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Abstract

We introduce Dirichlet multinomial mixtures (DMM) for the probabilistic modelling of microbial metagenomics data. This
data can be represented as a frequency matrix giving the number of times each taxa is observed in each sample. The
samples have different size, and the matrix is sparse, as communities are diverse and skewed to rare taxa. Most methods
used previously to classify or cluster samples have ignored these features. We describe each community by a vector of taxa
probabilities. These vectors are generated from one of a finite number of Dirichlet mixture components each with different
hyperparameters. Observed samples are generated through multinomial sampling. The mixture components cluster
communities into distinct ‘metacommunities’, and, hence, determine envirotypes or enterotypes, groups of communities
with a similar composition. The model can also deduce the impact of a treatment and be used for classification. We wrote
software for the fitting of DMM models using the ‘evidence framework’ (http://code.google.com/p/microbedmm/). This
includes the Laplace approximation of the model evidence. We applied the DMM model to human gut microbe genera
frequencies from Obese and Lean twins. From the model evidence four clusters fit this data best. Two clusters were
dominated by Bacteroides and were homogenous; two had a more variable community composition. We could not find a
significant impact of body mass on community structure. However, Obese twins were more likely to derive from the high
variance clusters. We propose that obesity is not associated with a distinct microbiota but increases the chance that an
individual derives from a disturbed enterotype. This is an example of the ‘Anna Karenina principle (AKP)’ applied to
microbial communities: disturbed states having many more configurations than undisturbed. We verify this by showing that
in a study of inflammatory bowel disease (IBD) phenotypes, ileal Crohn’s disease (ICD) is associated with a more variable
community.

Citation: Holmes I, Harris K, Quince C (2012) Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics. PLoS ONE 7(2): e30126. doi:10.1371/
journal.pone.0030126

Editor: Jack Anthony Gilbert, Argonne National Laboratory, United States of America

Received August 11, 2011; Accepted December 12, 2011; Published February 3, 2012

Copyright: � 2012 Holmes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: CQ is funded by an EPSRC Career Acceleration Fellowship EP/H003851/1. KH by a Unilever directly funded research grant to the University of Glasgow.
IH was supported by NIH/NIGMS grant R01-GM076705. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: KH is directly funded through a Unilever research grant to develop bioinformatics tools. All tools developed under this grant are being
released open source. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: christopher.quince@glasgow.ac.uk

Introduction

Next generation sequencing, applied to microbial metagenomics,

has transformed the study of microbial diversity. Microbial

metagenomics, or sequencing of DNA extracted from microbial

communities, provides a means to determine what organisms are

present without the need for isolation and culturing, which can

access less than 1% of the species in a typical environment [1]. Prior

to next generation sequencing individual DNA fragments from a

sample were cloned and then Sanger sequenced [2] – a procedure

that is slow and expensive when done on a per read basis. Direct

next generation sequencing, for example 454 pyrosequencing [3] or

Illumina [4], is cheaper and faster, which has allowed much larger

studies of microbial diversity, with more reads in total, and with

more communities sampled. However, the development of statistics

to extract ecologically meaningful information from these data sets

has not developed as quickly as the experimental methodology. In

particular, tools that can account for the discrete nature, sparsity,

and variable size of these data sets are lacking. We propose the

Dirichlet multinomial mixture as a generative modelling framework

that addresses this need.

Broadly, microbial metagenomics data can be of two types:

either amplicons or shotgun metagenomics. Amplicons are

generated by PCR amplification of a specific marker gene region

– typically a variable region from the 16S rRNA gene – prior to

sequencing, so that the data consists of reads from homologous

genes in different organisms. In shotgun metagenomics DNA is

fragmented in some way and those fragments sequenced,

generating reads from throughout the genome of the different

community members. For both amplicons and shotgun reads it is

possible to classify sequence reads against known taxa, and

determine a list of those organisms that are present and the read

frequency associated with them [5]. For the majority of

environments, many organisms will not have been taxonomically

classified and sequenced before, in which case the list of taxa may

have to be generated at a low resolution phylogenetic level, e.g.

phylum, to achieve a reasonable proportion of classified reads.

Alternatively, an unsupervised strategy can be used to identify

proxies to traditional taxonomic units by clustering sequences, so

called Operational Taxonomic Units (OTUs) [6]. This is

commonly performed in the case of homologous marker genes

from amplicons but can also be applied to shotgun metagenomics
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data [7]. Whether supervised or unsupervised approaches are used

the end result is the same: a community is represented by a list of

types, either taxa or OTUs, and their frequency. For shotgun

metagenomics data much more analysis is possible, utilising

information about the function of genes that are sequenced, but

here we will focus on the analysis of community structure

generated by microbial metagenomics. Typically, this will be

generated as amplicons, which typically will be 454 pyrose-

quenced, but we would emphasise that the approach can be

applied to any list of taxa or OTUs with discrete abundances.

Early studies of microbial communities focussed on cataloguing

diversity in individual samples, asking: how many different taxa or

OTUs were present [8,9]? A striking result was that the observed

diversity was very high, and that most species were observed with

low abundance; this phenomenon has been termed the ‘rare

biosphere’ [8]. These early studies ignored the impact of

sequencing and PCR errors which can inflate OTU diversities

[10], but even after the application of algorithms capable of

removing those errors [11], observed diversities remain high in

most environments and abundances are still skewed to low

abundances in almost all [10,12]. The consequence of this is that

even with very large read numbers we will have only sampled a

fraction of the true diversity [13].

The natural extension to examining the diversity in an

individual sample is to look at patterns across samples from

similar environments. Barcoding allows multiple samples to be

sequenced in a single run but difficulties quantifying DNA

concentration means that the number of reads from each sample

will usually vary substantially [14]. Sub-sampling can be used to

reduce all samples to the same size but that inevitably throws

away large amounts of meaningful data. The majority of studies

have used exploratory statistics to search for natural patterns in

the data, unsupervised learning again. A common strategy is to

use multivariate ordination techniques, where samples are

positioned in a space of reduced dimensionality so as to preserve

the distances between them in the original higher dimensional

space; often two or three dimensional ordinations are used and

then it is possible to look for patterns by eye. A classic example of

an ordination method is principal components analysis (PCA),

which generates new dimensions that are linear combinations of

the original, chosen so as to preserve the Euclidean distance

between samples [15]. Euclidean distances are not very

appropriate for microbial community analysis, much better is to

use measures that incorporate the phylogentic divergence

between types, e.g. Unifrac [16]. Ordination can be performed

with arbitrary distance metrics using multidimensional scaling

methods, these can be either metric in that they preserve

distances or non-metric in that they preserve the ranking of the

distances. An example of a metric multidimensional scaling is

principal coordinates analysis which has proven a useful and

popular tool when coupled with Unifrac for exploratory data

analysis [17].

Clustering is another means of exploratory data analysis which

searches for natural groups or partitions in the samples.

Hierarchical clustering, where a tree of relationships is generated

without explicitly grouping samples unless an arbitrary cut-off is

chosen, is quite commonly used in microbial community analyses,

partitional clustering where the samples are divided into groups

has traditionally been less popular. This may be because of the

need to decide a priori how many clusters are present. Generally

variants of the k-means algorithm have been used together with

heuristics to decide how good a clustering is. To date there has

been no model based clustering of microbial community data.

This question of the natural number of types of communities has

received particular attention recently in the context of the human

gut, for which it has been suggested that three microbial

community types, known as envirotypes (or, in the context of

the gut, enterotypes) are to be found [18]. Classification, or

supervised learning, is closely related to clustering, except here the

problem is not to find natural groups in the data but to predict the

group of a new sample, given a labelling of samples in a training

data set. Two studies applying classification methods to microbial

communities have appeared recently [19,20]. Most of the

algorithms used were, as for the unsupervised approaches,

developed for continuous data with the notable exception of the

multinomial naive Bayes (MNB) model in Knights et al. (2001)

[20].

There are, however, problems inherent in using standard

multivariate techniques for the analysis of microbial metagenomics

data. The data, even if normalised into relative abundances, is

fundamentally discrete and can only be approximately modelled

by continuous variables. In addition, the high diversity (relative to

sampling effort) results in very sparse data sets; most taxa appear in

only a few samples at low abundance. Finally, the samples vary in

read number: a small sample will inherently be more noisy than a

larger one. All these issues can be addressed using an explicit

sampling scheme. Instead of viewing the sample as representing

the community, we view it as having being generated by sampling

from the community. The most natural assumption to make is

sampling with replacement, so that the likelihood of an observed

sample is a multinomial distribution with a parameter vector

where a given entry represents the probability that a read is from a

given taxa. These probabilities in the limit of very large

community sizes will become the relative frequencies of the taxa.

This provides a discrete model, that accounts for different sample

sizes, and can model sparse data.

We will show how this multinomial sampling can be used as a

starting point for a generative modelling framework, one that

explicitly describes a model for generating the observed data [21].

This provides model-based alternatives for both clustering and

classification of microbial communities. The natural prior for the

parameters of the multinomial distribution is the Dirichlet. This is

a probability distribution over probability vectors. In the context of

microbial communities we can view it as describing a metacom-

munity from which communities can be sampled. Its parameters

then describe both the mean expected community and the

variance in the communities. As we will show, one of the major

advantages of the Dirichlet prior is that the community parameter

vectors which are unobserved can be integrated out or margin-

alised to give an analytic solution to the evidence: the probability

that the data was generated by the model. By extending the

Dirichlet prior to a mixture of Dirichlets [22–24], so that the data

set is generated not by a single metacommunity but a mixture of

multiple metacommunities, we obtain both a more flexible model

for our data and a means to cluster communities. To perform the

clustering, we simply impute for each sample the component

which is most likely to have generated it. This separates samples

into groups according to the metacommunity it has the highest

probability of deriving from. The advantage of this approach over

simple k-means type strategies is twofold: (1) the clusters can be of

different sizes depending on the variability of the metacommunity,

and more importantly (2) because we now have an explicit

probabilistic model that is appropriate to the data, then we can use

the evidence together with methods to penalise model complexity

to provide a rigorous means of determining optimal cluster

number.

Multinomial sampling has been used previously in the study of

microbial communities [20], and it has been coupled with a

Generative Models for Microbiomics
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Dirichlet prior [25], but the extension of that prior to a mixture

of Dirichlet components in this context is completely novel, as is

the explicit association of each Dirichlet component with a

different metacommunity. The major challenge for our frame-

work is how to fit the Dirichlet mixture given the very large

dimensionality of microbial metagenomics data sets. This will

make Gibbs sampling to obtain posterior distributions for the

Dirichlet parameters challenging, at least for OTU based data

sets. Instead, we utilise the analytic form for the evidence and fit

the Dirichlet parameters by maximising this, given a gamma

hyperprior distribution for those parameters, this is an example of

the ‘evidence framework’ [26]. In practice, this is achieved by

coupling an Expectation-Maximisation (EM) algorithm for the

Dirichlet mixture parameters with multi-dimensional optimisa-

tion of each component’s parameters. To answer the crucial

question of model fit, we use a Laplace approximation to

integrate out the hyperparameters, and estimate the evidence of

the complete model. In contrast, the extension to a classifier is

relatively simple. We simply fit the model to the different classes,

estimate priors as the frequencies of the classes in the training

data, and then use Bayes’ theorem to calculate the probability

that a sample to be classified was generated from each of the

classes. We now explain in more detail the model framework and

illustrate its utility by application to two example data sets of

human gut microbiota [27,28].

Materials and Methods

Multinomial sampling
Our starting point is a matrix of occupancies X with elements

Xij that give the observed abundance of taxa j in community

sample i where j runs from 1 to the total number of taxa S, and i
from 1 to the total number of communities N . We will denote the

rows of this matrix that give the occupancies in each individual

community sample by the N vectors �XXi. We assume that each

community sample is generated from a multinomial distribution

with parameter vector �ppi. The elements of �ppi, pij , are the

probabilities that an individual read taken from community i
belongs to species j. The multinomial distribution corresponds to

sampling with replacement from the community. This gives a

likelihood for observing each community sample:

Li( �XXij�ppi)~Ji! P
S

j~1

p
Xij
ij

Xij !
, ð1Þ

where the Ji~
PS

j~1 Xij are the total number of reads from each

community i. The total likelihood is the product of the community

sample likelihoods:

L(Xj�pp1, . . . ,�ppN )~ P
N

i~1
Li( �XXij�ppi):

Dirichlet mixture priors
In a Bayesian approach we now need to define a prior

distribution for the multinomial parameter probability vectors �ppi.

We will refer to these as ‘communities’ since they reflect the

underlying structure of the community i that is sampled. A prior

based on the Dirichlet distribution is natural, as it is conjugate to

the multinomial and (as we will discuss) has a number of

convenient properties. The Dirichlet is a probability distribution

over distributions:

Dir(�ppij�aa:h �mm)~C hð Þ P
S

j~1

p
hmj{1

ij

C(hmj)
d
XS

j~1

pij{1

 !
: ð2Þ

This distribution has S parameters which we can represent as a

vector �aa that is a measure i.e. all elements are strictly positive,

aiw0 V i. We can express �aa~h �mm, where h~
PS

j~1 aj and �mm is a

normalised measure with
PS

j~1 mj~1. The elements mj then give

the mean pij values and the value h acts like a precision,

determining how close the values lie to that mean: a large h gives

little variance about the mean values, while a small h leads to

widely distributed samples. Conceptually we view these parame-

ters as describing a ‘metacommunity’, from which different

communities can be sampled. The Dirac delta function ensures

normalisation, i.e.
P

j pij~1.

To provide a more flexible modelling framework and to allow

clustering we extend this single Dirichlet prior to a mixture of K
Dirichlets, indexed k~1, . . . ,K , each with parameters �aak and

weight pk [22,23]. Each community vector �ppi is assumed to derive

from a single metacommunity. For each sample i, we represent

this using a K-dimensional indicator vector �zzi that consists of zeros

except for the entry corresponding to the metacommunity that

sample i derives from which is equal to one. The prior

probabilities for the vectors �zzi are then just the mixture weights, so:

P(�zzi)~ P
K

k~1
p

zik
k ð3Þ

and the complete mixture prior is:

P(�ppijQ)~
XK

k~1

Dir(�ppij�aak)pk, ð4Þ

where the Dirichlet distribution is given by Equation 2 , and the

mixture prior hyperparameters are Q~ K ,�aa1, . . . ,�aaK ,p1, . . . ,pKð Þ.
The numerical behaviour of the model can be improved by

placing independent and identically distributed Gamma hyper-

priors on the Dirichlet parameters ajk, i.e., ajk*C(g,n). Thus,

p(�aa1, . . . ,�aaK )~ P
S

j~1
P
K

k~1

ngag{1
jk e

{najk

C(g)
~

C(g){KSngKS exp {n
XS

j~1

XK

k~1

ajk

( )
P
S

j~1
P
K

k~1
ag{1

jk ,

ð5Þ

as we will later use the following reparameterisation: ljk~ log ajk,

the change of variables formula for probability density functions

was used to convert the prior for ajk into one for ljk, which yields

the result that:

p(�ll1, . . . ,�llK )~C(g){KSngKS exp {n
XS

j~1

XK

k~1

ajk

( )
P
S

j~1
P
K

k~1
ag

jk:ð6Þ

Posterior distribution of the multinomial parameters
The posterior distribution of the community parameters is

obtained by multiplying the Dirichlet mixture prior by the

multinomial likelihood ( Equation 1 ) and appropriately normal-

Generative Models for Microbiomics
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ising to give for community i:

P(�ppij �XXi,Q)~

PK
k~1 Li( �XX ij�ppi)Dir(�ppij�aak)pkPK

k~1 P( �XX ij�aak)pk

: ð7Þ

The Dirichlet is a conjugate prior for the multinomial: for a single

Dirichlet the posterior is itself a Dirichlet with parameters

obtained by summing the observed counts and the Dirichlet

parameters, �aaz �XXi. For the Dirichlet mixture this conjugacy is

maintained and Equation 7 can also be written as a Dirichlet

mixture:

P(�ppij �XXi,Q)~
XK

k~1

Dir(�ppij�aakz �XXi)P(zik~1j �XXi,Q): ð8Þ

We will discuss the calculation of the posterior probabilities,

P(zik~1j �XXi,Q), for a sample deriving from a metacommunity

below.

Marginalising the multinomial parameters
The denominator of Equation 7 is equivalent to P( �XXijQ), the

evidence for community sample i. This is obtained by

integrating the numerator, i.e. the mixture prior P(�ppijQ)
multiplied by the likelihood Li( �XXij�ppi), over all possible

community priors. It is the complete probability of observing

this data marginalising out the unseen vector of probabilities �ppi.

One of the useful properties of the Dirichlet prior is that this

evidence has a closed form. So focussing on just a single

mixture component k:

P( �XXij�aak)~

ð
Li( �XXij�ppi)Dir(�ppij�aak)d�ppi

~
B(�aakz �XX i)

B(�aak)
Ji! P

S

j~1

1

Xij !
,

where the function B is the multinomial Beta function and can

be expressed in terms of Gamma functions as:

B(�aa)~
PS

j~1 C(aj)

C(
PS

j~1 aj)
:

So far we have considered the posterior and evidence for just a

single community sample i. The evidence over all samples is

just the product of the evidences for each sample:

P(XjQ)~ P
N

i~1

XK

k~1

B(�aakz �XX i)

B(�aak)
Ji! P

S

j~1

1

Xij !
pk

 !
: ð9Þ

EM algorithm for fitting the mixture of Dirichlets prior
Our strategy for fitting the mixture of Dirichlets is to maximise

the evidence given the gamma hyperpriors. The strictly Bayesian

approach would be to sample from the unobserved hyperpara-

meters, Q, and latent variables �zzi, given the hyperpriors, using

Markov chain Monte Carlo (MCMC), and then marginalise.

This would be computationally challenging for the high

dimensional �aak vectors that are encountered in microbiomics

data. Maximising the evidence allows us to obtain a single

parameter vector that will correspond to the most likely set of

parameters given the gamma hyperpriors. The technique is well

established and is known as the ‘evidence framework’ [21,26].

The posterior distribution of the hyperparameters is given by the

product of the evidence (Equation 9) and the hyperprior for the

�aak given by Equation 5. Strictly, to distinguish this from the

posterior of the multinomial parameters we should refer to this as

the marginal posterior distribution but our meaning should be

clear from the context used. We are also implicitly assuming

uniform hyperpriors for the other components of Q, the mixing

coefficients �pp. Maximising the posterior of the hyperparameters

is equivalent to maximising the log posterior of the hyperpara-

meters, F (Q): log P(QjX). Thus:

Q̂Q~argmaxQP(QjX)

~argmaxQP(XjQ)P(Q)

~argmaxQF (Q),

where

F(Q)! log P(XjQ)z log P(Q)

!
XN

i~1

log
XK

k~1

pk
B(�aakz �XX i)

B(�aak)

 !
{n

XS

j~1

XK

k~1

ajkzg
XS

j~1

XK

k~1

log ajk:
ð10Þ

We now use a binary latent variable matrix Z with elements zik

that are 1 if the ith community sample belongs to the kth

metacommunity and 0 otherwise. The rows of this matrix are the

�zzi vectors introduced above. This allows us to maximise the log

posterior distribution using the popular expectation-maximisation

(EM) algorithm [21]. Augmenting the data with these latent

variables, the evidence and log posterior distribution, respectively,

become:

P(X,ZjQ)~ P
N

i~1
P
K

k~1

B(�aakz �XX i)

B(�aak)
Ji! P

S

j~1

1

Xij !
pk

� �zik

,

F (Q,Z)!
XN

i~1

XK

k~1

zik log pkz log B(�aakz �XXi){ log B(�aak)f g

{n
XS

j~1

XK

k~1

ajkzg
XS

j~1

XK

k~1

log ajk:

Using Jensen’s inequality we obtain a lower bound for the

expected log posterior distribution:

EZ½F (Q,Z)�§
XN

i~1

XK

k~1

E½zik� log pkz log B(�aakz �XXi){ log B(�aak)f g

{n
XS

j~1

XK

k~1

ajkzg
XS

j~1

XK

k~1

log ajkzterms independent of Q:

ð11Þ

We can calculate E½zik� as follows:

Generative Models for Microbiomics
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E½zik�~P(zik~1j �XX i)

~
P(zik~1)P( �XX ijzik~1)P
k’ P(zik’~1)P( �XX ijzik’~1)

~

pk
B(�aakz �XX i)

B(�aak)P
k’ pk’

B(�aak’z �XX i)

B(�aak’)

,

ð12Þ

where we have used Bayes’ theorem and P( �XXijzik~1)~P( �XXij�aak).

Following Sjölander et al (1996) [22], we now reparameterise

and optimise the expected log posterior distribution with respect to

these new parameters: to keep the ajk’s positive, we set ajk~eljk ,

and to keep the pk’s normalised, we set pk~mk=
P

k’ mk’.

Optimising EZ½F (Q,Z)� with respect to mk is equivalent to solving

the following equation:

LEZ½F(Q,Z)�
Lmk

~
1

mk

XN

i~1

E½zik�{
NP
k’ mk’

~0:

Rearranging this equation we obtain:

mkX
k’

mk’

~
1

N

XN

i~1

E½zik�,

and thus:

pk~
1

N

XN

i~1

E½zik�: ð13Þ

Our EM algorithm to find Q̂Q thus alternates between updating

the responsibilities E½zik�, the mixing coefficients �pp and the

Dirichlet parameters �aak, k~1, . . . K :

N Calculate E½zik� using Equation 12.

N Update ljk by finding parameters that minimise the negative of

Equation 11. In practice we used the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm as implemented in the

Gnu Science Library [29].

N Calculate pk using Equation 13.

N Repeat until convergence of EZ½F (Q,Z)�, which can be

calculated from Equation 11.

We will refer to the hyperparameter values obtained by this

method as the maximum posterior estimates (MPE).

Model comparison through Laplace approximation. We

need to determine the number of components K in the Dirichlet

mixture. We cannot simply choose the one with the largest log

posterior, F (Q), as this takes no account of model complexity: as

the number of components is increased, F (Q) must increase. We

could use a heuristic like the Aikaike Information Criterion (AIC)

or Bayesian Information Criterion (BIC) to penalise the model

parameters but these can give misleading results [21]. Better is to

take a fully Bayesian approach to model comparison where

probabilities are used to represent uncertainty in the choice of

model. Applying Bayes’ theorem, the posterior probability of the

K component model HK given the data matrix X is:

p(HK jX)!p(HK )p(XjHK ),

where p(HK ) is the prior probability for the K component model,

which allows us to express a preference for different models, and

p(XjHK ) is the model evidence, which expresses the preference of

the data for different models. In our case, the model evidence is

given by:

p(XjHK )~

ð
p(XjQ,HK )p(QjHK )dQ:

This integral cannot be calculated analytically, but it can be

estimated using the Laplace approximation:

log p(XjHK )& log p(XjQ̂Q,HK )z log p(Q̂QjHK )

z
M

2
log (2p){

1

2
log jHj,

ð14Þ

where M is the number of parameters in Q, Q̂Q are the parameters

maximising the posterior distribution, and H is the Hessian matrix

of second derivatives of the negative log posterior evaluated at Q̂Q:

H~{++ log p(XjQ̂Q,HK )p(Q̂QjHK )~{++ log p(Q̂QjX): ð15Þ

Thus,

H~{++ log p(XjQ̂Q,HK ){++ log p(Q̂QjHK ):

The nonzero elements of the Hessian matrix are given below:

{
L2EZ½F (Q,Z)�

Ll2
jk

~

{ajk

XN

i~1

E½zik� {Y(ajk)zY(Ak)zY(cjk){Y(Ck)
� �

{a2
jk

XN

i~1

E½zik� {Y1(ajk)zY1(Ak)zY1(cjk){Y1(Ck)
� �

znajk,

{
L2EZ½F (Q,Z)�

Llj’kLljk

~{ajkaj’k

XN

i~1

E½zik� Y1(Ak){Y1(Ck)ð Þ,

and

{
L2EZ½F(Q,Z)�

Lp2
k

~
1

p2
k

XN

i~1

E½zik�,

where Ak~
PS

j~1 ajk, cjk~ajkzXij , Ck~
PS

j~1 cjk, Y(z)~
C’(z)

C(z)

and Y1(z)~
d

dz
Y(z). In the results we will give the negative of

Equation 14 so that a better fit corresponds to a smaller value. The

Hessian also allows us to calculate uncertainties in the parameter

estimates of Q, through computing the inverse, then the diagonal

elements give the variance of the corresponding parameter.

Data Sets
Twins. To illustrate the application of these ideas to a real

data set we reanalysed a study of the gut microbiomes of twins and
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their mothers [27]. These comprised faecal samples from 154

different individuals characterised by family and body mass index

– ‘Lean’, ‘Obese’ and ‘Overweight’. Each individual was sampled

at two time points approximately two months apart. The V2

hypervariable region of the 16S rRNA gene was amplified by PCR

and then sequenced using 454. We reanalysed this data set filtering

the reads, denoising and removing chimeras using the

AmpliconNoise pipeline [10,11]. Denoised reads were then

classified to the genus level using the RDP stand-alone classifier

[5]. This gave a total of 570,851 reads split over 278 samples since

of the 308 possible some failed to possess any reads following

filtering. The size of individual samples varied from just 53 to

10,585 with a median of 1,599. A total of 129 different genera

were observed with a genera diversity per sample that varied from

just 12 to 50 with a median of 28. One extra category ‘Unknown’

was used for those reads that failed to be classified with greater

than 50% bootstrap certainty. We will refer to this as the ‘Twins’

data set.

IBD. We also include a brief analysis of microbiome data

from a study of inflammatory bowel diseases (IBDs) [28]. This

Figure 1. Model fit for mixture of Dirichlets prior to Twins dataset. Evaluates model fit for increasing number of Dirichlet mixture
components K using the Laplace approximation to the negative log model evidence.
doi:10.1371/journal.pone.0030126.g001

Figure 2. NMDS plot of Twins dataset with hierarchical cluster labellings. Samples arising from each of the four components are shown in
red, green, blue and magenta, respectively. The black crosses indicate the Dirichlet means of each component.
doi:10.1371/journal.pone.0030126.g002
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comprised faecal samples from 78 individuals where the V5-6

region of the 16S rRNA gene was pyrosequenced using 454. 35

samples were from healthy individuals, 12 from individuals with

colonic Crohn’s disease (CCD), 15 from individuals exhibiting ileal

Crohn’s disease (ICD), and 16 from individuals with ulcerative

colitis (UC). We processed the data as above. This gave a total of

134,276 reads with individual samples varying in size from 394 to

3,258 with a median of 1,710 reads. 93 separate genera were

observed in these samples with a genera diversity per sample that

varied from 8 to 33 with a median of 22.

Results

Clustering Twins data at the metacommunity level
The mixture of Dirichlets prior can be used to cluster samples at

the metacommunity level. Assuming each sample represents a

unique community, we can try to infer which metacommunity that

community is most likely to have originated from. This is the

component for which the posterior probability of each member-

ship is the highest, i.e. the value of k that maximizes

P(zik~1j �XXi,Q̂Q) for a particular sample i. We will denote this

value as e. These posterior probabilities will be the equilibrium

values of the E½zik� calculated by the EM fitting algorithm.

To use the mixture of Dirichlets prior for clustering at the

metacommunity level we first need to determine what the number

of clusters or mixture components K should be. To do this we

fitted Dirichlet mixtures by minimising the negative log posterior

as described above. To calculate model fit accounting for

complexity we then used the Laplace approximation to the model

evidence. We did this for increasing values of K starting with just a

single component K~1. The results are shown in Figure 1 where

we see a minimum for K~4 suggesting, firstly, that a mixture of

Dirichlets is more appropriate than a single Dirichlet prior for this

data set and that, secondly, the mixture has four components.

Table 1. Genera frequencies in the Twins Clusters.

Rank Genus m0j m1j m2j m3j m4j Diff. C. Diff.

1 Bacteroides 17.5 5-6.8-8 21-22.6-25 35-38.8-43 7-8.3-11 46.3 29.2

2 Unknown 30.8 26-29.1-33 31-33.6-37 20-22.4-25 39-45.2-53 27.2 46.4

3 Faecalibacter. 10.0 12-13.8-16 8-8.8-10 12-13.8-16 3-4.0-5 14.9 55.8

4 Prevotella 0.60 4.2-5.18-6.3 0.2-0.22-0.3 0.1-0.14-0.2 0.2-0.40-0.7 5.6 59.4

5 Alistipes 2.33 1.5-1.86-2.4 3.5-4.02-4.7 1.4-1.66-2.0 0.7-0.99-1.4 4.2 62.0

6 Dorea 2.71 2.7-3.32-4.1 1.2-1.49-1.8 1.4-1.73-2.1 3.1-4.05-5.3 4.1 64.6

7 Ruminococcus 2.05 1.9-2.36-3.0 3.1-3.57-4.2 0.8-0.95-1.2 0.6-0.92-1.4 4.1 67.2

8 Oscillibacter 2.56 2.3-2.84-3.5 3.4-3.96-4.6 1.3-1.59-1.9 0.9-1.20-1.7 4.0 69.7

9 Roseburia 4.13 3.0-3.63-4.5 2.0-2.32-2.8 3.9-4.47-5.2 4.2-5.40-6.9 3.9 72.2

10 Subdoligran. 2.84 2.8-3.40-4.2 2.6-3.04-3.6 1.6-1.91-2.3 1.2-1.62-2.3 2.9 74.0

11 Collinsella 1.37 1.8-2.32-2.9 0.5-0.66-0.8 0.5-0.67-0.9 1.3-1.76-2.5 2.7 75.8

12 Eubacterium 1.03 1.9-2.47-3.1 0.3-0.40-0.5 0.4-0.52-0.7 0.8-1.16-1.6 2.7 77.5

13 Hespellia 1.04 0.4-0.54-0.8 0.5-0.65-0.8 0.5-0.69-0.9 1.4-1.95-2.6 2.1 78.8

14 Coprococcus 2.37 2.3-2.84-3.5 1.6-1.90-2.3 1.1-1.32-1.6 1.7-2.31-3.1 2.1 80.1

15 Streptococcus 1.12 0.9-1.21-1.6 0.4-0.57-0.7 0.5-0.62-0.8 1.2-1.65-2.2 1.7 81.2

16 Coprobacillus 1.13 0.6-0.77-1.1 0.8-0.95-1.2 0.5-0.59-0.8 1.1-1.58-2.2 1.5 82.2

17 Catenibacterium 0.35 0.8-1.09-1.5 0.1-0.09-0.2 0.1-0.15-0.2 0.2-0.30-0.6 1.2 82.9

18 Eggerthella 0.47 0.1-0.24-0.4 0.2-0.30-0.4 0.2-0.22-0.3 0.7-1.00-1.4 1.2 83.7

19 Clostridium 0.74 0.5-0.68-0.9 0.3-0.42-0.6 0.3-0.39-0.5 0.7-1.03-1.5 1.0 84.3

20 Anaerotruncus 1.02 0.8-1.07-1.4 0.7-0.85-1.1 0.4-0.52-0.7 0.5-0.76-1.1 1.0 84.9

21 Odoribacter 0.67 0.6-0.77-1.0 0.5-0.62-0.8 0.2-0.32-0.4 0.1-0.21-0.4 1.0 85.6

22 Barnesiella 0.56 0.5-0.71-1.0 0.5-0.60-0.8 0.2-0.22-0.3 0.1-0.13-0.3 1.0 86.2

23 Megasphaera 0.38 0.5-0.68-1.0 0.1-0.11-0.2 0.1-0.20-0.3 0.3-0.54-0.9 0.9 86.7

24 Paraprevotella 0.29 0.5-0.71-1.0 0.1-0.11-0.2 0.1-0.10-0.2 0.1-0.18-0.4 0.9 87.3

25 Lactobacillus 0.29 0.4-0.60-0.9 0.1-0.12-0.2 0.0-0.08-0.1 0.2-0.40-0.7 0.8 87.8

26 Butyricimonas 0.42 0.4-0.58-0.8 0.2-0.30-0.4 0.1-0.20-0.3 0.1-0.13-0.3 0.8 88.3

27 Butyricicoccus 0.87 0.6-0.79-1.1 0.4-0.47-0.6 0.5-0.60-0.8 0.6-0.84-1.2 0.8 88.8

28 Lactonifactor 0.63 0.5-0.65-0.9 0.3-0.35-0.5 0.3-0.34-0.5 0.6-0.81-1.2 0.8 89.3

29 Parabacteroides 0.77 0.4-0.59-0.8 0.5-0.64-0.8 0.3-0.40-0.5 0.5-0.68-1.0 0.8 89.8

30 Dialister 0.57 0.3-0.49-0.7 0.2-0.27-0.4 0.3-0.42-0.6 0.5-0.78-1.2 0.7 90.2

Percentage relative abundance of the first 30 out of 131 genera in the estimate of the mean of the reference single Dirichlet component, �mm0 , and the four Dirichlet
mixture components, �mm1, . . . , �mm4 fitted to the Twins data. For the mixture components the upper and lower 95% credible intervals are also given in the format (lower-
MPE-upper). These are calculated as the maximum posterior estimate minus/plus two standard deviations as calculated from the inverse Hessian. Genera are ranked in
order of their contribution to the total mean difference of 158%, split 34%, 26%, 51% and 47% across components, and the cumulative fraction of this difference
accounted for given in the last column in the table.
doi:10.1371/journal.pone.0030126.t001
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The four components have weights �pp~(0:22,0:31,0:30,0:17).
They differ also in how variable their communities are with
�hh~(30:2,52:0,53:3,18:7). Therefore we have two less abundant

highly variable clusters 1 and 4 and two more abundant

homogeneous clusters 2 and 3. To graphically illustrate this

optimal clustering in Figure 2 we used non-metric multidimen-

sional scaling (NMDS) to generate two-dimensional positions for

each community sample, and the mean vectors associated with the

four Dirichlet components �mm1, . . . , �mm4, that reflect their Bray-

Curtis distances using the isoMDS function of R [30]. From this

the higher variability in the first and fourth clusters is readily

apparent. Another striking observation is that communities are not

necessarily associated with the closest cluster mean. Partially this

may reflect imperfect mapping to the two-dimensional space but it

will also likely reflect properly accounting for sampling through the

multinomial-Dirichlet structure.

To explore the component composition we use the Dirichlet

parameter vector obtained by fitting a single mixture to the data

set as a reference, which we will denote �aa0~h0 �mm0. For interest

h0~24:4 a value that is intermediate to that of the four

components. We can get a sense of how different the components

are by calculating the sum of their posterior mean absolute

differences to the reference
PS

j~1 jmkj{m0j j. A quantity which

will vary between 0 and 200% for metacommunities that are

identical and completely dissimilar to the reference respectively.

Calculating this gives 34%, 26%, 51% and 47% for the four

components, and a total of 158%, indicating substantial

differences in community structures for each component from

the reference. How the different OTUs contribute to these

differences is shown in Table 1. Comparing the means of the

posterior distributions for the four components we find that 30

out of 131 genera account for over 90% of this difference. The

Bacteroides alone account for 29% of this difference. This genera

is substantially over represented in the third cluster comprising

nearly 39% of the community, close to the reference at 23% in

the second cluster and observed at much lower proportions in the

first and fourth clusters at around 7% and 8%, respectively. The

next most significantly different category is actually ‘Unknown’

with nearly 15% more sequences failing to be classified with

sufficient confidence in the fourth component, and 8% less in the

third component than the reference. Faecilibacterium are

substantially under-represented in the fourth component whereas

Prevotella is mostly found in the first. The other genera exhibit

various patterns but frequently we see over representation in one

of or both the first and fourth clusters and little representation in

the second and third e.g. Colinsella, Eubacterium, Streptococcus,

et cetera.

These patterns are also illustrated graphically in the ‘heat map’

of relative frequencies shown in Figure 3. The relative frequencies

of the 30 genera accounting for the most difference between

clusters are shown for all the samples. The samples are grouped

into the cluster that they had the highest probability of being

generated from, as defined above. The cluster means are plotted to

the right of the samples mapped to that cluster. Roughly we have

that the two low variance clusters are dominated by Bacteroides

and Faecilibacterium, albeit to a greater extent in the third cluster.

The high variance, first and fourth clusters, contain a greater

variety of genera but with substantially more Prevotella and

Faecilibacterium in the first, rather than the fourth, where no

genus really dominates.

Figure 3. Heat map of the Twins data and hierarchical clustering. Heat map showing the Twins data with samples grouped according to the
cluster most likely to have generated them. Only 30 out of 131 genera are shown, those with the greatest variability across clusters, see Table 1. To
the right of each cluster the mean of the Dirichlet component for that mixture is shown. The data is square root transformed and therefore to convert
the scale to relative abundance, values must be squared.
doi:10.1371/journal.pone.0030126.g003

Figure 4. NMDS plot of Twins dataset with class labels. Samples from Lean (t~0) individuals are shown in magenta and Obese (t~1) in Cyan.
Overweight are grey. The black crosses indicate the Dirichlet means of each component of the three components for the Obese class, the black
asterisk the single component for the Lean class. We also show the posterior mean of the entire Obese class as a black circle.
doi:10.1371/journal.pone.0030126.g004
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Generative classifier for Twins data
The Dirichlet-multinomial framework can also be used for

classification. This is a supervised learning approach as opposed to

the unsupervised approach used in the previous section. Here, we

will consider the case of binary classes but any number of classes is

a simple extension. Given a training data set of N samples �XXi then

we denote class membership with the N dimensional vector �tt with

elements ti which are either 0 or 1. The classification problem is to

deduce the class c~f0,1g of a new sample �YY . To do this we

associate a separate Dirichlet multinomial mixture model with

each class. We denote the hyperparameters of these mixtures by

Q0~(K ,a1, . . . ,aK ) and Q1~(K ’,a1
0, . . . ,aK ’

0), respectively. Then

we can marginalise over the multinomial parameters of the sample

to be classified so that:

P(c~1j �YY )~
P( �YY jQ1)P(c~1)

P( �YY jQ0)P(c~0)zP( �YY jQ1)P(c~1)
ð16Þ

is the probability of the sample belonging to the second class

and P(c~0j �YY )~1{P(c~1j �YY ). The prior class probabilities

are estimated as the observed class frequencies so that

P(c~0)~1{

XN

i~1
ti

N
and P(c~1)~

XN

i~1
ti

N
. The class mix-

ture themselves are determined just as before but with data points

restricted to those class members. We can also determine if the fit

is significant by comparing the sum of model fits of the classes with

the model fit ignoring the class variables. This is our generative

classification scheme.

We will apply this to the Twins data denoting individuals with

‘Lean’ BMI by ti~0 and ‘Obese’ as ti~1. We will ignore the

‘Overweight’ category to avoid ambiguity. In Figure 4 we replot

the NMDS plot of Figure 2 with these class labels. There is no

dramatic separation of points according to class labels. We found

that for the Lean ti~0 class a single component Dirichlet mixture

was optimal but that for the Obese ti~1 class three components

minimised the Laplace approximation to the model evidence. The

means of each of the three Obese components were quite different

but the posterior mean for the entire prior sampling from all three

according to their weights (black circle in Figure 4) is close to the

single component from the Lean class (black asterisk Figure 4). In

fact, accounting for uncertainty in both the Dirichlet priors and

the sampling from those, then only one low frequency genera,

Megasphaera, was significantly differently expressed between

classes, having a 97% probability of being more abundant in

Obese people. In addition, fitting to the two classes separately did

not give a significantly better fit than fitting to the whole data set,

35640 vs. 35385. It is also apparent from comparing Figure 2 and

Figure 4 that each of the class components map onto one of the

components from the clustering of the whole data set, this was

confirmed by comparing the Bray-Curtis distances between the

two sets of mean vectors, the component from the Lean class maps

onto the second of the four from the whole data set, and the three

components from the Obese class map onto the third, first and

fourth, respectively. In summary, it appears that the difference

between Lean and Obese classes lies not at the level of mean

community composition but that the Obese individuals contain a

Figure 5. Receiver operating characteristic (ROC) curves for the Twins Dirichlet multinomial and random forests classifiers. Gives
true positive percentage on the y-axis i.e. Obese individuals correctly identified vs false positive percentage i.e Lean individuals flagged as Obese.
doi:10.1371/journal.pone.0030126.g005

Table 2. Confusion matrices for classification of Twins data.

Predicted Random forests Dirichlet multinomial

Actual Lean Obese Lean Obese

Lean 19 42 33 28

Obese 5 188 29 164

The two rows give the number of ‘Lean’ and ‘Obese’ individuals predicted to be
‘Lean’ and ‘Obese’ by the random forests and Dirichlet multinomial classifiers
following leave-one-out validation. A classification threshold of 0.5 was used for
both algorithms.
doi:10.1371/journal.pone.0030126.t002
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greater variety of community structures including three out of the

four components found in the complete data set.

In a recent evaluation of classification algorithms applied to

microbial community data the random forests algorithm was

found to perform best [20], substantially outperforming elastic

nets, support vector machines, and multinomial naive Bayes

(MNB). The random forests algorithm is an example of ensemble

learning where many classifiers are generated and their predictions

are aggregated. In particular, it is an extension of the machine

learning technique known as bootstrap aggregating or bagging for

short. The bagging approach constructs decision trees from

bootstrap samples of the data and makes class predictions via

majority vote. Random forests adds an extra layer of randomness

to bagging by changing how the decision trees are constructed.

Instead of splitting each node using the best split amongst all the

variables, the best split amongst a subset of randomly chosen

predictors is used. Moreover, the random forests algorithm also

gives a measure of the importance of a variable by calculating how

much prediction error increases when data for that variable is

permuted. Random forests therefore seemed like an appropriate

benchmark to compare the performance of our generative

classifier to. Following Knights et al. (2011) [20], we implemented

the random forests algorithm using the randomForest package in

R, though we tuned the parameters of the algorithm (the number

of variables in the random subset at each node and the number of

trees in the forest) according to the heuristics suggested by Liaw

and Wiener (2002) [31].

To compare the two classification methods we performed leave-

one-out validation. We removed each sample in turn from the data

set, trained the classifier, and classified the missing data point.

Assigning the data point as Obese if the predicted probability was

greater than or equal to 0.5. We obtained a slightly lower error

rate, i.e. fraction of samples misclassified, for the random forests

algorithm (18.5%) as opposed to the Dirichlet multinomial

generative classifier (22.4%). Examining the ‘confusion matrix’

for each classifier, Table 2, that is the number of individuals from

each true class classified into the two classes, reveals that the

generative classifier does have a better distribution of errors across

classes. We then generated receiver-operating characteristic

(ROC) curves for each classifier. These are shown in Figure 5.

They are generated by ordering samples by decreasing likelihood

of being Obese: for the generative classifier that is simply the

probability of being Obese i.e. P(c~1); for random forests this is

the weighted vote. We then lower a threshold from 1.0 to 0.0 with

intervals defined by the sample probabilities. All samples with

probability greater than or equal to a given threshold are classified

as Obese, all other samples as Lean. Based on these classifications,

the false positive percentage (i.e. Lean classified as Obese) and true

positive rate (Obese classified as Obese) are calculated and plotted

against each other. This is repeated for all thresholds. It is a means

of summarising the performance of a classifier over all decision

thresholds. Both classifiers do substantially better than random but

at lower thresholds random forests outperforms the generative

classifier with fewer false positives. A summary statistic is the area

under the ROC curve, for random forests this was 85%; for the

Dirichlet-Multinomial 79% was obtained.

Analysis of IBD phenotypes
We conclude with a brief analysis of the inflammatory bowel

disease (IBD) phenotypes. In Figure 6 we show an NMDS plot

with samples coloured according to phenotype for this data set

generated as described above. It is apparent from this that the

Healthy (H) individuals, and those exhibiting colonic Crohn’s

disease (CCD) and ulcerative colitis (UC), have similar, fairly

homogeneous community structures whereas the individuals with

ileal Crohn’s disease (ICD) have a much larger variation in

community structure. We can use the DMM model to quantify

this, we fitted single component models, to all the samples

together, and then each phenotype separately. The h values

obtained were 15.7 for the whole data set and (H) 22.2, (CCD)

Figure 6. NMDS plot of IBD dataset with class labels. Samples from Healthy individuals (black), and three IBD phenotypes, (red) colonic Crohn’s
disease (CCD), (green) ileal Crohn’s disease (ICD), and (blue) ulcerative colitis (UC) are shown. The Dirichlet means of single component fits to each
type are shown by the corresponding coloured cross.
doi:10.1371/journal.pone.0030126.g006
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39.4, (ICD) 5.1, (UC) 38.5 for the phenotypes. Remembering, that

h is related to the inverse of the variance, then this confirms that

the ICD phenotype is associated with an increase in metacommu-

nity variability. We also show the metacommunity means in

Figure 6 as crosses: H, CCD and UC have a similar location

whereas the ICD mean is displaced. Exactly how the different

OTUs contribute to the differences in the ICD samples is shown in

Table 3 and graphically in Figure 7. The proportion of the

Unknown, Bacteroides, and Faecalibacterium genera are reduced

whereas numerous other genera for example the Escherichia/

Shigella, Sutterella, and Prevotella are increased.

Discussion

We have demonstrated that the Dirichlet multinomial mixture is

a powerful framework for the generative modelling of microbial

community data. It operates at several levels, it allows read

numbers and hence sampling noise to be naturally accounted for,

and the Dirichlet parameters are easily interpretable in terms of

the mean and variance of the communities generated from each

component. Used for ‘unsupervised learning’ or clustering it

provides a means to determine clusters of communities or

envirotypes, a highly topical problem in the analysis of microbial

community data. Since it is a probabilistic model, we can harness

rigorous statistical theory for determining how well the data is

explained by a given cluster number.

We illustrated this approach with the Twins data set. Using our

models, the most probable estimate for the number of envirotypes

present in this sample (or ‘enterotypes’ as they are known in the

context of gut microbiota samples) is four. Our measure of model

fit, the negative logarithm of the approximate model evidence, was

41 less than the next best cluster number, three. Thus, in the

context of our model the probability that there are four rather

than three or five clusters is practically a 100%. However, a direct

implication of the Bayesian approach is that any point estimate of

the number of envirotypes represents a summary (in our case, the

mode) of the posterior distribution over the number of clusters. For

other data sets the predicted cluster number may be more

uncertain. This uncertainty can be naturally incorporated by our

approach.

Our analysis, and its statistical implications, may be contrasted

with a previous analysis of this same Twins dataset, which used a

Table 3. Genera frequencies in the IBD phenotypes.

Rank Genus m0j hj cj ij uj Diff. C. Diff.

1 Unknown 27.8 24-28.4-34 26-33.4-44 14-21.1-33 27-34.7-44 19.8 18.9

2 Bacteroides 27.2 24-28.7-35 22-28.7-38 12-19.6-31 26-32.5-41 15.9 34.1

3 Faecalibacter. 3.61 3.3-4.36-5.8 3.6-5.39-8.0 0.7-1.52-3.4 3.1-4.46-6.4 5.5 39.4

4 Escherichia/Shigella 0.93 0.3-0.58-1.0 0.2-0.50-1.1 2.1-3.85-7.0 0.2-0.41-0.8 4.2 43.4

5 Parabacteroides 3.49 2.3-3.19-4.3 1.9-3.07-4.9 2.6-4.77-8.6 1.5-2.31-3.6 3.2 46.5

6 Sutterella 1.00 0.6-0.95-1.5 0.2-0.49-1.1 1.3-2.63-5.3 0.1-0.30-0.7 2.9 49.2

7 Alistipes 3.61 3.3-4.41-5.9 2.4-3.79-6.0 1.3-2.56-5.1 1.9-2.92-4.4 2.7 51.8

8 Prevotella 0.77 0.5-0.79-1.3 0.0-0.15-0.6 0.9-1.98-4.4 0.2-0.36-0.8 2.3 54.0

9 Dorea 1.98 1.2-1.65-2.3 0.9-1.48-2.5 1.4-2.70-5.2 0.8-1.29-2.1 2.2 56.2

10 Klebsiella 0.47 0.2-0.34-0.6 0.1-0.21-0.7 0.9-1.95-4.4 0.1-0.16-0.5 2.2 58.2

11 Bifidobacterium 1.91 1.1-1.59-2.3 1.5-2.48-4.1 1.2-2.32-4.7 0.7-1.14-1.9 2.1 60.2

12 Barnesiella 1.65 1.3-1.88-2.7 0.8-1.47-2.6 0.1-0.49-1.9 0.8-1.30-2.2 1.9 62.1

13 Oscillibacter 2.49 2.0-2.75-3.8 1.4-2.31-3.8 0.7-1.60-3.6 1.3-1.97-3.1 1.9 63.9

14 Streptococcus 0.67 0.3-0.44-0.8 0.2-0.44-1.0 0.8-1.76-3.7 0.2-0.37-0.8 1.8 65.6

15 Coprococcus 1.73 0.9-1.37-2.0 0.7-1.20-2.1 1.2-2.41-4.7 0.9-1.46-2.4 1.8 67.4

16 Veillonella 0.17 0.0-0.03-0.2 0.0-0.00-0.0 0.7-1.59-3.6 0.0-0.09-0.4 1.8 69.1

17 Subdoligranulum 2.33 1.8-2.47-3.4 1.2-1.93-3.2 0.7-1.62-3.6 1.2-1.86-3.0 1.7 70.7

18 Paraprevotella 0.55 0.4-0.60-1.0 0.0-0.14-0.5 0.6-1.36-3.3 0.1-0.21-0.6 1.6 72.3

19 Acidaminococcus 0.19 0.0-0.06-0.3 0.0-0.07-0.5 0.6-1.35-3.3 0.0-0.09-0.4 1.5 73.7

20 Lactobacillus 0.20 0.0-0.13-0.3 0.0-0.13-0.5 0.5-1.27-3.1 0.0-0.00-0.0 1.4 75.1

21 Ruminococcus 1.47 1.0-1.40-2.0 0.7-1.29-2.3 0.4-1.01-2.7 0.5-0.94-1.6 1.2 76.3

22 Lactonifactor 0.11 0.0-0.06-0.2 0.0-0.00-0.0 0.4-1.01-2.7 0.0-0.00-0.0 1.2 77.4

23 Odoribacter 1.11 0.7-1.04-1.5 0.4-0.73-1.4 0.3-0.93-2.5 0.4-0.69-1.2 1.0 78.4

24 Butyricicoccus 1.01 0.6-0.92-1.4 0.3-0.53-1.1 0.3-0.93-2.5 0.4-0.66-1.1 1.0 79.3

25 Fusobacterium 0.09 0.0-0.06-0.3 0.0-0.00-0.0 0.3-0.80-2.5 0.0-0.00-0.0 0.9 80.2

Percentage relative abundance of the first 25 out of 95 genera in the estimate of the mean of the reference single Dirichlet component, �mm0 , fitted to all IBD individuals,
and the four single component Dirichlet models, fitted to healthy (�hh), colonic Crohn’s disease (CCD - �cc), ileal Crohn’s disease (ICD - �ii), and ulcerative colitis (UC - �uu)
phenotypes. For the mixture components the upper and lower 95% credible intervals are also given in the format (lower-MPE-upper). These are calculated as the
maximum log posterior estimate minus/plus two standard deviations as calculated from the inverse Hessian. Genera are ranked in order of their contribution to the total
difference of 104% to the reference split 9%, 20%, 48%, 27% across phenotypes, and the cumulative fraction of this difference accounted for given in the last column in
the table.
doi:10.1371/journal.pone.0030126.t003
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partitioning around medoid (PAM) clustering coupled with the

heuristic Calinski-Harabasz (CH) index [18]. The CH approach

makes no acknowledgment of the fact that there is inherent

uncertainty in the number of clusters, and thus may potentially be

misread as offering an unambiguous and definitive assessment of

the number of clusters. Furthermore, the PAM clustering

algorithm does not allow clusters to be of variable spread. This

may be the reason why they found three rather than four clusters.

The extra flexibility of the DMM model could better represent the

true patterns in the data. This, to us, supports the promise of a

probabilistic model with the flexibility to model clusters of different

size and a Bayesian approach to determining the cluster number.

Used for ‘supervised learning’ the Dirichlet multinomial mixture

provides an effective classifier. Absolute classification power as

summarised by the area under the ROC curve is less than for the

best performing of previously tested algorithms - random forests.

However, using the standard classification threshold of 0.5 it had a

better distribution of errors across classes, outperforming random

forests on the smaller ‘Lean’ class. In general, we would expect

discriminative classifiers, which only model the conditional

probability of the class label given the data, to outperform

generative models, which fit the actual class distributions. On the

other hand, the generative approach allows much easier

interpretation of the fitted models, which is often more important

than accuracy per se. The fitted Dirichlet parameters describe both

the composition of the communities, and critically variance in

composition associated with the classes. The probabilistic

framework that we present also allows the hypothesis of whether

two classes do differ in community composition to be rigorously

tested. Or equivalently whether a discrete experimental treatment

significantly impacts community structure.

Generative models provide a framework for both clustering and

classification but their full power derives from their ability to

combine the two. We will illustrate this for the Twins data. In

Table 4 we give the proportion of samples from each BMI

category, i.e. Lean, Obese and Overweight, that fell into our four

enterotypes. For this data set we did not see a significant difference

in mean community composition between Lean and Obese

individuals. However, it is clear that the two classes do differ

significantly in their probability of deriving from each of the

clusters. Lean individuals are much less likely to derive from the

first and fourth clusters than Obese individuals. They are much

more likely to derive from the second and somewhat less likely

from the third. This suggests a novel explanation for the

differences in taxa frequency that have been previously reported

between Lean and Obese individuals from this data. BMI itself is

not correlated with changes in community structure rather it

influences the likelihood of deriving from the four enterotypes.

This raises the intriguing possibility that the first and fourth

enterotypes may be associated with a disturbed possibly unhealthy

gut microbiota – ‘dysbiosis’. This implies that obesity does not

guarantee a disturbed microflora but increases its likelihood.

Finally, we return to the observation that the first and fourth

enterotypes have a higher variance in community structure than

the second and third. We suggest that this is an example of the

‘Anna Karenina principle’ as applied to microbial communities.

This principle popularised by Jared Diamond [32] derives from

the first line of Tolstoy’s novel: ‘‘Happy families are all alike; every

unhappy family is unhappy in its own way’’ [33]. We propose that

the same thing may apply to microbial communities in human

health, there are many more configurations associated with

dysbiosis than are possible for a healthy community which is

relatively predictable and homogeneous as it requires certain key

components. This is not to suggest that the first and fourth

enterotypes are associated with higher genera level diversity in

individual samples, the median diversities are not significantly

different between the enterotypes, it is the diversity in community

compositions that increases. Our observations are also consistent,

therefore, with the conclusion of the original study that the major

impact of obesity was a reduction in OTU diversity [27].

This interpretation of the Twins data is obviously speculative

and will require further studies with more meta-data on host

health to corroborate. The analysis of the IBD phenotype data

represents a first step in this direction. There we did find a much

more variable microbiota associated with one of the disease

phenotypes, ileal Crohn’s disease, but not colonic Crohn’s or

ulcerative colitis. This is, therefore partial support for the AKP.

However, it is possible that the latter two diseases are not strongly

associated with gut dysbiosis. Certainly, at the genera level we

were unable to discriminate their community compositions from

healthy individuals. The number of samples in each of the disease

phenotypes was also quite small. We hope that future large-scale

sequencing projects will allow us to investigate this question

further. The ‘Human Microbiome Project’ is restricted to healthy

individuals but that will allow us to verify the existence of the two

enterotypes that we propose are associated with a healthy

microbiota [34].

The software for fitting the Dirichlet multinomial mixture is

available for download from the Google Code project Mi-

crobeDMM (http://code.google.com/p/microbedmm/).
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Figure 7. Heat map of the IBD data divided by phenotype together with phenotype means. Heat map showing the IBD data with samples
grouped according to the IBD pheonotype. The means of the four single component Dirichlet models, fitted to healthy (�hh), colonic Crohn’s disease
(CCD - �cc), ileal Crohn’s disease (ICD - �ii), and ulcerative colitis (UC - �uu) phenotypes are also shown. Only 25 out of 95 genera are shown, those with the
greatest variability across phenotypes, see Table 3. The data is square root transformed and therefore to convert the scale to relative abundance,
values must be squared.
doi:10.1371/journal.pone.0030126.g007

Table 4. Comparison of BMI and cluster or ‘Enterotype’.

BMI e = 1 e = 2 e = 3 e = 4

Lean 6.6% 60.7% 24.6% 8.2%

Obese 25.9% 21.2% 33.2% 19.7%

Overweight 29.2% 33.3% 25.0% 12.5%

Proportion of samples with a given BMI deriving from the four enterotypes
e~1, e~2, e~3, and e~4.
doi:10.1371/journal.pone.0030126.t004
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