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ABSTRACT 

 
This paper describes a systematic study of the effect of cell relaxation after a charge or discharge event. The EIS 

technique was used to investigate how the properties of the cells changed with time after charge or discharge up 

to a maximum of 15 hours. It was found that different chemistries show different relaxation rates and frequency 

dependence of Ro and Rd. The cells still showed a relaxation at 15 hours after a charge/discharge event. A 

suggested compromise of measurement accuracy and test length is to measure the properties of cells 4 hours 

after a charge/discharge event.  

 

I. INTRODUCTION 

 
Lithium-ion batteries have been common in portable consumer electronics since the early 1990. They have high 

energy density, high power density, long cycle life, low self-discharge and are also environmentally friendly 

compared to other type of batteries [1-3]. In recent years, lithium-ion batteries have become the main interest for 

high power and high energy storage systems like battery electric vehicles (BEV) [1, 4-8], power distribution 

grids [8-12], wind & solar battery systems [8, 9, 13]. Power and energy density plays a significant role in 

selecting a battery system for these types of applications.  

 

The maximum power and energy that a battery can deliver are directly related to the impedance of the battery. 

The impedance of a battery cell defines how quickly the cell voltage will reduce during discharge and how fast 

it will increase during charge. To maximize the lifetime of a cell it needs to operate within a defined voltage 

window. Operating beyond this voltage window also poses safety risks. 

 

The impedance of a battery cell is highly dependent on the chemistry, temperature, state of charge (SoC), age 

and amplitude of charge/discharge current. Extensive of work has been done to study cell impedance; the 

relationship between impedance and SoC has been developed by researchers [14-18]. Another group of 

researchers have presented temperature dependency of impedance [17-24]. In contrast to the SoC and 

temperature effect, age and charge-discharge current amplitude have received less attention. Ratankumar et al. 

and Buller et al. gave an indication of the effect of the current amplitude on cell impedance [25, 26]. Vetter et 

al. explained the root cause of the impedance rise of a cell with ageing [27]. It is also reflected by the results 

presented by other researchers [17, 28-31].  

 

Despite several studies investigating the use of EIS to estimate SoC and SoH in electric vehicles and electrode 

properties, limited attention has been given towards understanding the effect of relaxation time prior to 

performing an EIS measurement. To ensure its repeatability and reproducibility in a vehicle or laboratory 

environment, it is crucial to develop suitable experimental protocols which minimise uncertainties. In this study, 

the authors investigated, what is believed to be the first study of the effect of relaxation time on EIS 

measurement of several cell chemistries and several cell formats.  

 

II. EXPERIMENTAL METHOD  

 
A. Cell details 

 

EIS tests were carried out on commercially available lithium-ion cells of different chemistries and different cell-

format. Seven cells were selected for this study with capacity ranging from 2.2Ah to 40Ah. All cell details are 

listed in Table 1. 



Table 1 Cell details 

Cell 

Manufacturer 
Chemistry Capacity (Ah) Nominal Voltage (V) Format 

1 NMC 40 3.70 Pouch 

2 Li-Titanate 13 2.26 Pouch 

3 Mixed Oxide 17.5 3.60 Pouch 

4 NMC/LCO 2.2 3.70 Cylindrical 

5 LMO 3.4 3.60 Cylindrical 

 
B. Test matrix and EIS test details 

 

EIS tests were performed in galvanostatic mode at a frequency range of 100 mHz to 10 kHz and ten frequency 

points per decade. The amplitude of the current applied was adjusted for individual cell type within the range of 

C/25 to C/13 Root Mean Square (RMS) value. The spectra were obtained without any superimposed DC 

current.EIS tests were 

 

EIS test were performed on each cell every 10 min for 15 h after adjusting to 50 % state of charge (SoC) using 

1C charge/discharge current, at 25 
°
C unless otherwise specified. The SoC, charge/discharge rate and 

temperature are selected to represent normal operating condition of the cell. The entire experiment was 

performed within a temperature controlled chamber using a battery cell cycler to adjust SoC. The EIS test was 

performed using a potentiostat outfitted with a 2A booster card.  

 

III. RESULTS AND DISCUSSION 

 
The Nyquist plots obtained from cells 1 to 5 at 25 

°
C with SoC of 50 %, adjusted with a discharge rate of 1C are 

shown in Fig. 1. Based on the observations in Fig. 1, it is noticeable that relaxation process changes the total 

impedance of the cell. It is also evident that the pure resistance of the cell Ro does not change nor has a minor 

change with diffusion process except cell 3. This can be explained from the origin of pure ohomic resistance of 

the cell. Pure ohmic resistance mainly originate from resistance of electrolyte, electrode-electrolyte interface and 

current collectors of the cell [17, 18, 22, 41, 42]. 

 

The total resistance of the cell Rd which incorporates pure ohomic resistance and electrochemical impedances of 

the cell defines the energy and power behaviour of an application. Rd is plotted against relaxation period in  

Fig. 2. Depending on the cell, Rd was found at different frequencies; which is listed in Table 2. This variation 

can originate from cell chemistry, capacity, size, shape and temperature. Trend lines had been added to the 

graphs showing in Fig. 2. The trend has a generalized equation as shown in equation 1: 

 

     ( )      Equation 1 

Values of α and b of this equation for different cells are presented in Table 2. The R
2
 value of trend lines varies 

from 0.9581 to 0.9948, indicating good fit with data.  

 

 

 

 

 

 

 

 

 



   
 

  
 

 
 
Fig. 1 Nyquist plots obtained after adjusting SoC to 50%, at 25°C using 1C discharge current  (note: scale varies from graph to graph but the 

ratio  between ‘X’ and ‘Y’ axis value remains same to show the change of shape).  
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Fig. 2 Relaxation of Rd for different cell (a) for cell 1 Rd is at 0.63 Hz, (b) for cell 2 it is at 0.63Hz, (c) for cell 3 it is at 2 Hz, (d) for cell 4 it 

is at 1 Hz.  

 

 
Table 2  Logarithmic parameters, value and associated frequency of Rd of the cells and value of Ro are listed.  

Cell No. Coefficient α Constant b 
Rd value at 15 h 

(mΩ) 

Frequency of 

Rd (Hz) 

Ro value at 15 h 

(mΩ) 

Frequency 

of Ro (Hz) 

1 3E-05 0.0014 1.64 0.63 1.00 251.2 

2 1E-05 0.0012 1.25 2.00 0.95 158.5 

3 2E-05 0.0021 2.26 2.51 2.07 79.43 

4 5E-04 0.0617 65.05 1.00 50.15 794.33 

5 8E-04 0.0473 52.63 0.63 36.41 1584.89 
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IV. CONCLUSION 

 
Findings 

 Different chemistries show different relaxation rates. 

 4 h is the suggested minimum waiting time before an EIS measurement should be taken. 

 The relaxation process continues even after 15 h. 

 The frequency of Rd and Ro depends on chemistry and capacity. 
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