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Abstract

The Chain Event Graph (CEG) is a new class of graphical model, first in-

troduced in Smith and Anderson [2008], which is derived from a probability tree

by merging vertices whose associated conditional probabilities are the same. It

is proving to be a useful framework for modelling asymmetric problems and fur-

ther generalises the Bayesian Network (BN), by allowing for context-specific de-

pendence structures between the variables of the problem. This thesis provides a

first demonstration of the value of using the CEG in real-world applications and

the new techniques developed here are motivated by problems that arise from two

health studies; the Christchurch Health and Development Study (CHDS) and the

UK Cerebral Palsy (UKCP) Cohort Study.

A direct comparison of the BN and CEG on the CHDS demonstrates that

the CEG can lead to significantly higher scoring models than the BN and further

that it enables additional conclusions to be drawn on the health study directly

from the topology of its graph. An extension of the CEG, the Ordinal CEG, is

developed in this thesis, which further enhances the graphical representation of

the CEGs for studies with a binary outcome. Motivated by the UKCP this thesis

further investigates how missing data structures can be explicitly represented by a

CEG and how its graph can consequently provide a precise understanding of the

influence of missingness. Finally, a dynamic version of the CEG is developed and

it is demonstrated how this new class of models generalises the Dynamic BN and is

further closely linked to (semi-) Markov processes. The expressiveness of this model

is illustrated through a fictional example.

xi



Chapter 1

Introduction

1.1 Motivation and Thesis Outline

Chain Event Graphs (CEGs) are a new class of graphical models which were first

introduced in Smith and Anderson [2008]. To date, the most widely used graphical

model is the Bayesian Network (BN). Particularly medicine and health care are

two of the most popular application areas of the BN. Two well-known examples

are the CHILD network [Cowell et al., 2007], which represents possible diseases

that may lead to cyanosis (blue baby), or the ALARM network [Beinlich et al.,

1989] for monitoring patients in intensive care units. In these applications the BN

has proven to be extremely valuable for modelling complex relationships between

variables and provides a useful framework for medical diagnosis, monitoring and

prediction. However, a well-known short-coming of the BN is that it does not

accommodate context-specific dependencies between the variables. In particular,

in a type of cohort study where we are interested in a single outcome variable,

such as survival or the onset of a disease, the BN may be restrictive in terms of

the conclusions that can be made about the combined e↵ect of risk factors on the

outcome.

The CEG provides a richer class of models which incorporates these types

of dependence structures, as well as retaining the property that conclusions can be

easily read back to the client. It is derived from a probability tree by merging vertices

whose associated conditional probabilities are the same and whose emanating edges

explain the same unfolding events. In contrast to related models, such as the context-

specific BN [Boutilier et al., 1996] and the Probabilistic Decision Graph [Jaeger

et al., 2006], the CEG gives a single graphical representation of the entire problem

and includes the BN as a particular subclass.
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Over the past years a substantial amount of research has been carried out

on CEGs, including evidence propagation [Thwaites et al., 2008], causal inference

[Thwaites et al., 2010; Thwaites, 2013] and a model selection algorithm [Freeman and

Smith, 2011a]. These developments are often adapted from the BN methodology, as

any discrete BN can be represented by a CEG. The developments of the CEG have

so far been predominantly theoretical. One of the contributions of this thesis is to

motivate the applicability of the CEG to real-world problems. This is supported by a

number of small applications throughout the thesis to subsets of two cohort studies,

the Christchurch Health and Development Study (CHDS) and the UK Cerebral

Palsy Cohort Study (UKCP).

In Chapter 3 of the thesis I will demonstrate, using an example from the

CHDS, how the CEG leads to higher scoring models and more refined conclusions

than can be made from a BN. This analysis gives a first explicit comparison of the

CEG and the BN. Another important feature of the construction of the CEG is that

it retains the paths of its associated probability tree within its graph. In an event

tree, the root-to-leaf paths explain the unfolding of a sequence of events, describing

di↵erent possible stories over time, and this description is retained within the struc-

ture of the CEG. In a cohort study, the use of CEGs therefore seems more intuitive

than the use of a standard BN. A BN represents a set of conditional independence

statements through its graph, where a directed edge from one variable to another

expresses a possible dependency between the variables. However, it is demonstrated

in Chapter 2.2 that directed edges can sometimes be reversed to give a BN with

the same set of conditional independence statements. The CEG, in contrast, can

directly represent that risk factors occur before the outcome variable of interest by

ordering the variables in its associated tree. This has motivated two further new

developments of the CEG in this thesis: Firstly, I have developed the Ordinal CEG

to further enhance the graphical representation of the CEG for binary outcome

variables, where the final vertices in the graph classify the cohort according to the

outcome variable of interest. Secondly, it is common for substantial amounts of miss-

ing data to be present in such studies due to, for example, retrospective collection

of data from routine health records, loss of contact with participants or participants

declining to answer certain questions. Chapter 4 discusses how missing data on risk

factors can be incorporated into the CEG framework and how informative conclu-

sions on the influence of missingness can be read from the graph. In particular, it

will be shown that the CEG proves to be useful for preliminary analyses on the e↵ect

of missing risk factors on survival and consequently that new informative categories

of variables can be defined through the final positions in the CEG, which can be

2



used in a later survival analysis.

Finally, building on the substantive literature and applications of the Dy-

namic BN (DBN), the development of a formal dynamic version of the CEG is the

next step in developing the CEG to provide a useful graphical framework for mod-

elling longitudinal processes. In many larger cohort studies, the life history of the

cohort is recorded by taking measurements repeatedly over time. This thesis gives

a first representation of a new class of dynamic graphical model, the Dynamic CEG

(DCEG), which formally extends the CEG to infinite trees to model the occurrence

of repeated events over time as well as the time spent at each vertex in the graph.

The above can then be summarised into the following research questions

discussed in this thesis:

1. What advantages does the CEG have over the commonly used BN and how

can the CEG’s graphical representation be improved?

2. How can missing data structures be represented in a CEG and how can this

representation aid the analysis of processes where missingness is influential?

3. How can a dynamic version of the CEG be defined and how does it compare

to other dynamic graphical models?

Below I will outline the specific chapters in which these research questions will be

approached.

Thesis Outline

In the remainder of this chapter I will look at the two datasets used throughout the

thesis to demonstrate the applicability of the CEG and illustrate the newly devel-

oped methodology. First, I will briefly introduce the Christchurch and Development

Study (CHDS) and describe in detail the subset of the study considered in Chapters

2 and 3 as well as previous analyses carried out by Fergusson et al. [1986]. I will

then introduce the second study of this thesis, which is the UK Cerebral Palsy Co-

hort Study (UKCP study) and provide summary statistics of the relevant variables

considered in Chapters 4 and 6. Finally, I will provide a third, fictional example

which will illustrate the methodology developed in Chapter 5.

In Chapter 2 I will first give an overview of graphical models and introduce

some standard notation in graph theory. In Section 2.2 I will review BNs in more

detail and then move to the CEG in Section 2.3. This section defines the CEG and

explains its semantics as well as the conclusions that can be drawn from a CEG.

3



Section 2.4 then demonstrates how any discrete BN can be expressed as a CEG and

Section 2.5 introduces the newly developed Ordinal CEG. The chapter concludes

with a discussion on alternative graphical models.

In Chapter 3 I look at conjugate learning of the parameters in a BN and, in

parallel, the learning of parameters in a CEG. Section 3.2 then reviews the standard

model selection using Bayes Factors for BNs and CEGs. In the final Section I will

apply the methodology introduced on model selection to the example of the CHDS,

comparing the BN and CEG using this real dataset. I will also briefly return to

the Ordinal CEG as well as to causal interventions and conditional independence

statements described in Chapter 2, and apply these concepts to the CHDS.

In Chapter 4 I will explore how missing data can be incorporated into a CEG.

I will first review the three well-known types of missing data; Missing Completely

At Random (MCAR), Missing At Random (MAR) and Missing Not At Random

(MNAR) and show how these can be explicitly represented within a CEG. I will

then apply the methodology to the UKCP study in Sections 4.2.2 and 4.3 and show

how we can read o↵ informative conclusions about the missingness structure from

the CEG. In particular, I will introduce a reduced version of the Ordinal CEG. In

the final Section I will show how we can further construct new informative categories

of variables with the CEG, which could then be used in a later analysis.

In Chapter 5 I will illustrate how observational studies with repeated mea-

surements could be represented well by a dynamic version of the CEG, the DCEG. In

Section 5.1.1 I will define a DCEG and in Section 5.1.2 I will extend this framework

to add holding-time distributions to the DCEG. I will then compare the DCEG first

to the DBN in Section 5.2, showing that any DBN can be written as a DCEG, and

then to Markov and semi-Markov processes in Section 5.3. Finally, I will discuss how

we could learn the parameters in a DCEG and give an outlook on model selection.

In the final Chapter I summarise the contributions made by this thesis. Fi-

nally, I will discuss some issues associated with the complexity of the CEG and

further points of development that would extend the work of this thesis.

1.2 Applications to Health Data

The two datasets considered in this thesis are based on two birth cohort studies, the

Christchurch Health and Development Study and the UK Cerebral Palsy Cohort

Study. The term cohort is used in epidemiology to ‘refer to a group of individuals

who share a common characteristic’ [Salkind, 2010]. In the two examples considered

below, the first cohort consists of people born in mid-1977 in Christchurch, New
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Zealand, and the second cohort looks at people in the UK born between 1966 and

1999 who are diagnosed to have cerebral palsy. A cohort study then describes a

type of observational study which follows a cohort of people over time, comparing

the occurrence of a particular outcome (i.e. a disease or survival), to risk factors or

exposure variables. In the CHDS, data are collected over several years looking at the

e↵ect of social and family factors on later physical health as an outcome, while in

the UKCP study, early measurements of risk factors such as various impairments or

birth weight, are analysed to determine their impact on survival. The final example,

discussed in Chapter 5 of the thesis, is fictional, where a group of individuals is

followed-up on the development of influenza and their recovery with or without

antiviral treatment. As an individual may develop influenza several times in his

life, it is assumed that repeated measurements are taken. These measurements may

either be taken at regular time intervals (e.g. daily or monthly), or data is collected

as event histories, recording when an event occurs and the duration between events.

1.2.1 The Christchurch Health and Development Study

The Christchurch Health and Development Study (CHDS) has been carried out by

a research group, led by Professor David Fergusson, in the Department of Psycho-

logical Medicine at Otago University. It is a cohort study, in which children born

in Christchurch, New Zealand, in mid-1977 have been followed up for over 30 years.

Out of 1310 children, born between 15th April and 5th August 1977, 1265 children

were included in the study. Up to the present day data is still collected on around

71% of these individuals.

The study started o↵ looking mostly at infant health during the first five

years of the child’s life and at possible factors a↵ecting it, for example smoking

during pregnancy, breastfeeding or the social and economic background of the fam-

ily [Fergusson et al., 1980, 1981, 1986]. Later attention was drawn more towards

behavioural problems such as conduct disorder and child-rearing problems, while

during the child’s teenage years further analysis was carried out on early alcohol

and drug use, as well as mental health issues [Fergusson et al., 1994a,b]. These

were related to family problems and social disadvantage, with a particular focus

on various measures taken on parenting [Boden et al., 2007]. The CHDS research

group has continued to follow-up the individuals’ lives through adolescence up to

the present.

The example used throughout Chapters 2 and 3 considers an early subset

of the CHDS discussed in Fergusson et al. [1986], which studies the first five years

of the Christchurch cohort. The study looks at the e↵ect of the family’s social
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background, the economic status and the number of family life events on the child’s

health, measuring whether at least one hospital admission occurs during the first

five years of the child’s life. Based on previous studies of the dataset, Fergusson

et al. [1986] considered only admissions due to illness and accidents as these were

the only reasons for admissions that were sensitive to the social and family situation

[Beautrais et al., 1982]. To describe the family’s social background the CHDS group

collected information about the mother’s education and age at birth, the family’s

socioeconomic status, the child’s ethnic origin, and whether the child grew up in a

single or two parent family, with all variables consisting of two or three categories.

These variables were then combined using factor analysis to give a single measure

of the social background (see Fergusson et al. [1984] for details). Similarly, the

economic status was measured as a function of the family income, possible financial

di�culties, the standard of living and the quality of the accommodation of the child,

as rated by an interviewer. Again these were simplified into a single measure of the

overall economic situation. Of particular interest in this study was whether the

e↵ect of adverse life events in a child’s lives might be associated with increased

health problems. Twenty events were classed as life events, based on a variation of

the Holmes and Rahe Social Readjustment Rating Scale [Holmes and Rahe, 1967],

in which the mother of the child was interviewed and reported on the events that

occurred. These included the experience of moving house, the husband changing job,

the death of a close friend or relative, serious financial problems within the family,

divorce, or a serious illness or accident within the family [Beautrais et al., 1982].

The number of live events were then grouped into four categories. Complete data

was available for 890 children and so the analysis was carried out on this dataset.

Rates of hospital admissions per 100 children age 0� 5 were first compared

for the various levels of each covariate separately using one-way analysis of variance,

concluding that the more socially or economically disadvantaged the child’s back-

ground (without adjusting for the other factors) the higher the hospital admission

rate tended to be. In addition to this the probability of an admission increased

significantly with the number of family life events. For further analysis a Cox pro-

portional hazards model estimating the risk of at least one hospital admission during

the five years was fitted with the three covariates ‘social background’, ‘economic sit-

uation’ and ‘number of life events’. Results from Fergusson et al. [1986] showed that

according to this model the family’s economic status did not influence the risk of

admission significantly after adjusting for the other covariates, suggesting that in

this type of population financial problems were not the main reason for health prob-

lems. In contrast to this, family life events and social background both appeared to
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have a significant impact on the admission rates, even after having adjusted for the

other covariates. In particular, the most significant association was found between

the hospital admissions rate and the number of family life events.

In Chapters 2 and 3 I will use the above example to compare BNs and CEGs

in terms of the conclusions we can draw from their graphs and their model selection

process. To construct the four variables of interest I aimed to follow as far as possible

the methodology of Fergusson et al. [1986]. However, as the variables describing the

social and economic background are discrete, predominantly with few categories, I

slightly adapted the methods of Fergusson et al. [1986]. I instead fitted a latent

class model using the package ‘poLCA’ in R [Linzer and Lewis, 2011], which relates

the set of observed categorical variables to a latent categorical variables describ-

ing the social background and the economic situation respectively. For simplicity

I assumed a binary latent variable. I then predicted the latent class for the social

background and the economic situation that each individual is in by determining

the modal probability of the classes given a particular configuration of the observed

variables. A more detailed explanation of the construction of the latent-class model

and the prediction of the latent classes using the Expectation-Maximisation algo-

rithm, following Linzer and Lewis [2011], is given in the appendix A. I further split

the number of life events into three approximately equal categories: 0 � 5 events,

6�9 events and � 10 events. Finally, similar to Fergusson et al. [1986], the variable

on hospital admission distinguishes between ‘no hospital admission’ and ‘at least

one hospital admission’ Table 1.1 shows summary statistics of the four variables

with the probability of at least one hospital admission added in brackets to each

category of the three covariates.

Admissions No admission � 1 Admission
721 169

Social background High Low
507 (14.8%) 383 (24.5%)

Economic situation High Low
283 (14.8%) 607 (20.9%)

Number of life events 0� 5 Events 6� 9 Events � 10 Events
329 (11.9%) 295 (21.0%) 266 (25.6%)

Table 1.1: Summary statistics on the variables social background, economic situ-
ation, life events and hospital admission of the CHDS example (% of individuals
admitted to hospital for each category is given in brackets)

There are 169 (19.0%) children overall with at least one admission, varying

from 11.9% to 25.6% per category. For a high social background and a high economic
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situation the admissions probability is around 14.8% increasing to 24.5% and 20.9%

respectively for a low social background and low economic situation. The admissions

probability according to the number of life events is as low as 11.9% for 0 � 5 life

events, 21.0% for 6 � 9 life events and 25.6% for � 10 life events. Hence, similarly

to Fergusson et al. [1986] the life events appear to have the strongest e↵ect on the

hospital admissions probability.

I will use this example throughout Chapter 2 to introduce the semantics of

the BN and the CEG. I will first demonstrate how the dependence structure between

the variables of this problem can be depicted by a BN. I will further illustrate the

limitations of the BN for this problem and the more refined conclusions that can be

drawn from the CEG. In Chapter 3 I will then find the most probable BN and CEG

structure for this data, demonstrating the added value of using a CEG in such an

analysis. The Ordinal CEG, which will be introduced in Chapter 3.3.3, adds further

value to the graphical representation of the CEG when a particular binary outcome

variable is of interest. To avoid confusing with the terminology used in graph theory

I will henceforth refer to the children in the CHDS as ‘o↵spring’.

1.2.2 The UK Cerebral Palsy Birth Cohort

The second cohort study used to illustrate the usefulness of the CEG, specifically

when we have substantial amounts of missing data, is the UK Cerebral Palsy Cohort

Study (UKCP study) [Surman et al., 2006]. The Surveillance of Cerebral Palsy

in Europe (SCPE) estimates cerebral palsy to occur in around 2 individuals per

1000 live births and states that it is the most common cause of significant physical

disability in children [Cans, 2000]. The most cited definition of cerebral palsy is

given by Bax [1964] as ‘a disorder of posture and movement due to a defect or lesion

in the immature brain’. The UKCP cohort defines cerebral palsy according to the

SCPE, who give an extended version of this definition, and includes and postnatal

cerebral palsy in their study. Apart from mobility impairments due to brain lesions,

hearing, visual and mental impairments may also arise. Consequently, cerebral palsy

a↵ects the individual’s life significantly and has a large social and financial impact

on a↵ected families.

The UKCP cohort is a combination of five cerebral palsy registers (Mersey-

side and Cheshire, Scotland, Oxford, Northern Ireland, North of England) of people

born between 1960 and 1999, comprising of 6294 subjects in total, followed up until

censoring in May 2012, by which time 863 deaths have occurred. Data are collected

on demographics, the individual’s background and on clinical information, such as

severity of impairments and type of cerebral palsy [Surman et al., 2006].

8



It is known that cerebral palsy is associated with increased premature mortal-

ity and that people who have severe impairments are more likely to die prematurely

than the general population (see for example Strauss et al. [1998]; Blair et al. [2001];

Hemming et al. [2005]). I consider the following three impairments as risk factors

for survival:

• Visual impairment: binary variable distinguishing between severe and not

severe (severe: acuity less than 6/60)

• Ambulatory impairment: binary variable distinguishing between severe and

not severe (severe: unable to walk even with aids, in a wheelchair or bedridden)

• Manual impairment: binary variable distinguishing between severe and not

severe (severe: unable to feed or dress)

Survival to early childhood is considered as a binary variable distinguishing be-

tween survival up to or above the age of 5. When an individual dies very young,

before measurements on some impairments can be taken, then these data are often

recorded as missing, leading to an overall substantial amount of missing data. In

other situations the impairments may be so severe that taking measurements is not

possible. It can be seen from Table 1.2 that all three impairments have substantial

amounts of missing data. Due to follow-up using hospital records and national death

and emigration records survival, on the other hand, is practically fully observed. I

will discuss in Chapter 4 how the CEG enables us to determine explicitly the ef-

fect of missingness on survival and that, in this study, missingness is consequently

associated with poorer survival and severity of impairments.

Four individuals are omitted from the analysis that emigrated before the

age of five and one individual is omitted due to missing age giving a total of 6289

individuals which are included in the analysis. Summary statistics concerning the

cohort are given in Table 1.2. The percentage of survival up to or above the age of

5 is given in brackets next to the total number of individuals in each category.

Visual impairment appears to have a strong e↵ect on survival with the sur-

vival probability ranging from 98.7% to 85.4%. In particular, survival is lowest when

visual impairment data is missing. Ambulatory impairment appears to have an even

more significant e↵ect on survival. Here a missing impairment gives a survival of

only 78.4% in comparison to survival of 99.8% and 90.1% for a non-severe or se-

vere impairment, respectively. Manual impairment has a similarly strong influence

on survival as the ambulatory impairment, with a survival probability of 99.6% for

non-severe, 88.6% for severe and 78.9% for missing impairment. As expected, three

missing impairments lead to a comparatively low probability of survival of 78.9%
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(a) Visual, ambulatory and manual impairment

Visual Ambulatory Manual impairment
impairment impairment Not severe Severe Missing
Not severe Not severe 3470 (99.8) 69 (100.0) 44 (97.7)

Severe 343 (99.1) 585 (93.0) 23 (91.3)
Missing 19 (94.7) 0 35 (91.4)

Severe Not severe 72 (100.0) 4 (100.0) 1 (100.0)
Severe 37 (89.2) 413 (87.2) 8 (62.5)
Missing 0 1 (100.0) 7 (57.1)

Missing Not severe 325 (100.0) 9 (88.9) 16 (100.0)
Severe 92 (97.8) 290 (79.0) 16 (37.5)
Missing 2 (100.0) 3 (100.0) 405 (76.5)

(b) Total

Not severe Severe Missing
Visual impairment 4588 (98.7) 543 (88.4) 1158 (85.4)
Ambulatory impairment 4010 (99.8) 1807 (90.1) 472 (78.4)
Manual impairment 4360 (99.6) 1374 (88.6) 555 (78.9)

Total 6289 (95.4)

Table 1.2: Number of individuals in the UK cerebral palsy cohort with non-severe,
severe or missing visual, ambulatory and manual impairment (% of individuals with
survival up to or above the age of 5 is given in brackets)

and three non-severe impairments lead to a high survival probability of 99.8%. How-

ever, the combination of missing and severe impairments in some cases lead to even

lower probabilities of survival of 37.5% or 57.1% than three missing impairments.

It is also important to note that some cell counts are sparse, possibly zero, and

consequently conclusions of a survival probability of 100.0% need to be treated with

care. I will discuss the sparse cell counts in Table 3.1 further at the end of the thesis

in Section 6.3 of the Discussion.

I also consider two examples where birth weight is included as a further

covariate influencing survival, where the first looks at the e↵ect of birth weight and

visual impairment on survival and the second adds ambulatory impairment into

the model. Birth weight is split into three categories: very low ( 1.5kg), low

(1.5 � 2.5kg) and normal (> 2.5kg) birth weight. There are 55 individuals in the

study which have missing birth weight. As this is less than 1% of the individuals in

the study, it seems reasonable to omit these individuals to avoid sparseness of the cell

counts and I will hence assume throughout that birth weight is fully observed. As

mentioned above, sparsity of cell counts will be discussed in Chapter 6.3. Summary
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statistics on birth weight, visual and ambulatory impairment and their e↵ect on

survival is given in Table 1.3.

(a) Birth weight, ambulatory and manual impairment

Birth Visual Ambulatory impairment
weight impairment Not severe Severe Missing Total
Very low Not severe 650(99.5) 191(96.3) 11(81.8) 1100 (96.5)

Severe 18 (100.0) 61 (85.2) 4 (75.0)
Missing 66 (100.0) 53 (81.1) 46 (84.8)

Low Not severe 857 (100.0) 235 (94.5) 9 (100.0) 1521 (96.6)
Severe 15 (100.0) 123 (89.4) 2 (50.0)
Missing 105 (100.0) 83 (89.2) 92 (83.7)

Normal Not severe 2066 (99.76) 524 (95.0) 31 (93.5) 3613 (95.2)
Severe 44 (100.0) 271 (86.3) 2 (50.0)
Missing 176 (99.4) 261(79.3) 238 (79.4)

(b) Total

Not severe Severe Missing
Visual impairment 4574 (98.7) 540 (88.5) 1120 (87.1)
Ambulatory impairment 3997 (99.8) 1802 (90.1) 435 (82.1)

Total 6234 (95.7)

Table 1.3: Number of individuals in the UK cerebral palsy cohort with non-severe,
severe or missing visual or ambulatory impairment and very low, low or normal
birth weight (% of individuals with survival up to or above the age of 5 is given in
brackets)

From Table 1.3 it can be concluded that birth weight does not appear to have

as strong an e↵ect on the survival as either of the disabilities. However, there is a

slight tendency that a normal birth weight reduces survival slightly. Also note that

Table 1.3 has 55 individuals less than Table 1.2 and this appears to a↵ect mostly

the number of individuals with missing visual or missing ambulatory impairment,

improving the survival for these categories to 87.1% and 82.1%. This suggests that

missing birth weight is associated with missing impairments and poorer survival.

Again two missing or one missing and one severe impairment lead to the lowest

probablities of survival across all birth weights, especially when birth weight is nor-

mal. This is followed by two severe impairments across all birth weights. However,

given a very low birth weight, non severe visual impairment and missing ambula-

tory impairment also leads to a survival probability of only 81.8%. The survival

probability is overall extremley high for a non-severe ambulatory impairment.
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1.2.3 A Fictional Example on Influenza

The final example used in this thesis is a fictional example on a cohort of people

who may develop influenza. Influenza is an acute viral disease caused by RNA

(ribonucleic acid) viruses. We distinguish between three types: influenza virus A,

B and C, where virus C occurs much less frequently than the other two. Typical

symptoms such as fever, headache or nausea last for about one week. Antiviral

treatments can reduce the length and severity of the infection. The impact of flu can

vary from year to year and usually peaks in winter. The infection rate is commonly

measured in terms of the number of infected people per week. For example, the

Department of Health (UK) reported that at the end of 2010 the illness rate peaked

at around 120 people per week, and in the winter of 2000 this was as many as 250

people per week. During these periods the excess-death rate was estimated to be

around 16.8 per 100, 000. To prevent an infection it is possible to take an annual

influenza vaccine which, according to the World Health Organisation, can prevent

70� 90% of influenza illnesses.

To illustrate the new methodology developed on Dynamic CEGs, I will

slightly simplify the problem by assuming that when an individual catches flu and

takes an antiviral, then this always leads to full recovery. Similarly, I will assume

that the vaccine is 100% e↵ective. I consider first a study where measurements

record monthly whether the individual catches influenza and then whether he takes

antiviral treatment or not, his potential recovery and his decision to either take an

influenza vaccine or risk catching influenza again. I will then also consider the possi-

bility of a more detailed study where also the time until an event occurs is recorded.

This would monitor explicitly the duration of the individual being healthy and the

duration of recovery after illness, as well as the time until a decision to take treat-

ment or a vaccine is made.
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Chapter 2

Introduction to Graphical

Models and Chain Event

Graphs

In this Chapter I will introduce the CEG [Smith and Anderson, 2008; Thwaites et al.,

2010; Freeman and Smith, 2011a; Barclay et al., 2013a,b] describing its derivation as

well as explaining its main features as a graphical model. I will first review the most

commonly used graphical model, the BN, in Section 2.2, which has been studied for

example in Lauritzen [1996]; Korb and Nicholson [2004] or Cowell et al. [2007].

However, as mentioned in Chapter 1.2.3, in certain cases the BN does not provide

a rich enough structure to incorporate all information obtainable from the data

set. This is the case, for example, when the conditional independence statements of

the problem are asymmetric or only certain combinations of variables a↵ect another

variable which cannot be represented simply by the directed edges between variables

in the BN [Poole and Zhang, 2003].

The CEG has therefore been proposed as a new flexible class of graphical

models which can represent asymmetric structures directly in its topology and which

I will introduce in Section 2.3. Throughout this and the subsequent chapter I will

illustrate the advantages of modelling a problem using CEGs over the BN and will

show in Section 2.4 that the BN is a subclass of the CEG, supporting the claim

that the CEG can give a more detailed representation than a BN. The semantics

of the CEG can be further extended to the ‘Ordinal CEG’, which I will define

in Section 2.5. This orders the positions of the CEG according to an outcome

variable, hence adding to the expressiveness of the graph. Extensions of the BN

to allow for asymmetric dependencies, such as the context-specific BN [Friedman
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and Goldszmidt, 1998; Boutilier et al., 1996] and Bayesian Multinets [Geiger and

Heckerman, 1996], as well as alternatives to the CEG will be briefly discussed at the

end of this chapter in Section 2.6 and contrasts the CEG with alternative graphical

models. I will begin the chapter by giving a brief review of the developments within

graphical models and by defining some basic graph theory.

2.1 Graphical Models

2.1.1 An Overview of Graphical Models

Graphical models are statistical models for a set of random variables whose joint

probability density function (pdf) or probability mass function (pmf) is described in

terms of a graph and which hence possesses many advantages in terms of ‘represen-

tation, inference and learning’ [Kollar and Friedman, 2009]. One substantial benefit

of graphical models is that the statistical model is accessible through the graphical

representation of a given problem. Pearl [1986] reasons that in real world problems

it is often easier for a client or a group of experts to identify conditional probabil-

ities between a small number of variables instead of the full probability model and

that therefore judgements are usually made only on a subset of variables, which the

graphical models take into account. This, in particular, enables better interaction

between a statistician and a client or domain, who can see for himself how the state-

ments made are encoded in the graphical model and can amend these on the graph

as necessary.

However, graphical models have not only become popular as a representa-

tional tool, but have also proven to be extremely useful for inference and learning

within a complex problem. The joint distribution on a set of variables is described

more compactly in the graph, commonly through conditional independence state-

ments between the variables. This allows for e�cient computation of posterior dis-

tributions and the propagation of evidence within a high-dimensional setting from

which inference can be drawn. Also, when learning a statistical model the compu-

tational benefits of graphical models allow for e�cient model selection techniques.

Graphical models have now been widely studied for example in Lauritzen

[1996]; Studenỳ [2005]; Kollar and Friedman [2009]; Smith [2010] and many more.

We commonly distinguish between three classes of graphical models: directed acyclic

graphs, undirected graphs and chain graphs [Studenỳ, 2005]. Directed acyclic graphs

(see Definition 7) have only directed edges between the vertices in the graph and

do not exhibit cycles. They form the underlying graph of the Bayesian Network or

Belief Network (BN) [Pearl, 1986] which may have discrete variables, variables with
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a Gaussian distribution or a combination of the two. The BN is one of the most

commonly used graphical models and will be described in detail in Section 2.2 of

this chapter. In contrast to this, undirected graphs or Markov Networks describe

conditional independence statements between the variables in the graph only by

undirected edges. Examples of these are the Gaussian graphical models with con-

tinuous variables or log-linear graphical models with discrete variables [Lauritzen,

1996]. Finally, we may have a mixture of directed and undirected edges in the graph,

which are called chain graphs and were developed in Lauritzen and Wermuth [1989].

As this thesis focuses on CEGs, which are directed graphical models describing a set

of discrete random variables, I will only consider in detail the discrete Bayesian Net-

work and its extensions such as the context-specific BN [Boutilier et al., 1996] and

Bayesian Multinets [Geiger and Heckerman, 1996] which will briefly be discussed in

Section 2.6.

The above graphs all explain the distribution of a set of random variables

where the variables of the problem are represented by the nodes in the graph and

the edges explain possible dependencies between the variables. A di↵erent approach

to representing a complex problem graphically was taken in the area of decision

analysis, where probability trees and decision trees were employed. Although these

are formally graphical models, they are historically not included within the graphical

models literature described above. In Rai↵a [1968] a decision tree describes the

unfolding of a sequence of events and decisions then can be made at di↵erent points

in the tree where the leaf nodes represent the final outcome, often given in terms of

a utility or monetary value. Decision problems can then be analysed and an optimal

decision rule found by working backwards through the tree. However, a decision tree

can quickly become extremely large and so in 1976 Miller et al. [1976] attempted to

tackle a large decision problem by more compact representations of the decision tree

using ideas of coalescence. This led to the first formulation of the Influence Diagram

[Howard and Matheson, 1981], which quickly became extremely popular as a tool

for decision analysis and communication. Today it is known that the Influence

Diagram is in fact an extension of the BN by adding decision nodes and a utility

node to its graph (see for example Smith [2010]). Although Influence Diagrams

were, at first, translated back into decision trees to be solved, it was soon shown

in Shachter [1986] that Influence Diagrams could be analysed directly to find the

optimal decision policy in a similarly e�cient way. Decision trees consequently lost

attention and Influence Diagrams and BNs became the main graphical framework

for decision analysis and reasoning under uncertainty.

However, in practice domain experts still describe many problems in terms
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of tree structures rather than directly as a BN. In particular, when the dependence

structure between variables in the problem is asymmetric, trees often give a more

intuitive representation. Therefore, part of the statistician’s task is then to translate

these presented problems into BNs and Influence Diagrams (see Section 2.2 on the

elicitation of a model). As a consequence, Anderson and Smith [2006] developed the

idea of reverting back to carrying out analyses directly on a coalesced probability

tree as these appeared to be more e↵ective in communicating with a client, leading

to the Chain Event Graph [Smith and Anderson, 2008]. However, in contrast to

the developments in the early 1980s, the CEG admits not only coalescence of two

vertices and all future developments, but also coalescence of two vertices where only

the immediate events are the same. This is represented by colouring of the graph,

called the ‘stage’ partition of the model. Unlike the Influence Diagram and the BN

the CEG still retains all the paths of the tree within its graph, giving therefore a

very di↵erent, yet still expressive representation of a problem. Research has so far

centred around problems that are represented by probability trees. However several

research reports on the development of a ‘Decision Event Graph’ [Cowell et al., 2013]

exist which define a CEG for a decision tree and how it contrasts to the Influence

Diagram.

2.1.2 Graph Theory

In this section I will review some standard notation within graph theory according

to Lauritzen [1996].

Definition 1. A graph G consists of a set of vertices or nodes V (G) and a set of

edges E(G), where each edge in E(G) connects a pair of vertices in V (G). A directed

edge from a vertex v
i

to a vertex v
j

can be written as e(v
i

, v
j

) and is drawn as an

arrow from v
i

into v
j

.

Definition 2. A cut is a partition of the vertices V (G) of a graph G into two

disjoint subsets and the associated cut-set is an edge set in E(G), where the vertices

connected by these edges are in di↵erent subsets of the cut.

Definition 3. A graph is said to be a complete graph when there exists an edge

between all pairs of vertices.

Definition 4. A graph is infinite when either the set V (G) or the set E(G) is

infinite or both.

Definition 5. A set of vertices v1, ..., vn, such that there exists an edge between

v
i

and v
i+1, 8i = 1, ..., n � 1 is called a path, ✏, of length n between v1 and v

n

.
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Let E be the set of all paths in G. Similarly, if the edges are directed such that

e(v
i

, v
i+1) 2 E(G) for i = 1, ..., n � 1, then we say we have a directed path from

v1 to v
n

. Rather than defining the path in terms of its vertices a path can also be

defined by its edges e(v
i

, v
i+1) 2 E(G), i = 1, ..., n� 1.

Definition 6. Call v
j

2 V (G) a child of v
i

2 V (G) and v
i

2 V (G) a parent of

v
j

2 V (G), if there exists a directed edge from v
i

to v
j

. Write the parent set of a

vertex v
j

as pa(v
j

) and the set of children of v
i

as ch(v
i

). Similarly, call the vertices

with a directed path into v
j

the ancestors of v
j

, written as an(v
j

), and the set

of vertices with a directed path from v
i

the descendants of v
i

, written as de(v
i

).

Finally, we have that the set nd(v
i

) = V (G)\de(v
i

) is the set of non-descendants

of v
i

.

Definition 7. A graph is said to be directed if its edges are directed. A cycle is

a special type of directed path which starts and ends with the same vertex. Hence, a

directed acyclic graph (DAG) is a directed graph with no directed cycles.

We can well-order the vertices in a DAG in the sense that every parent vertex

comes before its children in the ordering.

Definition 8. Call the vertices that come before a vertex v
j

the predecessors of

v
j

, written as pr(v
j

).

In order to define a CEG some further terminology as introduced in Shafer

[1996] and Smith [2010] is needed:

Definition 9. A tree T = (V (T ), E(T )) is a connected directed graph with no

cycles. It has one vertex, called the root vertex v0, with no parents, while all other

vertices have exactly one parent.

Definition 10. A leaf vertex l 2 V (T ) is a vertex with no children. A non-leaf

vertex of a tree T is called a situation, s
i

, and the set of situations is denoted by

S(T ) ✓ V (T ) and the set of leaf nodes by L(T ) = V (T )\S(T ).

In this thesis I will only consider event trees [Smith, 2010], which describe

the way a process develops and the di↵erent sequences of events that may occur.

Therefore, all situations in the tree are chance nodes and the edges of the tree

label the possible events that can occur. This stands in contrast to the decision

tree, which also includes decision nodes, describing the decisions made by a decision

maker throughout the process. When the edges of the tree are labelled with the

conditional probabilities of observing the following event given we have reached a

particular node, the tree is called a probability tree.
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Definition 11. A subtree T (s
i

) is a tree with vertex set V (T (s
i

)) = {s
i

} [ de(s
i

),

and the edge set E(T (s
i

)) consisting of all the edges between s
i

and its descendants

in T .

Definition 12. A floret is a subtree F(s
i

) = (V (F(s
i

)), E(F(s
i

))) of T , s
i

2 S(T )

with vertex set V (F(s
i

)) = {s
i

} [ ch(s
i

), and the edge set E(F(s
i

)) consisting of

all the edges between s
i

and its children in T .

I will assume throughout this thesis that every situation, s
i

, has a finite

number of edges, m
i

, emanating from it. Write e
sik

for the kth edge associated

with the floret F (s
i

) emanating from s
i

. When describing a unique path within a

CEG this is essential, as multiple edges between the same two vertices may exist.

Consequently, a path ✏ is therefore defined by its edge set (e
si1

k1 , esi2k2 , . . . , esinkn).

2.2 Review of Bayesian Networks

The Bayesian Network [Pearl, 1986; Korb and Nicholson, 2004; Cowell et al., 2007;

Jensen and Nielsen, 2007] is the most widely used graphical model which expresses

the relationship between the variables of the system in terms of conditional indepen-

dence statements. More explicitly, the vertices of the graph represent the variables

of the problem and the directed edges between the nodes indicate possible dependen-

cies between the variables. The BN was first defined in Pearl [1986] and its simple

graphical structure has proved to be a particularly useful tool for feeding conclusions

back to a client, as well as being an e�cient framework for evidence propagation and

model selection procedures that exploit its graphical structure. The BN has there-

fore been employed in many real-world applications as a framework for reasoning

under uncertainty. Korb and Nicholson [2004] give an overview of real-world prob-

lems in which BNs have been employed for prediction, monitoring or diagnosis. The

most common areas of applications include medicine and health care, environment,

engineering, education, business and computing.

Assume that we have a joint probability mass function (pmf), p(x), on a

vector of random variables X = (X1, X2, ..., Xp

). The definitions below hold si-

multaneously for probability density functions. However, as only discrete graphical

models are being considered within this thesis, the definitions are restricted to pmfs.

We can then write the pmf p as a product of conditional probabilities:

p(x) = p(x1)
pY

i=2

p(x
i

|x1, ..., xi�1),
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which can then be easily simplified by realising that in a given problem not all

variables are dependent on each other, but that some of the variables may be con-

ditionally independent.

Definition 13. Let X,Y and Z be random variables. We say X and Y are inde-

pendent, written as X ?? Y , if and only if p(x, y) = p(x)p(y). Also, X and Y are

conditionally independent given Z, written as X ?? Y | Z, if and only if

p(x, y|z) = p(x|z)p(y|z),

when p(z) > 0.

It is these conditional independence statements which are represented within

the topology of the BN and which form the basis for e�cient model selection and

propagation. In order to represent the joint probability of the variables in terms of

a graph, G, we assume a one-to-one correspondence between the set of vertices and

the vector of random variables X. Then by Cowell et al. [2007]:

Definition 14. A probability distribution P on a set of random variables obeys

the ordered directed Markov property relative to a DAG G if any variable is

conditionally independent of its predecessors, given its parents

X
i

?? pr(X
i

)\pa(X
i

) | pa(X
i

). (2.1)

The graph therefore describes the relationship between the variables via con-

ditional independence statements between the variables with a missing edge repre-

senting conditional independence. This further leads to a simpler form of the pmf

on X as given in equation 2.2

p(x) = p(x1)
pY

i=2

p(x
i

|pa(x
i

)), (2.2)

and we say that P admits a recursive factorisation relative to G. A BN can

now be formally defined as follows:

Definition 15. A Bayesian Network (BN) on a vector of variables

X = (X1, X2, ..., Xp

) is made up of three components:

1. A DAG B, with vertex set V (B) = {X1, X2, ..., Xp

} and with a directed edge

from X
j

to X
i

if and only if X
j

2 pa(X
i

).
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2. A set of p� 1 conditional independence statements of the form

X
i

?? pr(X
i

)\pa(X
i

) | pa(X
i

).

3. A set of Conditional Probability Vectors (CPVs), p(x
i

|pa(x
i

)), associated with

each of the vertices X
i

.

When pr(X
i

)\pa(X
i

) is the empty set, then the corresponding conditional

independence statement is trivial. When defining a BN commonly only the non-

trivial conditional independence statements are given. The elicitation of the first

two components of the BN is often referred to as qualitative modelling [Cowell et al.,

2007]. Here, the expert can build a model focusing at first only on the qualitative

structure and discuss the dependence structure between the variables by looking at

the edges in the graph, even without specifying the CPVs yet. The final quantita-

tive component of the BN can then be elicited later, once the structure has been

determined. Kjaerul↵ and Madsen [2007] or Smith [2010] explain how to proceed

when eliciting a BN qualitatively from an expert, while details on how to elicit the

probabilities can be found in O’Hagan et al. [2006]. The elicited probabilities of

the BN can further be updated with available data and Bayesian model selection

techniques can be used to determine the maximum a posteriori (MAP) BN structure

given data. This will be discussed in detail in Chapter 3.1.

Below I give an example of a BN on four variables using the example of the

Christchurch Health and Development Study introduced in Chapter 1.2.1.

Example 1. Consider the following four variables of the CHDS.

• X1 = family social position: binary variable: ‘low’, ‘high’

• X2 = family economic situation: binary variable: ‘low’, ‘high’

• X3 = number of family life events: variable with three categories : ‘low’,

‘average’, ‘high’

• X4 = hospital admission: binary variable: ‘yes’, ‘no’.

Recall that the conclusion drawn in Fergusson et al. [1986] states that the economic

situation has no e↵ect on the hospital admissions probability once adjusting for the

social background and the family life events. This can be directly translated into the

conditional independence statement:

X4 ?? X2 |X1, X3,

with the corresponding DAG given in Figure 2.1.
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X2
Economic
situation

✏✏

X1 Social
back-
ground

<<

##

// X4 Ad-
missions

X3 Life
events

;;

Figure 2.1: The BN of the CHDS example on social background, economic situation,
life events and hospital admission derived from Fergusson et al. [1986]

Note that the definition of a BN requires an ordering of the variables such

that the parent variables come before its children. This well-ordering of variables

in a DAG is however not always unique. Consider, for example, the DAG given in

Figure 2.2:

X2
Economic
situation

X1 Social
back-
ground

<<

##

X4 Ad-
missions

X3 Life
events

;;

Figure 2.2: An alternative ordering of the variables in the BN of the CHDS example

We could have either the immediate orderingX = (X1, X2, X3, X4) with con-

ditional independence statements X3 ?? X2 |X1 and X4 ?? X1, X2 |X3, or alterna-

tivelyX = (X1, X3, X4, X2) with conditional independence statementsX4 ?? X1|X3

and X2 ?? X3, X4 |X1. In both cases parents come before children. However, it is

proven, for example in Smith [1989], that the conditional independence statements

derived from the DAG are deducible from each other. A stronger statement than the

ordered directed Markov property is the local directed Markov property, which

takes this into account by stating that X
i

is independent of all non-descendants

given its parents, i.e. X
i

?? nd(X
i

)\pa(X
i

) | pa(X
i

).
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Apart from the conditional independencies that are apparent from the miss-

ing edges, further conditional independencies on subsets of variables can be deduced

directly from the graph. These independencies are given by the d-separation the-

orem defined by Pearl [1986] or, by the global directed Markov property [Lau-

ritzen et al., 1990], a di↵erent formulation of the d-separation theorem. During elici-

tation the statistician may deduce conditional independencies from the d-separation

theorem and use these to check the validity of the model with the expert.

From the above definitions it becomes evident that a set of conditional in-

dependence statements could be represented by several DAGs. Hence, for example,

the conditional independence statement X4 ?? X2 |X1, X3 given in Figure 2.1 could

also be represented by a DAG with the edge from X2 to X3 reversed. Therefore,

two BNs may encode exactly the same conditional independence statements even

though their associated DAGs are di↵erent and we then say that the two BNs are

equivalent. It was proved in Verma and Pearl [1990] that two BNs are equivalent

if and only if 1. their associated DAGs have the same topology, and 2. whenever

two parents of a variable X are unconnected in one of the DAGs then this structure

is also present in the other DAG. Hence, the edges within a standard BN are not to

be interpreted causally. An edge from a variable X1 to a variable X2 does not mean

that X1 causes X2 but simply that there exists a possible association between the

two variables. Pearl’s book Causality (2000) is a major contribution to the literature

on causality and claims that while associations between variables can be described

by joint probability distributions, causal relationships always underlie some judg-

ments or assumptions made that cannot be derived from an observational study.

Based on Holland’s [Holland, 1986] slogan ‘No causation without manipulation’,

Pearl [2000] and many others (e.g. Lauritzen [2001] and Dawid [2002]) describe

a cause in terms of an intervention or manipulation. So, when ‘X1 causes X2’,

this means that manipulating X1 (i.e. forcing it to a particular value) changes the

probability distribution of X2 for at least some value x⇤1. To distinguish between

‘conditioning by observation’ and ‘conditioning by intervention’, Lauritzen [2001]

uses the notation p(x||x⇤
A

) to describe the joint pmf given that a subset of variables

X
A

has been manipulated to x⇤
A

. This then gives the so-called intervention formula:

p(x||x⇤
A

) =
Y

xi /2xA

p(x
i

|pa(x
i

))

����
xA=x

⇤
A

=

Q
p

i=1 p(xi|pa(xi))Q
xi2xA

p(x⇤
i

|pa(x
i

))

����
xA=x

⇤
A

.

The above can be understood by thinking of the joint probability in the
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form of its factorisation according to the associated DAG, evaluated at X
A

= x⇤
A

.

By fixing a subset of variables to a particular value, X
A

= x⇤
A

, the conditional

probabilities for x
i

2 x
A

, are simply equal to one, as the x
i

have been fixed to x⇤
i

by

intervention. In general, conditioning by observation is not the same as conditioning

by intervention. A Causal BN is then defined as follows:

Definition 16. A BN is a Causal BN if the system, under manipulation, admits

the intervention formula.

Pearl’s approach is often criticised for several reasons [Smith, 2010; Shafer,

1996]. The obvious criticism is that it is assumed that an intervention, e.g. fixing

X
k

= x⇤
k

, say, has the same e↵ect on the child variables as if x⇤
k

had simply been

observed. This assumption however, often does not appear to be valid in applications

when dealing with rational individuals with respect to problems in social sciences

and medical applications. Consider, for example, a policy intervention programme

for the CHDS, where financially disadvantaged families receive financial aid. It is

likely that the e↵ect of a family receiving financial help is not the same as when

they have earned the money themselves.

A further criticism is that Pearl does not incorporate a time element into

his model. A cause must always occur before the a↵ected variable, but this is only

implicitly assumed through the ordering of the variables. Shafer [1996] therefore

suggests inferring causal assumptions from probability trees, as a tree gives a natu-

ral description of the way a process unfolds. Similarly, I will show in the subsequent

section that the CEG retains the paths of its associated probability tree and con-

sequently that the CEG may be advantageous for problems, such as cohort studies,

where the variables take a particular ordering over time.

2.3 Chain Event Graphs and Their Semantics

In 2008, Smith and Anderson [2008] proposed the CEG as an alternative graphical

model to the BN, which has the significant advantage of allowing for asymmetric

dependence structures. For example, a dependence structure between two variables

may only occur for a particular parent configuration, which cannot be captured by a

BN. Boutilier et al. [1996] call this a context-specific conditional independency and

define it as follows:

Definition 17. Let X, Y C be random variables in a given problem. Then X and

Y are contextually independent given the context C = c if

P (X|c, Y ) = P (X|c), whenever P (c, Y ) > 0. (2.3)
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This means that two variables are independent given the value of a third

variable.

In this section I will first introduce the CEG and its semantics. I will then

show in Section 2.3.2 how the CEG lets us read o↵ these types of conditional in-

dependencies as well as additional conclusions directly from its topology, and I will

also briefly discuss the causal extension of the CEG.

2.3.1 Review of CEGs

The CEG is a graphical model which is derived from a finite probability tree by

merging the vertices in the tree together whose associated conditional probabilities

are the same. As described in Section 2.1.1 its derivation from a tree is particularly

advantageous when we want to describe the way a process unfolds and how the

combination of di↵erent subsequent events leads to di↵erent conclusions. Starting

at the root vertex and traversing a path, the tree describes the di↵erent events

in a process or story. Each situation, s
i

, in the tree displays a situation or state

the individual may be in and its children vertices are the possible events that may

follow from this situation. In cohort studies, such as those described in Chapter 1.2,

a tree can hence naturally take us through a part of the individual’s life or represent

explicitly the way in which di↵erent factors a↵ect an outcome. The CEG retains

these features of the tree of describing a sequence of events within in its graph.

I again use the example of the CHDS to illustrate the derivation of the CEG.

Example 2. Recall from Chapter 1.2.1 Table 1.1 that we have binary variables

describing the social background, X1, and the economic situation, X2, as well as a

variable describing the number of family life events, X3, occurring over the five years

of the o↵springs’s lives. As before the interest lies in the e↵ect of these variables on

the probability of a hospital admission, X4 occurring over the five years. A possible

event tree of this problem is given in Figure 2.3.

The edges e
sik

2 E(F (s
i

)), k = 1, . . . ,m
si of a floret in the tree are labelled

by the particular events that occur after s
i

is reached. Hence, each floret F (s
i

)

can be associated with a random variable X(s
i

) taking values {x1, x2, . . . , xmsi
},

where s
i

has m
si children. For example, s3 in Figure 2.3 is associated with the

random variable X(s3) = X3 describing the number of life events given a high

social background and a high economic situation, taking the values ‘high’ and ‘low’.

Consequently, the paths in the tree T of Figure 2.3 correspond to the set of all

configurations of values that the set of variables X = (X1, X2, X3, X4) can take.
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Figure 2.3: An event tree T for the CHDS example, with the variables taking the
ordering: social background, economic situation, life events and hospital admission
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Like the BN, an event tree is commonly elicited from a description of a prob-

lem by a client or domain expert. This can often be simpler than the elicitation of

a BN, as the tree can explicitly express the described sequence of events from its

root-to-leaf paths and depict the order in which these occur. Details are given for

example in Smith [2010] who discusses the elicitation process and the advantages of

using tree structures. This set-up further requires that an ordering of the variables

first needs to be chosen when representing a problem as a specific tree. Often, a

plausible order can be determined which is compatible with the temporal develop-

ment of each individual within the study. In a cohort study this will often be the

case, where a set of variables are measured throughout the individuals’ lives, which

will a↵ect the outcome variable measured last. In some scenarios several orderings of

the variables may be plausible. For example in the CHDS, putting the social back-

ground as our first variable is an obvious choice, as it is measured only at birth and

hence cannot be a↵ected by variables measured after birth. The hospital admissions

variable is placed as the final variable in the tree, as we are interested in the e↵ect

that the other three variables have on it. In this example, I have further placed the

economic situation before the life events, which suggests that the economic situation

may a↵ect the number of life events (e.g. change of job, financial problems). How-

ever, it is also plausible that the life events a↵ect the economic situation. Therefore,

in this case, we have two plausible orderings and I will discuss the e↵ect of switching

the economic situation and the life events in the probability tree in Chapter 3.3. I

will further discuss in the same chapter the possibility of relaxing the restriction of

an ordering by searching over several plausible tree structures. For now, however, I

assume we have a single tree representation of a given problem from which we will

later derive the CEG.

To define a CEG I will start with a finite probability tree and then introduce

the concepts of stages and positions, which group the vertices of the tree together

when the probabilities on their florets are the same. A probability tree is, by defini-

tion, an event tree with a vector of conditional probabilities (CPV) associated with

each floret, F (s
i

), which is written as

⇡
si = (⇡

si1,⇡si2, ..,⇡simsi
), (2.4)

where ⇡
sik

= P (e
sik

|s
i

) is the probability that an individual transitions from s
i

along

the kth edge e
sik

and
P

mi
k=1 ⇡sik = 1. The CPVs then describe the distribution of

the random variable, X(s
i

), associated with floret F (s
i

). For example, floret F (s3)

is associated with the random variable describing the number of family life events
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conditional on a high social background and economic situation, taking the three

values ‘low’, ‘average’, ‘high’ with distribution ⇡
s3 = (⇡

s31,⇡s32,⇡s33).

Definition 18. We say two situations s
i

and s
j

are in the same stage, u, if and

only if

1. the topology of the florets F (s
i

) and F (s
j

) is the same, i.e. there exists a

bijection �
ij

between E(F(s
i

)) and E(F(s
j

)), where �
ij

(e
sik

) = e
sjk

and e
sik

and e
sjk

describe the same unfolding event, and

2. ⇡
si = ⇡

sj , i.e. the probability distributions associated with the florets is the

same.

If s
i

and s
j

are in the same stage then we assign their pairs of edges
�
e
sik

, e
sjk

�
the

same colour. (See for example Figure 2.4.)

When there is only a single situation in a stage, then this stage is called

trivial. The situations of the tree can hence be partitioned into stages, associated

with a set of bijections {�
ij

: s
i

, s
j

2 S(T )} and we denote the set of stages by U(T ).

Also, given a stage u 2 U(T ), ⇡
u

= (⇡
u1,⇡u2, ..,⇡umu) is the CPV of stage u. Note

that by definition all situations in u have the same number of emanating edges, m
u

.

Given a stage partition U(T ) of the situations in T we can then define a staged

tree version of T as follows:

Definition 19. A staged tree version of T is a tree with coloured edges, where for

every non-trivial stage u 2 U(T ) and s
i

, s
j

2 u, corresponding edges under �
ij

are

assigned the same colour.

In previous publications not only the edges but also the vertices of the staged

tree are coloured. In this thesis I will colour only the edges of the situations that

are in the same stage, as in small examples this gives the clearest presentation.

However, in Chapters 4 and 5, I will instead only colour the situations that are in

the same stage itself, where corresponding edges are consequently identified only by

their labelling.

If U(T ) is the trivial partition, such that every situation is in a di↵erent stage,

then the staged tree is uncoloured and contains no additional information about the

process that is not already contained in T . However, Smith and Anderson [2008]

give numerous examples of trees where the stage partition of a proposed model is

non-trivial. For example, any discrete BN has an equivalent representation in terms

of a stage partition, which is only trivial when we have a complete BN structure, as

will be shown in Chapter 2.4.
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A finer partition of the vertices in the tree can be given by the position

partition, where a position is defined as follows:

Definition 20. Two situations s
i

, s
j

in the same stage are also in the same position

w if and only if

1. the topology of the subtrees T (s
i

) and T (s
j

) is the same, i.e. there exists

a bijection  
ij

between E(T (s
i

)) and E(T (s
j

)) and all corresponding edges

describe the same unfolding events, and

2. the probability distributions on corresponding florets in the subtrees are the

same.

The definition requires that for two situations to be in the same position

there must not only be a map between the edge sets E(T (s
i

)) and E(T (s
j

)) of the

two subtrees but also the colours of any edges under this map must correspond in

the associated staged tree. When s
i

, s
j

are a distance of one edge from a leaf node

then T (s
i

) = F(s
i

) and T (s
j

) = F(s
j

) and so they will be in the same position

if and only if they are in the same stage. But if these situations are further from

a leaf, not only do these two situations need to be in the same stage but also all

their children must have a parallel child in the same stage, and so on. Therefore a

potentially finer partition can be obtained through the set of positions, denoted by

W (T ). As above each position w made up of several situations has an associated

CPV given by

⇡
w

= (⇡
w1,⇡w2, ..,⇡wmw),

where all situations in w have the same number m
w

of emanating edges. The CEG

C of a finite staged tree T is then the staged tree collapsed over its positions, where

the positions form the vertices of the graph and the set of leaf nodes are collected

in a single position called w1. The formal definition of the CEG derived from a

finite tree similar to Smith and Anderson [2008] is given below. I will extend this

definition to infinite trees in Chapter 5.

Definition 21. A Chain Event Graph (CEG) C = (V (C), E(C)) of a staged tree

T has vertex set V (C) = W (T ) [ w1, the set of all positions of the tree T and the

position of leaf nodes. Emanating edges from a position w
i

2 W (T ) are constructed

as follows: Choose a single representative situation s(w
i

) 2 S(T ). Then there is an

edge from w
i

to a position w
j

2 V (C) for each child v
j

2 ch(s(w
i

)), v
j

2 w
j

in the

tree T . When two positions are in the same stage then they are connected by an

undirected dashed line and their edges are coloured according to their colouring in

the staged tree.
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I will henceforth denote the stage partition of a CEG C by U(C) and the

position partition by W (C).

Definition 22. Say the CEG is simple whenever U(C) = W (C), i.e. the stages

and positions coincide and hence the CEG is uncoloured.

Similarly to eliciting the dependence structure of the variables in a BN, the

stage structure of a CEG can be elicited from a client or domain expert. Starting

with an event tree, the client is queried on whether future developments in the story

are likely to be the same given that certain events have occurred. Because of this

the qualitative structure of the CEG can be determined prior to eliciting specific

probabilities (see Smith and Anderson [2008] for more details).

I will now illustrate the above definitions and the conclusions we can draw

from the CEG on the example for the CHDS.

Example 3. Assume the following stage partition on the tree in Figure 2.3 of the

CHDS example:

u0 = {s0}, u1 = {s1}, u2 = {s2}, u3 = {s3, s4, s5}, u4 = {s6}, u5 = {s7, s10},

u6 = {s8, s11, s13, s14, s16}, u7 = {s9, s12, s15, s17, s18},

where the resulting staged tree with coloured edges is given in Figure 2.4. In this

example the stage and position partition do not coincide completely, as s5 is in the

same stage as s3 and s4, however, the probability distributions on the subtree T (s5)

do not coincide with T (s3) and T (s4). This is evident from the colouring of the

edges emanating from situation s13 which does not match the colouring of s7 and

s10. Therefore s5 is not in the same position as s3 and s4 and we hence have the

slightly finer position partition:

w0 = {s0}, w1 = {s1}, w2 = {s2}, w3 = {s3, s4}, w4 = {s5}, w5 = {s6}, w6 = {s7, s10},

w7 = {s8, s11, s13, s14, s16}, w8 = {s9, s12, s15, s17, s18}, w1 = {l19, l20, . . . , l42}.

Collapsing the staged tree over its positions then gives the CEG in Figure 2.5.

We can then give a detailed account of the e↵ect a combination of covariates

has on the hospital admissions directly from the topology of the CEG, where the

conclusions drawn from the graph go beyond the usual conditional independence

statements obtainable from a BN:

• The social background appears to have an e↵ect on the economic situation

(w0 ! w1, w0 ! w2).
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Figure 2.4: A staged tree version of the event tree T for the CHDS example, with
the variables taking the ordering: social background, economic situation, life events
and hospital admission

30



w1 Low economic //High economic // w3 Low events //

Average events

&&

High events

��

w6

No admission

""

Admission

""
w0

High social

88

Low social

&&

w4 Average events //Low events //
High events

&&

w7
Admission

//
No admission // w1

w2 Low economic //

High economic

<<

w5

Low events

88

High events //Average events // w8

Admission

<<

No admission

<<

Figure 2.5: The CEG of the staged tree version of T on the variables social back-
ground, economic situation, life events and hospital admissions of the CHDS example

• The economic situation seems to have no e↵ect on the number of life events

for families from a higher social background (w1 ! w3). However, in a fam-

ily from a lower social background the economic situation seems to a↵ect the

number of life events that occur (w2 ! w4, w2 ! w5).

• O↵spring from a family of high social background and a low number of life

events are in one position, independent of the economic situation (w3 ! w6).

• O↵spring from socially advantaged families with an average number of life

events are in the same position as o↵spring from socially disadvantaged fami-

lies with a high economic situation and a low or average number of life events,

as are o↵spring from a low economic situation with a low number of life events

(w3 ! w7, w4 ! w7, w5 ! w7).

• All individuals with a high number of life events are in the same position

irrespective of their social or economic background. Further, an individual

from a low social and economic background with only an average number of

life events is also in this position (w3 ! w8, w4 ! w8, w5 ! w8).

It is now also possible to observe that the CEG does not lose any information

over the tree, as any path in the tree can be identified in the CEG. For example, an

individual with a high social background, a high economic situation, a high number

of life events and no hospital admission goes along the edges e(w0, w1), ew11 labelled

‘high economic’, e(w3, w8), ew31 labelled ‘no admission’. However, unlike a tree, the

CEG can have ‘double edges’ in the graph, meaning that we have two edges (or

more) going from a single parent position into the same child position. (Compare,

for example, Figure 2.5 e(w1, w3).) Because of this we define a path through the

CEG by its edges, rather than its positions. Further, by the definition of a stage the

CEG satisfies the Markov property in the sense that the probability of going along a

particular edge depends only on the current stage we are at and is independent of the
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path through which the stage was reached. Let ✏ = (e
w0k0 , ewi1

k1 , ewi2
k2 , . . . , ewinkn

)

be a path starting at w0 and going along n + 1 edges ending at w1, where e
winkn

leads to w1. Then,

p(✏|C) = p(e
w0k0 , ewi1

k1 , ewi2
k2 , . . . , ewinkn

)

= p(e
w0k0)p(ewi1

k1 |ew0k0) . . . p(ewinkn
|e

w0k0 , ewi1
k1 , . . . , ewin�1

kn�1)

= p(e
w0k0 |w0)p(e

wi1
k1 |wi1) . . . p(ewinkn

|w
in) by the definition of a position

= p(e
w0k0)

nY

a=1

p(e
wiaka

|w
ia)

= ⇡
w0k0

nY

a=1

⇡
wiaka

. (2.5)

Hence, P admits a factorisation relative to C, similar to the factorisation for

BNs in Equation 2.2. Note, that ⇡
wiaka

= ⇡
uiaka

, where w
ia 2 u

ia and so each path

can be written as a product of conditional probabilities associated with the stages

in U(C). Hence,

p(✏|C) = ⇡
u0k0

nY

a=1

⇡
uiaka

, (2.6)

where u
ia , a = 1, . . . , n are not necessarily distinct as a stage may consist of several

positions.

2.3.2 Conditional Independency in CEGs

As for BNs, conditional independence statements can be read o↵ directly from the

topology of the CEG. Thwaites and Smith [2011] attempt to characterise all con-

ditional independence statements that can be read from the CEG, including an

analogue of the d-separation theorem for BNs. For this thesis, however, only the

dependence structures discussed in Smith and Anderson [2008] are needed. In con-

trast to the BN, the conditional independence statements that can be read from

the CEG are context-specific conditional independencies (Definition 2.3) or event-

specific conditional independencies [Smith and Anderson, 2008], where we condition

on a variable taking a particular value or a sequence of possible events having hap-

pened.

Smith and Anderson [2008] define these types of conditional independencies

on a CEG as follows: By Thwaites et al. [2010], let Y (w) be the variable identified

with the set of paths from w0 to w. Similarly, Z(w) is the variable associated with

the set of paths from w to w1. Finally, let E(w) represent the event that the
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individual passes through the position w, which is associated with all paths from

w0 to w1 which go through w. Smith and Anderson [2008] then prove that we can

read o↵ conditional independence statements of the form

Y (w) ?? Z(w) | E(w). (2.7)

So, given that an individual reaches a position w, the path through which w was

reached is independent of all future developments from this position. Similarly, let

Y (u) be the variable whose state space is the set of all paths from w0 to w,w 2 u,

E(u) is the event of passing through w 2 u and finally, as defined in Section 2.3,

X(u) is the random variable associated with the floret F (u). By Smith and Anderson

[2008] we can then also read o↵ conditional independencies of the form

Y (u) ?? X(u) | E(u). (2.8)

So, given an individual reaches a position w 2 u, the path taken to reach u is

independent of the immediate future. I will show on the CHDS example below that,

apart from simple conditional independencies as defined in Definition 2.3, more

complex deductions can be drawn from the CEG through these two statements,

where di↵erent sequences of events lead into the same position.

Example 4. In the CHDS example w1 and w2 are reached through a high or low

social background respectively. Therefore, by (2.7), given w1 and w2, the paths

through which these positions are reached is independent of the future developments.

This is, however, a trivial conditional independency as w1 and w2 are reached by two

unique paths associated with the two values taken by the social background. Similarly,

w4 and w5 are reached by two unique paths describing a low social background and

a high or a low economic situation respectively, leading again to a trivial context-

specific conditional independence statement. However, w3 is reached by two paths,

namely by an individual from a high social background and with either a high or a low

economic situation. Then by (2.7), given w3 the paths through which w3 is reached,

namely by either a low or a high economic situation, are independent of all future

developments, namely the life events and the hospital admission. This is equivalent

to the context-specific conditional independency that the life events are independent

of the economic situation given a high social background. Similarly, w6 is reached

through a high social background and a low number of life events independent of

the economic situation. Hence, given a high social background and a low number

of live events, hospital admission is independent of the economic situation. Further

to these context-specific independencies, by inserting w7 into (2.7), we can conclude
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that, given w7 is reached, the hospital admission is independent of the five paths

through which an individual can get to w7. These five paths are made up of particular

configurations of the three covariates or, equivalently, describe the di↵erent events

that happen leading to w7. Finally, w8 can be reached via a high number of life events

or by a low social background, low economic situation and an average number of life

events, and this is independent of a hospital admission given w8 has been reached.

Also, note that, as w3 and w4 are in the same stage, (2.8) can be applied in this case.

This leads to the deduction that the life events are in fact not only independent of

the economic situation given a high social background but independent of the paths

through which w3 or w4 are reached.

Like the d-separation theorem for BNs, these types of conditional indepen-

dence statements derived from the CEG can be fed back to the client to check that

the elicited CEG structure correctly formalises his beliefs.

2.3.3 Causality in CEGs

Just as the BN, the CEG admits a causal extension [Thwaites et al., 2010; Thwaites,

2013] by linking it to causal hypotheses about the likely e↵ect of an intervention.

As pointed out by Shafer [1996], causal assumptions are most easily inferred from

tree-like structures as these naturally respect not only an ordering according to

time but also an implicit causal ordering. Further, in contrast to the BN we are not

restricted to intervening on a particular variable. Instead it is possible to intervene

at a specific position and hence the CEG allows for context-specific interventions.

For example, in the CHDS study, a policy maker may be interested in the e↵ect of

an intervention which only gives families from a low social background financial aid

and this type of intervention can be simply represented within a CEG. The simplest

form of intervention, then forces an individual that reaches a position w⇤ along a

particular edge, e
w

⇤
k

⇤ , say. Under such an intervention p(e⇤
w

⇤
k

|w⇤) is set equal to

1 and hence p(e
w

⇤
k

|w) = 0, 8k 6= k⇤. Consequently, the CPV of w⇤, ⇡
w

⇤ , has one

entry equal to 1 and zeros everywhere else. All other edge probabilities are assumed

to remain unchanged. As in Pearl [2000] and related work, an intervention which

forces individuals along a particular edge is therefore assumed to have the same

a↵ect on its children as if we had observed an individual going along this edge.

A CEG on which an intervention is imposed is called a manipulated CEG

[Thwaites et al., 2010] and it is drawn by deleting all paths emanating from w⇤ that

do not go along the required edge, e
w

⇤
k

⇤ .

Definition 23. We say a CEG C is a Causal CEG when, under manipulation at a
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position w⇤, the CEG is a manipulated CEG C⇤ with ⇡
w

⇤
k

⇤ = 1, ⇡
w

⇤
k

⇤ = 0, 8k 6= k⇤

and all other ⇡
w

, w 2 W are as in C.

I will illustrate a simple intervention on the CHDS example below:

Example 5 (CHDS). Consider again the CHDS with the CEG given in Figure

2.5. Assume that a policy maker wants to know the e↵ect of giving individuals

from a low social background financial aid on hospital admission. Then, if we are

prepared to read the graph causally, the e↵ect of giving only families from a low

social background financial aid corresponds to forcing all individuals that reach w2

along the edge e(w2, w4). The manipulated CEG is given in Figure 2.6, where the

edges e(w2, w5), as well as w5 and its emanating edges, have been removed. The

e↵ect in terms of reducing the probability of a hospital admission is calculated in

Chapter 3.3.3.

w1 //// w3 Low events //

Average events

&&

High events

��

w6

No admission

""

Admission

""
w0

High social

88

Low social

&&

w4 Average events //Low events //
High events

&&

w7

No admission //
Admission

// w1

w2

High economic

<<

w8

No admission

<<

Admission

<<

Figure 2.6: The CEG for the CHDS example from Figure 2.5 manipulated such that
individuals from a low social background are given financial aid

I have shown in this section that, because of its graphical derivation, the CEG

inherits many of the benefits of a BN: I have demonstrated here that a CEG can give

a more detailed representation of a problem than a BN, such that detailed inference

on the way in which a combination of variables a↵ects another variable can be drawn

from the graph and also that, similar to the BN, conditional independencies can be

read o↵ and a causal CEG can be defined. In Chapter 3.1 I will further review how

we can carry out estimation and model selection on CEGs according to Freeman

and Smith [2011a], again showing the analogy to the BN. Further developments

of the CEG over the past years include a propagation algorithm [Thwaites et al.,

2008] based on the junction tree algorithm for BNs, separation theorems, developed

in Thwaites and Smith [2011] and more detailed causal developments, including

analogues to Pearl’s backdoor and frontdoor theorems [Thwaites, 2013]. In this
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thesis, however, I will focus primarily on model selection and inference that can be

drawn from a selected model, as described in this section.

2.4 Writing a BN as a CEG

In this section I will demonstrate, using the CHDS example, that any discrete BN

can be written as a staged tree and therefore as a CEG. I will show that the BN

imposes certain restrictions on the stage structure of the associated tree, leading to

an entirely symmetric CEG. This supports the previous suggestions that one of the

CEG’s main advantages lies in the possibility of representing asymmetries within

the dependence structure of the variables of a problem that the BN cannot capture.

A technical proof that every discrete BN can be written as a CEG is given in Smith

and Anderson [2008].

To write a BN as a CEG the graph is first translated into a tree. To do so

the variables in the BN are ordered such that parent variables appear before their

children. There is always such an ordering due to the acyclicity of the corresponding

graph. However, the ordering is not necessarily unique, as explained in Section 2.2.

Example 6. Consider a possible BN of the CHDS Example to be the graph given

in Figure 2.7 with conditional independence statements X3 ?? X2 |X1 and

X4 ?? X1, X2|X3. Here, we choose the straightforward ordering X = (X1, X2, X3, X4)

with the corresponding tree given already in Figure 2.3.

X2
Economic
situation

X1 Social
back-
ground

##

<<

X4 Ad-
missions

X3 Life
events

;;

Figure 2.7: A possible BN structure for the social background, economic situation,
life events and hospital admission of the CHDS example

The conditional independence statements of a BN can then be uniquely rep-

resented by defining stages on the tree. Recall that a conditional independency in
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a BN is of the form

X
i

?? pr(X
i

)\pa(X
i

) | pa(X
i

).

To represent this in terms of stages in the tree, all the vertices whose floret describes

X
i

and whose previous events di↵er only in pr(X
i

)\pa(X
i

) are put into the same

stage. So, two situations, s
i

and s
j

, whose florets F (s
i

) and F (s
j

) are associated

with the variable X
i

, are in the same stage whenever their set of parent variables

pa(X
i

) takes the same values on the corresponding paths leading to s
i

and s
j

in the

tree. Hence, to move from a BN to a staged tree we can go through each of the

conditional independence statements X
i

?? pr(X
i

)\pa(X
i

) | pa(X
i

) for i = 2, 3, ..

determining at each step the florets describing X
i

and colouring them accordingly

in the tree to display the di↵erent stages. Consequently, a BN with no conditional

independencies corresponds to a CEG where each situation is in a separate stage.

Example 7. In the CHDS example the corresponding staged tree of the BN B there-

fore has stages

u0 = {s0}, u1 = {s1}, u2 = {s2}, u3 = {s3, s4}, u4 = {s5, s6},

u5 = {s7, s10, s13, s16}, u6 = {s8, s11, s14, s17}, u7 = {s9, s12, s15, s18},

and is given in Figure 2.8. As an edge from X1 to X2 exists, the two situations s1

and s2 are in separate stages, u1 and u2. The conditional independence statement

X3 ?? X2 |X1 puts s3 into a stage with s4, called u3, and s5 into a di↵erent stage with

s6, called u4. Similarly, the conditional independence statement X4 ?? X1, X2 |X3

is described by the stages u5, u6 and u7, where all situations reached by the edge

describing a low number of life events, namely s7, s10, s13 and s16 are in the same

stage u5. The same applies to situations reached through an edge describing an

average number of live events and a high number of life events respectively, giving

stages u6 and u7.

To summarise, the restrictions imposed by the BN can be defined within the

associated staged tree by the two following rules which lead to a symmetric CEG:

1. Let two situations, s
i

and s
j

whose florets describe a variable X
i

be in the

same stage. Their paths will di↵er in some of the values taken by the variables

in pr(X
i

)\pa(X
i

). Then all situations whose florets describe the same variable

X
i

are also in this stage whenever their associated paths di↵er by the same

variables, pr(X
i

)\pa(X
i

).

2. Let two situations whose florets describe a variable X
i

be in di↵erent stages.

Their paths will di↵er by some of the values taken by the variables in pa(X
i

).
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Figure 2.8: The staged tree version of the BN of the CHDS example from Figure
2.7
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Then all other situations whose paths di↵er by the same variables are also in

di↵erent stages.

From the staged tree representation of a BN the corresponding CEG can then be

constructed, as defined in Section 2.3.

Example 8. From the staged tree (Figure 2.8) we obtain the CEG given in Figure

2.9. Note that this CEG is uncoloured as the stages and positions coincide. From

w1 Low economic //High economic // w3 Low events //

Average events

&&

High events

��

w5

No admission

""

Admission

""
w0

High social

88

Low social

&&

w6
Admission

//
No admission // w1

w2
High economic //
Low economic // w4

Low events

AA

Average events

88

High events // w7

Admission

<<

No admission

<<

Figure 2.9: The CEG of the staged tree version of the BN given in Figure 2.7

Equations 2.7 and 2.8 the conditional independence statements of the original BN

can be read from the CEG. For example, inserting w3 and w4 into 2.7 gives

Y (w3) ?? Z(w3) | E(w3) and Y (w4) ?? Z(w4) | E(w4),

which says that the paths through which w3 and w4 have been reached is independent

of the future developments, i.e. independent of the life events and the hospital ad-

missions. Both positions can be reached via two paths, one describing a low economic

situation and the other a high economic situation. Combining these two conditional

independence statements of the CEG, we can hence conclude from the CEG that

the economic situation is independent of the life events and the hospital admission.

Similarly, the conditional independence statements on w5, w6 and w7 can be com-

bined to deduce that, given the life events, the hospital admissions are independent

of the social background and the economic situation.

Figure 2.9 shows that the CEG of a BN is entirely symmetric. Consider also

again the CEG given in Figure 2.5. This is not symmetric as, for example, the edges

e(w1, w3) in comparison with the edge e(w2, w4) and e(w2, w5) do not follow the

same pattern and therefore, by the rules given above, this CEG structure is not a

BN.

39



2.5 The Ordinal CEG

I have shown in the previous sections that CEGs are a particularly useful tool to

identify and visualise the di↵erent ways in which certain combinations of covariates

a↵ect a variable of interest. In many medical applications this variable is binary, such

as survival of a patient or the onset of a disease. Of course, many examples in other

application areas, such as social sciences, also look at binary outcome variables.

However, in this thesis the examples are restricted to medical applications. In

this section I will introduce a new graphical development of the CEG, the Ordinal

CEG, which provides an enhanced graphical representation of the standard CEG for

problems with a binary outcome variable, by imposing an ordering on the positions

of the graph. A possible extension of the Ordinal CEG to problems with an outcome

variable with more than two categories is briefly discussed at the end of the section.

Assume we have a tree describing a problem on p variables X1, X2, . . . , Xp

.

The situations in the tree can then be partitioned into vertex subsets, such that each

subset consists of those vertices whose emanating edges describe the same succeeding

events or, equivalently, whose associated florets describe the same variable. Denote

these vertex subsets by V
Xi , where X

i

, i = 1, . . . , p is the variable described by the

floret F (s
j

), s
j

2 V
Xi . Then, by the definition of a stage (Definition 18), all situations

in a vertex subset may be merged into stages from which a CEG structure can be

derived.

Example 9. Consider again the tree in Figure 2.3 of the CHDS example with

variables X1 = social background, X2 = economic situation, X3 = life events and

X4 = hospital admissions. We then have the following vertex subsets:

V
X1 = {s0}, VX2 = {s1, s2}, VX3 = {s3, s4, s5, s6},

V
X4 = {s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18}.

Given a CEG structure the vertex subsets V
Xi , i = 1, . . . , p can alternatively

be defined in terms of the positions in the CEG. Hence, given a problem on p

variables, X1, . . . , Xp

, and an associated CEG structure, C, the set of positions of C
can be partitioned into p vertex subsets V

X1 , . . . VXp . Note that the vertex subset of

the first variable in the ordering of the tree will always only consist of w0.

Example 10. For the CHDS example assume again the CEG given in Figure 2.5.

The positions can then be partitioned into the four vertex subsets as follows.

V
X1 = {w0}, VX2 = {w1, w2}, VX3 = {w3, w4, w5}, VX4 = {w6, w7, w8}.
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The graph of the Ordinal CEG then vertically aligns the positions within a

vertex subset to enhance the graphical representation of the problem according to

X
p

. I will give the formal definition of this below:

Definition 24. [Barclay et al., 2013b] Let C represent a problem on p variables

with a binary outcome variable, X
p

, described by the final florets in C. We say that

the CEG, C, is an Ordinal CEG with respect to X
p

when the positions in each

vertex subset V
Xi, associated with variable X

i

, are vertically aligned in descending

order with respect to the probability P (X
p

= 0|C).

In the CHDS example the variable of interest, X
p

, describes whether the

individual is admitted to hospital or not. So, if X
p

describes hospital admission,

with X
p

= 0 meaning that the individual is not admitted to hospital, then the

ordering occurs such that the position with the highest probability of no admission

is at the top of the graph. This allows us to read o↵ directly from the graph how

the di↵erent combinations of covariates a↵ect the admissions probability: the higher

up the graph a combination takes us the better the e↵ect on the outcome variable.

The Ordinal CEG further retains the natural time ordering of its associated tree

by listing the vertex subsets from V
X1 to V

Xp from left to right in the graph. In

the examples considered so far, the root-to-leaf paths in the tree are always of the

same length, where each path describes a particular configuration of the variables

of the problem. In this case, each vertex subset, V
Xi , of the Ordinal CEG defines a

cut in the graph and we can look at each cut-set associated with V
Xi to discuss the

di↵erent dependence structures and the e↵ect on the outcome variable, X
p

, at each

point in time.

Example 11. Let us assume that the CEG in Figure 2.5 is an Ordinal CEG. We

would then deduce from the graph that the position w6 is associated with the lowest

admission probability, followed by w7 and then w8. Similarly, we would read from

the topology of the Ordinal CEG that the hospital admission for an individual from

a high social background (w1) is lower than that for an individual with a low so-

cial background (w2). Further, we believe that an admission is less probable when

the individual is from a low social background but has a high economic situation

than when he has a low economic situation (Compare w4 and w5). I will return to

the Ordinal CEG of the CHDS example in Chapter 3.3.3 after discussing Bayesian

model selection techniques for CEGs and the calculation of the posterior CPVs given

available data.

In this thesis all outcome variables of a given problem are binary and so all

CEGs can be represented as Ordinal CEGs. It may, however, also be possible to use
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the Ordinal CEGs when we have an outcome variable with more than two categories.

One option would be to choose simply one outcome that is of greatest interest and

order the positions according to the probability of this outcome. Alternatively, we

could draw several CEG structures, one for each possible category.

In higher dimensional problems, the full CEG structure can become compli-

cated when we have a large number of positions. In an Ordinal CEG this means

that we have a large number of positions in each vertex subset. To improve the

visual aspect of the Ordinal CEG, I have further developed the concept of a Re-

duced Ordinal CEG. Here, interest is restricted entirely to the combined e↵ect

of the covariates on the outcome variable by considering only the positions in the

final subset, V
Xp , and re-expressing the paths leading to these positions in terms

of new variables. Hence, in the Reduced Ordinal CEG, only the final subset of

positions remains, while V
X1 up to V

Xp�1 are redefined to describe simply the in-

termediate steps leading to the final subset of positions. These intermediate steps

are represented as intermediate positions which are denoted by wI . In the CHDS

example considered so far the CEG structures are simple and accessible and hence

a reduction is not necessary. In Chapter 4 two slightly larger examples based on

the UKCP study are presented and here the simplification to the Reduced Ordinal

CEG is extremely useful. I will therefore postpone a more detailed description of

the Reduced Ordinal CEG until that Chapter.

2.6 Alternative Graphical Models

I have emphasised in the previous sections that one of the drawbacks of the BN is

that it does not allow for context-specific dependence structures. To take these

features into account extensions to the BN have been proposed, mostly in the

form of tables or tree-like structures which are added to the graph, leading to the

context-specific Bayesian Network [Boutilier et al., 1996; Poole and Zhang,

2003; Friedman and Goldszmidt, 1998]. Recall again the CHDS example with the

CEG structure given in Figure 2.5. Then, by the definition of a contextual indepen-

dency (Definition 2.3), the conclusion that the economic situation is independent

of the life events and the hospital admission given a high social background is a

contextual independency and this type of dependence structure can be represented

by a context-specific BN. However, these types of models focus primarily on e�cient

propagation and learning, where contextual independencies are represented either

through a table of CPVs or by a separate tree structure, one for each variable.

Therefore, the benefit of the BN’s expressiveness for the client is quickly lost. Simi-
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lar extensions have also been proposed in Smith et al. [1993] for influence diagrams,

who use coalesced decision trees to represent the conditional probability distribution

of a variable given its parents.

Apart from its graphical benefits, the CEG further enables us to draw ad-

ditional conclusions from its graph. For example, a context-specific BN can only

demonstrate that, given a high number of life events, the hospital admission’s vari-

able is independent of the social background and the economic situation. However,

it fails to represent that a low social background, low economic situation and av-

erage number of life events lead to the same conclusion. Hence the CEG not only

allows for the types of context-specific independencies of Definition 2.3 but can also

illustrate further conditional independencies based on the paths leading into and

from a position, as described in detail in Section 2.3.2.

Two further ways to represent asymmetric dependence relationships are dis-

cussed in Geiger and Heckerman [1996], where inference is carried out on Bayesian

Multinets or Similarity Networks. In a Bayesian Multinet, a variable, called

‘hypothesis variable’, is selected and a separate BN is drawn for each value of the

variable, i.e. for each hypothesis. Each of the BNs can then represent di↵erent inde-

pendence structures for di↵erent hypotheses. A Similarity Network takes a slightly

di↵erent approach and attempts to assess the similarity between two values of the

hypothesis variable through a ‘similarity graph’ and describes each comparison in

terms of a separate directed graph on the covariates of the hypothesis variable. In

both cases the graphical representation is hence across multiple networks rather than

within a single graphical model and becomes complicated when several hypothesis

variables are of interest.

Another class of model which benefits from admitting asymmetric depen-

dence structures is the Probabilistic Decision Graph (PDG) [Jaeger, 2004;

Jaeger et al., 2006]. Although the CEG’s structural syntax is closely linked to

PDGs, it is a more general class of models due to the additional colouring of the

CEG when two positions are in the same stage. Jaeger [2004] showed that PDGs

and BNs are incomparable regarding the conditional independence statements they

encode and hence that the BN is not a subclass of the PDG. In contrast to this, I

have demonstrated in Section 2.4 that any BN can be written as a CEG. Also, the

model given in Figure 2.5 could not be represented as a PDG, due to the colour-

ing of the CEG with respect to w4 and w5, which gives additional information on

the e↵ect of the social background and economic situation on the life events. Like

context-specific BNs, the PDG concentrates primarily on computational e�ciency

and less on an accessible representation.
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Recently, Edwards and Ankinakatte [2013] discussed in a research report

how Acyclic Probabilistic Finite Automata (APFA) [Ron et al., 1995] relate

to more commonly used graphical models, including CEGs, and suggest that the

APFA is a special case of the CEG. An APFA is a class of graphical model which

generates strings of symbols and is commonly used within speech recognition and

natural language processing. However, it has otherwise not been employed within

other applications of statistics. Similar to the CEG, the APFA has a single root

vertex from which every path in the graph emanates and a single sink vertex which

forms the end point of every path. It can also have multiple edges between its

vertices, where each edge has an associated symbol and a conditional probability

attached to it. Edwards and Ankinakatte [2013] then show that an APFA can be

constructed from a probability tree by ‘contracting’ two situations and their entire

subtrees. However, this is determined by non-Bayesian methods and once a situation

is merged with another, all subsequent situations in their corresponding subtrees are

automatically also merged. Although, the APFA can be shown to encode conditional

independencies and certain BNs, the BN is not a subclass of the APFA. As before,

it is the additional stage structure and colouring of the CEG, which is not present

within an APFA, which ensures that every BN can be written as a CEG. Further,

an APFA does not allow for asymmetric trees with paths of di↵erent lengths, so

that the CEGs developed in Chapter 4 could not be represented as an APFA.

I have demonstrated in this Chapter that the CEG is unique in its graphical

representation of problems based on probability trees and is particularly expressive

for highly asymmetric dependence structures. Unlike other models it captures the

BN within its model class, while still giving a stand-alone representation of a prob-

lem. Together with the development of the Ordinal CEG and the Reduced Ordinal

CEG, detailed conclusions can be drawn directly from its graph which go beyond the

conclusions that can be read from a BN or a context-specific BN. In the following

Chapter I will discuss Bayesian learning for CEGs and BNs as well as applying these

to the CHDS example. The inference made on the resulting graphs will support the

findings in this chapter.
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Chapter 3

Bayesian Learning of Bayesian

Networks and Chain Event

Graphs

The usual Bayesian techniques for making inference and learning about parameters

and structure have been widely applied to Bayesian Networks [Korb and Nicholson,

2004; Cowell et al., 2007; Jensen and Nielsen, 2007; Heckerman, 2008] and more

recently to CEGs [Freeman and Smith, 2011a; Barclay et al., 2013a]. In this chapter

I will review the learning of the parameters and model selection in a CEG. I will

first demonstrate in Section 3.1 how we learn the parameters in a BN according to

Heckerman et al. [1995] and Heckerman [2008] and then move on to the analogous

learning of the parameters in CEGs, showing that Dirichlet priors on the stages

are essential [Freeman and Smith, 2011a]. The Bayesian Dirichlet (BD) metric can

then be derived directly for both classes of models in Section 3.2. I will further

introduce a greedy search algorithm for CEGs developed by Freeman and Smith

[2011a], which searches quickly over the CEG model space using Bayes Factors,

and briefly conclude with possible alternatives and extensions to this algorithm. In

Section 3.3 the introduced methodology is applied to the example of the CHDS

study discussed in Chapter 2. I will demonstrate that the CEG not only enables

more refined conclusions of the problem but also results in a significantly higher

scoring model. Finally, I will review the Ordinal CEG and causal interventions in a

CEG for the CHDS example on the learnt Maximum a Posteriori (MAP) model.

45



3.1 Learning the Parameters of BNs and CEGs

In this section I will describe how we learn parameters in a BN according to Heck-

erman [2008] and will then extend this to the CEG based on Freeman and Smith

[2011a].

Assume that we have a BN with graph B on p variablesX = (X1, X2, . . . , Xp

).

Also assume that each variable X
i

can have q
i

di↵erent parent configurations asso-

ciated with it. Following the notation of Heckerman [2008] define

✓

ij

= p(x
i

|pa(x
i

) = j;✓), (3.1)

for all i = 1, . . . , p and j = 1, . . . , q
i

. Assuming that each variable X
i

can take m
i

di↵erent values, ✓
ij

= (✓
ij1, . . . , ✓ijmi), where

✓
ijk

= p(x
i

= k|pa(x
i

) = j;✓),

for k = 1, ..,m
i

. Finally, let ✓
i

= {✓
ij

: j = 1, . . . , q
i

} and ✓ = {✓
ij

: i = 1, . . . , p, j =

1, . . . , q
i

}. By the recursive factorisation (Chapter 2.2, Equation 2.2) the joint pmf

of observing X = x can be written as

p(x|✓,B) =
pY

i=1

p(x
i

|pa(x
i

);✓
i

,B).

Then given a complete random sample S = {x1,x2, . . . ,xn} of n realisations, the

likelihood of ✓ takes the form

L(✓|S,B) =
nY

s=1

pY

i=1

p(xs
i

|pa(xs
i

),✓
i

,B).

From Equation 3.1 it is straightforward that this is a multinomial likelihood with

parameters ✓
ijk

, i = 1, . . . p, j = 1, . . . , q
i

, k = 1, . . . ,m
i

which can be rewritten

by counting the number of times, N
ijk

, that each x
i

= k with parent configuration

pa(x
i

) = j is observed. We then obtain

L(✓|N ,B) =
pY

i=1

qiY

j=1

miY

k=1

✓
Nijk

ijk

,

with N = {N
ij

, i = 1, . . . p, j = 1, . . . , q
i

} and N

ij

= {N
ij1, . . . , Nijmi}. The

likelihood then immediately separates such that
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L(✓|N ,B) =
pY

i=1

qiY

j=1

L
ij

(✓
ij

|N
ij

,B),

and

L
ij

(✓
ij

|N
ij

,B) =
miY

k=1

✓
Nijk

ijk

. (3.2)

Let p(✓|B) be the joint pdf of ✓. When further making the assumptions of global

and local parameter independence [Spiegelhalter and Lauritzen, 1990], which

assume that all ✓
ij

are a priori mutually independent, then the prior also factorises

as

p(✓|B) =
pY

i

qiY

j

p
ij

(✓
ij

|B). (3.3)

As a consequence each of the ✓

ij

can be learnt separately. It was then shown in

Heckerman et al. [1995] that under the two additional assumptions of parameter

modularity and likelihood equivalence a Dirichlet distribution on the ✓

ij

is

inevitable. Parameter modularity requires that, when a variable X
i

has the same

parent configuration j in two BN structures B1 and B2, then the corresponding prior

on ✓

ij

is the same (p(✓
ij

|B1) = p(✓
ij

|B2)). Likelihood equivalence says that when

two BN structures are equivalent (see Chapter 2.2), then they will have the same

marginal likelihood (L(B1|N) = L(B2|N)). This further assumes that all structures

have a prior probability greater than zero (structure possibility). Therefore, each

✓

ij

is given a prior Dirichlet distribution, ✓
ij

⇠ Dir(↵
ij

),↵
ij

= (↵
ij1, . . . ,↵ijmi),

which takes the form

p
ij

(✓
ij

|B) =
�(
P

mi
k=1 ↵ijk

)Q
mi
k=1 �(↵ijk

)

miY

k=1

✓
↵ijk�1
ijk

. (3.4)

The Dirichlet priors can then be updated in closed form given a multinomial likeli-

hood as in Equation 3.2 to obtain the posterior distribution

p
ij

(✓
ij

|N
ij

,B) =
�(
P

mi
k=1(↵ijk

+N
ijk

))Q
mi
k=1 �(↵ijk

+N
ijk

)

miY

k=1

✓
↵ijk+Nijk�1
ijk

, (3.5)

i.e. ✓
ij

|N
ij

⇠ Dir(↵
ij

+N

ij

), and the full posterior of ✓ on a BN B therefore takes

the form

p(✓|N ,B) =
pY

i=1

qiY

j=1

p
ij

(✓
ij

|N
ij

,B).

I will now demonstrate an analogous prior to posterior analysis for CEGs.
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Assume a CEG structure C with position partition U(C). Then, analogous to the

above, let

⇡
uk

= p(e
uk

|u;⇡),

for k = 1, . . . ,m
u

and let ⇡

u

= (⇡
u1, . . . ,⇡umu) and ⇡ = {⇡

u

: u 2 U(C)}. Recall

that by the factorisation in Chapter 2.3, Equation 2.6, the joint pmf of an individual

going along a particular path ✏ = (e
w0k0 , ewi1

k1 , . . . , ewinkn
) in C, which starts at w0

and end at w1, can be written as

p(✏|C) = ⇡
u0k0

nY

a=1

⇡
uaka ,

where u
a

, a = 1, . . . , n are not necessarily distinct as a stage may consist of several

positions. Given a complete random sample S the likelihood of ⇡ can be written

by counting the number of times, N
uk

, an individual reaches a stage u and passes

along the edge e
uk

. This also gives a multinomial likelihood with parameters ⇡
uk

,

with u 2 U and k = 1, . . . ,m
u

, of the form

L(⇡|N , C) =
Y

u2U(C)

muY

k=1

⇡Nuk
uk

,

where N

u

= (N
u1, Nu2, . . . , Numu) and N = {N

u

, u 2 U(C)}. This likelihood then

separates according to the stage partition U of C such that

L(⇡|N , C) =
Y

u2U(C)

L
u

(⇡
u

|N
u

, C), and

L
u

(⇡
u

|N
u

, C) =
muY

k=1

⇡Nuk
uk

. (3.6)

Assuming prior independence of ⇡
u

, associated with each stage u, is the equivalent

condition to the local and global parameter independence for BNs. Under this

assumption the prior pdf of ⇡ can be written as

p(⇡|C) =
Y

u2U
p
u

(⇡
u

|C). (3.7)

Given a tree structure, let the CEG where every situation is in a separate

stage be called C0. Under two assumptions, namely that 1. the rates at which

individuals go along the tree are independent and 2. the probability at which

individuals take an edge after reaching a situation is independent of the rate at
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which they arrived at this situation, Freeman and Smith [2011a] show that each

parameter vector ⇡
u

associated with a floret in C0 has an independent Dirichlet

prior. Using ideas similar to parameter modularity, they follow an argument ex-

actly analogous to that of Heckerman et al. [1995] and prove that, under the addi-

tional assumption that the stage priors are identical for equivalent stages in di↵erent

CEG structures (p
u

(⇡
u

|C1) = p
u

(⇡
u

|C2)), Dirichlet priors on the ⇡
u

, u 2 U(C) are

inevitable. We hence put a Dirichlet prior on each CPV ⇡
u

⇠ Dir(↵
u

) with param-

eters ↵
u

= (↵
u1,↵u2, . . . ,↵umu), which takes the form

p
u

(⇡
u

|C) = �(
P

mu
k=1 ↵uk

)Q
mu
k=1 �(↵uk

)

muY

k=1

⇡↵uk�1
uk

. (3.8)

Then, as before, given a complete random sample, the parameters ⇡

u

can be up-

dated separately and in closed form using Equation 3.6 resulting in the posterior

distribution

p
u

(⇡
u

|N
u

, C) = �(
P

mu
k=1(↵uk

+N
uk

))Q
mu
k=1 �(↵uk

+N
uk

)

muY

k=1

⇡↵uk+Nuk�1
uk

. (3.9)

A useful consequence of this closed form prior to posterior analysis is that the

posterior predictive probabilities of observing x
i

= k given a parent configuration

j in a BN or going along an edge e
uk

after reaching u in a CEG are also easy to

calculate. These are simply given by the expectations of the Dirichlet posterior for

✓

ij

and ⇡

u

respectively. Hence for BNs,

p(x
i

= k|pa(x
i

) = j;N
ij

,B) =
Z

✓
ijk

⇥ p
ij

(✓
ij

|N
ij

,B)d✓
ij

= E
pij(✓ij |N ij ,B)(✓ijk)

=
↵
ijk

+N
ijkP

mi
k=1(↵ijk

+N
ijk

)
,

and for CEGs,

p(e
uk

|u;N
u

, C) =
Z

⇡
uk

⇥ p(⇡
u

|N
u

, C)d⇡
u

= E
p(⇡u|Nu,C)(⇡u

)

=
↵
uk

+N
ukP

mu
k=1(↵uk

+N
uk

)
.

Hence, the posterior CPVs for BNs and CEGs can be easily calculated by the

above. In the following applications of the thesis I will attach the posterior predictive
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probability of the binary outcome variable to each of the final positions of the Ordinal

CEGs, as it is these probabilities that are of most interest and through which the

ordering of the positions in an Ordinal CEG are determined.

Given a plausible CEG structure it is further important to validate the model

in order to determine whether it is an accurate representation of the process being

modelled. In real-world example such as the ones considered in this thesis, real

data on the history of the process is desirable. One common approach is to split

the data into a training set and a test set, for example with a 90% to 10% split,

and to learn the model only using the training data set. The test data set can then

determine the predictive accuracy of the CEG by comparing the predictive outcome,

for example whether the individual is admitted to hospital or not, to the actual value

of the outcome. However, this approach does not take into account the probabilistic

nature of the predictions [Korb and Nicholson, 2004]. Further, when only a small

data set or data with highly asymmetric cell counts, then this may not be a desirable

approach, as a subset of the data is no longer used to determine the CEG structure

and the predictive probabilities. Alternatively, a jackknife analysis could be used

which calculates the parameter estimates of the model of each subsample obtained

by leaving out one observation at a time. The jackknife estimator of the parameters

is then given by the average of these estimates. Given a CEG structure a jackknife

analysis may be useful for variance and bias estimation of the predictive probabilities

associated with the outcome variable. A di↵erent approach is further suggested in

Cowell et al. [2007] for BNs. Here a penalty, given by the negative logarithm of

the overall probability that the data is observed, is calculated and the hypothesis

that the observed events are occurring with the probabilities stated by the model is

tested. This approach checks for an overall misfit between the model and the data.

3.2 Model selection for BNs and CEGs

Rather than assuming a BN or CEG structure and updating its conditional proba-

bilities given the data provided, we may instead want to learn the structure of the

BN or CEG that best fits the given data set. The standard Bayesian methodology

then assigns prior distributions to the structures and updates these to its posterior

distribution using the marginal likelihood of the structure given the data. The two

approaches that are commonly used when we are uncertain about the structure are

model selection, in which we aim to select a ‘good’ model from the set of possible

models, or selective model averaging, where we determine a set of possible models

with a high posterior probability and average over these. In this thesis I will con-
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sider only model selection as the interest lies in determining a particular model and

its graphical representation from which inference can be drawn.

Common model selection algorithms are either constraint-based learning al-

gorithms, such as the PC algorithm [Spirtes et al., 1993], or metric learning algo-

rithms, where each graph is scored according to a certain metric and the structure

with the highest score selected. Throughout this thesis I will use the Bayesian

Dirichlet (BD) metric to score BNs and analogously CEGs. Other common metrics

include the Minimum Message Length (MML) metric [Korb and Nicholson, 2004],

the Bayesian Information Criterion (BIC) [Schwarz, 1978] and Akaike’s Information

Criterion (AIC) [Akaike, 1974]. All these metrics score the model according to its

fit to the data, while penalising for model complexity and are useful alternatives to

the BD metric.

The BD metric for scoring BNs was first derived in Cooper and Herskovits

[1992] and was further developed in Heckerman et al. [1995]. It is given by the

joint density p(G,N) of a graph G, here a BN or a CEG, and a complete random

sample. This can be factorised into p(G,N) = p(G)L(G|N), the prior of the graph

G multiplied by the marginal likelihood of the graph given the data. By scoring

the models in this way, the structure which obtains the highest score, called the

Maximum a Posteriori (MAP) model structure, can be determined. Under the

assumption of Dirichlet priors the marginal likelihood of a BN, L(B|N), can

then be calculated in closed form directly from Equations 3.4 and 3.5. Hence the

BD metric for a BN B is given by:

p(B)
pY

i=1

qiY

j=1

�(
P

mi
k=1 ↵ijk

)

�(
P

mi
k=1(↵ijk

+N
ijk

))

miY

k=1

�(↵
ijk

+N
ijk

)

�(↵
ijk

)
. (3.10)

To find the BD metric of a given structure it is hence only necessary to determine the

hyperparameters a
ijk

of the priors p(✓
ij

), with i = 1, ..., p, j = 1, ..., q
i

, k = 1, ...,m
i

.

Call ↵ =
P

p

i=1

P
qi
j=1

P
mi
k=1 ↵ijk

the equivalent sample size of the prior

p(✓), which specifies the number of data points the prior is worth and hence gives

a measure of confidence about the prior. Heckerman et al. [1995] then prove that

under likelihood equivalence, parameter modularity and local and global parame-

ter independence, the hyperparameters ↵
ijk

of any BN B on a set of variables is

determined by:

↵
ijk

= ↵p(x
i

= k, pa(x
i

) = j|B
c

),

where B
c

is the complete BN of the variables in the problem. Heckerman et al.

[1995] suggest finding p(x|B
c

) by specifying a prior network. The simplest form is a
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prior network such that p(x|B
c

) is uniform and Heckerman’s approach then simply

corresponds to letting

↵
ijk

=
↵

q
i

m
i

, (3.11)

where q
i

is the number of parent configurations associated with variable x
i

and

m
i

is the number of values x
i

can take. The BD metric defined in 3.10 together

with 3.11 was previously developed by Buntine [1991] and is called the BDeu-metric

in Heckerman et al. [1995] due to the assumption of likelihood equivalence and

the uniform prior on p(x|B). To determine the equivalent sample size, Neapolitan

[2004] suggests setting ↵ = maxm
i

, the largest number of possible values a variable

in the problem can take, to ensure that the ↵
ijk

are simple fractions when a weak

uniform prior is appropriate. However, Silander et al. [2012] demonstrate that model

selection is highly sensitive towards the equivalent sample size. Therefore, when

carrying out model selection it is important to carry out a sensitivity analysis on

the equivalent sample size to determine how it a↵ects the model.

Analogously, for CEGs, the BD metric for a CEG structure C can be imme-

diately derived from Equations 3.8 and 3.9 as:

p(C)
Y

u2U

�(
P

mu
k=1 ↵uk

)

�(
P

mu
k=1(↵uk

+N
uk

))

muY

k=1

�(↵
uk

+N
uk

)

�(↵
uk

)
. (3.12)

Throughout the thesis the logarithm of the BD metric is often used for more e�cient

calculations, which is given by

log p(C) +
X

u2U(C)

 
log�

 
muX

k=1

↵
uk

!
� log�

 
muX

k=1

(↵
uk

+N
uk

)

!
+

muX

k=1

(log�(↵
uk

+N
uk

)� log�(↵
uk

))

!
.

(3.13)

Freeman and Smith [2011a] then prove that, under the assumptions that the stage

priors are identical for equivalent stages in di↵erent CEG structures and assuming

independent Dirichlet priors on C0, the hyperparameters ↵
uk

, k = 1, . . .m
u

, associ-

ated with each stage u 2 U(C) in a CEG C can be deduced from the equation

↵
uk

= ↵
X

si2u
p(e

sik
, s

i

|C0),

where p(e
sik

|s
i

; C0) corresponds to the probability of going along the edge e
sik

in

C0, given s
i

has been reached, which is equal to the probability of having reached

this situation in the associated tree and going along the kth edge. So, priors across

models are deduced by summing corresponding hyperparameters when two stages

are merged. Similarly to 3.11, in the simplest case, a default uniform prior is given to
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the paths in C0, i.e. we put a uniform prior on the root-to-leaf paths in the associated

tree, such that all possible combinations of developments are a priori equally likely.

The equivalent sample size of the prior is determined by ↵ =
P

u2U
P

mu
k=1 ↵uk

. The

approach of Neapolitan [2004] can be adapted to specify ↵ to be equal to ↵ = maxm
u

such that the hyperparameters of ↵
uk

result in simple fractions given a weak uniform

prior. When the marginal likelihood cannot be calculated in closed form, is is

possible to resort to MCMC methods to sample from the posterior distribution.

When determining the priors on the structures, p(B) for BNs or p(C) for

CEGs, the default approach has been to either assign equal probabilities to all pos-

sible structures or to select a set of plausible structures and assign equal probabilities

to these. In this case the marginal likelihood su�ces as a selection criterion, as the

contribution of p(B) and p(C) in 3.10 and 3.12 respectively, is the same for all struc-

tures. An improved approach would be to determine prior probabilities on di↵erent

stage partitions from an expert and use these to assign CEG structures di↵erent

prior probabilities according to the expert’s beliefs.

To compare two competing graphical structures G1 and G2 we can calculate

p(G1|N)

p(G2|N)
=

p(G1)L(G1|N)

p(G2)L(G2|N)
, (3.14)

the posterior odds in favour of G1, or equivalently the ratio of the BD metric.

Under the assumptions that the structure priors are equal this reduces to

L(G1|N)

L(G2|N)
,

the Bayes Factor of the two models G1 and G2 or equivalently the ratio of the

marginal likelihood of the two models. By the BD metric given in (3.10) and (3.12)

the posterior odds or the Bayes Factor of two models is very easily calculated in

closed form. One possible interpretation of the Bayes Factor is given by Kass and

Raftery [1995] who divide the range of values the Bayes Factor can take into inter-

vals that determine the strength of evidence in favour of one of the models. The

suggested intervals and interpretations are repeated in Table 3.1 which will be used

as a guideline for comparing model structures throughout the thesis. To find the

MAP BN or MAP CEG the models are therefore scored according to the BD metric

in 3.10 and 3.12 and compared using Bayes Factors or posterior odds. For BNs,

routine model selection procedures can be carried out using the ‘deal’ package in

R [Bøttcher and Dethlefsen, 2003]. Here all prior structures are set to be equally

likely and, when carrying out a full model search, the package returns the logarithm
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log(BFG1,G2) BFG1,G2 Evidence against G2

0� 1.10 1� 3 Not worth more than a bare mention
1.10� 3 3� 20 Substantial
3� 5 20� 150 Strong
> 5 > 150 Decisive

Table 3.1: Scale of evidence for Bayes Factors according to Kass and Raftery [1995]

of the marginal likelihood as a network score for each BN and the Bayes Factor of

each BN with respect to the most probable network. However, when the number of

variables in the BN is large, there may be too many possible structures to calculate

each network score and perform an exhaustive search, so that heuristic search algo-

rithms are used. In R a greedy search algorithm with random restarts according to

Heckerman et al. [1995] has been implemented: This starts with a randomly chosen

BN and then finds the MAP BN by adding, deleting or reversing an edge at every

step of the algorithm until no improvement in score can be obtained.

For CEGs, it is also possible to score all CEGs given a tree representation

of a given problem. However, the model space of CEGs is far larger than the space

of possible BN structures. For example, assume we have a tree structure with only

binary variables, so that the first variable in the tree is described by the single root

floret, the second variable by two florets, the third by four florets and so on. Then

there will be B2 = 2 possible ways to partition the situations whose emanating

edges describe the second variable, B4 = 15 partitions for the situations of the third

variable, B8 = 4140 for the fourth set of situations etc., where B
i

is the ith Bell

number. Therefore, an exhaustive search is infeasible in all but the simplest case.

Consequently, Freeman and Smith [2011a] developed a greedy search algorithm for

CEGs called the Bayesian Agglomerative Hierarchical Clustering (AHC) algorithm.

The algorithm starts at the finest partition of the CEG, C0. It then quickly searches

over the model space by finding at every step the two stages, which, when merged,

provide the highest CEG score. The algorithm stops once the coarsest partition of

the CEG has been reached and the CEG with the highest overall score is selected.

The CEG with the coarsest partition is called C1 and corresponds to a CEG where

all situations whose florets have the same topology have been merged into a single

stage (compare Definition 18). I repeat the exact steps of the algorithm below:

1. From a given tree structure first construct the CEG C0, where all leaf nodes

are in the terminal position w1 and all situations are in separate stages and

calculate the logarithm of the BD metric using 3.13

2. For each pair of stages, u
i

and u
j

, whose florets F (u
i

) and F (u
j

) have the
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same topology, calculate the posterior log-odds given in 3.14

log
p(C⇤

1 ,N)

p(C0,N)
,

where C⇤
1 is the CEG constructed by merging the two stages u

i

and u
j

.

3. Let C1 = argmaxC⇤
1

⇣
p(C⇤

1 ,N)
p(C0,N)

⌘
.

4. Calculate C⇤
2 by merging two stages in C1 and hence find C2.

5. Continue until the coarsest partition, C1, is reached and select

C = max(C0, C1, . . . , C1) as the MAP CEG.

Recall that it is assumed that stage priors are identical for equivalent stages

in di↵erent CEG structures. Therefore, as we are summing over the stages in the

logarithm of the BD metric (compare 3.13), in order to calculate the di↵erence in

score we only need to compare the contributions to the score made by the stages

in which the two structures di↵er. A further important aspect of the description of

the algorithm is that a particular tree structure is assumed from which the MAP

CEG is found and hence a fixed ordering of the variables in the tree is assumed.

However, this can be simply extended by searching separately across all plausible tree

structures, i.e. all possible permutations of the variables in the tree, and choosing

the CEG which gives the overall highest score.

A potential weakness of using a greedy search algorithm, like the AHC, is

that it might find a local maxima of the model space rather than the MAP CEG.

In contrast to the heuristic algorithm suggested for BNs, the AHC algorithm al-

low us only to merge stages but not to split these again. An alternative to this

algorithm could therefore be to implement a greedy search algorithm similar to the

one described for BNs, where at each step two stages can either be merged or split

to improve the model score. An initial CEG structure could be, for example, C0
as before, or alternatively, the MAP BN structure of the given problem translated

into a CEG. Further, although the AHC algorithm is a greedy search algorithm,

the number of calculations necessary in step 2 of the algorithm still increases expo-

nentially with the number of variables. To overcome this, Freeman [2011] suggests

restricting the model space to allow only certain situations in the tree to be merged

and hence restrict the model space a priori.

Two further search algorithms have been suggested: Freeman [2011] proposes

to reformulate the search as a weighted Maximum Satisfiability (MAX-SAT) prob-

lem, which was previously developed for BNs in Cussens [2008]. However, when
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doing so, the score of each possible stage structure needs to be calculated a pri-

ori and therefore an exact search quickly becomes infeasible. Again restricting the

weighted MAX-SAT algorithm by the number of situations that can be in a stage

is suggested, however this does not seem to be optimal. Freeman [2011] gives an

example on a tree with 170 situations and demonstrates the weighted MAX-SAT

algorithm needed to be restricted according to the number of situations that can be

in a stage, while the AHC algorithm still performed e�ciently and found a higher

scoring model.

Silander and Leong [2013] recently developed a dynamic programming algo-

rithm for exact learning of CEGs, which not only searches across a single tree but

across all possible permutations of the variables in the tree. However, also here an

exact search quickly becomes infeasible, as the complexity of the algorithm grows

super-exponentially with the number of variables. Silander and Leong [2013] suggest

combining the algorithm with faster heuristic clustering algorithms, using K-means

clustering. They claim that, when using their dynamic programming approach using

K-means clustering, the search is feasible for up to around 30 variables.

For this thesis I have implemented the AHC algorithm in R based on previous

work in Freeman [2011] to find the MAP CEG structure of a given problem (see B.

The CEG space of the examples considered in the thesis is su�ciently small, so that

the model space does not need to be restricted a priori.

3.3 Application to the CHDS

In this section I will apply the methodology introduced in this chapter to the CHDS

example. I will first find the MAP BN structure by scoring each possible structure

according to the BD metric and selecting the BN with the highest score. I will then

similarly find the MAP CEG of the CHDS example using the AHC algorithm. I

will then compare the two models and show that the MAP CEG has a significantly

higher score than the MAP BN and hence that the CEG of the CHDS example gives

a better fitting model. Having found the MAP CEG structure, I will briefly return

to the Ordinal CEG and the Causal CEG from Chapter 2.5 and 2.3.3.

3.3.1 The Maximum a Posteriori BN for the CHDS Example

Recall from Example 1 in Chapter 2.2 that the CHDS example consists of the

following four variables:

• X1 = family social position: binary variable: ‘low’, ‘high’
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• X2 = family economic situation: binary variable: ‘low’, ‘high’

• X3 = number of family life events: variable with three categories : ‘low’,

‘average’, ‘high’

• X4 = hospital admission: binary variable: ‘yes’, ‘no’,

and that this can be represented by a BN on four variables. Based on the conclusions

of Fergusson et al. [1986] I originally deduced the BN in Figure 2.1. This stated

that the economic situation has no e↵ect on hospital admission once adjusting for

the social background and the family life events, and further that this is the only

non-trivial conditional independence statement. In this section I will now instead

use the BD metric to find the best fitting BN structure given the data set of the

CHDS example discussed in Chapter 1.2.1.

To set up the Dirichlet prior distributions on the ✓

ij

= p(x
i

|pa(x
i

) = j;✓),

I assume a uniform prior on p(x|B
c

) such that the distribution over all possible

configurations is uniform and hence the hyperparameters ↵
ijk

of the p(✓
ij

) are given

by equation 3.11. I further specify an equivalent sample size of ↵ = 3, the maximum

number of categories taken by a variable in the CHDS problem, As recommended in

Neapolitan [2004]. Finally, I assume that structures are a priori equally likely and

hence Bayes Factors are used throughout for the comparison of di↵erent models. An

exhaustive search using the ‘deal’ package in R [Bøttcher and Dethlefsen, 2003] over

all possible BNs on the four variables scores each BN according to the logarithm of

the marginal likelihood of the structure given the data and finds the MAP model to

be the DAG given in Figure 3.1 with associated CPVs given in Table 3.2.

X2
Economic
situation

X1 Social
back-
ground

##

<<

X4 Ad-
missions

X3 Life
events

;;

Figure 3.1: The Maximum a Posteriori BN of the CHDS example on social back-
ground, economic situation, life events and hospital admission. BN score (logarithm
of the marginal likelihood) logL(B|N) = �2489.776

Similar to the network structure derived from Fergusson et al. [1986] (Fig-

ure 2.1) the MAP model suggests that hospital admission is independent of the
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Conditional Probability Vector
(P (X1 =High), P (X1 =Low)) (0.569, 0.431)
(P (X2 =High|X1 =High), P (X2 =Low|X1 =High)) (0.468, 0.532)
(P (X2 =High|X1 =Low)P (X2 =Low|X1 =Low)) (0.122, 0.878)
(P (X3 =Low|X1 =High), P (X3 =Average|X1 =High), P (X3 =High|X1 =High)) (0.461, 0.347, 0.192)
(P (X3 =Low|X1 =Low), P (X3 =Average|X1 =Low), P (X3 =High|X1 =Low)) (0.248, 0.311, 0.441)
(P (X4 =No admission|X3 =Low), P (X4 =Admission|X3 =Low)) (0.880, 0.120)
(P (X4 =No admission|X3 =Average), P (X4 =Admission|X3 =Average)) (0.789, 0.211)
(P (X4 =No admission|X3 =High), P (X4 =Admission|X3 =High)) (0.743, 0.257)

Table 3.2: The associated table of CPVs associated with the MAP BN from Figure
3.1

economic situation given the social background and the number of life events. How-

ever, exhibits several additional conditional independencies between the variables:

It suggests that the economic situation and the family life events are independent

given the social background (X3 ?? X2 |X1) and expresses that a direct dependency

occurs only between the life events and the hospital admissions and not between

social background and admissions (X4 ?? X1, X2 | X3). Table 3.2 shows that the

hospital admissions vary between 12% and 25.7% depending on the number of life

events.

Nevertheless, the exhaustive search over all possible structures reveals two

further BN structures scoring only slightly less than the MAP model which are

given in Figure 3.2. Network structure (a) swaps the directed edge from family life

X2
Economic
situation

X1 Social
back-
ground

//

<<

##

X4 Ad-
missions

X3 Life
events

(a) 2nd BN, logL(B|N) = �2490.073

X2
Economic
situation

✏✏

X1 Social
back-
ground

<<

##

X4 Ad-
missions

X3 Life
events

;;

(b) 3rd BN, logL(B|N) = �2490.751

Figure 3.2: High scoring BN structures for the CHDS example on social background,
economic situation, life events and hospital admission

events to admissions with an edge from the social background to the admissions.

Structure (b) introduces an extra edge between the economic situation and the

family life events. In comparison to the MAP model the log Bayes Factors are 0.297

and 0.975 favouring the MAP model. By Table 3.1, giving the scale of evidence for

Bayes Factors, these di↵erences in scores are negligible and hence, given the data
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set provided, all three structures are believed to be similarly plausible. As noted

in Section 3.1 model selection may be sensitive to the selected equivalent sample

size. Nevertheless, in this case, increasing the equivalent sample size leads to the

same three highest scoring models, together with the BN derived from Fergusson’s

results.

Although all three models suggested in Figures 3.1 and 3.2 have similar

scores, the conclusions drawn from these three BN structures di↵er. While all three

structures suggest that the social background a↵ects the economic situation and the

life events and that the economic situation does not influence hospital admissions, it

is not clear in what way the social background and the life events a↵ect the hospital

admissions and whether the life events depend on the economic situation. This

suggests that a model, which combines features of di↵erent competing BNs may be

closer to the underlying true model. When searching the CEG space it will always

be possible to find the CEG corresponding to the MAP BN structure, as the BN

is a subclass of the class of CEGs. However, when considering the BN structures

in Figure 3.1, it seems likely that we will be able to find a CEG which combines

vertices into stages and positions in an asymmetric and hence result in a higher

model score.

3.3.2 The Maximum a Posteriori CEG for the CHDS Example

In order to find the MAP CEG structure of the CHDS example the AHC algorithm

is used to search across the space of CEGs. As discussed in Chapter 2.3 a plausible

ordering of the variables is given by the ordering: social background first, economic

situation, number of life events and finally hospital admission, with the associated

tree representation given in Figure 2.3 of Chapter 2.3. In this section I will search

across the CEG space with respect to this ordering and will briefly discuss at the

end the e↵ect of switching the economic situation and the number of life events.

To allow for a direct comparison with the BN I specify the same equivalent

sample size of ↵ = 3 and assume that all paths in C0 are a priori equally likely. I

further assume that all CEG structures are a priori equally likely such that BNs and

CEGs can be compared directly by their marginal likelihoods, L(G|N).

As described in the previous section the AHC algorithm starts at C0, calcu-
lates its score, and then at each step of the algorithm finds the two stages, which

when merged, give the highest improvement in score. Table 3.3 gives the iterations

of the algorithm until C1 is reached and shows at each step which stages (described

in terms of their situations) have been merged (column 2), the improvement in the

logarithm of the Bayes Factor (column 3) and the score of the new CEG (column
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4).

CEG Stages merged Log-Bayes Factor CEG score
C0 �2512.708
C1 {s4, s5} 5.528 �2507.180
C2 {s17, s18} 3.731 �2503.449
C3 {s8, s16} 3.453 �2499.996
C4 {s12, s17, s18} 3.377 �2496.619
C5 {s7, s10} 3.305 �2493.314
C6 {s8, s11, s16} 3.060 �2490.254
C7 {s9, s12, s17, s18} 3.041 �2487.213
C8 {s13, s14} 2.565 �2484.648
C9 {s9, s12, s15, s17, s18} 2.514 �2482.134
C10 {s8, s11, s13, s14, s16} 2.342 �2479.792
C11 {s3, s4, s5} 1.302 �2478.490
C12 {s8, s9, s11, s12, s13, s14, s15, s16, s17, s18} -0.812 �2479.302
C13 {s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18} -8.764 �2488.066
C14 {s3, s4, s5, s6} -36.638 �2524.704
C1 {s1, s2} -62.440 �2587.144

Table 3.3: The iterations of the AHC algorithm when finding the MAP CEG struc-
ture for the CHDS example given by the event tree in Figure 2.3

The highest scoring CEG structure found is the CEG C11 with a total score

of �2478.49. It corresponds to the CEG structure that has already been described

in Chapter 2.3 and which is repeated in Figure 4.12 together with its CPVs in

Table 3.4. Here, the posterior predictive admission probabilities have been added

to the final positions w6, w7 and w8, which are, together with their 95% credible

intervals given by: 9.1(5.7, 13.0)%, 17.7(13.5, 22.3)% and 26.5(22.1, 31.1)%. In fact,

an exhaustive search across the associated probability tree, carried out in Cowell

and Smith [2011], shows that the resulting CEG structure of the AHC algorithm

is the MAP model. Further, the model appears to be robust with respect to the

chosen equivalent sample size. Increasing the equivalent sample size continuously

up to ↵ = 60 keeps the same final positions and only splits w3 and w4 into separate

stages.

As indicated in Chapter 2.3, these final positions are of particular interest, as

they give an interpretation of the e↵ect of a combination of variables on the hospital

admissions and can be seen as describing three di↵erent ‘health states’ that the

individual can reach, where the CEG lets us trace the di↵erent paths the individuals

can take before ending up in one of these three ‘states’. As expected, the lowest

predictive probability of a hospital admission (9.1%) is present when the individual

reaches position w6, while the highest admission probability of 26.5% occurs when

the individual has a high number of life events or a low social background, low
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Figure 3.3: The MAP CEG structure found through the AHC algorithm from the
event tree in Figure 2.3. CEG score L(C|N) = �2478.490

Stage/Position Conditional Probability Vector
u0 = w0 (P (X1 =High), P (X1 =Low)) (0.569, 0.431)
u1 = w1 (P (X2 =High|u1), P (X2 =Low|u1)) (0.468, 0.532)
u2 = w2 (P (X2 =High|u2), P (X2 =Low|u2)) (0.122, 0.878)
u3 = {w3, w4} (P (X3 =Low|u3), P (X3 =Average|u3), P (X3 =High|u3)) (0.460, 0.344, 0.196)
u4 = w5 (P (X3 =Low|u4), P (X3 =Average|u4), P (X3 =High|u4)) (0.219, 0.312, 0.469)
u5 = w6 (P (X4 =No admission|u5), P (X4 =Admission|u5)) (0.909, 0.091)
u6 = w7 (P (X4 =No admission|u6), P (X4 =Admission|u6)) (0.823, 0.177)
u7 = w8 (P (X4 =No admission|u7), P (X4 =Admission|u7)) (0.735, 0.265)

Table 3.4: Table of CPVs associated with the MAP CEG structure given in Figure
3.3

economic situation and an average number of life events. Finally, individuals that

reach w7 are predicted to have an admission probability of 17.7%. It is noticeable

that, while a high number of life events forces the individuals into position w8 with

the highest admission probability, an individual from a low social background will

never reach position w6 even with a low number of life events. Table 3.4 further

illustrates that an individual from a low social background is more likely to also have

a low economic background (53.2% versus 87.8%). Similarly, an individual from a

low social and economic background has a predictive probability of 46.9% of having

a high number of life events and 21.9% for a low number of life events, while for the

remaining o↵spring these probabilities are 19.6% and 46.0%, respectively.

It is also interesting to compare these probabilities with the CPVs of the

MAP BN in Table 3.2. The predictive probabilities of a high and low social back-

ground and of the economic situation given the social background are naturally

identical, as the CEG does not merge situations s1 and s2 and the BN, similarly,

has a directed edge from the social background to the economic situation. However,

the probabilities of the life events di↵er slightly as the CEG here represents the first
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asymmetry, as three edges lead into u3 = {w3, w4} and only one edge into position

u4 = {w5}. Finally, the CEG allows us to make slightly greater distinctions between

the predictive probabilities of a hospital admission associated with the final three

positions, which range from 0.091 to 0.265. In contrast to this, the MAP BN, which

only considers the number of life events as influential, predicts probabilities between

0.120 and 0.257. The results of the CEG support the conclusions of Fergusson et al.

[1986] that the e↵ect of life events on admissions is strongest. However, the CEG

further explains explicitly the way in which the social background and the economic

situation may have an additional e↵ect on hospital admissions.

From Table 3.3 the score of the MAP CEG structure is calculated to be

�2478.490. In contrast to this, the score of the MAP BN which is �2489.776,

giving a log-Bayes Factor or 11.284 or, equivalently, a Bayes Factor of about 80, 000

in favour of the CEG. By Table 3.1 this strongly suggests that the more flexible CEG

model is highly preferable. Thus, although only a small number of asymmetries are

present in this representation, the e↵ect on the model score is vast and the added

detail within the interpretation and the inference drawn is substantial.

I have so far only considered finding the MAP CEG with respect to a par-

ticular ordering of the variables and therefore a particular tree structure. A search

across all possible permutations of the ordering of the variables in the tree would, be

possible in order to find the MAP CEG given any ordering. Nevertheless, it seems

plausible to keep the social background at the start of the tree due to the logical time

ordering of the variables. The hospital admissions could be switched with the eco-

nomic situation and the number of life events, as the variables are measured across

the same years and an admission could a↵ect, for example, the financial situation of

the family. However, this analysis focuses on the e↵ect of the three covariates on the

hospital admission. I therefore only consider switching the economic situation and

the number of life events in the ordering of the tree. Doing so a MAP CEG structure

with the same final three positions, describing the same three health states as w6,

w7 and w8 in Figure 3.3, is obtained. As only two variables have been switched, only

the e↵ect of the life events on the economic situation is novel, while the overall con-

clusions on hospital admissions remain the same. The new CEG structure suggests

that o↵spring from a high social background with a low or average number of life

events have the same distribution for the economic situation. Also, o↵spring from

a high social background with a high number of life events or o↵spring from a low

social background with a low number of life events are in one stage and, similarly,

families from a low social background with an average or high number of life events

are in the same stage. In comparison to the MAP CEG of Figure 3.3 this CEG only
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scores very slightly less, with a Bayes Factor of 1.27 in favour of the previous CEG.

3.3.3 The Ordinal MAP CEG and a Causal Intervention on the

MAP CEG

The predictive probabilities attached to the final three positions in Figure 3.3 suggest

that the CEG is written as an Ordinal CEG with respect to the probability of no

hospital admission. From Table 3.4 the predictive admission probabilities for the

remaining positions can be calculated: The probability of being admitted to hospital

given the individual reaches w1 is 15.5% and 24.0% given the individual reaches w2.

Similarly, the probabilities of hospital admission are 15.5% for w3, 19.4% for w4 and

24.6% for w5. Even, without these calcuations, the Ordinal CEG lets us read directly

from its graph that a hospital admission is less likely for a high social background

than for a low social background, and similarly, that a hospital admission is less

likely for an individual from a high economic situation and a low social background

than for an individual with a low economic situation and a low social background.

The introduction of the Ordinal CEG in Chapter 2.5 suggests a brief com-

parison to logistic regression, the standard modelling technique for binary outcome

variables. In the CHDS I have defined the hospital admissions variable to be the

outcome variable by which the positions in the Ordinal CEG are ordered. In a cor-

responding regression analysis I would therefore let the hospital admission variable

be the response variable and the social background, the economic situation and the

life events the covariates. When carrying out a logistic regression all possible two-

way and three-way interaction terms would need to be included to be able to make

inference on the combined e↵ect of the covariates on the outcome. Given the pa-

rameter estimates of the regression model the estimated e↵ect of each combination

of covariates could then be calculated and compared. The CEG, however, illustrates

directly which combination of covariates have similar e↵ects on the admission prob-

ability from the topology of its graph. The use of the BD metric to score models

automatically determines when the e↵ects of two di↵erent combinations of covari-

ates can be interpreted as being the same (the vertices are in the same stage) taking

into account the complexity of the model and the number of counts in each category,

while in a regression analysis, the decision to merge di↵erent combinations would

be decided by the investigation of the regression coe�cients. Finally, the CEG also

allows conclusions about the e↵ect of the social background on the economic situa-

tion and the e↵ect of social background and economic situation on life events and

combines all this information within a single graph.

As introduced in Chapter 2 in applications like these we are often interested
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in the causal e↵ect of the covariates on the hospital admission. For example, if it

were possible to intervene on the number of life events and enact a policy ensuring

that the life events on a particular unit would always lie in the ‘low’ category, then

it could be concluded from the CEG in Figure 3.3 that the consequent probability

of hospital admission would be reduced to 9.1% for a high social background and

17.7% for a low social background. However, these types of interventions may also

be asymmetric. Let us consider the intervention discussed in Chapter 2.3.3, where

an intervention at position w2 in Figure 3.3 forces all individuals from a low social

background along the edge e(w2, w4), indicating that individuals from a low social

background and with a low economic situation are to be given financial aid. The

resulting manipulated CEG was given in Figure 2.6 and is repeated together with

its CPVs (Table 3.5) below.

w1
High economic //
Low economic // w3 Low events //

Average events

&&

High events

��

w6 9.1%
No admission

$$

Admission

$$
w0

High social

99

Low Social

%%

w4 Average events //Low events //
High events

&&

w717.7%
Admission

//
No admission // w1

w2

High economic

==

w826.5%

Admission

::

No admission

::

Figure 3.4: The MAP CEG for the CHDS example from Figure 3.3 manipulated
such that individuals from a low social background are given financial aid

Stage/Position Conditional Probability Vector
u0 = w0 (P (X1 =High), P (X1 =Low)) (0.569, 0.431)
u1 = w1 (P (X2 =High|u1), P (X2 =Low|u1)) (0.468, 0.532)
u2 = w2 P (X2 =High|u2) 1
u3 = {w3, w4} (P (X3 =Low|u3), P (X3 =Average|u3), P (X3 =High|u3)) (0.460, 0.344, 0.196)
u5 = w6 (P (X4 =No admission|u6), P (X4 =Admission|u6)) (0.909, 0.091)
u6 = w7 (P (X4 =No admission|u7), P (X4 =Admission|u7)) (0.823, 0.177)
u7 = w8 (P (X4 =No admission|u8), P (X4 =Admission|u8)) (0.735, 0.265)

Table 3.5: Table of CPVs associated with the manipulated CEG of the CHDS
example given in Figure 3.4
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It can be read directly from the manipulated CEG that the predictive proba-

bility of hospital admissions for families from a low social background and an average

number of life events given this intervention is improved to 17.7%. Further, Table

3.2 shows that this intervention reduces the predictive probability of a high number

of life events in socially disadvantaged families from 46.9% to 19.6%, giving an im-

provement in the probability of admissions mediated through the life events. The

probability of an individual reaching w8 can then be calculated to reduce from 41.7%

to 19.6% and therefore the overall probability of admission reduces from 19.1% to

17.2%.

In this Chapter I have reviewed the learning of the parameters and model

selection using the Bayesian Dirichlet scoring function for BNs and CEGs. I have

shown that through an application to the CHDS example that, whilst a BN search

can be useful in providing a graphical framework for feeding back the analysis to a

client, the CEG provides useful additional conclusions and refinements to the BN.

This is not only apparent in the significantly high Bayes Factor of the derived CEG

in comparison to the MAP BN, but also in its expressiveness to the client.
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Chapter 4

Modelling Missingness using

Chain Event Graphs

In this Chapter I will discuss how the CEG provides a new way of systematically

exploring the e↵ect of missing covariate data within a study and hence enables us

to draw informative conclusions about the type of missingness and its influence. I

will first review the three well-known types of missing data: missing completely at

random (MCAR), missing at random (MAR) and missing not at random (MNAR)

[Rubin, 1976] and will demonstrate on a subset of the UKCP study, introduced in

Chapter 1.2.2, how these di↵erent types of missing data can be represented explicitly

within the topology of the CEG. In particular, the graph of the Ordinal CEG enables

us to obtain a precise understanding of the subtleties associated with the three

common types of missingness and di↵erentiate further between more refined MNAR

structures. I will then apply the model selection techniques developed in Chapter 3.2

to several examples of the UKCP and consequently show how the graph of the CEG

helps us understand the influence of missingness, as well us allowing us to investigate

the plausibility of the MAR assumption within these models. In the final section I

will demonstrate how we can use the CEG to define new informative categories of

variables in the UKCP study. As some of the examples in this chapter have slightly

larger CEG structures, I will further demonstrate the use of the Reduced Ordinal

CEG in these examples.

4.1 Introduction to Analysing Missing Data Structures

In many situations the full data set of a given problem may not be observed. Prob-

lems caused by missingness can be especially acute in cohort studies when it is

66



typical for substantial amounts of data to be missing over certain periods of time.

Reasons for missing values may be, for example, non-response due to the individual

refusing to disclose information, dropout, migration, or simply loss of data. Also,

in the UKCP study introduced in Chapter 1.2 measurements for impairments may

be missing for more informative reasons: For example, the impairment may be too

severe to be measured or the individual may have died before a measurement could

be taken. It is common practice to partition missing data mechanisms into three

categories, which are Missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR) as proposed in Rubin [1976]. I here

briefly review these three missingness mechanisms by looking at the simplest case

where we have two variables: X1, which is fully observed and X2 which has missing

values. Also, let R2 be a missingness indicator, which is equal to 1 when X2 is ob-

served and equal to 0 when X2 is missing. Little and Rubin [2002] then define that

data are MCAR when missingness does not depend on the observed and unobserved

values, and this can be written as

p(r2 | x1, x2) = p(r2).

In line with the graphical models introduced in the previous two chapters, this can

be rewritten as the conditional independence statement:

R2 ?? X1, X2. (4.1)

In the UKCP study let X1 describe the birth weight, which is assumed to be fully

observed, and let X2 be the visual impairment. From Table 1.2 it is known that

X2 has large amounts of missing data, so let R2 be the indicator distinguishing

whether the visual impairment is missing or not. Then, assuming that X1 is fully

observed, MCAR would imply that the reasons for missingness are independent of

the visual impairment and of the birth weight. This assumption is, however, often

not plausible in a study like this. A slightly less restrictive assumption defined in

Little and Rubin [2002] states that missingness only depends on the components

of the data that are observed and not on the components that are missing and we

then say data are MAR. The standard notation introduced in Little and Rubin

[2002] and Schafer [1997] makes it di�cult to write the MAR assumption in terms

of conditional independencies. However, examples of data that are MAR in the

above references and in Daniels and Hogan [2008] show that MAR corresponds to
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the conditional independency:

R2 ?? X2 |X1, (4.2)

or equivalently to

p(r2 | x1, x2) = p(r2 | x1).

In our example on the cerebral palsy cohort this would mean that the missingness

indicator of the visual impairment is independent of the visual impairment itself

but dependent on the birth weight. Again, in studies like these, even the MAR

assumption may not be a plausible assumption to make. For example, an impairment

may be so severe that it is impossible to measure and therefore it is missing. In such

a scenario the missingness indicator will also depend on the impairment itself and

hence the MAR assumption would be violated. Little and Rubin [2002] then say

that data are MNAR, where the missingness mechanism depends on the observed

and unobserved values, which can be written as

R2 6?? X1, X2, (4.3)

or, equivalently,

p(r2 | x1, x2) = p(r2 | x1, x2).

Various methods for addressing inference when data are missing have been

developed [Schafer, 1997; Little and Rubin, 2002], such as complete-case or available-

case analysis and single or multiple imputation. Research has centred around cir-

cumstances when it is appropriate to assume that data are MAR. It has been shown

that in this case it is possible to use e�cient computational methods, for example,

the Expectation-Maximisation algorithm or MCMC methods [Little and Rubin,

2002; Heckerman, 2008] to find Maximum Likelihood estimates, or in a Bayesian

setting, the posterior distribution of the parameters of interest. However, in many

situations the MAR assumptions are not plausible. As such methods then seriously

bias inferences, as demonstrated for example in Sterne et al. [2009], the missingness

process has to be modelled explicitly to avoid bias.

One method for analysing incomplete data of categorical variables is to treat

missingness as an additional category for each variable that has missing values.

This is, however, not always appropriate. Winship et al. [2002] discuss that this is

not always appropriate. For example, two variables X and Y may be marginally

dependent, but independent conditional on a binary variable Z taking values 0 or 1.

It is assumed that Z is, however, only partially observed and the missing values of
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Z are treated as a separate category. Then the missingness category of Z may not

detect the conditional independence of X and Y as it contains cases with Z = 0 and

cases with Z = 1 and estimates of the dependency between X and Y conditional on

Z may be biased. However, in other situations this approach seems appropriate when

missingness of an observation can be hypothesised as an informative measurement

of the development of that individual in an unfolding process. For example, as

mentioned earlier, in the UKCP, we know that missingness of an impairment is

associated with the impairment being impossible to measure due to severity or early

death. This type of hypothesis is represented well using a tree or a CEG, where

missingness is expressed either by an extra edge or an extra branch in the graph and

represents the missingness indicator explicitly. The issue discussed in Winship et al.

[2002] could then be overcome, as context-specific independencies in the CEG would

demonstrate that X and Y are independent conditional on the observed values of

Z.

4.2 CEGs for Informed Missingness

I will demonstrate in this section how the CEG can be used to classify di↵erent types

of missingness by applying it to a subset of the UKCP study. Let X1 describe the

birth weight, X2 the visual impairment and X3 the variable describing the survival

to age 5 or above. Also, recall that X2 has a large amount of missing values, and

let R2 be the variable indicating whether X2 is missing or not. The corresponding

event tree of this problem is given in Figure 4.1. Here, survival is the variable of

interest and represents the final variable in the tree as we are interested in the e↵ect

of the other two covariates on the probability of survival. Birth weight is introduced

first, while the impairment, which is measured later, is introduced second, giving the

ordering of the variables: (X1, R2, X2, X3). As X3 is binary the CEG can be written

as an Ordinal CEG with respect to the probability of survival and thus enhance the

expressiveness of the graph.

I will first illustrate on this example how di↵erent missingness structures can

be represented by an Ordinal CEG and show that, when data are assumed to be

MAR or MCAR, a particular set of CEG structures is observed which describe the

randomness of the missingness mechanism. However, when data are MNAR, then

the CEG structures can be used to distinguish between hypotheses about di↵erent

types of MNAR mechanisms. I will then apply the methods to the MAP CEG

structure of the given example.
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Figure 4.1: Event Tree for the UKCP example describing the e↵ect of birth weight,
visual impairment and missingness on survival

70



4.2.1 CEG Representation of MCAR, MAR and MNAR

In the literature, to model the joint density of X2 and the missingness process R2 it

is common to distinguish between two model families, selection models and pattern-

mixture models. These are based on two di↵erent factorisations of the joint density

of the variable, X2 and R2 [Little and Rubin, 2002]. A selection model factorises

the joint density into the marginal density of X2 and the missingness process R2

conditional on X2, while in a pattern-mixture model the opposite factorisation is

used, where first the marginal density of the missingness process is modelled and

then the density of the variable X2 given the missingness process. In the above

tree structure the ordering where R2 appears before X2 has been chosen, which

is the ordering implied by the pattern-mixture model. Alternatively, I could have

picked the ordering where X2 appears before R2 which is implied by the selection

model. Which of these two orderings is more convincing is dependent on context:

For example, if data had already been collected and then some of the data lost,

then the ordering (X2, R2) would be more natural. If someone from the cohort left

the study early before any outcome variable could be measured then the ordering

(R2, X2) would be more plausible. The MAR statement R2 ?? X2 | X1 in 4.2

implicitly takes the variables in the order (X1, X2, R2). In this case the argument

would be that the variables X1 and X2 exist for each individual a priori, however

these variables might not be recorded for X2 for various reasons. However, the

assumption of MAR is equivalent to the assumption X2 ?? R2 |X1. This reinterprets

MAR in terms of viewing data as if it were consistent with the order (X1, R2, X2),

as in the tree in Figure 4.1. Either way, by the semi-graphoid axioms, the MCAR

and MAR assumptions are equivalent under either ordering. I hence choose the

second ordering which allows models that violate the MAR assumption to still be

estimated and where I assume that X1 and the missingness indicator R2 can be

seen as measurements of events happening that might influence X2. Hence, unlike

standard representations of MCAR, MAR and MNAR, the CEG suggests to first

decide explicitly a plausible ordering of the variables within the given context and

retains this within the structure of its graph.

In this example, apart from birth weight (X1), and visual impairment (X2)

a further outcome variable, X3, describing survival up to or above 5 exists, which

is fully observed. Due to follow-up using hospital records and national death and

emigration records, it is often reasonable to assume that the outcome variable is

fully observed even when the individual has dropped out throughout the study. In
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this case the MCAR/MAR assumptions commonly further include that

X3 ?? R2 |X1, X2,

i.e. that the probability of survival is independent of the missingness process given

X1 and X2 [Hemming and Hutton, 2012]. Under this assumption the following can

be deduced:

p(x3|x1, r2 = 0) =
X

x2

p(x3|x1, r2 = 0, x2)p(x2|x1, r2 = 0)

under MAR =
X

x2

p(x3|x1, r2 = 1, x2)p(x2|x1, r2 = 1). (4.4)

So, under MAR, p(x3|x1, r2 = 0) is given by a weighted average of the probability

of survival given birth weight and visual impairment, which is observed, weighted

according to the probability of visual impairment given it is observed and given a

particular birth weight. The probability of survival given missing visual impairment

will therefore lie between the probability of survival for a non-severe and a severe

impairment. So, with respect to our example and the associated tree in Figure

4.1, under the assumption of MAR, s9 is expected to be in a position whose pos-

terior predictive probability of survival (posterior CPV) is a weighted average of

the predictive probabilities of survival for severe and non-severe visual impairment

given a very low birth weight, weighted according to the probability of a severe or

non-severe impairment, given the impairment is observed. In an Ordinal CEG rep-

resentation, the position describing survival for the missing category given a very

low birth weight, is expected to lie between the positions for survival of individuals

with severe or non-severe visual impairment given a very low birth weight. The

same holds for the vertices s12 and s15. A possible Ordinal CEG structure under

the MAR assumption would therefore be the one given in Figure 4.2 (Note: birth

weight = bw).
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w3
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33
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??

w9
No survival

77
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77

Figure 4.2: Ordinal CEG for the UKCP example describing the e↵ect of birth weight,
visual impairment and missingness on survival when data are MAR
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For simplicity, I have assumed that survival is hypothesised to be indepen-

dent of the birth weight given the visual ability and I will assume that this holds

throughout this subsection. If this were not the case then the positions w7, w8 and

w9 might be split into several positions depending on the birth weight. As the CEG

is said to be an Ordinal CEG the graph also states that a very low birth weight

leads to the highest survival, followed by a low and normal birth weight [Hutton

and Pharoah, 2002].

However, the graphical observation of Figure 4.2 is only a necessary but not

su�cient condition. Data may produce a CEG structure as in Figure 4.2 and hence

appear to be MAR. However, the predictive probability p(x3|x1, r2 = 0) in Equation

4.4 may nevertheless di↵er significantly from

X

x2

p(x3|x1, r2 = 1, x2)p(x2|x1, r2 = 1)

such that data are unlikely to be MAR. This will be case when the disability cat-

egories are very imbalanced. For example, when a large proportion of individuals

has a non-severe impairment, i.e. x2 = 0, then

p(x2 = 0|x1, r2 = 1) ⇡ 1 while p(x2 = 1|x1, r2 = 1) ⇡ 0,

and hence the right hand side of Equation 4.4

X

x2

p(x3|x1, r2 = 1, x2)p(x2|x1, r2 = 1) ⇡ p(x3|x1, r2 = 1, x2 = 0),

So, the above sum may be close to the predictive probability of individuals with a

non-severe disability, i.e. close to the predictive probability associate with position

w7, but the predictive probability p(x3|x1, r2 = 0) associated with position w8 may

not be close to this value. We can consequently only deduce from the graph when

data are MNAR but we need further calculations to deduce that they are MAR. We

can do so by looking at the CPVs of the CEG and simply calculate from these the

left hand side and right hand side of Equation 4.4 and compare these. The graph on

its own nevertheless gives an indication of the possibility that the MAR assumption

holds. I will give an example of this in the next subsection, in which I will carry out

model selection on the UKCP example illustrated here.

From equation 4.1 that, if data are MCAR, then R2 ?? X1 is additionally re-

quires on top of the MAR assumption. This independence statement can be directly

deduced from the topology of the CEG, as in this case all positions associated with
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the missingness indicator R2 will be in the same stage, such that the probability

of having a missing value is indistinguishable across the birth weight, X1. In this

example this means that w1, w2 and w3 are in the same stage, as represented in

Figure 4.3.
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Figure 4.3: Ordinal CEG for the UKCP example describing the e↵ect of birth weight,
visual impairment and missingness on survival when data are MCAR

When data are MNAR then the missingness process depends on both the

observed and the unobserved values such that R2 depends on both X1 and X2. A

simple case for MNAR occurs when all situations describing survival, given that

missingness has occurred, are in positions with a lower survival probability than

when the visual impairment is observed. In the UKCP example this means that

s9, s12 and s15 in Figure 4.1 are in lower positions than s7, s8, s10, s11, s13 and s14.

Hence a missing value predicts that the visual impairment is likely to be even worse

than the usual visual impairment which is classed as ‘severe’ and hence is associated

with poorer survival. This is represented by the Ordinal CEG structure given in

Figure 4.4. In this scenario it is possible deduce directly from the graph alone that

missingness is unlikely to be MAR, as all edges labelled ‘missing’ lead to a lower

position of survival than the edges labelled ‘severe’ or ‘non-severe’.

w1
missing

$$

not missing // w4 not severe //
severe

''

w7

No survival

''

Survival

''
w0 bw low //

bw very low

77

bw normal

''

w2
missing

++

not missing // w5 severe //
not severe

77

w8 No survival //Survival // w1

w3 missing
11not missing // w6

severe

77
not severe

??

w9
No survival

77
Survival

77

Figure 4.4: Ordinal CEG for the UKCP example describing the e↵ect of birth weight,
visual impairment and missingness on survival when data are MNAR

However, the Ordinal CEG can also distinguish between di↵erent types of

MNAR data. Hence, alternatively, data may be MNAR conditional only on certain

values of another variable. For example, data may be MAR given that the birth

weight is very low or low but MNAR when birth weight is normal. This hypothesis
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is represented by the Ordinal CEG with the structure given in Figure 4.5. The

MNAR conclusion can be deduced directly from the graph as in Figure 4.4, while

the MAR conclusions given very low and low birth weight would need to be checked

as described above.
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Figure 4.5: Ordinal CEG for the UKCP example describing the e↵ect of birth weight,
visual impairment and missingness on survival when data are MNAR conditional
on birth weight

However, the topology of the Ordinal CEG is able to provide information

on the strength of the influence due to missingness. Consider, the CEG in Figure

4.6. Here an individual with missing visual disability is in the same position as an

individual whose visual impairment is classed as ‘severe’. Unless the proportion of

individuals with severe impairments is very large, such that p(x2 = 1|x1, r2 = 1) ⇡ 1,

so that under MAR p(x3|x1, r2 = 0) ⇡ p(x3|x1, r2 = 1, x2 = 1) by Equation 4.4,

data are likely to be MNAR. When comparing this to Figure 4.4, it is apparent that

the missing category has a stronger e↵ect on survival in Figure 4.4 than in Figure

4.6.
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Figure 4.6: Ordinal CEG for the UKCP example describing the e↵ect of birth
weight, visual impairment and missingness on survival when data are MNAR, with
missingness having a similar e↵ect as a severe impairment

Finally, the opposite e↵ect of missingness could also be hypothesised from the

graph, where the survival probability given that visual impairment is missing is in

the position with the highest probability of survival. An example of this is illustrated
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in Figure 4.7. In this situation data are again MNAR, but now the conclusion made

would be that missingness occurs only when the visual impairment is non-severe.

Of course, an expert may deem such a CEG and associated hypotheses implausible.

This is however simple to address within the Bayesian methodology: As discussed in

Chapter 3.1 models considered implausible by the expert could simply be excluded

from the search space, or alternatively assigned small prior probabilities.
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Figure 4.7: Ordinal CEG for the UKCP example describing the e↵ect of birth
weight, visual impairment and missingness on survival when data are MNAR, but
missingness has a positive e↵ect on survival

Note that in this example missingness does not occur for the outcome vari-

able. Nevertheless, this could also be incorporated into the CEG structure. In this

case the outcome variable would have three categories, ‘survival’, ‘no survival’ and

‘missing’, and the predictive probabilities of survival and of missing survival could

be added to the graph. If we were interested, not only in survival up to or above 5,

but in several survival categories, such as age 0 � 5, 5 � 10, 10 � 15 and > 15, the

situations describing survival in the associated tree would have four categories. The

MAP CEG structure could then be found on this tree and a Kaplan-Meyer plot to

each final position could be added.

I have shown that the graph of the CEG allows for a direct analysis of the

reasons of missingness and gives an explicit representation of the di↵erent types of

missingness mechanisms. I have also illustrated that the Ordinal CEG can distin-

guish between di↵erent types of MNAR and the way in which this is made explicit

in the graph.

4.2.2 Application to the UKCP

In this section I will find the MAP CEG structure for the running example, used in

the previous section, given the available data from the UKCP study. The resulting

model can then be used to draw inference on the e↵ect of the birth weight and visual

impairment on survival and gives an understanding of the missingness structures

beyond the three established mechanisms. As I have ensured that the missingness
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indicator appears before the variable with missing values within the ordering of the

variables in the tree, the model selection techniques of Chapter 3.2 can be directly

applied to this example and the scores of the CEGs in the model space can be

calculated in closed form as before.

As in Chapter 3.2 I assume a uniform prior on the root-to-leaf paths and

an equivalent sample size of 3, equal to the number of categories the birth weight

variable takes. A discussion of possible informative priors for the examples of the

UKCP study are discussed in Chapter 6.2. Running the AHC algorithm finds the

MAP CEG to be the CEG given in Figure 4.8 with the CPVs given in Table 4.1.

The predictive probabilities of survival up to or above the age of 5 are attached to

the final positions in the CEG, which, together with the 95% credible intervals of

the posterior distribution of survival, are: 98.7 (98.4, 99.0)% for position w5, 89.5

(87.5, 91.3)% for w6 and 84.6 (81.8, 87.2)% for w7. The CEG is again drawn as

an Ordinal CEG such that the positions describing the same succeeding event are

vertically aligned in descending order with respect to the predictive probability of

survival. To calculate the predictive probability of survival for positions w1, w2 and

w3 Table 4.1 can then be used to obtain a survival probability of 96.5% for w1,

96.2% for w2 and 95.3% for w3. So, from the topology of the Ordinal CEG a low

birth weight is predicted to give the highest probability of survival and a slightly

lower probability for a very low and a normal birth weight.
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((
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w7 84.6%
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66
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66

Figure 4.8: Ordinal MAP CEG structure for the UKCP example describing the
e↵ect of birth weight, visual impairment and missingness on survival

Stage/Position Conditional Probability Vector
u0 = w0 (P (X1 =Low), P (X1 =Very low), P (X1 =Normal)) (0.244, 0.177, 0.579)
u1 = w1 (P (X2 =Not missing|u1), P (X2 =Missing|u1)) (0.850, 0.150)
u2 = {w2, w3} (P (X2 =Not missing|u2), P (X2 =Missing|u2)) (0.814, 0.186)
u3 = w4 (P (X3 =Not severe|u3), P (X3 =Severe|u3)) (0.894, 0.106)
u4 = w5 (P (X3 =Survival|u4), P (X3 =No survival|u4)) (0.987, 0.013)
u5 = w6 (P (X4 =Survival|u5), P (X4 =No survival|u5)) (0.895, 0.105)
u6 = w7 (P (X4 =Survival|u6), P (X4 =No survival|u6)) (0.846, 0.154)

Table 4.1: Table of CPVs associated with the MAP CEG for the UKCP example
on birth weight, visual impairment and survival given in Figure 4.8
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As illustrated in Chapter 2.3.2 on the CHDS example, a number of conclu-

sions can be drawn from the CEG about the likely dependence structure of the three

variables considered. The distribution of the missingness is indistinguishable for a

very low and normal birth weight as w2 and w3 are in the same stage. Further,

recall the conditional independence statement of Chapter 2.3 Equation 2.8, which

states that Y (w) ?? X(w) | E(w), where Y (w) is a variable identified with the set of

paths from w0 to w, X(w) is the variable associated with the edges emanating from

w and E(w) represents the event that the individual passes through the position w.

This can be used as before to read o↵ conditional independencies from the CEG

associated with the variables in the graph by looking at the cut-sets of the graph as-

sociated with each of the edges emanating from the vertex subsets V
R2 , VX2 and V

X3 .

The first cut-set in the graph consists of the edges emanating from positions w1, w2

and w3. These are reached by three unique paths and hence Y (w) ?? X(w) | E(w)
applied to w1, w2 and w3 gives the trivial conditional independence statement that

the birth weight a↵ects the missingness process. Moving further along the graph we

can deduce the conditional independency Y (w4) ?? Z(w4) | E(w4), where by Equa-

tion 2.7 Z(w4) is the variable associated with the paths from w4 to w1. Here the

event, E(w4), i.e. going through w4 corresponds to observing visual ability. Z(w4)

describes visual impairment and survival, while Y (w4) represents the birth weight.

We then have that, given visual impairment is observed, the visual impairment and

survival are independent of birth weight, such that, when visual disability is ob-

served, we have that the distribution of visual disability and survival is the same

(w1 ! w4, w2 ! w4, w3 ! w4). Finally, consider the three final positions, w5, w6

and w7, which can be interpreted as describing the ‘health state’ of the individual.

We have that X(w5), X(w6) and X(w7) describe the variable survival and then,

from Y (w) ?? X(w) | E(w) applied to w5, w6 and w7 we conclude that survival de-

pends only on these three positions and not on the paths through which they have

been reached.

As expected, the highest probability of survival is obtained when visual im-

pairment is observed to be non-severe. In this case survival up to or above 5 is pre-

dicted to be 98.7%. When visual impairment is observed to be severe, the individual

is forced into the final position w6 with survival of 89.5%, which is significantly lower

than survival with a non-severe disability. The poorest survival is found to be for

individuals whose visual impairment is not observed. Here a very low and low birth

weight leads to a survival probability equal to the predictive survival probability for

severe impairment, while for a normal birth weight survival is predicted to be only

84.6%. This is significantly lower than survival when visual disability is observed.
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We hence deduce directly from the Ordinal CEG structure that the data are unlikely

to be MAR. As explained in the previous section the expected survival probabilities,

under MAR, for individuals for whom visual disability is missing, can be calculated

from the right hand side of Equation 4.4, where the survival probability conditional

on a particular birth weight is expected to be the weighted average of the survival

probability for individuals of that birth weight with a severe or non-severe disabil-

ity, weighted according to the probability of observing a severe or non-severe visual

impairment. In Figure 4.8 all individuals go through position w4 and therefore

the calculated expected probability of survival under MAR will be the same for all

individuals. This is given by

98.7⇥ 0.894 + 89.5⇥ 0.106 = 97.7%,

with 95% credible interval (96.8%, 98.5%). This is compared to the predictive sur-

vival probabilities when visual impairment is missing, which correspond to the pre-

dictive survival probabiltiies associated with the positions w6 and w7, of 89.5% and

84.6%. We see that the predictive survival for a missing impairment is much lower

and, in either case, does not lie within the calculated 95% credible interval. The

conclusion is therefore that the data are unlikely to be MAR. In the situation where

the individual has a normal birth weight this can be read o↵ directly from the Or-

dinal CEG. For a very low or low birth weight, the missing edge leads to the same

position as severe visual disability with survival probability 89.5%. Figure 4.8 sug-

gests that the data are not MAR, however this needed to be calculated explicitly to

make reliable conclusions. (Compare Figure 4.6).

Having found the MAP CEG structure for the tree given in Figure 4.1 the

hypothesis that data are MCAR can also be examined. The first requirement for

this is that w1, w2 and w3 are in the same stage, which suggests that there is no

evidence that missingness is dependent on the birth weight of the individual, such

that R2 ?? X1. However, this is only the case for w2 and w3 but not for w1. The

second requirement, that missingness is independent of visual disability (R2 ?? X2)

has also shown to be implausible by the above.

Note that again the equivalent sample size can be varied to check whether

the selected model is sensitive towards the strength of the uniform prior. Doing so

shows that the only observed change is that an individual with a very low birth

weight and severe visual impairment also moves into position w7 as the sample size

increases. This happens as the uniform prior implies a survival probability of 50%

a priori and this a↵ects a reduction in the predictive probability of survival for
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the relatively small number of individuals with a very low birth weight and severe

impairment. The Ordinal CEG then proposes that data may be MAR for a very low

birth weight, as now the position reached when the individual has a very low birth

weight and a missing impairment lies between the other two position. However,

calculations as the ones performed above and the close predictive probabilities of

w7 and w6 in comparison to w5 show that this is not the case.

4.3 CEGs for Informed Missingness for more than One

Variable

When only one variable has missing values and all other variables are fully observed,

then the MAR assumption, that the missingness indicator depends only on the

observed variables, is defined as in Equation 4.2. However, when more than one

variable has missing values and we have more than one missingness indicator, then

the MAR definition according to Rubin [1976] is not well defined. Given that two

variables are partially observed, one suggestion (see for example Lu and Copas

[2004]) is to distinguish three di↵erent cases, according to which of the two variables

or both are missing, and determine whether data are MAR separately for each case.

In this section I will adopt this approach when looking at CEG structures where

more than one variable has missing values. I will demonstrate that the CEG enables

us to obtain a good understanding and a useful visual representation of the influence

of missingness, even when more than one variable has missing values.

To illustrate this I extend the model space by including a further variable

into the model describing ambulatory impairment, for which we distinguish between

a severe or a non-severe impairment. I again choose an ordering where birth weight

occurs first, followed by visual impairment and then ambulatory impairment, and

finally survival up to or above the age of 5 appears last in the ordering as the

variable of interest. The corresponding tree structure of this extended problem is

given in Figure 4.9. I have now no longer explicitly included a missingness indicator

in the tree but have instead simply added missingness as a separate category to the

two variables describing visual and ambulatory impairment. Comparing this tree

to the tree in Figure 4.1 the florets describing the visual impairment, s5, s6, and

s7, can be thought of as being merged with s2, s3 and s4, which describe whether

the visual impairment is missing or not, by removing the edges between s2 and

s5, and similarly between s3 and s6, and between s4 and s7. Consequently, the

resulting CEG can now no longer distinguish between MAR and MCAR. However,

the same informative conclusions on the impact of missingness on survival can still
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Figure 4.9: Event tree for the UKCP example describing the e↵ect of birth weight,
visual impairment, ambulatory impairment and missingness on survival
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be deduced.

The most probable CEG structure for this problem can be found using the

AHC algorithm described, where the priors are set up as in the previous section

where ↵ = 3 and the paths of the three are assumed to be a priori equally likely.

The resulting CEG found through the algorithm is given in Figure 4.10 with the

associated table of CPVs given in Table 4.2. As before it is drawn as an Ordinal

CEG, where here positions that are in the same stage are given the same colour,

rather than their emanating edges. (Note Vis. = visual impairment, Amb. =

ambulatory impairment, non-sev. = non-severe, sev. = severe and miss. = missing.)
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Figure 4.10: Ordinal MAP CEG structure for the UKCP example describing the
e↵ect of birth weight, visual impairment, ambulatory impairment and missingness
on survival

Due to the relatively large tree structure the MAP CEG is complicated such

that it cannot be easily read by a client. More explicitly, the situations s1 to s12

are often only merged into stages but not positions. In this example the situations

s4, s5, . . . , s12 are merged only into seven positions with 21 edges emerging from them

leading into five final positions. It may be possible to simplify the structure slightly

by reordering the variables: As birth weight appears to have less impact on survival

than the two impairments, putting birth weight as the third variable in the tree may

make the presentation slightly clearer. However, there would still be a large number

of edges emanating from di↵erent positions. A better simplification of Figure 4.10

can be found by transforming the CEG into a Reduced Ordinal CEG, as introduced
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Stage/Position Conditional Probability Vector
u0 = w0 (P (X1 =Low), P (X1 =Very low), P (X1 =Normal)) (0.2440, 0.1766, 0.5794)
u1 = {w1, w2, w3} (P (X2 =Non-severe|u1), P (X2 =Severe|u1), P (X2 =Missing|u1)) (0.7335, 0.0868, 0.1797)
u2 = {w4, w5, w6} (P (X3 =Non-severe|u2), P (X3 =Severe|u2), P (X3 =Missing|u2)) (0.7811, 0.2077, 0.0112)
u3 = {w7, w8} (P (X3 =Non-severe|u3), P (X3 =Severe|u3), P (X3 =Missing|u3)) (0.3842, 0.3057, 0.3101)
u4 = w9 (P (X3 =Non-severe|u4), P (X3 =Severe|u4), P (X3 =Missing|u4)) (0.1429, 0.8417, 0.0154)
u5 = w10 (P (X3 =Non-severe|u5), P (X3 =Severe|u5), P (X3 =Missing|u5)) (0.2608, 0.3866, 0.3526)
u6 = w11 (P (X4 =Survival|u6), P (X4 =No survival|u6)) (0.9998, 0.0002)
u7 = w12 (P (X4 =Survival|u7), P (X4 =No survival|u7)) (0.9968, 0.0032)
u8 = w13 (P (X4 =Survival|u8), P (X4 =No survival|u8)) (0.9509, 0.0491)
u9 = w14 (P (X4 =Survival|u9), P (X4 =No survival|u9)) (0.8665, 0.1335)
u10 = w15 (P (X4 =Survival|u10), P (X4 =No survival|u10)) (0.7929, 0.2071)

Table 4.2: Table of CPVs associated with the MAP CEG for the UKCP example
on birth weight, visual impairment, ambulatory impairment and survival given in
Figure 4.10

briefly in Chapter 2.5. This is done by defining a new variable on ‘number of severe

disabilities’ with the six categories: no impairment, one non-severe and one missing

impairment, exactly one severe impairment, one severe and one missing impairment,

two severe impairments and both impairments missing [Hutton et al., 1994]. The

corresponding new illustration is given in Figure 4.11.
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Figure 4.11: Reduced Ordinal MAP CEG structure for the UKCP example de-
scribing the e↵ect of birth weight, visual impairment, ambulatory impairment and
missingness on survival

The paths of the full Ordinal CEG up to the final positions are then redefined

using this variable, which is described by the edges emanating from w0, and birth

weight and the type of impairments are only added into the graph as necessary.

For example, all individuals with both impairments severe lead directly to a final
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position in the graph, while in the other cases it is necessary to distinguish further

between the type of impairment, the birth weight, or both. The intermediate steps

between the new variable and the final positions are represented as positions denoted

by wI . As mentioned in Chapter 2.5 these positions are marked by an ‘I’, as they

are not derived directly from a given tree structure and it may be possible that some

of these positions are also in the same stage. Further, there are no ‘double edges’

emanating from these positions and their edges sometimes describe two di↵erent

levels of a covariate (see, for example, e(wI

1, w12)). The graphical representation

up to the final positions has therefore so far only been developed to serve as a

visual improvement, while further analysis would be carried out on the full CEG.

However, the CPVs of the Reduced Ordinal CEG can be calculated from Table

4.2. Also, it would be possible to construct a new tree structure on the number of

non-severe, severe or missing impairments with six categories, followed by the type

of impairment and the birth weight and ending with survival as before. Then the

full MAP CEG structure of this tree could be found to determine a possible coarser

stage structure and a full CEG representation.

The percentages attached to the five final positions in Figures 4.10 and 4.11

give the posterior predictive percentages of survival given an individual reaches

that position. We have the following percentages and 95% credible intervals: 99.98

(99.87, 1.00)% for position w11, 99.68 (99.45, 99.85)% for w12, 95.09 (93.65, 96.35)%

for w13, 86.65 (83.99, 89.11)% for w14 and 79.29 (75.88, 82.51)% for w15. When both

disabilities are not severe, we distinguish between a low birth weight and a very

low or normal birth weight. However, the di↵erence in the predictive probability

of survival for the two positions reached (w11 and w12) are extremely close, both

being near 100%. Due to the large sample size of these two positions, namely

1028 and 2969 respectively, the two positions are however not merged when scoring

the CEGs according to the BD metric. The di↵erence in score is, nevertheless,

only 1.44 favouring the CEG in Figure 4.11, which only gives slight evidence for

preferring this CEG. When one disability is severe and one is non-severe, then

again the birth weight influences whether the individual reaches position w12 or

position w13. Again, the probabilities of survival associated with the two positions

are fairly close, namely 99.68% and 95.09%. If one disability is non-severe and one is

missing we first distinguish between the disability that is missing and then by birth

weight. The associated predictive probabilities of survival of the positions range

from 79.29% to 99.98%. Overall, it appears that missing ambulatory impairment

predicts poorer survival than missing visual impairment: When visual ability is

missing, but ambulation is non-severe, then survival appears to be approximately
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as equally high as when both impairments are non-severe. However, when the

ambulatory ability is missing, then, depending on the birth weight, the predictive

probability of survival ranges from 79.29%, the lowest position, to 99.68%. This

wide variation could be explained by the relatively small cell counts associated with

a very low or low birth weight in this category. Further, Hutton et al. [1994] show

that a low birth weight is often associated with lower rates of severe disability.

Hence, as ambulation is missing, the low birth weight represents the likely severity

of the impairment. Moving further down the graph, we observe that two severe

impairments have a predictive survival probability of 86.65%, which, as expected,

is significantly worse than two non-severe impairments. When one disability is

severe and the other is missing then survival splits according to which disability is

observed and, when visual impairment is missing, also according to the birth weight.

The graph suggests that survival is slightly lower when ambulatory impairment is

missing than when visual impairment is missing. In the latter case the probability

of survival is indistinguishable from the case where both disabilities are severe for a

low birth weight, as both paths lead to position w14. In all other cases position w15

is reached with a probability of survival of 79.29%. In either case the graph suggests

that it is unlikely for data to be MAR, as in neither case do we reach a position

between ‘one impairment severe and one non-severe’ and ‘both impairments severe’,

which is what we would expect under MAR. Finally, when both impairments are

missing, then again the lowest probability of survival, namely 79.29%, is predicted

for a normal birth weight and the second lowest, 86.65%, is predicted for a very low

or low birth weight.

The CEG in Figure 4.11 therefore suggests that, when one impairment is

missing and the other is severe, or when both impairments are missing, missingness

is highly influential by leading to poorer survival and data are unlikely to be MAR.

In contrast to this, when one impairment is observed to be non-severe and the

other is missing, then the predictive survival probabilities are close to 100% when

ambulation is observed and vary strongly between 99.68% and 79.29% when visual

impairment is observed. As in the previous section the expected probabilities of

survival under the MAR assumption can be calculated and are given in the left

column of Table 4.3. These can then be compared to the predictive probabilities of

survival suggested by the CEG, given in the right column of the same table.

When only one variable is missing then we condition on the other variable as

if it were fully observed and deduce whether data are MAR or not as in Equation 4.4.

When both variables are missing the MAR assumption is assumed to require that the

missingness process is independent of both impairments given the birth weight. For
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Probability of survival in %
Expected under MAR Predictive

Birth weight Very low Low Normal Very low Low Normal
1 non-severe, 1 missing
Visual ability observed 98.73(93.88,1.00) 98.96(89.95,1.00) 98.73(93.88,1.00) 79.29 99.68 95.09
Ambulatory ability observed 99.68(97.12,1.00) 99.89(98.95,1.00) 99.68(97.12,1.00) 99.98 99.98 99.68
1 severe, 1 missing
Visual ability observed 88.54(61.29, 99.71) 79.29
Ambulatory ability observed 92.32(89.51, 94.73) 79.29 86.65 79.29
2 missing 97.62(95.56,99.05) 97.83(94.04,99.73) 97.62(95.56,99.05) 86.65 86.65 79.29

Table 4.3: Plausibility of the MAR assumption in the UKCP example describing
the e↵ect of birth weight, visual impairment, ambulatory impairment and missing
impairments on survival

example, the expected probability of survival, under MAR, for a low birth weight and

given that the visual impairment is observed to be non-severe, can be calculated as

follows from Table 4.2: The probability of survival given a low birth weight and given

both impairments are non-severe is 99.98%. Similarly, given only visual impairment

is non-severe and ambulatory impairment is severe, the predictive probability of

survival is 95.09%. Also, the probability of a non-severe ambulatory impairment,

given a low birth weight and observed non-severe visual impairment, is 0.7899, and,

similarly, 0.2101 for a severe ambulatory impairment. Then the expected probability

of survival under MAR is 99.98⇥ 0.7899+ 95.09⇥ 0.2101 = 98.96%. The remaining

probabilities of Table 4.3 are calculated in the same way.

As already deduced from the graph missingness is strongly influential when

both impairments are missing. Similarly, when the ambulatory impairment is ob-

served to be severe, then data are unlikely to be MAR, as the predictive probabilities

of survival are lower than the expected probability under MAR and do not lie in

their respective 95% credible intervals. It was further deduced from the graph that,

when the visual impairment is observed to be severe, the predictive probability of

survival is 79.29%, which is again substantially lower than the expected probability

under MAR, which is 88.54%. However, due to the small number of cell counts

within this category (compare Table 1.3), the credible interval is very wide and in

fact includes the predictive probability of survival. Therefore, although data ap-

pears to be MNAR, we need to be cautious with our conclusions due to the sparse

cell counts. When ambulatory impairment is observed to be non-severe and visual

impairment is missing, then the table suggests that data is likely to be MAR. This

was also suggested by the CEG structure in Figure 4.11. Finally, when the visual

impairment is observed to be non-severe, then data appears to be MNAR for a very

low birth weight, but MAR for a very low or low birth weight.
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4.4 CEGs for Informed Variable Construction

I have demonstrated in the previous chapters that in cohort studies interest usually

lies particularly in the final set of positions of the CEG. In the examples discussed in

this thesis the final positions describe the ‘health state’ the individual is in with an

associated probability of hospital admission or survival by which the positions in the

Ordinal CEG are vertically aligned. In the first cerebral palsy example I deduced

from the graph that survival depends on whether visual impairment is missing and,

when it is missing, on birth weight, while, when it is observed, on the severity of

the impairment. Consequently it was possible to distinguish between three health

states with an associated probability of survival. In the second example, discussed

in the previous section, I distinguished between five di↵erent final positions. The

paths leading up to these positions were reduced by defining a new variable which

counts the number of non-severe, severe and missing impairments, leading to the

Reduced Ordinal CEG. Hence the five ‘health states’ depended on this new variable

as well as on a combination of birth weight and type of impairment.

The above examples motivate the idea that in a setting like this the CEG may

also be useful in defining informative categories of variables to predict the probability

of the outcome variable, for example survival. In Chapter 3 it was shown that the

final situations in the probability tree are merged into the same position when the

associated probability distribution on their emanating edges is similar. The final

positions in the MAP CEG structure give an informative description of the way in

which a combination of variables a↵ects the outcome and this segmentation of the

paths in the CEG can then be used to define a new variable with categories equal to

the final positions in the graph. The resulting new variable could then be employed

in a subsequent analysis. This concept of course becomes more interesting the more

variables are included in the problem.

One of the aims of the full UKCP study is to investigate the range of causes of

death in the cohort and its association with impairments (Maudsley et al. [1999] and

personal communication with J.L. Hutton). The e↵ect of various risk factors on the

causes of death are to be analysed using logistic regression models and competing risk

models. Three impairments, namely visual, ambulatory and manual impairment, all

with substantial amounts of missing data, are classed as risk factors of survival for

people with cerebral palsy. However, including all three impairments as well as

their two-way and three-way interaction terms would make the model extremely

complex. An alternative, proposed in Hutton [2006], is to count the number of

severe and missing impairments and define a new variable with states 0, 1, 2, and
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3 severe or missing impairments, which is then used in a later analysis. However,

this assumes that a missing impairment has the same e↵ect on survival as a severe

impairment and the previous examples show that this is not the case. Instead, I

suggest here constructing a CEG on the three impairments and survival and use

the final positions in the resulting graph to define a new variable with informed

categories. I illustrate this approach below and show that the final positions of the

MAP CEG give a significant improvement to the other two suggested approaches

which propose to either include all interaction terms or count the number of severe

and missing impairments.

In order to draw informative conclusions about survival, the variable describ-

ing survival occurs last in the probability tree from which the CEG can be derived.

It would then be possible to search across all six possible trees (i.e. all permutations

of the three impairments). However, as before, I will reduce the CEG to a Reduced

Ordinal CEG for clarity, focusing only on the final positions describing survival, in

which case the ordering of the three covariates is not relevant. I here choose again

a chronological ordering of the variables according to the time at which they are

likely to be observed. I again put uniform priors on the root-to-leaf paths of the

tree and specify an equivalent sample size of ↵ = 3. (A comparison of the MAP

CEG when specifying a larger equivalent sample size is given in 6.2.) The resulting

MAP CEG structure found using the AHC algorithm is given in Figure 4.12 with

its CPVs given in Table 4.4. (Note that Man. = manual impairment.)

Stage/Position Conditional Probability Vector
u0 = w0 (P (X1 =Non-severe), P (X1 =Severe), P (X1 =Missing)) (0.7293, 0.0863, 0.1842)
u1 = w1 (P (X2 =Non-severe|u1), P (X2 =Severe|u1), P (X2 =Missing|u1)) (0.7809, 0.2027, 0.0118)
u2 = w2 (P (X2 =Non-severe|u2), P (X2 =Severe|u2), P (X2 =Missing|u2)) (0.1422, 0.8425, 0.0153)
u3 = w3 (P (X2 =Non-severe|u3), P (X2 =Severe|u3), P (X2 =Missing|u3)) (0.3023, 0.3437, 0.3540)
u4 = {w4, w5} (P (X3 =Non-severe|u4), P (X3 =Severe|u4), P (X3 =Missing|u4)) (0.9676, 0.0200, 0.0124)
u5 = w6 (P (X3 =Non-severe|u5), P (X3 =Severe|u5), P (X3 =Missing|u5)) (0.9280, 0.0260, 0.0460)
u6 = w7 (P (X3 =Non-severe|u6), P (X3 =Severe|u6), P (X3 =Missing|u6)) (0.3607, 0.6150, 0.0243)
u7 = w8 (P (X3 =Non-severe|u7), P (X3 =Severe|u7), P (X3 =Missing|u7)) (0.3517, 0.0021, 0.6462)
u8 = w9 (P (X3 =Non-severe|u8), P (X3 =Severe|u8), P (X3 =Missing|u8)) (0.0810, 0.9013, 0.0177)
u9 = w10 (P (X3 =Non-severe|u9), P (X3 =Severe|u9), P (X3 =Missing|u9)) (0.2312, 0.7284, 0.0404)
u10 = {w11, w12} (P (X3 =Non-severe|u10), P (X3 =Severe|u10), P (X3 =Missing|u10)) (0.0053, 0.0101, 0.9846)
u11 = w13 (P (X4 =Survival|u11), P (X4 =No survival|u11)) (0.9979, 0.0021)
u12 = w14 (P (X4 =Survival|u12), P (X4 =No survival|u12)) (0.9871, 0.0129)
u13 = w15 (P (X4 =Survival|u13), P (X4 =No survival|u13)) (0.9289, 0.0711)
u14 = w16 (P (X4 =Survival|u14), P (X4 =No survival|u14)) (0.8736, 0.1264)
u15 = w17 (P (X4 =Survival|u15), P (X4 =No survival|u15)) (0.7757, 0.2243)
u16 = w18 (P (X4 =Survival|u16), P (X4 =No survival|u16)) (0.4841, 0.5159)

Table 4.4: Table of CPVs associated with the MAP CEG for the UKCP example on
visual, ambulatory, manual impairment and missingness of impairments on survival
given in Figure 4.12

As in the previous examples the CEG is written as an Ordinal CEG and the
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Figure 4.12: Ordinal MAP CEG structure for the UKCP example describing the
e↵ect of visual, ambulatory, manual impairment and missingness of impairments on
survival

predictive probabilities of survival are attached to its final positions. These together

with their 95% credible intervals are: 99.79(99.63, 99.91)%, 98.71(97.53, 99.51)%,

92.89(90.81, 94.71)%, 87.36(84.17, 90.23)%,77.57(74.40, 80.59)% and 48.41(31.43,

65.58)%. It can be seen from Table 1.2 in the introductory chapter that for several

combinations of impairments the cell counts are sparse as only a very small number

of individuals have a particular combination of non-severe, severe or missing im-

pairments. When drawing conclusions from the graph the sparse cell counts need

to be treated with caution due to the lack of data available. Further, there are two

paths up to the final positions with no individuals. These are the paths describing

‘severe visual impairment’, ‘missing ambulatory impairment’, ‘non-severe manual

impairment’ and ‘non-severe visual impairment’, ‘missing ambulatory impairment’,

‘severe manual impairment’. As I have so far assumed a uniform prior. i.e. a prior

survival probability of 50%, these paths will lead to positions with a low probability

of survival. As no data is available it is not possible to deduce plausible probabilities

of survival for these two combinations of covariates from the data set. In this case

incorporating expert knowledge through informative priors into the model would be

desirable. Sparseness of cells for Table 1.2 and the use of informative priors for this
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example will be discussed in Chapter 6. I again draw the Reduced Ordinal CEG to

enhance the graphical representation of the problem, which is given in Figure 4.13.
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Figure 4.13: Reduced Ordinal MAP CEG structure for the UKCP example de-
scribing the e↵ect of visual, ambulatory, manual impairment and missingness of
impairments on survival

As before, it is plausible to define a variable which counts the number of

non-severe, severe and missing impairments and which consequently has ten levels.

Note that the two paths with zero individuals have been moved from positions w17

and w18 to position w14 and w15 respectively, to allow for the reduced representation

in Figure 4.13. The logarithm of the Bayes Factor between the Reduced CEG and

the original CEG is 0.41 (Bayes Factor: 1.51) favouring the MAP CEG only insignif-

icantly. The following conclusions can then be drawn from the graph: As expected

missingness appears to be highly influential when all three impairments are missing.

Further missingness is associated with poorer survival when one impairment is miss-

ing and two are severe. In both cases w17 is reached with a predictive probability of

survival of 77.57% and even w18 with an expected probability of survival of 48.41%,

when manual impairment is missing. Further, missingness shows to be especially in-

fluential when two impairments are missing and one is observed to be severe. When
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either ambulatory impairment or visual impairment is observed to be severe then

the survival is predicted to be only 48.41%. When manual impairment is observed

then the survival probability is surprisingly high. However, as mentioned above, this

is most likely due to only three individuals being observed in this category. Cases

like this will be further discussed in Chapter 6.3.

In contrast to this, three severe impairments lead to position w16 with a

probability of survival of 87.36%. Hence, the CEG suggests that missingness has

a strong influence on survival, especially when position w18 is reached, for which

survival is below 50%. When two impairments are missing and the third is observed

to be non-severe, then survival is predicted to be at 92.89%, and at 99.79% when the

ambulatory impairment is observed to be non-severe. As in the previous examples,

non-severe ambulatory impairment is influential for predicting a high probability of

survival. Further, when two impairments are observed to be non-severe and only one

impairment is missing, then the type of impairment which is missing influences the

probability of survival, where a missing ambulatory impairment reduces the survival

to 92.89%. Finally, when one impairment is missing, one is severe and the third

non-severe, then the impairment that is not severe distinguishes between di↵erent

probabilities of survival. Surprisingly, here a non-severe ambulatory impairment has

the lowest probability of survival. However, Table 1.2 shows that only 10 individuals

go along this path, in comparison to 23 and 92 individuals going along the other two

paths with non-severe visual or ambulatory impairment. Hence again sparse data

for this category give misleading results.

Comparing this to the CEG in Figure 4.11 on birth weight, visual and ambu-

latory impairment, we observe that the five final positions in this graph are similar

in survival probability to the top five final positions in Figure 4.13. However, now

an extra final position in Figure 4.13 exists with a significantly lower probability

of survival of 48.41%. This position is reached by individuals with one severe and

two missing impairments or two severe and one missing impairment. A number of

further distinctions can be detected: For example, two severe impairments in Fig-

ure 4.11 lead to a predictive probability of survival of 86.65%. When the manual

impairment is observed to be non-severe or severe in Figure 4.13 then we obtain

approximately the same probability of survival. However, when manual impairment

is missing the survival probability reduces to 48.41%. Also, when one impairment

is observed to be severe and the other non-severe in Figure 4.11 then, comparing

this to Figure 4.13, shows that manual impairment improves survival when it is

non-severe and reduces survival when it is missing. Overall, manual impairment

appears to be influential for survival. Nevertheless including only two impairments
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already allows us to draw similar substantial conclusions.

I will now compare the deductions made from this CEG to the two approaches

suggested at the beginning of this section. Recall from Chapter 2.5 that a regression

analysis, which includes all two-way and three-way interaction terms, is comparable

to the CEG, C0, where all situations whose emanating edges describe survival, are

in separate positions. Note that C0 hence has 27 final positions, one for each combi-

nation of impairments, while the MAP CEG only has six. To compare the approach

of including all interaction terms to the approach of using the six final positions of

the MAP CEG to define new informative categories, the di↵erence in score between

C0 and the MAP CEG is calculated. (Note that for an accurate comparison, which

focuses on the final positions in the tree, C0 is compared to the CEG with the final

positions as in the MAP CEG and all other positions left separate.) The di↵erence

in score between these two CEGs is 40.22 (Bayes Factor: e40.22) favouring the CEG

with six final positions. Therefore, by Table 3.1, this CEG is strongly preferred over

the CEG C0.

A further approach suggested at the beginning of this section was to count

the number of severe or missing impairments and to include only a single variable

into the model, taking the values 0, 1, 2, or 3 missing or severe impairments. It

is simple to construct a CEG which describes this variable: This would be a CEG

with four final positions, each position representing one value of the variable. Conse-

quently, the path describing three non-severe impairments would be in one separate

position, the paths describing two non-severe and one severe or missing impairment

would lead to another position and so on. Again the di↵erence in score between this

CEG with four final positions and the CEG with six final positions, obtained from

the MAP CEG, can be calculated to give a score of 17.92 (Bayes Factor: e17.92)

favouring the CEG with six positions. Although counting the number of severe or

missing impairments is strongly preferable to treating every combination separately,

the score is still significantly worse than the score obtained from the MAP CEG. I

therefore propose using the final positions of the MAP CEG to define a new variable,

with six informative categories, which gives a description of the severity of the three

impairments. In particular, in this setting, it is further possible to also incorporate

missingness in a structured way across the di↵erent impairments. Instead of treating

it simply the same as a severe impairment (as suggested in the second approach),

missingness is treated di↵erently dependent on whether other impairments are ob-

served to be severe or non-severe. The CEG therefore not only provides further

insight into the way in which the severity and the number of impairments (includ-

ing missing values) influence survival, but also allows us to make informed decisions
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about the construction of the covariates, which can then be used in a later survival

analysis.

This Chapter suggests that the CEG provides a useful new way of exploring

systematically the influence of missing data within cohort studies. The (Reduced)

Ordinal CEG, in particular, allows us to obtain a precise understanding of the

subtleties associated with the three common types of missingness, as well as letting

us derive new informative categories of variables, which can be used in a later

analysis.
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Chapter 5

The Dynamic Chain Event

Graph

I have shown in the previous chapters that a CEG is a discrete graphical model which

can capture many important features of a process, in particular how a combination

of events in an individual’s life a↵ects an outcome. In Chapter 2.4 the topology

of the CEG has been exploited to represent and generalise models such as the BN.

However, the CEG cannot be used to generalise discrete dynamic processes like the

Dynamic BN (DBN), as its semantics have, up to this point, only been developed

to describe processes whose underlying probability tree is finite and whose final

situations describe the variable of interest such as survival.

It has been shown that an event tree provides a natural framework to describe

the various possible sequences of events an individual can experience. In this chapter

the model space is extended to infinite trees to describe potentially infinite discrete

longitudinal processes. Hence, I now assume that the events encountered by an

individual could be infinite and, above all, that the events an individual experiences

may be repeated at later points in time. These could be measured either at regular

time points, for example when yearly measurements are taken, or at irregular time

intervals, i.e. at the time at which an event occurs. A di↵erent extension of the CEG

to a dynamic graphical model was developed in Freeman and Smith [2011b]. Here

the underlying probability tree is finite but the stage structure of the possible CEGs

is allowed to change across discrete time-steps. This model, however, addresses

an entirely di↵erent problem to the one considered here, as it looks at di↵erent

cohorts entering the tree at discrete time-points rather than assuming that repeated

measurements are taken over time.

I will develop the Dynamic CEG (DCEG) [Barclay et al., 2013c], which is
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derived from an infinite probability tree, and will demonstrate that it gives a pow-

erful representation for modelling discrete dynamic processes. I will show that the

DCEG can not only model the e↵ect of a combination of variables on an outcome

but also the temporal relationships between these variables, again allowing for asym-

metries within the dependence structure. I will first define the DCEG, derived from

an infinite tree. Analogously to the CEG, stages and positions on the infinite tree

can be defined and hence the DCEG is able to represent the originally elicited tree

in a much more compact and easily interpretable form. I will illustrate its repre-

sentation on the fictional example introduced in Chapter 1.2. In the subsequent

subsection I will then demonstrate that this framework can be extended to allow

for time to be modelled explicitly by attaching holding time distributions to the

vertices in the graph. Analogous to Chapter 2.4 I will show in Section 5.2 that any

general DBN can be written as a DCEG. In Section 5.3 I will further show that the

DCEG is closely linked to discrete-time Markov processes, while the DCEG with

holding time distributions is related to semi-Markov processes. In the final section I

will discuss the learning of the parameters in a DCEG, which suggests that, like its

CEG and BN analogues, the DCEG not only provides an expressive representation

of a process but also supports conjugate learning and closed form model selection.

5.1 Dynamic Chain Event Graphs and Their Semantics

In this Section I will describe the derivation of the DCEG from an infinite tree. I will

first define the DCEG and then extend this further to the DCEG with conditional

holding times attached to the vertices in the graph to allow for time to be modelled

explicitly.

5.1.1 Infinite Trees and the DCEG

Recall from Chapter 2.1.2, Definition 4 that an infinite graph is a graph with an

infinite number of vertices and/or edges. I will continue to assume in this thesis that

each situation s
i

has a finite number of edges m
i

emanating from it. An infinite

tree therefore will have an infinite number of situations. It may have no leaf vertices

when all paths are infinite. However, there may be examples, such as the ones

demonstrated in this chapter, where some paths in the tree are finite and hence a

set of leaf vertices exists.

I consider the following fictional example, introduced in Chapter 1.2, to il-

lustrate an infinite tree, T .
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Example 12. An individual is every month at risk of catching flu. When he catches

the flu he either decides to take antiviral treatment or not. If he takes antiviral

treatment he will always recover, but if he does not take antiviral treatment he either

manages to recover or he dies from the virus. After a full recovery the individual

either decides to go back to his normal life where he is at risk of catching flu again

or he decides to receive an influenza vaccine to prevent him from being at risk again.

As the tree is infinite, only an informal depiction of the corresponding tree can be

given (Figure 5.1), where implicit continuations of the tree are given by the notation

‘. . .’.
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Figure 5.1: The beginning of the infinite tree, T , for the flu example describing the
development of catching flu, recovering with or without treatment and getting a flu
vaccine

Like in the finite case, the set of situations of the infinite tree, T , can be

partitioned into a set of stages, U(T ), or positions W (T ). The definitions of stages

and positions are as given in Chapter 2.3 in Definitions 18 and 20. However, now the

number of situations in a stage or position may be infinite. As the set of positions

is now defined on an infinite tree, two situations, s
i

, s
j

, lying on the same directed

path from the root, can be in the same position. This is impossible for two situations

in a finite tree, where the subtree rooted at a situation further along the path must
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necessarily have fewer vertices than the one closer to the root of the tree. So, in

particular, in a finite tree no bijection between T (s
i

) and T (s
j

) can exist, when s
i

and s
j

lie on the same path. Consequently, the set of positions of an infinite tree T
can sometimes be associated with a coarser partition of its situations than a finite

subtree of T with the same root. I continue the flu example below to demonstrate

how an infinite staged tree can be constructed and a DCEG derived from this.

Example 13. Assume that the probability of catching flu does not change over the

months and does not depend on whether flu has been caught before. This implies

that s0, s2, s5, s8 and s12 are in the same stage, as well as all subsequent situations

describing this event, which are not represented in Figure 5.1. Similarly, s1 and

s11 are in the same stage, such that whether the antiviral medication is taken or

not is also independent of the number of months until the individual catches flu and

independent of flu having been caught before. I further assume that the probability

of the individual returning to his normal life after recovery is the same when he

recovers after treatment as when he successfully recovers without treatment. This

means that s3 and s7, as well as all other situations representing the probability of

returning to a normal life after recovery, are in the same stage. The corresponding

staged tree representation is given in Figure 5.2.

It can be seen from the staged tree that, in this example, whenever two situa-

tions are in the same stage, they are also in the same position as their subtrees have

the same topology and the same colouring of corresponding edges. Not all paths in

the tree are infinite and hence a set of leaf vertices, {l6, l9, l10, . . .}, exists.

The DCEG then represents the infinite staged tree in a way that is analogous

to the way the CEG represents structural and probabilistic symmetries in a finite

tree. It is defined in exactly the same way as the CEG, however on an infinite staged

tree with possibly infinite stages and positions. I give a formal definition below:

Definition 25. A Dynamic CEG (DCEG), D = (V (D), E(D)), of an infinite

staged tree T , has vertex set V (D) = W (T )[w1, the set of positions of the infinite

staged tree T , together with a single sink vertex, w1, comprising the leaf nodes of

T , if these exist. Emanating edges from a position w
i

2 W (T ) are constructed as

follows: Choose a single representative situation s(w
i

) 2 S(T ). Then there is an

edge from w
i

to a position w
j

2 V (D) for each child v
j

2 ch(s(w
i

)), v
j

2 w
j

in the

tree T . When two positions are also in the same stage then they are connected by

an undirected dashed line and their edges are coloured according to their colouring

in the staged tree.

97



s0

s2

s12 ...

Don’t catch flu

s11 ...

Ca
tch

flu

D
on’t catch

flu

s1

s4

l10

No survival

s7

l9

Get flu vaccine

s8 ...
Resu

me

norm
al lif

e

Rec
ove

ry

No treatment

s3

l6

Get flu vaccine

s5 ...

Res
um

e

nor
ma

l lif
e

Tr
eat

me
nt

Ca
tc
h
flu

Figure 5.2: The beginning of the infinite staged tree, T , for the flu example with
two assumptions: 1. the probability of catching flu does not depend on whether the
flu was caught in the past and 2. the probability of the individual returning to his
normal life is independent of whether treatment was taken or not

Given a DCEG D I will henceforth denote the stage partition of the DCEG by

U(D) and its position partition by W (D). From Definition 25 the DCEG associated

with the staged tree in Figure 5.2 can then directly be derived.

Example 14. The DCEG of the flu example is given in Figure 5.3 with stage and

position partition given as follows:

w0 = u0 = {s0, s2, s5, s8, s12 . . .}, w1 = u1 = {s1, s11, . . .},

w2 = u2 = {s3, s7, . . .}, w3 = u3 = {s4, . . .}, w1 = {l6, l9, l10, . . .}.

Again the notation ‘. . .’ implies that we have an infinite number of situations in

each stage or position, as well as an infinite number of leaf vertices. The loop from

w0 into itself illustrates that every month the individual could remain well and not

catch flu. Alternatively, the individual may move to w1 at some point, meaning that

he has caught flu. In this case he can recover either by getting treatment (w1 ! w2)

or recover on his own (w1 ! w3 ! w2). Having recovered the individual either
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Figure 5.3: The DCEG of the infinite staged tree from Figure 5.2 for the flu example

decides to take a flu vaccine to avoid getting flu again (w2 ! w1) or to simply

resume his normal life and risk getting flu again (w2 ! w0). Finally, when not

taking treatment, the individual may not recover, and hence move from w3 to w1.

The example illustrates that in many applications the number of positions

and stages of a staged tree may be finite even though the tree’s vertex set is infinite

due to repeated measurements. When this is the case the DCEG is a finite graph, as

above, and therefore provides a succinct picture of the structural and probabilistic

relationships in the process, which would be di�cult to capture by representing the

problem simply by an infinite tree. In contrast to the CEG, which is always acyclic,

the DCEG exhibits cycles when it has an infinite number of paths but a finite graph.

As for a CEG it would be possible to elicit the tree structure of a given problem from

a client or domain expert and similarly elicit possible stage and position partitions.

5.1.2 The DCEG with Holding Times

So far I have assumed that the DCEG models a dynamic process where measure-

ments are taken at regular intervals, such as daily or monthly. For example in the

DCEG of the flu example in Figure 5.3, the individual is, every month, at risk of

catching flu: If he catches flu, he traverses through the rest of the DCEG ending

up either at w1 or back at w0; if not he loops back directly to w0. In this section I

will extend the above methodology so that time spent until an event occurs can be

modelled directly.

Going back to the tree representation of a problem call the time an individual

stays in a situation s
i

the holding time H
si associated with this situation. Further,

let the conditional holding time associated with each edge e
sik

, k = 1, . . . ,m
i

in

the tree be denoted by H
sik

. This describes the time an individual stays at a

situation s
i

given that he moves along the edge e
sik

next. Analogously to this,

holding times on the positions of the associated DCEG D can be defined as follows:

Let H
w

be the random variable describing the holding time at position w 2 W (D)

99



in the DCEG and H
wk

, k = 1, ..,m
w

the random variable describing the conditional

holding time on w given the individual moves along the edge e
wk

next.

In a DCEG the time an individual stays in a particular position w, with a

loop into itself, simply follows a geometric distribution. So, if we assume that the kth

edge of w loops back into w, then the probability that an individual stays in position

w for t months is equal to ⇡t

wk

⇥(1�⇡
wk

), where e
wk

= e(w,w). Further, it has been

assumed that once an individual catches flu, only the events of taking treatment,

recovering, and receiving a vaccine are recorded and not the time until these events

occur. These could, for example, be recorded retrospectively when measurements

are taken a month later. The holding time distributions on a position without a

loop into itself are therefore degenerate.

As in the flu example, the processes to be modelled are often event driven

and these are well represented within a tree and hence a DCEG: When moving

from one position to another the individual transitions away from a particular state

into a di↵erent state associated with a new probability distribution of what will

happen next. In these scenarios, interest commonly lies not only in the transition

probabilities through the graph but also in the amount of time spent at each position.

Hence, rather than measurements being taken at regular time-steps it is more natural

to think of the measurements being taken when an event happens, where the time

until the event happens is recorded. For example, the individual may not record

whether he catches flu or not every month but instead monitor the time spent at w0

not catching flu, until one day he falls ill. Similarly, the time until seeing the doctor

for treatment or the time until recovery may be of di↵erent lengths and so he spends

di↵erent amounts of time at each position in the DCEG. In order to incorporate this

into the graph conditional holding time distributions can be attached to each edge

in the DCEG.

By the definition of a DCEG, two situations are in the same stage whenever

their emanating edges have the same probability. Similarly, it is assumed that, the

conditional holding time depends only on the current stage and the next edge the

individual moves along but not on the previous path up to reaching the current

stage.

Definition 26. A DCEG is time-homogeneous whenever two situations that are

in the same stage also have the same conditional holding time distributions on their

edges, i.e. the holding times are independent of the path taken through which the

stage is reached. Denote the random variable of the conditional holding time asso-

ciated with each stage by H
uk

, k = 1, . . . ,m
u

.

I will assume throughout that the DCEG is time-homogeneous, which further
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implies that when two positions are in the same stage u then their conditional

holding time distributions are also the same. Note that an individual may spend a

certain amount of time in position w
i

2 u before moving along the kth edge to a

position w
j

which is in the same stage. So an individual may make a transition into

a di↵erent position but arrive at the same stage.

I further assume throughout that the conditional probabilities of going along

a particular edge after reaching a stage, do not vary with previous holding times.

In the flu example this would mean that the time until catching flu does not ef-

fect the probability of taking treatment and the probability of recovery without

treatment. Similarly, the holding times are assumed to be independent of previous

holding times. So, for example, the time until recovery is independent of the time to

catching flu. Contexts where the holding time distribution may a↵ect the transition

probabilities and future holding times can provide an interesting extension to the

DCEG, which, however, will not be covered in this thesis. Under these assumptions

a time-homogeneous DCEG with holding times can therefore be defined as follows:

Definition 27. A DCEG with holding times, D = (V (D), E(D)) is a DCEG

with no loops from a position into itself and with conditional holding time distri-

butions conditioned on the current stage, u, and the next edge, e
uk

, to be passed

through:

F
uk

(h) = P (H
uk

 h|u, e
uk

), h � 0, u 2 U, k = 1, . . .m
u

.

Hence F
uk

(h) describes the time an individual stays in a position w 2 u before

moving along the kth edge, e
wk

. A frame around a position in D indicates that

holding time distributions have been attached to its associated edges.

Consequently, given a position w 2 W (D) is reached, the joint probability

of staying at this position for a time less than or equal to h and then moving along

the kth edge is

P (H
wk

 h, e
wk

|w) = P (H
wk

 h|w, e
wk

)P (e
wk

|w) = F
uk

(h)⇡
uk

, w 2 u. (5.1)

Finally, the joint density of e
wk

and h is

p(e
wk

, h|w) = ⇡
uk

f
uk

(h),

where f
uk

is the pdf or pmf of the holding time at stage u going along edge e
wk

, w 2 u

next. A time-homogeneous DCEG D with stage partition U(D) is therefore fully

specified by its set of conditional holding time distributions

{F
uk

: u 2 U(D)} and its collection of CPVs {⇡
u

: u 2 U(D)} and the elicitation
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process of a DCEG could be extended to include the elicitation of holding time dis-

tributions for each position and its associated edges. The conditional holding times

could in general take any distribution. For example, an exponential holding time

distribution may be plausible if it is assumed that the event will occur at a constant

rate. Other plausible distributions would be alternative survival distributions such

as the Weibull distribution, when the occurrence of the event is expected to increase

or decrease with time, or a log-normal distribution or a log-logistic distribution,

when a unimodal event rate is appropriate. I will postpone further discussion of the

holding time distribution for this example to the end of this chapter when looking

at the learning of the parameters of the DCEG.

Example 15. Consider the following variant of the flu example represented by the

infinite tree, T ⇤, in Figure 5.4. Instead of measuring every month whether the

individual catches flu, the individual will spend a certain amount of time at s0 before

moving along the tree. Hence the second edge emanating from s0 in Figure 5.2 and

its entire subtree have been removed. As before, it is assumed that the probability of

s0 s1

s3

l9

No survival

s6

l8

Get flu vaccine

s7 s11 ...Catch flu

Resu
me

norm
al lif

e

Rec
ove

ry

No
treatm

ent

s2

l5

Get flu vaccine

s4 s10 ...Catch flu

Res
um

e

nor
ma

l lif
e

Tr
ea
tm
en
t

Catch flu

Figure 5.4: The beginning of the infinite tree, T ⇤, for the flu example where catching
flu is represented by the time spent at the root vertex

catching flu and the decision to take treatment does not depend on whether the flu

has been caught before. Also, recovery with or without treatment is assumed not to

a↵ect the probability of receiving a vaccine. The corresponding DCEG is given in
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Figure 5.5 with the stages and positions given by

w0 = u0 = {s0, s4, s7, . . .}, w1 = u1 = {s1, s10, s11, . . .},

w2 = u2 = {s2, s6, . . .}, w3 = u3 = {s3, . . .}, w1 = {l5, l8, l9, . . .}. (5.2)

In comparison to Figure 5.3 the loop from w0 into itself has been removed. Instead

w0
Catch flu // w1

Treatment //

No treatment

$$

w2

Resume normal life

vv

Get vaccine
))
w1

w3

Recovery

OO

No survival

55

Figure 5.5: The DCEG with holding times for the flu example, where catching flu
is described by the time spent at the root vertex

the time spent at w0 is described by the holding time at position w0. Similarly, the

time until treatment is taken or not, the time until recovery or death and the time to

receiving the flu vaccine or not are of interest and holding time distributions can be

defined on these. Hence, visually the only di↵erence between Figures 5.3 and 5.5 is

that the positions have a frame around them to illustrate that the conditional holding

times are of interest and w0 no longer contains a loop into itself.

5.2 Writing a Dynamic BN as a DCEG

Various dynamic graphical models to model longitudinal data are already well stud-

ied. The most widely used dynamic graphical model is the Dynamic BN (DBN)

[Korb and Nicholson, 2004; Koller and Lerner, 2001; Murphy, 2002], a BN which is

repeated across discrete time-steps. In fact also the two other classes of graphical

models mentioned in 2.1.1, namely Markov Networks and Chain Graphs, have a dy-

namic counterpart which expands the model over discrete time-steps. In this section

I will demonstrate how a discrete DBN can be represented by a DCEG and hence

that, as in the comparison between CEGs and BNs, the DCEG is a more general

class of models than the DBN by allowing for asymmetric dependence structures

between the variables.

It has been shown in Chapter 2.4 how a BN can be written as a staged tree

and hence as a CEG. This can be simply extended to a dynamic setting where a dis-

crete DBN can be represented as an infinite staged tree and therefore as a DCEG. A
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DBN is an extension of the BN for discrete-time stochastic processes, which models

not only the relationship of the variables at some point in time but also models their

temporal relationships. Assume, as for the BN, that a given problem is defined by

a vector of p random variables, X = (X1, X2, . . . , Xp

). To construct a DBN, which

also models change over time, a vector of p variables X
t

= (X1,t, X2,t, . . . , Xp,t

) for

each time point t is assumed, where t 2 T and T = {t0 < t1 < t2, . . .}, represents
the discrete time points of the process. The variables X

t

then form a time-slice or

time-step of the DBN for each time point t and the graph represents the conditional

independence structure between the set of variables {X
i,t

, i = 1, . . . p, t 2 T}. As in
previous chapters, I assume that every X

i,t

takes a finite number of values, m
i

. The

DBN was first defined in Dean and Kanazawa [1989] under the name of a probabilis-

tic temporal network. Most applications assume regular time-steps, however this is

not strictly required. In the most general case, see for example Murphy [2012], the

DBN can be defined as follows:

Definition 28. A Dynamic BN on {X
t

: t 2 T} is made up of

1. an infinite DAG B with vertex set V (B) = {X
t

: t 2 T} and with a directed

edge from X
j,s

into X
i,t

if and only if X
j,s

2 pa(X
i,t

), where

pa(X
i,t

) = {X
j,s

: t0  s  t, j 2 {1, 2, . . . , p}} .

2. A set of conditional independence statements of the form

X
i,t

?? pr(X
i,t

)\pa(X
i,t

) | pa(X
i,t

). (5.3)

3. A set of CPVs associated with p(x
i,t

|pa(x
i,t

)).

So there is a directed edge into X
i,t

from the variables indexed by time t

or before it. In practice it is often assumed that the DBN is first-order Markov

such that a variable is only a↵ected by variables of the previous time-step and the

current time-step, and hence s = {t� 1, t}. Further, the structure of the time-slices

is assumed to be time-invariant, such that the dependence structure and associated

CPVs of the variables X
t

in time-slice t, given parents from time-slice t � 1 and

t, is the same independent of t. This DBN is known as the two time-slice DBN,

which can be simply defined by a BN structure on two time-slices, t� 1 and t, with

an associated set of CPVs for time-slice t with parents from time-slice t or t � 1

and an initial set of CPVs for time-slice t0. The two time-slice DBN has gained

similar popularity to the BN and has been used in a variety of applications, such
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as robotics, speech recognition or in environmental and medical applications. For

a better illustration the two time-slice DBN is often ‘rolled out’ over several time-

slices and I will do so for Example 16 when demonstrating how to rewrite a DBN

as a DCEG.

To show how a DBN can be written as a DCEG, I will first show how to

write the variables of the DBN as an infinite tree. I will then define the conditional

independence statements of the DBN by colouring the florets in the tree to form

a stage partition of the situations. In order to write a DBN B as an infinite tree

the variables are first ordered so that parents come before children and time-slices

come before each other according to their time index. From Equation 5.3 it can

be seen that there is always such an ordering due to the acyclicity and the time

element of the DBN. The variables of the DBN {X
i,t

: i = 1, . . . , p, t 2 T} can

then be re-indexed according to this ordering as X
r

, r = 1, 2, 3, . . . so that whenever

q < r then X
q

= X
j,s

2 pa(X
i,t

). As already explained for the non-dynamic case in

Chapter 2.4 several orderings of the variables in {X
t

: t 2 I} may exist from which

one is chosen. Given this ordering a corresponding infinite tree of the DBN B can

be constructed, where the variables up to index r can be represented by a finite tree,

which is denoted by T
r

= (V (T
r

), E(T
r

)), and each path in the tree T
r

represents a

particular combination of values that the variables X
q

, q  r can take. This allows

us to recursively define a set of trees {T
r

: r � 1}, where T
r

is a subtree of T
r+1, as

follows:

Recall that L(T
r

) is the set of leaf vertices of T
r

and denote l
rn

, n = 1, 2, ..., N
r

as a single leaf vertex in L(T
r

), where T
r

has N
r

leaf vertices.

1. For r = 1, let T1 be the floret, F (s0), associated with X1 which can take m1

values. Therefore V (T1) = {s0, l11, l12, . . . , l1m1} and E(T1) = {e
s0k : k =

1, . . . ,m1}.

2. Given T
r

= (V (T
r

), E(T
r

)), define V (T
r+1) and E(T

r+1) as follows: Let

E (T
r+1) = E (T

r

) [ E+
r+1,

where

E+
r+1 = {e

lrnk : l
rn

2 L(T
r

), k = 1, 2, ...,m
r+1} (5.4)

is a set of N
r

⇥m
r+1 new edges, where m

r+1 edges emanate from each vertex

l
rn

, each describing the values the random variable X
r+1 can take. Now attach
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a new leaf vertex to each of the edges in E+
r+1 and let

V +
r+1 = {ch(l

rn

) : l
rn

2 L(T
r

)}. (5.5)

Then

V (T
r+1) = V (T

r

) [ V +
r+1.

Finally, the infinite tree T of the DBN B is defined as

T = lim
r!1

T
r

,

where the vertex set is

V (T ) = V ( lim
r!1

T
r

)

and the edge set is given by

E(T ) = E( lim
r!1

T
r

).

I demonstrate this recursive construction of the infinite tree for an example of a two

time-slice DBN below:

Example 16. Consider two binary variables X1 and X2 taking values 0 and 1,

which are measured at discrete time points t 2 T . Further assume that at each time

point, X1 is only a↵ected by the previous value of X1 and X2 is a↵ected by both

the previous value of X2 and the current value of X1. This can be represented by

a two time-slice DBN, whose graph is given in Figure 5.6, ‘rolled-out’ over three

time-slices. Its variables can be re-indexed as

X1,t0
//

✏✏

X1,t1
//

✏✏

X1,t2
//

✏✏

...

X2,t0
// X2,t1

// X2,t2
// ...

Figure 5.6: A two time-slice DBN structure, B, on two binary variables X1 and X2,
where at each time point X1 is only a↵ected by the previous value of X1 and X2 is
a↵ected by both the previous value of X2 and the current value of X1

X1 = X1,t0 , X2 = X2,t0 , X3 = X1,t1 , X4 = X2,t1 , X5 = X1,t2 , X6 = X2,t2 . (5.6)

As X1 = X1,t0, T1 hence corresponds to the tree given in Figure 5.7 (a) with

root vertex s0 and two emanating edges labelled X1 = 0 and X1 = 1. To obtain T2
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(a) Illustration of T1

s0

l12
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l23
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Z
1 =

1

l11

l22

Z
2 = 1

l21

Z2
= 0

Z 1
=
0

(b) Illustration of T2

Figure 5.7: The illustration of the trees T1 and T2 of the two time-slice DBN from
Figure 5.6

(Figure 5.7 (b)) from T1 attach m2 = 2 edges to each leaf vertex of T1 as defined

by Equation 5.4 and attach a child to each new edge as defined in Equation 5.5.

Similarly, to obtain T3 from T2 attach m3 = 2 edges describing X3 = 0 and X3 = 1

to each leaf of T2 and attach a new leaf to each new edge. Continuing in this way

the infinite tree T of the DBN B is obtained as given in Figure 5.8, where again the

notation ‘. . .’ describes the continuation of the process.

Given an infinite tree, the conditional independencies of the DBN can then

be represented by a staged tree. (Note that in this example the situations that are

in the same stage are coloured rather than their associated edges.) The reasoning

is entirely analogous to the non-dynamic case of writing a BN as a CEG: From the

construction of the infinite tree we know that the edges emanating from a vertex

l
rn

2 V (T
r

), (e
lrn1, elrn2, . . . , elrnmr+1), describe the values X

r+1 can take with the

associated CPV being of the form (⇡
lrn1,⇡lrn2, . . . ,⇡lrnmr+1). Also, the path up to

l
rn

describes a particular history, i.e. a particular combination of values taken by

pr(X
r

) [X
r

. Hence, l
rn1 ,lrn2 2 V (T

r

), n1, n2 2 N
r

, are in the same stage when

P (X
r+1 = x

r+1|lrn1) = P (X
r+1 = x

r+1|lrn2),

107



for all values of x
r+1, or equivalently,

⇡
lrn1

= ⇡
lrn2

. (5.7)
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l416...

X
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X
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l35
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X
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= 0
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= 0
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Figure 5.8: The infinite tree representation of the two time-slice DBN from Figure
5.6
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By the definition of a DBN (Definition 28)

X
r+1 ?? pr(X

r+1)\pa(Xr+1) | pa(Xr+1),

and so l
rn1 ,lrn2 2 V (T ) are in the same stage whenever the paths leading to l

rn1

and l
rn2 di↵er only by the values taken by the variables in pr(X

r+1)\pa(Xr+1). The

vertices l
rn1 and l

rn2 are then assigned the same colour. From the infinite staged

tree the corresponding DCEG can then be directly derived as described in Definition

25.

Example 17. In the example of the two time-slice DBN the following colouring on

T is obtained, as given in Figure 5.9. Observe that the DBN in Figure 5.6 represents

the conditional independence statements

X1,t ?? pr(X1,t) |X1,t�1, 8t > t0 (5.8)

and

X2,t ?? pr(X2,t) |X2,t�1, X1,t, 8t > t0. (5.9)

Then by the previous re-indexing (see 5.6), X3 ?? X2 |X1 and hence

P (X3 = 0|l21) = P (X3 = 0|l22) and P (X3 = 1|l21) = P (X3 = 1|l22) and, similarly,

P (X3 = 0|l23) = P (X3 = 0|l24) and P (X3 = 1|l23) = P (X3 = 1|l24). Therefore,

l21 and l22 are in the same stage as well as l23 and l24. Similarly, by the same

conditional independence given in 5.8, X5 ?? X1, X2, X4 |X3, which is depicted by

the colouring of l41 and l42 as well as l43 and l44 and so on. Further, 5.9 requires

that X4 ?? X1 |X2, X3, such that l31 and l35 are in the same stage, as are l32 and l36,

l33 and l37, and l34 and l38. As this is a two time-slice DBN the CPVs of X
t

given

its parents from time-slice t � 1 and t are the same for all t > t0. Consequently,

the colouring of l41 and l42 is identical to the colouring of l21 and l22 and so on.

The DCEG of the infinite staged tree of Figure 5.9 is given in Figure 5.10. The

two time-slice structure of the DBN is depicted in the DCEG as follows: The initial

variables X1 = X1,t0 and X2 = X2,t0 are represented by the paths up to w3, w4, w5

and w6. After this the paths continue to positions w7, w8, w9 and w10 and then loop

back to positions w3, w4, w5 and w6.

In this example, which only depicts standard conditional independencies, the

graph of the DCEG is much more complicated and the DBN is topologically much

simpler. However, when many of the configurations of the variables are impossible

and consequently a large number of zeros within the table of CPVs exist, then the

DCEG can be simplified and can be more expressive than the DBN. Consider, for
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Figure 5.9: The infinite staged tree representation of the two time-slice DBN from
Figure 5.6

example Figure 5.9: If the CPVs of the BN state that P (X2,t = 0|X1,t = 0) = 0

for t 2 T then the edge describing this probability and the entire subtree, T (l31),

can be omitted from T as well as all subtrees whose root is reached by the events

X1,t = 0, X2,t = 0. Hence, unlike the BN and its dynamic analogue, the DCEG
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Figure 5.10: The DCEG of the infinite staged tree representation of the two time-
slice DBN from Figure 5.6

also allows zeros in the corresponding table of CPVs to be represented by missing

edges in its graph. This is particularly useful when representing processes which

have many logical constraints.

Recall further from Chapter 2.4 that the BN imposes certain restrictions

or symmetries on the stage structure of the CEG. When representing a DBN as

an infinite tree these restrictions are directly extended across time-slices by the

re-indexing of the variables, where the conditional independence statements of the

form X
i,t

?? pr(X
i,t

)\pa(X
i,t

) | pa(X
i,t

) force situations that are reached by the

same parent configuration into the same stage. The usual DBN therefore only

admits certain very specific stage partitions. The additional restrictions imposed

by the two time-slice DBN are also represented within the topology of the graph of

the DCEG: Due to the set of CPVs being the same across time-slices, the DCEG

simply loops round the positions w3 to w10 for each time-slice t. In contrast to the

DBN, the DCEG can further allow asymmetric dependence structures between the

variables of a time-slice and also across time-slices. For example, the DCEG could

distinguish in the flu example between di↵erent conditional independence structures

for di↵erent influenza viruses. It could depict whether the probability of taking

treatment depends not only on whether a virus is caught but also on which virus.

To allow for irregular time-steps in a DBN, Nodelman et al. [2002] suggested
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the development of a Continuous-Time BN whose variables evolve continuously over

time. The model combines the standard BN with continuous-time Markov processes,

where a DAG describes the local dependence structure between the variables and

the evolution of each variable is given by a set of conditional Markov processes on

X
i

|Pa(x
i

) = j, such that the development of X
i

over time depends on the state

of its parents. One problem of these models stated in Nodelman et al. [2002] is,

however, that exact inference is intractable and approximate techniques need to be

used.

Another interesting class of graphical model, related to the DBN, is the

local independence graph [Didelez, 2008] or the graphical duration model [Gottard,

2007]. Here it is assumed that data is available on the event history of a group

of people, which includes particular events that occur and the time until an event

occurs. Data are then modelled by a marked point process, which is given as a

pair of random variables (T
s

, E
s

), s = 1, 2, . . ., where T
s

2 T , 0 < T1 < T2, . . . are

the time of the occurrences of the di↵erent types of event E
s

2 E . The dependence

structure between the number of occurrences of each event is then depicted by a local

independence graph, where the events are the vertices in the graph and missing edges

represent conditional independencies stating that the intensity of a future event is

independent of certain past events given other past events. Although the problems

modelled by a local independence graph are similar to those that can be expressed

by a DCEG with holding time distributions, the dependence structures depicted by

a local independence graph are more closely related to the DBN. Considering again

the flu example, the DCEG could express the asymmetric dependence structure

describing that the probability of taking treatment is di↵erent when the individual

catches flu for the first time from when he has had flu before. The local independence

graph, however, assumes that the conditional independencies do not change with

time.

5.3 The DCEG and Markov Processes

In this section I will compare the DCEG to Markov processes. I will show that the

Markov process is a particular subclass of the DCEG and illustrate the structural

and conceptual di↵erences in their construction. Similarly, I will further prove that

a certain subclass of the DCEG with holding time distributions corresponds to a

semi-Markov process.

Recall that a discrete-time Markov process [Norris, 1998; Suhov, 2008] can

be defined as follows:
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Definition 29. A discrete-time Markov process is a discrete-time stochastic

process {X
n

: n 2 N} with discrete state space which satisfies the Markov property,

such that

P (X
n+1 = i

n+1|Xn

= i
n

, X
n�1 = i

n�1, . . . , X0 = i0) = P (X
n+1 = i

n+1|Xn

= i
n

).

It is assumed throughout that the Markov process is time-homogeneous such

that P (X
n+1 = j|X

n

= i) = p
ij

, 8n, and the Markov process can therefore be

defined through an initial distribution ↵ and a transition matrix P with ijth entry

p
ij

.

A state-transition diagram of a Markov process has vertices describing the

states of the process and an edge from state i to j labelled with the probability

p
ij

. When the DCEG, as defined in Definition 25, describing a dynamic process,

has a finite number of positions, then its topology resembles the state-transition

diagram of a discrete-time Markov process, where the positions of the DCEG form

the states of the Markov process. Further, by the definition of the DCEG, the

CPV associated with a particular stage depends only on the stage reached, i.e. the

Markov property, that the transition probability to the next position depends only

on the current position, is satisfied.

However, there are several structural di↵erences between the Markov process

and the DCEG which demonstrate that the DCEG can provide additional informa-

tion about a given problem: Firstly, the graph of the DCEG preserves the paths

of the infinite tree it is derived from, and, secondly, the DCEG may be coloured,

which provides additional information about the stage structure of its correspond-

ing tree. I consider the following two simple Markov processes to demonstrate these

di↵erences:

Example 18. Let {X
n

: n 2 N} be a discrete-time Markov process on the state

space {a, b, c} with initial distribution ↵ = (0.4, 0.4, 0.2) and with transition matrix

P given by

P =

0

B@
0.2 0.3 0.5

0.5 0.3 0.2

0.5 0.3 0.2

1

CA

Its state-transition diagram is given in Figure 5.11. Observe further that the tran-

sition probabilities from states b and c are the same. Due to this the DCEG rep-

resentation gives a di↵erent structure, which becomes apparent when looking first

at the tree representation of the problem. As the process is infinite, the number of

situations of the tree is also infinite. The initial situation s0, the root of the tree,
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Figure 5.11: The state-transition diagram of a Markov process on the state space
(a, b, c) with initial distribution ↵ and transition matrix P

has emanating edges which represent the choice of initial state with associated CPV

⇡
s0 = (0.4, 0.4, 0.2). The other situations could be indexed as {s

i,n

, i = a, b, c, n 2 N}
with CPVs ⇡

sa,n = (0.2, 0.3, 0.5) and ⇡
sb,n

= ⇡
sc,n = (0.5, 0.3, 0.2). It is then im-

mediate that the corresponding DCEG only has three stages and positions with the

stage and position partition given by

u0 = w0 = {s0} , ua = w
a

= {s
a,n

, n 2 N} , u
bc

= w
bc

= {s
b,n

, s
c,n

, n 2 N} .

There is no w1 as all paths are infinite and hence no leaf vertices exist in the tree.

The DCEG can then be drawn as given in Figure 5.12 and the associated CPVs

are ⇡
w0 = (0.4, 0.4, 0.2), ⇡

wa = (0.2, 0.3, 0.5) and ⇡
wbc

= (0.5, 0.3, 0.2). For a better

comparison the CPVs have here also been attached to the edges of the DCEG.

w0

0.4

%%

0.4 //
0.2 // w

bc

0.3

�� 0.2

��

0.5

✏✏
w
a

0.5

OO

0.2
yy

0.3

OO

Figure 5.12: DCEG representation of the Markov process with state space (a, b, c),
initial distribution ↵ and transition matrix P

Even here, where the process is initially defined through a transition matrix,

the graph of the DCEG automatically identifies states which have equivalent roles,

here state b being identified with state c, and illustrates the identical conditional

probabilities associated with the two states by putting s
b,n

and s
c,n

, for n 2 N in

the same position. The DCEG also depicts explicitly the initial distribution of the

process given by the edges emanating from w0 and acknowledges the initially elicited

distinctions of the states b and c through the double edge from w0 to w
bc

. This may

have important interpretive value, as the DCEG can discover a di↵erent partition
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of the states of a variable through this or even help to construct new informative

variables to represent a problem, as described in Chapter 4. The DCEG further

retains the distinction between the two states by the double edge from w
a

to w
bc

and the double loop from w
bc

into itself.

The next example demonstrates the added expressiveness of the DCEG

through the colouring of the graph whenever two or more positions are in the same

stage.

Example 19. A coin is tossed and has probability P (H) = � of landing heads

and probability P (T ) = 1 � � = �̄ of landing tails. The coin is tossed until three

heads have appeared when the game terminates. The DCEG of this example has

four positions describing whether 0, 1, 2 or 3 heads have been tossed and is given in

Figure 5.13. As each toss has the same probability � of returning heads, the positions

w0

P (T ) = �̄��
P (H) = �

// w1

P (T ) = �̄��
P (H) = �

// w2

P (T ) = �̄��
P (H) = �

// w1

Figure 5.13: DCEG representation of a Markov process describing the game of
tossing a coin until heads has appeared three times

w0, w1 and w2 are here also all in the same stage and so they are connected by an

undirected dashed line and their edges are coloured.

The example shows that the additional colouring allows us to identify further

symmetries within the transition probabilities between states in a consistent way.

In particular, it is the stage structure of the tree that supports the learning of

the parameters and the model selection algorithms of the CEG, hence allowing for

more e�cient learning procedures than obtainable by the position partition. This is

analogous in the dynamic case, as will be described at the end of this chapter. To

summarise, a Markov process is a DCEG that is simple and that has no two edges

leading from the same parent into the same child. Finally, the initial distribution of

the Markov process is directly depicted through w0 and its emanating edges.

However, above all, the elicitation of the DCEG from a tree distinguishes it

from a Markov process. As described in the previous section and in Chapter 2.3

the DCEG and CEG are constructed from the description of a process as a tree.

It allows us to identify relevant stages, e.g. ‘health states’ and transitions between

these states, either through expert elicitation or model selection methods. In a

Markov process these transitions and states are directly defined at the beginning of

the analysis, with the state-transition diagram being a graphical representation of

this. Therefore, a further possible use of the DCEG could be a method to elicit the

states and transitions of the Markov process.
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When the DCEG has holding time distributions attached then it is closely

linked to semi-Markov processes [Barbu and Limnios, 2008; Medhi, 1994] in a similar

way. Semi-Markov processes are a generalisation of Markov processes by allowing for

the holding times, describing the length of time spent at the states of the process, to

have any distribution, instead of restricting them to having a geometric distribution

(discrete-time Markov processes) or an exponential distribution (continuous-time

Markov processes). I give the definition of a semi-Markov process similar to Medhi

[1994] below:

Definition 30. Let {Y
t

: t � 0} be a stochastic process with discrete state space and

with transitions occurring at times t0, t1, t2, . . .. Also, let X
n

describe the state of

the process at time t
n

, where Y
t

= X
n

on t
n

 t < t
n+1, and let H

n

be the holding

time before transition to X
n

. If

P (X
n+1 = j,H

n+1  t|X0, X1, .., Xn

, H1, .., Hn

) = P (X
n+1 = j,H

n+1  t|X
n

), (5.10)

then {X
n

, H
n

, n 2 N} is called a Markov Renewal process and {Y
t

: t � 0} a

semi-Markov process. Also, {X
n

, n 2 N} is the associated jump process, which

is a discrete-time Markov process with transition matrix P , where

p
ij

= P (X
n+1 = j|X

n

= i).

A semi-Markov process is usually specified by an initial distribution ↵ and

by its semi-Markov kernel Q whose ijth entry is given by

Q
ij

(t) = P (X
n+1 = j,H

n+1  t|X
n

= i)

= p
ij

F
ij

(t), (5.11)

where

F
ij

(t) = P (H
n+1  t|X

n+1 = j,X
n

= i)

is the conditional holding time distribution, i.e. the holding time atX
n

= i assuming

that the next state moved to is X
n+1 = j. As before time-homogeneity is assumed

and hence the above equations do not depend on the index n. It can then be

shown that a particular subclass of the time-homogeneous DCEG with holding times

corresponds to a semi-Markov process.

Theorem 1. Let a DCEG D with holding times be simple and let no two children

lead from the same parent into the same child. Then this DCEG is a semi-Markov

process with state space S = {V (D)\w0} and with the entries of its transition matrix
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given by

p
ij

=

8
>>><

>>>:

⇡
wik

: if e
wik

= e(w
i

, w
j

) exists

1 : if w
i

= w
j

= w1

0 : otherwise,

and with conditional holding time distributions

F
ij

(t) =

8
>>><

>>>:

P (H
wik

 t|e
wik

, w
i

) : if e
wik

= e(w
i

, w
j

) exists

1 : if w
i

= w
j

= w1

0 : otherwise.

If the position w0 is a source vertex then the initial distribution is given by ↵ = ⇡
w0.

Otherwise the initial distribution assigns probability 1 to w0 and w0 is included in

the state space.

Proof. Assume we have a DCEG D which is simple and which has no double edges

from one vertex into another. To show that this can be written as a semi-Markov

process the state space needs to be defined and the semi-Markov kernel and initial

distribution need to be specified.

Define the state space of the semi-Markov process and its jump process to

be S = {V (D)\w0}, the set of positions not including w0. As no two edges lead

from the same parent into the same child each edge is uniquely determined by the

two positions it connects. First consider the case where w
i

6= w1 and then the

case where w
i

= w1. Note that not every DCEG will have a final position of leaf

vertices, in which case the second case does not apply.

Case 1: w
i

6= w1: If e(w
i

, w
j

) exists, then the ijth entry of the transition matrix

P of the jump process is given by

p
ij

= P (X
n+1 = w

j

|X
n

= w
i

) = P (e(w
i

, w
j

)|w
i

).

Assuming without loss of generality that the kth edge of w
i

leads to w
j

, then,

P (X
n+1 = w

j

|X
n

= w
i

) = P (e
wik

|w
i

)

= ⇡
wik

= ⇡
uik

where u
i

= w
i

as the DCEG is simple.

The conditional holding time distributions can be derived in a similar way.
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Assuming again that the kth edge of w
i

leads to w
j

F
ij

(t) = P (H
n+1  t|X

n+1 = w
j

, X
n

= w
i

)

= P (H
wik

 t|e
wik

, w
i

)

= P (H
uik

 t) where u
i

= w
i

as the DCEG is simple.

By Equation 5.11 the ijth entry of the semi-Markov kernel is then given by

Q
ij

(t) = p
ij

F
ij

(t). If e(w
i

, w
j

) does not exist then the ijth entry of the semi-

Markov kernel is zero as no transition from w
i

to w
j

occurs.

Case 2: w
i

= w1: When w
i

= w1, then the individual stays in w1 forever once

reaching this state and hence Q
ij

(t) = 1 when w
j

= w1 and 0 otherwise.

When w0 in the DCEG is a source node and no edges lead back to w0, so that it

solely serves as a starting point of the process, then the initial distribution of the

corresponding semi-Markov process is given by ↵ = ⇡
w0 = ⇡

u0 . If w0 can be reached

again throughout, then w0 is included in the state space and the initial distribution

of the semi-Markov process assigns w0 probability 1.

I have shown in this section that when a DCEG is simple and no two edges

lead from the same parent into the same child, then it corresponds to a Markov

process and to a semi-Markov process when holding times are added to the DCEG.

I have further demonstrated that the construction of the DCEG from an infinite

staged tree provides further information about the dynamic process than the state-

transition diagram of a Markov process. By eliciting symmetries from the infinite

tree, di↵erent states within a Markov process with the same transition probabilities

may be merged into one state or coloured when only the immediate transition prob-

abilities are the same. For example, in the flu example, we may distinguish between

two di↵erent types of flu: virus B and virus C. It could then be determined, by

eliciting the stage structure of the problem, whether the e↵ect of treatment and

recovery is the same for both flu viruses, hence leading to a double edge from w0

to w1 labelled with the two di↵erent viruses, or whether the viruses react entirely

di↵erently such that w0 has two emanating edges leading to two di↵erent subgraphs

and hence a more complex DCEG structure. Alternatively the viruses may only

react di↵erently with respect to treatment but otherwise develop in the same way,

which would result in a coloured DCEG graph.

The correspondence between (semi-)Markov processes and DCEGs can fur-

ther be very useful as many of the well-developed results on Markov processes could
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be extended to the DCEG. From Equation 5.1 the probability of staying at a posi-

tion w for a time  h and then moving along the edge e
wk

can be calculated. This

equation corresponds to the entries of the semi-Markov kernel (Equation 5.11) of

a semi-Markov process. Then, for example, Barbu and Limnios [2008] or Kulkarni

[1995] have shown how to derive the transition matrix of the semi-Markov process

from the semi-Markov kernel, in order to calculate the probability of being in state

j at time t given that we are initially in state i. These types of calculations could be

directly extended to the DCEG. This would further enable the DCEG to be applica-

ble to the wide-ranging domain of semi-Markov processes, which includes reliability

theory, finance and insurance or tra�c modelling.

Within Health Economic Decision making it is desirable to measure the cost-

e↵ectiveness of health-care interventions and their clinical impact simultaneously.

To do so Cooper et al. [2003, 2007] developed a Bayesian approach using MCMC

methods such as Gibbs sampling. The graphical representations given in these

papers resemble the graphs of the DCEG given for the flu example in this chapter

suggesting a further possible application of the DCEG worth investigating.

5.4 Bayesian Learning of DCEGs

In the final section of this chapter I will extend the methodology of learning param-

eters in a CEG to the DCEG. I assume throughout that the number of stages in the

DCEG is finite, as in the example given in the previous sections of this chapter. In

a DCEG the stage parameters, ⇡
u

can be learnt exactly analogously to learning in a

CEG, which was described in Chapter 3.1, where each ⇡

u

is assigned a prior Dirich-

let distribution and is updated in closed form by counting the number of individuals

going along each edge in the DCEG. As introduced in Section 5.1.2, a vector of

conditional holding time distributions (F
u1, Fu2, . . . , Fumu) may further be attached

to each stage u in the DCEG to express the time spent at each position before going

along a particular edge in the graph. Denote the parameter of the distribution F
uk

by �
uk

and call the full set of parameters � = {�
uk

, u 2 U, k = 1, . . .m
u

}. I will first
show in this section how the likelihood of ⇡ and � given a complete random sample

separates and that, under the assumption that ⇡ and � are a priori independent,

these can be learnt separately. I will then discuss conjugate learning on ⇡ and �

and will illustrate this on the already familiar flu example. At the end of this section

I will briefly show how di↵erent DCEG structures could be scored and compared

using the marginal likelihood of the DCEG structure given the data.

Given a DCEG D, for each individual that traverses the DCEG, the edges he
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passes along can be recorded as well as the holding times at each position. Assume

the individual s takes the path (e
wi0

k0 , ewi1
k1 , . . . , ewins

kns
) along n

s

+1 edges start-

ing at w
i0 = w0. Then, following the notation from Chapter 2.3, let ws

ia
describe

the ath position reached by individual s and hs
ia

the holding time at position ws

ia

and es
iaka

the ath edge passed along, where a = 0, 1, . . . , n
s

. Then, by the definition

of a DCEG (see Definition 27) the likelihood, given an individual s, with path ✏s

and vector of holding times hs = (hs
i0
, hs

i1
, . . . , hs

in
), is given by

L(⇡,�|✏s,hs,D) =
nsY

a=0

p(es
iaka

, hs
ia
|ws

ia
)

=
nsY

a=0

⇡
w

s
ia
kafws

ia
ka(h

s

ia
).

This can now be generalised to a complete random sample S of n individuals going

through the tree to obtain the likelihood

L(⇡,�|S,D) =
nY

s=1

L(⇡,�|✏s,D) =
nY

s=1

nsY

a=0

⇡
w

s
ia
kafws

ia
ka(h

s

ia
).

As for the CEG this likelihood can be rewritten by counting the number of times the

individuals pass through a position w 2 u and go along the kth edge, k = 1, ..,m
u

,

which is denoted by N
uk

. Let h
uk

be the vector of conditional holding times for the

individuals who arrive at stage u and move along the kth edge next and let h
ukl

be the holding time of the lth pass along this edge. Denote the full set of holding

times by h = {h
uk

, u 2 U, k = 1, ..,m
u

} and the set of the number of times each

edge is taken by N = {N
uk

, u 2 U, k = 1, ..,m
u

}. The likelihood of ⇡ and � given a

complete random sample and a DCEG D is therefore given by

L(⇡,�|N,h,D) =
Y

u2U

muY

k=1

⇡Nuk
uk

NukY

l=1

f
uk

(h
ukl

), (5.12)

where the individuals go N
uk

times along edges e
wk

, w 2 u each time staying for

a time h
ukl

at the previous position. Then, immediately from Equation 5.12 the

likelihood L(⇡,�|N,h,D) of a complete random sample separates. Explicitly, we

have that
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L(⇡,�|N,h,D) = L1(⇡|N,D)⇥ L2(�|h,N,D)

=
Y

u2U

muY

k=1

⇡Nuk
uk

⇥
Y

u2U

muY

k=1

NukY

l=1

f
uk

(h
ukl

). (5.13)

If � and ⇡ are believed to be a priori independent so that

p(⇡,�|D) = p1(⇡|D)p2(�|D),

then p1(⇡|D) and p2(�|D) can be updated independently using L1(⇡|N,D) and

L2(�|h,N,D) respectively, to obtain the posterior density

p(⇡,�|h,N,D) = p1(⇡|N,D)p2(�|h,N,D),

which also separates. Therefore the updating of the stage parameters ⇡ and the

holding time parameters � can be performed without reference to the other.

I consider first the updating of p1(⇡|D). As mentioned in the introduction

of this section, this is completely analogous to learning the stage parameters in a

CEG and therefore we put a Dirichlet prior on the stage priors of the form

p1(⇡|D) =
Y

u2U
p
u

(⇡
u

|D) =
Y

u2U

�(
P

mu
k=1 ↵uk

)Q
mu
k=1 �(↵uk

)

muY

k=1

⇡

↵uk�1
uk

,

assuming, as for the CEG, that the stage priors are a priori independent (compare

Equation 3.7 of Chapter 3). Recall from Chapter 3.1, that in a CEG the hyper-

parameters of the stage priors ↵
uk

are found by specifying the parameters of the

CEG, C0, where every situation is in a separate stage. In the simplest case all paths

in the associated tree are assumed to be a priori equally likely and the priors of

any other CEG C is determined by summing the parameters of the situations that

are in the same stage. Given that the DCEG D has a sink node w1, which can

be eventually reached from any position, the hyperparameters of the DCEG can be

found in a similar way: The priors on the finest partition D0 are determined and

the hyperparameters of the situations that are merged in D are summed to find

the hyperparameters of D. When situations on the same path are merged into a

position then the summing of the hyperparameters corresponds to finding the limit

of a geometric series. I will show below how to find the priors of a DCEG D for the

flu example.
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Example 20. Recall the DCEG of the variant of the flu example, repeated in Figure

5.14, whose stage and position partition is given in 5.14.

w0 = u0 = {s0, s4, s7, . . .}, w1 = u1 = {s1, s10, s11, . . .},

w2 = u2 = {s2, s6, . . .}, w3 = u3 = {s3, . . .}, w1 = {l5, l8, l9, . . .}. (5.14)

w0
Catch flu // w1

Treatment //

No treatment

$$

w2

Resume normal life

vv

Get vaccine
))
w1

w3

Recovery

OO

No survival

55

Figure 5.14: The DCEG with holding times for the flu example, where catching flu
is described by the time spent at the root vertex

As w1 exists the hyperparameters of the stage priors can be found by the

standard approach of summing the hyperparameters of the situations in each stage.

To specify the prior Dirichlet distribution a slightly larger equivalent sample size

of 14 is assumed to ensure later that the holding time distributions have a mean.

For example, from Equation 5.14 we have that u1 = {s1, s10, s11, . . .}. Under the

assumption that the paths in the tree (Figure 5.4) are a priori equally likely the

situations in u1 have the distributions: s1 ⇠ Dir(7, 7), s10 ⇠ Dir(7⇥ 1
4 , 7⇥

1
4), s11 ⇠

Dir(7 ⇥ 1
8 , 7 ⇥ 1

8). Similarly, the next situations of u1, which are not explicitly

represented in the associated infinite tree, will have the distributions Dir(7⇥ 1
4
2
, 7⇥

1
4
2
), Dir(7⇥ 1

8
2
, 7⇥ 1

8
2
), etc. Summing the hyperparameters of these situations gives

the following two geometric series:

7 + 7⇥ 1

4
+ 7⇥

✓
1

4

◆2

, . . . =
7

1� 1
4

= 9
1

3
,

7

8
+

7

8
⇥ 1

8
+

7

8
⇥
✓
1

8

◆2

, . . . =
7
8

1� 1
8

= 1.

Hence, we can deduce that the distribution of ⇡
u1 is Dir(101

3 , 10
1
3). The hyperpa-

rameters of the remaining priors on u2 and u3 can be found in a similar way to be

⇡
u2 ⇠ Dir(62

3 , 6
2
3) and ⇡

u3 ⇠ Dir(4, 4). The distribution of u0 is trivial, assigning

probability 1 to the edge e(w0, w1).

If we do not have an absorbing position, then summing the hyperparameters
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of the stages merged results in infinitely large priors. In Barclay et al. [2013c] it is

shown that a possible alternative approach could be taken which makes use of the

direct correspondence between the DCEG and Markov processes, where the limiting

distribution of the process is found and the hyperparameters are derived from this.

Having set up the priors, these can again be updated in closed form, given a complete

random sample, to obtain

p(⇡|N,D) =
Y

u2U
p
u

(⇡
u

|N
u

,D) =
Y

u2U

�(
P

mu
k=1(↵uk

+N
uk

))Q
mu
k=1 �(↵uk

+N
uk

)

muY

k=1

⇡↵uk+Nuk�1
uk

.

(5.15)

Next the updating of p(�|D) to p(�|h,N,D) using the second component of the like-

lihood, L2(�|h,N,D) is considered. Recall from Equation 5.13 that the likelihood

for a complete random sample is given by

L2(�|h,N,D) =
Y

u2U

muY

k=1

NukY

l=1

f
uk

(h
ukl

),

where N
uk

is the number of times stage u is reached followed by going along edge

e
uk

and h
ukl

, l = 1, . . . , N
uk

are the conditional holding times associated with this

edge. Note that, equivalently, this can be written as

L2(�|h,N,D) =
Y

u2U

muY

k=1

L
uk

(�
uk

|h
uk

,N
uk

,D),

where the components L
uk

(�
uk

|h
uk

,N
uk

,D) of the likelihood can be described by

di↵erent holding time distributions as mentioned at the end of Section 5.1.2. In the

simplest case the likelihood could be a product of exponential distributions, where

each component takes the form

L
uk

(�
uk

|h
uk

,N
uk

,D) =
NukY

l=1

1

�
uk

exp
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� 1

�
uk

h
ukl

◆
. (5.16)

A more general case would be to assume that the holding times have a Weibull

distribution with known shape parameter, K. The likelihood then takes the form

L
uk

(�
uk

|h
uk

,N
uk

,D) =
NukY

l=1

K

�K

uk

hK�1
ukl

exp

 
�
✓
h
ukl

�
uk

◆
K

!
. (5.17)

Other possibilities would be to use a log-normal distribution or a log-logistic distri-

bution, when a unimodal density function is appropriate. To learn the parameters

123



of the conditional holding time distributions, the priors �
uk

are assumed to be

mutually independent. Of course in certain contexts this assumption may not be

appropriate. For example it may be plausible to assume that the time until catching

flu has an e↵ect on the time until recovery and in this case the parameters would

depend on each other. However, as discussed in Section 5.1.2, here the simplest case

is considered, where the CPV and the conditional holding times associated with a

stage are assumed to be una↵ected by previous holding times, and hence the above

assumption is appropriate. Therefore,

p2(�|D) =
Y

u2U

muY

k=1

p
uk

(�
uk

|D).

Putting an Inverse-Gamma prior, IG(↵
uk

,�
uk

) on �
uk

, which takes the form

p
uk
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uk

|D) =
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�(↵
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)
��↵uk�1
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exp

✓
��

uk

�
uk

◆
, (5.18)

these parameters of the conditional holding time distributions can then be updated

separately and in closed form given a random sample of exponentially distributed

holding times as shown in Equation 5.16. This gives Inverse-Gamma posteriors of

the form:

p
uk

(�
uk

|h
uk

,D) =
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+
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. (5.19)

Similarly, given a Weibull likelihood with known shape parameter K as in Equation

5.17, an inverse-Gamma prior on �K

uk

⇠ IG(↵
uk

,�
uk

) again allows for a conjugate

analysis to a posterior IG(↵
uk

+N
uk

,�
uk

+
P

Nuk
l=1 hK

ukl

). Further, if a log-normal like-

lihood is chosen with known precision, then conjugacy is again obtained by putting

a Normal prior on �
uk

. When conjugacy cannot be obtained, MCMC methods can

be used to find the corresponding posterior distribution.

Example 21. Recall again the DCEG of the flu example given in Figure 5.14. In

this example, it may be plausible to assume an exponential distribution on H
u01,

which describes the time until catching flu, with scale parameter �
u01, the average

time until the individual gets ill. Further it could be assumed that H
u11 has the

more general Weibull distribution, with scale parameter �
u11 and with known shape

parameter K1 > 1, describing the time until taking treatment and recovering. As

K1 > 1 it is assumed that the recovery rate increases with time. The time until the

individual decides not to take the treatment could again be exponentially distributed

with scale parameter �
u12, i.e. it is assumed to occur at a constant rate. Similarly
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to H
u11, Hu31 could also have a Weibull distribution with known shape parameter

K2 > 1. In contrast to this, H
u32 could have a Weibull distribution with scale

parameter �
u32 and known shape parameter K3 < 1 indicating that the death rate

decreases with time. The holding times H
u21 and H

u22 could again have exponential

distributions with parameters �
u21 and �

u22 respectively. Here the time until getting

the vaccine or resuming a normal life is measured. The holding time distributions

and their parameter priors together with the stage priors are given in Table 5.1.

Description Holding time distribution Prior
Time until catching flu H

u01 ⇠ Exp(�
u01) �

u01 ⇠ IG(201
3 , 19

1
3)

Take treatment N
u1 ⇠ Mult(⇡

u1) ⇡
u1 ⇠ Dir(101

3 , 10
1
3)

Time until recovery with treatment H
u11 ⇠ Weibull(�

u11,K1) �K1
u11 ⇠ IG(101

3 , 9
1
3)

Time until decide against treatment H
u12 ⇠ Exp(�

u12) �
u12 ⇠ IG(101

3 , 9
1
3)

Recovery N
u3 ⇠ Mult(⇡

u3) ⇡
u3 ⇠ Dir(4, 4)

Time until recovery H
u31 ⇠ Weibull(�

u31,K2) �K2
u31 ⇠ IG(4, 3)

Time until death H
u32 ⇠ Weibull(�

u32,K3) �K3
u32 ⇠ IG(4, 3)

Get vaccine N
u2 ⇠ Mult(⇡

u2) ⇡
u2 ⇠ Dir(62

3 , 6
2
3)

Time until resume normal life H
u21 ⇠ Exp(�

u21) �
u21 ⇠ IG(62

3 , 5
2
3)

Time until vaccine taken H
u22 ⇠ Exp(�

u22) �
u22 ⇠ IG(62

3 , 5
2
3)

Table 5.1: Prior distributions on CPVs and conditional holding times associated
with the DCEG from Figure 5.14 for the flu example

If Inverse-Gamma priors on �
u01, �

K1
u11, �u12, �u21, �u22, �

K2
u31 and �K3

u32 are

assumed, a conjugate analysis as described above can be carried out. The priors

can be specified by assuming a prior mean equal to 1 for all prior holding times

and an equivalent sample size corresponding to the strength of the prior belief on

the edge associated with each conditional holding time distribution (see Table 5.1).

Then, given a complete random sample of individuals going through the DCEG for

a certain length of time, the number of times, N
uk

, each edge, e
uk

, is reached can be

recorded, as well as the time spent at each position before moving along a particular

edge. By Equations 5.15 and 5.19 the prior distributions on ⇡ and � could then

be updated in closed form and the CPVs and expected time spent at each position,

before moving along a certain edge, calculated.

When the learning of the parameters can be carried out in closed form then

the Bayesian Dirichlet scoring methods of Chapter 3.2 will also be similarly e�cient

for the DCEG. Recall from Chapter 3.2 that the BD metric is given by the prior

of the CEG structure and the marginal likelihood of the structure given a complete

random sample. Similarly, the BD metric for a DCEG structure given a complete

random sample is given by

p(D)L(D|h,N). (5.20)
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Assuming that all DCEG structures are a priori equally likely, the marginal likeli-

hood, L(D|h,N) again su�ces as a model selection criteria. When the likelihood

separates, as in the above situations, then the marginal likelihood also separates

into two parts, one associated with the transitions and another with the holding

times:

L(D|h,N) = L1(D|N)L2(D|h,N). (5.21)

Then, exactly analogously to the finite CEG, the first component of the marginal

likelihood of a DCEG takes the form (compare Equation 3.12):

L1(D|N) =
Y

u2U

�(
P

mu
k=1 ↵uk

)

�(
P

mu
k=1 ↵uk

+N
uk

)

muY
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�(↵
uk

+N
uk

)

�(↵
uk

)
.

When the holding times are either geometric or degenerate, then model selection of

the DCEG is analogous to model selection of the CEG, where the models are scored

according to (3.12) and the model selection algorithms discussed in Chapter 3.2 can

be used. When we have a DCEG with holding times then the second component of

the marginal likelihood, L2(D|h,N), also needs to be calculated. For example, given

only exponential holding times, the second component of the marginal likelihood

takes the form

L2(D|h,N) =
Y

u2U

muY

k=1

�↵uk
uk

�(↵
uk

)

�(↵
uk

+N
uk

)

�
uk

+
P

Nuk
l=1 h↵uk+Nuk

ukl

,

and the full marginal likelihood, as given in Equation 5.21, can be used to score

and compare possible DCEG structures. Techniques for searching the model space

to find the MAP DCEG structure are currently being developed. The most promi-

nent di�culty here is that, without further constraints, the size of the model class

of DCEGs is extremely large and so techniques need to be developed that search

e�ciently over the model space, using for example algorithms such as the dynamic

programming algorithm by Silander and Leong [2013] or by restricting the model

space a priori (see Chapter 3.2).

I have in this chapter developed a formal representation for a dynamic ver-

sion of the CEG. I have demonstrated that it usefully generalises the discrete DBN

and I believe that it provides a valuable complementary tool to alternative dynamic

graphical models. It is particularly suited to domains where the number of cate-

gories of the variables is large but the associated transitions are sparse, leading to a

large number of zeros in the associated CPVs, or to domains where context-specific

symmetries are present. Further, the link of the DCEG to (semi-)Markov processes
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suggests that the methodology developed for these processes could be usefully ex-

ploited by the DCEG. The learning of the parameters of the DCEG has shown to

be a straightforward generalisation of the non-dynamic case as discussed in Chapter

3 and suggests that model selection techniques adapted from the current techniques

for CEGs can be developed.
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Chapter 6

Discussion

In the concluding chapter I will first summarise the contributions made by this thesis.

In Sections 6.2 and 6.3 I will then briefly discuss two areas of research, which have

not been covered in the previous chapters, but which need careful consideration when

carrying out model selection within a Bayesian framework. Section 6.2 discusses the

use of informative priors with respect to the UKCP study and Section 6.3 looks at

problems associated with sparse cell counts. Finally, I will conclude with possible

areas of future research on CEGs.

6.1 Summary

In this thesis I have developed a number of new aspects of the CEG motivated by the

application of the CEG to various health studies. I have shown in Chapter 2 how the

CEG provides an improved graphical framework to the BN for the description of an

unfolding sequence of events, particularly when asymmetric dependence structures

arise. The results in Chapters 2 and 3 demonstrated on the CHDS that the CEG

search can lead to a significantly higher scoring model and further that it lets us

draw plausible additional conclusions from its graph.

The focus of this thesis has been predominantly concerned with applications,

where the e↵ect of risk factors in a health study on a variable of interest, such as

physical health or survival, is considered. Hence, apart from the additional con-

clusions that can be drawn from the CEG, I have also introduced the Ordinal and

Reduced Ordinal CEG, which enhance the graphical representation of the CEG for

a binary outcome. In Chapter 4 this framework has been exploited to represent pro-

cesses where missingness is influential and data cannot plausibly be hypothesised to

be MAR in all situations. In particular, I have shown that it is often possible to
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draw informative conclusions on the missingness structure directly from the CEG,

supported by calculations on the CPVs. With respect to the UKCP study the CEG

provided further insight into the way in which the severity and the number of im-

pairments, including missing values, influence survival. I have demonstrated that

the final positions in the Ordinal CEG can be usefully employed to make informed

decisions about the construction of new covariates with informative categories which

can be used in a later analysis.

Finally, in Chapter 5 I have defined a new dynamic version of the CEG,

the DCEG. This new class of models extends the semantics of the CEG, which

had so far only been developed for finite trees, to the infinite tree and is further

able to model the time spent at each stage or position in the graph. I have shown

that the discrete DBN as well as the state-transition diagrams of Markov and semi-

Markov processes are included in this class of models, suggesting that the DCEG can

provide a useful complementary tool to alternative graphical models for modelling

longitudinal processes with asymmetric dependence structures. The introduction

to parameter learning and model selection for DCEGs at the end of that chapter

proposes that the methods developed in Chapters 2 and 3 could be directly extended

to the DCEG.

6.2 CEGs with Informative Priors

Throughout the thesis I have assumed a uniform prior across the paths in the tree,

such that each path is a priori equally likely. Further, I have consistently picked a

small equivalent sample size to demonstrate weak prior beliefs. Ideally, in a full anal-

ysis, domain knowledge should be brought in, where prior information is obtained

through expert elicitation or from the available literature on previous studies. This

could then be incorporated into the model through informative priors. Details on

how expert elicitation is practised is discussed for example in O’Hagan et al. [2006].

To illustrate how external information can be incorporated into a CEG, I consider

the example on three impairments and survival in the UKCP study described in

Chapter 4.4.

Throughout the thesis the final situations in the tree, whose associated edges

describe survival, have taken Dirichlet distributions with mean 0.5, i.e. survival

probability of 50%. However, although cerebral palsy is associated with increased

premature mortality, the survival rate up to or above the age of 5 is assumed to

be 98% in the UK (Source: O�ce of National Statistics, 2012 tables). Also, it is

known that individuals with severe impairments are more likely to die prematurely
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than the general population and that this increases with the number of impairments

(see for example Blair et al. [2001] or Hutton [2006]). It is therefore plausible to

put informative priors onto the final florets in the tree which describe survival. Two

possibilities could be the following:

1. Assume that the prior on the final florets takes the Dirichlet distribution

Dir(1.96, 0.02), with mean 98%, which may be considered as the known sur-

vival rate above the age of 5 for people with Cerebral Palsy.

2. Assume a Dirichlet distribution on the final florets of the tree, which di↵eren-

tiates between the number of severe or missing impairments based on expert

judgment, as indicated for example in Hutton [2006]. Depending on the num-

ber of severe and missing impairments assume the following Dirichlet priors:

• 0 impairments: Dir(1.98, 0.02)

• 1 impairment: Dir(1.9, 0.1)

• 2 impairments: Dir(1.6, 0.4)

• 3 impairments: Dir(1.4, 0.6)

These describe an expected probability of survival of 99%, 95%, 80% and 70%.

In both cases all other priors are set such that the paths up to the final situations

in the tree are a priori equally likely. However, also here prior information could

be obtained. For example, it may be assumed that, given visual and ambulatory

impairment are observed to be non-severe, a non-severe manual impairment is more

likely than severe or missing manual impairment.

Note also that I have here assumed an equivalent sample size of 2 on the

final situations, which leads to an overall equivalent sample size of 54. As already

mentioned in Chapter 3.2 it is important to test the sensitivity of the prior with

respect to di↵erent equivalent sample sizes. Therefore, for an accurate comparison

between the MAP CEGs, given the informative priors above, and the MAP CEG

with a uniform prior on the root-to-leaf paths, I first investigate the sensitivity of the

MAP CEG with uniform priors according to its equivalent sample size. Increasing

the equivalent sample size leads to similar conclusions as before. However, instead

of six final positions, there are seven final positions, as an extra position with a

predictive probability of survival of 96.43% exists which splits position w14. Also,

due to the larger equivalent sample size combinations of impairments with sparse

cell counts tend to move to positions with lower survival probabilities. Nevertheless,

the predictive probabilities of survival on the final positions are extremely close to

those of Figure 4.12, di↵ering at most by 0.37%. The model therefore appears to be
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fairly robust with respect to the equivalent sample size and similar conclusions to

those from the previous model are drawn from the graph. The CEG’s score (given

by the logarithm of the marginal likelihood) is �11850.56 and I will compare this

score to the scores obtained when using the informative priors described above.

The MAP CEG, found when setting priors according to the known survival

rate, also has seven final positions with predictive probabilities of survival: 99.98%,

99.77%, 98.74%, 92.98%, 87.50%, 77.42% and 44.22%. Most of the predictive prob-

abilities of survival are extremely close to those of Figure 4.12. However, the pre-

dictive probability of the lowest position has reduced to 44.22%, as this position is

now made up only of the category of individuals with two missing impairments and

the ambulatory impairment observed as severe. Also position w13 has been split

into two positions with extremely close predictive probabilities of survival, where

the combination ‘missing visual’, ‘non-severe ambulatory’ and ‘non-severe manual

impairment’ is now in a separate position with a probability of survival of 99.98%.

Overall, due to the prior suggesting an overall survival of 98%, combinations with

sparse cell counts tend to be moved to higher positions. Nevertheless, the general

deductions made on the e↵ect of the three impairments and missingness on survival

remain similar, demonstrating a robustness of the model to prior assumptions.

The MAP CEG, found when using the second type of informative priors,

similarly, has seven final positions with predictive probabilities of survival: 99.97%,

99.76%, 98.64%, 92.76%, 87.25%, 77.54%, 51.89%. Again the combination of ‘miss-

ing visual’, ‘not-severe ambulatory’ and ‘not-severe manual impairment’ has been

placed into a separate position with a probability of survival of 99.97%. The next

five final positions are again extremely close in their prediction of survival to the

predictions from the original CEG. However, the seventh position now has a higher

predictive probability of survival of 51.89% in comparison to the original CEG and

the CEG with the first type of informative prior. This happens as only the combi-

nation ‘missing visual’, ‘severe ambulatory’ and ‘missing manual impairment’ was

in this position in the previous CEG. Now, as for the original CEG, in addition the

combinations ‘severe visual’, ‘missing ambulatory’ and ‘missing manual impairment’

as well as ‘severe visual’, ‘severe ambulatory’ and ‘missing manual impairment’ are

in this position. Hence the prior information that individuals with only missing and

severe impairments have a lower probability of survival has a↵ected this position.

Overall the position partition of this CEG is extremely close to the partition of the

original CEG, with only a few edges with sparse cell counts having been moved into

a lower position. Hence, again the general deductions made on survival are similar

for this informative prior.
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The scores of the CEG with informative priors are �11824.70 for the first

approach and �11817.85 for the second approach, giving a Bayes Factor of 943.88

favouring the second approach. In comparison to the MAP CEG structure with

uniform priors we have a Bayes Factor of e25.86 favouring the first approach and a

Bayes Factor of e32.71 favouring the second approach. This suggests that our results

are consistent with previous findings on the e↵ect of impairments on survival, which

were incorporated into the model through informative priors. In particular, the

prior information of counting the number of severe and missing impairments with

an equivalent sample size of 54 has shown to give nearly identical predictions to the

CEG with a weak uniform prior.

Apart from putting informative priors on the CPVs, it may also be possible to

include expert knowledge on the plausibility of particular situations being combined,

by putting prior information on di↵erent CEG structures. For example, it may be

thought that the situation describing the survival with three non-severe impairments

cannot plausibly be merged with a situation describing survival with three severe or

missing impairments. Especially, when looking at DCEGs, where the model space

is even larger, restricting the model space according to expert knowledge may be

one useful approach to making model selection algorithms feasible (see also Section

6.4).

6.3 CEGs with Sparse Cell Counts

Consider again the example of the UKCP study, where we are interested in the

e↵ect of three impairments, visual, ambulatory and manual, on survival. As we dis-

tinguish between a non-severe, severe or missing impairment, there are 27 di↵erent

combinations of impairments that individuals can have. If we represent the problem

as a tree, with survival as our final variable, then these 27 combinations are given

by the 27 final situations in this tree. Table 6.1 gives the number of individuals

associated with the 27 combinations of the three impairment variables.

There are two zero cell counts and three cells with only one or two individuals.

Further, there are two cells with three and four individuals and three cells with seven,

eight and nine individuals respectively, while all other cells have � 16 individuals.

Several possibilities to determine whether a cell is to be classed as ‘sparse’ could be

considered:

1. Let a cell count be sparse when it is less than a specified proportion of the full

sample size. As we have 6289 individuals we could say that a sparse cell will

have  6 individuals, which corresponds to < 1/1000 of the full sample size.
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Visual Ambulatory Manual impairment
impairment impairment Not severe Severe Missing
Not severe Not severe 3470 69 44

Severe 343 585 23
Missing 19 0 35

Severe Not severe 72 4 1
Severe 37 413 8
Missing 0 1 7

Missing Not severe 325 9 16
Severe 92 290 16
Missing 2 3 405

Table 6.1: Number of individuals in the UK cerebral palsy cohort with non-severe,
severe or missing visual, ambulatory and manual impairment

2. Let a sparse cell count be determined not only by the total sample size but

also by the number of di↵erent paths the individual can take in the tree. In

our example there are 27 categories and 6289 individuals, so on average each

cell should have 233 individuals. A cell is then considered to be sparse when

it has  12 individuals ( 5% of the average number of individuals in each

cell).

3. In a X 2-test of independence a cell is considered as sparse when the expected

number in the cell is less than a particular value, commonly 1, 3 or 5. The

overall death rate before the age of 5 in this data set is 4.6% and therefore a

cell with 22 individuals is expected to include one death. A cell could then be

considered to be sparse when it has less than 22 individuals.

To mark a sparse cell it is helpful to draw the edges whose associated counts

are sparse as dotted or dashed edges. Using approach 1 above the edges with 0� 6

individuals going along them, could are as dotted edges. Similarly, by approach

2 the edges with 7 � 12 individuals are drawn as dashed edges and we consider

the corresponding cell counts as ‘small’. When interpreting the CEG structures

these edges, with only a sparse or small number of individuals attached to them,

need to be treated with care, as the combinations are so rare that we cannot draw

reliable conclusions about the survival rate for individuals with these combinations.

Consider again the MAP CEG structure on three impairments from Chapter 4.4,

which is repeated in Figure 6.1 with the sparse cell counts marked as described.

I also repeat, in Figure 6.2, the Reduced Ordinal CEG of the example and

mark the edges with a sparse number of individuals in the same way. For a better

illustration I draw the edges that describe several combinations as double edges, in-
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Figure 6.1: Ordinal MAP CEG structure for the UKCP example describing the
e↵ect of visual, ambulatory, manual impairment and missingness of impairments on
survival, with sparse cell counts marked as dotted (counts: 0-6) or dashed (counts:
7-12 individuals) edges

stead of as single edges as before. It can now be seen directly which interpretations

should be made carefully. For example, in Chapter 4.4 I suggested that the con-

clusions drawn from the combination of ‘missing visual’, ‘missing ambulatory’ and

‘severe manual impairment’ may be implausible and the graph now depicts explicitly

that there are less than 6 individuals going along this edge. Also, the surprisingly

low probability of survival for individuals with not severe ambulatory impairment

but severe visual and missing manual impairment, or vice versa, is now suggested

to be due to sparsity of cell counts.

Sparsity could be avoided by pruning the tree prior to running the AHC

algorithm. For example, of the individuals with severe visual impairment and non-

severe ambulatory impairment, one individual has missing manual impairment, 72

non-severe manual impairment and four severe manual impairment. The tree could

then be pruned to only include the first two impairments in the analysis and, in

the case of a severe visual and a non-severe ambulatory impairment, move directly

to survival without considering manual impairment. Hence the third impairment

variable is only included if enough data is available to draw reliable conclusions.
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Figure 6.2: Reduced Ordinal MAP CEG structure for the UKCP example describing
the e↵ect of visual, ambulatory, manual impairment and missingness of impairments
on survival with sparse cell counts marked as dotted (counts: 0-6) or dashed (counts:
7-12 individuals) edges

So, in this example, we would move directly to survival from positions w5, w11 and

w12 in Figure 6.1. In other cases, such as position w6, we may distinguish only

two categories for manual impairment, namely non-severe and severe or missing.

Alternatively, considering position w8, it may be preferred to simply omit the edge

(with zero individuals) in order to keep the information about the other two impair-

ments. Finally, in position w9 with counts 8, 37 and 413 for missing, non-severe and

severe manual impairment respectively, we may want to keep the ‘small’ cell count

of 8 rather than omitting the edge. In every case, sparsity of cell counts should

be considered when determining a plausible CEG structure to ensure that reliable

conclusions can be obtained.

Finally, it is worth recognising that situations with sparse cell counts tend to

be merged into other stages, even when their associated survival probabilities do not

appear to be su�ciently close. This is a general problem in statistical analyses: We

can distinguish small changes in probability within a large sample, such that with
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enough data we can always obtain significant results (compare Figure 4.11 positions

w11 and w12). However, small cell counts give little information on survival and are

likely to be combined. In this example, stronger prior information on the survival

probabilities, as shown in the previous section, could prevent this behaviour of sparse

cells being combined implausibly.

6.4 Future Work

I believe that the class of CEGs and its dynamic analogue are not only expressive

models but also have the promise of many useful future applications. Perhaps one of

the biggest challenges for the methods developed in this thesis is that, as the number

of variables of the problem increases, the number of situations in the associated

probability tree, and with it the model space of the CEG, quickly becomes extremely

large. This may cause di�culties when applying the CEG to larger health studies

(or other areas of application) than the ones discussed in this thesis. The issue of

resulting sparse cell counts, which may result from a large probability tree, has been

discussed above in Section 6.3. However, the complexity of the CEG needs to be

addressed in future to fully exploit the methods developed in this thesis for large-

scale problems. Below I will give three possible areas for further research regarding

the application of the CEG to larger studies:

• I have briefly discussed at the end of Chapter 3 that, as the number of variables

increases in the CEG, a search across the model space can become complex.

Particularly when moving to the DCEG, the size of the model space is vast

and model selection techniques that e�ciently traverse the model space need

to be devised. As mentioned in Chapters 3.2 and 5.4, Freeman [2011] suggests

restricting the model space a priori by allowing only certain situations to be

combined and hence prevent particular CEG structures. To do so, informative

priors would need to be put on the various model structures either to prevent

certain structures entirely or to simply give less plausible CEG structures a

smaller prior probability. Also, the recent paper by Silander and Leong [2013]

suggests a dynamic programming algorithm that can deal with around 30

variables. Both approaches can be investigated further.

• A further suggested way to deal with complexity has been introduced in Chap-

ter 2.5, namely the Ordinal CEG, which allows an improved graphical repre-

sentation by listing the positions in descending order according to a variable

of interest. In addition to this, I have demonstrated in Chapter 4 that it is
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possible to reduce the original CEG structure by defining new variables result-

ing from the dependence structure of the variables depicted in the topology

of the CEG. This has led to the Reduced Ordinal CEG, which retains the

final positions in the graph and reduces the paths leading to these. Although

this has shown to produce a small informative number of final positions, the

question of how to determine a Reduced Ordinal CEG from an Ordinal CEG

systematically for larger problems still remains. In the UKCP example, count-

ing the number of impairments is a straightforward solution. However, in a

di↵erent context further domain knowledge may be necessary.

• The methods used in Chapter 3 could be further exploited by applying the

CEGs to a subset of a large BN model. This would allow us to refine parts

of the BN model for which the dependence structure between the variables

is particularly complex. Especially, when there is data missing, this could be

extremely useful. Complex BNs are now commonly represented as Objected-

Oriented BNs (OOBNs) [Koller and Pfe↵er, 1997]. These are defined by a

set of classes, which are network fragments that can be used multiple times

throughout the construction of the OOBN. Further hierarchical structures

are obtained by allowing the attributes in a class to be network fragments

in themselves and by letting subclasses with additional attributes be defined

from existing classes. It is worth investigating whether the CEG and DCEG

could be incorporated into this framework.

Finally, to motivate the use of CEGs within a wider domain a CEG software

tool is desirable. With the development of BNs a large number of BN software

tools have been developed, such as Netica, GeNIe and Hugin, which has strongly

influenced the use of BNs across a wide range of domains. Similar software for

CEGs would be desirable but are so far not publicly available. To find the MAP

CEG structures for the examples given in the thesis I wrote a simple implementation

of the AHC algorithm in R based on a previous implementation by Freeman [2011].

I have further been collaborating with the School of Information Technology at

Monash University, Melbourne, Australia, on the development of a CEG software

tool with a graphical user interface, which allows the drawing of a tree, elicitation

of stages, as well as model selection using the AHC algorithm. So far a prototype

exists and a full development of the tool is currently being investigated.
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Appendix A

Latent-Class Model

Following Linzer and Lewis [2011] we have J categorical variables X1, ..XJ

, which

can take K
j

, j = 1, .., J possible values. (In the CHDS example J = 4 for the

economic situation and J = 5 for the social background). Further assume a random

sample of N individuals. Then define Y
ijk

, i = 1, .., N, j = 1, .., J, k = 1, ..,K
j

as

follows:

Y
ijk

= 1 when individual i takes value k on variable j

= 0 otherwise. (A.1)

Let Z be the latent class variable(describing the overall economic situation or so-

cial background) which is assumed to have R classes. Then let ⇡
jrk

describe the

probability that an individual that has latent class r takes value k on variable j. So,

⇡
jrk

= P (X
j

= k|Z = r). (A.2)

Also let

p
r

= P (Z = r). (A.3)

Assuming local independence, i.e. given the latent class of an individual i is known,

the probability of observing X
j

= k is conditionally independent of the probabilities

of the observations on the other observed variables. So the probability that we

observe a particular set of outcomes for the J variables on an individual i given

class r is:

P (Y
i

|Z = r) =
JY

j=1

KjY

k=1

⇡
Yijk

jrk

, (A.4)
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where Y
i

is the vector of values (Y
i11, .., Yi1K1 , .., YiJ1, .., YiJKJ

). Summing over all

possible classes, we get the probability of observing a set of of outcomes for the J

variables on an individual i:

P (Y
i

) =
RX

r=1

p
r

JY

j=1

KjY

k=1

⇡
Yijk

jrk

. (A.5)

Then given estimates bp
r

and b⇡
jrk

, the estimated probabilities that an individual is

in class r given his observed values Y
ijk

, for j = 1, .., J and k = 1, ..,K
j

, are

bP (r|Y
i

) =
bp
r

bP (Y
i

|Z = r)
P

R

q=1 bpq bP (Y
i

|Z = q)
. (A.6)

The command ‘poLCA’ in R estimates bp
r

and b⇡
jrk

using the Expectation-Maximisation

algorithm: This starts with random starting values for bp
r

and b⇡
jrk

and then finds
bP (r|Y

i

) using equation A.6. The log-likelihood function is given by

log L(p
r

,⇡
jrk

|Y ) =
NX

i=1

log

RX

r=1

p
r

JY

j=1

KjY

k=1

⇡
Yijk

jrk

. (A.7)

In the maximisation step the maximum likelihood estimates for p
r

and ⇡
jrk

given
bP (r|Y

i

) are found, which are given by

bp
r

=
1

N

NX

i=1

bP (r|Y
i

) and b⇡
jr

=

P
N

i=1 Yij
bP (r|Y

i

)
P

N

i=1
bP (r|Y

i

)
, (A.8)

where b⇡
jr

= (b⇡
jr1, .., b⇡jrKj ) and Y

ij

= (Y
ij1, .., YijKj ).

These new estimates are then put back into equation A.6 and so on. The

algorithm is iterated until convergence (specified by the package to be reached once

subsequent estimates di↵er by < 1�10).
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Appendix B

R Code for the AHC Algorithm

1 CEG.AHC <-function(exampledata=exampledata ,equivsize =3){

2 exampledata <-exampledata

3 equivsize <-equivsize

4 numbvariables <-dim(exampledata)[2]

5 numbcat <-c()

6 for(k in 1: numbvariables){

7 numbcat <-c(numbcat ,nlevels(exampledata[,k]))

8 }

9 numb <-c(1)

10 for(i in 2: numbvariables){

11 numb <-c(numb ,prod(numbcat [1:(i-1)]))

12 }

13 prior <-c()

14 for(i in 1: numbvariables){

15 for(j in 1:numb[i]){

16 prior <-c(prior ,list(rbind(rep(equivsize/(numbcat[i]*numb[i]),numbcat[i]))))

17 }

18 }

19 #Datalist1: list of the number of individuals going from the stage along a

particular edge in C_{0}

20 data <-c(list(rbind(table(exampledata [,1]))))

21 for (i in 2: numbvariables){

22 for (j in 1:numb[i]){

23 data <-c(data ,list(rbind(ftable(exampledata [,1:i])[j,])))

24 }

25 }

26 #List of the stages that can be merged in the first step

27 comparisonset <-c()

28 for (i in 2: numbvariables){

29 comparisonset <-c(comparisonset ,list(c((sum(numb [1:(i-1)])+1):(sum(numb [1:i]))

)))

30 }

31 labelling <-c()

32 for (k in 1:( numbvariables -1)){

33 label <-c(1,rep("NA",sum(numb [1:k]) -1))

34 label <-c(label ,rep(levels(exampledata[,k]),numb[k]))
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35 if (k<( numbvariables -1)){

36 for (i in (k+1):( numbvariables -1)){

37 label <-c(label ,rep(levels(exampledata[,k]),each=numb[i+1]/numb[k+1],numb[k+1]

/numbcat[k]))

38 }

39 }

40 labelling <-cbind(labelling ,label)

41 }

42 mergedlist <-c()

43 for (i in 1:sum(numb)){

44 mergedlist <-c(mergedlist ,list(labelling[i,]))

45 }

46 merged1 <-c()

47 lik <-0

48 for( i in 1: sum(numb)){

49 alpha <-unlist(prior[i])

50 N<-unlist(data[i])

51 lik <-lik+sum(lgamma(alpha+N)-lgamma(alpha))+sum(lgamma(sum(alpha))-lgamma(

sum(alpha+N)))

52 }

53 score <-c(lik)

54 #At each step we calculate the difference between the current CEG and the CEG

in which two stages in the current comparison set have been merged.

55 #We go through every possible combination of stages that can be merged. k is

an index for the comparisonset we are in ,

56 #and i and j the position of the stages within the comparison set.

57 diff.end <-1 #to start the algorithm

58 while(diff.end >0){ #We stop when no positive difference is obtained by

merging two stages

59 #while(length(unlist(comparisonset)) >3){

60 difference <-0

61 for (k in 1: length(comparisonset)){

62 if(length(comparisonset [[k]]) >1){ #can only merge if more than one stage

in the comparisonset

63 for (i in 1:( length(comparisonset [[k]]) -1)){

64 for (j in (i+1):length(comparisonset [[k]])){

65 #to compare

66 compare1 <-comparisonset [[k]][i]

67 compare2 <-comparisonset [[k]][j]

68 #we calculate the difference between

69 #the CEG where two stages are merged

70 result <-lgamma(sum(prior[[ compare1 ]]+ prior [[ compare2 ]]))-lgamma(sum(prior [[

compare1 ]]+ data[[ compare1 ]]+ prior [[ compare2 ]]+ data[[ compare2 ]]))+

71 sum(lgamma(prior [[ compare1 ]]+ data[[ compare1 ]]+ prior [[ compare2 ]]+ data[[

compare2 ]]))-sum(lgamma(prior [[ compare1 ]]+ prior [[ compare2 ]]))-

72 #and the CEG where the two stages are not merged

73 (lgamma(sum(prior[[ compare1 ]]))-lgamma(sum(prior[[ compare1 ]]+ data[[ compare1

]]))+sum(lgamma(prior [[ compare1 ]]+ data[[ compare1 ]]))-

74 sum(lgamma(prior [[ compare1 ]]))+lgamma(sum(prior [[ compare2 ]]))-lgamma(sum(

prior[[ compare2 ]]+ data[[ compare2 ]]))+

75 sum(lgamma(prior [[ compare2 ]]+ data[[ compare2 ]]))-sum(lgamma(prior [[ compare2 ]])

))
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76 #if the resulting difference is greater than the current difference then we

replace it

77 if (result > difference){

78 difference <-result

79 merged <-c(compare1 ,compare2 ,k)

80 }

81 }

82 }

83 }

84 }

85 diff.end <-difference

86 #We update our priorlist , datalist and comparisonset to obtain the priorlist ,

datalist and comparisonlist for C_{1}

87 if(diff.end >0){

88 prior[[ merged [1]]] <-prior [[ merged [1]]]+ prior [[ merged [2]]]

89 prior[[ merged [2]]] <-cbind(NA ,NA)

90 data[[ merged [1]]] <-data[[ merged [1]]]+ data[[ merged [2]]]

91 data[[ merged [2]]] <-cbind(NA,NA)

92 comparisonset [[ merged [3]]] <-comparisonset [[ merged [3]]][ -( which(comparisonset

[[ merged [3]]]== merged [2]))]

93 mergedlist [[ merged [1]]] <-cbind(mergedlist [[ merged [1]]] , mergedlist [[ merged

[2]]])

94 mergedlist [[ merged [2]]] <-cbind(NA ,NA)

95 lik <-lik+diff.end

96 score <-c(score ,lik)

97 merged1 <-cbind(merged1 ,merged)

98 }

99 }

100 #Output: stages of the finest partition to be combined to obtain the most

probable CEG structure

101 stages <-c(1)

102 for (i in 2: numbvariables){

103 stages <-c(stages ,comparisonset [[i -1]])

104 }

105 result <-mergedlist[stages]

106 newlist <-list(prior=prior ,data=data ,stages=stages ,result=result ,score=score ,

merged=merged1 ,comparisonset=comparisonset ,mergedlist=mergedlist ,lik=lik)

107 return(newlist)

108 }

./AHC.R
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