facilitated.  

 

In the current study the effects of whole cell elasticity under the influence of the cal-

cimimetic R568 in the MIN6 clonal β-cell line were investigated. In addition, quantita-

tive evidence that the mechanical properties of single cells have an effect on cell-to-

cell interaction has been provided. Activation of CaSR increased the expression of 

the surface adhesion protein E-cadherin (Hills et al., 2012b), whilst affected on the 

intracellular domain of the protein by increasing the elasticity of the cell. The 

changes in the inner mechanical properties of the cells had a strong effect on cell-to-

cell adhesion energy, mainly due to viscoelastic deformation of the cells during the 

pulling process. As a consequence, adhesion parameters were altered not only due 

to biomolecular changes in cell surface expression of E-cadherin, as previously re-

ported, but also due to changes in the biomechanical properties of the cells. There-

fore, in improving beta cell function, activation of CaSR not only increases E-

cadherin expression and cell-to-cell adhesiveness but it also initiates and/or modu-
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lates intracellular signalling of the F-actin cytoskeleton via the catenins. The net re-

sult is a change in the mechanistic behaviour of whole cell. 
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4. Nanomechanical Characterisation of Renal Proximal Tu-

bule HK2 Cell-to-Cell Adhesion 

 
4.1 Introduction 

In this chapter, a force spectroscopy study of  HK2 cells cultured in monolayers upon 

treatment with TGF-β1(10ng/ml) is presented. TGF-β1 mediates early epithelial-to-

mesenchymal (EMT) transitions resulting in the excessive concentration of fibrotic 

material in the renal proximal tubule in diabetic nephropathy (Hills et al., 2012a). The 

aim of this study is to investigate the impact of TGF-β1-mediated EMT  in cellular 

communication through functional cell-to-cell coupling. Figure 4.1(a) shows healthy 

(control) HK2 cells grown in a low glucose media (5mM). Under control non-

stimulated conditions, control HK2 cells exhibited typical cobblestone morphology 

consistent with tubular epithelia. For consistency all F-d measurements were per-

formed on cells that resemble this morphology. Testing was performed  above the 

central region of the cell, which corresponds to the area where the nucleus resides. 

Figure 4.1(b) shows that the pro-fibrotic cytokine TGF-β1 (48h, 10ng/ml) altered the 

architecture of the cells and produced an elongated, fibroblast-like phenotype, which 

is a characteristic of TGF-β1 induced tubular damage and ΕΜΤ. The elongated 

shape of the treated cells was used as a sign during the AFM experiments that the 

transformation occurred. As the β-cell experiments, all F-d measurements were per-

formed directly above the nucleus.  
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                                     (a)                                                    (b) 

Figure 4.1 Phase microscopy showing cell morphology of (a) healthy (control) cells 

and (b) cells treated with TGF-β1 (48h, 10ng/ml). It is clear that TGF-β1 evoked 

changes in cell morphology, resulting in translucent elongated cells that exhibited 

clear demarcation between neighbouring cells.  

 

4.2 Effects of TGF-β1 on Functional Cell-to-Cell Adhesion 

HK2 cells were treated for 48h in low glucose media (5mM) ± the TGF-β1 (10ng/ml). 

Treatment of control cells with the cytokine decreases expression of E-cadherin 

(Hills et al., 2012a). In order to relate the changes in the surface expression of E-

cadherin to functional cell-to-cell tethering, SCFS was used to quantify cell-to-cell 

adhesion parameters, such as the forces required for the complete detachment of 

coupled cells. A single HK2 cell was attached at the end of a functionalised arrow 

cantilever and subsequently brought in contact with a single substrate cell within a 

cluster of coupled cells. Figure 4.2 shows optical images of the cantilever-cell system 

prior conducting adhesion measurements on single cells on the substrate. In (a), the 

control cells are shown, while in (b), the cells treated with TGF-β1 are shown. The 

morphological differences in favour of a fibroblast phenotype were clear during ex-

periments. 
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                            (a)                                                   (b) 

Figure 4.2 Phase microscopy images showing a HK2 cell-to-cell experiment. In (a), 

HK2 cells incubated for 48h in low glucose media (control). The suspended cell was 

attached on the functionalised cantilever and then was brought in contact with a sin-

gle substrate cell (within a cluster of cells) for 10 secs, while force versus displace-

ment was measured simultaneously. In (b), HK2 cells incubated with TGF-β1 for 48 

hours in low glucose media. Note that the substrate cells were elongated and were 

not organised in clusters. 

 

A few set of measurements were performed to select the parameters prior adhesion 

measurements. As with the β-cells, the main criterion for determining the parameters 

was the displacement range of complete separation. The point of complete separa-

tion acts as a reference for the calculation of adhesion parameters. The experimental 

specifications had to allow complete detachment of the cells within the displacement 

range of the piezo actuator of the AFM. A fixed set-point force of 1.0nN was used for 

the probe cell to touch the substrate cell, while the contact time for ligation binding 

was 10sec. The cantilever was retracted at a constant speed of 5μm/sec and retrac-

tion F-d curves were recorded until the two cells were completely detached from 

each other. The procedure was repeated three times for each cell under investiga-
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tion, with 30 sec intervals between each successive measurement. The attached cell 

was used to perform measurements on approximately 10 cells per cultured petri 

dish. 

 

Retraction curves acquired from multiple HK2 cell-to-cell adhesion measurements 

were analysed in order to assess changes in functional tethering after chemical 

treatment with the cytokine. Altering the E-cadherin protein expression does not in-

evitably leads to changes in the functional adhesiveness of the cells. Therefore, by 

using identical SCFS experimental conditions in more than 40 cells from separate 

experiments (n=5),  the function of the adhesion molecule was investigated. The 

number of cells that were used for analysis for each treatment is shown in Table 4.1. 

There is a noticeable number of retraction curves that have been discarded from fur-

ther processing, mainly due to moving particles in the cultured media or environ-

mental noise. As mentioned in section 3.2, the introduction of suspended cells into 

the dish under examination results in disturbances in the recording of F-d curves.    

 

Table 4.1 A table showing the number of tested HK2 cells and retraction curves ob-

tained from SCFS that were either processed or rejected. A total of 102 retraction 

measurements from 43 control cells were analysed, while a total of 130 retraction 

curves from 44 TGF-β1 treated cells were analysed. Approximately 1/3 of the curves 

were rejected due to disturbances when recording a retraction F-d curve. 

 

HK2 cells SCFS retraction measurements 

n=5 Ca2+
 Ca2+ +R568 

Total No of Cells 47 53 



Chapter 4 
 

132 
 

No of accepted cells 43 44 

Processed curves 102 130 

Discarded curves 39 29 

 

 

Retraction F-d curves provided important information regarding the adhesion pa-

rameters between two cells. Functional changes in the expression of a protein under 

investigation in the surface of the cell were uncovered by the detection of the maxi-

mum unbinding force and the number of tether rupture events. Moreover, adhesion 

parameters such as work or distance to complete detachment, provided information 

regarding the contribution of cellular deformation on cell-to-cell adhesion that is me-

diated by surface ligation. Complete separation between the probe and the substrate 

cell, under the 5μm/sec speed, was achieved by using an effective retraction range 

of at least 80μm. The retraction curves of Figure 4.3 illustrate the effects of TGF-β1 

treatment on adhesion parameters of HK2 cells. 

 

(a) 
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(b) 

Figure 4.3 The effects of the cytokine TGF-β1 on E-cadherin mediated cell-to-cell 

adhesion of HK2 cells were examined using AFM-SCFS. Fmax is the difference be-

tween the minimum force value and the point of complete detachment, WD (grey re-

gion) is the integral of the continuous area under the baseline of complete separation 

and ds is the difference between Fmax and the point of complete separation. A set-

point force of 1.0nN,a contact time of 10sec and a pulling speed of 5μm/sec were 

remained constant throughout the experiments. Alterations of adhesion parameters 

such as Fmax, WD and ds provide an important insight about functional cell-to-cell ad-

hesion. In (a) Fmax is 0.9nN, WD is 8.6fJoule and ds is 61.7μm  while in (b) Fmax is 

0.68nN, WD is 2.7fJoule and ds is 28.2μm. 

 

Changes in the expression of E-cadherin upon treatment of HK2 cells with TGF-β1 

were detected by calculating the number of unbinding events during the retraction 

process. The retraction F-d curves of figure 4.4 illustrate the number of rupture teth-

ers as detected by the step fitting function of the software used for  data processing. 
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Treatment with TGF-β1 decreased the TREs, corresponding to a decrease in the ex-

pression of the E-cadherin protein at the surface of the cell, which is in agreement 

with Hills et al. (2012a). In Figure 4.4(a) a retraction F-d curve of a healthy HK2 cell 

is shown. Sharp steps of force that are not preceded by a displacement plateau ('j' 

events) occurred in the first 4.15μm of the pulling range. As the distance of separa-

tion increased, a point was reached where both 'j' and 't' events occurred, indicating 

the initiation of cellular deformations. As the distance of separation was increased 

further, extended displacement plateaus were observed (noted with the arrows), as a 

result of the deformation of the cell. In Figure 4.4(b) a retraction F-d curve of a HK2 

treated with TGF-β1 is shown. Type 'j' events occurred in the first 3.85μm of the pull-

ing range, while the number of events that were preceded by a displacement pla-

teau, due to cell deformation, was decreased. Therefore, cells treated with the cyto-

kine became more rigid, as also indicated by the decrease in distance of complete 

detachment. 

 

(a) 
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(b) 

Figure 4.4 Retraction force-distance curves obtained by HK2 cell-to-cell adhesion 

measurements, showing the effects of TGF-β1 on the tether rupture events. Unbind-

ing of ligations that occur during the early pulling phase (approximately 5μm after the 

minimum force value) are preceded by a force ramp ('j' events). As the pulling dis-

tance increases an area is reached where the rupture events are preceded by a dis-

placement plateau as well ('t' events) due to the deformation of the cell. In (a) the 

number of TREs is 73, whilst most of the unbinding events occurred in the first 

8.2μm of pulling range, corresponding to the area of 'j' and mixed 'j' and 't' events. 

After that point and until the complete detachment of the cells extended separation 

displacements occurred ('t' events), owing to the deformation of the cell. In (b) the 

number of TREs is 51, whilst most of the unbinding events occurred in the first 

3.85μm, and were not preceded by a displacement plateau. 
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The histograms of maximum unbinding force and work of detachment obtained from 

the F-d curve measurements of control HK2 cells are shown in Figure 4.5. Overall 

the data acquired from HK2 cell-to-cell adhesion experiments were normally distrib-

uted, suggesting that the assumption for performing t-test has been satisfied. Table 

4.2 shows the descriptive statistics for the various adhesion parameters that were 

extracted from the retraction F-d curves. The maximum unbinding force (nN) of HK2 

control cells had a mean of 0.74 and a standard error of 0.026, whereas the TGF-β1 

had a mean of 0.60 and a standard error of 0.029 (Table 4.2(a)). The work of de-

tachment (fJoule) for the control cell had a mean value of 7.82 and standards error of 

0.40, while for the cells treated with the cytokine had a mean of 3.68 and a standard 

error of 0.29 (Table 4.2(b)). The number of tether rupture events for the control cells 

had a mean value of 64.2 and a standard error of 0.77, whereas for the treated cells 

had a mean of 41.71 and a standard error of 0.95 (Table 4.2(c)). Finally, the distance 

of separation (μm) for the control cells had a mean of 62.15 and standard error of 

0.89, while for the TGF-β1 had a mean value of 33.1 and standard error of 0.59 (Ta-

ble 4.2(d)). 
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                                   (a)                                                                 (b) 

 

Figure 4.5 (a) Distribution of frequencies of maximum unbinding forces and (b) dis-

tribution of frequencies of work of detachment. 

 

Table 4.2 Table presenting descriptive statistics for the adhesion parameters, (a) of 

maximum unbinding force for the control and for the TGF-β1 treated cells, (b) of work 

detachment for the control and for the TGF-β1 treated cells, (c) of tether rupture 

events for the control and for the TGF-β1 treated cells and (d) of distance separation 

for the control and for the TGF-β1 treated cells. 

 

Fmax(nN) Mean N Std. Deviation Std. Error Mean 

 

Control 0.7443 102 0.26728 0.02646 

TGF-β1 (10ng/ml) 0.6022 130 0.29292 0.02900 

 

(a) 
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Wd (fJoule) Mean N Std. Deviation Std. Error Mean 

 

Control 7.8168 102 4.11457 0.40740 

TGF-β1 (10ng/ml) 3.6764 130 3.00391 0.29743 

 

(b) 

 

 No of TREs Mean N Std. Deviation Std. Error Mean 

 

Control 64.2029 102 6.36530 0.76629 

TGF-β1 (10ng/ml) 41.7101 130 7.94485 0.95645 

 

(c) 

 

ds (μm) Mean N Std. Deviation Std. Error Mean 

 

Control 62.1532 102 7.89409 0.88815 

TGF-β1 (10ng/ml) 33.0949 130 5.28020 0.59407 

 

(d) 

 
 

The differences between control and TGF-β1 treated cells for the various adhesion 

parameters obtained from retraction curves were analysed using paired samples t-

test and are presented shown in table 4.3. The t-test results showed that for all the 

measured adhesion parameters, the probability was very low, indicating that the 

there is only 0% probability that the null hypothesis of equal means was true. Thus, it 

is concluded that the control cells had higher unbinding force (nN) (M=0.74, 
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SE=0.026) than the TGF-β1 cells (M=0.60, SE=0.029) and that difference was statis-

tical significant t(230)=5.722, p<0.001 (Table 4.3(a)). Similarly, the control cells had 

higher work of detachment (fJoule)  (M=7.82, SE=0.407) than the TGF-β1 cells 

(M=3.67, SE=.029), and that difference was statistical significant t(230)=7.709, 

p<0.001 (Table 4.3(b)). Furthermore, the results showed that the control cells had 

higher number of unbinding events (M=64.2, SE=0.766) than the TGF-β1 (M=41.71, 

SE=0.95), and that difference was statistical significant t(230)=19.28, p<0.001 (Table 

4.3(c)). Finally, the control cells had higher separation distance (μm) (M=62.15, 

SE=0.88) than the TGF-β1 cells (M=33.1, SE=0.59) and that difference was statisti-

cal significant t(230)=28.5, p<0.001 (Table 4.3(d)).  

 

Table 4.3 Table presenting the differences between control and TGF-β1 treated cells 

using paired wise t-test, (a) of the maximum unbinding force between control and 

TGF-β1 cells, (b) of work detachment between the control and TGF-β1 cells, (c) of the 

number of tether rupture events between the control and TGF-β1 cells and (d) of the 

distance of separation between control and TGF-β1 cells.  

 

Mean SD SE 95%CI t df Sig 

0.142 0.405 0.040 lower Upper 5.722 230 0.000 

0.1499 0.3090 

 

(a) 
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Mean SD SE 95%CI t df Sig 

4.1404 5.55 0.55009 lower Upper 7.709 230 0.000 

3.14 5.33 

 

(b) 

 

Mean SD SE 95%CI t df Sig 

22.49 9.62 1.16 lower Upper 19.28 230 0.000 

20.16 24.82 

 

(c) 

 

Mean SD SE 95%CI t df Sig 

29.05 9.05 1.019 lower Upper 28.514 230 0.000 

27.02 31.08 

 

(d) 

 

More than 100 curves from 5 separate experiments were analysed and the data are 

expressed as mean ± SEM in Figure 4.6. The results indicate that TGF-β1 induced 

changes decreased the number of tether rupture events by 35%, resulting in an de-

crease of the maximum unbinding force by 19%. However, the work or energy of de-
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tachment was decreased more significantly by 53%, consistent with a reduction of 

46% in distance of separation (>30 cells, n=5, p<0.001) (Figure 4.6(a)-(d)).  

 

                                         (a)                                                       (b) 

 

 

                                         (c)                                                           (d) 

Figure 4.6 The effects of the cytokine TGF-β1(48h/10ng/ml) on (a) the maximum unbinding 

force (decreased by 19%), (b) the number of tethering rupture events (decreased by35%), 

(c) the work of detachment (decreased by 53%) and (d) the distance to complete separation 

(decreased by 46%) are shown. Data are expressed as mean ±SEM of more than 40 cells 

from 5 separate experiments, where key significances are shown, ***p<0.001. 
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The role of the TGF-β1 is significant in proximal tubule diseases where the changes 

in the epithelial characteristics are associated with disassembly of the adherens 

junction. E-cadherin together with the catenins aids in maintaining the epithelial 

characteristics in normal conditions by forming gap junctions to facilitate communica-

tion between cells. In addition, E-cadherin is the most well characterised adhesion 

protein that mediates epithelial cell-to-cell adhesion (Perez-Moreno et al., 2003; Hills 

et al., 2012a). In this study the effects of TGF-β1 on E-cadherin mediated cell-to-cell 

adhesion in renal proximal tubule HK2 cells were quantified using AFM-SCFS. Since 

HK2 cells maintain the functional characteristics of the proximal tubular epithelium, 

this cell line was ideal for studying the loss of epithelial characteristics that occur in 

the early EMT in diabetic nephropathy. In this study the effects of TGF-β1 induced 

EMT in the communication between cells through cell-to-cell adhesion have been 

investigated. The results showed that the cytokine decreased E-cadherin mediated 

functional tethering between two adherent HK2 cells. A main concern when studying 

cell-to-cell adhesion is the difficulty to control the expressions of the adhesion pro-

teins at the surface of the cell. This is due to the heterogeneous nature of the sample 

resulting in some complex molecular interaction between the cells. One method to 

overcome this by examining the frequency of adhesion events from the F-d retraction 

curves of each group under chemical treatment was suggested by Zhang et al. 

(2002). In this research project the localisation of specific protein binding as well as 

the distribution of the candidate protein was assessed prior conducting SCFS by 

immunoblotting and immunocytochemistry respectively (Hills et al., 2012a). Never-

theless, by altering the expression of a candidate protein does not absolutely indi-

cate that the function of the cell will respond. Changes in the functional cell-to-cell 

adhesion were signified by SCFS, showing that TGF-β1 evoked reduction of E-
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cadherin decreased functional tethering between treated cells. The frequency of 

specific binding events was confirmed by the retraction F-d curves showing a reduc-

tion in the number of TREs at the surface of the cells after TGF-β1 treatment.    

 

4.3 Effects of TGF-β on Single Cell Elasticity 

HK2 cells were treated for 48h in low glucose media (5mM) ± the TGF-β1 (10ng/ml). 

Treatment of control cells with the cytokine decreases expression of E-cadherin 

(Hills et al. 2012a), which in the extracellular domain mediates ligation with adherent 

cells and in the intracellular domain is linked with actin cytoskeleton via the catenins. 

In order to investigate the role of the CSK in the E-cadherin mediated functional ad-

hesion measurements, single cell indentation was used to characterise cell elasticity. 

A spherical microbead of 10μm in diameter was attached at the end of a modified 

arrow cantilever and subsequently indented a single cell, according to a predeter-

mined indentation depth based on cell height. Figure 4.7 presents optical microscopy 

images of a single cell force spectroscopy experiment for determining cell elasticity. 

In (a), normal HK2 cells are shown (control group), while in (b) cells treated with the 

cytokine TGF-β1 are shown. The morphological differences in favour of a fibroblast 

phenotype were clear during experiments. For the control group, cells that resemble 

a cobblestone morphology that reside within a cluster of cells were selected for test-

ing. For the treated group cells that exhibit an elongated morphology were selected 

for testing. All measurements were performed in the area directly above the nucleus. 
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                           (a)                                                              (b) 

Figure 4.7 Phase microscopy images showing HK2 cells indentation experiment. 

The cantilever was modified using a 10μm polystyrene microbead probe to enable 

indentation of a single substrate cell (within a cluster of cells for control group). In (a), 

an optical image showing normal HK2 cells (control) while in (b) cells that were 

treated for 48h with TGF-β1 are shown. 

 

Prior indentation of each cell, the height of the sample was determined as described 

earlier. Therefore the indentation depth was customised for individual cells according 

to their height. Although this methodology was found to be more time consuming in 

comparison with the force indentation method, the fact that sample height was 

known aided in minimising the effects of the hard substrate in the calculation of E 

modulus. Five F-d curves were performed on each cell under examination with 60 

sec intervals between successive measurements. The speed was maintained con-

stant at 5μm/sec throughout the experiments. Approximately 8-10 cells were tested 

for each cultured petri dish and extension curves from multiple experiments were 

analysed for calculating single cell elasticity. The total number of cells that were used 

for analysis for each treatment is shown in Table 4.4.  
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Table 4.4 The number of HK2 cells used for the calculation of E modulus and exten-

sion curves obtained in AFM-FS indentation that were either processed or rejected. 

A total number of 264 extension F-d curves acquired from 53 control cells were ana-

lysed, while a total of 181 extension F-d curves out of 37 cells treated with the cyto-

kine cells were analysed.  

 

HK2 cells indentation measurements 

n=5 Control TGF-β1 

Total No of Cells 53 37 

No of accepted cells 53 37 

Processed curves 264 181 

Discarded curves 1 4 

 

 
Extension F-d curves provide important information regarding the elastic properties 

of a sample. E modulus is most commonly extracted by fitting the Hertz model for 

spherical beads (Vinckier & Semenza, 1998). As the cantilever is moving down-

wards, it reaches a point where the microbead is in contact with the plasma mem-

brane and the cantilever is deflected upwards, resulting in the positive force values. 

Since the displacement positions of the substrate and the plasma membrane were 

determined for each single cell prior testing, the depth of indentation was tailored for 

each cell under investigation. 
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(a) 

 

(b) 

Figure 4.8 The effects of TGF-β1 treatment on E modulus as determined by the ex-

tension F-d curves acquired using AFM-FS indentation. 
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The histograms of E modulus derived from the processing of the extension part of 

the F-d indentation curves for control and TGF-β1 treated cells are shown in Figure 

4.9 (a) and (b) respectively. Table 4.5 shows the descriptive statistics for the E 

modulus that was calculated from the retraction F-d curves of HK2 cells indentation. 

For the control cells, the E modulus (Pa) had a mean of 320 and a standard error of 

16.58. For the cells treated with R568, the E modulus (Pa) had a mean of 549 and 

standard error of 20.61. The differences in E modulus between control and TGF-β1 

treated cells calculated from extension curves as analysed using paired samples t-test 

are shown in table 4.6. Although that the histogram for the control cells is not totally 

bell-shaped, the mean values of E modulus for each treatment were considerably 

different. The student's t-test results showed that the probability value in the column 

Sig. was very low indicating that the there is only 0% probability that the null hy-

pothesis of equal means was true. Treated cells had higher elasticity (M=549Pa, 

SE=20.61) than the control cells (M=320Pa, SE=16.58) and that difference was sta-

tistically significant (t(443)=9.55, p<0.001) 
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                                    (a)                                                   (b) 

Figure 4.9 Histograms of control cells showing distribution of frequencies of E 

modulus (a) in control cells and (b) in TGF-β1 treated cells. 

 

Table 4.5 Table presenting the descriptive statistics of the E modulus for the control 

cells and for the cells treated with TGF-β1. 

E modulus (Pa) Mean N Std. Deviation Std. Error Mean 

 

Control 319.5519 264 221.79356 16.57763 

TGF-β1 (10ng/ml) 549.1932 181 275.71449 20.60787 
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Table 4.6 Table presenting the differences in E modulus between control and TGF-

β1 treated cells using paired wise t-test. 

 

Paired Differences 

t df Sig. Mean SD SE 95% CI 

Lower Upper 

229.64 336.94 25.18 290.33 190.93 9.555 443 .000 

 

 
Figure 4.10 shows the changes in elasticity between the two groups of cells, resulted 

from the processing and analysis of than 150 curves for each treatment obtained 

from 5 separate AFM-FS indentation experiments. The results were analysed using 

paired samples t-test and the data are expressed as mean ± SEM. The data indicate 

that the TGF-β1 (10ng/ml) increased the elastic modulus by 71% (>30 cells, n=5, 

p<0.001) (Figure 4.10),  suggesting that cells treated with the cytokine became con-

siderably more rigid. 

 

 

Figure 4.10 The effects of the cytokine TGF-β1 (10ng/ml) on the E modulus of HK2 

cells. Treated cells showed an increase of 71% compared to the untreated group. 
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Data are expressed as mean ±SEM of more than 30 cells from 3 separate experi-

ments, where key significances are shown, ***p<0.001. 

 

As illustrated at Figure 4.1 the pro-fibrotic cytokine TGF-β1 (48h; 10ng/ml) altered 

the architecture of normal HK2 cells and produced an elongated, fibroblast-like phe-

notype, characteristic of TGF-β1 induced tubular damage and epithelial-to-

mesenchymal transition (Figure 4.1(a)). Using tetramethylrhodamine (TRITC)-

conjugated phalloidin to detect filamentous actin, these morphological changes were 

found to be associated with reorganization of the cytoskeleton into peripheral stress 

fibres. Since, changes of E modulus are considered to be associated with changes 

of the cytoskeleton,  the changes in elastic response of the treated cells due to the 

distribution of the cytoskeleton into the periphery of the cell as illustrated in figure 

4.11(b), seemed reasonably secure (Radmacher et al., 1996). 

 

 

                                (a)                                               (b) 

Figure 4.11 Fluorescence microscopy images showing the effects of TGF-β1 on 

both cell morphology and cytoskeletal reorganisation. The changes in the arrange-

ment of the cytoskeleton (red) mainly affected the cell architecture. The nucleus of 
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each cell is shown in purple. In (a), normal cells are shown that were grown in low 

glucose (5mM) alone, while in (b) cell treated with TGF-β1 (10ng/ml) are shown. 

 

Cell adhesion is a complex process that is regulated by the involvement of the cy-

toskeleton and a number of surface receptors.  In order to assess the effects of CSK 

reorganisation to cell adhesion, single cell indentation was performed for indentation 

depths up to 10% of the cell height. At this moderate degree of indentation changes 

in elasticity are considered to be manifested by the changes in CSK rearrangement 

(Radmacher et al., 1996; Leporatti et al., 2006). In addition E-cadherins along with a-

catenins and β- catenins are forming the adherens junction, by which the extracellu-

lar domain connects with the intracellular, and is mainly responsible for the down-

stream of biological signals. As a consequence, chemical modification of the E-

cadherin protein had an impact in the intracellular domain as well, resulting in cy-

toskeletal reorganisation through catenins (D'Souza-Schorey, 2005). The morpho-

logical changes in the TGF-β1 cells were associated with the remodelling of the cy-

toskeleton at the periphery of the cell forming a thick layer of actin filament. This 

phenomena was also observed in other epithelial systems (Ivanov et al., 2005). In 

our study the changes of the cytoskeletal structure were manifested by alterations in 

gross cell morphology. Changes in cell architecture in diseased states of cells, by 

CSK reorganisation, compared with single cell mechanics were also reported by Li e 

al. (2008). In their study, changes in E modulus of breast cancer cells were investi-

gated through AFM indentation, suggesting that changes in cell morphology were 

caused by the rearrangement of the CSK structure. This is in agreement with the 

current study regarding the effects of TGF-β1 on single cell elasticity. The average 

calculated value of E for the control cells was 320 Pa while for the treated cells was 
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549 Pa, indicating an raise of 71% that signifies a dramatic increase in cell rigidity 

upon treatment. This result combined with phase and fluorescence imaging of the 

cells demonstrates that changes in E modulus could be compared with changes in 

cell architecture, resulting from CSK rearrangement. Therefore, a potential structure-

mechanics-disease correlation is suggested during TGF-β1 induced EMT in diabetic 

nephropathy. 

 

Further, it is suggested that, apart from the surface molecular properties, deforma-

tion of the CSK influenced in cell-to-cell adhesion characterisation of HK2 cells. Re-

traction F-d curves confirmed that treatment of HK2 cells with TGF-β1 reduced the 

number of tethering rupture events by 35% resulting in the reduction of maximum 

unbinding force by 19% and in a notable decrease of work of detachment by 53%. 

The greater reduction in the work of detachment has been accompanied by a de-

crease in distance of separation by 46% and could be partly explained by the in-

crease in cell rigidity as manifested by the remarkable increase in E modulus poten-

tially due to CSK rearrangement into peripheral stress fibers upon treament with 

TGF-β1 (Hubchak et al., 2003). This may imply that the rise in the rigidity of the 

treated cells was due to localisation of the CSK in the outer region of the cytoplasm, 

since the increase of E modulus when filamentous actin is re-distributed on the pe-

riphery of the cell is observed in other epithelial systems (Li et al., 2008). In addition, 

Weder et al. (2009) reported that the increased E modulus of mitotic cells is related 

to a reorganisation of the CSK into peripheral stress fibers and suggested that in 

SCFS adhesion measurements, cytoskeletal components are inevitable deformed 

during the separation process. The measured work of detachment of the cells is 

therefore contributed partly from the work consumed due to cell deformation, apart 
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from the energy required to unbind the ligation bonding at the contact surface be-

tween the two cells. The coupling effects of E-cadherin mediated cell-to-cell adhe-

sion and CSK rearrangement in malignant states have been studied in various sys-

tems, for example, in epithelial and colorectal cancer metastasis (Cress et al., 2006; 

Buda et al., 2011). However, these studies are limited to qualitative data without 

considering the influences of the CSK deformation on the various adhesion parame-

ters. Recently, an AFM-SCFS approach was applied to study the molecular control-

ling cell migration linked to the cytomechanics underlying this process (Diz-Munoz et 

al., 2010). Their study showed that cytomechanics had profound influence on tether 

forming during the pulling or separation process of an AFM-tip binding with cell 

membrane. In addition, the viscoelasticity of membrane tether and its importance of 

cell adhesion was studied via using SCFS to measure their point of cell-to-surface 

bond breakage when retracting adherent cells from adhesive surface (Schmitz et al., 

2008).  Studies on the changes in cell-to-cell adhesion during mitosis using SCFS 

concluded that changes in the stiffness/deformation of cells, caused by CSK reor-

ganisation, during the pulling phase influenced the distance of separation between 

the cells and the displacement ranges at which unbinding events occurred (Weder et 

al., 2009).    

 

4.4 Effects of Pulling Speed on β-Cell-to-β-Cell Adhesion 

In order to assess the effects of cellular viscoelastic deformation on cell-to-cell adhe-

sion, SCFS retraction F-d curves were performed with incremental speed. The pa-

rameters of adhesion, such as contact force and time, were kept constant at 1nN 

and 10sec respectively. The cantilever was extended at constant speed of 5μm/sec 

and retracted at higher speeds, while retraction F-d curves were recorded for dis-
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placements up to 100μm. Since the contact time was constant, no changes in the 

density of E-cadherin mediated ligation between incremental pulling speed meas-

urements were expected. The procedure was repeated three times for each cell un-

der examination at various speeds between up to 12.5μm/sec. A 30sec interval was 

preceded before each successive F-d measurement and a 60sec was preceded be-

fore measurements with different pulling speed. Considering that experiments were 

performed using at least three different speeds, more than nine F-d measurements 

were performed in each cell.  For that reason, a single cell, attached on the end of 

the cantilever,  was used for testing up to 3-4 different substrate cells. The number of 

the cells tested with speed higher than 5μm/sec is presented in Table 4.7. 

 

Table 4.7 A table showing the number of tested ΗΚ2 cells and number of processed 

or rejected retraction F-d curves obtained by SCFS adhesion experiment with incre-

mental retraction velocities. As shown, for pulling velocities higher than 7.5μm/sec 

more than 2/3 of the curves were rejected, while for control cells no curves were ac-

cepted for processing after 10μm/sec. 

 

HK2 cells SCFS incremental speed retraction measurements 

n=3 Control TGF-β1 

Pulling Speed (μm/sec) 7.5 10 12.5 7.5 10 12.5 

Total No of Cells 30 30 15 24 24 15 

No of accepted cells 14 9 0 18 11 5 

Processed curves 42 27 0 54 32 14 

Discarded curves 48 63 0 18 58 31 

 



Chapter 4 
 

155 
 

 

The effects of increasing pulling velocities on the retraction F-d curves of control 

cells are illustrated in Figure 4.12, clearly demonstrating the viscoelastic nature of 

soft biological materials. This was also manifested by the incomplete separation of 

the cells at velocities higher than 5μm/sec, resulting to the complete rejection of the 

12.5μm/sec data  from further processing. As shown in the figure, the retraction 

curve for speeds higher than 5μm/sec exhibited large displacement plateaus, corre-

sponding to high cellular deformation. As a consequence a higher displacement 

range than 100μm was required for the complete separation of the cells in velocities 

higher than 5μm/sec. In fact, even at pulling speed of 7.5μm/sec partial separation 

was observed in a large number of data, causing difficulties in the determination of 

the baseline for the calculation of adhesive parameters. In order to obtain correct 

values for maximum unbinding force and work of detachment, in the instances of in-

complete separation the x-axis reference was determined using the baseline of the 

extension curve. However, even small drifts of the extension curve, due to environ-

mental noise or kinesis in the media, resulted in misleading values, ultimately leading 

to the rejection of a large number of data. Moreover, since a larger displacement 

range was required to completely detach the two cells, measurements of work of ad-

hesion are actually higher than presented. However, even at the range of 100μm the 

changes in work of detachment were dramatic.  
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Figure 4.12 Retraction F-d curves acquired by adhesion measurements of control 

HK2  cells with incremental pulling speed are shown. The effects of increasing pull-

ing speed on adhesion characteristics are clearly represented by the changes in the 

work of detachment. Further, for speeds higher than 5μm/sec partial separation was 

observed. The levels of incomplete separation were increasing with the increase of 

pulling speed resulting in the complete rejection of measurements with pulling speed 

higher than 10μm/sec due to the limitation of 100μm in displacement range.  

Approximately 10 cells from 3 different experiments were analysed and the data are 

expressed as mean ± SD. The results demonstrate a 6-fold increase of the WD in 

comparison to the Fmax as the pulling speed increases, up to the pulling distance of 

100μm (9-11 cells, n=3) (Figure 4.13 (a)-(b)). Figure 4.13 (c) shows the number of 

TREs for a displacement range of 5μm after the minimum value of force. The de-

creased number of TREs with increasing velocities, does not reflect changes in the 

expression of E-cadherin on the surface of the cell, since no chemical modification 

was applied in between measurements with altering speed. It rather demonstrated 



Chapter 4 
 

157 
 

the ability of the control cells to extend further than the treated, since a larger dis-

placement range was required for the softer cells to cause an equal number of bond 

rupturing, for the same displacement, as the velocities increased. 

 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 4.13 Effects of increased pulling speed on cell-to-cell adhesion parameters 

as acquired by SCFS retraction F-d curves of HK2 cells. Data are expressed as 

mean ± SD and the effects of increasing pulling speed on (a) maximum unbinding 

force, (b) work of detachment and (c) number of tethering rupture events are illus-

trated.  

 

In order to assess the cytomechanical influences on E-cadherin mediated cell-to-cell 

adhesion of HK2 cells, F-d retraction curves at incremental pulling or separation ve-

locities were performed. Due to the viscoelastic nature of the cells, data were ana-

lysed up to a speed of 10μm/sec, since a displacement range higher than 100μm 

was required for measurements with increasing velocities. The results demonstrated 

a fivefold increase in the WD in comparison to Fmax for the control cells, whilst a 

threefold increase for the TGF-β1 treated cells. Our results suggest a higher de-

pendence of the WD on the compliance of the cells since the higher increase in work 
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of complete detachment is contributed by the higher elastic deformation of the con-

trol HK2 cells (Johnson & Greenwood, 1997).  

 

These findings combined with the indentation results and fluorescence microscopy 

suggest considerable influences of CSK deformation on cell-to-cell adhesion. There-

fore, it is resonable that biochemical changes induced biophysical changes , which in 

turn affected the adhesion between HK2 cells. Overall, the cohesive results between 

cell elasticity, cell adhesion and image of cytoskeleton have facilitated better revela-

tion about the intricate interplay between cytomechanics and cell adhesion. There-

fore, it is reasonable to suggest that biochemical changes induced biophysical 

changes, which in turn affected the adhesion between HK2 cells. The net effect of 

these changes is illustrated in Figure 4.14 (a)-(d).     
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Figure 4.14 Cell-to-cell adhesion process of HK2 cells showing the changes in sur-

face molecular binding and re-arrangement of the cytoskeleton into the periphery 

upon treatment with TGF-β1. During phase 1 the cells are in contact with each other 

and E-cadherin ligation is formed. In (a), a schematic of control cells is shown while 

in (b), a schematic of cells after treatment with TGF-β1 is shown. In phase 2 the 

separation process between the two cells is illustrated. In (c), increased distance of 

separation due to cell deformation, corresponded to higher work of detachment for 

normal cells while in (d) cells became more rigid due to cytoskeletal reorganisation 

into the periphery after TGF-β1 resulting in decreased distance of separation inevita-

bly leading to a dramatic reduction of work of detachment. Overall, surface binding 

affinity was partially responsible for the changes in work of detachment that was 

mainly influenced by changes in the elastic properties of each cell.   

 

 

4.6 Conclusion 

In the current study the changes of E-cadherin mediated cell-to-cell adhesion upon 

treatment with the pro-fibrotic cytokine TGF-β1 (48h, 10ng/ml) in the renal proximal 

tubule HK2 cell line have been investigated. In addition, quantitative evidence that 

the elastic properties of individual cells influenced the separation process between 

two adherent cells has been provided. TGF-β1 affected the extracellular domain by 

decreasing the expression of E-cadherin at the surface of the cell (Hills et al., 2012a) 

causing a reduction in the number of tether rupturing events, whilst in the intracellu-

lar domain initiated cytoskeletal reorganisation into peripheral stress fibers, resulting 

in the increase of E modulus of individuals cells. The changes in the mechanical 

properties of single cells had a strong effect on work of detachment owing to 
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changes of the viscoelastic deformation of cells as manifested by the increase of the 

distance of complete separation. As a consequence, TGF-β1 induced EMT in dia-

betic nephropathy instigates a loss of E-cadherin that resulted in the reduction of the 

adhesive properties between cells by decreasing the number of ligation tethering and 

rigidity of the cells. Therefore, in addition to surface molecular tethering, the effects 

of the cytomechanic alterations  during E-cadherin detachment process in EMT were 

pivotal. 
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5. Synopsis & Future Work 

 
5.1 Research Highlights 

In this research project the adhesive and mechanical properties of soft biological 

cells (MIN6 & HK2) under the influence of specific chemical agents were investigated 

quantitatively using AFM-SCFS. The significance of the technique to investigate cell-

to-cell adhesion and single cell mechanics at various biological states was also 

clearly demonstrated. The obtained results contributed to the understanding of cellu-

lar adhesion  in a variety of physiological and pathological states primarily concern-

ing diabetes and its implications, such as diabetic nephropathy. By using AFM-SCFS 

cell-to-cell adhesion parameters and E moduli of MIN6 and HK2 cells were meas-

ured after treatment of R568 and TGF-β1 respectively. Chemical modification of cells 

led to significant changes of the surface molecular binding and the mechanistic be-

haviour of each individual cell that can be partially explained by cytoskeletal reor-

ganisation. More importantly the results demonstrated that changes in the biological 

states initiated complex interactions between E-cadherin and F-actin cytoskeleton at 

the adherens junction as signified by the intricate interplay between adhesive and 

mechanical characteristics of cells. As a consequence it can be deduced that E-

cadherin, apart from an adhesion molecule, constitutes a signalling diavlos with a 

significant role in cell-to-cell communication.  

 

It has been suggested that E-cadherin mediated cell-to-cell adhesion contributed to 

an enhanced insulin secretion of β cells (Rogers et al., 2007). The first goal was to 

develop an experimental protocol for characterising quantitatively β-cell-to-β-cell ad-

hesion and elucidate if an increase in the expression of E-cadherin has functional 
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consequences on enhanced β cell coupling. SCFS measurements showed that E-

cadherin mediated cell-to-cell adhesion was increased upon CaSR activation using 

the R568 (1μM). More specifically activation of the receptor affected the extracellular 

domain by increasing the number of TREs by 48%, whilst affected the intracellular 

domain of the trans-membrane protein by decreasing the E modulus by 34%. As a 

consequence β-cell-to-β-cell adhesion parameters were altered not only due to bio-

molecular changes of the protein in the cell surface, but also due to changes in the 

biomechanical properties of individual cells. Fmax was increased by 30%, whilst WD 

was increased more significantly by 39% consistent with an increase in ds by 37%. 

To further assess the effects of viscoelastic deformation on cell-to-cell adhesion, F-d 

retraction curves with incremental velocities were performed, resulting in the tenfold 

increase of WD in relation with Fmax for both treatments when pulling speed was in-

creased by a factor of 2.   

 

It has been reported that the pro-fibrotic cytokine TGF-β1 mediates early EMT result-

ing in the fibrosis of renal proximal tubule in DN (Hills et al., 2012a). Therefore, the 

next goal was to investigate TGF-β1 induced changes in epithelial characteristics, 

which are maintained via E-cadherin. SCFS measurements showed that E-cadherin 

mediated cell-to-cell adhesion was decreased after treatment with TGF-β1(10ng/ml). 

Treatment with the cytokine affected the extracellular domain by decreasing the 

number of TREs by 35%, whilst affected the intracellular domain of the trans-

membrane protein by increasing the E modulus by 71% due to CSK rearrangement 

into peripheral stress fibers. As a result, changes in the mechanical properties of 

single cells had a significant effect on cell adhesion characterisation, in addition to 

effects arising from surface ligation binding. After treatment Fmax was decreased by 
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19%, whilst WD was decreased more significantly by 53% corresponding to a de-

crease in ds by 46%. In order to assess the effects of viscoelastic deformation on E-

cadherin mediated cell-to-cell adhesion, F-d retraction curves with incremental ve-

locities were performed, resulting in a fivefold increase in the WD in comparison to 

Fmax for the control cells, whilst a threefold increase for the TGF-β1 treated cells 

when pulling speed was increases by a factor of 1/2. 

 

In conclusion, biophysical changes induced by biochemical modification of both cell 

types, resulted in the alteration of the mechanistic behaviour of the cell during the 

separation process between the two cells that were brought in contact. This is clearly 

shown by the higher alterations of the work of detachment in comparison to the 

maximum unbinding forces. Furthermore,  the results demonstrate that changes in E 

modulus could be compared with changes in cell architecture, resulting from CSK 

rearrangement. This signifies the diagnostic content that is included in the measure-

ments of E modulus and could inspire the development of novel biosensing tech-

niques that could potentially provide useful indicators about the development of the 

diseases in the early stages.   

 

5.2 Limitations 

Although that the AFM-SCFS instrument was incorporated with an improved piezo-

actuator (100μm) that enables long range force spectroscopy, adhesion parameters 

such as contact force, contact period and pulling speed should be carefully chosen 

prior experiments. Extended contact times or high contact forces will ultimately lead 

to incomplete separation of the attached cells. In this study the z-displacement range 

was insufficient for the complete separation of soft biological cells when the pulling 
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speeds was increased from 5 to 15μm/sec, which led to the rejection of a large num-

ber of data. In addition, although that the instrumental set-up compensated for the 

preservation of cells at a physiological temperature, it did not compensate for the 

CO2 requirements of living cells. The media for both the cells treated in the petri dish 

and the free cells during experiment was replaced by CO2 free media, resulting in 

limited experimental time (<2h).  

 

One drawback of the SCFS technique is that experiments are time consuming, since 

the cantilever-single cell attached system  can characterise one cell each time and 

has to be replaced every time the AFM head is lifted i.e. for removimg unwanted ad-

herent particles or replacing the petri dish under testing with a new one. This proce-

dure requires re-calibration of the cantilever that additionally results in an loss of 

functionalisation. Once the cantilever is chemically modified then it can be used only 

up to 3 times since the cleaning process significantly alters the spring constant 

value. Cantilevers are disposable items with a considerable cost. In this project canti-

levers were used up to three times while the cleaning procedure involved washing 

with ultrasound.  

 

5.3 Future Work 

Altering the expression of a protein of a cell, for testing a specific hypotheses such 

as improved or malignant function of a system, does not guarantee that its function 

will be altered accordingly. AFM-SCFS is a valuable tool to elucidate the correspond-

ing function of a cell after chemical modification, when cell's behaviour is dependent 

upon cell-to-cell coupling. In this study the role of the cytokine TGF-β1 in altering 

cell-to-cell adhesion in early EMT of the proximal tubule has been investigated and 
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the results suggested that the cytokine has a significant role in this malignant trans-

formation during fibrosis of the tubule. Furthermore, a potential method for the rever-

sion of this catastrophic process in DN should be investigated. There is evidence in 

the literature suggesting that C-peptide  can alleviate this damage and act as a 

therapeutic agent, through specific  binding to receptors at the surface of the cell that 

could potentially lead to enhanced cell coupling (Johansson et al., 2000; Wahren et 

al., 2001; Nordquist et al., 2009; Hills et al., 2010). It is therefore an urgency to de-

sign a SCFS experiment that will functionally investigate the changes of cell-to-cell 

adhesion after chemical treatment with C-peptide. The experiment should include 

adhesion measurements of healthy (control) HK2 versus TGF-β1 treated versus C-

peptide treated and versus TGF-β1/C-peptide treated cells. The use of the HK2 cell 

line is advised for consistency with the results reported in this study. This interdisci-

plinary work could provide promising data regarding the role of C-peptide in diabetes 

and DN and/or elucidate the mechanism underlying the interactions between TGF-β1 

and C-peptide. In addition, since it was shown that mechanical properties of cells, 

such as elasticity, not only changed by the chemical modification in the diseased 

state, but also affected cell-to-cell adhesion through the ability of cells to deform at 

extended ranges, a set of indentation experiments should be performed along with 

the adhesion experiments. In addition to calculation of elasticity, it is suggested that 

stress relaxation experiments should be performed using the AFM-SCFS system 

(Okajima et al., 2007; Moreno-Flores et al., 2010), to further assess the changes in 

viscoelasticity of the cells after each treatment.          

 

In this project the E modulus of treated cells for indentation depths up to 10% of the 

cell height have been characterised using the Hertz model. Apart from the fact that 
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these data showed that the mechanical properties can serve as an indicator for dis-

eased states, the study mainly involved mechanics of soft cell, an area that has a 

great impact in the advances of regenerative medicine and tissue engineering for the 

development of biomaterials that will resemble the mechanical behaviour of soft 

membranes and tissues. It is well known that soft biological materials exhibit large 

deformations (Scott et al., 2004; Lulevich et al., 2006; Ikai, 2008). However, the 

study for the determination of E modulus was limited to indentation depths up to 10% 

of the height of the cell. Therefore, AFM indentation measurements of single cells 

using higher indentation depths than 10% of cell height is desirable. The data should 

be processed by an appropriate mechanical model that compensates for the hetero-

geneity of the cells, such as finite element analysis. It is suggested that measure-

ments will be performed at various depths of indentation to assess the mechanical 

properties of the cytoskeleton and the nucleus separately and in combination. In ad-

dition,  confocal microscopy should be performed in order to assess the position of 

the nucleus in the cytoplasm. The generated results could potentially contribute to a 

novel study concerning the multi-scale mechanical characterisation of engineered 

tissue.    
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Appendix 

 

Figure A-1: The change in morphology of a cantilever-attached cell while performing 

AFM-SCFS. The cell is splitting and it cannot be used anymore for cell-to-cell adhe-

sion measurements. In that case a new functionalised cantilever is required and the 

cantilever-cell attachment procedure must be repeated.   

 

 

 

                                        (a)                                                              (b) 

Figure A-2: (a) The head of CellHesion200 with the glass block at its centre. (b) The 

cantilever is mounted on glass block with the aid of a spring.  
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Figure A-2: The stage of the AFM mounted on an inverted microscope. The tem-

perature controller was installed on the stage to maintain the sample at 37ºC. After 

injecting the suspended cells on the petri dish the head was mounted on the stage to 

perform AFM-SCFS measurements. 
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