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Abstract

Scale-free networks, in which the distribution of the degrees obeys a power-law, are ubiquitous in the study of complex
systems. One basic network property that relates to the structure of the links found is the degree assortativity, which is a
measure of the correlation between the degrees of the nodes at the end of the links. Degree correlations are known to
affect both the structure of a network and the dynamics of the processes supported thereon, including the resilience to
damage, the spread of information and epidemics, and the efficiency of defence mechanisms. Nonetheless, while many
studies focus on undirected scale-free networks, the interactions in real-world systems often have a directionality. Here, we
investigate the dependence of the degree correlations on the power-law exponents in directed scale-free networks. To
perform our study, we consider the problem of building directed networks with a prescribed degree distribution, providing
a method for proper generation of power-law-distributed directed degree sequences. Applying this new method, we
perform extensive numerical simulations, generating ensembles of directed scale-free networks with exponents between 2
and 3, and measuring ensemble averages of the Pearson correlation coefficients. Our results show that scale-free networks
are on average uncorrelated across directed links for three of the four possible degree-degree correlations, namely in-
degree to in-degree, in-degree to out-degree, and out-degree to out-degree. However, they exhibit anticorrelation between
the number of outgoing connections and the number of incoming ones. The findings are consistent with an entropic origin
for the observed disassortativity in biological and technological networks.
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Introduction

The use of networks is fundamental to model the structure and

the dynamics of a vast number of systems found throughout the

natural and engineered worlds. Their main appeal lies in allowing

the reduction of a complex system to a discrete set of elements, the

nodes, that interact across links. Then, one can study the structural

properties of a network and infer results on the behaviour of the

system thus modelled [1,2]. The simplest global structural attribute

of a network is its degree distribution P(k), which expresses the

probability of having a node with k links. A particularly important

case is that of scale-free networks, in which the degree distribution

obeys a power-law P kð Þ*k{c [3–6]. Scale-free networks have

been observed in citation distributions [7–9], Internet and WWW

topology [10,11], biological systems [12,13], technological, eco-

nomic and social systems [14,15], and transport processes [16,17],

and therefore they have been the subject of a considerable body of

research. A generalization of the simple network model can be

introduced by defining a directionality for the links. Directed

networks are more suited to represent systems in which the

interaction between elements is not necessarily symmetric, such as

food webs or gene regulatory networks [18]. In this case, the

connectivity of a node is no longer represented by a single scalar,

as each node has a number of incoming connections (its in-degree

k2) and a number of outgoing connections (its out-degree k+). A

related quantity is the degree assortativity, often called simply

assortativity, which measures the tendency of a node to be

connected to nodes of similar degree. Assortativity is effectively a

measure of the correlations amongst node degrees. As such, it is

known to have substantial effects on the dynamical processes

taking place on a network. For instance, assortative networks are

more resistant to fragmentation in case of attack, while

disassortative networks are less prone to cascading failures

[19–21]. Degree correlations also play an important role in

mathematical epidemiology, as they directly affect the dynamics of

epidemic spreading, as well as the efficiency of defence mecha-

nisms [22–25]. Numerous studies have shown that social networks

are typically assortative, while biological and technological

networks are disassortative, with links preferentially between

nodes of high and low degree. In the case of directed networks,

one can actually consider four different degree assortativities

across links, as one can model the dependence of either in-degree

or out-degree of a node on either in-degree or out-degree of its

neighbours [26–28]. Here, we study how a scale-free structure

affects assortativity in directed networks. In particular, we show

that directed scale-free networks exhibit no in–in, out–out and in–

out correlations, but are anticorrelated in the out–in assortativity.
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Methods

To study the preferred correlation structure induced by scale-

freeness in directed networks, we performed extensive numerics,

generating statistical ensembles of networks with power-law

distributed in-degrees and out-degrees. The generation of directed

networks with given degree distributions involves two distinct

phases. First, extract two sequences of integer numbers that follow

the distributions, and assign these to the nodes as directed half-

links, or ‘‘stubs’’. Taken in pairs, these numbers form a so-called

bi-degree sequence, and correspond to the in-degree and the out-

degree of each node. Then, sample the bi-degree sequence

creating network realizations without self-edges or multiple edges.

A suitable method to perform this second step is the algorithm

discussed in Ref. [29], which allows an efficient uniform sampling

of the realizations of a bi-degree sequence. However, not every

sequence of integer pairs can be realized by a simple directed

graph. Thus, before being able to apply the sampling algorithm,

we need to develop a procedure to properly create bi-degree

sequences that admit realizations, which are referred to as

graphical. To do so, we start from the Fulkerson theorem [30],

which states the necessary and sufficient graphicality conditions for

bi-degree sequences:

Theorem 1
A sequence of non-negative integer pairs D~ k{

1 , kz
1

� �
,

�
k{

2 , kz
2

� �
, . . . , k{

N , kz
N

� �
g with k{

1 §k{
2 § � � �§k{

N is graphical
if and only if

k{
1 ƒN{1, max

1ƒiƒN
kz

i ƒN{1 , ð1Þ

XN

i~1

k{
i ~

XN

i~1
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i , ð2Þ

Xx

i~1

k{
i ƒ

Xx

i~1

min x{1, kz
i

� �
z

XN

i~xz1

min x, kz
i

� �
: ð3Þ

Theorem 1 can be used to efficiently verify the graphicality of

an extracted sequence using the particularly fast implementation

described in [29]. The theorem can be intuitively understood by

looking at the three conditions. Condition 1 simply ensures that no

node has a number of incoming or outgoing stubs that exceeds the

number of other nodes. This is clearly a necessary condition, since

each node can connect to or receive connections from at most all

the remaining nodes. To understand Condition 3, notice that the

left-hand side is just the number of incoming stubs in the set

consisting of the first x nodes. Then, consider how to maximize this

number. To start with, take each of the first x nodes and connect

them to all the others in the set. However, note that each node i
can only have as many outgoing connections as its out-degree kz

i .

Thus, if the out-degree of node i is large enough, it can be

connected to all the remaining x21 nodes; otherwise, it can only

be connected to kz
i amongst the remaining x21. The first term in

the sum on the right-hand side accounts for these connections.

The second term in the sum has the same meaning. However, the

sum is now taken over the nodes that are not within the first x.

Thus, each can connect to at most x, rather than x21, other

nodes. Finally, Condition 2 mandates the total number of

incoming stubs equal the total number of outgoing stubs. This

introduces an important constraint in the generation of graphical

bi-degree sequences. To see why, write the number of incoming

and outgoing stubs as

XN

i~1

k+
i ~NSk+T : ð4Þ

In general, the power-law exponents for in-degrees and out-

degrees in directed scale-free networks can be different [1–5].

Then, if the out-degrees scale as kzcz

and the in-degrees as k{c{

,

for N&1, it is Sk+T&
c+{1

c+{2
. Thus, one cannot expect the sums

of in-degrees and out-degrees to be equal, if the respective power-

law exponents are different. In fact, in the region of interest

2vcƒ3, the variance of power-law distributions is unbounded,

since Sk+2T&
c+{1

c+{3
. Thus, in this range of exponents, one

should not expect Condition 2 to be satisfied even when choosing

the same exponent for in-degrees and out-degrees.

To guarantee that Condition 2 is satisfied, and avoid the trivial

non-graphicality of the generated bi-degree sequence, one cannot

extract independently the sequences of in-degrees and out-degrees.

Rather, one should be extracted without further constraints, and

the other should be conditioned to have the same sum as the

former. Without loss of generality, assume that cz
wc{. Then, it

is Sk{TwSkzT. Thus, freely extracting the out-degrees requires,

on average, to lower the mean in-degree with respect to its

unconstrained value. This effectively introduces an upper cutoff

excluding all the degrees above a certain threshold NU . For a large

network, the normalization constant of the in-degree distribution

with an upper cutoff is

ZNU
:
ðNU

1

k{{c{

dk{~
N

1{c{

U N
c{{1
U {1

� �
c{{1

: ð5Þ

Thus, the mean in-degree is

Sk{TNU
~

ðNU

1

k{{c{
z1

ZNU

dkz~
c{{1

c{{2
NU

N
c{{2
U {1

N
c{{1
U {1

: ð6Þ

Equating Eq. 6 with the expression for the unconstrained mean

out-degree yields

NU
N

c{{2
U {1

N
c{{1
U {1

~
c{{2

c{{1

cz{1

cz{2
: ð7Þ

The solution to Eq. 7, plotted in Fig. 1, show that for almost all

the choices of c{ and cz, the upper cutoff would eliminate the

vast majority of the tail of the degree distribution. As the defining

characteristic of scale-free networks is a power-law tail, this

indicates that the choice of conditioning the in-degree distribution

on the sum of the out-degrees is not suitable for sequence

generation.

The other possibility is extracting the in-degrees in an

unconstrained way, and conditioning the out-degrees on their

Degree Correlations in Directed Scale-Free Networks
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sum. This time, the cutoff introduced is a lower cutoff NL on the

out-degree distribution. For N&1, the out-degree normalization

constant with lower cutoff is

ZNL
:
ð?

NL

kz{cz

dkz~
N

1{cz

L

cz{1
: ð8Þ

Then, the mean out-degree is

SkzTNL
~

ð?
NL

kz{cz
z1

ZNL

dkz~
cz{1

cz{2
NL : ð9Þ

As the two mean degrees have to be equal, it is

NL~
c{{1

c{{2

cz{2

cz{1
: ð10Þ

Note that, defining the excess exponent E:cz{c{, the

equation above can be rewritten as

NL~
c{{1

c{{2
1{

1

c{{1zE

� 	
: ð11Þ

This form explicitly shows that NL is 1 when the exponents are

equal and E = 0, and it increases monotonically with E, towards an

asymptotic value of c{{1ð Þ= c{{2ð Þ. As illustrated in Fig. 2,

such cutoff is very mild. Thus, this approach leaves the tail of the

distribution entirely untouched. Moreover, for more than half of

the region of interest, the whole out-degree distribution has no

effective cutoff at all.

Notice that defining a proper method for the generation of

power-law distributed directed degree sequences is essential for the

accuracy of research outcomes. In fact, approximate techniques

have uncontrolled errors and produce results that depend on the

details of the approximation made [18,31].

Results and Discussion

At the light of the considerations expressed in the previous

section, we generated ensembles of bi-degree sequences of random

power-law distributed integers with exponents between 2 and 3,

conditioning the sequence with the greater exponent on the sum of

the sequence with the lower one. Then we tested the sequences for

graphicality, and sampled the graphical ones using the direct

construction algorithm detailed in Ref. [29]. For each sample, we

measured the assortativities using the Pearson coefficients

rab~

P
i, j Ai, j(ka

i {SkaTL) k
b
j {SkbTL

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ka
i (ka

i {SkaTL)
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j k

b
j k

b
j {SkbTL

� �2
r , ð12Þ

where the averages are taken over all directed links, the elements

of the adjacency matrix of the network Ai,j are 1 if there is a link

from node i to node j, and a and b can be 2 or +, indicating in-

degrees or out-degrees, respectively [32]. We stress that the

sampling method used is a degree-based graph construction

algorithm [33]. Algorithms in this class can access the entire space

of the realizations of a graphical sequence. They work by building

the sample graphs via the systematic placement of links,

guaranteeing that the graphicality of the sequence is maintained

after each step. At every moment, the combinatorially exact

probabilities of placing each allowed link are completely deter-

mined. Thus, these methods efficiently allow uniform graph

sampling, without introducing biases due to a particular choice of

generative model or construction algorithm, which can result in

overrepresentation or inaccessibility of part of the realization

space.

Figure 1. Effective upper cutoff on the in-degrees if they are
conditioned on the sum of the out-degrees. The contour plot
shows the logarithm of the introduced upper cutoff. Note that for
almost all the choices of power-law exponents, such cutoff is so low
that the greatest part of the distribution tail is lost, affecting the scale-
free character of the resulting network. The labels indicate the
logarithm of the cutoff for the corresponding contour lines. Only half
of the region is plotted, as we are under the assumption that cz

wc{.
doi:10.1371/journal.pone.0110121.g001

Figure 2. Effective lower cutoff on the out-degrees if they are
conditioned on the sum of the in-degrees. The contour plot
shows the logarithm of the introduced lower cutoff. Unlike what
happens with the reverse choice, the cutoff introduced is always minor,
and it actually vanishes for most of the choices of in-degree and out-
degree exponents. The labels indicate the logarithm of the cutoff for
the corresponding contour lines. Only half of the region is plotted, as
we are under the assumption that cz

wc{.
doi:10.1371/journal.pone.0110121.g002
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The results indicate the absence of any dependence of the in-in,

in-out and out-out coefficients on the choice of power-law

exponents. In fact, these three coefficients all vanish within the

uncertainties throughout the region studied. Conversely, the out-in

coefficient is always negative (Fig. 3), indicating disassortative

correlation between the out-degree of the node at the beginning of

a link and the in-degree of the node at its end. Figure 4 illustrates

this pattern of dependence by plotting the average in-degree

Sk{Tn of the neighbours of nodes with a given out-degree k+, for

an ensemble of networks with cz~c{~2:01 and N = 1000. The

values of Sk{Tn decrease quickly and monotonically with k+,

confirming the strong disassortative nature of the networks. Our

results show substantial similarities between the correlation

structure of directed and undirected scale-free networks. Indeed,

it is a well-known fact that random undirected scale-free networks

are disassortative [34–38]. Thus, to explain our findings, we use

the entropic treatment described in Ref. [39], extending it to

directed networks. To do so, write the information entropy of a

given network as

S~{
X

i, j "i, j log "i, jz 1{"i, j

� �
log 1{"i, j

� �� �
, ð13Þ

where "i, j is the expectation value for the i, jð Þ element of the

adjacency matrix. To derive an expression for "i, j in the case of a

given bi-degree sequence, note that it has to satisfy two conditions,

namely

XN

j~1

"i, j~kz
i ð14Þ

and

XN

j~1

k{
j "i, j~kz

i Sk{Tn kz
i

� �
: ð15Þ

Figure 3. Degree correlations in directed scale-free networks. The Pearson correlation coefficient r+2 is always negative, indicating that
directed scale-free networks are naturally disassortative when one considers the out-in correlation. The inset shows a contour plot of the same data,
for added clarity. The labels in the contour plot indicate the value of r+2 for the corresponding contour lines.
doi:10.1371/journal.pone.0110121.g003

Figure 4. Disassortative degree correlations. The plot shows the
average in-degree Sk{Tn of the neighbours of nodes with a given out-
degree k+ for an ensemble of networks with cz~c{~2:01 and
N = 1000. The dependence of Sk{Tn on k+ clearly indicates that nodes
with low out-degree link preferentially to nodes of high in-degree, and
nodes with high out-degree link mostly to nodes of low in-degree. The
monotonically decreasing dependence confirms the strong disassorta-
tive nature of the networks.
doi:10.1371/journal.pone.0110121.g004
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A form that satisfies these conditions is

"i, j~
1

N

kz
i k{

j

SkT

(
z

ð
s2

sbz2
d n{ bz1ð Þð Þ{d n{1ð Þ

� 	

kz
i k{

j

� �n

Sk{nT
{kzn

i {k{n

j zSk{n
T

2
4

3
5dn

9=
;

ð16Þ

where b is a free parameter. In principle, the factor

s2
sbz2

d n{ bz1ð Þð Þ{d n{1ð Þ
� 	

in Eq. 16 can be replaced by

any arbitrary function of n. However, the choice made, in which

st:Sk{tT{SkTSk{t{1T, allows to reproduce the observed

dependence of Sk{Tn on kz. Then, computing the integral in Eq.

16, it is

"i,j~
1

N

Sk{2T{SkT2

Sk{bz2T{SkTSk{bz1T

(

kz
i k{

j

� �bz1

Sk{bz1T
{kz

i

bz1
{k{

j

bz1
zSk{bz1

T

2
64

3
75

zkz
i zk{

j {SkTg:ð17Þ

Using Eqs. 13 and 17, we can find the choice of b that

maximizes S, and compute the Pearson coefficient r* correspond-

ing to the maximum entropy network for any given power-law

exponents. Notice that in the equations above, we make no

distinction between SkzT and Sk{T, as they must be equal to

ensure graphicality of the bi-degree sequence. Also, we restrict the

parameter search to the values that yield networks without self-

edges or multiple edges. To carry out the calculation, we use the

degree-maximizing sequence as representative of the scale-free

networks for each value of c [6]. Figure 5 displays a comparison

between rz{ as measured by simulations and r*, in the case of

cz~c{. The two sets of results are substantially in agreement,

save for higher values of c, where r�vrz{. This can be explained

by considering that the degree-maximizing sequences used to

compute r* feature more high-degree nodes than would be found

on average, thus decreasing the assortativity of their realizations.

In summary, we showed that directed scale-free networks are

naturally uncorrelated when considering in-in, in-out and out-out

correlations. Thus, when looking across a directed link, the in-

degree of the originating node has no influence on the in-degree or

the out-degree of the target node. Similarly, the out-degrees are

not affected by the out-degrees of the neighbours. However, the

out-in correlation coefficient is found to be negative throughout

the region studied. This indicates that the natural state of directed

scale-free networks is one in which nodes of low degree prefer to

link to nodes of high degree, and vice versa. The origin of this

preference is entropic, as the coefficients found are in good

agreement with those corresponding to the maximum information

entropy. Thus, the observation of a disassortative directed scale-

free network is not sufficient to infer the existence of extra growth

mechanisms beyond those responsible for its degree distribution.

These results suggest that the disassortative correlations observed

in many real-world systems, such as biological and technological

networks, do not necessarily arise because of design or evolution-

ary pressure. In fact, the absence of such drivers, and the resulting

randomness, would lead to the observation of the anticorrelated

state as the most probable one. Notice that this does not exclude

the presence of evolutionary mechanisms, which may certainly be

the cause of an observed disassortative network topology in some

specific cases. However, their action would have to promote the

maximum-entropy state, thus making their presence undetectable

from the degree distribution and correlations alone.
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(2014) The structure and dynamics of multiplex networks. Phys Rep in press,
http://dx.doi.org/10.1016/j.physrep.2014.07.001.

3. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev

Mod Phys 74: 47–97.

4. Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM

Review 45: 167–256.

5. Caldarelli G (2007) Scale-free networks – complex webs in nature and

technology. Oxford: Oxford University Press. 328 p.

6. Del Genio CI, Gross T, Bassler KE (2011) All scale-free networks are sparse.

Phys Rev Lett 107: 178701.

7. de Solla Price DJ (1965) Networks of Scientific Papers. Science 149: 510–515.

Figure 5. Entropy-maximizing disassortativity. The plot shows
the out-in correlation coefficients for directed scale-free networks with
cz~c{:c. The simulation data are shown in solid black. The red
dotted line corresponds to the coefficients that maximize the
information entropy for a given c. The good agreement of the results
indicates the entropic origin of the disassortativity observed in directed
scale-free networks.
doi:10.1371/journal.pone.0110121.g005

ð17Þ

Degree Correlations in Directed Scale-Free Networks

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110121

http://dx.doi.org/10.1016/j.physrep.2014.07.001


8. Redner S (1998) How popular is your paper? An empirical study of the citation

distribution. Eur J Phys B 4: 131–134.

9. Newman MEJ (2001) The structure of scientific collaboration networks. Proc

Natl Acad Sci USA 98: 404–409.

10. Albert R, Jeong H, Barabási A-L (1999) Diameter of the World-Wide Web.

Nature 401: 130–131.

11. Vázquez A, Pastor-Satorras R, Vespignani A (2002) Large-scale topological and

dynamical properties of the Internet. Phys Rev E 65: 066130.

12. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale

organization of metabolic networks. Nature 407: 651–654.

13. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.
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