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SECOND ORDER PHASE FIELD ASYMPTOTICS

FOR MULTI-COMPONENT SYSTEMS

HARALD GARCKE AND BJÖRN STINNER

Abstract. We derive a phase field model which approximates a sharp interface model
for solidification of a multicomponent alloy to second order in the interfacial thickness
ε. Since in numerical computations for phase field models the spatial grid size has to
be smaller than ε the new approach allows for considerably more accurate phase field
computations than have been possible so far.

In the classical approach of matched asymptotic expansions the equations to lowest
order in ε lead to the sharp interface problem. Considering the equations to the next
order, a correction problem is derived. It turns out that, when taking a possibly non-
constant correction term to a kinetic coefficient in the phase field model into account, the
correction problem becomes trivial and the approximation of the sharp interface problem
is of second order in ε. By numerical experiments, the better approximation property is
well supported. The computational effort to obtain an error smaller than a given value is
investigated revealing an enormous efficiency gain.

1. Introduction

In sharp interface approaches to solidification phase boundaries are modelled as hyper-
surfaces across which certain quantities jump. In the last two decades also the phase field
method has become a powerful tool for modelling the microstructural evolution during
solidification (see [7, 25, 11, 8] for reviews). Instead of explicitly tracking the solid-liquid
interface an order parameter is used. It takes different values in the phases and changes
smoothly in the interfacial regions which leads to the notion of diffuse interface models.
The typical thickness of the diffuse interface is related to a small parameter ε. In the limit
as ε → 0 sharp interface models are recovered.

The relation between the phase field model and the free boundary problem is established
using the method of matched asymptotic expansions. It is assumed that the solution
to the phase field model can be expanded in ε-series in the bulk regions occupied by
the phases (outer expansion) and, using rescaled coordinates, in the interfacial regions
(inner expansion). To leading order in ε, a sharp interface problem is obtained. If we
consider the phase field system as an approximation of the sharp interface problem it
would of course be desirable that phase field solutions converge fast with respect to ε
to solutions to the sharp interface problem. This becomes even more important as in
numerical computations the spatial grid size has to be chosen smaller than ε (see e.g.
[14]). In this paper we are interested in phase field approximations of the sharp interface
problem which are of second order, i.e., we aim for constructing phase field systems such
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that the first order correction in the ε-expansion vanishes. This would then lead to much
more efficient numerical approaches for solidification.

The method is formal in the sense that, a posteriori, it is not controlled whether the
asymptotic expansions really exist and converge. In the context of solidification it has
been applied on models for pure substances [10, 26], alloys [30, 5], multi-phase systems
[16], and systems with both multiple phases and components [17] in order to derive sharp
interface limits (first order asymptotics). We remark that, in some cases, this ansatz has
been verified by rigorously showing that, in the limit as ε → 0, the sharp interface model
is obtained from the diffuse interface model (see e.g. [1, 10, 12, 28]).

Our interest in the higher order approximation is motivated by the results obtained by
Karma and Rappel [20] in the context of thin interface asymptotics where the interface
thickness is small but remains finite. Their analysis led to a positive correction term in
the kinetic coefficient of the phase field equation balancing undesirable O(ε)-terms in the
Gibbs-Thomson condition and raising the stability bound of explicit numerical methods.
Besides, the better approximation allows for larger values of ε and, therefore, for coarser
grids. In particular, it is possible to consider the limit of vanishing kinetic undercooling.
Almgren [2] extended the analysis to the case of different diffusivities in the phases and
discussed both classical asymptotics and thin interface asymptotics. By choosing different
interpolation functions for free energy density and internal energy density an approximation
to second order can still be achieved but the gradient structure of the model and thermo-
dynamical consistency are lost. Andersson [4] showed, based on the work of Almgren, that
even an approximation of third order is possible by using high order polynomials for the
interpolation. McFadden, Wheeler, and Anderson [24] used an approach based on an en-
ergy and an entropy functional providing more degrees of freedom to tackle the difficulties
with unequal diffusivities in the phases while avoiding the loss of the thermodynamical
consistency. Again, both classical and thin asymptotics are discussed as well as the limit
of vanishing kinetic undercooling. In a more recent analysis Ramirez et al. [27] considered
a binary alloy also involving different diffusivities in the phases and obtained a better ap-
proximation by adding a small additional term to the mass flux (antitrapping mass current,
the ideas stem from [19]).

We aim to extend the results to general non-isothermal multi-component alloy systems
allowing for arbitrary phase diagrams with two phases. The models studied in the literature
usually use the free energy or the entropy as thermodynamical potentials (see e.g. [3, 26,
29, 30] and the discussion in [21]). It turns out that, in our context, the reduced grand
canonical potential ψ (see [23]) is more appropriate for the analysis. To motivate this let
us review some thermodynamics.

We will, for simplicity, consider a system with uniform density, which is in mechanical
equilibrium throughout the evolution. Changes is pressure or volume are neglected. In this
case, the Helmholtz free energy density f is an appropriate thermodynamical quantity to
work with. It is conveniently written as a function of the absolute temperature T and the
concentrations c = (c(1), . . . , c(N)) ∈ R

N , its derivatives being the negative entropy density
−s and the chemical potentials µ = (µ(1), . . . , µ(N)) ∈ R

N ,

df = −s dT + µ · dc.

Here, the central dot denotes the scalar product on R
N . The internal energy density is

e = f + Ts. For the reduced grand canonical potential ψ = − g
T
, g = f − µ · c being the
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grand canonical potential, we then obtain

dψ = d
(f − µ · c

−T

)

= e d
(−1

T

)

+ c · d
(µ

T

)

,

in particular u = (u(0), ũ) = (−1
T

, µ

T
) ∈ R

N+1 are the to (e, c) ∈ R
N+1 conjugated variables.

Assuming local thermodynamical equilibrium the vector u is continuous across the free
boundary in a sharp interface model. This will be important in the matched asymptotic
expansions studied later and therefore we will state the problem from the beginning in these
variables. We refer to Appendix A for more details on the thermodynamical background.

Next, we will briefly state a sharp interface problem for a liquid-solid phase change in
a non-isothermal multi-component system (cp. [17] for more details). Let Dl and Ds be
the domains occupied respectively by the liquid phase and the solid phase and let Γ be
the interface separating the phases. In Dl and Ds, conservation of mass and energy is
expressed by the balance equations

∂tψ,u(i)(u) = −∇ · Ji = −∇ ·
N∑

j=0

Lij∇(−u(j)), 0 ≤ i ≤ N, (1)

where ψ,u(0) = e and ψ,u(i) = c(i) denote derivatives of ψ, the Ji are the fluxes, and L =
(Lij)i,j is a matrix of Onsager coefficients which may depend on u. Constitutive relations
between ψ, L, and u may depend on the two phases s and l. On Γ it holds

u(i) is continuous, 0 ≤ i ≤ N, (2)

[−Ji]
l
s · ν =

[

−
N∑

j=0

Lij∇u(j)
]l

s
· ν = v[ψ,u(i)(u)]ls, 0 ≤ i ≤ N, (3)

αv = σκ − [ψ(u)]ls, (4)

where ν is the unit normal on Γ pointing into Dl, v is the normal velocity into the direction
ν, σ is the surface tension, κ the curvature, α a kinetic coefficient, and [·]ls denotes the
jump of the quantity in the brackets, for example [ψ(u)]ls = ψl(u) − ψs(u). Equations (2)
and (3) are also due to conservation of mass and energy. The Gibbs-Thomson conditions
(4) couples the motion of the phase boundaries to the thermodynamical quantities of the
adjacent phases such that, locally, entropy production is non-negative. For the case of a
system involving multiple phases this is shown in [17].

The above stated sharp interface model will be approximated by a phase field model of
the form

ω∂tϕ = σ∆ϕ − σ 1
ε2 w

′(ϕ) + 1
2ε

h′(ϕ)
(
ψl(u) − ψs(u)

)
, (5)

∂tψ,u(i)(u, ϕ) = ∇ ·
N∑

j=0

Lij∇u(j), 0 ≤ i ≤ N. (6)

Here, ϕ is the phase field variable. We have ϕ = 1 in the liquid phase and ϕ = 0 in the solid
phase. The function w is a double-well potential with minima in 0 and 1 corresponding to
the values of ϕ in the pure phases. The reduced grand canonical potentials ψl and ψs of
the pure phases are interpolated to obtain the system potential ψ(u, ϕ). For this purpose,
interpolation functions between 0 and 1 like h(ϕ) in the above equation are used.
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The approximation of the sharp interface model has to be understood in the following
sense: Assume that solutions (u, ϕ) to (5) and (6) can be expanded in ε-series of the form

u = u0 + εu1 + . . . , ϕ = ϕ0 + εϕ1 + . . .

and similarly in the interfacial regions using coordinates which are partially rescaled in ε
(the expansions are precisely stated in Section 2 as well as the following matching pro-
cedure). After matching the expansions, u0 and ϕ0 solve (1)-(4) where Dl = {ϕ0 = 1},
Ds = {ϕ0 = 0}, Γ is the set where ϕ0 jumps, and α is related to ω.

As long as the first order correction terms (u1, ϕ1) do not vanish the approximation of
the sharp interface model by the phase field model is said to be of order one. Otherwise
it is (at least) of order two. To see whether this is the case one has to derive and analyze
the equations fulfilled by (u1, ϕ1). Our result now reads as follows:

Main result: Consider a two-phase multi-component system with arbitrary

phase diagram. Then there is a possibly non-constant correction term to the

kinetic coefficient ω such that the sharp interface model (1)-(4) is approximated

by the phase field model (5), (6) to second order. The kinetic coefficient has

the structure ω = ω0 + εω1(u) where

ω1(u) = [ψ,u(u)]ls · L−1[ψ,u(u)]lsC

with some constant C depending on the interpolation function h.

A new feature compared to the existing results in [2, 4, 20] is that, in general, this
correction term depends on u, i.e. on temperature and chemical potentials. Indeed, up
to some numerical constants, the latent heat appears in the correction term obtained by
Karma and Rappel [20]. Analogously, the equilibrium jump in the concentrations enters
the correction term when an isothermal binary alloy is investigated. But from realistic
phase diagrams it can be seen that this jump depends on the temperature leading to a
temperature dependent correction term in the non-isothermal case.

Our model will be described in Section 2. In Section 3 we will apply matched asymptotic
expansions to deduce a linear parabolic O(ε)-correction problem. Given appropriate initial
and boundary conditions, zero is a solution to the correction problem. By numerical
simulations of suitable test problems we investigate the gain in efficiency due to the better
approximation. For this purpose, numerical approximations of solutions to the phase field
model with and without correction term are compared in Section 4.

2. Phase field model for multi-component systems

Let D ⊂ R
d, d = 1, 2, 3, be a spatial domain with Lipschitz boundary which is occupied

by an alloy and let I = [0, tmax] be a time interval. Further, let N ∈ N be the number of
components in the system.

Convention: Throughout this article, partial derivatives are sometimes denoted by
subscripts after a comma. For example, ψ,uϕ(u, ϕ) denotes the second-order mixed deriva-
tive of ψ(u, ϕ) with u and ϕ. Vectors of the size N + 1 are printed in bold face except for
the derivatives of ψ, ψs, and ψl with respect to u. Tensors of the size (N + 1) × (N + 1)
are underlined.

2.1. Motivation. The Allen-Cahn equation

ω0∂tϕ = ∆ϕ − 1

ε2
w′(ϕ)
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models the motion of an interface between two phases; here, ϕ is a phase field variable.
It describes the presence of one of the phases. In the regions occupied by a pure phases
ϕ takes values close to 0 or 1. These values are the absolute minima of the double-well
potential w. In transition regions connecting these regions occupied by the pure phases
ϕ varies smoothly between 0 and 1 due to the diffusion term ∆ϕ. The transition region
will turn out to have a thickness of order ε. By adding further terms a dependence of the
interface motion on thermodynamical quantities can be modeled.

The above differential equation is coupled to balance equations for energy and mass.
The thermodynamical potentials are postulated to be the derivatives of the entropy den-
sity (see [17]), and for the fluxes we postulate linear combinations of the corresponding
thermodynamical forces, hence with Onsager coefficients Lij we obtain

∂te = −∇ ·
(

L00(T, c, ϕ)∇ 1

T
+

N∑

j=1

L0j(T, c, ϕ)∇−µ(j)

T

)

,

∂tc
(i) = −∇ ·

(

Li0(T, c, ϕ)∇ 1

T
+

N∑

j=1

Lij(T, c, ϕ)∇−µ(j)

T

)

where T is the temperature and c = (c(1), . . . , c(N)) a vector of concentrations, c(i) describing
the presence of component i. Given the free energy density f = f(T, c), the chemical
potential corresponding to component i is the derivative of f with respect to c(i), i.e.
µ(i) = f,c(i). The internal energy density is e = f + sT , s = −f,T being the entropy density.

2.2. Model and assumptions. It turns out to be more appropriate to write down the
above conservation laws in terms of the variables u = (−1

T
, µ

T
) and to use the reduced grand

canonical potential as the thermodynamical potential (see Appendix A for the thermody-
namical relations). We define the set

ΣN :=
{

c = (c(1), . . . , c(N)) ∈ R
N :

N∑

i=1

c(i) = 1
}

,

and identify its tangential space in every point c with

TΣN :=
{

ũ = (u(1), . . . , u(N)) ∈ R
N :

N∑

i=1

u(i) = 0
}

.

Moreover we define

Y := R×TΣN .

The problem then consists of finding smooth functions

ϕ : I × D → R, u = (u(0), . . . , u(N)) : I × D → Y

that solve the partial differential equations

(ω0 + εω1(u))∂tϕ = ∆ϕ − 1

ε2
w′(ϕ) +

1

2ε
h′(ϕ)Ψ(u), (7)

∂tψ,u(i)(u, ϕ) = ∇ ·
N∑

j=0

Lij∇u(j), 0 ≤ i ≤ N. (8)

5



The first equation is a forced Allen-Cahn equation for the phase field variable ϕ. The
coupling to the thermodynamical quantities via the last term in that equation will be
clarified below. We are interested in the limit ε → 0. The function ω1 : Y → R is some
correction term in order to obtain quadratic convergence and will be determined later. The
derivatives of the reduced grand canonical potential are the conserved quantities energy
e = ψ,u(0) and concentrations c(i) = ψ,u(i), 1 ≤ i ≤ N (see the Appendix A for the exact
relation between (e, c) and the derivatives of ψ with respect to u). The equations in (7) are
the balance equations for these conserved quantities. Concerning all the other functions
and constants appearing in the above equations we make the following definitions and
assumptions:

A. ω0 is a positive constant.
B. w : R → R

+ is some nonnegative smooth double well potential which attains its
global minima in 0 and 1, more precisely we have

w(ϕ) > 0 if ϕ 6∈ {0, 1},
w(0) = w(1) = 0, w′(0) = w′(1) = 0, w′′(0) = w′′(1) > 0.

Besides w is symmetric with respect to 1
2
, i.e. w(1

2
+ ϕ) = w(1

2
− ϕ).

C. h : R → R is a monotone symmetric interpolation function between 0 and 1, i.e.

h(0) = 0, h(1) = 1, h(1
2

+ ϕ) = 1 − h(1
2
− ϕ), h′(ϕ) ≥ 0.

Furthermore we require that

h′(0) = h′(1) = 0.

D. ψ : Y × R → R is smooth and given as interpolation between the reduced grand
canonical potentials of the two possible phases s and l, i.e.

ψ(u, ϕ) = ψs(u) + h̃(ϕ)
(
ψl(u) − ψs(u)

)

with a function h̃ satisfying Assumption C. Observe that in the case h̃ 6= h the
model lacks thermodynamical consistency, i.e. an entropy inequality might not hold
(see [26, 20, 2]). In (7) we used the abbreviation

Ψ(u) := ψl(u) − ψs(u).

The function ψ is convex in u so that (8) becomes parabolic. We will frequently use
ψ(u, ϕ), ψs(u) and ψl(u) as a function for arbitrary u ∈ R

N+1 which motivates one
to write down the partial derivative ψ,u(k)(u, ϕ). But all the results do not depend
on the extension as only arguments u ∈ Y and derivatives along Y will be used.

E. The matrix L = (Lij)
N
i,j=0 of Onsager coefficients is constant, symmetric, positive

semi-definite, and the kernel is exactly Y ⊥ = span{(0, 1, . . . , 1) ∈ R
N+1}. Observe

that then
N∑

i=1

Lij = 0, 0 ≤ j ≤ N ⇒ ∂t

(
N∑

i=1

ψ,u(i)(u, ϕ)

)

= 0 ⇒ ∂t(ψ,u(u, ϕ)) ∈ Y.

Besides for each v ∈ Y the linear system Lξ = v has exactly one solution ξ ∈ Y
which we will denote with ξ = L−1v.
The handling of a dependence on u is straightforward (cp. the remark at the end of
Subsection 3.5 on page 12), and a dependence of the diffusivities on the phase has
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already been considered in [2]. Therefore, the analysis is restricted to this simple
case.

2.3. Evolving curves. To relate the diffuse interface model to a sharp interface model,
the method of formally matched asymptotic expansions will be used. The procedure is
outlined with great care in [15, 13]. Here, we will only sketch the main ideas for the
two-dimensional case, i.e. d = 2.

For some ε > 0 we will denote a smooth solution to (7) and (8) with (u(t, x; ε), ϕ(t, x; ε)).
The family of curves

Γ(t; ε) :=
{

x ∈ D : ϕ(t, x; ε) = 1
2

}

, ε > 0, t ∈ I, (9)

is supposed to be a set of smooth curves in D. In addition, we assume that they are
uniformly bounded away from ∂D and depend smoothly on (ε, t) such that if ε → 0 some
limiting curve Γ(t; 0) is obtained. With Dl(t; ε) and Ds(t; ε) we denote the regions occupied
by the liquid phase (where ϕ(t, x; ε) > 1

2
) and the solid phase (where ϕ(t, x; ε) < 1

2
)

respectively.
Let γ(t, s; 0) be a parametrization of Γ(t; 0) by arc-length s for every t ∈ I. The vector

ν(t, s; 0) denotes the unit normal on Γ(t; 0) pointing into Dl(t; 0) and τ(t, s; 0) := ∂sγ(t, s; 0)
denotes the unit tangential vector. The orientation is such that (ν, τ) is positively oriented.

We assume that the curves Γ(t; ε) can be parametrized over Γ(t; 0) using some distance
function d(t, s; ε) by

γ(t, s; ε) := γ(t, s; 0) + d(t, s; ε)ν(t, s; 0). (10)

Close to ε = 0 we assume that there is the expansion d(t, s; ε) = d0(t, s) + ε1d1(t, s) +
ε2d2(t, s) + O(ε3). As d(t, s; 0) ≡ 0 we conclude d0(t, s) ≡ 0.

Also the curvature κ(t, s; ε) and the normal velocity v(t, s; ε) of Γ(t; ε) are smooth and
can be expanded (see Appendix C). We get

κ(t, s; ε) = κ(t, s; 0) + ε
(
κ(t, s; 0)2d1(t, s) + ∂ssd1(t, s)

)
+ O(ε2),

v(t, s; ε) = ∂tγ(t, s; ε) · ν(t, s; ε) = v(t, s; 0) + ε∂◦d1(t, s) + O(ε2);

here, ∂◦ = ∂t − vτ∂s denotes the (intrinsic) normal time derivative, vτ = ∂tγ · τ being the
non-intrinsic tangential velocity (cp. Appendix B).

2.4. Definition of outer variables. We suppose that in each domain E such that its
closure E with respect to the topology on R

d fulfills E ⊂ D\Γ(t; 0) the solution can be
expanded in a series close to ε = 0 (outer expansion):

u(t, x; ε) =

K∑

k=0

εkuk(t, x) + O(εK+1), ϕ(t, x; ε) =

K∑

k=0

εkϕk(t, x) + O(εK+1). (11)

Near Γ(t; 0), we can define the coordinates (s, r), r being the signed distance of x from
Γ(t; 0) (positive into direction ν, i.e. if x ∈ Dl(t; 0)). Hence, in a neighborhood of Γ(t; 0)
we can write for r 6= 0

û(t, s, r; ε) = u(t, x; ε), ϕ̂(t, s, r; ε) = ϕ(t, x; ε). (12)
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2.5. Definition of inner variables. Let z be the 1
ε
-scaled signed distance of x from

Γ(t; 0), i.e. z = r
ε
, and let U(t, s, z; ε) := û(t, s, r; ε), Φ(t, s, z; ε) := ϕ̂(t, s, r; ε). We now

suppose that we can expand U and Φ in these new variables as follows:

U(t, s, z; ε) =

K∑

k=0

εkU k(t, s, z) + O(εK+1), (13)

Φ(t, s, z; ε) =
K∑

k=0

εkΦk(t, s, z) + O(εK+1). (14)

2.6. Matching conditions. For the two expansions for u to match in the limit as ε → 0
there are certain conditions (see Appendix D for the derivation): As z → ±∞ for all
i ∈ {0, . . . , N}

U
(i)
0 (z) ≈ u

(i)
0 (0±), (15)

U
(i)
1 (z) ≈ u

(i)
1 (0±) + (∇u

(i)
0 (0±) · ν)z, (16)

∂zU
(i)
1 (z) ≈ ∇u

(i)
0 (0±) · ν, (17)

∂zU
(i)
2 (z) ≈ ∇u

(i)
1 (0±) · ν +

(
(ν · ∇)(ν · ∇)u

(i)
0 (0±)

)
z (18)

and analogously for Φ and ϕ. Here, for a function g(t, x) = ĝ(t, s, r),

g(0+) := lim
r↘0

ĝ(t, s, r), g(0−) := lim
r↗0

ĝ(t, s, r),

where r = dist(x, Γ(t; 0)). Remember that r > 0 if and only if x ∈ Dl(t; 0), and that r < 0
if and only if x ∈ Ds(t; 0).

3. Asymptotic analysis

3.1. Outer solutions. In the region away from Γ(t; 0) we plug the expansions (11) into
the differential equations (7) and (8). All terms that appear are expanded in ε.

To leading order O(ε−2) we obtain from (7) the identity 0 = −w′(ϕ0). But the only
stable solutions to this equation are the minima of w, hence ϕ0 ≡ 0 or ϕ0 ≡ 1. We define
Ds(t; 0) as the set of all points with ϕ0 = 0 and similarly Dl(t; 0) with ϕ0 = 1.

To the next order O(ε−1) we obtain

0 = −w′′(ϕ0)ϕ1 +
1

2
h′(ϕ0)Ψ(u0). (19)

As ϕ0 = 0 or = 1, using the Assumptions B and C we obtain ϕ1 ≡ 0 as the only solution.
To leading order O(ε0) we obtain from (8), written as a vectorial equation,

∂t(ψ,u(u0, ϕ0)) = L∆u0. (20)

Depending on ϕ0 we have ψ,u(u0, ϕ0) = (ψl),u(u0) or ψ,u(u0, ϕ0) = (ψs),u(u0). In both
cases (20) is a parabolic equation for u0 by Assumption D.

To order O(ε1) we obtain

∂t

(
(ψ,uu)(u0, ϕ0)u1

)
= L∆u1 (21)

where we already made use of ϕ1 ≡ 0. Assumption D states that ψ is convex so that (21)
is a linear parabolic equation for u1.
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To determine boundary conditions for (20) and (21) on Γ(t; 0) we plug the expansions
(13) and (14) into the differential equations.

3.2. Inner solutions to leading order. In Appendix B we describe how the derivatives
with respect to (t, x) transform into derivatives with respect to (t, s, z). To leading order
O(ε−2) we get from (7)

0 = ∂zzΦ0 − w′(Φ0). (22)

By (9) and the assumption that (14) holds true for ε = 0 we have Φ0(0) = 1
2
. The matching

conditions (15) imply

Φ0(t, s, z) → ϕ(t, s; 0+) = 1 as z → ∞,

Φ0(t, s, z) → ϕ(t, s; 0−) = 0 as z → −∞.

Therefore Φ0(z) only depends on z. Furthermore Φ0 is monotone, approximates the values
at ±∞ exponentially fast and fulfills Φ0(−z) = 1 − Φ0(z).

For the conserved variables we get from (8)

0 = L∂zzU 0. (23)

Using Assumption E we have ∂zzU 0 = L−10 = 0 in Y so that U 0 is affine linear in z. By
the matching conditions (15), U 0 has to be bounded as z → ±∞, hence we see that U 0

must be constant in z which means U 0 = U 0(t, s). The matching condition (15) implies
that U 0(t, s) is exactly the value of u0 in the point γ(t, s; 0) ∈ Γ(t; 0) from both sides of
the interface. In particular,

u0 is continuous across the interface Γ(t; 0). (24)

3.3. Inner solutions to first order. To order O(ε−1) equation (7) yields

−ω0v∂zΦ0 = ∂zzΦ1 − κ∂zΦ0 − w′′(Φ0)Φ1 + 1
2
h′(Φ0)Ψ(U 0). (25)

From the solution to (19) we get ϕ1(t, s, 0
±) = 0. Besides ∇ϕ0(t, s, 0

±) · ν = 0 as ϕ0

is constant. Due to the matching conditions (16) we have Φ1 → 0 as z → ±∞. The
operator L(Φ0)b = ∂zzb − w′′(Φ0)b is self-adjoint with respect to the L2-product over R.
Differentiating (22) with respect to z we obtain that ∂zΦ0 lies in the kernel of L(Φ0). Since
Φ0(−z) = 1−Φ0(z) we get with the help of Assumption C that ∂zΦ0 and h′(Φ0) are even,
hence (25) allows for an even solution and in the following we will assume that Φ1 is even.

We can deduce a solvability condition by multiplying the equation with ∂zΦ0 and inte-
grating over R with respect to z:

0 =

∫

R

(
(κ − ω0v)(∂zΦ0(z))2 − 1

2
Ψ(U 0)h

′(Φ0(z))∂zΦ0(z)
)
dz = (κ−ω0v)I − 1

2
Ψ(U 0) (26)

where

I =

∫

R

(∂zΦ0)
2dz.

The system (8) becomes to the order O(ε−1)

−v∂zψ,u(U 0, Φ0) = −v∂z

(
(ψs),u(U 0) + h̃(Φ0)Ψ,u(U 0)

)
= L∂zzU 1.

9



As U 0 = U 0(t, s) we obtain Ψ,u(U 0) = [ψ,u(u0)]
l
s = (ψl),u(u0) − (ψs),u(u0) for all z. We

integrate two times with respect to z and get

U 1 = −L−1
(

v

∫ z

0

ψ,u(U 0, Φ0)dz′ − Az
)

+ ū (27)

∼ −L−1
(

v(ψl),u(U 0)z − Az − v[ψ,u(u0)]
l
sH̃

)

+ ū as z → ∞

∼ −L−1
(

v(ψs),u(U 0)z − Az − v[ψ,u(u0)]
l
sH̃

)

+ ū as z → −∞

where A ∈ R×ΣN (observe that then vψ,u − A ∈ Y which allowed us to use Assumption
E to invert L) and ū ∈ Y are two integration constants and

H̃ =

∫ ∞

0

(1 − h̃(Φ0(z)))dz =

∫ 0

−∞
h̃(Φ0(z))dz.

Here, we used the fact that Φ0 converges to constants exponentially fast, so that the integral
∫ z

0
has been replaced by

∫ ∞
0

while the linear terms remain. Using (16) we derive

u1(t, s, 0
±) = ū + vL−1[ψ,u(u0)]

l
sH̃ (28)

which means, in particular, that

u1 is continuous across Γ(t; 0). (29)

With (17) the following jump condition is obtained at the interface:

[−L∇u0]
l
s · ν := −L∇u0(t, s, 0

+) · ν + L∇u0(t, s, 0
−) · ν

=
(

v(ψl),u(u0) − A
)

−
(

v(ψs),u(u0) − A
)

= v[ψ,u(u0)]
l
s. (30)

3.4. Inner solutions to second order. Using the fact that Φ0 only depends on z the
phase field equation to order O(ε0) gives

− ω0v∂zΦ1 − ω1(u0)v∂zΦ0 − ω0(∂
◦d1)∂zΦ0

= ∂zzΦ2 − w′′(Φ0)Φ2 + (∂sd1)
2∂zzΦ0 − κ2(z + d1)∂zΦ0 − ∂ssd1∂zΦ0+

− κ∂zΦ1 − 1
2
w′′′(Φ0)(Φ1)

2 + 1
2
Ψ(U 0)h

′′(Φ0)Φ1 + 1
2
Ψ,u(U 0) · U 1h

′(Φ0).

To guarantee that Φ2 exists there is again a solvability condition which is obtained by
multiplying with ∂zΦ0 and integrating over R with respect to z. The Φ1-terms in this
condition vanish as can be seen as follows:

∫

R

(

(κ − ω0v)∂zΦ1 + 1
2
w′′′(Φ0)(Φ1)

2 − 1
2
Ψ(U 0)h

′′(Φ0)Φ1

)

∂zΦ0dz

=

∫

R

(

(κ − ω0v)∂zΦ1∂zΦ0 − w′′(Φ0)Φ1∂zΦ1 + 1
2
Ψ(U 0)h

′(Φ0)∂zΦ1

)

dz

=2(κ − ω0v)

∫

R

∂zΦ1∂zΦ0dz −
∫

R

∂zzΦ1∂zΦ1dz

10



where we used (25) to obtain the last identity. Since ∂zΦ1 · ∂zΦ0 and ∂zzΦ1 · ∂zΦ1 are odd
the integrals in the last line vanish. Defining the constants

H :=

∫ ∞

0

z∂z(h ◦ Φ0)(z)dz = −
∫ 0

−∞
z∂z(h ◦ Φ0)(z)dz,

J :=

∫ ∞

0

∂z(h ◦ Φ0)(z)

∫ z

0

(1 − (h̃ ◦ Φ0)(z
′))dz′dz

=

∫ 0

−∞
∂z(h ◦ Φ0)(z)

∫ 0

z

(h̃ ◦ Φ0)(z
′)dz′dz

and using (27) for the remaining U 1-term, a short calculation shows

−
∫

R

1
2
Ψ,u(U 0) · U 1∂z(h ◦ Φ0)dz

= − 1
2
[ψ,u(u0)]

l
s ·

(

ū − L−1[ψ,u(u0)]
l
sH + L−1[ψ,u(u0)]

l
s 2J

)

= − 1
2
[ψ,u(u0)]

l
s · u1 + v [ψ,u(u0)]

l
s · L−1[ψ,u(u0))]

l
s

(H+H̃−2J)
2

where we used (28) to get the last equality.
The whole solvability condition then becomes

0 =
[
−ω0∂

◦ + ∂ss + κ2
]
d1 I − 1

2
[ψ,u(u0)]

l
su1

+ v
(

− ω1(u0)I + [ψ,u(u0)]
l
s · L−1[ψ,u(u0)]

l
s

H+H̃−2J
2

)

. (31)

We remark that ∂◦d1 and (∂ss +κ2)d1 are the first order corrections of the normal velocity
and the curvature of Γ(t, s; ε) (see Appendix C).

In the following, whenever we will evaluate ψ and its derivatives at (U 0, Φ0) this will
be denoted by a superscript 0. The conservation laws (8) yield to order O(ε0)

−v∂z(ψ
0
,uu

U 1 + ψ0
,uϕΦ1) + ∂◦ψ0

,u − (∂◦d1)∂zψ
0
,u = L (∂zzU 2 − κ∂zU 1 + ∂ssU 0) (32)

where we used that U 0 does not depend on z. Integrating once with respect to z leads to

− L∂zU 2 = v∂z

(
ψ0

,uu
U 1 + ψ0

,uϕΦ1

)
− B

︸ ︷︷ ︸

(i)

+

∫ z

0

((∂◦d1)∂zψ
0
,u − ∂◦ψ0

,u)dz′

︸ ︷︷ ︸

(ii)

−κLU 1
︸ ︷︷ ︸

(iii)

+L∂ssU 0z (33)

where B ∈ Y is an integration constant. We want to derive a correction to the jump
condition (30), i.e. a jump condition for u1. Therefore we are interested in the terms

contributing to ∇u1 · ν in (18). Applying (16) to Φ1, U 1 and using the fact that h̃′(0) =

h̃′(1) = 0 we see that

(i) ∼ v(ψl),uu(u0)u1 − B + (. . . )z as z → ∞,

∼ v(ψs),uu(u0)u1 − B + (. . . )z as z → −∞.

11



Furthermore

(ii) = (∂◦d1)(ψ
0
,u

∣
∣z

0
) −

∫ z

0

[∂◦((ψs)
0
,u) + (∂◦Ψ0

,u)(h̃ ◦ Φ0)(z
′)]dz′

∼ 1
2
(∂◦d1)[ψ,u(u0)]

l
s − (∂◦(ψl),u(u0))z + ∂◦[ψ,u(u0)]

l
sH̃ as z → ∞,

∼ −1
2
(∂◦d1)[ψ,u(u0)]

l
s − (∂◦(ψs),u(u0))z + ∂◦[ψ,u(u0)]

l
sH̃ as z → −∞

where for the first term the symmetry of h̃ in Assumption C has been used. In (iii) we use
(28) again to obtain

(iii) = κLu1(t, s, 0) + (. . . )z as z → ±∞.

Finally, using (29), we get for the first order correction of the jump condition (30) at the
interface:

[−L∇u1]
l
s · ν = v[ψ,uu(u0)]

l
s · u1 + (∂◦d1)[ψ,u(u0)]

l
s. (34)

3.5. Summary of the leading order problem and the correction problem. The
problem to leading order consists of the bulk equation (20) which is coupled to the condi-
tions (24), (30) and (26) on Γ(t; 0):

(LOP) Find a function u0 : I × D → Y and a family of curves {Γ(t; 0)}t∈I

separating D into two domains Dl(t; 0) and Ds(t; 0) such that

∂t((ψl),u(u0)) = L∆u0, in Dl(t; 0), t ∈ I,

∂t((ψs),u(u0)) = L∆u0, in Ds(t; 0), t ∈ I,

and such that on Γ(t; 0) there holds for all t ∈ I:

u0 is continuous,

[−L∇u0]
l
s · ν = v[ψ,u(u0)]

l
s,

ω0v = κ − 1

2I
[ψ(u0)]

l
s

where ν is the unit normal to Γ(t; 0) pointing into Dl(t; 0).

If we choose

ω1 = ω1(u0) := [ψ,u(u0)]
l
s · L−1[ψ,u(u0)]

l
s

H + H̃ − 2J

2I
(35)

then the correction problem consisting of (21), (29), (34) and (31) reads as follows:

(CP) Let (u0, {Γ(t; 0)}t) be a solution to (LOP) and let l(t) be the length of
Γ(t; 0) and set SI = {(t, s) : t ∈ I, s ∈ [0, l(t))}. Then we need to find functions
u1 : I × D → Y and d1 : SI → R such that

∂t((ψl),uu(u0)u1) = L∆u1, in Dl(t; 0), t ∈ I,

∂t((ψs),uu(u0)u1) = L∆u1, in Ds(t; 0), t ∈ I

and such that on Γ(t; 0) there holds for all t ∈ I:

u1 is continuous,

[−L∇u1]
l
s · ν = v[ψ,uu(u0)]

l
su1 + (∂◦d1)[ψ,u(u0)]

l
s,

ω0(∂
◦d1) = (∂ss + κ2)d1 −

1

2I
[ψ,u(u0)]

l
s · u1.

12



Obviously, (u1, d1) ≡ 0 is a solution given appropriate boundary conditions on ∂D. If
this solution is unique then the leading order problem is approximated to second order in
ε by the phase field model. The calculation in Appendix C shows that (CP) is in fact the
linearization of (LOP). We point out that the choice (35) is crucial in order to guarantee
that the undesired terms in (31) vanish.

Remark: If the diffusivity matrix L depends on u then equation (32) becomes

− v∂z(ψ,uu

0U 1 + ψ0
,uϕΦ1) + ∂◦ψ0

,u − (∂◦d1)∂zψ
0
,u = L(U 0)∂zzU 2

+ ∂z

(
L,u(U 0)U 1∂zU 1

)
+ L,u(U 0)(∂sU 0)

2 + L(U 0)∂ssU 0 − κL(U 0)∂zU 1

resulting in

−L∂zU 2 = (i)+(ii)−κL(U 0)U 1
︸ ︷︷ ︸

=(iii)

+ L,u(U 0) · U 1∂zU 1
︸ ︷︷ ︸

=:(iv)

+
(
L,u(U 0)(∂sU 0)

2 +L(U 0)∂ssU 0

)
z

instead of (33). The matching conditions (15), (16) and (17) yield

(iv) = L,u(u0) · u1∇u0(0
±) · ν + (. . .)z as z → ±∞.

This leads to an additional term in the jump condition of the correction problem. The
condition (34) now reads

[−L(u0)∇u1 − L,u(u0) · u1∇u0]
l
s · ν = v[ψ,uu(u0)]

l
su1 + (∂◦d1)[ψ,u(u0)]

l
s,

but this is still consistent with the above statement that (CP) is the linearization of (LOP)
as the additional term results from expanding L in a straightforward way.

4. Numerical simulations

Numerical simulations were performed in order to show that convergence to second or-
der indicated by the analysis can really be obtained. For this purpose, we analyzed the
ε-dependence of numerical solutions to the phase field system and compared the numerical
solutions with analytical solutions to the sharp interface problem if available. The differ-
ential equations of the phase field system were discretized in space and time using finite
differences on uniform grids with spatial mesh size ∆x and time step ∆t. The update in
time was explicit, and to guarantee stability we chose ∆t . ∆x2. If not otherwise stated
we decreased the mesh size ∆x until we were sure that the error due to the discretization
became inessential.

The order of convergence can be estimated by the following procedure: Assuming that
the ε-dependence of the error can approximately be expressed by

Err(ε) = err εk + higher order terms

with a constant err and an exponent k > 0 which we are interested in. Given some m > 1
(we often used m =

√
2) one can derive up to higher terms

Err(ε) − Err( ε
m

)

Err( ε
m

) − Err( ε
m2 )

= ( 1
m

)−k = mk (36)

from which one can calculate k by inserting the measured values for Err(ε).
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4.1. Scalar case in 1D. Let d = 1 and N = 1, i.e. we consider a pure material. We set
u = u(0) and postulate the reduced grand canonical potential

ψ(u, ϕ) = 1
2
cvu

2 + λ(um − u)(1 − h(ϕ)), i.e. Ψ(u) = λ(u − um),

where λ, um and cv are constants. Choosing w(ϕ) = 9
2
ϕ2(1 − ϕ)2 as double well potential

we obtain:

ε(ω0 + εω1)∂tϕ = εσ∂xxϕ − 9σ
ε
ϕ(1 − ϕ)(1 − 2ϕ) + 1

2
λ(u − um)h′(ϕ), (37)

∂tψ,u = ∂t(cvu − λ(1 − h̃(ϕ))) = K∂xxu. (38)

This system differs from typical phase field systems (see e.g. [26]) by the term εω1. With
these equations the following sharp interface problem is approximated:

cv∂tu = K∂xxu, x 6= p(t),

u is continuous,

λp′(t) = [−K∂xu]ls, x = p(t),

ω0p
′(t) = λ(um − u), x = p(t),

where p(t) denotes the position of the interface at time t. Imposing the boundary condition
u → u∞ as x → ∞ there is the following travelling wave solution: Setting ui = c−1

v λ + u∞
we define

p(t) = v t = ω−1
0 λ(um − ui)t, (39)

u = ui, x ≤ v t, (40)

u = u∞ + (ui − u∞) exp
(
−K−1cvv(x − v t)

)
, x > v t. (41)

Choosing h̃(ϕ) = h(ϕ) = ϕ2(3− 2ϕ) we compute I = 1
2
, H + H̃ − 2J = 19

90
. Furthermore if

λ = 0.5, um = −1.0, u∞ = −2.0, cv = 1.0, ω0 = 0.25, K = 1.0, σ = 1.0

we obtain the velocity v = 1.0, the value ui = −1.5 at the interface and by (35) the
correction term ω1 ≈ 0.013194444.

We solved the differential equations on the time interval I = [0, 0.1] for several values
for ε. We chose Dirichlet boundary conditions for u given by the travelling wave solution
(40),(41) to the sharp interface model and homogeneous Neumann boundary conditions
for ϕ. To initialize ϕ we set

ϕ(0, x) := 1
2
(1 + tanh(3

2
z)) = Φ0(z), z = x−x0

ε
(42)

with some suitable initial transition point x0 such that the transition region (the set {ϕ ∈
(δ, 1−δ)} for some small δ, e.g. δ = 10−3) remains away from the outer boundary during the
evolution. The function Φ0 is the solution to (22) with the boundary conditions Φ0(z) →
0, 1 as z → ∞,−∞. Initial values for u were obtained by matching outer and inner solution
to leading and first order obtained from the asymptotic expansions (see e.g. [22])

u(0, x) = u0(0, x) + εu1(0, x) + U 0(0, z) + εU 1(0, z) − common part.

The function u0(0, x) has the profile of the travelling wave solution:

u0(0, x) =

{

u∞ + (ui − u∞) exp(− cv

K
v(x − x0)), x > x0,

ui, x ≤ x0.
(43)
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As we want u1 ≡ 0 to be a solution to the correction problem we chose u1(0, x) = 0.
By equations (23) and (24), U 0 ≡ ui is the interface value which is constant in normal
direction. Equation (17) implies ∂zU 1(z) → ∇ · u0(x

−
0 ) = 0 as z → −∞. As u1(0, x) = 0

we have ū = − v
K

λH̃ by (28). With (27) we see that A = v(ψs),u(U 0) which yields

U 1(0, z) = v
K

{

λ − z +
∫ z

0
(1 − h̃ ◦ ϕ0)(z

′)dz′ − H̃, z > 0,

λ
∫ 0

z
(h̃ ◦ ϕ0)(z

′)dz′ − H̃, z < 0.

The common part is ui − v λ
K

z if z > 0 and ui if z < 0.

The phase boundaries {ϕ = 1
2
} were determined by linearly interpolating the values

at the grid points. Subtracting from the computed transition point the exact position
given by (39) we got up to the sign the values in Figure 1 on the left. We found that
when considering the correction term the interface was too slow but the numerical results
indicated a quadratic convergence. Without the correction term ω1 the interface was too
fast and larger errors occurred indicating only linear convergence in ε. Similar results
concerning the order of convergence hold true if

u(0, x) = u0(0, x) or ϕ = χ[x0,∞]

was chosen as initial data instead of the above smooth functions. The only difference is
that then the errors are larger.

In the above simulations, the transition regions were resolved by more than 100 grid
points to determine the error and the convergence behavior accurately. In applications,
such resolutions of the interface are much too costly. Therefore, we simulated the same
problem over the larger time interval I = [0, 8.0] with much less grid points in the interface.
We found that the ε/∆x ratio should be at least 5

√
2. The deviations at t = 8.0 are given

in the following table:

ε 0.4 0.4/
√

2 0.2 0.2/
√

2 0.1 0.1/
√

2 0.05

with correction -0.0601 -0.0354 -0.0280
without corr. 0.5867 0.4155 0.2867 0.2020 0.1355 0.0948 0.0502

Again the errors are much larger without correction term. To get an error as obtained
with correction term we need to take ε and ∆x eight times smaller. If explicit methods
are used the expenditure becomes 8 times larger if the grid constant is halved due to the
stability constraint ∆t . ∆x2 for the time step. Hence, in our example, the costs without
the correction term are 83 = 512 times larger to obtain the same size of the error.

4.2. Scalar case in 2D. Now, let N = 1 and d = 2 and consider the same reduced grand
canonical potential as in Subsection 4.1. Instead of the smooth double well potential we
used the obstacle potential

wob(ϕ) =

{
8
π2 ϕ(1 − ϕ), 0 ≤ ϕ ≤ 1,

∞, elsewhere.

Then (37) has to be replaced by a variational inequality for ϕ but the asymptotic analysis
can be done in a similar way (see [6]). The main advantage of such a potential is that
the stable minima 0 and 1 of w are attained outside of the thin interfacial layer so that
the phase field equations only have to be solved in a small tube around the approximated
interface. The equation (38) for u remains the same except that ∂xx is replaced by the
Laplacian ∆.
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Figure 1. On the left: deviations of the phase boundaries measured from
the exact interface position given by (39) over ε; the resolution of the tran-
sition region is very fine such that the error caused by the discretization is
negligible; the dashed line corresponds to a linear convergence behavior in ε.
On the right: behavior of the numerically computed convergence rates (cp.
(36)) in time for the angle β = 15◦ (see Section 4.2).

We chose the following constants:

λ = 0.5, um = 2.0, cv = 1.0, ω0 = 0.25, K = 0.1, σ = 0.1.

We simulated the evolution of a radial interface. Initially, for ϕ we used the profile

ϕ(0, x) =







0, −∞ < z ≤ −π2

8
,

1
2
(1 + sin(4z

π
)), −π2

8
≤ z ≤ π2

8
,

1, π2

8
≤ z < ∞,

z =
r − r0

ε
,

which is the solution to the variational inequality corresponding to (22) when restricted

to a radial direction. Here, r =
√

x2 + y2 is the radius and we chose r0 = 0.8. With

h̃(ϕ) = h(ϕ) = ϕ2(3 − 2ϕ) we get the constants I = 1
2
, H + H̃ − 2J = 23π2

1024
and hence

ω1 = λ2

K
H+H̃−2J

2I
≈ 0.554201419. For u initially the 1D profile (43) of the travelling wave

solution in Subsection 4.1 in radial direction was used. As in the 1D case ui = −1.5,
v = ω0

λ
(um − ui) = 0.25 and u∞ = −2.0.

We considered the domain D = [0, 8]2 and chose the grid constant ∆x = 0.02. At
different times we measured the distance of the level set ϕ = 1

2
from the origin depending

on the angle β with the x-direction. Again, the values at the grid points were linearly
interpolated. At t = 1.5 we obtain the following results:

without correction with correction
β = 20◦ β = 15◦ β = 0◦ β = 20◦ β = 15◦ β = 0◦

ε = 0.2 2.398226 2.398924 2.399661 1.851693 1.852492 1.853469
ε = 0.14 2.277925 2.278367 2.278668 1.889131 1.889779 1.890377
ε = 0.1 2.180093 2.180095 2.179580 1.910175 1.910433 1.910311

k 0.596551 0.589719 0.576271 1.662103 1.704448 1.777240
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The distances as well as the order of convergence (cp. the procedure around equation (36)
for its derivation) do not essentially depend on the angle. The order of convergence is much
better if the correction term is taken into account. Besides we see that the change in the
radius when changing ε is much smaller if a correction ω1 is considered. In Figure 1 the
time behavior of the convergence rates is shown indicating a slight decrease.

4.3. Binary isothermal systems. To model phase transformations in systems with non-
trivial, non-linearized phase diagrams (see e.g. Figure 2) we need to introduce a u-
dependent correction term. In this subsection we will demonstrate that our approach
in fact makes it possible to obtain a superior approximation behavior also in this case.

Since ũ = (u(1), u(2)) ∈ TΣ2 it is sufficient to consider u(1). We postulate the reduced
grand canonical potential

ψ(u(0), u(1), ϕ) = 1
2

(
(u(0))2 + (u(1))2

)
+

(
λ(u(0) − um) + G(u(1))2(3 − 2u(1))

)
(1 − h̃(ϕ))

with constants um = −1.0, λ = G = 0.1. The two phases l and s are in equilibrium if
[ψ(u)]ls = 0 (see Appendix A). Here, the equilibrium condition reads

u(0) = um − G
λ
(u(1))2(3 − 2u(1)) (44)

from which we can construct the phase diagram in Figure 2 by the relations T = −1
u(0) and

c = ψ,u(1) = u(1) − 6Ghs(ϕ)u(1)(1 − u(1)) where hs(ϕ) := 1 − h̃(ϕ). Besides we get

[c(u(1))]ls = 6Gu(1)(1 − u(1)).

For the isothermal case, i.e. u(0) is constant, we solved (7) and

∂tc(u
(1)) = ∂tψ,u(1)(u(1)) = d∂xxu

(1)

in the domain D = [0, 28] for t ∈ [0, 40] numerically. We imposed homogeneous Neumann
boundary conditions and set d = 0.4. Initially we chose for u(1) a profile as in (43) for u(0),

u(1)(0, x) =

{

u
(1)
∞ + (ui − u

(1)
∞ ) exp(−1

d
v(x − x0)), x > x0,

u
(1)
i , x ≤ x0.

(45)

Writing u(1) as a function in c we get

u(1) =

{

c, hs(ϕ) = 0,
1

12Ghs(ϕ)
(6Ghs(ϕ) − 1 +

√

(6Ghs(ϕ) − 1)2 + 24Ghs(ϕ)c), hs(ϕ) > 0.

Due to the fraction this is numerically instable as hs(ϕ) → 0. Defining β = 6Ghs(ϕ) we
set u(1) = c if β ≤ 10−4, but checks were done with different cut off values. The following
results do not essentially depend on the cut off value.

Choosing u
(1)
i = 0.6 for the interface value, the equilibrium concentrations are c(l) = 0.6

and c(s) = 0.456. To model the solidification of an alloy of concentration 0.456, we let

decay c(l) and u(1) exponentially to this value by setting u
(1)
∞ = 0.456. For u(1) = u

(1)
i = 0.6

we obtain in equilibrium u
(0)
eq ≈ −1.648 and an equilibrium temperature of Teq ≈ 0.6067.

To make the front move we initialized with an undercooling of T = 0.55, i.e. u(0) ≡ −1
0.55

.
Formula (39) yields an estimation of the initial velocity of the front: with ω0 = 0.08 we

have v ≈ λ
ω0

(u
(0)
eq − u(0)) ≈ 0.2. The initial position of the front x0 = 8.0 was appropriately

chosen such that there were not much interactions with the external boundary. Initial
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Figure 2. On the left: phase diagram for a binary mixture computed from
(44). On the right: profiles of the solution c for the binary system in Section
4.3 during the evolution, ε = 0.4; the figure indicates already that there is
only a negligible influence of the boundary conditions on the evolution as
gradients of c don’t vanish only in the transition region. But simulations on
domains with different lengths were performed to verify this conjecture.

values for ϕ again were defined as in (42). By (35), the correction term is (h and h̃ are

chosen as before) ω1(u
(1)) = ([c(u(1))]ls)

2

d
H+H̃+J

2I
.

Equation (45) does not describe the profile of a travelling wave solution, but a nearly
travelling wave solution can be observed (see Figure 2). We computed the following tran-
sition points of ϕ at t = 20.0:

without correction with correction
ε 0.4 0.4√

2
0.2 0.2√

2
0.4 0.4√

2
0.2 0.2√

2

transition 12.3923 12.3369 12.2945 12.2589 12.1928 12.1976 12.1971 12.1907

Without correction term, the changes in the interface position when changing ε are much
larger than with correction term. For example, comparing the positions for ε = 0.4 and
0.2, there is a change of ≈ 10−1 without the correction term but only of ≈ 5 · 10−3 with.
An explicit solution to the corresponding sharp interface model to compare with is not
known. But this behavior in ε indicates that the approximation of the sharp interface
solution (which nevertheless should exist) is improved thanks to the correction term. A
convergence rate of the interface position for the simulations with correction term could
not be computed because of the oscillations in the positions (the position does not behave
monotone in ε). Simulations on several slightly finer grids indicated that the numerical
error is of the same size of about 10−3 which explains these oscillations.

4.4. Binary non-isothermal case. Now we will demonstrate that a better convergence
behavior can also be observed if several conserved quantities are considered. We postulate
the following reduced grand canonical potential:

ψ(u(0), u(1), ϕ) = 1
2

(
(u(0))2 + (u(1))2

)
+

(
λ(u(0) − um) + G(u(1) − ue)

)
(1 − h̃(ϕ))
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with constants um = −1.0, ue = 0.6, λ = G = 0.2. For the energy e = ψ,u(0) we postulate

the flux K∇u(0) with K = 4.0 and for the concentration c = ψ,u(1) we postulate d∇u(1) with

d = 0.1, i.e. there are no cross effects between mass and energy diffusion. As [c(u)]ls = G

and [e(u)]ls = λ are independent of u we obtain a constant correction term (h and h̃ are

chosen as above) ω1 =
(

λ2

K
+ G2

d

)
H+H̃−2J

2I
≈ 0.8655555. Usually temperature diffusivity

is much faster than mass diffusivity so that the influence of the concentration part on the
correction term is much larger.

In equilibrium (see Appendix A for the conditions) we have the linear relation u
(1)
eq −ue =

u
(0)
eq − um. For u(1) = ue = 0.6 and u(0) = um = −1.0 (; T (0) = Tm = 1.0) the equilibrium

concentrations are c(l) = u(1) = 0.6 and c(s) = u(1) − G = 0.4.
We solved the differential equations for x ∈ D = [0.0, 1.4] and t ∈ I = [0.0, 0.5]

numerically. Initial values for ϕ again were defined as in (42) with an interface located at
x0 = 0.6 away from the boundaries. Setting u(1)(t = 0) ≡ 0.6 and u(0)(t = 0) ≡ −1.0 we
got initial values for c and e from ψ. For ϕ and u(1) we imposed homogeneous Neumann
boundary conditions. We took the same boundary condition for u(0) in x = 1.4, but on the
other boundary point we imposed the Dirichlet boundary condition u(0)(x = 0.0) = −1.25
which corresponds to an undercooling of 1

5
and made the transition point move to the right.

We chose ω0 = 0.08 and σ = 1.0. At t = 0.4 we measured the interface and we obtained
the following results (varying ∆x in the column and ε in the line):

∆x\ε 0.4/
√

2 0.2 0.2/
√

2 0.1 0.1/
√

2

with 0.002 0.704470 0.708335 0.710319
correction 0.001 0.710339 0.711441 0.712032

without 0.002 0.730569 0.726796 0.723258
correction 0.001 0.723281 0.720480 0.718347

The computations for ε = 0.2√
2

reveal that the error due to the grid is small compared

to the deviation due to the different values for ε. Computing numerically the order of
convergence (see (36)) we obtained values of k ≈ 1.78 with correction term and k ≈ 0.57
without correction term when the runs for ε ∈ { 0.4√

2
, 0.2√

2
, 0.1√

2
} are compared. Similar results

were obtained at the time t = 0.5.

5. Conclusions

The asymptotic analysis of a phase field model for solidification in multi-component
alloy systems has been carried out using matched asymptotic expansions. In addition to
the leading order problem a linear correction problem has been derived. If a certain small
correction term to the kinetic coefficient in the phase field equation is taken into account
the zero function solves this correction problem. Hence, there is no linear correction and
our model approximates the sharp interface problem to second order.

Numerical simulations in one and two space dimensions and for several conserved quan-
tities were performed with and without the correction term. In all cases the convergence
behavior turned out to be superior when the correction term was considered. Whenever a
comparison with an explicit solution to the sharp interface model was possible a quadratic
convergence could be observed while a linear convergence was observed without correction.
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Appendix A. Remarks on thermodynamics

To model solidification in alloy systems, often the free energy density f is taken as
thermodynamical potential. We assume that pressure and mass density are constant.
Then the free energy is a function of temperature and concentrations,

f : R×ΣN → R, (T, c) 7→ f(T, c).

Here, T is the temperature and c = (c(1), . . . c(N)) is a vector of concentrations, i.e. c(i)

describes the concentration of component i. The free energy f is supposed to be concave
in T and convex in c. Its derivative operates on the tangential space of the domain, i.e. on
R×TΣN ⊂ R

N+1, and its gradient can naturally be interpreted as a vector in R×TΣN ,
hence

Df : R×ΣN → R×TΣN , (T, c) 7→ Df(T, c) = (∂T f, ∂cf) =: (−s, µ).

The quantity s = − ∂
∂T

f is the entropy density and µ = ∂
∂c

f are generalized chemical
potential differences. Written with the help of differential forms we have

df = −sdT + µ · dc.

The internal energy e is the Legendre transformed of −f with respect to T , i.e. e(s) =
(−f)∗(s) = sT (s) + f(T (s)). As f is concave in T , e is concave in s. It holds

de = df + sdT + Tds = Tds + µ · dc

leading to

ds =
1

T
de − µ

T
· dc =: −u(0)de − ũ · dc.

In the following we will write e = c(0), c̄ = (c(0), c(1), . . . , c(N)) and u = (u0, ũ). We have

−s : R×ΣN → R, c̄ 7→ −s(c̄)

and assume that −s is strictly convex in c̄. This implies already that

D(−s) : R×ΣN → R×TΣN , c̄ 7→ D(−s)(c̄) = u

can locally be inverted. We assume the inversion can even globally be done and that c̄ can
be written as function in u, c̄(u) = (−Ds)−1(u). The reduced grand canonical potential
is then defined to be the Legendre transformed of −s, i.e.

ψ := (−s)∗ : R×TΣN → R, u 7→ ψ(u) := c̄(u) · u + s(c̄(u)).

One would naturally identify its derivative Dψ(u) with a vector in R×TΣN . But using
c̄(u) = (−Ds)−1(u) we can derive the derivative of ψ in u into direction v ∈ R×TΣN to
be

〈Dψ(u), v〉 =
d

dδ

(

(u + δv) · c̄(u + δv) + s(c̄(u + δv))
)∣
∣
∣
δ=0

= u · (Dc̄(u)v) + v · c̄(u) + Ds(c̄(u)) · (Dc̄(u)v)

= v · c̄(u).
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This motivates to identify Dψ(u) with c̄(u) and to write

Dψ : R×TΣN → R×ΣN , u 7→ Dψ(u) = c̄(u) = (−Ds)−1(u).

In particular, we see

d

du(0)
ψ(u) = e(u),

d

dũ
ψ(u) = (c(1), . . . , c(N))(u).

One can think of f , s and ψ to be extended to all of R
N+1 whenever partial differentials

of the functions appear. But only the definition on the domains and only derivatives in
tangential direction as mentioned above will enter the equations in Sections 2, 3 and 4.

Appendix B. Transformation of derivatives near the interface

For the following computations compare also [13]. Let ε0 > 0. Near the interface Γ(t; 0)
we consider the diffeomorphisms

Fε(t, s, z) := (t, γ(t, s; 0) + (εz + d(t, s; ε))ν(t, s))

which, for each t ∈ I and ε ∈ (0, ε0), maps an open set V (t; ε) ⊂ R
2 onto an open tube B(t)

around Γ(t; 0). The parameter s is the arc-length of Γ(t; 0) and ν and γ are as in Section 2.
The coordinates (t, s, z) are such that the interface is given by the set {Fε(t, s, z)|z = 0}.
It is supposed that, uniformly in t, s and ε, the tube B(t) is large enough such that values
for z lying in a fixed interval around zero are allowed as arguments for z. We are interested
in the inverse of the derivative of Fε to obtain ∇(t,x)z(t, x) and ∇(t,x)s(t, x).

Let κ := κ(t, s; 0) be the curvature of Γ(t; 0) defined by ∂sτ = κν or, equivalently, by
∂sν = −κτ . Furthermore let

v = v(t, s; 0) = ∂tγ(t, s; 0) · ν(t, s; 0) (normal velocity, intrinsic),

vτ = vτ (t, s; 0) = ∂tγ(t, s; 0) · τ(t, s; 0) (tangential velocity, non intrinsic).

Hence, writing dε = d(t, s; ε) we get

DFε(t, s, z) =

(
∂tt(t, s, z) ∂st(t, s, z) ∂zt(t, s, z)
∂tx(t, s, z) ∂sx(t, s, z) ∂zx(t, s, z)

)

=

(
1 0 0

∂tγ + (εz + dε)∂tν + (∂tdε)ν τ − (εz + dε)κτ + (∂sdε)ν εν

)

and

D(F−1
ε )(t, x) = (DFε)

−1(t, x) =





∂tt(t, x) ∇xt(t, x)
∂ts(t, x) ∇xs(t, x)
∂tz(t, x) ∇xz(t, x)





=






1 (0, 0)
− 1

1−κ(εz+dε)
(vτ + (εz + dε)τ · ∂tν) 1

1−κ(εz+dε)
τ⊥

1
ε

(

−∂tdε + ∂sdε(εz+dε)
1−κ(εz+dε)

τ · ∂tν + ∂sdε

1−κ(εz+dε)
vτ − v

)
1
ε
νT − ∂sdε

ε(1−κ(εz+dε))
τ⊥






where ∂tγ, ν, τ , κ and ∂tν are evaluated at (t, s; 0).
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Inserting the ansatz dε = εd1(t, s) + ε2d2(t, s) + . . . we obtain for a function b(t, s, z)

and for a vector field ~b(t, s, z)

d
dt

b = − 1
ε
v∂zb + ∂◦b − (∂◦d1)∂zb + O(ε)

∇xb = 1
ε
∂zb ν + (∂sb − ∂sd1∂zb) τ

+ ε
(
κ(z + d1)∂sb − (∂sd2 + ∂sd1κ(z + d1))∂zb

)
τ + O(ε2)

∇x ·~b = 1
ε
∂z

~b · ν + (∂s
~b − ∂sd1∂z

~b) · τ
+ ε

(
κ(z + d1)∂s

~b − (∂sd2 + ∂sd1κ(z + d1))∂z
~b
)
· τ + O(ε2)

∆xb = 1
ε2 ∂zzb − 1

ε
κ∂zb

+ (∂sd1)
2∂zzb − 2∂sd1∂szb − κ2(z + d1)∂zb − ∂ssd1∂zb + ∂ssb + O(ε)

where ∂◦ = ∂t − vτ∂s is the (intrinsic) normal-time-derivative (see e.g. [18]).

Appendix C. Expansions of interfacial normal velocity and curvature

Let us assume that the normal velocity and the curvature of Γ(t; ε) can be expanded in
ε-series, i.e.

v(t, s; ε) = v0(t, s; 0) + εv1(t, s; 0) + ε2v2(t, s; 0) + . . . ,

κ(t, s; ε) = κ0(t, s; 0) + εκ1(t, s; 0) + ε2κ2(t, s; 0) + . . . .

By (10) and the following paragraph, the interfaces Γ(t; ε) are parametrized by γε :=
γ(t, s; ε) = γ(t, s; 0)+dεν(t, s; 0) where dε = d(t, s; ε) = εd1(t, s)+ε2d2(t, s)+ . . . . We want
to identify the functions vi, κi in terms of the functions di(t, s), i = 1, 2, . . . , v := v(t, s; 0)
and κ := κ(t, s; 0).

The unit tangential vector and the unit normal vector are

τ(t, s; ε) =
∂sγε

|∂sγε|
=

(1 − κdε)τ + (∂sdε)ν

((1 − κdε)2 + (∂sdε)2)1/2
,

ν(t, s; ε) =
∂sγ

⊥
ε

|∂sγε|
=

(1 − κdε)ν − (∂sdε)τ

((1 − κdε)2 + (∂sdε)2)1/2
.

Inserting the expansion for dε yields
(

(1 − κdε)
2 + (∂sdε)

2
)−1/2

= 1 + εκd1(t, s) + O(ε2)

and finally for v(t, s; ε) the expansion

v(t, s; ε) = ∂tγε · ν(t, s; ε)

=
(∂tγ(t, s; 0) + ∂tdεν + dε∂tν) · ((1 − κdε)ν − (∂sdε)τ)

((1 − κdε)2 + (∂sdε)2)1/2

=
(1 − κdε)v + ∂tdε(1 − κdε) − ∂sdεvτ − dε∂sdε∂tν · τ

((1 − κdε)2 + (∂sdε)2)1/2

= v + ε∂◦d1 + O(ε2)

where we used ∂tν · ν = 1
2
∂t|ν|2 = 0. To compute the expansion of κ(t, s; ε) we need

∂ssγ(t, s; ε) = −
(

2(∂sdε)κ + dε(∂sκ)
)

τ +
(

κ + ∂ssdε − κ2dε

)

ν.
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Then

det(∂sγ(t, s; ε), ∂ssγ(t, s; ε)) = −(1 − κdε)(κ + ∂ssdε − κ2dε) − (∂sdε)(2(∂sdε)κ + dε(∂sκ)).

As

|∂sγε|−3 = (1 − 2κdε + κ2d2
ε + (∂sd

2
ε))

−3/2 = 1 + ε 3κd1 + O(ε2)

we obtain

κ(t, s; ε) =
− det(∂sγε, ∂ssγε)

|∂sγε|3
= κ + ε

(

κ2d1 + ∂ssd1

)

+ O(ε2).

Appendix D. Derivation of matching conditions

In this appendix we will derive the conditions (15)-(18) for u. Analogous results can be
obtained for ϕ.

By (11) and (12) the functions ûk(t, s, r) = uk(t, x) are well defined in the neighborhood
of Γ(t; 0) which we suppose to be a tube of radius δ0. We assume that they can smoothly
and uniformly be extended onto Γ(t; 0) from both sides as r ↘ 0 and r ↗ 0 respectively.
An expansion in Taylor series in r = 0 yields

ûk(t, s, r) = ûk(t, s, 0
+) + ∂rûk(t, s, 0

+)r + 1
2
∂rrûk(t, s, 0

+)r2 + O(r3), r ∈ (0, δ0], (46)

ûk(t, s, r) = ûk(t, s, 0
−) + ∂rûk(t, s, 0

−)r + 1
2
∂rrûk(t, s, 0

−)r2 + O(r3), r ∈ [−δ0, 0).
(47)

Let α ∈ (0, 1) and l(t) be the length of Γ(t; 0). We assume that the expansion

û(t, s, r; ε) =
N∑

k=0

εkûk(t, s, r) + O(εN+1) (48)

is valid uniformly on {(t, s, r; ε) : t ∈ I, s ∈ [0, l(t)], r ∈ (εα δ0
2
, δ0], ε ∈ (0, ε0]}.

We assume that the functions U k(t, s, z) in (13) are defined for t ∈ I, s ∈ [0, l(t)] and
z ∈ R and that they approximate some polynomial in z uniformly in t, s for large z, i.e.

U k(t, s, z) ≈ U±
k,0(t, s) + U±

k,1(t, s)z + U±
k,2(t, s)z

2 + · · ·+ U±
k,nk

(t, s)znk , z → ±∞ (49)

with nk ∈ N for all k. Besides we assume that the expansion (13) is valid uniformly on
{(t, s, z; ε) : t ∈ I, s ∈ [0, l(t)], z ∈ εα−1[−δ0, δ0], ε ∈ (0, ε0]}.

To derive the matching conditions let ζ ∈ ( δ0
2
, δ0) and ε ∈ (0, ε0] and consider the

intermediate variable ζεα. The expansion (48) is valid with r = ζεα for ε small enough.
We can use (46) and get (dropping the uniform dependence on (t, s))

û(ζεα; ε) = ε0û0(0
+) + εα∂rû0(0

+)ζ + ε2α 1
2
∂rrû0(0

+)ζ2 + O(ε3α)

+ ε1û1(0
+) + ε1+α∂rû1(0

+)ζ + ε1+2α 1
2
∂rrû1(0

+)ζ2 + O(ε1+3α)

+ ε2û2(0
+) + ε2+α∂rû2(0

+)ζ + ε2+2α 1
2
∂rrû2(0

+)ζ2 + O(ε2+3α)

+ O(ε3 + ε4α).

Using (47) the same can be written for −ζ ∈ ( δ0
2
, δ0) with 0+ replaced by 0−.
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Now, for ζ positive again (13) is valid for the choice z = ζεα−1. Using (49) and again
dropping the dependence on (t, s) we obtain

U(ζεα−1; ε) = ε0U+
0,0 + εα−1U+

0,1ζ + · · · + εn0(α−1)U+
0,n0

ζn0

+ ε1U+
1,0 + ε1+α−1U+

1,1ζ + · · ·+ ε1+n1(α−1)U+
1,n1

ζn1

+ ε2U+
2,0 + ε2+α−1U+

2,1ζ + · · ·+ ε2+n2(α−1)U+
2,n2

ζn2 + . . .

The same holds true for −ζ ∈ ( δ0
2
, δ0) with U+ replaced by U−.

The expansions of U and û are said to match if, in the limit ε ↘ 0, the coefficients to
every order in ε and ζ agree. Comparing the two series for U and û yields the following
relations between the coefficients U+

k,n on the one hand and the derivatives ∂j
r ûl(0

+) on
the other hand for k ≤ 2:

U+
0,0 = û0(0

+), U+
0,i = 0, 1 ≤ i ≤ n0,

U+
1,0 = û1(0

+), U+
1,1 = ∂rû0(0

+), U+
1,i = 0, 2 ≤ i ≤ n1,

U+
2,0 = û2(0

+), U+
2,1 = ∂rû1(0

+), U+
2,2 = 1

2
∂rrû0(0

+), U+
2,i = 0, 3 ≤ i ≤ n2.

Obviously from the definition of r, a derivative of some function with respect to r corre-
sponds to the derivative with respect to x into the direction ν = ν(t, s(t, x); 0). Hence,
we can replace ∂rûk by ∇uk · ν. As ν is independent of r we can also replace ∂rrûk by
(ν ·∇)(ν ·∇)uk. We use (49) again and obtain the following matching conditions (compare
(15)-(18)): As z → ±∞

U 0(z) ≈ u0(0
±),

U 1(z) ≈ u1(0
±) + (∇u0(0

±) · ν)z,

∂zU 1(z) ≈ ∇u0(0
±) · ν,

∂zU 2(z) ≈ ∇u1(0
±) · ν +

(
(ν · ∇)(ν · ∇)u0(0

±)
)
.
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