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ABSTRACT

This thesis contains an account of a theoretical study of the non-
linear interaction of three waves in a plasma. Kinetic equations are
derived, which describe the interaction for a plasma obeying the fluid
equations of magnetohydrodynamics, and for a plasma obeying the
Vlasov-Poisson equations. In the magnetohydrodynamic case we find that
energy is transferred back and forth between the three waves in a periodic
manner.

We study a Vlasov plasma with a diffuse ion beam propagating through
it, and find that one wave, a Landau unstable ion sound wave propagating
on the beam, behaves as though its energy were negative. The kinetic
equations predict that as it transfers energy to two other waves, it grows
in amplitude, and that all three waves reach an infinite amplitude in a
finite time. This phenomenon is known as an 'explosive instabil ity',
and the mechanisms governing the interaction are analysed in order to find
stabilisation processes.

We show that the unstable oscillations cause a heating of the beam
ions, a reduction in beam velocity and a distortion of the beam distribution
function, all of which contribute to stabilising the Interaction. We
find that the heating Is the dominant process, causing heavy Landau damping
of the unstable waves.

Two computer programs are described which were used to simulate the
beamed plasma configuration in order to test the theory. The results
show that heating is the dominant beam effect, and that wave growth saturates
as the heating becomes significant. Some of the computational techniques
developed during the implementation of the programs are described, and a
critical survey is made of the programs themselves.
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CHAPTER 1

INTRODUCTION

1.1 Foreword
A difficulty in studying wave propagation in plasmas is that the

equations descrIbIng the evolutIon of a plasma are nonlinear, and in general
cannot be solved exactly. The most common simplification made, is to
assume that the plasma is close to a steady state, and hence that the
dependent plasma variables can be expressed In terms of a time independent
part and a (much smaller) time dependent part. By using such an expansion
in the plasma equations, and by neglecting products of small terms, one
gets 1inear equations for the tIme dependent quantities, which can be
solved to yield the dispersive characteristIcs of the plasma. The study
of such equations Is known as the 'lInear plasma theory', and a central
feature of the theory Is that arbitrary (small) perturbations about a steady
state are expressible as a superposition of eigenmodes which evolve
independently of one another.

Over a period of time, much longer than the typical oscillation period
for an eigenmode however, the effects of the neglected nonl inear terms
could accumulate and modify the linear solution significantly. The waves
therefore, can no longer be considered to evolve Independently, but rather
to interact weakly with one another.

For small perturbations, the dominant nonlinear term will be that
formed from the product of two of the small time dependent quantities.
The inclusIon of such a term yields plasma equations which describe the
modification of the 'linear' wave due to the presence of two other waves in
the plasma. This phenomenon is known as a 'three wave Interaction' and
is responsible for many interesting and unusual plasma phenomena which
cannot be described by the linear theory.
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In this thesis, we study the interaction of three waves in an electri-
cally neutral plasma. As Kadomtsev, Mikhallovskii and Timofeev (1965)
show, it is possible for one of the waves participating in the interaction
to behave as though its energy were negative. The consequence of a
'negative energy' wave Interacting with two 'normal' waves Is that all three
wave ampl itudes can grow to infinity In a finite time. This phenomenon
is known as an 'explosive instabil ity', and clearly describes a ~esult which
is unphysical. We therefore study the mechanisms governing three wave
interactions, and also the physical properties of negative energy waves,
in order to develop a theory describing the stabilisation of the interaction.

1.2 History of Work In the Field
The phenomenon of two waves 'beating' together to drive a third Is

well known in the theory of harmonic oscillators. The mechanism behind
the phenomenon is a nonlinear Interaction between the waves, and the
condition that the coupling Is significant Is

w +w _ w,
m n R,

(1.2.1)

where the w's are the frequencies of the three waves 1, m and n. If this
condition is not met, a resonance situation does not occur, and the wave 1
fails to oscillate In sympathy with the driving waves. In the case of
plasma waves, the situation is more complex. Kadomtsev (1965) shows that
for plasma waves to interact, they must also satisfy the wavevector
condition

k + k "" kn•m n '" ( 1. 2.2)

Much of the early work on the three wave Interaction was done by
Kadomtsev, and is described in his book (1965). He derives a general form
for the kinetic equation describing the exchange of energy between three
coupled waves. It takes the form
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(1.2.3)

where the ~IS are electrostatic potentials, and rn is a measure of the""mn
strength of the Interaction between the three waves t, m and n.

The usual approximation used In deriving the kinetic equation Is to
assume that dissipative effects are negligible. Malfl let (1969) however,
has derived a kinetic equation which takes account of unstable or damped
waves propagating, and as such Is more difficult to analyse and solve.
The important point in Malfliet's paper Is that the effects of wave growth
and damping can be superimposed on a kinetic equation derived assuming zero
dissipation. For example, the effects of wave t having a Landau damping
rate Yt can be included by simply adding a term -Y1~t to the right hand
side of equation (1.2.3). More will be said on the subject of dissipative
effects later In this Section.

The kinetic three wave Interaction equation has been solved for a
number of situations. In particular, Galeev and Oraevskli (1963) show
that the Interaction can cause the decay of large amplitude Alfven waves.
Since Alfven waves represent exact solutions to the nonlinear plasma
equations, It would be expected that a large amplitude Alfven wave could
propagate indefinitely. Galeev and Oraevskll however, demonstrate how a
nonlinear coupling between the Alfven wave and a spectrum of pairs of low
amplitude Ion acoustic waves results In the one way transfer of energy
from the Alfven wave to the background wave field. A similar result,
concerning the decay of high frequency plasma waves has been demonstrated
by Ba ka I (1970). His result applies to a plasma in which low and high
frequency waves are propagating.

The first mention of the possibll ity of 'negatlve energyl waves
participating in a three wave Interaction was by Kadomtsev, Mikhallovskll
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and Timofeev (1965). They show that for a plasma to support 'negative
energy' waves, it must be well away from thermodynamic equilibrium. They
describe some of the anomalous properties of such waves, and make the
proposition that an 'explosive Instabll ity' can occur If energy Is trans-
ferred from the negative energy wave to two other positive energy waves.
The explosive instability is examined in some detail by Coppl. Rosenbluth
and Sudan (1969) for the case of a plasma with a loss cone distribution In
a strong magnetic field. They calculate the strength of the coupling
between the three waves by balancing energy terms derived from the single
particle scattering of waves.

Fukal, Krlshan and Harris (1969) also examine the explosive Instability
for a plasma with a loss cone distribution. They calculate the coupling
strength by using a Hamiltonian formalism for the derivation of the kinetic
equation. They further show how the four wave kinetic equation describes
a stabilisation process for the Instability. The four wave equation has
solutions which predict that the waves suffer an amplitude dependent
frequency shift, and hence the frequency condition (1.2.1) for the Inter-
action would be violated. The four wave Interaction however, Is not the
unique stabilising process, and Dum and Sudan (1969) consider the
perturbations on the particle orbits caused by the large amplitude waves,
as a possible stabll Ising process. The assertion made Is that large
ampl itude oscillations can cause a significant enough change to the distri-
bution function, and hence also to the dispersion relation, for the negative
energy waves to cease to satisfy the requirements for an explosive
Instability.

As we said earlier, the problem of an explosive Instability In a region
of dissipation, is more difficult to solve. Not only Is the kinetic
equation of Malfllet (1969) more complicated due to adding effects such as
Landau damping and growth, but the problem of analysing multiple triplets
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of waves appears. As Jarmen, Stenflo, Wilhelmsson and Engelmann (1969)
show, while phase changes due to either dissipation or the four wave process
of Fukai et al can stabilise explosive Instabil itles, they can also
de-stabilise situations which are otherwise stable.

The experimental evidence of the explosive Instability Is very limited.
Although the physical phenomenon of negative energy waves Is known in the
field of parametric amplifiers (cf. Sturrock, 1960), Its observation in
plasmas is speculative. Dum and Sudan (1969) comment that the bursts of
radiation and associated particle ejection observed In mirror confined
plasmas, suggest that an explosive Instability is reaching saturation point.
The suggestion is only qualitative, but Is accepted by many authors as an
explanation for the observations.

The limited experimental knowledge of the explosive Instability makes
It an ideal subject to simulate on a computer. Little or no work has
previously been done on the simulation of an explosively unstable plasma,
although numerical solutions to the kinetic equation have been found for a
large number of Initial conditions: see for example Wilhelmsson. Stenflo
and Engelmann (1970) and Stenflo. Wllhelmsson and Weiland (1970). This is
probably because simulation programs have only recently become sophisticated
enough to handle such problems.

The restrictions of speed and core size of the second generation com-
puters forced onto the computational physicist, the need to write highly
optimised programs which had to be tailored to a given class of plasma
problems. A significant Improvement was made however by the use of the
'Fast Fourier Transform' algorithm of Gentleman and Sande (1966) for solving
Poisson's equation for the electrostatic potential. This algorithm gives
an exact solution to the discrete form of Poisson's equation encountered
in simulation programs. as well as providing the physically useful Fourier
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potential coefficients In the process. Some of the programming techniques
and high speed data dumping and restoring methods are discussed In detail
by Boris and Roberts (1969A).

With the advent of the large third generation computers and high speed
data transfer channels, It Is now possible to Implement two and three
dimensional simulation programs which are relatively free from the
restriction of being tailored to specific needs. The Increase In speed of
these machines over the previous generation opens up the possibility of
employing extremely sophisticated and accurate numerical analysis techniques,
as well as simulating a larger number of plasma particles. The larger
and cheaper memory available on present day computers also makes the task
of simulating more particles easier.

1.3 Scope and Plan of Thesis
A difficulty in studying the propagation of plasma waves Is that the

equations which describe the evolution of a plasma are nonlinear. We can
treat the equations by using a perturbation theory, and we find that it is
necessary to go to second order In the theory In order to study wave Inter-
actions, since the linear theory only describes Independent modes of
oscillation. If we attempt to do this however using a standard perturbation
theory, we find that the second order solutions contains secular terms;
that Is, terms which are unbounded in time. We can however, deal with this
problem of secularity by employing a multiple timescale perturbation theory
described by Frieman (1963), which has Its origins In the field of nonlinear
mechanics (cf. Bogoliubov and Krylov, 1947).

In Chapter 2 we demonstrate this technique for the case of a plasma
which obeys the fluid equations of magnetohydrodynamlcs (cf Montgomery and
Tidman (1964), Chapter 13). We examine a plasma configuration in which
sound waves and circularly polarised Alfven waves propagate. We show that
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nonlinear kinetic equations can be derived, which describe the exchange of
energy between three such waves. The kinetic equations can be solved to
give solutions describing a periodic exchange of energy back and forth
between the three waves. We further show how the multiple timescale tech-
nique can be used to derive kinetic equations describing four wave and
higher order interactions.

In Chapter 3, the same technique is applIed to the more detailed
Vlasov-Poisson plasma equations, and again kinetIc equatIons are derIved
which describe the interaction between three waves. In thIs case however,
for a certain class of waves, the equations predIct that the three waves
will all grow to an Infinite amplitude in a fInIte time. This phenomenon,
the 'explosIve Instability', was first Investigated by Kadomtsev, Mlkhailovskl
and Timofeev (1965). A necessary conditIon that three waves can Interact
In this unstable manner, Is that eIther one or two of the waves must have
what Is called 'negative energy'.

The concept of 'negative energy' waves is well known in the theory
of parametric ampl ifiers (cf Sturrock, 1960), where It Is used for studying
the amplificatIon of waves propagating in dispersive media. In Chapter 3

we also examine the physical characteristics of 'negative energy' waves
propagating in a plasma through which a diffuse ion beam Is travelling.
We show that such a beamed plasma can support three waves which satisfy the
criteria for an explosive instability. An expression Is derived for the
time taken by the waves to reach infinite amplitudes.

The Infinite solution however is unphysical and violates the approxi-
mation in the multiple timescale perturbation theory, that the waves are of
small amplitude. The examination of the physical meaning of 'negative
energy' waves however, gives us insight Into the mechanisms by which the
instability must saturate. In Chapter 4 we analyse the behaviour of the
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plasma particles when a 'negative energyl wave propagates, and in partI-
cular when it interacts with two other positive energy waves. For the
plasma configuration we study, we find three stabilisation mechanisms, the
most dominant of which is ion heating. This causes the interacting
waves to be heavily Landau damped.

In Chapter 5, we study the numerical and physical problems associated
with simulating the explosively unstable beamed plasma on a computer.
We describe the research and developments carried out on two computer
programs in an attempt to simulate the instability. We discuss methods
of avoiding numerical 'noise' caused by machine rounding errors and
approximations in the numerical analysis. A method is given for calcu-
lating initial particle co-ordinates such that the plasma has spatial
uniformity and low noise properties. We also give a condition for avoiding
spurious particle correlations which can arise In a numerical plasma of
such uniformity. The results of the computer simulations are described In
Section 5.~, and a comparison is made with the theory, specifically with
respect to the proposed saturation mechanisms. The results Indicate that
Landau damping stabilises the Instability.

l.~ Summary of Results
In Chapter 2 we derive kinetic equations for the interaction of two

circularly polarised Alfven waves with an ion acoustic wave. We use the
multiple timescale perturbation theory, and the results are the same as
given by Galeev and Sagdeev (1969) for the same case. The example is
given, not only to demonstrate the multiple timescale nature of the problem,
but also to displ,y the technique itself, and in particular we find the
frequency and wavevector conditions (1.2. land 2) appearing intrinsically
in the formal mathematics. Sagdeev and Galeev use a more phenomenological
approach to solve the problem. From the kinetic equations, an energy
theorem can be derived which has an interesting parallel in the case of
positive and 'negatlve energyl waves Interacting.
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In Chapter 2 we apply the multiple timescale method to perturbations
in a neutral plasma In which the Ions are split Into two distributions.
The majority form a Maxwellian around v • 0, and the rest form a diffuse
beam. We find that a three wave interaction can occur between two Ion
sound waves propagating on the beam, and an Ion sound wave propagating In
the 'stationary' Ions. One of the beam modes has 'negative energy'.
In deriving the kinetic equations, we again find that (1.2.1 and 2) form
an intrinsic part of the formal mathematics. We solve the kinetic equations
for the three waves and find that their amplitudes grow In a similar manner
to the trigonometric tangent function. We show that the function becomes
infinite in a time which is inversely proportional to the wave amplitudes
at time t - O.

The physical characteristics of the waves and medium are analysed, and
we find that the ion beam can support a 'negative energy' wave (t) providing

and lfoiav > 0,

where Ub is the average beam velocity, and foi is the steady state value of
the total ion distribution function. We find that beam particle kinetic
energy is transferred to the 'negative energy' wave at Its phase velocity
in the same manner as Is found In inverse Landau damping (cf. Drummond, 1965).
The wave loses energy to the two positive energy waves and yet still gains
energy from the particles. In this way, all three waves grow, the driving
force being the beam kinetic energy.

In Chapter 4 we analyse the behaviour of the ion beam particles when
the beam modes are propagating, in order to find a process which might
Iimit the explosive growth of the waves. By studying the behaviour of the
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beam ions, we propose three mechanisms which may cause the saturation of the
wa\e growth. The first is that the average beam velocity decreases.
The beam mode frequencies are proportional to the beam velocity, and a
reduction In beam velocity therefore causes the resonance condition (1.2.1)
to be violated. Secondly, the large amplitude oscillations cause the beam
ions to heat up and hence cause the waves to be heavily Landau damped.
Finally, a distortion of the beam distribution function takes place. This
results in severe landau damping of the positive energy beam wave and a
reduction In the Landau growth rate of the negative energy beam wave.
The relative importance of the three processes depends on the plasma
parameters, but in the case where we use the parameter set chosen for the
simulation programs, we find that the heating of the beam ions is the
dominant effect. The heating Is enough to cause Landau damping of the
waves in one or two periods of oscillation.

In Chapter 5, we outline the work done on two plasma simulation pro-
grams, GALAXY and NOVA, and give the results of simulations of the beamed
plasma configuration. We show that the Instability ~ be simulated,
even using the GALAXY program which Is prone to a high level of numerical
Inoise'. The GALAXY results predict a sharp decrease In the Ion beam
velocity as the waves grow, but disagree quantitatively with the theory In
that the deceleration is much more rapid than the theory predicts.
Unfortunately, the high noise level In GALAXY makes a detailed analysis of
the beam valueless.

We propose a method for simulating a comparatively noise free plasma
by initially placing the particles on closed orbits In a phase space which
Is spatially periodic. In this way. particles remain on pre-determined
trajectories, chosen to minimise fluctuations in space charge. When
selected waves are perturbed, their evolution Is clearly measurable against
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the background spectrum of waves. The method is used in the NOVA program,
and gives a background level of wave amplitudes which are 10-6 of those
found In GALAXY. We also show that this Initial choice of particle
co-ordinates causes no spurious binary correlation effects, even though
the spatial configuration is lattice like.

The results of the NOVA program show that although the beam Ions
decelerate slightly, they heat up significantly, as do the stationary Ions.
The results indicate that beam heating Is responsible for the saturation
of the instability.
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CHAPTER 2

THE THREE WAVE INTERACTION

2.1 Introduction
We are going to study the behaviour of a plasma for states which are

Initially close to a steady state. As Bernstein and Trehan (1960) have
demonstrated, being close to a steady state implies the existence of some
small dimensionless parameter In terms of which one can expand the time
dependent quantities in the equations governing the plasma. The expanded
equations to lowest order In the small parameter are Just those which
govern the steady state. To next order one obtains a set of 1inear
equations with constant coefficients, the theory of which Is known as
linear plasma theory. The literature on linear plasma theory Is extensive,
and Bernstein and Trehan's comprehensive review article (1960) makes
reference to many of the original and most useful publications. A central
feature of the theory Is that arbitrary (small) perturbations about a steady
state are expressible as a superposition of elgenmodes which evolve
Independently of one another. We can however examine the interaction
between the eigenmodes by considering the nonlinear terms which are neglected
In the 1inear theory cf. Coppl, Rosenbluth and Sudan (1969).

Frieman (1963) demonstrates the well known result that to do this by
simply equating terms of second order In the expanded plasma equations gives
solutions whIch are secular. That Is, second order perturbed quantities
which are proportional to time, and hence diverge for large times, even for
cases where we know the result remains finite. Frieman further shows
that one may avoid the occurrence of such non-physical solutions by taking
advantage of the fact that for small perturbations, the effect of the non-
linear terms Is only important over a timescale very much longer than the
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typical oscillation period of the eigenmodes. The multiple timescale
nature of the problem arises naturally since (if we call the dimensionless
expansion parameter £), the linear terms in the expanded equations are
proportional to £ whereas the nonlinear terms are proportional to £2 and
higher. Consideration of the time dependence of the lowest order perturbed
quantities q (say) due to nonlinear terms (of order qn say) shows that they

n-lwill vary on a timescale of order 1/£ • This being the case, we treat
the problem using a multiple timescale perturbation theory employed by
Frieman, which has a built in formal Ism for removing secular solutions.

In this Chapter, we demonstrate the technique In the case of a plasma
which obeys the fluid equations of magnetohydrodynamics (cf. Montgomery
and Tidman (1964), Chapter 13). This particular example has been treated
previously by Galeev and Oraevskii (1963) using a different mathematical

technique. Their method involves time averaging the expanded nonlinear
equations in order to obtain kinetic equations governing the long timescale
effects of the nonlinear terms on the first order quantities. These
authors show that the resulting kinetic equations describe the transfer of
energy back and forth between three waves propagating In the plasma.
This process Is known as the 'three wave Interaction' and is a feature of
great importance to the rest of the thesis.

The multiple timescale (MTS) technique is ideally suited to the study
of the three wave Interaction, due to the linear and nonlinear phenomena
occurring on widely separated tlmescales, and it can be extended with very
little difficulty to deal with multi-wave interactions. Moreover, the
strength of the coupling between the waves appears expl icitly as the formal
mathematics evolves, whereas In methods such as the 'detailed balance of
microscopic energy' used by Coppi, Rosenbluth and Sudan (1969), and the
Hamiltonian formalism used by Fukal, Frishan and Harris (1969), the coupling
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strength has to be calculated independently of the derivation of the
kinetic equation.

The example is given however, not only to demonstrate the perturbation
technique, but also to highlight the nature of the energy transfer. We
will see that to assume a fluid description prevents the detailed analysis
of particle effects, which is important In a certain category of three
wave interactions; namely those associated with negative energy waves.
The physical meaning of negative energy waves, and the particle nature of
their interaction with other waves Is discussed in Chapter 3.

2.2 The Multiple Timescale Approach
For a plasma close to a steady state, we write the time dependent

plasma variables as a power series in the small parameter E; namely

where qno is the steady state value of the quantity qn' and E Is a measure
of the strength of the perturbation. Now we expect different order non-
linear terms to describe different physical processes. Thus we expect
the plasma system to behave differently on the various tlmescales, unity,
l/E, 1/£2 etc., each of which corresponds to different order nonl inear

terms becoming important. The method described here exploits this, in that
we assume that solutions to the plasma equations can be found with a time

dependence of the form

The variables tl, t2 etc. are related to the real time t by the relation

dtn ... 1;
Tt

n ...1, 2, ••• etc. (2.2.1)

Frieman (1963) shows that the freedom In the solutions of (2.2.1) due to the
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choice of initial conditions on the plasma equations allows us to treat
2t, etl, e t2 etc. as Independent variables. Thus the time derivative

(a/at) can be formally expanded In powers of e as

(2.2.2)

Throughout this thesis we shall use the notation that t's subscripts are
omitted. As such, e Is used as a 'book-keeping' parameter for the
ordering of not only the time dependent plasma quantities but also the time-
scales themselves.

The magnetohydrodynamlc (MHO) equations for the velocity ~ of the
plasma 'fluid', the charge density n, and the magnetic field Hare

H;t + (~.V)!!+ !!(!.~ - (!!.V)~ • 0, and

2where p is the fluid pressure • nc and c Is the sound speed. The first
equation represents the conservation of momentum, the third represents the
conservation of charge, and the second derives from Maxwell '5 equations.
The steady state plasma is considered to have a uniform density no' zero
fluid velocity, and a uniform magnetic field H In the z direction.o

Following the example of Sagdeev and Galeev (1969) we examine perturbations
about this steady state In the form of circularly polarised Alfven waves
propagating In the z direction, and sound waves also propagating along z.

We write an expansion in the form dictated by (2.2.1) and (2.2.2),
namely
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+ e:Hp1(z ,
2

;, .,) 2 2 ...)H = H t, e:t, e:t, + e Hp2(Z, t, e:t, e:t, etc. ,~

+ e:nzl(z , 2 ...) 2 2 ...)n = no t, e:t,e:t, + e:nz2(z, t, e:t, e:t, et c .,

e:vpl(z ,
2 ••• ) + 2 2 ...)v .. t, e:t, e:t, e:vp2(Z, t, e:t, e:t, etc. +

e:vzl(Z' t, 2 ••• ) + 2 2 ...)e:t, e:t, e:vz2(Z' t, Et, e:t, etc. ,

where the subscript z refers to perturbations In the z direction, which are
associated with the sound waves, and subscript p refers to perturbations
perpendicular to the z direction, which are associated with the circularly
polarised Alfven waves.

Substituting these expansions Into the expanded MHO equations, we can
separate out the z and p components of the momentum equation, and equating
terms proportional to e: gives the four equations

a"zl + C2 anzl .. ° ,at n az
0

anzl +
aVzl 0,n ..

at 0 az

(2.2.3)

(2.2.4)

H
~0 0,41fno ..az

~ .. O .H
0 az

(2.2.5)

(2.2.6·)

These are just the linear MHO equations for the configuration, and we assume
solutions of the form

.. L
R,

and similar summations in exp i (kR,z - wR,t) for nz1' vpl and Hpl' where the
k's are wavevectors and the w1s are frequencies. Using these solutions
and looking at the R,-th Fourier component, the system of equations (2.2.3, 4,
5 and 6) reduces to the matrix equation
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~ · s. • 0 (2.2.7)

iii £where S. is a column vector with the four components vzl' nzl' vpl and Hpl'
The condition that non trivial solutions of (2.2.7) exist Is that the
determinant of M vanishes. This gives us the dispersion relation

( 2 k2 ,,2) ( 2 _ k2 c2)wt - t A wt £ - 0, (2.2.8)

where VA is the 'Alfven velocity' given by

V2 .. H2/41Tn .A 0 0

From the matrix equation we can also shaw that

(2.2.9)

and (2.2.10)

Equating terms in the expanded MHO equations which are proportional
to E2 gives the four equations

av 2 2
_!_ + =--at no -az - vzl

nz1 2 anzl H 1+_ C __ __E_!_
no az =; (2.2.11)

an 1Z',.. -_ - nzl
anz1

Vz 1 az (2.2.12)

H aHp2 av 1 nz1 aH 1av 2 0 .. - ___E_!_ ~,~- az aEt - 1iml azat J;;T'il 0
0

aHp2 aVp2 aH 1 aH 1
- H •

_ __E_!_ - vzl ___£!_ •
at 0 az aEt az

(2.2.13)

(2.2.14)

Equations (2.2.11) and (2.2.12) represent the second order correction to
the sound wave perturbation. They are similar to equations (2.2.3) and
(2.2.4) respectively, except that there are nonlinear driving terms on the
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right hand sides. Likewise, equations (2.2.13) and (2.2.14) represent the
second order correction to the Alfven wave perturbation, and In the same
manner are similar to equations (2.2.5) and (2.2.6).

Since the nonlinear terms on the right hand sides of equations
(2.2. 11, 12, 13 and 14) are products of two plane wave forms, the second
order corrections will take on a plane wave form, having frequencies and
wavevectors which are sums and differences of those of the elgenmodes.
These second order waves are often called 'virtual' or 'beat' waves, and
have wavevectors which are members of the same set as the eigenmodes', since
the k's constitute a quasi-continuum. The set of their frequencies
however intersects but is not identical to the set of elgenmode frequencies
since a frequency wt (given by wt - wm + wn) and a wavevector kt (given by
k c k + k ) are not necessarily related through the dispersion relation
1 m n

(2.2.8). So a second order wave formed from two elgenmodes beating
together is not necessarily an elgenmode Itself. The case when it Is, Is
a special case and will be treated as such.

Meanwhile, therefore, we write solutions of (2.2.11, 12, 13 and 14)
in the form

• L
1

and similarly for the other second order quantities. We substitute these
solutions Into (2.2.11, 12, 13 and 14) and look at the 1-th Fourier com-
ponent. From (2.2. II) and (2.2.12) we eliminate n~2' and from (2.2.13)
and (2.2.14) we eliminate v~2' We substitute the first order quantities
v~l and n;1 from (2.2.9) and (2.2.10) respectively, thus reducing the
system of equations to two. The first is for the second order correction
to the sound wave, and Is
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(2.2.15)
- w ) t

1 i .

The second is for the Alfven wave, and is

(-2w -1

- t(w - 'W ) t
e 2. 1 +

(2.2.16)

From (2.2.15) and (2.2.16) we can write the solutions for v!2 and
H~2. We notice however that but for the term In a/att on the right hand
side of (2.2.15) we have a secular solution for v12 when ~ - k2c2 Is zeroZ 1 2.

or of order E. Similarly, but for the a/att term in (2.2. 16) H~2 Is
-2 2 2secular when (111 - ktVA Is small. The multlple timescale theory however,

provides us with a procedure for removing the secular solutions. That is,
by equating the right hand sides of (2.2.15) and (2.2.16) to zero when
('W - w ) approaches Zero.
1 1

The interesting equations however arise from the condition that
1 tsecular solutions for vz2 and Hp2 do not exist.

can be written as
For Ht this conditionp2

aH1
_.£.!. - -! (VA

2ik~kn/Wnwn)Hmplvz
n
laEt k +k -k

n
~ ~m n ~

-ine (2.2.17)

Equation (2.2.17) can also take on the form

a Hm
__El .. _! (V2
o&t km+kn-k1 A

The condition that secular solutions for v;2 do not exist can be written as

-Ine • (2.2.18)
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naVzl 1 *
-"-e:-t = -I (ik 14wn )H 1 H

m
plo k +k -k n 0 p

m n 1

-ine (2.2.19)

where the * denotes the complex conjugate.

Equations (2.2.17, 18 and 19) are kinetic equations for the slow
variation (Et) of the first order quantities. As we have said, a condition
that they hold, Is that n Is close to zero. Thus we can write

and
w + w - w ~ e: or lessm n R,

k + k - k ~ e: or lessm n 1

(2.2.20)

With these conditions, the equations describe the slow variation In ampll-
tude of a wave 1 which Is being driven by pairs of waves beating together
at the original wave's frequency and wavevector. They are the kinetic
equations governing the 'three wave Interaction', and the conditions
(2.2.20) are known as the 'resonance conditions' for the three wave
Interaction.

2.3 Solution and Discussion of the Kinetic Equations
Equations essentially equivalent to (2.2.17, 18 and 19) were derived

by Sagdeev and Galeev (1969) by time averaging the nonlinear expanded MHD
equations, and noting that the slow variation of the first order quantities
Is nonzero providing that the resonance conditions (2.2.20) are satisfied.
An objection to this approach is that the three wave Interaction equation
and the expression for the second order plasma quantities are separated
ad hoc, whereas in the MTS approach they separate as a necessary condition
for avoiding secular solutions.

Sagdeev and Galeev (1969) have solved equations (2.2.17. 18 and 19)
under the condition that the summation Is replaced by a single product term.
This assumption Is valid If all other waves have negligible amplitudes or
if the non negligible waves fall to satisfy the resonance conditions.
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Sagdeevand Galeev solve the equations for n being identically zero, In
terms of symmetrised wave amplitudes Ct defined by

The equations take on the form

(2.3.1)

lac m -
aEt

(2.3.2)

(2.3.3)

These equations permit two classes of wave Interaction Illustrated In
Figures 2.1(a) and (b). That is, energy transfer from mode t to modes m
and n, and energy transfer from modes m and n to mode 1.

As stated In Section 2.2 we now drop the E'S In (2.3.1,2 and 3), and
treat the CiS as 'small'. For the case Ct - ° and Cm » Cn at time t - 0,
the equations can be solved In terms of sines and cosines to give a result
of the form shown in Figure 2.2, displaying the energy transfer back and
forth between the three waves. Furthermore Sagdeev and Galeev (1969)
show that the IcI2 can be interpreted as the number of 'quasi particles'
or 'quanta' N in a mode, since the N's are defined by

where the Wls are the mode energies. From (2.2.1, 2 and 3), using the N's
we can derive

-at +
aNmat .. 0, (2.2.4)
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aN
+ _n_at - 0, (2.2.5)

• O. (2.2.6)

The relations (2.2.4, 5 and 6) are called the 'Manley-Rowe' relations
and are well known In the theory of parametric amplifiers. They tell us
that if a 'quantum' of energy Is gained (or lost) by mode 1, then one will
be lost (or gained respectively) by both mode m and n.

The case we have treated Is for a plasma In which only three waves

propagate. In reality, there will be many pairs m and n satisfying the
resonance conditions (2.2.20) with a wave 1. As shown by Galeev and
Oraevskll (1963) and Sagdeev and Galeev (1969), If the amplitude of the
Alfven wave 1 is larger than the m's and n's It will decay Irreversibly
providing that the number of (m,n) pairs Is large enough, and the Initial
phases of the (m,n) waves are random. Sagdeev and Galeev treat this case
by using a random phase approximation to the waves In the system. It Is
then found that a large amplitude Alfven wave Is transformed Into random
oscillations of the medium rather than an ordered pair of waves capable of
Interacting back.

This example has been given not only to display the MTS technique, but
also to highlight the limitations of a fluid description of a plasma when
studying the three wave Interaction. The Important features are twofold.
Firstly, as we will see In Chapter 3 there exists a class of three wave
Interactions for which the single (m,n) product case and the case of an
arbitrarily large summation have qualitatively the same behaviour, the only
difference being the timescale of the nonlinear process. Secondly, we will
see that by using the approach of solving the Vlasov equation, we are able
to analyse the particle physics Involved In the Interactions of 'negative
energy waves', a problem which cannot be analysed using the MHO equations.
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CHAPTER 3

THREE WAVE INTERACTION IN A VLASOV PLASMA

3.1 Introduction
In this Chapter we derive a kinetic equation for the amplitude of a

monochromatic electrostatic wave which Is Interacting weakly with other
similar waves In a one dimensional neutral Vlasov plasma. We use the
multiple timescale (MTS) method outlined In the previous Chapter.

The equations for the slow variation of the wave amplitudes are found
to take on the general form

a~R.-- .at m,n
(3.1.1)

where the ,IS are the electrostatic potentials of the waves, and the M's
describe the wave coupling strength and are often called the 'matrix
elements' of the kinetic equations. These kinetic equations are similar
in form to those derived in the previous Chapter (cf. 2.3. 1,2 and 3).

In order to make the general kinetic equations solvable, we assume
that only three waves are participating In the Interaction; that Is, that
the summation In (3.1.1) disappears. As stated In Chapter 2, this is not
the general case, but we will discuss the problems and Implications of con-
sidering the sum over many wave pairs In Section 3.5. The assumption
Is reasonable when the three waves under study have amplitudes far In excess
of the background level (while still of course remaining 'small' compared
with the electron temperature, for the perturbation expansion to hold).
This assumption also has particular relevance to the computational plasma
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simulations, since as we will see in Chapter 5, none of the three chosen
waves can interact with any but one another. This is because the
simulation wavevectors are discrete, and in all other cases, the wavevector
resonance condition on the existence of the kinetic equations Is violated.

We show that a consequence of adopting the Vlasov approach Is that the
matrix elements of the kinetic equations can be written in the form

..
where Ftmn is a function symmetric In the subscripts 1, m and n, and t Is
the plasma dispersion function. We further show that If at/awl! Is
negative, the kinetic equations describe waves which grow to an Infinite
amplitude in a finite time. This phenomenon Is called an lexploslve
instability' and cannot be described by an MHO calculation, (cf. Chapter 2,
where the matrix elements are all the same sign).

We therefore examine those properties of the waves and the medium
which make aE/aW negative, In order to determine the physical mechanisms
driving the Instabll ity. The plasma configuration we study consists of
a Maxwellian distribution of electrons about velocity v ..0, the bulk of
the Ions also in a Maxwell Ian about v ..0, and a diffuse Maxwell ian Ion beam
about v ..Ub. In Appendix B we show that this configuration can support
ion sound waves with phase velocities around v • 0, and also 'Doppler
shifted' Ion sound waves with phase velocities around v • Ub. We choose
to examine the interaction of one of the 'nearly stationaryl ion sound
waves, one lion beam' wave with phase velocity Just above Ub, and one I ion
beam' wave with phase velocity Just below Ub. Now for the 'slow' beam
mode we find that aE/aW Is negative, whereas for the 'fastl beam mode and
the 'ordinary' Ion mode, it Is positive.

Now Stlx (1962) has shown that the change in the total energy of a
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dispersive medium when a monochromatic electrostatic wave propagates in
it, Is proportional to IEI2 a(w£)/aw, where E Is the amplitude of the wave
electric field. In the case of the wave being a normal mode of the system
and hence satisfying the dispersion equation £-0, the change In energy
as calculated by Stix, is proportional to IEI2 a£law. From this, we
might conclude that the energy of the 'slow' ion beam mode is negative.
The physical meaning of 'a wave with negative energy' Is examined in
Section 3.2, and an explanation is given for how the energy of a medium can
decrease when a wave propagating in it increases In ampl itude. Many
authors e.g. Kadomtsev, Mikhailovskli and Tlmofeev (1965), and Dikasov,
Rudakov and Ryutov (1965) simply state that the energy of a monochromatic
wave can be negative, and hence when it interacts with two ordinary
'positive energy' waves (through a three wave interaction like that dis-
cussed in Chapter 2), energy Is transferred from It to them resulting in
the unbounded growth of all three wave amplitudes. This statement describes
a very useful and economical mathematical model for describing the explosive
Instabll ity. It does however pose the question of what is meant physically
by a negative energy wave.

In this Chapter, we examine the energy Wadded to a plasma when a
monochromatic electrostatic wave propagates, and find for normal modes
(£ m 0), that It Is proportional to aE(w)/aw which for some media can be
negative. However, by deriving W from the Vlasov equation (Appendix A)
it is clearly equal to the sum of the electrostatic wave energy and the
change in that part of the charged particle kinetic energy which is
associated with the coherent wave motion. We argue moreover, that this
sum can be negative in a beamed plasma in which beam particles slow down,
and some of their energy is transferred to the wave. It transpires that
the greater the amount of kinetic energy extracted from the beam (at the
wave's phase velocity), the larger the ampl itude of the wave. In this way,
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if some of the beam kinetic energy is transferred to two other waves, all
three can grow in amplitude. So, rather than regarding one of the waves
as having negative energy, we use the more physical picture of treating the
beam kinetic energy as the driving force for the Instability. This
creates a better understanding of explosive Instabilities, and also gives
us a starting point for examining the saturation of the Instability in the
following Chapter.

In the course of this Chapter, the symbol £ is used both as a label
for the 'smallness parameter' In the perturbation expansion, and also to
signify the dispersion function. When any confusion may arise, the
meaning is stated explicitly.

3.2 Negative Energy Waves
Stix (1962) has shown that the change in energy of a dispersive

medium when a monochromatic electrostatic wave propagates, Is given by

a
oW

where E is the amplitude of the wave electric field, and £h Is the
Hermitian part of the dielectric function for the medium. The result
(3.2.1) is not the usual constant multiple of IEI2 which we expect for a
wave, and Stix analyses It by looking at electron plasma oscillations.
In this case, W can be Interpreted as the sum of the electrostatic energy
(IEI2) and that portion of the charged particle kinetic energy which Is
associated with the perturbation of the particle distribution function.
In Appendix A we derive (3.2.1) explicitly for a plasma using the Vlasov
equation and Poisson's equation to describe the system, except for the
factor of 1/16n In Stix's derivation which arises from his formulation of
Poynting's theorem. The Vlasov derivation automatically produces the two
separate terms, and the physical interpretation of each is obvious, since
one Is a constant multiple of IEI2, and the other derives from

- 27 -



I v2 (f - fo)dv (averaged over the phase of the oscillation),

where f is the perturbed particle distribution function and fo is the
unperturbed distribution function. This term describes the kinetic energy
associated with the perturbation on the particles. The advantage of the
Vlasov approach is that the physics Is clear In the general case (we need
not choose a specific example as Stlx does). When we add the two terms
to get the total energy associated with the wave, we get the result that

W a: IEI2 __3__ {w £ }3w (cf. A.IO)

Now it is well known that there exist media which for certain values of w
and k, have 3£/3w negative. Such a wave will be called a Inegatlve
energy wavel• From the expression for the energy of such a wave (3.2.1)
we see that as its ampl itude increases, its energy decreases. Thus if it
loses energy to two positive energy waves for Instance, all three increase
in amplitude. The questions now arise; what sort of medium exhibits
this anomalous dispersive characteristic, and what happens to a plasma when
a negative energy wave propagates and Interacts with other waves.

Landau and Lifshitz (1960) show from entropy considerations that a
region of transparency In a medium In thermodynamic equilibrium will exhibit
normal dispersion I.e. 3(w€)/3w is positive. For media away from such an
equilibrium, the thermodynamic theory ceases to hold, and the positiveness
of a(w€)/3w can no longer be assumed. For this reason, we choose to look
at a plasma with beams in order to find negative energy dispersion
characteristIcs. Such an example Is relevant to the theme of this thesis,
and will bring out the physics of negative energy waves.

Sturrock (1960) has demonstrated that if two waves of equal ampl itude
are excited with phase velocities ul and -ul with respect to a medium moving
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with the (non-relativistic) velocity Ub, then the energy of the two waves
(as measured in a stationary frame) is given by:-

W (forward wave) .. +
Ub + lu II

{ 1 u i 1 }W I ,

W (backward wave) .. -
U - 1 u II

{ b lui I }W
I
,

(3.2.2)

where WI is the energy of the waves measured in the moving frame. We
observe that the two waves have energies of opposite sign if

Ub > 1u I I. (3.2.3)

We might conclude from (3.2.2) and (3.2.3) that negative energy waves
are a classical relativistic phenomenon, but this would only be a half
truth since it fa i1s to exp 1a In phys iea 11y why such a wave can Increase In
ampl itude as it decreases in energy.

An Important thing to note however, Is that the medium needs to be
moving faster than a given velocity (3.2.3) i.e. there needs to be a large
amount of kinetic energy In the medium Itself. Unfortunately, most of
the literature on explosive Instabilities takes the study of the waves
themselves no further than stating 'negatlve energy waves exlst', and little
work has been done on the combined physics of the medium and the wave.
Such a study Is essential since It reveals the full physics of these waves,
and also gives a deeper understanding of explosive Instabilities, and how
they saturate. The approach of analysing the medium has previously been
ignored only to yield oversimplified and often misleading results. This
point will be taken up in greater detail in Chapter 4, but at present we
will concern ourselves with an interpretation of the statement that a
negative energy wave Increases In ampl itude as it decreases in energy.

The important point bere is that lenergy' In this sense Is a sum of
electrostatic energy and particle kinetic energy. In a medium in which
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a beam carries a wave, If the excitation of the wave can be achieved by
decelerating some of the beam particles (namely by a special kind of
perturbation) then the change in energy of the system due to the presence
of the wave is proportional to IEI2 minus the change In kinetic energy of
the perturbed particles. Clearly, since a plasma's kinetic energy
greatly exceeds its potential energy, we need only decelerate a minute
fraction of the particles in order to excite such a wave. Moreover for
such a configuration, the larger the wave amplitude we want, the greater
the number of particles we need to perturb (decelerate).

A question arising at this point Is whether we need to decelerate
particles in order to excite a negative energy wave on a beam. Gu ided
by the relativistic argument of Sturrock (3.2.2) we examine the 'slow'
beam mode, and if we consider a Maxwell ian distribution of beam particles
we see that there are more particles travel Iing faster than the wave's
phase velocity than slower, providing Ub > lu'l (cf. 3.2.3). Hence, the
net effect of adjusting local particle velocities to the waves phase
velocity Is a reduction In kinetic energy. that Is a deceleration.

This argument is not dissimilar to the quasi linear theory of the
saturation of 'Landau unstable' plasma oscillations. As shown by
Drummond (1965), the growth of plasma oscillations with wand k such that
af ltv is positive at v • w/k, occurs at the expense of a reduction ino

particle kinetic energy. It Is also true that the Landau damping factor
y is given by

y • Im (El /ae:/aw , (3.2.4)

namely that a negative energy wave Is Landau unstable if 1m (e:) is negative.
The full circle of equivalence Is completed by condition (3.2.3).

We maintain that a negative energy wave propagating on a beam Is one
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with phase velocity below the beam velocity Ub• Moreover, its amplitude
increases as we Increase the perturbation on the particles (as we expect) -
the perturbation however being increased by decelerating an increased
number of beam particles. This interpretation avoids making the misleading
claim that a wave in a medium can, independently of the medium, be assigned
an energy which is less than zero.

At this point we can see what is happening when a negative energy
wave interacts with two positive energy waves. The positive energy waves
have frequencies wm and wn such that wm + wn - wi (the frequency of the
negat ive energy wave). Similarly the wavevectors k + k • kn' which asm n ",.

we saw In Chapter 2 are the two I resonance condltions' for the Interaction
of three waves. Now since the two lower frequency waves beat together to
form a wave of phase velocity wt/kt, we have a situation where particle
kinetic energy can be transferred to them (since afo/av is positive at
that velocIty). This causes the negatIve energy wave amplItude to
increase, and then we have an explosive InstabIlity (since all three waves
are driving one another's amplItude up). The details of the explosive
instabll ity will be developed In Section 3.4.

3.3 Basic Equations
To obtain the equations governing the three wave Interaction discussed

in Section 3.1 we start with the one dimensional Vlasov equation,

af.
__j_ +at

af. alfl af I •
v__j_ - (e~ ~ -.JLax m • ax av

J
o , (3.3.1)

where the subscript j refers to the plasma species, namely ions (i) or
electrons (e). The electrostatic potential $ is given by Poisson's
equation, 00

(3.3.2)
-00
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where no is the total particle number density of one of the species, and
e is the electronic charge. Normalisation of the Ion and electron particle
distribution functions fi and fe Is such that

00

f
f. dv = n. In.
I,e I,e 0

-00

Consider the plasma to be neutral with a Maxwell ian electron velocity
distribution about v • 0, and an ion distribution made up of the bulk of
the ions in a Maxwellian at v - 0, and the rest forming a Maxwell ian beam
about v .,Ub• We write the beam density as n2 which is a small quantity.
As shown in Appendix B, this ordering gives us a configuration which supports
negative energy waves, and also makes possible the quantitative calculations
of timescales, amp! itudes, etc.

We want to find an expression for the potential ~ correct to second
order in the small parameter E • e~o/kBTe' where kB Is Boltzmann's constant,
Te is the electron temperature, and ~o is some characteristic value of the
electrical potential. We introduce the MTS expansion

fi "" (I - n2) fO (v, t , Et, E2t ••• ) +01 ,

+ n2 fb. (v - Ub, t, Et, E2t •.• ) +
01

,

+ E f11 (x, v, t , Et, E2t, ••• ) +

+ E2 f2i (x, v, t, Et, E2t. •.• ) +

+ terms of order E3 and higher.

fe - f (v, t. Et, E2t, ••• ) +oe
+ Et 1e (x, v, t, Et, E2t, ...) +

+ E2f (x , v, t, Et, E2t, ...) + etc.2e
~ • E~l (x, t, Et, E2t, ••• ) +

+ E2~ (x , t, Et, E2t, ...) + etc.2
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For purposes of treating the total ion distribution, e.g. on the right hand
side of Poisson's equation, or the a/av term in the Vlasov equation, we call
the unperturbed ion distribution function fol where

We do however treat the 'stationary' and 'beam' ions as separate terms when
this is necessary e.g. in time derivatives, where the two terms may have
different temporal behaviours.

Making use of the expanded form of the time derivative (2.2.2) we
equate terms of order unity in the expanded Vlasov equation for ions, and
get

afO
01 - o.at

Similarly, equating spatially Independent terms of order € gives

Since fO. Is independent of t, Integration of the above equation with respect
01

to t gives in general, a secular contribution to f~i'
conclude that

We therefore

at o.- _ ..
In a similar way, if we consider the Vlasov equation for electrons, we find
that

afoe_-ae:t
afoe--at - o.

Therefore, equating terms of order e: in the expanded forms of (3.3.1 and 2)
gives

~ + vafU
at ax

~~1(e)
m J ax

af .
_.E..!_ - 0av '

- 33 -



Cl)

and a24>1 - 41Tnoe I
(fll - fIe) dv. (3.3.4)..

3)(2

-Cl)

It is well known that equations (3.3.3 and 4) should be solved as an
initial value problem In order not to lose the significance of the Landau
contour. To avoid lengthy algebra however, we will simply assume solutions
of (3.3.3 and 4) to be of the form

flj r R. exp(i\X - IwR. t ) ,.. flj
R.

(3.3.5)

and ~l • r ~R. exp(iktx - Iwtt),1
1

and when the necessity arises, ensure that the appropriate velocity Integrals
are done using the Landau contour. In such a case, the w's will be under-
stood to refer to complex frequencies. For the main part however, they
are to be considered as the real part of the frequency unless specifically
stated otherwise.

Looking at the t-th Fourier component of (3.3.3) we get

(3.3.6)

Using Poisson's equation (3.3.4) to eliminate $~,we get the well known
linear dispersion relation

• - 0, (3.3.7)

c

where w . is the plasma frequency for the species J, and c denotes the
PJ

La ndau con tour•

As we saw in Chapter 2, the formal mathematics of the M.T.S. approach
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not only gives us the linear solutions, but also describes systematically the
second order corrections produced by cross modulations of the first order
waves. The description given In Section 2.2 of the characteristics of the
second order waves' frequencies and wavevectors, carries over into this
example. If we follow a parallel path of analysis to that in Chapter 2, we
will again find that the case of the beat wave's frequency and wavevector
satisfying the dispersion relation (3.3.7) gives rise to an equation des-
cribing the three wave interaction. Accordingly, we equate terms of order
E2 in the expanded Vlasov and Poisson equations, and get

_ (e)
m •

J

a~2 af.
~ -ax av (e)

m •
J

• 0, (3.3.8)

and

where the beam term in (3.3.8) will be omitted for the case of j referring
to electrons. As we did In Chapter 2, we assume solutions of the form

f2j L R, exp(lkR,x - i'wR,t),= f2j
R,

and '2 = L ~~ exp( ikR,x- i;R,e) .
R,

Before making these substitutions, we can separate the spatially dependent
parts of (3.3.8) from the spatially independent parts to give us two
equations. The spatially Independent terms form an equation describing
the quasi-linear effect of the waves on the unperturbed distribution
functions, and for the ion species can be written as

afl·__ I } 0· ,av (3.3.10)
s
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where the subscript s Indicates that we only take spatially independent
products for the bracket term.

We shall return to the study of (3.3.10) in Section 4.2, but meanwhile
making the above substitutions for f2j and ¢2 into (3.3.8 and 9). and
looking at the l-th Fourier component, we are left with

Iknv) fR,2· - (~)
~ J m._ J
-I(w -w)t1 1e +

af
I k <I> R,.:.:.2l. _

R, 2 av
(3.3.11)

(e~
m •

J
L

k ,kn m
k +,k .. kn m R.

and
(3.3.12)

R,Equation (3.3.11) gives us an expression for f2j. Writing this expression
firstly for j representing Ions and then for j representing electrons, we
can substitute for f~1 and f~e In (3.3.12) to give

l {1 + L2
j

c

41Tn.e

I dv a ( R- R.
-I (w' - w ) t

0 { - I R- R-
c

k2 aet f1 I - fIe) e
(; - kR,v)R, R.c

-tfW' + W' - ;; )tm . n m R.
_ (e~ L n af 1 I e

k.n<l>1 avm I kn,km

+ (e~m e

~fm -I(ID + tAl - (; ) t
o le n m R.
~ e } •

Note that the left hand side of (3.3.13) can be written as
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where £ is the dispersion function as It appeared In (3.3.7). So we can
formally write

• R.H.S. of (3.3.13)
c (w~ t kt)

except when £ - 0, that is when the second order beat wave is a normal mode
of the system. To avoid such a secular solution for ~~, we must insist
that the right hand side of (3.3.13) is identically zero when wR. - Wt.

t tSo doing, gives us an equation for the 'slow' variation of (fli-fIe)' and
substituting their values from (3.3.6) we see that the first term on the
right hand side of (3.3.13) simplifies to

(3.3.14)

Now for the second two terms on the right hand side of (3.3.13) to be
nonzero, the argument In the exponentials must be zero, otherwise the 'fast'
t-timescale oscillations would average out on the et-timescale to zero.
Therefore we arrive at the conditions for a non-trivial expression for the

R.slow variation of~l' namely that

= W + Wm n
(3.3.15)

• k + k •m n
These are the 'resonance conditions' discussed In Chapter 2. In a similar
manner to the derivation of result (3.3.14) we can substitute for f~1 and f~e
into the second two terms on the right hand side of (3.3.13). We can
therefore write the condition that the right hand side of (3.3.13) Is
identically zero as

a~~ 1: r m n• k +k -kt
tmn ~ 1 ~ 1 ' (3.3.16)aet n m at

wm+wm-wt
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where

=.!.}: 2

I
kik k af ./av dv(e) m n OJr W •imn 2 • PJ m . (wi-k,v} (wm-kmv) (wn-knv)J J

c

and k2 ae: (3.3.17)a, '" R- aw ,
Equation (3.3.16) Is the equation governing the Interaction of three waves
1 m n'1' ,1 and '1' It is of a similar form to those derived in Chapter 2

(cf. 2.3.1,2 and 3), and the resonance conditions for such an interaction
are identical to those derived using the M.H.D. approach. Moreover, the
interaction equation (3.3.16) and the matrix element (3.3.17) are structured
Identically to those described by Kadomtsev (1965).

The factor of 1/2 In fn arises because the complete sum In (3.3.17)Jl.mn
m ·n n ·mcounts all terms twice, I.e. Includes the '1 ~l term as well as the ~l ~l

term.

For the case wR, ~ wR,' namely when the second order beat wave Is not a
normal mode of the system, we can see from (3.3.13) that

> -+
time average

0,

due to the rapidly oscillating exponential factor. Therefore, In a similar

manner to the derivation of (3.3.16), we get tbe.solution for ~~ to be

• rR,mn (3.3.18)
kn+km-kR,
w +w ·wn m R,

where rimn Is of the same form as rR,mn given by (3.3.17), except that wR,

is replaced by Wt' In this case of course, e:(wt,ki) Is a nonzero quantity.
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Equation (3.3.16) governs the three wave interaction in the Vlasov
representation of a plasma, and forms the starting point for the discussion
in Section 3.4. Equation (3.3.10) represents a quasi-linear effect of the
waves on the ions, which we will study in Section 4.2 in connection with the
violation of the resonance conditions (3.3.15).

3.4 The Explosive Instabi) Ity

As we stated In Section 3.2, if the plasma was In thermodynamic
equil ibrium, that is did not have the Ion beam, then a(WE)/OW would be
positive. For those W corresponding to normal modes therefore, since
E(w,k) - 0, OE/OW would be positive. That being the case, all three wave
energies would be positive and the analagous equation to (3.3.16) for the
three wave interaction would have at (cf. 3.3.17) positive. Equation (3.3.16)
and the corresponding equations for O~~/OEt and a~~/o£t could then be solved
In ab identical manner to those discussed in Chapter 2. That is, the
solutions would be of the form shown In Figure 2.2, exhibiting the Manley-Rowe
behaviour of energy transfer back and forth between the three waves.

The deviation from thermodynamic equll ibrlum caused by the presence of
the ion beam however, gives rise to the possibility of having negative energy
waves, and a corresponding negative a for some waves In (3.3.16). As shown
in Appendix B, for the beam plasma system described in the previous section,
we can choose three waves ~~, ~~ and ~~ which have the following
characteristics:

W -m (3.4.1)
W ..
n

where n2 is the ratio of the number of beam ions to the total number of ions,
02 is the electron to ion mass ratio, Ub Is the ion beam velocity, and vth,e
is the electron thermal speed. In Appendix B, we also show that
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> 0 >

m,n
namely that wave t has 'negative energy' and waves m and n have positive
energy. Numerical values for all the relevant quantities are given in
Appendix B, for use elsewhere, and from them we find that the resonance
conditions (3.3.15) can be satisfied with a suitable choice of Ub and n.

In the following, the time derivative is understood to refer to the
'slow' timescale, and the ~'s are understood to be first order quantities.
Then the equation for ~t namely (3.3.16), and the equivalent equations for
~m and ~n for the case when only three waves participate, take the form

OIPt i rtmn
~~ ~*,• latlat n

a~m t rtmn ~* 4>* (3.4.2)-= n t,
at laml
a~n i rtmn 4>r 4>*'• "FnT m
at

In equations (3.4.2), am and an are positive, but at is negative. We
have transformed to the dependent variable ~r,rather than 4>t' in order to
get the equations in symmetric form. This makes no difference to the
matrix element rtmn, which is seen from Appendix B to be real.
however, the frequency and wavevector associated with 4>t are -wR. and -kt'

Because

the resonance conditions also take on a symmetric form, namely

• 0,

k1 + km + kn

Making the variable changes An m n - ~n lao 11/2, and~t' ~,m,n ~,mtn
M· r 1(lanl la I la 1)1/2, equations (3.4.2) take on the completely1mn ~ m n

- o.

symmetrical form of
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oAR. * *- M Am An'at

aA * *m (3.4.3)- M An AR.'at

aAn
at -

Since the Als are complex quantities, and M may be positive or negative, then
with no loss of generality we may write

with similar expressions for Am and An'
and M - IMI exp(-iS),
where the Bls and 91s are real functions of time, and e Is real. Substituting
(3.4.4) into (3.4.3) and equating imaginary parts gives

aa
at

BIIB+ _",_n
Bm

B B
+~}

B
n

cos a, (3.4.5)

Equating real parts gives

aBR.
= IMI BmBn sin a,at

aBm IMI BnBi, sin 9,0:at (3.4.6)

aBn
at -
Digressing sI ightly, we see that equations (3.4.3) give us a relation

similar to the Manley-Rowe relations discussed in Chapter 2. In this case,
the relation is

d *
0: - (A A )dt m m d *• - (A A )dt n n (3.4.7)
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*The important point to note about (3.4.7) is that the quantities AA are
given by

*AA -

2whereas the corresponding quantities derived In Chapter 2 were nov /2 (for
sound waves), and H2/4~ (for Alfven waves). That is, the present relation
(3.4.7) refers to energy as defined in Section 3.2. In other words, the
conserved quantities are no longer simply the energies of oscillation, but
also included is the contribution from changes In particle kinetic energy due
to the presence of the wave. From general considerations, we must have
conservation of energy, and the relation (3.4.7) describes such a conservation.
Furthermore, it reaffirms the physics of negative energy waves as discussed
In Section 3.2. That is, It provides a physically meaningful energy theorem
in which it is not necessary to classify one of the waves as having negative
energy, but simply to highl ight the individual energy terms which contribute
to the balance.

From the relation (3.4.7) we can, eas iIy show that

B2 _ B2 • constant = B2 _ B2
t m to mo'

B2 _ B2 B2 _ B2 O.4.8}.. constant -t n to no'

where the subscript '0' defines the variable at time t • O. Us Ing (3.4. 5)

and (3.4.6) we see that

sin e
cos e

aa, dB dB
N m n

de - -8 - + -B - + -B - •
t m n

Integration gives BtBmBn cos e - constant ..C. If we suppose the ampl itude
Bt is zero at time t - 0, then the constant C is clearly zero. Further, if
Bt, Bm and Bn are all nonzero at some later time, then cos e must be zero for
all time. Therefore, since sin e .. I, we can write the equation for B

t

(3.4.6), substituting Bm and Bn from (3.4.8), in the form
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fo
(~ _ 82 )1/2 (~
1 mo 1

n

For the case Bma - Bno' the integral is simple, and yields

It will be noted that the wave amplitude, and Indeed all three amplitudes
become infinite in a finite time, namely

t
(XI

(3.4.10)

As stated in Section 3.1, this phenomenon iscalledthe 'explosive Instability',
and the waves participating In the Interaction are said to be 'explosively
unstable' •

For the general case of Bmo ~ Bno' <3.4.9) is an elliptic integral of
the first kind. When Bmo > Bno > 0, we can solve It, to give

IMlt .. 8
mo

F(~,q),

where F is the elliptic integral of the first kind with argument ~ given by

and ampl itude q given by

q ..

(82 _ 82 )1/2
mo no

8mo •

As shown In Appendix B, the shortest time in which the three waves can
reach an Infinite amplitude, is given by the simple expression (3.4.10), namely
when Bmo .. 8 ,and for the waves we are interested In, takes the valueno

t
(XI

12813
- 31<1>mol '

where the unit of potential (<I» Is the electron te~perature, and the unit of



-1time is the inverse electron plasma frequency (w ).pe The units adopted
for these calculations and for the plasma simulation programs are discussed
In Appendix B. Ir

3.5 Discussion

We have examined a one dimensional plasma configuration whose
equilibrium can be pictured as in Figure 3.1, where vn, v and v are the

J(, m n
phase velocities of the three ion sound waves 1, m and n having frequency
characteristics described by equations (3.4.1). We have seen that the three
waves can interact in such a manner that they a 1-1 ga In an Inf Inite amp l ltude
in a finite time. Figure 3.2(a} shows diagramatically an Interpretation of
the mechanisms driving the instabl! ity. Figure 3.2(b) is the diagram
usually adopted, since it closely resembles the three wave interaction dis-

cussed in Chapter 2. Unfortunately, albeit an economical picture it is non-
physical, whereas the version given in Figure 3.2(a) as well as being a
physical picture of events, gives us a lead in looking for processes which
stabilise the instability.

Now it was pointed out earlier that only three waves are considered to
participate in the interaction. We saw in Chapter 2 that if a large number
of wave pairs exchange energy with a given wave, then an energy equalisation
occurs between the various modes, and the interaction peters out. If
howeYer, we have a negative energy wave present, as Dikasov, Rudakov and
Ryutov (1965) have shown, no such equilibrium can be reached so long as the
three wave interaction dominates the time evolution of the waves. This is
because an increased number of poslti~ energy pairs 'feeding' off a negative
energy wave accentuates the growth of the negative energy wave. For this
reason, by restricting our attention to the simple case of only three waves,
we do not omit any of the basic physics of the ion beam explosive instability.

Clearly the statement that the waves gain an infinite amplitude is

- 44 -



electrons

f (v)o

.Ions»>

-~~~ --~---------------~~----~~----~~~vth,e
FIGURE 3.1

wave m wave n

~~

ion beam kinetic
energy at vI

distortion of bi at
vl

I\/V
wave l

FIGURE 3.2(0)

1.0

energy
transfer

v-v
negative energy

wave (

_ 45 _FIGURE 3.2( b)



physically unacceptable. Moreover, the result violates the perturbation
expansion used to derive It. In the next Chapter we look at possible
stabil isation mechanisms, which must clearly come from considering more than
just the effect of the waves on one another. Hence we look in more detail
at the medium, in particular at the beam Ions.
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CHAPTER 4

THE SATURATION OF THE INSTABILITY

4.1 Introduction

In this Chapter we analyse the effects on the plasma particles of the
three explosively unstable waves discussed in the previous Chapter. By
doing this, we show how the beam particle distribution Is adjusted by the
wave electric field into a configuration In which the three waves can no
longer interact explosively.

In Section 4.2 we study the quasi-linear equation (3.3.10) which arose
directly from the multiple timescale formalism. From It we find that the
beam can slow down and that the beam temperature can increase. The most
Important consequence of the beam velocity decreasing Is that the
frequencies of the two beam modes decrease accordingly. This causes a
breakdown in the frequency resonance condition (3.3.15) and hence the Inter-
action ceases. In a plasma with many waves propagating however, a pair of
positive energy waves previously out of resonance with the negative energy
wave, may then interact explosively with It. In this way the beam will
slow down due to a succession of interactions until the two Ion distributions
merge and aE/aw Is positive for all waves.

An increase in Ion beam temperature has the effect of increasing the
Landau damping of the positive energy beam mode and decreasing the Landau
growth of the negative energy mode. As Fried and Gould (1961) show, If
the ion and electron temperatures become comparable, Landau damping will be
sufficient to prevent the wave from propagating at all. For the plasma
parameters chosen in the computer simulations, the dominant effect is found
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to be the increase in ion beam temperature, and we find that only a slight
increase is enough to quench the instability.

The approach adopted in this Chapter, namely of analysing the effect of
the waves on the medium, has been used previously by Dum and Sudan (1969).
They investigate the case of explosively unstable high frequency electro-
static flute modes in a mirror confined plasma. By analysing an expression
for the effective transverse diffusion coefficient, they show that it is
enhanced considerably by the explosively unstable modes. This results In
a plasma configuration In which negative energy waves cannot propagate.
In Section 4.3 we derive an analogous result for the present case by
studying the Vlasov equation directly. We find that the average beam
velocity decreases, that the beam Ions heat up, and that the ion beam dlstri-
but ion function distorts in a way which Increases Landau damping.

4.2 Quasi-l inear Effects on the Ion Beam

Equation (3.3.10) describes the quasi-l inear effects of the waves on
the beam distribution function and on the 'stationary' ions. Since we know
however, that it is the presence of the beam which is allowing negative energy
waves to propagate, we restrict the analysis to the study of the quasi-l inear
effects on the beam.

Equating terms in (3.3.10) which have a velocity dependence Iike
(v - Ub), we can write the kinetic equation for f~i (dropping the EiS) as

a~l Ofl',(e) { }
m i ax3V'"" s

where the subscript's' denotes a spatially Independent bracket term, and
fli onJy includes the af:i/av part of
coefficients, substituting fii

af .rs«.0'
So, in terms of Fourier

from (3.3.6) we can say
" afbilav
a {o }
av (w -k V)q q

that

(4.2.1)
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Now we analyse (4.2.1) for a time dependence of both the average beam
velocity Ub and the beam thermal velocity vth,b' We only give the formal
mathematics of the Ub case however, since the two are very similar.

We define Ub in the usual way as

Ub • [ fb, v d v,
01

and we can then integrate (4.2.1) to give

2 2

I
b

- au ik2 afol/avb ... (~) t I~jI {Ill -k v)dv.m . qat I kq"O q q
(4.2.2)

To a good approximation we can say that the integrand of equation (4.2.2)
only has non-zero values near the phase velocities of the two beam modes.
That is, where the absolute value of the Integrand's numerator is a maximum,
and its denominator goes to zero.

Now km is the wavevector for the fast beam mode at v ...Ub + onvth,e' and
this mode has positive energy. Let Ym be the Landau damping rate for this
mode (damped since the distribution function has a negative slope at that
velocity). Similarly kt Is the wavevector of the slow (negative energy)
beam mode at v - Ub - 6nVth,e and we let the growth rate be Yt (growing since
the slope is positive at that velocity). Using this notation, both the y's
are positive, and since we are treating a configuration in which the Landau
rates are small, we can apply the 1imit rule for the integral In (4.2.2).
That Is, we use the relation

00 00

Limit
f

~(v) dv p

f
~(v) dv - I 1T g(a),- +

y -+ 0+ v-a ± y) (v-a)

-00 -00

where P denotes the principle part Integral. Now we sum over positive and
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negative wavevectors In equation (4.2.2), since both contribute, and change
variables such that all the k's and y1s (for convenience) are positive.
We use the transformations

w( -k) • -w(k),

and y(-k) - y(k),
which are the reality Gonditions on the Fourier expansion. So doing, we
write equation (4.2.2) in full as

2
_ (e)

m i

2
+ .(~)

m i

}

v-vm
2 2 b+ (e) ik r~ml {P + in af ./av } .m. m I m 01
I v·vm

We note that the principle part integrals cancel to leave

(4.2.3)

Nowafb./avl Is
01 v-v R,vth,b' it takes on

positive, and if fb is Maxwellian with thermal velocityoi
the value

• G (say),
where the values of the parameters 0, n, v and vth b are discussed inth,e ,
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Appendix B. We can therefore write

2
- 211"(e)m.

1
(4.2.4)

So, as the waves increase in ampl itude, the beam velocity decreases.
This has the effect of (a) shifting the interaction out of resonance, and
(b) eventually changing the negative energy waves into positive energy waves.
Equation (4.2.4) will break down as the beam velocity approaches zero, since
the assumption of separating the beam and stationary terms of the ion
distribution function ceases to hold.

To study the quasi-l inear equation (4.2.1) for a time dependence in
Vth,b' we make the usual definition

f
b 2

• f (v-U)01 b dv,

and a similar analysis to that done for the beam velocity yields the kinetic
equation

2oVth b -- ,at
(4.2.5)

There is a close similarity in form between (4.2.4) and (4.2.5), and in
Chapter 5 we compare these results with results from computational plasma
simulations.

4.3 Diffusion and Friction Coefficients
In the last Section we assumed that. a time dependence in f~1 meant a

time dependence in Ub and v~h,b' In this Section we examine the Vlasov
equation to see how the effective collision terms arising from the wave field
affect a plasma configuration of the form under discussion. In particular
we examine h graphical form, the properties of the diffusion and friction
operators acting on fb. in order to build up a physical picture of the

01

evolution of the ion beam.
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Writing the ion Vlasov equation in terms of the Fourier coefficients

fk and ~k as
af af k I

(w-kv)fk = _(e) k~ _2. + (e) L (k-k I) ~k-k Im, k av m i av
k'

we extract from the right hand side those terms diagonal along fk and denote
Now "k has the phys ica 1 mean ing of an effect ive call ision

frequency, and in general will be an operator. Following Kadomtsev (1965)

we can wri te

af
( .) f (e) k 0 (e) ~w-kv + I\'k k· - m I ~k Tv"" + m I t:

k'

(4.3.1)

Equation (4.3.1) gives us an expression for fk, and if we substitute this
expression into the nonlinear term on the right hand side of (4.3.1) we get

af
(w-kv + i"k)fk - _(e) k~ ___.2. + (e) L (k-k')~k_k' xm i k .av m t

k'
af

X.l.{ g (e) k'A.k' _2. +av - k I iii. ." av
I

(4.3.2)

(e) ~+ gk' Lm .
I k"

where 9k' is an operator with the property

For such an operation to have any meaning, we must be able to extract those
terms diagonal along fk from equation (4.3.2), in order to get an expression
for the call ision operator. There is only one such term in the summation
over k' I, namely when k" = k, and then extracting terms diagonal along fk
gives
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From this equation we are able to Inspect the k - 0 terms. That is, the
terms which describe the effect of colI isions on the background state.
Putting k - 0, and changing the summation subscript k' to k we see that

i\l f ...o 0
e 2 2 af

() ~ k21~ I JL { 0 }in • ~ 'l'k av gk av

In particular, we shall analyse the physical effect of the two terms
bon the right hand side of (4.3.3) In the case of fo being fol' In this

case we can write

Hence,

b1\1 f .o 01
•

We shall consider the two terms on the right hand side of (4.3.4) separately.
If we treat gk as an algebraic multiplier rather than an operator (this
involves assuming that \lk Is a sJmple number), then the second term on the
right hand side of (4.3.4) can be written as

2
(e)
m •

I

2(v-U) -b (4.3.5)

It will be recalled (cf. 3.4.1) that the dispersion equation (3.3.7)
has two solutions for waves propagating on the beam, namely
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Moreover, we chose to consider the case of only two beam modes propagating
in the plasma. We signified these by ~t (negative energy) and ~m (positive
energy). Substituting these two terms Into the summation in (4.3.5) gives
their contribution to be

2
(e)
m •

I

2
k~!<pm!

Iv n + ~k-m""'(U~b---v""')-+--:-k~15n-v-h--+----:i-v-}
'" m t ,e m

x

x (4.3.6)

Breaking this down even further, we first look at the function

2
k2!cp !m m (...km~(r.:U:-b--v""',-+-:---;-k-=-15n-v-h-~+ ~I:-v-' 4. 3. 7)m t ,e m

+tVt

Now for the case we are interested in, in order to satisfy the resonance
conditions (3.3.15), kt must be greater than km' As we will explain in the
next Chapter, the choice kl • 3km is made for the plasma simulation programs,
and so we shall use that value in the present discussion. Furthermore,
!<pt!will be greater than I <pm! since as we stated In Section 4.2, the mode t

suffers Landau growth, whereas mode m is Landau damped. This being the
case, the function (4.3.7) is of the form shown In Figure 4.1, where it is
shown just away from the real v axis, where It will be non-singular. From
(4.3.6), this non-symmetrical function multlpl ies

2 2(v-Ob) - vth b b
{ 4 '} fol'

vth,b
(4.3.8)

The effect of the term (4.3.8) Is to Increase the thermal velocity vth,b
. fb d • th . b t d d .since oi ecreases In e region e ween -vth,b an +vth,b' an Increases

everywhere else (cf. Figure 4.2).
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As well as this heating effect, the beam distribution function is dis-
torted non-symmetrically due to the term (4.3.7). If we consider the
dominant part of (4.3.7), namely the part which affects the beam particles
near v K Ub - onVth,e' the beam will distort as shown in Figure 4.3. This
distortion, like the heating effect will decrease the Landau growth rate
of the negative energy wave by reducing the gradient afb./av at the wave's

01

phase velocity. If we also consider the remaining part of (4.3.7), namely
that which affects the beam particles near v • Ub + onVth,e we find that the
Landau damping rate of the positive energy beam mode increases.

As Fried and Gould (1961) have shown, an increase in Ion temperature
causes heavy Landau damping of ion sound waves. The effect of the second
term in the equation for the effective coil islon frequency (4.3.4) however,
is not only to heat the Ions, but also to distort the beam distribution
function around the phase velocities of the two beam waves.

Moving on to the first term in (4.3.4), it can be written as

+

I b
--=-2--} f .,

01
vth,b(kmUb + k onvth - k v + iv )2m ,e m m

where we have substituted the algebraic form of
2

Since k~I~R.1 is greater than
bcussed earlier, the multiplicand of f . in (4.3.9) is of the
01

gk and the beam modes'
2

k31 ~ I as d is-m mwavevectors and frequencies.
form shown In

Figure 4.4. That is, the particle distribution function is distorted such
that it decreases In the region v > Ub and increases in the region v < Ub.
This corresponds to a friction effect in that the average particle velocity
decreases. The deceleration moreover, Is velocity dependent and hence
further contributes to the distortion of the Maxwell ian form of the particle
distribution.
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4.4 Discussion

In this Chapter we have analysed possible stabilising mechanisms for the
explosively unstable plasma described in Section 3.4. A quasi-linear
analysis of the effects of the waves on the beam ions shows that the beam
ve 1oc ity (Ub) can decrease, and the beam temperature (Tb) can increase. The
equations describing these phenomena (4.2.4 and 5), can be written in the
form

(4.4.1)

and

where A is linearly related to the wave quantity ",2. In order to compare
the relative Importance of these two effects, we can make the crude
approximation that the waves are growing such that A is proportional to some
power of t. For convenience we write equations (4.4.1) in the form

dUb -nBtn-1err- • ,

and dTb-- -dt
n-l2nBt Tb'

where B is a constant. These equations can be solved to give

and

Although A is not proportional to a power of t, this example shows that while
the beam velocity decreases linearly with the quantity (tn), the temperature
increases exponentially. As we will see in Chapter 5, the computer plasma
simulations also display the much more rapid change in Tb compared with Ub,
and for this reason we maintain that the heating of the ion beam is more
important than the deceleration.
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As Fried and Gould (1961) have shown, ion sound waves cannot propagate
unless the ions are cold. They show that if the beam ion temperature is of
the same order as the electron temperature, then the Landau damping rate of
an ion sound wave will be of the same order as Its frequency. In other
words, the waves will dissipate after a few oscillation periods. Jarmen,
Stenflo, Wilhelmsson and Engelmann (1969) show that the Landau damping rate
needs only to be greater than a quantity of order lIt for It to suppress an...
explosive Instabll ity. The heating effect could therefore stabilise the
instability through Landau damping.

Since the frequencies of the two beam modes depend on the beam
velocity (cf. 3.4.1), the beam deceleration will shift the frequencies w£

This causes a breakdown of the frequency resonance conditions
(3.3.15), and hence the efficiency of energy transfer between the three waves
decreases. This mechanism can therefore also contribute to the stabilisation
of the interaction.

The analysis of the ion beam done In Section 4.3 however, shows that
as well as a deceleration and heating, the beam Ion ctlstrlbution function
distorts. The effects of this distortion are perhaps the most difficult
to quantify. It has the effect however of decreasing the Landau growth rate
of the negative energy wave, and Increasing the damping rate of the positive

energy wave. Moreover, since the distortion is non-symmetrical, It causes
a perturbation of the average beam velocity (decreasing It), over and above
the deceleration discussed earlier.

Other authors have suggested stabilisation mechanisms for the explosive
instability. In particular, Fukai, Krlshan and Harris (1970) show how the
instability can be stabilised by the higher order nonl inear interactions, and
in particular by four wave coupling. They show that the four wave Inter-
action equation takes the form
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where the matrix element M is a function of the characteristics of waves 1
and m. This equation describes an ampl itude dependent shift in the
frequency of wave 1, which as we stated earlier could stabil ise the inter-
action. It does not however tell us why the frequency should shift.
Moreover, as Jarmen, Stenflo, Wilhelmsson and Engelmann (1969) show, while
such a shift can stabilise explosive instabilities, it can also destabillse
situations which are otherwise stable. For this reason we do not consider
this proposal further.
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CHAPTER 5

THE GALAXY AND NOVA PROGRAMS

5.1 Introduction
In this Chapter we shall discuss the development and results of two

computer programs which simulate a plasma. They are 'GALAXY', written by
Boris and Roberts (1969 A and B), and 'NOVA' written by McNamara and Langdon
(1971). Individual details of each are given in Sections 5.2 and 5.3.
Both simulate two dimensional plasmas in which the particles Interact
through their Coulomb forces, and self consistent magnetic fields are Ignored.
A constant magnetic field in the third direction however, can be incorporated
into either program.

The 'plasma' Is considered to be inside a square or rectangular region,
which for numerical reasons Is divided into a mesh of square cells. The
region is periodic in both directions and typically 10,000 to 100,000
particles are used In the simulation. The macroscopic quantities of charge
density, potential and et·,ctric field are calculated as discrete functions
of the x-y cell co-ordinates. The amount of charge in each cell is calcu-
lated according to some prescription, and a charge density matrix is built
up. A discrete form of Poisson's equation Is solved numerically to give
a matrix of values of the potential In each of the cells. A simple numeri-
cal difference scheme Is then used to calculate the electric field vectors
In each cell. The positions and velocities of the individual particles
are Integrated forward through a small time interval, from their equations
of motion. Using the updated particle positions, the electric field is
recalculated ready for Integrating the co-ordinates through the next timestep.
This means that full plasma diagnostics can be obtained, either in-line or
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by separate programs examining data dumped during the simulation onto some
backing store.

At first, It appears that the simulated plasma differs in many
characteristics from a real plasma. In particular, the small number of
particles used, the discrete nature of the system, and usually an unphysical
electron to ion mass ratio, need explanation. The difference arises from
computational constraints, but with careful programming the qual itative
differences can be minimised. The result is that the programs can only
simulate a restricted set of plasma configurations.

As demonstrated by Buneman (1959) a plasma satisfying the Vlasov-Polsson
equations can be simulated by a large number of macro-particles which obey
the equations of motion

dx •Cit v,
dv
- • a,dt

where a Is the acceleration. The macro-particles do not bear a one to one
correspondence with real plasma particles, but for reasons of minimising
statistical fluctuations In the numerical analysis, a 'large' number of
particles Is nevertheless desirable. The small number of particles used
In practice, Is due to the 1imitations of computer speed and core size. The
limitation of core size can be overcome by using a large backing store for
dumping and retrieving plasma co-ordinates, but data transfers take time.
By multiplexing these Input/output operations with central processor activity,
this overhead can be considerably reduced. The major considerations there-
fore are those of computer speed and efficient encoding of the most frequently
used routines. Within a given computer configuration, and with a fully
optimised program, the choice of the number of particles depends on how many
tlmesteps need executing and how long the computer can be dedicated to that
program. In the case of GALAXY and NOVA, as few as 10,000 particles moving
for a few hundred plasma periods requires computer activity for a time of the
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order of hours. By making the system periodic in both directions, and by
solving Poisson's equation for a doubly periodic region, the fact that a
small number of particles are used is not critical, since their trajectories
are determined by a highly accurate electric field, calculated from a wide
spectrum of infinite electrostatic waves.

The discrete nature of the macroscopic quantities arises from the need
to solve difference equations rather than differential equations. Since
the electric field is a step function of the cell positions, all the particles
in a given cell suffer the same acceleration, thus reducing binary
collisions between particles in the same cell to zero. It is desirable for
the plasma to evolve collision free, and although extremely short range
colI islons are nonexistent, the particles do suffer from colI islons with the
grid, that is the discontinuous electric field across cell boundaries. The
severity of such collisions depends on the method adopted for calculating
the electric field, and In particular on the way the charge density matrix
is built up.

In the original version of GALAXY, the charge of a particle was allotted
to the centre of the cell in which It resided. The potential was then
calculated using a fast Fourier transform technique which we shall discuss
later. This method of charge allocation is usually called the nearest
grid point (NGP) approximation, and has one severe drawback. In order that
the electric field does not fluctuate wildly from cell to cell, an extremely
large number of particles must occupy each cell, and as we have said, this
Is prohibited by its high running cost.

Many methods of overcoming this 'grid noise' are possible, the most
obvious being to allocate charge according to a more realistic formula. The
best known method of doing this is to adopt the 'cloud In cell I (CIC) method
used by Birdsall and Fuss (1969) in which the charge of a particle is
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distributed among its nearest neighbour cells according to its position
within its cell. Unfortunately, due to the integer nature of the GALAXY
co-ordinate buffers and the co-ordinate integration routine, such a modifi-
cation would have increased the co-ordinate integration time by a factor of
four or more.

The method adopted by the author was to calculate the charge density
using the NGP approximation, and smooth the electric field using the
formula

Eij - (Ei-+-l,J+l+ Ei+l,J + EI+l ,j-l + Ei ,j-l +

+ Ei-l ,j-l + Ei-l,j + Ei-l,j+l + Ei ,j+l)/8,

where i and j are x and y cell numbers. That is, by defining the I smoothed I

electric field to be the average of the values in the eight surrounding
cells. This form of smoothing is analogous to calculating the electric
field from the potential using a higher order difference scheme to the first
order method used in GALAXY. It has been tested by both the author and
Hockney (1970), and gives smoothness comparable with the CIC method. It
has the advantage over the CIC method of being faster, in that the arithmetic
Is not only short, but performed only on the electric field matrix rather
than each particle's co-ordinates.

In a real plasma, since the Ions are heavier than the electrons, they
move more slowly unless of course, the Ion temperature greatly exceeds the
electron temperature. For the present case however, this creates numerical
difficulties since the Ion motion is highly important. For stabil ity of the
numerical integration scheme, the timestep of integration must be small enough
to ensure that the fastest particles move only 1/2 of a cell in one step.
This means that tens of thousands of tlmesteps are required to simulate a
significant amount of ion movement. This being too expensive, the ion to
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electron mass ratio is usually decreased in simulation programs to a level
which can be afforded. The ratio however, must be maintained high enough
for the electrons and not the ions to respond to local changes in space
charge, otherwise much of the physics would be lost. It is found from
testing various values, that a ratio of about 16:1 Is the lowest 'safe'
1imit for simulating ion motion. For a large range of phenomena, this
ratio does not affect results qualitatively, and a simple re-scaling can give
accurate quantitative agreement with experiment (cf. McNamara, Boris, Cook
and Sykes, 1969). The value of 16:1 was the value used by the author for
the experiments discussed in Sections 5.2, 5.3 and 5.4.

In order to simulate the explosively unstable plasma discussed earlier,
and get results which can be compared with the theory, the programs must
have two important properties. These are, that the program diagnostics
Include an accurate Fourier spectrum of the waves, and that the plasma
uniformity in the second direction be maintained exactly.

The uniformity was maintained in essentially the same way In both
GALAXY and NOVA. GALAXY uses a 64 x 64 mesh of square cells, but only one
strip of cells in the x-direction was occupied by particles. When the 64
component charge density vector was calculated, it was repl icated In each of
the other 63 strips parallel to it. This made it possible for the standard
two dimensional Poisson solver to be used with only minor re-scal ing
modifications. More importantly, 64 times as many particles than in the
full two dimensional program, could be simulated.

In the NOVA program, the numerical analysis was performed on a rect-
angular grid of 128 x 4 cells (the reason for these choices of grid sizes
will be explained later in this Section). HavIng only 4 cells In the
(uniform} y direction made the repl icatlon of the charge density vector
eight times faster than in GALAXY. Moreover, with 128 cells covering the
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same Ireal I length of plasma as in GALAXY, and with floating point co-ordinate
arithmetic, numerical errors were considerably reduced in NOVA.

It will be noticed that in both programs, the number of cells along each
side of the grid is a power of two. This is because of the numerical
technique used to solve Poisson1s equation. The charge density matrix is
Fourier transformed, and Poisson1s equation is solved in k-space. For a
neutral plasma, this simply involves setting

k ~ 0,

~k • 0 k a 0,

where nk is the k-th component of the transformed charge density. In this
way, the potential coefficients are available for comparison with theory,
and can be Fourier synthesised to give the potential in real space from which
the electric field can be calculated. The Poisson solver in GALAXY was
written by Boris (1968) and operates on a square grid of side 2n cells,
where n lies between 2 and 6. The NOVA version is more general, operating

m non a rectangular grid of size 2 x 2 cells, where m and n have a minimum
value of 2 and a maximum governed by the size of the computer. Their common
denominator and central feature is the IFast Fourier Transforml method of
Gentleman and Sande (1966).

The IFast Fourler Transforml is an algorithm whereby an N point trans-
form is defined in terms of smaller transforms having lengths which are
factors of N. This is a recursive formula which may be implemented directly,
although by simulating the recursion, one avoids the unnecessary calculation
of some complex exponentials. By making N a power of 2, the complete trans-
form is defined in terms of 2-point transforms which can be done using only
addition and subtraction. The logic of the algorithm requires a minimum
sequence length of 4, but is easily adaptable to cover multi-dimensional
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sequences. The reason that the 'Fast Fourier Transform' was implemented in
GALAXY and NOVA, rather than using a standard five point difference scheme
for solving Poisson's equation, is twofold. Firstly, it provides the exact
solution for a discrete periodic system, and secondly it gives the physically
Invaluable potential coefficients as part of the diagnostic information.

From the nature of these programs It is clear that an extremely large
number of plasma parameters are available for analysis at each tlmestep.
For the most part however, this data will be reduced to those quantities which
are important to the physical problem in hand. In the present case for
instance, we only require tables of wave amplitudes, beam temperature and
average beam velocity at each tlmestep. It 15 necessary however, to examine
the plasma behaviour globally to ensure that no extraneous physical or
numerical phenomena are present. This procedure, necessary to determine
whether the experiment is functioning as it was designed to do, is impossible
to perform manually on account of the size of the data. The task of getting
a global picture of particle trajectories and overall plasma evolution must
therefore be done with the aid of the computer.

For this reason, the 'MOVIE' package was written by Boris, Hodges,
Roberts and Hamilton (1969) for use with the GALAXY program. MOVIE produces
frame(s) of film at each timestep, of selected particle positions or views
In k-space, using a model 120 Benson-Lehner microfilm recorder. The
necessity for an efficient and versatile graphics package for the examination
of raw data cannot be overemphasised. The author used the package during the
testing of various methods of initialising particle co-ordinates to give an
equll ibrium plasma, and during the testing of methods to perturb selected
waves without introducing extra effects. This saved a considerable amount
of time during the setting up of the experiment, and clearly could also aid
the physicist in finding the physical proces ses whl ch govern some plasma
phenomena.
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Having outlined the framework of the simulation programs, in
Sections 5.2 and 5.3 we shall discuss GALAXY and NOVA individually, In terms
of accuracy, speed and versatility. The results of the experiments, and the
comparison with theory are given in Section 5.4.

5.2 An Appraisal of GALAXY

A two dimensional plasma simulation program, GALAXY, was written by
Boris and Roberts (1969 A and B) to run on the ICl KDF-9 computer at the
UKAEA Culham laboratory. It was written to test a number of programming
techniques In an environment of repetitive computations Involving a large
number of variables. It was tailored to the core size, word length,
Instruction set and logic of the KDF-9, and evolved Into a powerful tool for
studying nonlinear phenomena in plasmas (cf. McNamara, Boris, Cook and
Sykes, 1969). A flowchart of the program In the form used by the author is
given in Figure 5. 1•

The positions and velocities of a large number of point particles are
computed at successive closely spaced tlmesteps by calculating the electric
field acting on each of them from Poisson's equation. An Immediate problem
arises in the choice of initial particle positions and velocities, such that
they form a steady state distribution such as that shown In Figure 3.1.

The simplest way to achieve spatial uniformity Is to assign particle
positions on a regular lattice within the region of the plasma. Unless
particle positions and velocities are carefully chosen however, the net
result of such an initialisation Is that the positions randomise after a few
tlmesteps, and It is a long time before collective effects are measurable
against the background noise. The time taken for the KDF-9 to execute a
single tlmestep of GALAXY with a particle configuration of the form adopted
by the author, was typically 10-20 seconds, and so the cost in terms of
computing time prohibited the regular use of such a technique. In the next
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INITIALISATION: Generate buffers of 256
particle co-ordinates. Make half of the
buffers contain electrons, and half contain
ions and beam ions. Place all particles
in the range x • 0-64, y • 0.5.

Print out particle and
potential data for this
tlmestep.

/ ~

Calculate the charge density
vector and replicate It to
fill the full 64 x 64 grid.

IfSolve Polssons equation_ Integrate positions using
current velocities.
Calculate Ub, vth,l and
vth,b'

this is the first tlmestep,
perturb selected potential
coefficients.

Smooth the electric field Integrate velocities using
current accelerations.In the x-direction. It will

be zero in the y-dlrectlon. I'

Calculate acceleration matrix
~----~,~ for each species from the,

electric field.

Flowchart of GALAXY showing variations required to deal with the one
dimensional explosive Instability. Details of Input/output and vector
integration are given by Boris and Roberts (1969 A and B).

FIGURE 5.1
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Section however, we show how a careful 'lattice-type' choice of positions
and velocities can yield a low-noise numerical plasma. The method
unfortunately, did not lend Itself to GALAXY because of other 1imitations of
the program, which we will discuss later In this Section.

Another common method of particle positioning Is to place them com-
pletely randomly to begin with, and damp the resulting noise during the
solving of Poisson's equation. Apart from being a physically questionable
practice, It is easily shown that In a two dimensional plasma, the energy
spectrum generated by randomly positioned particles Is of the form

W(k) ex

which diverges for small k. For such a plasma In thermal equilibrium,
the spectrum should be of the form

-1where kO - 2~~O ' the inverse Oebye screening length. This concentration
of energy into the longer wavelengths causes severe problems when studying
the behaviour of low ampl itude, long wavelength phenomena. Figure 5.2
shows a plot of ~k(t) from a typical run of GALAXY initialised using random
positioning. The value of k corresponds to the longest wavelength mode in
the plasma. No smooth waveform can be detected, and the amplitude, which
approaches unity at times cannot be considered 'small' for purposes of
relating results to a perturbation theory.

The diverging form of the energy spectrum arises from neglecting binary
correlations within the plasma; but calculating particle positions to give
the exact Oebye distribution would take many hours of computing time In a
program 1Ike GALAXY. Williamson (1970) however, proposed an algorithm for
correlating Initial particle positions such that they displayed the correct
Oebye distribution to a high degree of accuracy. His method, which we shall
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not discuss in detail here, involves positioning one species, say ions,
randomly, and to each ion associating an electron at a distance determined
by an appropriate function of a normal ised random variable. Using his
algorithm, Williamson claims that 99.95% of the electrons are within 0.001 AD
of their correct position, and that less than one electron in 1012 is mis-
placed by more than 0.01 AD' It was Will iamson's method which the author
used in production runs of GALAXY in order to help cancel numerical 'noise'
generated by approximations and rounding errors elsewhere in the program.

Initialisation of particle velocities is a simpler task, and there are
many ways of generating a large number of velocity values which for instance
are normally distributed. The method used by the author for runs of GALAXY,
was to generate the x-velocity from the relation

..
where vth is the thermal velocity of the species, and R is a random number
in the range 0-1. The y-velocities were set to zero, since it was desired
to simulate a one dimensional plasma.

As we have said, GALAXY uses a 64 x 64 grid for its numerical analysis.
In terms of physical units, we use non-dimensional quantities as follows,

Debye screening length .. AD .. 1 cell,
electron plasma frequency .. w .. 1 ,pe
electron thermal velocity .. v .. I,th,e
electronic charge .. e .. -1,

electronic mass la me .. 1 ,

electron temperature .. T .. I,e
and all plasma quantities are given in terms of these units (potential is
given in terms of Te).
set of k values,

In these units, the Poisson solver uses the discrete
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k •
±21T~ (0,1,2,

OAtAO
31),

to form the Fourier sum. This gives a spectrum of waves from -k0/2 to
+k0/2 which may interact. This choice of data ensures that only those
waves which would have been heavily Landau damped (Ikl > kO/2) are omitted
from the sum.

We choose the wavevectors of the three interacting waves to be

kR, • 3.21T/64AO (slow beam mode) ,
k - 1.2'1f/64AO (fast beam mode) ,m
kn • 2.21T/64AO (Ion sound mode).

This choice is made because they are the three longest wavelength modes
which satisfy the wavevector resonance conditions (3.3.15), and as such are
the three waves least affected by Landau growth or damping. The frequency
resonance conditions are satisfied by making the ratio of beam ions to total
ions,

and by making the ion beam velocity,

2 + 13
8 0.4665.

As far as possible we have tried to make the simulated plasma satisfy
the limitations Imposed In Appendix B for calculating the explosion time t .

00

Two of the approximations are not satisfied as well as Ideally they might be.
The quantity n2 is required to be very much less than unity. Unfortunately,
a value much less than 1/4 would have made the number of simulated beam ions
insufficient to support the collective oscillations required. A 1so, it Is
necessary that the beam velocity satisfies

v th , I « «

but in fact it Is not much smaller than vth,e' Its value is determined by
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the other parameters of the system, and the frequency resonance conditions.
The only way it can be made smaller without upsetting other requirements, Is
by making n2 smaller also. Ub is however » vth,l since the electron to ion
temperature ratio Is arbitrary, and the choice of 32 satisfies the inequality.

As shown in Appendix B, we expect the explosion time t to be of the~

order of many hundreds of plasma periods If the ~'s are initially ~ 0.1.
With a timestep as large as 0.5 (w-l), the constraint of computer timepe
restricts the total number of particles used to less than 5000. Our choice
of 4096 seems small, but being only one dimensional, corresponds to 64 plasma
'sheets' per Debye length, which is within the physical and numerical
approximations.

GALAXY was tested many times with various data In order to find a
satisfactory set of parameters to simulate the explosive Instability. It
was found that perturbing the three selected Fourier potential coefficients
was unnecessary, since the level of thermal fluctuations Is large enough to
cause the three waves to go unstable.

The GALAXY program employs an exceptionally fast form of vector
integration devised by Boris and Roberts (1969 A and B), which Is based on
packing the x and y parts of a co-ordinate (position, velocity or acceleration)
into a single 48 bit KDF-9 word. By suitable packing, both components of
a co-ordinate can be integrated using a single Integer addition, but
unfortunately, the method has only first order accuracy In the timestep ~t.
Since our simulation concerns Ion motion over many hundreds of plasma periods,
the tlmestep was chosen to be 0.5. This however, causes an accumulation of
errors in the electron trajectories and a corresponding electron noise
problem over the whole energy spectrum. To modify the vector Integration
routine to use a higher order scheme would increase the GALAXY execution time
by an order of magnitude, which Is clearly out of the question.
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As we said in the previous Section, by employing the NGP approximation
for determining the charge density matrix, and by smoothing the electric
field after solving Polsson's equation, we get an electric field matrix which
has continuity comparable with CIC calculations. Although this is the case,
the accuracy is not as good as that for CIC. Whereas our method takes an
inaccurate electric field and smooths it, the CIC method uses an accurate
charge density and automatically gets a smooth field from It. The important
point to note Is that our method, while damping erratic fluctuations in the
particle trajectories caused by the vector integration technique, gives
Fourier potential coefficients derived from the rough NGP approximation.

The results of the GALAXY runs are therefore open to a certain amount
of criticism, although by carefully analysing the results, the Ion behaviour
can be isolated and examined. We will discuss the actual results and their
reI lability further In Section 5.4. These Inaccuracies and 1Imitations
however, indigenous In the GALAXY framework, do not necessarily cause
trouble In all plasma problems. Many plasma configurations have been
studied accurately using GALAXY, and as a test-bed for programming techniques,
it provided a good background for writing the NOVA program.

5.3 An Appraisal of NOVA

NOVA is a general program for numerically solving multl-tlmestep problems.
It was written by McNamara and Langdon (1971) and was first used as a two
dimensional plasma simulation program on the coc-6600 computer at LRL
Livermore, USA. Since all but the Poisson solver was written in Fortran IV,
it was easily transported to run on the ICL System 4/70 computer at the
UKAEA Culham Laboratory. NOVA has a number of features which make It con-
siderably more versatile and accurate than GALAXY. The added generality
and more complicated numerics can be afforded however, since the 4/70 Is a
much larger and faster machine than the KDF-9.
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The data for runs of NOVA only differs from those of GALAXY in that
128 cells are used in the x-direction, and the Oebye length is two cells
rather than one. This means that we are simulating the same sized plasma
as in GALAXY (64 Oebye lengths), but in a numerically more accurate fashion.
The speed and size of the 4/70 makes It possible to simulate the 4096 particle
plasma completely in core, and perform analy.slsof the system during run time.
If more particles are required than can be coped with In core, the data
transfers In and out take place to magnetic disk rather than tape. This not
only makes the transfers orders of magnitude faster, but also keeps them
free from the read/write errors which tape is prone to giving.

The program itself uses a more sophisticated tlmestep loop than GALAXY.
The charge density Is calculated according to a general ised form of the CIC
method. A given particle can be assumed to have its charge distributed
over any range according to any functional dependence, such as an exponential
Oebye screening function or a simple nearest neighbour distribution. The
method used for the runs of NOVA discussed here, is to sp~ead the charge of
a particle evenly over half a Oebye length centred at the particle's
co-ordinate. The fraction of charge which then resides within each cell is
allocated to that cell for purposes of building up the charge distribution.
The numerical accuracy and stability of using floating point variables in
this manner makes the energy spectrum and electric fields almost totally free
from numerical noise. It also makes it possible to use co-ordinate
integration schemes which are accurate to a high order in the timestep ~t,
thus making the choice of ~t • 0.5 numerically stable.

The major structural difference between NOVA an~ GALAXY is that those
NOVA packages which are not used at every timestep are overlaid. The overlay
structure of NOVA is shown in Figure 5.3, and this structure means that the
initialisation and closedown packages do not occupy valuable core space
during the main execution of the program.
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ROOT SEGMENT

Low level graphics routines.
Input/output control.
Storage for co-ordinates etc.
Disk control package.
Error routines.
NOVA main control.

START/STOP SEGMENT RUN SEGMENT

Main tlmest ep loop.
Co-ordinate integration
routine.
Poisson solver.
Charge dens Ity
ca Icu Iator•
Step by step graphics
output.
Diagnostic output of
co-ordinate s,
potential, etc.

High level graphics, used
by the Initial isation and
closedown overlays.

CLOSEDOWNINITIALISATION

Plots of variables
against time.
Report on fInal
state of program.
Ex it.

Input of data.
Co-ordinate setup.
Graphics switches.
Diagnostics switches.

Overlay structure of NOVA. The Root Segment Is always In core. Program
starts with Start/Stop and Initialisation Segments in core. These are
overwritten by the Run Segment for the main program execution, and this in
turn is overwritten by the Start/Stop and Closedown Segments when the main
run has finished.

FIGURE 5.3
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In the initial isation overlay, we use an algorithm designed to allocate
positions and velocities to particles In 8uch a way that· the electrostatic
energy stays at a level many orders of magnitude below the typical particle
energies. This Is achieved by placing the particles on a set of closed
orbits in phase space, which in a periodic one dimensional plasma Is trivial
since all orbits are closed. In higher dimensions however, It is a non-
trivial problem, and It is Important that the orbits are closed and not
ergodic since a finite number of particles on an ergodic orbit will produce
charge fronts moving along the orbits, generating unwanted potential
fluctuations.
numerically.

In general, the closed orbits will have to be discovered

In the one dimensional case however, we select the closed orbits by
firstly assuming that the three Maxwellian distributions (electrons, ions and
beam ions) can be approximated by step functions of the form shown In
Figure 5.4. The number of particles at any given velocity Is the Integer
part of the normalised Maxwellian distribution, and the total should be as
close as possible to the number required In that species. Invariably,
since we are truncating real numbers to Integers the totals will not tally.
In order therefore, to maintain charge neutrality and the correct charge and
mass balance between the three species, we simply modify their charges and
masses accordingly. The result may be slightly too few Ions having slightly
too great a mass and charge, but the system acts In the same way as the
desired configuration. Having split the distributions Into sets of particles
in this manner, we then allot them positions on the grid In such a way that
the particles within each set are uniformly distributed, and the total plasma
is uniform.

In this way, the electric field Is zero, and hence particle velocities
remain constant. The particles will follow the closed (uniform) orbits
formed by the other members of their own set and but for numerical rounding
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error, permanently move in zero electric field. For the configuration we
are studying, the rounding error at time t = 0 gives potential coefficients

-10of the order of 10 • The regular lattice nature of each of the sets of
particles raises the problem of whether particle correlations are too high
for the system to behave like a real plasma. As we show in Appendix C
however, the effect on the plasma is small providing the velocity spread of
each set of particles (6v in Figure 5.4) is small enough.

On top of this 'equilibrium', we wish to impose perturbations of the
order of 10-7 or 10-8 so that they are much larger than the background level,
but nevertheless much less than unity. In the GALAXY program, the pertur-
bations were applied to the Fourier potential coefficients of the appropriate
wavevectors, but this process affects all the possible eigenmodes of the
system having those wavevectors. We wish to exclude the possibility of
exciting plasma oscillations or normal ion sound waves at the selected Ion
beam mode wavevectors, for instance. To achieve this, we start with the
transform of the linearised Vlasov equation for the electrons,

(-iw + ikV)f~e = (~)
e

af
Ikej>~ a~e (v).

The three waves in question all have phase velocities much less than vth,e'
and so we can wri te

fk 4>k
af

(e) oe (v),v -le m 1 ave

to describe how the electrons behave when a slow wave k propagates. Since

f is a Maxwellian, this takes the formoe

fk _(e) ej>~foe (v)
=le m v2e th,e

and so we can write the perturbation on an electron at (x,v) with a slow
wave k propagating as
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p(x,v) • A f (v) sin kx,oe

where A is a measure of the amplitude of the perturbation. Since three
slow waves are propagating, we need to perturb the electrons such that

p(x,v) - f (v){ A sin knx + B sin k x + C sin knx }.oe ~ m

Similarly, perturbations on the stationary Ions and beam Ions are calculated,
and we displace each particle from its equilibrium orbit according to these
formulae. In this way, we excite only the three waves which will interact
through the explosive instability mechanisms.

As well as being general enough to be easily adapted to the requirements
of different plasma configurations, NOVA is considerably more sophisticated
than GALAXY both in its numerical analysis and in its structure. This
sophistication is reflected in the low noise nature of its results, which
are discussed in the following Section.

5.4 Results of the Simulation Experiments

The preparation, testing and running of the GALAXY program for this
research took place from October 1969 until August 1971 by which time the
4/70 computer had been installed at Culham and the NOVA program was available
for development. The NOVA program then took priority, continuing until

August 1972.

We give here the results of a run of GALAXY which took place in

August 1971. It is one of many using different Initial particle co-ordinates
calculated using the algorithm of Williamson (1970), all of which gave
similar results. Figure 5.5 shows the growth, saturation and decay of the
three Interacting waves. Only the maximum value of the potential at each
wave cycle Is used to form the curve, and the plasma oscillations at these
wavevectors have been phased out. The average value of the other potential
coefficients is also shown in Figure 5.5. Two of the amplitudes reach about
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five times the background level before saturating around t • 70 -1w •pe This
corresponds to a growth rate which is higherthan the theory predicts for the
early stages of growth. As we see from Figure 5.6, this behaviour is
accompanied by a drastic reduction in the Ion beam velocity. After about

-170 w the beam velocity has reduced enough for ae/aw to become positive,pe
and hence for the explosive nature of the Interaction to cease.

The three wave interaction equation (3.3.16) was solved numerically
for purposes of comparing the simulation results with the theory. The
numerical solution took into account the beam velocity equation (4.2.4), and
the dependence of a£/aw In (3.3.16) on the beam velocity. The results are
shown in Figures 5.7 and 5.8, and clearly do not agree quantitatively with
the simulation results. The theory predicts that the wave ampl itudes grow
and that the beam velocity slows down at a considerably slower rate than the
simulation experiment shows. Although the simulation does give results
which behave qualitatively in the way that the theory predicts, the high
noise level and the faults in the program outlined in Section 5.2 cast
certain doubts on the reliability of the results.

Because of the high noise level and the large amplitude of the Ion
beam oscillations, no detailed analysis of the Ion beam was possible. We
give the results here however, since they show that a definite change does
take place In the configuration of the ion beam, although the nature of the
change is not determined conclusively by GALAXY.

As with GALAXY, many production runs of NOVA were executed once the
'equilibrium' start had been written and tested. They all gave similar
results for different perturbations on the waves, and the results of one of
the runs are shown In Figures 5.9 and 5.10. These results are more con-
clusive in that the changesin wave amplitude vary many orders of magnitude
compared with the statistical fluctuations. Moreover, the three waves
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follow the same growth and saturation paths as one another, while the back-
ground level of waves fluctuated randomlywlthamplitudes of 10-8 to 10-6.

The particle diagnostics shown in Figure 5.10 are more detailed than
could be evaluated from runs of GALAXY, since the quantities vth,I' vth,b
and vth,e are numerically more stable in the NOVA simulations. The
significant difference between the results of GALAXY and NOVA, is that the
NOVA simulation yields a much slower deceleration of the beam particles.
The saturation mechanisms appear to be more closely associated with beam
distortion and heating. It should also be noted that the stationary ions
heat up due to the large amplitude sound wave propagating. We see from
Figure 5.10 that the beam velocity only changes by about 0.005, which
corresponds to a frequency mismatch of about 0.001. Even over a time of
order 100-200 plasma periods, this only causes a reduction In the growth
rate of the waves of 10% - 20%. This is enough to affect the explosive
instability to a small extent, but the Importantance of the NOVA results can be
seen by examining the wave and particle behaviour together. They show
that the growth and saturation of the waves Is synchronised with an increase
in the Ion temperatures and a slight reduction In beam velocity. This
result is In agreement with the assertion made in Section 4.4 that the
heating effect is more important than the beam deceleration.

The NOVA results however, are extremely difficult to test quantitatively,
since the function describing the distortion of the beam (3.4.9) changes
rapidly. Around the beam mode phase velocities, the function is almost
singular, and hence the distortion cannot be numerically reproduced in a
satisfactory manner. The NOVA results do however show a qual itative agree-
ment with the assertions made In Sections 4.2 and 4.3. They show the
Importance of studying the combined behaviour of the waves and medium, when
the explosive instabll ity is being examined.
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From Figure 5.10, since the wave amplitudes are for the most time
10-5 to 10-3, a four wave interaction would be considerably weaker than the
explosive instability interaction. For this reason the four wave mechanism
for the saturation of the instability given by Fukai, Krlshan and Harris
(1969 and 1970), is not considered to be reflected In the NOVA results.

5.5 Discussion

The experiments performed with GALAXY and NOVA used the full extent of
the programs I capabilities and accuracy. The ion to electron mass ratio Is
reduced to its minimum numerically stable value, since working with the real
ratio is too expensive. The effects we wish to observe take place over a
long enough timescale for numerical errors to accumulate, and hence
numerical stability and accuracy is Imperatrve. A central feature of the
study, namely the wave amplitudes, must be calculated with precision, and
the particle trajectories must be computed in a way which minimises numerical
errors. We have outl ined in this Chapter, the numerical and physical
considerations for a simulation program to meet these requirements.

In the case of GALAXY, many features which should be regarded as
essential are absent, either due to the Integer nature of the vector
integration and charge allocation, or the slow execution speed of the program.
Bearing in mind the 1 imitations of GALAXY two results are Important, namely
that the explosive instability ~ be simulated on a computer, and that the
saturation mechanism Is linked to the behaviour of the medium.

The NOVA program on the other hand is more sophisticated than GALAXY
both in its construction and Its numerics. Although both programs give
every diagnostic detail of the plasma evolution, NOVA's accurate numerics
and low noise properties make more of them usefully available. It is
possible for Instance to study a genuinely IsmaIl I perturbation on the waves
without background noise dominating the results (cf. Figure 5.10). The
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ampl itudes moreover, always remain low enough to be described by a pertur-
bation theory, even though they change many orders of magnitude.

The GALAXY results therefore, although they tell part of the story of
the explosive Instabil ity, are not as detailed as the NOVA results, which
indicate that the saturation occurs because the beam Ions heat up, as
predicted in Sections 4.2 and 4.3.
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CHAPTER 6

CONCLUDING REMARKS

6. 1 Theory

We have shown In this thesis that a multiple timescale perturbation
theory can be used to derive kinetic equations governing the nonlinear
coupl ing between three waves In a plasma. We find that if the plasma
exhibits I normal dlspersion', that Is If O€/ow Is everywhere positive,
energy will be transferred back and forth between the three waves in a
periodic manner.

We show however, that in a simple plasma with a diffuse Ion beam
travelling through it, a wave can exist for which a€/aw is negative. This
is called a 'negative energy I wave and when it couples nonlinearly with two
'positive energyl waves, an explosive Instability occurs. By studying the
properties of the medium when such a wave propagates, we find that the energy
for the instability Is provided by the kinetic energy of those beam Ions
with velocity close to the wave's phase velocity. This gives us a starting
point for finding a process to stabilise the instability.

We show that there Is a quasi-linear effect of the growing waves on the
ion beam distribution function. This causes the beam ions to heat up and
also to decrease in average velocity. The heating results In heavy Landau
damping of the Interacting waves, and the beam deceleration causes a
frequency change in the waves, and a corresponding loss of efficiency in the
energy transfer mechanism between the waves. By studying an expression for
the effective collision frequency in the plasma, we find an additional
stabilising effect, namely a distortion of the beam distribution function.
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This distortion is such that it decreases the Landau growth rate of the
negative energy wave, and increases the Landau damping rate of a positive
energy wave participating in the interaction. We further show that the
most dominant of these effects is the heating of the beam ions.

In the derivation and solution of the three wave kinetic equations,
two mathematical and physical problems stand out.

Firstly, since the kinetic equations arise as a condition for avoiding
secular terms in a perturbation expansion, their validity is Iimited to the
cases of exact frequency and wavevector resonances. It is clear from
physical considerations however, that the resonances must have some finite
width, and that this width corresponds to the 'nearly secular' solutions.
Within the multiple timescale framework these terms remain part of the
expansion and are not eliminated. To build the theory on a physically more
real istic basis, and yet provide some mathematically rigorous criterion and
procedure for selecting such terms, would be desirable, although at present
it remains an outstanding task.

The second problem is to find a method of solving the kinetic equations
when there Is more than one pair of waves satisfying the resonance conditions
with another wave. In the case when all the waves have the same sign of
energy, this can be dealt with using the random phase approximation, but
with explosive interactions, the effect of multiple pairs Is additive. As
such, their importancs
to quantify.

is easy-to determine qual itatively, but difficult

Although It Is possible to find plasma configurations which are
explosively unstable, the Instability is often accompanied by many others
physical processes, some tending to stabil ise and other to destabil Ise the
situation. A detailed analysis of the plasma Is therefore necessary, In
order to ascertain which processes are responsible for saturating the
instability.
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A central argument presented in this thesis Is that the physics of
explosive instabilities Is closely linked to the behaviour of the plasma
medium. There also, lies an indication of the processes which cause the
explosive Instabll ity to stabll ise. The existence of negative energy waves
depends on the existence of an energy source, capable of being transferred to
the wave, and the nature of the energy source depends on the configuration of
the steady state plasma. It Is necessary therefore, when studying explosive
Instabil ities, to examine the effects of the large amplitude oscillations on
the background plasma.

In this thesis we have demonstrated that this approach Is profitable,
and that to consider only the equations governing the time development of
the wave spectrum, is Insufficient. It Is bel ieved that this may be true
in other situations in which explosive Instabilities arise.

6.2 Computation

The GALAXY program, described In Section 5.2 has many Iimitations, and
these are reflected in the results of the simulation experiments performed
with this program. The first order numerical scheme used to integrate
particle co-ordinates, and the integer nature of the charge density matrix,
give rise to a high level of Inumerlcal nolsel In the wave energy spectrum.
They also give particle diagnostics which are not always reI iable, and a
great deal of tailoring of the program to specific requirements needs to be

done.

Nevertheless, the GALAXY results show the rapid growth of the three
explosively unstable waves relative to the background wave field. They
also show an (exaggerated) decrease in the velocity of the ion beam, and a
saturation of wave growth synchronised with the beam velocity becoming con-
stant. The Important aspect of the GALAXY results, Is that the saturation
of the wave growth Is IInked with the behaviour of the beam ions.
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The NOVA program, described In Section 5.3 however, has more accurate
numerics than GALAXY, and with the co-ordinate initialisation process (also
described in Section 5.3), gives a level of numerical noise which Is orders
of magnitude lower than can be achieved using GALAXY. The Improved
numerical schemes also make the particle diagnostics more reliable, and the
results are almost free from numerical noise.

The NOVA results show the three explosively unstable waves growing In
amplitude many orders of magnitude, and reaching a maximum when their
energies are still much smaller than the electron temperature. Their growth
is synchronised with an increase in the temperature of the beam Ions, and
with a sI ight decrease in the average beam velocity. Furthermore, the beam
temperature reaches its maximum value as the wave growth saturates.

This increase in beam temperature causes the' two beam modes to suffer
Landau damping, and hence causes the Instabil ity to stabilise. These
results agree with the theory developed In Chapter 4, in which the dominant
saturation effect was found to be due to an increase In beam temperature,
with a secondary effect due to the beam decelerating.

The difference In sophistication between the NOVA program and the
GALAXY program Is due to the fact that NOVA Is run on the ICL 4/70 computer,
a much larger and faster machine than the ICL KDF-9 which GALAXY operates

on.

The computing power available on the large third generation computers,
makes it possible to simulate two and three dimensional plasmas using
numerical methods of a high order of accuracy. Such programs can now
complement experiment by simulating realistic magnetic field configurations.
They can be used to examine unresearched situations, and give results which
can be relied on. The possibility of numerical analysis functions being
performed by hardware, combined with the high speed data transfer channels
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available nowadays, enables a plasma to be simulated using a real istic mass
ratio and a large number of timesteps.

It is desirable however, to make such programs as transportable as
possible from machine to machine, in order to avoid the dupl ication of
programming effort. A program coded heavily In assembly language is not
therefore a major aim, although such optimisation is necessary on slower
computers. The commonest high level language, Fortran IV, has the dis-
advantage that the program has 1ittle or no control over the central processor
during data transfers. An efficient buffering scheme is therefore desirable
in order that the central processor may be processing one buffer. as the
previous one is being dumped to backing store, and as the next is being
brought in from backing store.

Buffering schemes of this nature however, can be highly complicated,
especially when some buffers need to be processed differently or more often
than others, and when the processing decision needs to be made at run time.
McNamara and Langdon (1973) have however, developed a triple buffering
package which is both general and simple, and is written in Fortran IV. The
routines which need to be recoded In assembly language to permit asynchronous
input and output, are few and well documented.

For the more restricted set of plasma problems, for which a one
dimensional electron plasma affords a good approximation, a technique
developed by Christiansen (1970) may become more widespread than at present.
Christlansen's 'bit pushing algorlthm' involves mapping phase space (x, v )x
onto the computer memory, such that each small region of phase space
(x to x + 6x, Vx to Vx + 6vx) Is mapped to say six binary bits of the memory.
The bit pattern in this region indicates the number of electrons in that

6region of phase space. Using a six bit unit, up to 63(- 2 - 1) electrons
can reside in the region around (x, vx)' With an intelligent choice of
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core layout. the co-ordinates can be updated each timestep by a series of
logical shift instructions and address modifications appl led to the words In
memory.

Using this algorithm. an extremely large number of particles can be
simulated. perhaps of order mill Ions, and all of them can be Integrated
within a second or two. It Is worth noting that for a Fermi system, where
the occupation number of any state Is either 0 or I. then as many phase
space 'cells' can be dealt with as there are available bits In the computer.

The future of computational plasma simulations therefore, seems not to
be static. In Chapter 5, we discussed various problems arlsi.ng In simulation
programs. such as the use of low mass ratios and particle numbers, and the
use of low order numerical techniques In an attempt to gain speed. Recent
developments both in software and hardware, are providing many of the
solutions to these problems. Computational research into the kind of plasma
situation discussed in this thesis, In which the programs are used near the
Iimlts of their validity, will in future be performed with speed and
accuracy far above that found In GALAXY and NOVA.
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APPENDIX A

ENERGY CALCULATION FROM THE VLASOV EQUATION

In this Appendix, we calculate the change in the total energy of a plasma
when a monochromatic electrostatic wave Is excited. We use the Vlasov
equation (3.3.1) and Poisson's equation (3.3.2), and perform the calculation
for a one dimensional one component plasma. The result however, can be
easily modified to apply to more general plasma configurations. We express
the electric field of the monochromatic wave as

(A. I)

where kt is the wavevector and wt + IYt the (complex) frequency of the wave,
and c.c. denotes the complex conjugate of the Immediately preceding term.
The first order correction to the steady state distribution function Is llke-
wise expressed as

(A.2)

We write the Vlasov equation for the second order quantities f2 and E2 as

E af E afl2 ~. Iav ax' (A.3)

Using the definitions (A.I and A.2) and the expression for f~ (3.3.6), the
right hand side of (A.3) can be written as

+ (A.4)

that is, an oscillatory part and a slowly varying part.
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From the form of equation (A.3) It is seen that we can write the second
order correction to the distribution function as

From Poisson's equation we see that the second order electric field may be
written as

Using these definitions, we can rewrite the Vlasov equation for f2, (A.3),as

2iYt + 2ktv)f~2 . t af 0 a (Et)2 afo/av
(-2w - 1 (A. S)+ tE22 Tv"' - av-{ (wt + ly - k v)},t g, g,

t 2 2ytt
and

af20 a {
2YtiEli e afo/av

} . (A.6)at = av (wt + iYt ktv){wt - Iy - kg,v)t

In obtaining equations (A.S) and (A.6) we have associated the oscillatory
part of (A'.4) with f~2 and the slowly varying part with f20•

We can solve (A.6) to give

a IEtl2 2YR,t afo/av
f20

1 e
} .= av-{

(wR, + lyR,- k"v) (wR, - iy - kR,v)R,
(A.7)

From (A. S) twe can write f22 as
t afo/avt i E22

f22 - 2(wt + iy - kg,v>R,

a
av

(E~)2 afo/av
{ (wR, + fYt - kR,v) } . (A.8)

U,sing this expression for f~2 in Poisson1s equation for E~21 we can write

- 103 -



Substituting this into equation (A.B) gives

af J (ER,)2 afo/av
- 0 dv a { I }R, aY 2{wR, + lyR,- k v) av (WR, + lyR, - kR.v)f22 .. R.
(laiR.+ iyR,- kR,v) { 4kR, - f

afo7av dv
}

(wR. + IyR. - k v)R.

(ER.)2 af/av
a I

{ }. (A.9)2{w
t

+ iy - ktv) aY (wR. 4- lyR. - ktv)t

Now the expression for the total energy in a plasma is

Energy - I v2 f dv + E2,

which to second order In the amplitude expansion is

which is just a kinetic energy term plus a potential energy term. Using
the expressions for fl, f2 and El given by (A.2), (A.7 and A.9) and (A. I)
respectively, we obtain

Energy - f v2 fo dv +

f
2 i{kR,x - ~R.t) yR,t

+ _1_v__ E~~__e~~~ ~e __ r-a_f_o_/_a_V_d__V
(wR. + IYt - kR.v)

+ c.c.

2v af tav dvo x
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t 2 21(ktx - wtt) 2ytt af/avdv a (El) e e af
0

2(Wt + iy - ktv} ay{ {wt + iYt - k v} }a;-
x t t + C.C.

- J
a av dv

{ 4k 0 }
(wR, +

, ktv)Iy -t

(E~)2 e
2i(ktx - wR, t) 2YR,t

afo/av
f 2

e
v dv a { (wR, + lyR,- kR,v) } + C.C.

2{wR, + IYt - k v} avR,

+ J
IEtl2 afo/av e

2ytt
2 Cl { 1 } dvv av (wR, + IyR, - kR,v)(WR, - iy - kR,v)t

+
2i(ktx - wR,t) 2YR,t
e e + C.C.

Many of the terms In this expression are rapidly oscillating, and If
we take yR, « wt' we can calculate the time average of the energy (W) by
averaging over the phase of the oscillations. The average energy, correct
to second order Is then seen to be

W = KE +

where KE is the kinetic energy of the unperturbed plasma. The second term
describes that part of the particle energy associated with the coherent wave
motion, and the final term is the electrostatic energy. These last two

terms can be combined, and we can then write

W .. KE + aoW (A. 10)

where £ is the dispersion function of the form given by (3.3.7). The second

term in (A.10) is what we refer to in the thesis as the energy of a
monochromatic wave in a dispersive medium.

We have derived from the Vlasov equation and Poisson's equation, a form
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first indicated by von Laue (1905) for the energy of a monochromatic wave
in a dispersive medium. The importance of the result lies In the dependence
on c£lcw, which for certain EiS, can be negative.
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APPENDIX 8

EVALUATI ON OF t

In this Appendix, we examine the dispersive characteristics of three
explosively unstable ion sound waves propagating In the beamed plasma
system described in Section 3.3. We determine the restrictions on the
parameters of the system, and make a numerical evaluation of the time taken
for the waves to reach an infinite amplitude, using the expression (3.4.10)
for t .

00
We define the fraction of Ions which are present In the beam as

We impose the restrictions that

v h • « (Ub or w/k) « v h 't ,I t ,e (8. 1)

and

where • average velocity of the beam Ions,

v th , I • Ion thermal velocity,

v •th;e electron thermal velocity,
• Debye screening length • vth /w ,,e pe

...electron plasma frequency,
and w/k refers to the phase velocity of any of the waves we consider.

Following Fried and Gould (1961), with these approximations (8.1), the
dispersion relation (3.3.7) can be simplified to

+ III 0,
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where w . is the ion plasma frequency • ~w (~2 is the electron to ion masspi pe
-1ratio), and ko is the inverse Oebye length • 2nAo .

Por waves with phase velocities w/k % Ub, we can further approximate the
dispersion relation to

kO 2
(-) -
k • o. (8.2)

Similarly, for waves with phase velocities near zero (well away from Ub) we
can wrl te

e:(w, k) ~ • o.

It should be pointed out that (8.2) and (8.3) can be derived using the
magnetohydrodynamlc description of the time dependent plasma quantities.
This however, does not detract from our using the Vlasov approach to the
three wave problem in Chapter 3, since only In the Vlasov approach can we
determine the importance of particle effects for waves with 3£/3w negative.

Equation (8.2) can be solved to give

(8.4)

which we associate with ion sound oscillations propagating on the beam, the
(+) mode travelling slightly faster than Ub and the (-) mode travell ing
s 1 igh t 1y s 1owe r • Similarly (8.3) can be solved to give

kc5(1 - n2) 1/2 vth,e' (B.S)

which is the conventional ion sound mode propagating in the bulk of the ions.
Three waves participate in the interaction we are studying, and we choose to
deal with one from each of the branches of (8.4) and a forward moving wave
from the branch (8.5). We call these waves 1, m and n such that
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W1 • k1(Ub - ~nvth ,e),
wm - km(Ub + ~nVth,e) , (8.6)

and wn • k ~(l -n2)~ vth,e·n

It will be noticed from (B.2) and (B.3) that mode 1 has at/aw
negative, and modes m and n have at/aw posItive. Therefore, If we can select
all the parameters of the problem to satIsfy (B.l) and the resonance conditions
(3.3.15), then as demonstrated In SectIon 3.4, we can expect the three waves
to be explosively unstable. In order to get numerIcal values for all the
parameters, we choose to deal In the non dlmeslonal units used In the two
plasma simulation programs discussed In Chapter 6. In those units,

electron plasma frequency • 1 t

electron thermal velocIty • v •th,e 1 J

Debye length • AD • 1,
electronic charge • e • -1,
electronic mass • m • 1,e
electron temperature • Te • 1.

The consequences and practicality of using these units, as well as the
justification for using peculiar values for ~t the k's etc. t Is discussed

in Chapter 5. Meanwhile we simply state that for the plasma simulatIon

programs we choose to use

~ • 1/4 and n2 • 1/4. (B.8)

Fried and Gould (1961) have shown that Ion oscIllatIons are heavily damped
unless the ion temperature (In our case TI and Tb) Is much less than the
electron temperature (cf. B.l). For this reason we take

and
TI/Te • 1/32,
Tb/Te • 1/32.

(B.9)
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Further, we choose the three wavevectors to be

kt - 3.2n/64Ao'
km - 1.2n/64AO' (B.10)

and kn • 2.2n/64AO'

thus satisfying kAO « 1, and the wavevector resonance condItIon. SInce we
must also satisfy the frequency resonance condition, we find usIng (B.6) I

(B.7), (B.8) and (B.10) that

(B.I1)
= 0.4665.

It will be noticed that values such as 1/4 are being considered very
much less than unity. This has to be done however, If we are goIng to
satisfy all the restdctions simultaneously, unless we were In a position to
choose a more realistic mass ratio than 1/16. As explained In Chapter 5

however, choosing a more real istic mass ratIo Is computationally prohIbIted
for practical reasons, and the values of the parameters gIven above are the
most suitable compromise between accurate theory and practical computIng.

Turning to the calculation of too'we can write (3.4.10) In the form

t •00

(1aR,II an I) in
21rR,mnII 'mo I (B. 12)

and note that using the above parameter values,

-2-
o£ 2 2and - n2)1 == ISk3aw 6 k3 (1 -n n n

Therefore latl 2 • 512..
ISnlktl liT ,
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and lanl ~
2 128

lSI kn I
• -1T

t ... 128 (3 (S.13)
ex> I rR.mnII~mo13 .

Therefore

In order to calculate the matrix element r1mn, we use the expression
(3.3.17) which can be written as

r ...R.mn +

and

ImJ InJ
+ (V - V }(V - V ) (V - Vn)(Vm - Vn)

} (S.14)
R. m n m R.

IR.j
2

f
afo)lav dv... Wpj (VR. - \/)

C

Vt • wt/kt etc.

where

As outlined in Section 3.3, the foj are Maxwellian, normalised to unity,
and so can be expressed as

n::; vth .,J
f. •oJ

Using this form we can then write
11.12•

-f-
Vth,j

(1 +wZ (w),

where w ...Vt/!:f Vth,j and Z Is the well known plasma dispersion function

defined as

z(w)
1.-
.;:;

00

f dq exp{_q2)/{q-w),

-00

for Imew) > 0 and the analytic continuation of this for Im(w) < o.
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For the electron terms we have w « I, and we can expand Z!w) in a
power series. In this way we can write

1=-
).2
o

w2 2 4w3 6{I + iw .;;e- - 2w + -3- - 0(w )}.

Now the first term in In does not contribute to rn sinceA.e . A.mn

(Vm-Vt) (Vn -Vt)

2-wFor small w, e ~

+ + • O.

and substituting this Into (8.14) shows that the
eimaginary contribution to rtmn from l.leIs also identically zero. The first

term in 1ft which gives any contribution to r~ Is the -2w2 term. If weA.e A.mn
4ignore terms of order wand higher, we find after some algebraic manipulation

that

! (!.) -2 m ,2
e 1\0

2vth,e
(8.15)

• -! In our units.

For the ion terms, w » 1, since we have made vth,1 much less than
6vth,e' and so we may use the asymptotic value of Z. Using this, we can
write

2.~
2

vth, i

2
{ 1 + Iw Ii e-w 1 -4

1-:-2 - O(w )}
2w

For the same reason as for the electron terms, theffrst term In Iti
does not contribute to r!mn' Further, since w » 1, the Imaginary term In
I . will be exponentially small. Therefore, If we neglect terms of order
tl

w-4 and higher in Iti, we can approximate r!mn to

r I
1mn - -! (!.)2 m.

1
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Substituting the numerical values for the parameters, we obtain

r I • 1 (28 + 16
1mn - '2 (42 + 7

= - I2'
Combining this with result (B.15) we calculate the total matrix element as

Therefore, from (B.13) we see that

t •00 (B.16)

This value for too Is for the case when the potential g,rows like a tan-
gent function, that is when B • B • We shall however, briefly examinemo no
the general case of Bmo ~ Bno' From (3.4.11) we see that

where tn is the elliptic Integral of the first kind with argument IMla tmo
and amp 1itude K. K Is also an elliptic integral whose argument q Is given
by

q •

The function tn is similar to the trigonometric tangent function except that
Instead of becoming infinite at w/2, It does so at K(q). If we take for
simplicity ~ • ~ ,then q depends only on the a1s, namelyme no

q •

which for the present case 15 of order 0.86. From tables of ellIptIc
Integrals, we find that

K(q • 0.86) = 2.139,
which is greater than w/2. In this way, we get a value for t whIch exceeds

QI

- 113 -



the value given by (S.16) by a factor of order 1.35. Moreover, for q non-
zero, the value of K always exceeds ~/2, and hence gives a value of t~
greater than that given by (S.16).
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APPENDIX C

TWO PARTICLE CORRELATIONS IN THE SIMULATED PLASMA

The particle co-ordinate initialisation routine used In the NOVA
program approximates the Maxwellian particle velocity distribution to a sum
of step functions of width ~v and height n{v) (cf. Figure 5.4). For a
given group of n(v) particles with the same velocity v, we space them evenly
along the x-axis from x - 0 to x - 64AD, and as such their positions are
highly correlated. This correlation however, Is only between particles in
the same group, and inter-group correlations can be Ignored since the
co-ordinates of one group do not depend on those of another. We wish to
determine whether the correlation which does exist Is large enough to
invalidate the correspondence being made between the simulated plasma and a
Vlasov plasma.

Following the approach adopted by Rutherford and Frieman (1963), the
BBGKY hierarchy of equations Is closed by neglecting three particle
correlations. and so we can write the two and three particle distribution
functions f2 and f3 as

f2{1,2.t). f{l,t) f(2,t) + g(l,2,t) ,
and f3(l,2,3,t) - f{l,t) f{2,t) f(3,t) +

+ f{l,t) g{2.3,t) + f(2,t) g{3,I,t) + f(3,t) g(1,2,t),

where f{l.t) is the one particle distribution function, g(l,2,t) Is the two
particle correlation function and 1,2, •••• denote phase space points

We consider the spatially homogeneous case, in
which case f(l ,t) is independent of ~ and g{l ,2,t) only depends on ~l and ~
as (~I - ~). The hierarchy reduces to two coupled equations for f(l,t) and
g{l,2,t) which simplify further with the assumption that nA~ »1. We can

then write
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af.
I • -at mj f

a'i' ~gi 3 3tn.2!1_(1,2) (1,2,t)dx2dv2,~ J --rxr 'v
J

(C. 1)

• (C.2)

Here, i and J denote particle species, and 'iJ(l ,2) is the interparticle
potential energy· eieJ/lxl-x21.

The assumption that nA~ » 1 allows us to solve (C.2) over times for
which the one particle distribution function may be considered time
independent. To this end, It Is convenient to Fourier transform in the
variable (xl-x2), and we wrfte the transform of 9Ij(1,2,t) as

Equation (C.2) can then be written

where

(C.3)

and L. and L. are linear operators defined by
I J

Lj(k,vl) ikv -
4wellk afi t J

d3v- 2 aVl niei1 mik 1
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and similarly for L .•
J

If we denote the Laplace Transform of gIJ(k,vl ,v2,t)
by

00

'"gij (k,vl,v2,P)
o

we can transform expression (C.3) so long as glj does not grow faster than
exp(at), for some positive a. So doing, we obtain

(C.4)

Inverting the transform, the correlation function can be written as

where c denotes the Bromwich contour from -loo to +ioo, to the right of all
the singularities in the integrand.

Now the operator (p + LI + LJ)-l Is the Laplace transform of the
operator exp(-Lit) exp(-LJt).

-1Is (p + Li) , and therefore
Further, the Laplace transform of exp(-Llt)

1- -211'1 f
PIt

e dPl
(PI + L I) ,

cl

f
p2te dP2

(P2 + LJ) ,
c2

and
-L.t

e J
,- -211'1

where c, and c2 are Bromwlch contours In the P, and P2 planes respectively.

We can now write

-

00

· f .-(p +

o
dp, dP2
(p-p, -P2) (C.5)
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where Re(p) > Re(PI + P2)' Using the form (C.5) for the operator (P+Li+LJ)-1
in the expression for the correlation function (8.4) we obtain

dPI dP2
(P-Pl~P2)

Inverting the above, we obtain

(C.6)

The problem of calculating the correlation function has now become the
-1 -1problem of identifying the operators (P1 + LI) and (P2 + LJ) • We find

that they can be identified with the operators which appear in the solution
to the linearised Vlasov equation. This Initial value problem, first
solved by Landau (1946) contains the relationship

and e:(k,PI) is the dispersion function. Substituting this expression for
-1 ) -I(PI + LI) ,and the corresponding expression for (P2 + Lj into equatIon

(C.6), we obtain

g •. (t) -
IJ

x
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(C.7)x

In order to perform the Integrals In (C.7) we note that the operator
-1(PI + LI) has poles at PI - - Ikvl and at the zeros of the dispersion function

E(k,Pl)· We will first consider the stable cases, namely when all the
solutions of E(k,p) • 0 are in the half p1ane Re(p) c o. In this case, the

-1 -1operators (PI + LI) and (P2 + Lj) are ana1ytic in the half planes
Re(Pl) > 0 and Re(P2) > 0 respectively, and we can move the contours cl and c2
just to the right of the imaginary axis.
Infinity, g..(t} remains finite. That is,

IJ

It follows that as t approaches

9 .. (GI)
IJ • Limit

p + 0+

remains finite and Is independent of the initia1 correlations 9IJ(0).

A more rigorous analysis of the time dependence of giJ(t) shows that
inltia1 corre1ations die away 1ike exp(-2y(k)t) where y(k) is the Landau
damping rate of mode k. These damping terms arise from ana1ytlcal1y con-
tinuing the integrand of (C.6) into the'half p1anes Re(Pl) c 0 and Re(P2) c 0,
and picking up the first po1es

The timesca1e for
associated with the~zeros In E(k,P1) and
the establishment of glj(m) Is therefore of

order 1/y (k).

Before we consider the po1es at PI • -lkv1 and P2 • Ikv2, we note that
in the unstable case, we wi11 have terms In 9Ij(t) which grow 11ke
exp(2y( k) t) . The criterion under discussion for the IV1asov p1asmal however,
Is that

g(l 2 t )
fO, tT/b, t}

cc 1,

and the term f(l,t)f(2,t) has similar Landau growth features to 9(1 12,t).
This ratio therefore is unaffected by the poles corresponding to the zeros
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In the dispersion function. The important poles are those at PI • -ikvl

Taking account of these poles in expression (C.7), we obtain

gij(t) - (2.i)2

-ik(v -v }t
(e I 2 -1)x { ~----------~

fj(v2) afl _

mi aVl

(c.8)

where the lis are the velocity integrals in (C.7).

In the simulation program initialisation, we ensure that particles of
velocity vn are uncorrelated to particles of velocity vm' for m ; n.
Providing we have a large selection of velocity groups, as Rutherford and
Frieman (1963) demonstrate, terms like

-ik(v -v }t
g(O)e 12

can be considered to vanish by a phase mixing process.

The case still exists however, of the highly correlated particles of
the same velocity, namely the situation when m - n. It should be noted that
such particles in the simulation program belong to the same species, and hence
I • j In expression (C.8). Under these circumstances, the Balescu-Lenard
term vanishes since

+

f.(v2) afl fi(v1) af.
and { J aVI af} + 0,m. m.

I J 2
when - j and vI + v2• This is phys ica 11y reasonable, since the collision
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effects of two particles of the same species travelling with the same
velocity Is expected to be zero. We can therefore write down a simplified
form of the correlation function as

- - 1
4'11'2

Ik
k2 dk,- ikv) f dv

(p+lkv) } x

x { 1 - 2w .pi
Ik
k2 d-k, Ikv) f (p-1~v) }

Two further simplifications can be made since

OD

f dv
OD

f dv
(p+ Ikv) - - 'II'

k'

and E(k,-ikv) - E(-k,ikv). We therefore obtain
4

W I af I 2 2
{1 + T (av ~ 'II'2 } gil (0) •

k E

Since we approximated the distribution function to a sum of step
functions, for any group of particles with velocity v, the term (3fl/av)2 In
(C.9) Is zero. We can therefore write

(C.10)

for the steady state correlation, reached after the short timescale effects
discussed earlier, have damped away.

In order to determine the effect of this correlation term on the one
particle distribution function, we substitute (C.IO) Into (C.I). In the one
dimensional case we are studying, the electric field between two 'particles'
is a constant, and g(O) Is a Dirac delta function of space and a step
function of velocity. Equation (C.I) can therefore be written as
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J
aav

/).v

vth, i
dxdv,

where L is the size of the system (64AO)' and d Is the distance between two
particles in the same step function group of velocity v and width t.v..
The integrals are trivial and we obtain

( n{v») (/).v )
ni vth. i

64
v th,e

-1Since fi has the dimensions of vth,i' we can write the growth rate due to
numerical correlation effects as

y •c
64

16'1f3

Therefore, in order to ensure that spurious correlation effects are small
in the simulated plasma, the number of particles in a given group must be
small compared with the total in that species, and there must be many velocity
groups per thermal velocity.

In the case of the NOVA program discussed in Section 5.3, since the total
time of the simulation might be of order 200 w-l, we require Yc to be lesspe
than 1/200 wpe' This is to ensure that wave growth Is small compared with
Landau effects and small compared with the original wave amplitudes. This

was achieved in the simulations by making /).v/vth,i• 30.

- 122 -


	WRAP_THESIS_Hand_1974.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


