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Abstract

This thesis is about interest rate modelling with applications in pricing and risk
management of interest rate derivatives and portfolios.

The first part of the thesis is developed within the random field framework suggested
by Kennedy (1994). The framework is rich enough to be used for both pricing and
risk management, but we believe its real value lies in the latter. Our main objective
is to construct infinite-factor Gaussian field models that can fit the sample covariance
matrices observed in the market. This task has not previously been addressed by the
work on field methodology. We develop three methodologies for constructing strictly
positive definite covariance functions, characterising infinite-factor Gaussian fields.
We test all three constructions on the sample covariance and correlation matrices
obtained from US and Japanese bond market data. The empirical and numerical
tests suggest that these classes of field models present very satisfactory solutions
to the posed problem. The models we develop make the random field methodology
a much more practical tool. They allow calibration of field models to key market
information, namely the covariation of the yields.

The second part of the thesis deals with pricing kernel (potential) models ofthe term
structure. These were first introduced by Constantinides (1992), but were subse-
quently overshadowed by the market models, which were developed by Miltersen et
al. (1997), and Brace et al. (1997), and are very popular among the practitioners.
Our objective is to construct a class of arbitrage-free term structure models that
enjoy the same ease of calibration as the market models, but do not suffer from
non-Markov evolution as is the case with the market models. We develop a class
of models the within pricing kernel framework. I.e., we model the pricing kernel
directly, and not a particular interest rate or a set of rates. The construction of
the kernel is explicitly linked to the calibrating set of instruments. Thus, once the
kernel is constructed it will price correctly the chosen set of instruments, and have a
low-dimensional Markov structure. We test our model on yield, at-the-money cap,
caplet implied volatility surface, and swaption data. We achieve a very good quality
of fit.

xvii



Chapter 1

Introduction to This Thesis

Modelling the dynamics of interest rates has become an important as well as exten-

sively studied area in mathematical finance, financial economics and econometrics.

This thesis is about interest rate modelling with applications in pricing and risk

management of interest rate derivatives and portfolios.

The first part of the thesis is developed within the random field framework suggested

by Kennedy (1994). Random field models of the term structure are generalisations

of the finite factor models which have dominated the financial economics literature.

In a field model, each point along the term structure is a distinct random variable

with its own dynamics. The framework is rich enough to be used for both pricing

and risk management, however we believe its real value lies in the latter. In contrast

with finite-factor models, random field models are consistent with both the current

yield curve and any term structure innovation.

What is more important, especially for interest rate risk management applications,

Gaussian field models have the potential to exactly fit the empirical covariance

structure. Furthermore, N-factor models predict that any, for example, long-term

maturity bond can be perfectly hedged with an appropriate position in N-short-

term bonds, while a random field model predicts that a better hedging instrument

1



for a long-term bond is another of similar maturity. This is in agreement with the

common hedging practice in fixed income markets.

Our main objective is to construct infinite-factor Gaussian field models that can fit

the sample covariance matrices observed in the market. To the best of our knowl-

edge, this task has not previously been addressed by the work on field methodology.

We develop three methodologies for constructing strictly positive definite covariance

functions, characterising infinite-factor Gaussian fields. We test all three construc-

tions on the sample covariance and correlation matrices obtained from the US and

Japanese bond market data. The empirical and numerical tests suggest that these

classes of field models present very satisfactory solutions to the posed problem. The

models we develop make the random field methodology a much more practical tool.

They allow calibration of field models to the key market information, the covariation

of the yields.

The second part of this thesis deals with pricing kernel (potential) models of the

term structure. These were first introduced by Constantinides (1992), but were sub-

sequently overshadowed by the market models, developed by Miltersen et al. (1997),

and Brace et al. (1997). The market models are very popular among the practition-

ers, as they allow almost instantaneous calibration to the liquid market prices. How-

ever, the main disadvantage of market models turns out to be their non-Markovian

property in low-dimensions. This fact inhibits the use of these models for pricing

exotic products, where the short rate approach is still the preferred choice.

Thus it is desirable to find a class of models that enjoy the same ease of calibration

to the liquid market prices with the market models, and at the same time has a low-

dimensional Markov structure as in the case of short rate models. The HJM and

the short rate approaches to term structure modelling have been studied extensively.

Thus it is unlikely they will yield any class of models that has the desired properties.

On the other hand the pricing kernel framework has been studied less extensively.

2



We feel that it has enough scope and flexibility to achieve our goal.

We develop a class of models within the pricing kernel framework. Le. we model

the pricing kernel directly, and not a particular interest rate or a set of rates. The

construction of the kernel is explicitly linked to the calibrating set of instruments.

Thus, once the kernel is constructed it prices correctly the chosen set of instruments

and has a low-dimensional Markov structure. We demonstrate that the model cali-

brates well to data. The data used comprised of the yield curve and at-the-money

caps for GB pound on February 3, 1995, the yield curve and the caplet black implied

volatility surface for GB pound on August 4, 2000, yield curve and at the money

black implied swaption matrix, for 4th August, 2000. We achieve a very good quality

of fit, measured as the percentage difference between the model and market prices.

Thesis Structure

We review the term structure pricing literature in Chapter 2. The common way to

describe the literature is to start with the historically oldest short rate type models,

e.g. Vasicek {1977}. Then one usually continues with the HJM framework, market

models, and so on. Instead of following this standard route, we discuss the literature

from the top down. Le. we will start with the most general arbitrage-free framework,

the pricing kernel, then we specialise this framework to the less general classes of

models, the short rate models: models of the instantaneous forward rates, etc. This

will allow us to place all the model classes within the general pricing theory and

understand better their advantages, shortcomings and relations to each other. For

example, knowing that the class of market models is a subfamily of the HJM class

will help us to understand why market models lack the Markov property.

Part of an input in field models is motivated by issues of fixed income risk measure-

ment and management. In Chapter 2 we also review this literature. Unfortunately,

there is no unifying theory as in the case of arbitrage-free pricing. Thus, this chapter

3



is mainly a collection of techniques, tools, and ideas that can help to understand

some of the risks involved in fixed income portfolios. This literature is surprisingly

undeveloped and unsatisfying.

In Chapter 3 we describe the Gaussian random field framework. We describe in

some detail results and analysis on the field models obtained by Kennedy (1994),

Goldstein (2000), and Santa-Clara and Sornette (2001). As distinct from previous

authors, we work with the yield curve as fundamental, and model it as a Gaussian

random field. This is not essential, as the results will be equally applicable to other

term structure parameterisations. We require that the covariance function of the

Gaussian field be strictly positive definite (SPD) so that the evolution of the yield

is driven by infinite-factor structure. Additionally we discuss several smoothness

properties of the yield curve and its evolution. We derive sufficient conditions on

the covariance function that are needed to produce such degree of smoothness.

Chapter 4 is the first of three chapters in which we develop methodologies for con-

structing strictly positive definite instantaneous covariance and correlation func-

tions. In this chapter we provide two alternative non-parametric methodologies.

The first methodology, in which we derive an estimate of the instantaneous covari-

ance function, consists of two steps. In the first step we approximate the covariance

function on the unobserved grid points, Le. we exploit the smoothness property of

the covariance function. In the second step, we evaluate this approximating function

on a grid represented by the required set of maturities. This generates a matrix,

which among other entries includes the observed covariance values. Next, we use

the Matrix Nearness approach to approximate this estimate matrix with the closest

positive definite matrix in some norm. Thus, we obtain a strictly positive definite

approximant, and we choose this approximant as the estimate of the covariance

function on the chosen grid.

The second methodology, in which we derive an estimate of the instantaneous cor-
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relation, again consists of two steps. The first step is identical to the first step of

the previous methodology, except that we add an additional interpolation technique

that takes into account the unit diagonal property of a correlation function. The

second step, however, is more involved: the approximation technique used in the

previous methodology is not applicable in this case, as the approximating positive

definite matrix does not necessarily have unit diagonal. We then apply a modified

Alternating Projection Method to find an approximating positive definite correlation

matrix in the intersection of two convex sets: symmetric matrices with unit diago-

nal and positive definite matrices. Thus, we obtain a positive definite approximant

with a unit diagonal. We choose this approximant as the estimates of the correlation

functions on the chosen grid. We test both methodologies numerically on the US

interest rate data.

In Chapter 5 we turn to parametric constructions of the correlation functions. We

first identify a large class of strictly positive definite functions", Le. a functions of the

form J{x-y). Unfortunately, spn functions produce only stationary fields, Le. fields

with covariance functions depending only on distance between maturities. In our

case this means that the covariance function of the increments of the yields will be a

function of differences of maturities, Le. function ofCorr{Tl, T2) = g{ITI-T21). Un-

fortunately, such models are misspecified: the empirical covariance matrices strongly

indicate that the covariance function is a function of Tl and T2 separately. We ad-

just for non-stationarity by deforming time to maturity and obtain spn kernels of

the form Corr{TI, T2) = g(IJ(Tt} - J(T2)1), where 9 is an spn function, and f a

strictly increasing function. We test this class of models on the Japanese Yen bond

data. We do not achieve exact fit, but the errors are reasonably small and could be

attributed to the sampling error.

The class of models developed in Chapter 5 is quite restrictive, and might not be

lUsually, a function of the form /(x-y) with the SPD property is referred to as an SPD function.
An SPD function of the form /(x, u) is referred to as an SPD kernel.
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justified in practice. We approach the problem from a different angle in Chapter 6.

The idea is based on superposition: we model the covariance functions as a sum of

SPD functions developed in Chapter 5 and PD kernels. The PD kernels correct the

Sl'D functions for non-stationarity and enable exact fit to the sample covariance

matrix. We first fit an SPD function to the correlation matrix, this gives us the

stationary part of the covariance function. We obtain the PD correction kernel by

applying Principal Component Analysis to the residual matrix obtained from the

previous fit. As a sum of an SPD function and a PD kernel, the covariance function

is an SPD kernel. This construction satisfies the modelling assumptions. We test

the models on the sample covariance matrices obtained from US and Japanese bond

market data. In all tests we achieve an exact fit. This approach seems to present

the best solution for constructing infinite-factor Gaussian field models if one wants

to achieve an exact fit to the sample covariance matrix.

In Chapter 7 we study the pricing kernel framework. We develop a class of arbitrage-

free multi-factor models within this framework. We model the pricing kernel directly,

and not a particular interest rate or a set of rates. In particular, the kernel is

represented by a series of radial basis functions, used in Approximation Theory. The

construction of the kernel is explicitly linked to the calibrating set of instruments.

Thus, once the kernel is constructed it prices correctly the chosen set of instruments

and has a low-dimensional Markov structure. We conduct several calibration studies.

We fit the model to the yield curve and at-the-money cap prices, to the yield and the

caplet surface across a wide range of strikes and maturities, and to the yield curve

and at-the-money swaption matrix. We achieve a very good quality of fit, measured

in terms of percentage difference between the model prices and market prices.

We conclude and present some ideas on further research in Chapter 8. It should

be noted, that although we achieved some very good results in constructing and

fitting both implied kernel and infinite-factor Gaussian field models, more extensive

empirical testing needs to be conducted. Comparison studies should reveal if these
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classes of models are superior to alternative model specifications in pricing and risk

management of fixed income instruments and portfolios.

Equivalently, our research suggests that implied pricing kernels may provide an

alternative to the standard market models. They are Markov by construction, cali-

bration for a small number of factor is relatively easy, they can deal with American

type options, and are flexible in fitting to smiles and skews. Market models have

non-Markov dynamics, but are easy to calibrate to certainf European-type instru-

ments even with a large number of factors. Extensions for smiles and skews are

quite complex. Further research needs to address the extent of the advantage of the

kernel models over other model specifications. Better implementation and calibra-

tion techniques need to be developed to exploit the potential of the pricing kernel

framework fully.

2Usually, only to instruments for which they were specifically designed.
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Chapter 2

Review of Term Structure

Modelling

2.1 Introduction

In this chapter we review the term structure pricing and risk management litera-

ture. In the present section we introduce some fundamentals commonly used in the

construction of term structure models. Then we present a short discussion of some

basic concepts of arbitrage-free pricing. In Section 2.2, we proceed with a detailed

discussion of the three modelling frameworks used in pricing literature: the pricing

kernel, the short rate approach, and the HJM family. We do not follow the conven-

tional route, i.e. a chronological description of the developments in the literature.

Instead we discuss the literature from the top down. I.e. we start with the most

general arbitrage-free framework, the pricing kernel. In this general setting the short

rate or instantaneous forward rates do not necessarily exist. Then we specialise this

framework to the less general classes of models: the short rate models, models of the

instantaneous forward rates, etc. This will allow us a better understanding of term

structure pricing theory and the relation among different modelling approaches. We

review the literature for each of these frameworks, discuss their interrelation.
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We also describe term structure models that do not naturally fit into the above

description, such as infinite-factor models and models for futures prices. However,

we defer a detailed discussion of infinite-factor models to Chapter 3. Furthermore,

we discuss the advantages and disadvantages of different modelling approaches, pa-

rameter estimation issues versus model calibration, and model risk problems.

In Section 2.3.2 we review the literature on fixed income risk measurement and

management. Unlike the pricing literature, the risk management literature is rather

undeveloped. Currently, there is no dominating theory in this field. Consequently,

we present the main ideas and techniques currently in use, point out their shortcom-

ings and suggest possible avenues for further research. We also comment on how the

literature might benefit from the research in this thesis. We conclude in Section 2.4.

We first introduce some basic terminology. A zero coupon bond with maturity T is a

security that pays at time T the amount 1. Let B(t, T) denote the price prevailing

at time t of a zero coupon bond with maturity T. The family of bond price processes

B(t, T), is called a term structure model; we denote the family (B(t, T))o$t:5T by B.

We denote by B(O, T) the initial term structure, i.e. the bond prices observed in the

market! at time O. For B sufficiently smooth in T, the instantaneous forward rate

f(t, T) is then defined by

a
f(t, T) := - aT logB(t, T),

and the short rate rt

rt := f(t, t).

The instantaneous forward rate f (t, T) can be interpreted as the interest rate pre-

vailing at time t for instantaneous risk free borrowing and lending at the later time T.

lThe estimation of the initial term structure function is not a trivial issue. There is a consid-
erable body of literature dealing with this problem. The techniques vary from relatively simple
bootstrapping procedures to some sophisticated approaches using non parametric families of curves
such as B-spline (Steely (1991», exponential spline (Vasicek and Fong (1982», smoothing splines
(Fisher et al. (1995)), weighted penalty roughness splines (Waggoner (1997», and kernel smoothing
methods (Linton et al. (1999». Other popular choices are parametric families such as those used
by Nelson and Siegel (1987).
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This means that an investor can commit himself at time t to instantaneous risk free

borrowing and lending at time T at the rate f(t, T). The short rate is then the

interest rate at time t for instantaneous risk-free borrowing and lending at the same

time t.

The savings account f3 is defined as

f3t := exp (lot radS)
and can be viewed as the value of one currency unit permanently reinvested at

the short rate rt. Note that the short rate is by definition a compound rate. A

compound interest rate applies to both the principal (here one currency unit) and

the accumulated interest. In contrast, the LIBOR rate (London Inter-Bank Offer

Rate) is a simple rate in the sense that it applies only to the principal amount.

Mathematically, the LIBOR rate L(t, Tj a) for fixed a > 0 is given by

B(t, T)
1+ 8L(t, Tj 8) := B(t, T + a) (2.1.1)

Because a is fixed, for ease of notation we write simply L(t, T) instead of L(t, T;8).

The LIBOR rate L(t, T) can be regarded as the simple interest rate prevailing at

time t for an investment at time T of time length a. It is important to notice

that the choice of a particular form for the interest rates is not purely a matter of

taste or practical requirements at hand. In some cases, for example when the rates

are log-normal, the continuously compound interest rates have a serious drawback:

rates explode'[ and expected rollover returns are infinite even if the rollover period is

arbitrarily short. Sandmann and Sondermann (1997) realised that serious problems

result from modelling, for example, the short rate as log-normal, and they disappear

if one instead models the rate3 for any fixed tenor in this way. This idea has led to

2This has been shown within Eurodollar Futures pricing framework by Hogan and Wein-
traub (1993).

3These ideas were further developed by Goldys et al. (1994), Musiela (1994), Sandmann et
al. (1995). Their implementation, use, and several extensions are extensively described in a recent
book by Rebonato (2002).
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a major breakthrough in the last decade in interest rate derivative pricing, namely

the creation of so called market models",

The theory of term structure models is concerned with modelling the bond prices,

LIBOR rates, forward rates or the short rate as stochastic processes B(·, T), L(·, T),

f(', T), or rt respectively, on a filtered probability space. Several approaches have

been studied in the literature. We can classify the variety of models into interest-

rate based models and bond price based models. In the bond price approach the

bond prices are treated as fundamental and the various rates are then obtained

from the bond prices. In interest-rate models one starts with a model for some rate

such as the short rate or the forward rate and then derives the bond prices. A

major drawback of these interest-rate models is the fact that getting the dynamics

of asset prices and rates one is interested in (e.g. bonds and LIBOR rates) requires

a non-trivial computational effort.

Next, we give a short summary of the relation between the absence of arbitrage

opportunities in a financial market and the existence of an equivalent martingale

measure. This concept, together with a notion of completeness, is at the heart of

a model of a financial market. The former allows us to give a well-defined price to

a derivative and the latter to define the set of derivatives which can be priced in

the market. This theory was initiated by Harrison and Kreps (1979). In a finite

discrete-time setting they considered a stochastic process St := (S?, st, ... ,Sr)
on a finite probability space (O,:F, JIb) with filtration IF := (:Ft)t=O,l, ...,Ti Si here

represents the price of the i-th security. Let Sp == 1. This means that the price

of the securities are quoted in units of So. Hence SO is also called numercire. A

trading strategy is a predictable process ¢t := (¢~,¢l, ... ,¢f, ) and its value process

Vt/> is given by Vet/> := Vot/>+E~o ¢~sf. The i-th component of ¢ can be viewed as

the quantity of the i-th security held at time t. A portfolio is called self-financing

if dVet/> = E:=o ¢:dsf, Le., the changes of its value process are only due to changes

4These are models created by Miltersen et al. (1997), Drace et al. {1997}, and Jamshidian {1997}.
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in the prices of securities. This means that no funds are withdrawn from or added

to the portfolio. An arbitrage opportunity <p is a self-financing portfolio <pwhich

delivers a profit with positive probability at zero cost. To be precise, this is a

portfolio <pwith Vo~ = 0, V~ ~ 0, dV~ = :E?=o<p~dsl and yet lE[V: > 0] > O. Then

the Fundamental Theorem of Asset Pricing states that the absence of arbitrage

opportunities is equivalent to the existence of a measure Q equivalent to P, such

that the security price vector S is a martingale under Q. The measure Q is called

an equivalent martingale measure for S with respect to the numeraire So.

The ability to give a price to a derivative is based on replication. The value of

the derivative is mimicked by a portfolio of assets in the market and so its price is

defined as the value of this portfolio. Assets of the economy can replicate or span a

certain set of derivatives. Completeness investigates this set of derivatives.

The equivalence of the absence of arbitrage opportunities to the existence of an

equivalent martingale measure also essentially holds in a continuous time setting on

a general probability space, but becomes considerably harder to state and prove. In

particular, it can be shown that on a finite horizon period, absence of arbitrage is

equivalent to the existence of a numeraire pair, i.e., a strictly positive continuous

semimartingale which is a traded asset and an equivalent martingale measure. For

example, if one chooses the savings account as a numeraire then the corresponding

equivalent martingale measure is referred to as the risk-neutral measure. For the

case when a T-maturity bond B(t, T) is chosen as a numeraire the corresponding

equivalent martingale measure is referred to as the T-forward martingale measure.

The assets discounted with this numeraires pair are martingales under this proba-

bility measure. This in turn is equivalent to the existence of a pricing kernel, some

strictly positive continuous semimartingale under some probability measure equiv-

alent to the objective measure. This observation is central to this thesis, as we will

develop models based on this idea. Furthermore, completeness refers to uniqueness
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of equivalent martingale measure, in which case the price of a derivative is uniquely

defined'',

In Chapter 7 we will construct a general class of term structure models of the form

B(t, T} = JElPK [i 1Ft] , (2.1.2)

where Kt, is a positive pricing kernel and WK some probability measure equivalent

to 1P. In particular, for a well-defined pricing kernel K we have

B(t,T) ~K~K[KTIFsllFt]-B(t,S) ~K[KsIFt]
It follows that for arbitrary but fixed S ~ T, the property B(t, S) ~ B(t, T) is equiv-

alent to &>K[KTIFs] ~ Ks. Because B(t,S) ~ B(t,T) for all S s T corresponds

to interest rates being nonnegative, one can conclude that term structure models

with nonnegative interest rates are just those generated by supermartingales. This

observation is subject to the existence of forward rates.

2.2 General Framework

In this section we want to introduce and examine different modelling frameworks

and their relation to each other. Usually, the term structure models are defined in

three different ways:

B(t, T) = jFqK [i 1Ft] , (2.2.1)

for some strictly positive, adapted semimartingale, Kt, and WK martingale measure

equivalent to P;

B(t,T) = &>. [exp ( - iT rudU) IFt]
for some adapted short-rate process rt and W· risk-neutral measure equivalent to Wj

and for sufficiently regular bond price processes B(t, T),

B(t, T) = exp (-iT !t.udU) (2.2.2)

&Points raised here are explained and proved to various degrees of generality in Artzner and Del-
baen (1989), Duffie (1996), Dclbaen and Schachermayer (1994), (1997), Hunt and Kennedy (2000).
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defines implicitly a family of fonnard rate processes f(t, T). Additionally, one re-

quires that a term structure model should satisfy the following axioms, which we

will call the term structure axioms'':

AI. For all T ~ 0, the process (B(t, T)) is a continuous semimartingale adapted

to filtration Ft.

A2. B(t, T) ~ 0 for all t s T.

A3. B(T, T) = 1.

A4. The model admits a pricing kernel. I.e. there exists some strictly positive

semimartingale K such that KtP(t, T) is an (Ft, lPK) martingale for all 0 ~

t s T.

Next we give interpretations of the above axioms. In our continuous time models,

in order that the gain process is well defined, we need to be able to integrate against

the assets in the economy. Axiom (AI) is required for this integration to be well

defined" The bond holder's limited liability is represented by the positivity of the

bond at all times, i.e. the bond holder shouldn't incur any cost from holding the

security. Axiom (A3) represents the assumption that the bond cannot default, i.e.

credit risk does not exist in our economy. We have discussed above that existence

of a pricing kernel over a finite trading horizon implies the absence of arbitrage in

the set of well-defined trading strategies''. Therefore Axiom (A4) will ensure the

absence of arbitrage in our models.

In the next sections we introduce'' three term structure modelling frameworks: Pric-

ing Kernel (PK), Heath, Jarrow and Morton (HJM) and Short Rate (SR) which all

6Sce Baxter (1997) for further discussion of these axioms.
7See Rogers and Williams (1987) pp.52-63.
8i.e. the set which does not have" doubling strategies" , see Duffie (1996).
9A fairly complete literature review on term structure modelling can be found in Gibson et

al. (1999), a very interesting summary is given by Rogers (1995), and a general summary of con-
tinuous time modelling in finance is in Sundaresan (2000).
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satisfy the above term structure axioms. We briefly discuss the literature and pro-

vide examples in each of these frameworks. We examine the equivalence between the

frameworks and show through the discussion of examples that the following strict

inclusion holds

HJMcSRCPK.

2.2.1 Pricing Kernel

In this section we discuss literature concerned with term structure modelling within

the pricing kernel framework. This way of modelling is relatively new and the

amount of literature is not as large as in the other approaches. As the contribution

of this thesis is mainly within this modelling framework we discuss the literature

in some detail. The term "pricing kernel" is synonymous with the terms "state

price density", "state price deflator" and "stochastic discount factor". Constan-

tinides (1992) introduces this framework for the first time to arbitrage-free interest

modelling and describes how it is related to the expected utility theory (see example

below). Zheng (1993) derived bond option formulae in Constantinides' framework.

A discrete approach to this framework has been discussed by Backus and Zin (1994).

Dillen (1997) considers a three-factor model in a macroeconomic framework, where

he considers the foreign real interest rate, the domestic inflation rate and the real

exchange rate. Rogers (1997b) relates the pricing kernel approach to the general

theory of Markov processes and provides a number of interesting and tractable ex-

amples. Cairns (1999) develops a multi-factor model for long term risk management

within the Rogers framework. Jin and Glasserman (2001) discuss a general positive

interest rates framework based on the pricing kernel and relate it to the HJM and

Flesaker and Hughston (1996a, 1996b) models. Doberlein (1999) provides technical

details and proofs for the pricing kernel approach. Hunt et al. (2000), and Bal-

land and Hughston (2000) model an appropriate numeraire, which is equivalent to

modelling the kernel.
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Supporting Equilibrium

Pricing kernels arise naturally in the equilibrium approach to interest rate modelling.

The equilibrium approachl? pioneered by Cox et al. (1981b), (1985a), (1985b), starts

from a description of the underlying economy and from assumptions about the

stochastic evolution of one or more exogenous factors or state variables in the econ-

omy, and about the preferences of a representative investor. General equilibrium

considerations are used to derive the interest rate and the price of all contingent

claims endogenously. Both the term structure and its dynamics are endogenously

determined in the equilibrium framework. Furthermore, the functional form of the

factor risk premiums (marked price of risk) is also obtained as part of the equilib-

rium.

We illustrate the meaning of the pricing kernel in the representative-consumer econ-

omy in which the consumer has Von Neumann-Morgenstern preferences U defined

over the consumption path {C(t) : 0 :5 t}. In equilibrium the first order condition

states

[
au P(t) au X(T)]

Et - aC(t) II(t) + aC(T) II(T) = 0,

where I1(t) is the price level, P(t) is the nominal price at time t of a claim to a

(2.2.3)

nominal payoff X{T) at some future date T. Defining the pricing kernel Pt as

Pt = II-lEt [a~~t)] ,

the first-order condition (2.2.3) yields our pricing formula (2.1.2). In the case of

CIR, the pricing kernel and the interest rate process take the form

dpt = (E2- h)Ytptdt - ptEJ¥;dBt (2.2.4)

drt = K(r* - rt)dt + uVridBt. (2.2.5)

lOFor further examples of equilibrium models see Longstaff (1989), Longstaff and
Schwartz (1992a), Chen and Scott (1992).
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The density process of the underlying physical probability measure with respect to

the risk-neutral measure can be defined by

dIP ( r ) Pt ( (.2/2 r e r )dJP>.lt = exp lo rsds Po = exp (.2 _ h lo rsds - ..,f"h=-i. lo FsdBs •

Using this density process we can obtain the dynamics of the interest rate process

under the risk-neutral measure, and so we are back in the familiar setting+".

Jin and Glasserman (2001) are able to derive a supporting equilibrium for all HJM

type models. Working within pricing the kernel framework they show through

specific construction that every HJM-type model arises as the equilibrium term

structure in a Cox-Ingersoll-Ross economy. This type of equivalence of between

arbitrage-free formulations is widely understood in general terms, see Duffie (1996).

Constantinides (1992) constructs the first pricing kernel model by directly spec-

ifying

(2.2.6)

where the state variables Xi.t, with i= 1, ... ,N are chosen to follow the Ornstein-

Uhlenbeck processes,

dX· t = -A 'X' tdt + a.dz. tI. a '. I I.

under the objective measure P, with a and ai, constants. The positive rates can

be obtained by constraining the parameters of the kernel so that it follows a su-

permartingale or potential. For (2.2.6) to be a potential+", the coefficients have to

satisfy
N u~ a~ u~

a - 2:Ai( AI. - 2(1 ~ .) > 0 and AI. < 1
i=l' V, I

(cf: Constantinides (1992), Equations 10 and 11 ). Explicit formulae can be obtained

for zero-coupon bonds and the short rate process has the form

rt = a +I:(-b + C(Xi,t - di)2),

--------------------------
11For further details and examples see Duffie (1996) and Cochrane (2001).
12For more details on a potential, see page 20.
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where a, b, c and d are obtained from the parameters of the model.

Zheng (1993) extends the result of Constantinides (1992) by including a determin-

istic function f(t) into the kernel (2.2.6)

Kt = exp ( - f(t) - at +I:(Xi,t - Oi)2) . (2.2.7)

This allows him to fit the initial yield curve. He finds that one-factor version of his

extension fits the Eurodollar futures options well.

Das and Foresi (1996)

Das and Foresi (1996) consider two models within the pricing kernel approach. The

first is based on the assumption that the pricing kernel evolves according to

with interest rate process r,

dr = a(b - r)dt + adz + J(o, 'IjJ)dNh,

where Adetermines the impact of a diffusion shock to the interest rate on the pricing

kernel, and AJ determines the impact of a jump on the pricing kernel. J(o, 'IjJ)

denotes the jump with exponentially distributed jump size and dNh denotes Poisson

arrivals. The parameters a,b and o have the usual meaning as in short rate models.

In this model, the diffusion component of interest rates displays constant conditional

variance and jumps are infrequent events that displace interest rates by discrete

amounts but do not change their central tendency.

The second model is closely related to the work of Constantinides (1992), and is

based on the pricing kernel of the form

m(t) = exp[-y(t) - X(t)],
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with

dX = (x + )..2/2)dt + )"dz,

dx = a(b - x)dt + adz,

y(t) = y(O) [1- hpt +~ Ji] .
In the second model, jumps change the conditional central tendency of interest

rates. This model captures the notion that interest rates oscillate smoothly around

a central tendency that may change infrequently. In the absent of jumps, this model

reduces to the Ornstein-Uhlenbeck model of Vasicek (1977). These models provide

more realistic statistical behaviour of interest rates. However, from a practitioner's

point of view these models do not fit initial term structures of interest rate and

volatilities, and thus are of little interest+'. In both models, Das and Foresi (1996),

are able to derive exact solutions for the prices of pure discount bonds and tractable

expressions for bond option prices.

Rogers (1997b)14 As discussed above, to obtain an arbitrage free model with

positive interest rates one needs to specify some strictly positive supermartingale

under some measure equivalent to the objective measure IP. Rogers (1997b) utilises

this observation and using the theory of Markov processes provides a framework

for creating strictly positive supermartingales, thus arbitrage-free term structure

models. He starts from the identity

where Pt is the savings account and

13However, it may be possible to extend these models to fit the initial term structure.
l4See also Rogers (1997a).
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The economic condition B(O, t) == Mt -t 0 as t -t 00 allows us to identify K as

what is known as a potential15•

Rogers (1997b) suggested to use a resolvent of some Markov process to define a

potential. In particular, for some bounded, measurable 9 : S -t [0,00) he defines

the pricing kernel by
Kt = e-o:t Ro:g(Xt) .

Ro:g(Xo)
I.e. the pricing kernel is a product of the resolvent of some process Xt with func-

tion exp( -at), scaled by a constant. Next we explain, why the process Kt is a

supermartingale. Because of the tower property of conditional expectation the pro-

cess

u, == IE [1000 e-O:Sg(Xs)ds 1Ft]

is a martingale. Then we have

Mt = IE [fot e-O:Sg(Xs)ds 1Ft] + IE [lOO e-O:Sg(Xs)ds 1Ft]

= fot e-O:Sg(Xs)ds + e-o:tlEXt [1000 e-O:Yg(X1I)dY]

= fot e-O:Sg(Xs)ds + e-o:t Ro:g(Xt).

We observe that process A == J; e-O:Sg(Xs)ds is positive and increasing. We can

express the pricing kernel as the difference between a martingale and positive in-

creasing process,

(2.2.8)

Thus the pricing kernel Kt is a supermartingale. Since 9 is assumed to be non-

negative and the resolvent is a positive operator, Kt is positive.

Next we identify the short rate process in the potential framework. Applying Ito
formula to process Kt = ~Zt, we obtain dynamics

dKt = Kt( -rtdt + Zt1dZt),--------------------------ncr: Karatzas and Shreve (1991), Definition 1.3.17.

(2.2.9)
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We use the SDE (2.2.9) as a guide. The differential form of (2.2.8) is given by

1
dKt = Rag(Xo) (dMt - dAt).

Multiplying the inverse of Kt with the above equation, and rearranging it, we obtain

(2.2.10)

Applying the Ito formula to the expression Zt == Kt exp (f; R!(g(~.)ds) we obtain

(2.2.11)

The properties of the stochastic integral (cf: Karatzas and Shreve(1991) p.147)

show (2.2.11) to be a local martingale. We substitute the dMt in (2.2.10) us-

ing (2.2.11), and obtain

K-1dKt = 1 dZt _ g(Xt} dt
Kt exp (f; R!(g(x~)ds) RQg(Xt)

(2.2.12)

If we compare the above SDE with the one in (2.2.9), we can identify the short rate

process in potential framework as

(2.2.13)

Thus, if we model the pricing kernel process relative to the probability space of the

Markov process X, the spot rate process is given by (2.2.13).

When it comes to applying the above concept, it may be not so simple to give

the resolvent of a given Markov process in a closed form. In order to circumvent

this problem, we make use of the inverse relation between the resolvent R>. and

the generator A. Instead of specifying the resolvent directly we take some positive

function /: S -t (0,00) which will turn out to be the resolvent, and take the inverse

operator

(a-A)/=g.
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Ifwe apply the resolvent Ra to g then we have a closed form expression for Rag = I.

Using this idea we can express the spot rate process as

rt == g(Xt} = (a - A)/(Xt}
Rag(Xt} I(Xt}

(2.2.14)

To compute the last expression in (2.2.14) is far more straightforward than evaluat-

ing the resolvent itself.

To summarise, in order to create a term structure model we can use the following

scheme:

1. Fix a Markov Process X, a number a and a nonnegative function I.

2. Define g by g == (a - A)I

3. Restrict parameters so that g is nonnegative.

4. Obtain I == Rag. Then the short rate is given by rt == (ct-t(!£\Xt).
This procedure works only for functions in the range of the operator A. If the

underlying Markov process X is a diffusion, then A is well defined for the class

C6(Rn )16.

Since the initial publication of these ideas, their development has remained rather

limited in the research community. This might be because of the relatively high

technical barrier one needs to overcome to access this methodology. Some empirical

research has been conducted by Rogers and Zane (1996). They fit a two-factor

potential model to yield curve data in the US and the UK and to the exchange rates

between them. They used a filtering approach and obtained a reasonably good

though not perfect fit. Jalali and Kazemi (1997) and Yousaf (2001) use a Markov

Chain instead of continuous time process to construct the pricing kernels. Their

results indicate that one can obtain a reasonable fit to the initial term structure
16cf: 0ksendal (1995), p. 113.
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in the finite-state framework. Unfortunately they stop short of investigation of the

options market, where the real application of these methodologies should be tested.

Flesaker and Hughston (1996a) and (1996b) suggested an alternative way to

model the term structure. For a given family of positive martingales under some

measure IQ equivalent to P, they specified a term structure of the form

I;Mtsds
DtT =. roo ..u Mtsds

(2.2.15)

In order (2.2.15) be well-defined, we have to assume that the family M is jointly

measurable and the integrals are (a.s.) finite. Flesaker and Hughston showed that in

this framework interest rates are positive. As Rogers (1997b) and Rutkovski (1997b)

observe the Flesaker and Hughston specification is equivalent to

(2.2.16)

where At = I~Mssds. This is just another way of representing a potential!".

A well known special case of the Flesaker and Hughston (1996a) approach called

the rational log-normal model is given by the pricing kernel

Kt = I(t) +g(t)Mt, Vt E [0,T'l, (2.2.17)

where I, 9 : [0,T] -+ Iltr are strictly positive decreasing functions, and M is a

strictly-positive martingale, with Mo = 1. It follows then that the bond price

process is given by

B(t T) = I(T) +g(T)Mt Vt [0 T], ,E , ,
I(t) +g(t)Mt

for any maturity T. In particular the initial term structure is given by

B(O T) = I(T) + g(T) Vt [0 T]
, 1(0) + g(O) , E"

17cf: Protter (1990).
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which enables the fit of the initial term structure by construction. If, in addition,

one assumes that the martingale M is log-normal, i.e. dMt = utMtdWt for some

deterministic function Ut, then prices of caplets and swaptions can be readily com-

puted.

Goldberg (1998) analysed the one-factor rational log-normal model, her findings are

that this model has undesirable feature of predicting that the asymptotic value of

the short rate volatility is zero18.

Burnetas and Ritchken (1997) extend the rational log-normal model of Flesaker

and Hughston (1996a) by considering a pricing kernel of the form

Kt = J(t) + g(t)Mt,

where functions J(t) and g(t) are as in (2.2.17). The positive martingale M(t) is

given by

dMt/Mt = h(1 - J)dt + udWt + (J - 1)d7rt (2.2.18)

with Mo = 1 and d7rt is an independent Poisson increment with density h. J - 1 is

the random percentage jump conditional on jump's occurring, with a time invariant

distribution. The expected value of J is J. The process M, is a martingale and

thus Kt is a potential. As in the Flesaker and Hughston (1996a) approach, the

initial term structure is fitted by construction. They derive analytical solutions for

European-type options and show that, due to the jump term in (2.2.18), the yield

curve distribution is more flexible then the one in the rational log-normal model.

Jin and Glasserman (2001), consider again a potential of the form

Kt = E [Aoo IFtl - At. V 0 S t S 00, (2.2.19)

18As pointed out by Rebonato (1996), a similar effect can be observed if one tries to induce
decorreletion among forward rates using volatility of the short rate.
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To obtain a valid potential, they model process At directly. In particular, they

assume that there exists an Ft-adapted positive continuous process -Pt such that

At == - lot Pads.
Under some technical conditions needed to justify representation (2.2.19), the pricing

kernel is defined as in (2.2.19). Ifone drops the assumption that -Pt bepositive then

the pricing kernel defined by (2.2.19) is a positive semimartingale, assuming that

E [Aoo 1Ft! exists and is bigger than At. In this case we arrive at the general pricing

kernel definition. Jin and Glasserman systematically analyse relations between the

HJM approach with pricing kernel and the Flesaker and Hughtson framework.

Markov-FUnctional Models As we discussed above, the specification of a pricing

kernel is equivalent to specifying a numeraire. In several papers, Hunt et al. (2000),

Hunt and Kennedy (1998b), and Hunt et al. (1996) construct several term structure

models. The choice of the numeraire is motivated by the product to be priced.

Furthermore one assumes that this numeraire has a functional dependence on some

low-dimensional Markov process. The functional form is then chosen so that the

model prices some liquid instruments in the market. Similar ideas were indepen-

dently developed by Balland and Hughston (2000).

2.2.2 Short Rate Models

In this section we review the short rate (SR) approach to the term structure mod-

elling. Historically, this methodology is the oldest and there is a vast amount of

literature which explores this approach. These models include Vasicek (1997), Cox

et al. (1985b), Black et al. (1990), Duffie and Kan (1994), etc. By a short rate model

we mean a model such that the zero-coupon bond can be represented as

B(t,T) =~. [exp (- iT rudu) 1Ft] , (2.2.20)

where p. is the risk-neutral measure equivalent to P, and ri is a short rate process.

In the rest of this section we first present the short rate model under the objective
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measure. This specification has been historically the first. Then the model spec-

ification under the risk-neutral measure. This is more common in practice. We

then describe several classes of short rate models, and mentioned their advantages

and disadvantages. FUrthermore, we discuss several issues relating to calibration,

statistical fitting, and Markov properties of the short rate models. Finally, we relate

the short rate framework, to the more general pricing kernel approach, and present

an example of a model which is a pricing kernel but not a short rate model.

To construct a short rate model, traditionally one would specify the dynamics of the

short rate process under the objective measure P, say by means of an Ito process,

(2.2.21)

where I-' and a are adapted stochastic processes, satisfying suitable conditions to

ensure the process (2.2.21) is well defined. Then one needs to make an assumption

about the market price of risk process>. that is used to define a martingale measure

by means of Doleans exponential,

(2.2.22)

Application of Girsanov's theorem gives us a process for the Brownian motion under

the martingale measure. To evaluate the bond price, we simply need to evaluate

the expectation operator in (2.2.20), or alternatively, using results of Feynman-Kac,

solve the associated parabolic PDE.

In practice, however, one usually, starts directly with short rate dynamics under the

martingale measure P, which renders the change of measure unnecessary. Should

one want to calibrate the parameters of the short rate process to the historical

data, then again we would need to change the underlying martingale measure to

the objective P, We demonstrate this idea on a very simple example, described

originally by Vasicek (1977). The dynamics of the short rate process under the
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martingale measure JIP* are given by

drt = k (0 - rt) dt + udWt, (2.2.23)

with ro, k, 0 and a positive constants. The process (2.2.23) has Gaussian distribution

and can be integrated explicitly. Furthermore, it is relatively easy to compute

the conditional expectation in (2.2.20), and to obtain analytical solutions for the

bond prices B(t, T). This analytical tractability explains the wide use of Gaussian

processes in term structure modelling. Closed-form solutions for options can be

obtained just as easily by using a forward measure technique, as was shown by

Jamshidian (1989), who pioneered this approach. Next, we assume that the marked

price ofrisk has the form'? At = Art. The objective measure can be defined just as

in (2.2.22) and the new dynamics of r under the objective measure JID are given by

drt = (kO - (k + Au)rt) dt + udWt. (2.2.24)

as we see, the structure of the SDE for the short rate in (2.2.24) has not changed.

This observation motivates this particular choice of the market price of risk.

There is a large number of short rate models, and we will not be able to give even

a brief description of them. Thus, we just sketch some model classes and outline

motivations behind their development. Most of the models have their multi-factor

version, so we will not go into the details of this aspect. These classes are obtained by

imposing restrictions on the drift and diffusion parameters of the short rate process.

As usual, because of analytical tractability, Gaussian processes were a common

choice for the dynamics of the short rate. Early examples include, Vasicek (1977),

Langetieg (1980). To prevent interest rates going negative, log-normal dynamics are

specified as in Black et al. (1990), Black and Karasinski (1991), Jamshidian (1991a).

To evaluate path-dependent derivatives, the use of lattices has become a popular

19Note this is not the only possible specification. The process of the form At = A, i.e. constant,
will have the same effect.
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tool. One can think of a lattice as a Markov Chain approximation to some stochastic

process, see James and Webber (2000) for a thorough discussion of the lattice models.

Evaluation on lattices can be sped up by using Forward Induction (introduced by

Jamshidian (1991b)), and Brownian Bridge technique (Gandhi and Hunt (1997)),

together with alternative sampling constructions (McCarthy and Webber (1999)).

Non-linear models usually include those with non-linearities in the drift term, such

as Longstaff (1989). Many of them exhibit pathologies, though some are quite

tractable, such as in Jamshidian (1995), Ahn and Gao (1999), and Ahn et al. (2002)

The affine class of short rate models is probably the most popular. First described by

Duffie and Kan20 (1994), who developed a general theory, it was further investigated

by Dai and Singleton (2000). This class of models is very flexible and tractable, and

provides analytical solutions to a wide range of options. To explain the deviation

from log-normality/normality of the yield returns, researchers include jumps into

short rate dynamics, as in Ahn and Thompson (1988), and Das (1999b).

One issue which arises in terms structure modelling is parameter estimation versus

calibration. A number of methods have been developed for estimating the parameter

of continuous-time Markov processes, such as used in term structure modelling.

However, when we use parameters estimated through statistical procedures, the

model prices do not fit observed bond and derivatives prices. Thus, in practice

derivative pricing people tend to use a procedure called calibration. This consists

of finding model parameters that fit liquid market prices. This discrepancy is,

of course, not satisfactory, and is probably due to misspecification of the models.

There exists a considerably large body of literature about statistical parameter

estimation of term structure models. We mention just a few important works.

Nonparametric density matching has been considered by Ait-Sahalia (1996b), and

Stanton (1997). A more standard method of Generalised Method of Moments have

been applied by Chan et al. (1992). Efficient Method of Moments has been used

20see also Duffie and Kan (1996).
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by Duffie and Singleton (1993). Maximum Likelihood methods have been applied

by Brown and Dybvig (1986). Approximate and simulated maximum-likelihood can

be found in Pedersen (1995), and simulated likelihood estimation in Brandt and

Santa-Clara (1999). Recently, filtering approach become popular, see Lund (1997).

Even within the class of factor models, where the term structure model does not

intrinsically imply non-Markovian dynamics, we can nevertheless end up with a non-

Markovian process for the short rate. Suppose that we stick to the common practise

of writing a low-dimensional dynamic model, for instance a one-factor model for the

short rate, when in fact the short rate may be a Markov process, but only as part

of a larger system. In typical examples, the system may include yields at longer

maturities, as in Brennan and Schwartz (1979):

drt = J.L(rt,It)dt + u(rt)dZt

dlt = m(rt, It}dt + s(lt}dWt
(2.2.25)

where It is the yield on a consol bond. In other situations, the short rate is Markovian

only when taken with its instantaneous stochastic volatility and/or mean. In all

these cases, the short rate process is not individually Markovian.

The question of whether interest rates follow continuous time Markov processes,

specifically diffusions, has been addressed by Ait-Sahalia (1997). Here, the author

finds, that neither the short rate nor the long rate can be characterised individually

as Markov processes, though jointly they form a Markovian system. The slope of the

yield curve is a univariate Markov process, even a diffusion. These findings appear

to be sensitive to the choice of the dataset.

Next we examine the relation ofSR models to the PK framework. If we denote by (t

the reciprocal of the bank account {3, we can rewrite (2.2.20) as

(2.2.26)
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where the pricing kernel Kt = (t ~ 1Ft is a product of a positive process of finite

variation and a positive martingale, thus a positive continuous semimartingale. The

likelihood process ~IFt is well defined by the assumption that JP>* '" JP>. This shows

that S R ~ PK, i.e. the class of short rate models is a subset of the class of pricing

kernel models. Next, we provide an example showing that this inclusion is strict.

Example 2.2.1. (SR =I=- PK). This example comes from Hunt and Kennedy (2000).

It introduces a PK model which fails to be an SR model. We define the pricing

kernel as a solution of the stochastic differential equation

(2.2.27)

with initial condition Ko = 1. The solution of this equation is given by Kt = Rt1,
where Rt is the Bessel (3) process defined as

with initial conditions Wo = ((WJl}), (WJ2}), (WJ3})) = (1,0,0), where Wi(t) are

independent Brownian motions2l• The process (2.2.27) is a positive semimartingale,

so it defines a valid pricing kernel. Furthermore, it can be shown that Kt is a local

martingale but not a proper martingale. Next we show that this is not an SR model.

We note that any short rate model can be represented by

where Kt is a process of finite variation. Thus if the model were an SR model we

would be able to find a strictly positive martingale

-1 dJP>
P = dJP>*

such that Ktptl = (t is of finite variation. It would follow then that Kt = Pt(t.

Taking the logarithm of both sides we obtain logKt = log Pt+ log (t. According to

21cf: Karatzas and Shreve (1991), Section 3.3.C.
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Meyer the decomposition is unique (cf: Rogers and Williams (1987), Section V1.29)

It follows that log(() is a constant. Thus Kt is a martingale, which contradicts our

result that Kt is a local martingale but not a martingale.

In this section we reviewed the short rate approach to the term structure modelling.

We first presented the historical short rate model specification under the objective

measure. Then, the model specification under the risk-neutral measure which is

more common in practice. We described several classes of short rate models, and

mentioned their advantages and disadvantages. Furthermore, we discussed calibra-

tion versus statistical fitting issues, and very important Markov properties of the

short rate models. Finally, we related the short rate framework, to the more general

pricing kernel approach, and presented an example of a model which is a pricing

kernel but not a short rate model.

2.2.3 HJM Approach

In this section we introduce the HJM framework+", and relate it to the PK class of

models. The idea of Heath, Jarrow and Morton23 (1992) was to model the uncer-

tainty of the whole yield curve and not just at a single point on it, as modelled by the

SR approach. If one assumes that the discount curve B{t, T) is almost everywhere

differentiable in the maturity parameter T, and if it is absolutely continuous, then

it can be represented as

B(t, T) = exp (-iT /tudU), (2.2.28)

where

Io: = 8log P(t, T)
er (2.2.29)

22The predecessor of the HJM approach is a discrete time model developed by Ho and Lee (1986).
Its continuous properties have been investigated by Sommer 1996. It has the form df(t, T) =
0'2(T - t)dt + O'dWt with O'(t, T) = 0' constant and the dimension of the underlying Brownian
motion equals one.
23See also earlier work in Heath et al. (1990a), Heath et al. (1990b).
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has the interpretation of the instantaneous forward rate, Le. the rate for investing

at time T for an infinitesimally short time as seen from time t. Heath, Jarrow and

Morton directly specified the dynamics of (2.2.29) in terms of a family of stochastic

differential equations. For a given T the SDE for the I(t, T) is given by

I(t, T) = 1(0, T) + lot o(u, T)du + lot u(u, T) . dWu, Vt E [0,T], (2.2.30)

with Ih .),0(', .), and u(·,·) satisfying some technical technical conditions, which

ensures that the solution of SDE (2.2.30) exists and is unique24• The dynamics of

the bond process under the physical probability measure JID are given by

dP(t, T) = a(t, T)P(t, T)dt + b(t,T)P(t, T) . dWt,

where

1
a(t, T) = I(t, t) - o*(t, T) + 2Iu*(t, T)12, b(t, T) = -u*(t, T)

o*(t,T) = iT o(t,u)du, u*(t,T) = iT u(t,u)du.

To exclude arbitrage across bonds of all maturities among the set of admissible

strategies we need to assume the existence of a martingale measure together with

some numeraire. We can choose the savings account as numeraire, in this case the

equivalent martingale measure, is the risk neutral measure JID*. Thus we assume

there exists an adapted r-valued process At such that

o*(t, T) = ~Iu*(t, T)12 - u*(t, T) . At.

The process At subject to some technical conditions defines the risk-neutral mea-

sure JID*. The Brownian motion under the risk-neutral and forward martingale mea-

sure takes the form

24cf: Heath et al. (1992), Cl.
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The process >'t is sometimes referred to as the market price of risk. The dynamics

of the bond price process under the risk-neutral measure JP>* are then given by

dP(t, T) = rtP(t, T)dt - u;(t, T)P(t, T) . dWt,

with the dynamics of the forward rates f(t, T),

df(t, T) = Ut(t, T) . u;(t, T)dt +Ut(t, T) . dWt.

To specify an HJM model one only needs the initial term structure P(O, T) and

the volatility function u(t,T). Several volatility specifications have been considered

by Amin and Morton (1994). The main problem of HJM methodology is that the

evolution of the term structure, which is infinite-dimensional, may not be Markovian

with respect to a finite-dimensional state space.

Non-Markovian models are, in practice extremely cumbersome, and often intractable.

For example, when pricing derivatives securities with binomial trees, non-Markovian

state variables make the tree non-recombining, or "bushy". The number of nodes

in non-recombining trees grows exponentially with the number of time periods, as

opposed to linearly. This problem has been addressed by Brace (1996a) who con-

structs non-bushy trees. Li et al. (1995a), construct a lattice where the forward rate

is driven by a two-dimensional Markov process. The problem applies to Monte-Carlo

simulation as well, here one needs to keep track of a potentially infinite number of

points on the forward rate curve. As a result, substantial effort has been devoted

to finding restrictions on the volatilities 1I( T, t), possibly by extending the state

space, such that Heath, Jarrow and Morton model generates Markovian dynamics.

For a discussion of necessary and sufficient conditions see Carverhill (1994), Jef-

frey (1995), Ritchken and Sankarasubrama (1995), and recent work by Bjork and

Svensson (1999).

In the general HJM methodology interest rates can go negative. Sufficient con-

ditions for positive interest rates are discussed in Miltersen (1999a) and Jin and
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Glasserman (2001). Extensions of HJM to jump diffusions have been considered by

Das (1999a).

Next, we relate the HJM approach to PK. We assume that we are given the volatili-

ties u( t,T) of instantaneous forward rates and the market price of risk At. We define

the market price of risk bcr = At + It u(t, r)dr. It can be shown that this mar-

ket price of risk defines the forward martingale measure WT. Using Bayes' theorem

one can then show that the likelihood ratio process ~ l.1"t that defines the forward

measure can be expressed as

This together with the market price of risk process ht,T gives us the HJM kernel,

Finally, we present an example which shows that short rate specification is more

general than the HJM framework.

Example 2.2.2. (SR f.HJM). This example comes from Hunt and Kennedy (2000).

It displays an SR model which fails to be HJM. Define a function Rn via

!0, if t < 1,

Rn(t)= 2n, ift-lE[q2-n,(q+l)2-n)),qodd,

-2n, if t - 1 E [q2-n, (q + 1)2-n)), q even.

Define a random variable ~ by ~ = j if IWI! E [Lj, Lj+1)' W is a one-dimensional

Brownian motion on (0,Ft, F, JP'). The sequence Lj is defined recursively as Ll = 0

and 2(N(Lj+l) - N{Lj)) = 2-j, N is the cumulative normal distribution function.

We fix r ~ 0, a < 1. Next define a process of finite variation (t,
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Furthermore, for all T > 0, there exists some f{T) > 0 such that (t is FT measurable

for all t ElT, T + f{T)]. Thus, if we write (t = exp( - f~ruu), the short rate exists

and is rt. Thus the model is SR. It can be shown that (t and (t" are not integrable

for t > 1 and nowhere differentiable with respect to maturity for t < 1 ~ T. This

means, the limit from the right is different from the limit from the left, though both

are finite. Thus the forward rates do not exist and the model is not HJM.

Market Models

Usually, market practice is to quote the prices of certain standard interest deriva-

tives, such as caps and swaptions, in terms of their implied Black volatility. That is

the market implicitly assumes that the rate in question follows a log-normal process

with constant volatility. Then the price of an option is obtained from the stan-

dard Black formula. In the case of the cap market, this requires the assumption

that all rates follow simultaneously log-normal processes. This was thought to be

inconsistent with the absence of arbitrage, i.e. with the existence of a numeraire

and an equivalent martingale measure. However, it turns out that it is possible for

the family of LIBOR rates to follow log-normal process but under different mea-

sures. This idea underlines the creation of market models that implicitly assume

the HJM framework. The first step in this direction was taken by Sandmann and

Sondermann (1997), who modelled the discretely-compounded interest rate, rather

then the continuously-compounded one. The LIBOR market models were then con-

structed by Sandmann et al. (1995) and Brace et al. (1997). Jamshidian (1997)

used this idea to create a swap market model25• Next, we sketch the construction

of LIBOR market models. We start with a sequence of dates, To < Tl < ... < Tn,

and define the corresponding forward LIBOR rates as in {2.1.1}. We work under

211A detailed description of calibration procedures for market models, i.e. choice of correlation ma-
trix and volatility functions, together with test results can be found in Brigo and Mercurio (2001a)
and in Rebonato (2002).
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the forward martingale measure lPTn and numeraire B(t, Tn). We define

i

n~= II(1+ c5L1)
j=l

for 0 ~ i ~n. We assume no = iJi = 1 and Ln+1 = o. Furthermore, we have the

iJi.- B(t, Ti)
t .- B(t, Tn)'

following relationship

n nn
iJ; = (1+ c5L:+1)iJ;+1 = II(1+ c5L1) = -to

HI ITt

Assume now that the family of forward rates satisfies

then the forward bond price is a martingale,

Moreover, we can define the forward martingale measure,

(

tn' )dlPTi+1 c5L~ .
~ =e - r L 1 c5Ljo1(Lt)Pij ,

Tn la j=HI + t

so that the forward LIBOR rates L1 follow a log-normal process under the forward

measure lPTi+l'

Thus, we have constructed an arbitrage free term structure model such that all

forward LIBOR rates L: follow log-normal processes. As a consequence, caps/floors

can be priced consistently with the Black formula.

Unfortunately, like the general HJM framework, market models share the curse

of dimensionality It is a severe impediment to their use for pricing and hedging

American type products, or any product that was not covered by the design of the

model. A considerable amount of literature attempts to overcome this problem,
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sometimes by clever use of simulation, sometimes by approximating the market

model by some simpler drift. For example, Brace (1996b), and (1997), develops

approximating formulae, for swaption valuation in the LFM, under the assumption

of single and then several driving Brownian motions. Brace (1998) and Brace et

al. (1998) develop simulation algorithms. All of these models admit arbitrage but

they do yield curve distributions similar to those of the market model being ap-

proximated. Carr and Yang (1997) use Markov Chain Approximation to generate

non-Markovian market models in order to price Bermudian interest rate derivatives,

and Carr and Yang (1998) use Markov Chain Approximation to approximate the

value of American bond options in a general multi-factor HJM framework.

It is common knowledge in the equity and interest rate markets that stocks or rates

do not exhibit log-normal distributions under the equivalent martingale measure.

Thus the implied volatility does not remain constant across strikes but exhibits de-

pendence qualitatively described as the smile/smirk effect (depending on the shape

of the implied volatility curve). Ziihldorf (2000) considered extensions to the log-

normal forward rate model by assuming quadratic and affine volatility functions.

Andersen and Andreasen (1999) suggest the use of CEV process for the forward

LIBOR rates, whereas Brigo and Mercurio (2000) use the log-normal mixture. It

has to be noted that the extensions of market models to capture smile/smirk effects

are not straightforward and quite complex.

2.2.4 Alternative Models and Term Structure Modelling Issues

Infinite-Factor Models

All of the models described above are driven by finitely many Brownian motions,

so intrinsically, they are generated by finitely many factors. However, the number

of traded bonds, as the number of different maturities, can be considered, at least

in principle, infinite. To capture this observation, Kennedy (1994) models the term

structure of interest rates as a random field. In particular he suggested a model
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where the forward rates follow a continuous Gaussian random field so that they

evolve as a continuous random surface. The model is consistent with the initial

term structure. He derives a necessary and sufficient condition on the drift to ensure

that the discounted prices of zero-coupon bonds are martingales, which allows the

pricing of contingent claims.

In a similar work, recently, Goldstein (2000) ,and Santa-Clara and Sornette (2001) pro-

pose a similar approach to modelling instantaneous forward rates. They simply

shock the forward rate curve by a stochastic string which is a solution of some

stochastic partial equation. FUrthermore, they generalise Kennedy (1994) non-

arbitrage condition on the drift to non-Gaussian random fields. The main innovation

of this class of models consists in having each instantaneous forward rate driven by

its own shock.

Random field models have very appealing properties. In a field model, each point

along the term structure is a distinct random variable with its own dynamics. Each

point, however, is correlated with the other points in the term structure. In contrast

with finite-factor models, random field models are consistent with both the current

yield curve and term structure innovation. Gaussian field models have the potential

to fit exactly empirical covariance structure. FUrthermore, a random field model

predicts that a better hedging instrument for a bond is another of similar maturity.

However, to use random field models one needs to find a flexible family of covariance

functions, thus a flexible class of field models, that can fit the empirical covariance

matrix observed in the market. FUnctions from this class should be strictly posi-

tive definite, thus providing truly infinite factor structure for the model. Neither

Kennedy (1994) , nor Goldstein (2000) , nor Santa-Clara and Sornette (2001) iden-

tified such a class. Without this class of covariance functions one cannot capitalise

on the main advantage of the field models, Le. capturing the inter-dynamics of

movements in the term structure.
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In this thesis we will construct Gaussian field models that can fit the sample covari-

ance matrix observed in the market. In particular, in Chapter 3 we will describe

the framework in which we will develop Gaussian field models. We will require

that the covariance function of Gaussian field is strictly positive definite so that the

evolution of the yield is driven by infinite-factor structure. Then in Chapters 4, 5,

and 6 we will develop several techniques for constructing Gaussian field with above

properties.

It has to be noted that within infinite-factor models one can consider alternative

approach to the absence of arbitrage in which infinite portfolios of bonds are allowed.

This ideas has been studied by Jacka et al.. (1999), Bjork et al. (1997) and Bjork et

al. (1997).

Models for Future Prices

Futures contracts are the most frequently traded and most basic securities of an

interest rate market. In spite of this observation most interest rate models assume

the forward rates as primary elements of the models. The process of futures prices

and rates is therefore endogenous to these models. In addition hedging strategies are

formulated in terms of forward and/or spot contracts and, to a lesser extent futures.

Recently, this problem has attracted some attention in the literature. Heath (1998)

models futures rates in the spirit of the HJM framework. He presents a modelling

paradigm in which the interest rate futures contracts are taken as basic securities.

He shows that his framework is as general as the SR and the HJM. Nielsen and

Sandman (2000) use market models to analyse the implied futures price processes,

and Stapleton and Subrahmanyam (2001) introduce a model in which any two future

prices act as the state variables. It should be pointed out that modelling futures

rates has its own advantages and disadvantages and does not seem to be superior

to any other modelling framework.
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Model Risk

Model risk is becoming an increasingly important concept not only in financial val-

uation but also for risk management issues and capital adequacy purposes. Model

risk arises as a consequence of incorrect modelling, model identification or specifica-

tion errors, and inadequate estimation procedures, as well as from the application

of mathematical and statistical properties of financial models in imperfect financial

markets. Measuring model risk is challenging, specifically in the domain of inter-

est rates, where there exists a large number of products and incompatible models

simultaneously. Gibson et al. (1999) addressed this problem within interest rate

pricing and risk management frame work. In particular, Bossy, Gibson, Lhabitant,

Pistre, and Talay (1999) analyse model risk for discount bond options within HJM

framework. Main findings are that model risk is highly sensitive to the current level

of interest rate volatility and the type of position held by the trader, and that it also

increases with the time to maturity of the position held. This analysis was further

extended by Akgun (2000) to the HJM model with jumps, as described in Jarrow

and Madan (1995).

Buhler et al. (1995) analyse the empirical quality of one- and two-factor models of

HJM type and one- and two-factor models proposed by Uhrig (1995), which is a

generalisation of the model of Longstaff and Schwartz (1992a). The analysis was

conducted according to estimation, fitting, and valuation problems, and empirical

quality. In this respect, the two-factor generalised Longstaff and Schwartz model

was superior to the alternative specifications. Recently, Dudenhausen et al. (1999)

analysed the effect of model and parameter misspecification on the effectiveness

of Gaussian hedging strategies withing Gaussian term structure models as well as

market models. They argue in favour of the use of Black-type hedging strategies in

the case of fixed income security instruments, when the natural hedging instruments

are available.

The number of factors can have an important influence on pricing and hedging.
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Longstaff et al. (2001b) claim that at least a four factor model should be used

to avoid mis-pricing of Bermudian swaptions. These findings have been contra-

dicted by Andersen and Andreasen (2001), who claim that one- or two-factor models

are sufficient for accurate pricing of the instruments. Furthermore, Rebonato and

Cooper (1995) point out that low factor models allow for only limited shapes of cor-

relations between forward rates, which can lead to considerable mispricing. In the

next section we discuss somewhat related issues on interest rate risk management.

2.3 Interest Rate Risk Management

Usually, interest rate derivatives are sold to clients over-the-counter by financial

institutions or traders. If these instruments are traded at an exchange the financial

institution or trader can hedge the position by buying the same instrument at the

exchange. The resulting position is then neutralised or covered. However, most of

the OTC instruments are tailored to the specific needs of the clients, and there is

no equivalent exchange-traded instrument available for hedging. This significantly

complicates the hedging process. The trader has to buy or sell financial instruments

to create synthetically the same exposure as the derivative which he or the financial

institution has sold to the client.

If both portfolios do not coincide (as is predominantly the case in practice), the

trader is exposed to the interest rate risk. This comes from the fact that changes

in the yield curve may have different effects on different products. A risk manager

has to rely on term structure models to understand his possible exposure to adverse

movements in the yield. These term structure models assist him with the process of

structuring and restructuring the portfolio according to the desired exposure or level

of risk. Furthermore, these models provide the risk manager with risk measures, Le.

numbers which summarise his risk exposure. These measures are important not

only for the risk management process but also for many institutional investors who
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are requested to produce risk reports for regulatory purposes.

In this chapter we review the main tools of interest rate risk management. We start,

in Section 2.3.1, with the traditional, but still widely used, duration and convexity

measures. Then, in Section 2.3, we consider risk measures associated with term

structure pricing models, such as the short rate and HJM framework. We offer

some empirical results and some further discussion in Section 2.3.3.

2.3.1 Traditional Measures of Interest Rate Risk: Duration and

Convexity

Until recently, the managing of interest rate risk with bond portfolios has been

largely limited to the use of conventional duration. Conventional duration measures

an asset's sensitivity to interest rate change under the assumption of infinitesi-

mal parallel shifts in the term structure. This idea goes back at least sixty years.

The first attempt to quantify exposure in the fixed income market was done by

Macaulay (1938) when he proposed a measure of "duration" to represent the "...

essence of the time element of a loan,,26. The term "duration" might appear mis-

leading as the prime interest, even of Macaulay, was the risk-proxying properties of

this measure. Independently, Hicks (1939) proposed duration as a proxy of basis

risk and this has been rediscovered by many later authors. He called it the "average

period" measuring the elasticity, with respect to a discount ratio27

Let us consider a bond with payment dates tI, ... ,t«; with t« =T. We denote the

payment at time ti by Ci, and the time t value of the bond by BC(t, T}. Furthermore,

we define implicitly the yield of the bond yf, using continuous compounding,

BC(t,T} = LCie-yfCt;-t).
t;>t

26See Macaulay (1938), p,44.
27 (I.e. factor or discount rate + unity.) See Hicks (1939), p.186.
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The Macaulay duration nJ'A-acof the bond is defined as

nMac _ _ 1 dBC(t, T) _ Et;>t(ti - t)Cie-y'(t;-t) _ ~(. ) Mac( .)
t - Bc(t T) d B - Bc(t T) - L- t« - t w t, ta ,,Yt , t;>t

where wMac(t,ti) = Cie-y,(t;-t)/BC(t,T). The weights wMac can be seen as ratios

between the present value of the i'th payments and the total present value of the

bond. We can interpret the Macaulay duration as the sum of these weight scaled

by their respective times to maturity. We can express the relative price change of

the bond due to infinitesimal change in its yield as,

The Macaulay duration is defined as a measure of the price change induced by an

infinitesimal change in the yield of the bond. For a non-infinitesimal change in the

yield, a first-order approximation gives that

l:::,.BC(tT) ~ dBC(t, T) AyB, ~ dB '-'t,
Yt

and the relative price change of the bond

An obvious way to obtain a better approximation is to include a second-order term,

l:lBC( T) ~ dBC(t,T) l:::,.B !d2BC(t,T))2(l:::,. B)2
t, ~ dyf Yt + 2 d(yf Yt·

Defining the Macaulay convexity by

we can write the second-order approximation as

l:lBC(t, T) ~ _nMac l:lyB + KMac(l:lyB)2
BC(t, T)..... t t t t·
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The Macaulay measures are not directly informative of how the price of a bond is

affected by a change in the zero-coupon yield curve and are therefore not a valid

basis for comparing the interest rate risk of different bonds. The problem is that

the Macaulay measures are defined in terms of the bond's own yield, and a given

change in the zero-coupon yield curve will generally result in different changes in

the yields of different bonds. It is easy to show 28 that the changes in the yields of

different bonds will be the same if and only if the zero-coupon yield curve is fiat. In

particular, the yield curve is only allowed to move by parallel shifts29.

An alternative duration measure, based on the zero-coupon yield curve rather than

the bond's own yield, has been discussed by Fisher and Weil (1971). They defined

a duration measure, which we refer to as Fisher- Weil duration, by

(2.3.1)
ti>t

t·
where W(t,ti) = Cie-yt'(t,-t)/BC(t,T). Here, y!i is the zero-coupon yield prevailing

at time t for the period up to time ti. Relative to the Macaulay duration, the

weights are different. The w(t, til are computed using the true present value of

the i'th payment, since the payment is multiplied by the market discount factor
t·pi' = e-Yt'(t,-t). In the weights used in the computation of the Macaulay measures

the payments, are discounted using the yield of the bond.

If we think of the bond price as a function of the relevant zero-coupon yields,
tl tnYt , .•. , Yt ,

BC(t,T) = LCie-y!i(ti-t),
t,>t

we can write the relative price change induced by an instantaneous change in the

zero-coupon yields as

dBC(t, T) = ~ 1 aBC(t~T) _ ~ w(t t.)(t. _ t)d ti.
Bc(t T) L.", Bc(t T) a t' L.",'" Yt

, ti>t ' Yt ti>t

28see Ingersoll et al. (1978».
29As shown by Ingersoll et al. (1978) [1381. such an assumption conflicts with the no-arbitrage

principle.
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If the changes in all the zero-coupon yields are identical, the relative price change

is proportional to the Fisher-Weil duration. Consequently, the Fisher-Wei! duration

represents the price sensitivity toward infinitesimal parallel shifts of the zero-coupon

yield curve.

We can also define the Fisher- Weil convexity as

The relative price change induced by a non-infinitesimal parallel shift of the yield

curve can be then approximated by

where ~y; is the common change in all the zero-coupon yields.

There is a large body of literature focusing on developing better measures of the

interest rate risk associated with non-parallel yield curve shifts. First immunisation

strategy which explicitly took non-flat term structures into account, was developed

by Fisher and Weil (1971). Khang (1979) proposed logarithmic shifts. Several

other authors30 have proposed different duration measures for additive, multiplica-

tive, logarithmic, and exponential shifts in the term structure, as well as various

combinations of these shifting patterns-".

A major weakness of the preceding methodology is that movements in the entire

term structure are described by one factor. Whether in a simple model of parallel

shifts or in more sophisticated versions, the movement of any specific rate is assumed

to predict perfectly movements of any other rate. In practice it is quite possible that

short- and long-term zero rates can move in opposite directions, changing the whole

slope of the zero-rate curve. Immunising with a model that assumes parallel shifts

30See, for example, Kaufman et al. (1981), Kaufman et al. (1983b).
31Leibowitz, et al. (1988) and Klaffky et al. (1992) have invented "functional duration".
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or some other strong relationship between yields of different maturities will fail to

protect against changes in the yield curve, such as flattening, steepening, or other

twists.

The general solution to this problem is to construct a model with more than one

factor32• Some authors have considered duration measures based on movements

of the term structure at different points. For example, Waldman (1992) introduced

partial duration and Ho (1992) proposed key rate duration. These durations examine

rather mechanically the sensitivity of fixed income instruments to a chosen set of

rates. The choice of rates is ad hoc and is not based on any particular term structure

model. In the next section we will look at duration measures arising from the

dynamic term structure models.

2.3.2 Risk Measures in Pricing Models

Short Rate Framework

One can use martingale pricing theory to provide a mechanism to generate arbitrary

(nonparallel) deformations of the yield curve33• Similarly to the standard duration,

we view the price of any zero-coupon bond as a function of a small number of certain

state variables. We can assume, for example, that the short rate r{t) is a Markov

process. This implies that the arbitrage-free price at time t of a zero coupon bond

with maturity T, B{t, T), can be written as a deterministic function of r{t), Le.

B{t, T) = ¢(t, T, r{t)).

Therefore, we can define the duration of a coupon bond as

(2.3.2)

32General multi-factor duration measures based on empirical studies have been developed by
Gultekin and Rogalski (1984), Elton et al. (1988), and Elton et al. (1990).
33For a discussion of possible shapes of the yield curve that can he generated within the short

rate approach see Schlegel and Sommer (1994) [225] and (1997) [226]
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The duration measures we defined in the previous section are measured in units of

time and can be interpreted as "effective" time to maturity. The duration defined

in (2.3.2) is not measured in time units, but it can be related to such a measure, as

we describe next.

Boyle (1978) and, independently, Cox et al. (1979), were the first to consider the

concept of duration within the context of modern day term structure modelling.

Cox et al. (1979) They adopted a framework where the short rate follows a time-

homogeneous univariate Markov diffusion (e.g. Vasicek (1977), Cox et al. (1985b)).

This structure is enough to guarantee that at time t the bond price is a function

of the short rate r, and time to maturity T. COXet al. (1979) define measure of

duration for a coupon bond as "the [time to] maturity of the discount bond with

the same [basis] risk". The basis risk of a bond with price B(t, T) is defined as

8Bh~T) / B(t, T). That is, Cox et al. (1979) define the duration as a number D* (r, t)

which solves,

1 8Bc(t,T) 1 8B(t,t+D*(r,t))
--==---- -_...:,.....;,,_~=
BC(t,T) Dr B(t,t+D*(r,t)) Br

Cox et al. (1979) used the term stochastic duration for the duration D*(r, t) to

indicate that this duration measure is based on the stochastic evolution of the term

structure.

As an example, we calculate both the duration and the stochastic duration for the

Vasicek (1977) model. In the time-homogeneous affine one-factor diffusion models,

e.g. the Vasicek and CrR models, the zero-coupon bond prices can be written as

P{t, T) = e-a(T-t)+b(T-t)r.

Consequently, the duration of a coupon bond is

D(r, t) =
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where w(r, t, til = c;P(t, till BC(t, T) is the i'th payment's share of the total present

value of the bond. Note that the duration of a zero-coupon bond maturing at time

T is b(T - t), which is different from T - t. The convexity can be computed as

1~ 2K(r, t) = 2 L..J w(r, t, ti)b(ti - t) •
t,>t

If b is invertible, we can write the time-denominated duration of a coupon bond

explicitly as

As an example we consider the Vasicek model in which the b-function is given by,

1 _
b(r) = -(1 - e itT),

Il.

so that the duration of a coupon bond is

We have

and hence the time-denominated duration of a coupon bond is

(2.3.3)

HJM Framework

Alternatively, one may generate yield curves using the HJM arbitrage-free frame-

work, in which

B(t, T) = exp (-iT f(t, U)dU) ,
where f (t, u) is the instantaneous continuously-compounded forward rate. All of

the above concepts of duration have been related to the partial derivatives of the

bond price with respect to the short rate, or possibly some other rates. The bond
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price B(t, T} is a deterministic function of some stochastic variables only under very

restrictive assumptions on the volatility process. This is because the HJM models

are naturally Markov in an infinite-dimensional function space, and mappings of

infinite-dimensional Markov processes onto finite-dimensional subspaces are not in

general Markov.

Within a general HJM framework, however, the bond price depends on the whole

instantaneous forward curve. Thus, duration measures defined in terms of partial

derivatives with respect to a finite number of state variables do not capture all

the richness of the HJM framework, and consequently, the variation in the bond

price. The question arises on how to think of duration and convexity in this general

setting34•

One could define the concept of duration in the HJM framework by considering the

sensitivity of a bond price with respect to all possible interest rates. This would

generalise the key-rate duration concept proposed by Ho (1992) which we discussed

above. This will create an infinite-dimensional vector and it is not clear how it can

be used in practical applications. Next, we discuss two possible generalisations of

the duration concept that can be used in the general HJM setting.

In the general HJM framework, the bond value B(t, T} is an Ft-measurable func-

tional of the Brownian motion {Wti t ~ O} to which an expansion, into so called

Wiener chaos, can be applied. Because Wiener chaos expansions of a Brownian

functional can be regarded as the stochastic calculus analogue of Taylors series,

duration and convexity can be associated with first and second Wiener chaos35,

34Au and Thurston (1995) defined duration within the HJM framework, under the assumption
that the evolution of the term structure depends only on the Markovian short rate. More generally,
Jarrow and Turnbull (1994) considered an HJM framework where the evolution of the term structure
can be represented by a finite number of Markov state variables. They discussed the delta and
gamma hedging of buckets that takes into consideration correlation between the buckets. Hedging
within the general HJM model has been investigated by Musiela et al. (1993).
35Similarly, Lacoste (1996) associates the delta and gamma of an index option with the first and

second Wiener chaos of the option payoff.

49



respectively.

Next, we briefly discuss the Wiener chaos expansiorr'", Suppose that W is a one-

dimensional Brownian Motion, and define multiple stochastic integrals

where I is a square integrable function on the simplex

The set en of all such multiple integrals is a closed subspace of L2(0, :Foo, JI») and is

called the nth Wiener chaolP. Wiener chaoses of different order are orthogonal and

their direct sum is equal to L2(0, :Foo, JlD). Thus, every square-integrable random

variable F can be uniquely represented as a sum of its orthogonal projections on the

successive Wiener chaoses. In this case we can write

where the function In, square-integrable on S" is given by

This is a decomposition of the random variable F into Wiener chaos.

Drace and Musiela (1991) use this technique to derive zero-, first-, and second-order

orthogonal projections and suggest employing them for immunisation and hedging

purposes. Consider the problem of portfolio immunisation. The aim is to set a

portfolio of zero coupon bonds with maturities Ti and amounts ai, i = 1, ... ,p in

such a way that the portfolio value at time T,

p

V(T) = 2:aiP(T, Ti),
i=l

(2.3.4)

36ElIiott and Van Der Hoek (1999) apply the Wiener chaos expansion to investigate the optimal
bucketing problem in the case of the two-factor Hull and White model.

37See 0kscndal (1997) for more details on Wiener chaos.
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will not be exposed to the main sources of uncertainty in this time horizon. The

uncertainty at the time horizon T is modelled by the process {WT(t}; ° :::;t :::;T},

which is a Brownian motion under the forward measure lPT. We say that the portfolio

has no n'th exposure if the projection Proic" V(T) of the random variable V(T) onto
T

the n'th-Wiener chaos eT of the Brownian motion WT(-) is zero. In other words,

the orthogonal projection of V(T} onto the n'th-Wiener chaos of WT(-) corresponds

to the n'th-order exposure of the portfolio at the time horizon T.

The expected value lEt BC (t, T) is the projection onto the O'th-order Wiener chaos.

We have

Furthermore, it can be shown, that the variance of the projection onto the first order

Weiner chaos is zero if

(2.3.5)

As an example, we want to immunise a liability c at a date T and we are not

concerned with exposure of order greater than 1. The objective will be achieved

if we choose a portfolio of zero coupon bonds with maturities Ti and amounts ai,

i = 1, ... ,p so that the portfolio L:f=l CiP(T, ti) - c has no exposure of orders 0 or

1. The projection onto O'th-order Wiener chaos is zero if and only if
p

LCiP(O, ti) = cP(O, T},
i=l

(2.3.6)

or equivalently if the present value of the portfolio is equal to the present value of the

liability. The projection onto the 1st-order Wiener chaos vanishes if (2.3.5) holds.

If (2.3.5) and (2.3.6)' hold we say that portfolio (2.3.4) has duration T == DBM.

In the case O'(t, u) = 0', a constant, expression (2.3.5) implies

nBM = L:f=l CiTiB(O, Ti)
L:f=l CiB(O, Ti}
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In this case duration coincides with the Fisher-Weil duration we defined in (2.3.1).

As another example we consider the volatility structure cr{t,T) = cre-It(T-t} for pos-

itive constants a and K.. This volatility structure corresponds to the Vasicek (1977)

model. Again, from expression (2.3.5), we obtain

DBM = _~ In (Eti>t CiB(t, ti)e-It(ti-t})
K. Eti>t CiB(t, ti) ,

which is the same expression as the stochastic duration for the Vasicek (1977) model

obtained in (2.3.3).

Another approach to defining a notion of duration in the HJM setting has recently

been investigated by Jeffrey (2000). He defines the duration of a portfolio containing

positive default-free cash flows Ci occurring at respective times ti, as DJ == (T - t).

The parameter T solves

(T cr{t, v) dv = Eti>t CiB(t, til J/i ~dV,
it 'I/J{t) Eti>t CiB{t, til

(2.3.7)

where cr{t,T) is the forward rate volatility, 'I/J{t) the volatility of the chosen basis

factor x{t), and N the number of Brownian motions in the HJM dynamics. The

factors x{t) can be specific interest rates, or more generally a set a Brownian motions

under any equivalent probability measure.

For example, consider the case when the forward volatility structure is constant

cr(t,T) = cr. If we choose as the basis factor x{t) the Brownian motion W{t), with

volatility 'I/J{t) = 1, the duration measure implied by (2.3.7) is

J Et·>t CiB(t, ti)(Ti - t)
D -~~.~------~---

- Eti>t CiB(t, til ,

which is the same expression as the Fisher-Weil duration we defined in {2.3.1}.

Next, we consider the case when the forward volatility structure takes the form

cr{t,T) = cre-It(T-t) for positive constants o and K.. This volatility structure cor-

responds to the Vasicek (1977) model. If we choose as the basis factor x{t) the
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Brownian motion W{t), with volatility 1f;{t) = 1, the duration measure implied

by {2.3.7} is

J 11 ( Eti>t c;B{t, ti)(1 - e-,,(ti-t»)
D = -- n 1- ,

K Eti>t c;B{t, til
which is the same expression as the stochastic duration for the Vasicek {1977} model

obtained in {2.3.3}. It can be easily shown, that the duration measure DJ with the

Brownian motion W{t) as a basis factor, and the duration DBM implied by the

Wiener chaos are the same.

2.3.3 Empirical Results and General Remarks

Most of the empirical tests of stochastic duration have not demonstrated any actual

superiority to the simple Macaulay duration. Brennan and Schwartz (1983) discuss

generalised duration within a two-factor equilibrium setting and compare it with

standard definition of duration. They conclude that as long as one deals with simple

bond positions, immunisation using standard duration is as good as the generalised

version. However, they argue that the latter is better suited to portfolios which

include options.

Munk {1999} showed analytically that for any bond the stochastic duration in the

Vasicek model is smaller than the Fisher-Wei! duration, and the same is the case with

Macaulay duration. Recently, Wu {2000}compared empirically the performance of

stochastic duration in Vasicek {1977}, Cox et al. (1979), and Macaulay duration. He

finds that Macaulay's duration outperforms the former. This is to be expected, as

the hedge based on Macaulay duration is immune to the parallel shifts of the yield

curve. The paralle I shifts contribute the largest portion of the risk in the yield.

This is an empirical observation, as the eigenvector corresponding to the largest

eigenvalue in the PCA analysis of the yield differences is approximately fiat.

Concepts such as duration give a risk manager rather limited information: they

only indicate the sensitivities of his positions to small movements in the specified
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risk factors. If we want to understand our risk exposure in a specific instrument or

portfolio, we need to know its distribution of returns over a certain period of time.

The distribution of returns describes probabilities of all possible outcomes. It can

answer all questions about returns: it can be a forecast, or a summary of realised

returns. To obtain a distribution of returns a risk manager has to rely on term

structure models. Thus, it is of a paramount importance that a model be able to

capture the main characteristics of the statistical behaviour of the yield curve.

The distribution of returns is too complicated and detailed in its entirety. Over

the past decade other concepts have gained in popularity, such as downside risk,

shortfall probability, and Value-at-Risk. These definitions of risk attempt to capture

in a single number the essentials of the risk more fully described in the complete

distribution. However, their accuracy again depends entirely on the underlying term

structure model.

In this section we have reviewed the main tools of interest rate risk management.

Unlike the term structure pricing literature, the interest rate literature is rather un-

developed. Whether any of the tools presently in use are superior in terms of hedging

performance and risk forecasting, is a matter of further research. However, what

can be said at this stage is that the better we can capture the empirical behaviour

of the evolution of the term structure, the closer we might be to achieving accurate

risk forecasts. In this thesis we develop random field models, which can capture

exactly the inter-dynamics of interest rates. We believe that this methodology will

help to understand risks involved in fixed income products.

2.4 Conclusions

In this chapter we have reviewed the term structure pricing and risk management

literature. We started with the most general arbitrage-free framework, the pricing

kernel. Then we specialised this framework to the less general classes of models:
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the short rate models, models of the instantaneous forward rates, etc. We found

that the pricing kernel framework is the least developed among the approaches to

the term structure modelling. We also described term structure models that do not

naturally fit into the above description, such as infinite-factor models and models

for futures prices. Furthermore, we highlighted the advantages and disadvantages

of different modelling approaches, as well as parameter estimation issues versus

model calibration, and discussed model risk problems. We also discussed issues in

fixed income risk management. We described several techniques currently used to

measure interest rate risk. We also pointed out that the literature in this field is

rather unsatisfying and it might benefit from the research in this thesis.

Infinite-factor models, or random field models, have very appealing properties. In

contrast with finite-factor models, random field models are consistent with both the

current yield curve and term structure innovation. Gaussian field models have the

potential to fit exactly the empirical covariance structure. Furthermore, a random

field model predicts that a better hedging instrument for a bond is another of similar

maturity.

We have pointed out that in order to use random field models one needs to find a

flexible family of covariance functions, and thus a flexible class of field models. The

functions from this class should fit the empirical covariance matrix, and be strictly

positive definite. This problem has not been addressed in the field literature. We will

address it in the first part of this thesis. In particular, in Chapter 3, we will present a

random field framework for the term structure, together with a detailed description

of the random field literature. Then, in Chapters 4, 5, and 6 we will develop several

techniques for constructing a Gaussian field with the above properties.

In our review, we found that the short rate approach remains the main tool among

practitioners for pricing exotic derivatives. The main reason is that this framework

allows for a simple Markov representation of the yield curve, so all calculations can
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be done in real time. However, the calibration of short rate models to traded instru-

ments is not trivial. Furthermore, we observed that market models are very popular

among practitioners, as they allow instantaneous calibration to the instruments for

which they were specifically designed. However, they suffer from non-Markov dy-

namics, so calibration to other instruments is a problem. Furthermore, American

type options are difficult to handle with market models, and the extensions to smiles

and skews are complex.

To address the above problems, in Chapter 7, we will develop a class of models

within the pricing kernel framework. We will model the pricing kernel directly by

approximating it with a set of radial basis functions. As the underlying noise in the

economy, we will choose a simple multi-factor diffusion. This approach is just as

simple in a one-factor as in a multi-factor setting. We will link the approximation

of the kernel explicitly to the calibrating set of instruments. Thus, once the kernel

is constructed, it will price correctly the chosen set of instruments and has a low-

dimensional Markov structure. In summary, this class of kernel models is Markov by

construction, easy to calibrate to a variety of instruments, can deal with American-

type options, and is flexible in fitting to smiles and skews.
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Chapter 3

Modelling Framework

3.1 Introduction

In the last chapter we described methodologies and reviewed literature for pricing

and risk management of interest rates derivatives. In this chapter we identify a

class of models for the term structure of interest rates, motivated by the following

two observations: The number of traded maturities in the fixed income market,

though always finite, is generally assumed to be infinite. That is, when modelling

interest rates, one assumes the maturity span to be an interval in the real line.

Secondly, it is reasonable to assume that each maturity will have its own source of

randomness, however small. The logical conclusion from these observations is that a

model which claims to explain the relation between different maturities of the term

structure should have an infinite number of factors. Despite these observations most,

if not all, of the academic literature and industry practice is based on finite-factor

models.

Though approaches to modelling term structure have grown in sophistication and

complexity over the past 30 years, they are still not able to capture exactly the in-

terrelation between the rate dynamics. The earliest class of models used finite-factor

processes with constant coefficients, and then defined the spot rate as a function of
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these factors (see e.g., Vasicek (1977), etc'}. Unfortunately, models from this class

are not even able to capture the current term structure.

The second class of models either assigned explicit time dependence to the spot rate

process, or modelled the forward rate directly, using the initial forward rate curve as

an input (see e.g. Heath et al. (1992), etc2). Although this class of models allows one

to fit the current yield curve, it is not consistent with term structure innovations''.

That is, for a specified volatility structure the realisations of the forward curve do

not cover all possible observed forward rate curves. Therefore, this class of models

is inconsistent with the empirical data.

These shortcomings of the standard models may not be so important for the pricing

of certain instruments. However, they fail completely when it comes to the pricing

and risk management of instruments or positions that depend on the inter-dynamics

of the term structure. The effect of assuming a small number of factors has been

noted within the pricing context by Rebonato and Cooper (1995). In particular,

they show that the covariance matrix can take only limited shapes, if the number

of factors is kept low. This leads to mis-pricing of, for example, swaptions which

depend on the correlations between different forward rates.

The consequences of using low factor models are even graver when it comes to risk

management of positions that depend on the rates of different maturities. A simple

example is when positions are very close to each other. A low factor model will

over-estimate the correlation between these positions and hide the actual exposure

to risk. This observation is not a deficit of some particular model: to fit correlation

fully between, say, N rates, one needs at least an N-factor model. The situation is

IOther examples include Brennan and Schwartz (1979), Cox et al. (1985b), Longstaff, Schwartz
(1992a) [175]

2The same problems can be associated with short rate models with time-dependent coefficients
such as Black, Derman, and Toy (1990), Hull and White (1993a), Ho and Lee (1986)

3This inconsistency, for example, forces practitioners to recalibrate the parameters of their
models.
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even more precarious when the number of positions in a portfolio is larger than the

number of observed rates. A multi-factor model that will fit the observed correlations

will be degenerate when one takes into account un-observed rates.

A further pitfall of finite-factor models lies in the hedging strategies which they

predict. In particular, when choosing hedging instruments for a position they do not

take into account the maturities of the hedging instruments and the maturity of the

position they hedge. For example, in one factor model, a position in bonds maturing

in one and two years is a perfect hedge for a bond with thirty years to maturity.

This is in stark contrast with fixed income management practice. Practitioners

realise that such hedging strategies would fail in practice. Therefore, they typically

hedge interest rate risk by estimating the duration of short-, middle,- and long-term

commitments separately".

As stated previously, all finite-factor term structure models, taken literally, are in-

compatible with empirical observation. Therefore for empirical studies'' one usually

adds error terms to the econometric specification of the model. These errors are

then assumed to be independent. This independence assumption is reasonable if

the noise is due to non-synchronous trading or observations, or possibly bid-ask

spreads. However, if the incompatibility is due to a misspecified model, the error

terms will not be independent of the factors and the econometric model will be

misspecified.

To solve some of the problems mentioned above, for example, such as that of obtain-

ing complex shapes of the forward curve and realistic correlations between bonds

of different maturities, one could introduce a large number of factors. This would

make the models very unparsimonious and virtually impossible to estimate.

4Ho (1992) attempts to capture this idea by hedging separately "key rate durations" at several
different maturities. However, his approach ignores the correlation between different key rate
durations.

&Scc,for example, Chen and Scott (1993), and Pearson and Sum (1994).
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To overcome these difficulties, Kennedy {1994}models the term structure of interest

rates as a random field. In particular he has suggested a model where the forward

rates follow a continuous Gaussian random field, so that they evolve as a continuous

random surface. The model is consistent with the initial term structure. He derives

a necessary and sufficient condition on the drift to ensure that the discounted prices

of zero-coupon bonds are martingales, which allows the pricing of contingent claims.

Recently, Goldstein {2000}, and Santa-Clara and Sornette {2001}have proposed a

similar approach to modelling instantaneous forward rates. They simply shock the

forward rate curve by a stochastic string which is a solution of some stochastic partial

equation. Furthermore, they generalise Kennedy's {1994}non-arbitrage condition

on the drift to non-Gaussian random fields. The main innovation of this class of

models consists in having each instantaneous forward rate driven by its own shock,

while constraining these shocks in a such a way as to keep the forward rate curve

continuous.

Since there are infinitely many instantaneous forward rates, in general, random field

models are infinite-factor models. In order to price or risk manage derivative securi-

ties in a field model, only an estimate of the covariance matrix of the instantaneous

forwards is needed. Thus, random fields offer a much more parsimonious description

of term structure dynamics than their multi-factor counterparts.

The approach has another advantage, the random field framework naturally accounts

for the fact that the best hedging instrument for a bond is another bond of similar

maturity. This is in stark contrast to finite factor models. Furthermore, in general it

is necessary to use a portfolio with an infinite number of bonds to replicate interest

rate contingent claims. However, the pricing of derivatives remains simple: interest

rate options can, in general be priced by simulation, and, in some cases, in closed

form. As with HJM, random field models do not allow the formulation of a partial

differential equation to price derivatives.
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Furthermore, models driven by random fields can be estimated without addition of

econometric error terms. The models are compatible with any sample of forward

rates. This is because, for any parametric specification, there is always a possible

path for the random field over a finite interval, that can lead from the forward curve

at the beginning of the interval to the forward curve at the end of the interval.

The probability of such a realisation of the field might be very low, but it is always

possible. Thus there is no need to add observational noise when estimating the

model. An estimation procedure would then consists of finding the most likely

parameters, given a set of movements of the term structure over time.

However, to use random field models one need to find a flexible family of covariance

functions, and hence a flexible class of field models, that can fit the empirical co-

variance matrix observed in the market. Functions from this class should be strictly

positive definite, thus providing a truly infinite-factor structure for the model. Nei-

ther Kennedy (1994), nor Goldstein (2000), nor Santa-Clara and Sornette (2001)

addressed this problem. Without this class of covariance functions one cannot cap-

italise on the main advantage of the field models, Le. capturing the inter-dynamics

of movements in the term structure.

Thus our main objective is to construct Gaussian field models that can fit the sample

covariance matrix observed in the market. In this chapter we will describe the

framework with which we will develop Gaussian field models. In a departure from

previous authors, we work with the yield curve as fundamental, and model it as a

Gaussian random field. This is not essential, as the results will be equally applicable

to other term structure parameterisations. We will require that the covariance

function of the Gaussian field be strictly positive definite, in order for the evolution

of the yield to be driven by an infinite-factor structure. Additionally, we will discuss

several desirable smoothness properties of the yield curve and its evolution. We will

derive sufficient conditions on the covariance function to produce such degrees of

smoothness.
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The rest of this Chapter is as follows. In Section 3.2, we present a more detailed dis-

cussion of the random field models suggested by Kennedy (1994), Goldstein (2000),

and Santa-Clara and Sornette {2001}. We present our modelling framework in Sec-

tion 3.3, together with assumptions on the covariance functions that will ensure

infinite-factor structure and smoothness of the field realisations. We conclude in

Section 3.4.

3.2 Related Research

Kennedy {1994} suggested a model in the spirit ofHJM's work, in which the forward

rates follow a continuous Gaussian random field so that they evolve as a continuous

random surface. In particular, he modelled the instantaneous forward as

fs,t = J1.s,t + Xs,t, 0 :::;S :::; t,

where Xs,t is continuous Gaussian random field with covariance structure specified

by

The drift function J1.s,t is deterministic and continuous. The model is consistent with

the initial term structure, if one sets J1.o,t == fo,t.

Furthermore, Kennedy {1994} derived a simple necessary and sufficient condition on

the drift surface:

J1.s,t = J1.o,t + fot c{s A v, v, t}dv,

which ensures that the discounted prices of zero-coupon bonds are martingales. This

allows the pricing of contingent claims.

As a motivating example he suggested a field Xs,t, is obtained from a deterministic

change of the standard Brownian sheet WB,t which is a centred Gaussian random

field with covariance function
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In this case Xs,t may be represented as X"t = Wu(s),r(t). This gives correlation of

the field for fixed s,

Goldstein (2000) utilises random fields in a different from the Kennedy (1994) setup.

He considers a field labelled with two time indexes, dZT{s). The superscript T refers

to a maturity date; the index inside the parentheses s refers to the current time.

For all dates s, the field describes a realisation of a random function dZT(s) for all

T E {s,oo}. Each dZT{s} is normally distributed with mean zero and variance ds.

Hence, to complete the description of the random field, the correlation structure

Corr [dZT1 (s), dZT2 (s)] needs to be specified.

A simple model of a random field is generated by an Ornstein- Uhlenbeck process.

This Gaussian field at time s is generated by

dZT(s) = dZS(s)e-p(T-s) +..fiP l~sdzS(u)e-p(T-u),
where dZS(s} ~ <p[0, ds], and the dz satisfy

lE[dz' (u)] = 0,
{

dsdu;
Cov[dz'(ut}dz'(U2}] = 0

otherwise

The correlation'' between the innovations is

{3.2.1}

Note that if p = 0, the Gaussian field reduces to the one-factor case, since the

correlation between innovations of any two forwards becomes unity.

6As with traditional Ito calculus, the correlation structure has a rigorous mathematical inter-
pretation only after appropriate integration is performed.
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The Ornstein-Uhlenbeck process is continuous but not differentiable. A smoother

term structure might be preferred in practice. To accomplish this, Goldstein (2000)

suggests integrating the Ornstein- Uhlenbeck process as

dVT(s) = 02p2) /_: dudZU(s)e-p(T-u).

This results in the correlation structure

which is differentiable. Additional integration procedures produce correlation struc-

tures which are even smoother.

Goldstein (2000) models the instantaneous forward rates as

Thus, as in Heath et al. (1992), Goldstein (2000) treats the instantaneous forward

rates as fundamental. Then assuming the existence of the risk-neutral measure, the

dynamics of the instantaneous forwards under this measure become

(3.2.2)

with correlation structure

and drift coefficient

J1.~(s) = UT(S) /,T duO"u(s)c(s, T,u).

This generalises Theorem 1.1 in Kennedy (1994) to non-Gaussian fields.

Santa-Clara and Sornette (2001) work in a similar setting to Goldstein (2000). How-

ever, they consider a more general model of the forward rate curve driven by stochas-

tic strings. Again, the dynamics of the forward rates are modelled by

dd(t,x) = J1.(t,x)dt + udtZ(t,x),
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where the stochastic process Z (t, x) generalises to two dimensions the one-dimensional

Brownian motion W{t). The field Z(t, x) depends on time t and on time to maturity"

x (not on maturity time T). The notation dtZ(t,x) denotes a stochastic perturba-

tion to the forward rate curve at time t, with different magnitudes for forward rates

with different times to maturity. The subscript t in the differential operator means

that the increment is taken with respect to time.

Arbitrage-free dynamics of the instantaneous forward rate under the risk-neutral

measure are given by,

8f(t,x) t'
dd{t, x) = ox dt + u{t, x) la c(x, y)u{t, y) +udtZQ{t, x).

This is the same as Equation 3.2.2, apart from the additional derivative of the for-

ward with respect to time to maturity. This arises from the alternative parametri-

sation.

Santa-Clara and Sornette (2001) use stochastic partial differential equations (SPDE)

to generate the driving field dtZQ(t, x). The simplest SPDE is

oW(t, x) _ ( )
otox - 1Jt, x , (3.2.3)

where 1J(t,x) is white noise both in time and time to maturity, characterised by the

covariance,

Cov[1J(t,x),1J{S,y)] = 8(s - t)8(y - x),

where 8 denotes the Dirac distribution. The solution of Equation (3.2.3) reads

(3.2.4)

This process is known as the Brownian sheet and has the following covariance,

Cov[W(t, x), W(s, y)] = (t A s)(x AY),

TThis specification is sometimes referred to as Musiela parameterisation of the instantness for-
ward rates. Musiela (1993), Brace and Musiela (1994) were the first to use this parametrisation.
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The correlation of the increments of this string is

. (xt\y)
Corr[dt W(t, x), dtW(s, y)) = r;;;;;'

yxy

Another simple formulation that produces many parametric examples is

lot 1° 1Z(t,x) = Z(O,x) + dv dz 171::\77(V,Z),
o j(x) V J(x)

(3.2.5)

where j is an arbitrary continuous function. We obtain the correlation function of

the increments,

c(x, y) = Corr[dtZ(t, x), dtZ(t, y)] =
j(x) 1\ j(y)
j(x) V j(y)'

By making j(x) = x in Equation (3.2.5), we obtain a simple modification of the

Brownian sheet. This process is just like the Brownian sheet in Equation (3.2.4),

but is rescaled by a factor -jx. It has the correlation function

By choosing j(x) = e2K.X in Equation (3.2.5), we obtain the Ornstein-Uhlenbeck

sheet with correlation structure of the increments

c(x, y) = Corr[dtZ(t, x), dtZ(t, y)] = e-Itlx-yl.

As we see, this correlation is the same as the one obtained by Goldstein (2000) in

Equation 3.2.1 above.

The processes studied above are continuous in t and x, but are not differentiable in

either t or x. As Goldstein (2000), in order to obtain fields differentiable in time to

maturity, Santa-Clara and Sornette (2001) suggest to integrate any of the previously

defined strings in x, for example,
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The correlation of the increments of the integrated Ornstein- Uhlenbeck sheet is

c(x, y) = Corr[dtZ(t, x), dtZ(t, y)] = (1+ Klx - yl)e-Itlx-yl.

Another parametric example is obtained by choosing j(x) = exD, with an exponent

0< Cl < 1,

This produces correlations that increase with maturity.

3.3 Model Specification

In this section we set up our modelling framework. Then we describe assumptions on

the covariance functions that will ensure infinite-factor structure, and derive neces-

sary conditions to ensure smoothness of the realisations of the field. We parametrise

our term structure model in terms of the dynamics of the yield curve, but could

equally use instantaneous forward rates, bond prices, etc", This is motivated by the

use of yields rather than any other rates in interest rate risk management.

Let Ya,t be the continuously-compounded yield curve for time to maturity t at time

8, 0 $ 8 $ t. We assume that

Ya,t = J-Ls,t+ Xs,t, 0 $ 8 $ t,

where X"t is a zero-mean continuous Gaussian random field with covariance struc-

ture specified by

We assume that the function c satisfies c(O, tl, t2) == o. As a covariance function c

has to be symmetric in tl and t2 and positive definite in (81, td and (82, t2)' The

8For example, Longstaff et al. (2001a), (200lb) parametrise their field models in terms of forward
swap rate and forward LIBOR rates.
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fact that the covariance is specified as a function of SI /\S2 ensures that the Gaussian

random field Xs,t has independent increments in the s-direction, in the sense that

for any 0 $ s $ s' $ t, the random variable Xs' t - Xs,t is independent of the a-field,
:Ft = a{ XU,tI: u $ s, u $ v}; this follows since for u $ s, u $ v,

Cov(Xs't - Xs,t, XU,tI)= c(s' /\ u, t, v) - c(s /\ u, t, v),

= c(u, t, v) - c(u, t, v) = 0,

which implies independence by the Gaussian assumption. As we are mainly inter-

ested in short term risk management we assume that the drift is constant in time

and is equal to the initial yield curve J.Lo,t = YO,t. This assumption, however, can be

easily changed.

3.3.1 Infinite-Factor Gaussian Field Models

Random field models can accommodate both finite- and infinite-factor models. The

main motivation for introducing field models is their ability to capture the infinite-

factor nature of yield curve dynamics. Thus it is important to identify conditions

on the field that ensure this property.

For Gaussian fields these conditions can be expressed in terms of their covariance

functions. A yield curve is generated by an infinite-factor Gaussian field when for

any choice of (distinct) maturities and any (positive) time horizon the covariance

matrix for these set of yields is positive definite. Any positive definite function can

be used to define a covariance function. However, from a modelling point of view we

are only interested in functions with the above properties. Next, we formally define

such classes of functions.

Definition 3.3.1. Let S be a subset of]Rn. A function P : S x S --+ ]Ris called a

positive definite kernel or PD kernel if the matrix M = (P(Xi, Xj)ki=I, ...,n is positive

semi-definite (PSD) matrix, i.e.,
n

L qCjP(Xi,Xj) ~ 0
i,j=1

(3.3.1)
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for all c = (Cl, ... , en) E Rn and for all choices of finite subsets X = {Xl, ... , Xn} ~

S. A function P is called a strictly positive kernel or SPD kernel if the strict

inequality holds in (3.3.1) for all cERn with c =1= 0 and all choices of X. Then M

is called a positive definite matrix (PD matrix). A function f on Rn is said to be

positive definite if f{x - y), X, yE Rn, is a positive definite kernel. A function f on

Rn is said to be strictly positive definite if f(x - y), X, Y E ~, is a strictly positive

definite kernel.

Thus the assumption that the covariance function of a Gaussian field is a strictly

positive kernel is equivalent to the assumption that the field is generated by an

infinite factor structure. The main challenge is therefore to construct strictly positive

kernels that are consistent with the observed sample covariance and correlation

matrices.

If we assume that our random field X{t, T) is independent of time t, then a simple

example satisfying our modelling assumptions is the well-known Brownian motion,

i.e. the process defined by {Xn T ~ O}, with EXT = 0 and EXn X'T2 = t r. s. If

o < TI < T2 < ... < TN, the matrix R = [Tk "Tl] is positive definite. This process

can be used for modelling the changes of the yield curve. However, as one easily

observes, the shape of the covariance function for Brownian motion is rather limited.

3.3.2 Smoothness of the Field

To apply the Gaussian field model we need to decide on the type of covariance

function. In the case of Gaussian fields, properties of covariance functions relate to

the smoothness properties of the field. Thus the choice of the covariance function

c{s, tt, v) is essential in ensuring that the fitted model will be well behaved in any

desired sense. This section examines the conditions that will ensure that the yield

curve driven by the field is continuous and smooth.
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In general, financial economics has little to say on to the smoothness of yield curves.

However, one could think of the yields as being represented by integrals over in-

stantaneous forward rates. This will induce differentiability on the yield curve.

Unfortunately this issue cannot be resolved empirically, the reason being that dif-

ferentiability of the yield curve in x relates to smoothness of the yield curve between

two very close maturities x and y. Therefore in order to determine whether the yield

curve is differentiable we would need to observe yields that are contiguous. As there

are only finitely many traded fixed income instruments, such yields cannot be ob-

served. The decision to use fields that produce continuous or differentiable curves''

is thus fundamentally a matter of taste.

We will assume that the volatility structures are time-stationary and discuss how

to allow for time-dependence later.

Assumption 3.3.2, c(s, tl, t2) = J; g(tl - U, tz - u) for all tl, t2 ~ s ~ 0 with some

non-negative definite function g(u, v) satisfying the conditions of Lemma 3.3.3.

This assumption implies C(0,tl,t2) = 0 for all tl and t2, i.e. :Fo is a trivial a-fieldlO•

Next we show the motivation behind this assumption. Consider the covariance

between increments of the yields,

Cov[dY(s, td, dY(s, t2)] = lim Cov[Y(t, td - Y(s, td, Y(t, t2) - Y(s, t2)] ds
t-+8+ t - s

1· C(t,tl,t2)-C(S,tl,t2)d (t t )d= im s = 9 I - S, 2 - S S
t-u+ t - s

It follows from the above equation that our choice of covariance function guarantees

time-stationary covariance for increments of the yield curve. Note, however, that it

9A random field is sample-path continuous if P{w: IIX(tn,w) -X(tO ,w)lI-+ 0, as n -+ oo} = 1,
and sample path-differentiable if P{w : Xj(tO) exists} = 1, where Xj(t') denotes jth first-order
partial derivative. Almost-sure property in this case means that all of the paths except the ones on
the set of P-measure zero have the above sample behaviour.

lOWecould have assumed the covariance of the form c(s,ft,h) = f; g(tl-u,t2-U)du+h(fI,h),
with h(tl, h) ::F O. This would correspond to the assumption that :Fo is not a trivial e-field,
Kennedy (1997) examines such cases in detail.
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does not imply stationarity of increments, as this would require covariance of the

form g(t2 - td ds, i.e. a function of one argument only.

Lemma 3.3.3 provides a sufficient condition for the continuity of the yield curve.

Lemma 3.3.3. For COV[F(SI' ttl, F(S2' t2)] = C(Sll\s2' tl, t2) = J;11\82 g(tl - u, t2-

u)du, 0 :$; SI :$; tl < 00, 0 :$; S2 :$; t2 < 00, the Gaussian random field has continuous

sample functions, with probability one, when g( u, v) is continuous and bounded.

For the proof of Lemma 3.3.3 see Pang (1997). The forward rate surface is continuous

when covariance function of the yield increment g(u, v) is continuous and bounded.

The conditions of Proposition 3.3.3 are very natural, and they impose no significant

constraints on the type of covariance function we may want to use. Lemma 3.3.4

provides a sufficient condition for the smoothness of the yield curve.

Lemma 3.3.4. For COV[F(SI' td, F(S2' t2)] = C(Sll\s2' tb t2) = J;11\82 g(tl - u, t2-

u)du, 0 :$; SI :$; tl < 00, 0 :$; S2 :$; t2 < 00, the Gaussian random field is smooth,

with probability one, when 8iJ~~")is continuous and bounded.

Lemma 3.3.4 is proved in Appendix 3.5.

Lemmas 3.3.3 and 3.3.4 provide constraints on the function g( u, v). Later in this

chapter we will discuss further constraints on the function g( u, v) which will ensure

its positive definiteness.

It is arguable that our time-stationary covariance function is unsatisfactory because

empirical data suggests that volatilities do vary through time. We can address this

issue if the covariance function is assumed to be

\

where f(u) is a non-negative function. Then it follows that the covariance of incre-

ments of the forward rate is given by,

Cov[dF(s, td, dF(s, t2)] = f(S)g(tl - S, tz - s).
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The above covariance function allows for time-dependent volatilities, or heteroscedas-

ticity. The covariance surface, as a function of the times to maturities, maintains its

shape through time but its level is permitted to shift up and down to reflect changes

in volatility levels.

3.4 Conclusions

Random field models of the term structure are generalisations of the finite-factor

models which have dominated the financial economics literature. In a field model,

each point along the term structure is a distinct random variable with its own

dynamics. Each point, however, is correlated with the other points in the term

structure. In contrast with finite-factor models, random field models are consistent

with both the current yield curve and term structure innovation.

What is more important, especially for interest rate risk management applications,

is that Gaussian field models have the potential to fit empirical covariance struc-

ture exactly. Furthermore, N-factor models predict that any long-term bond can

be perfectly hedged with an appropriate position in N short-term bonds, where a

random field model predicts that a better hedging instrument for a long-term bond

is another of similar maturity. This is common knowledge among participants in

fixed-income markets, but it is not supported by standard models.

Random field models have been applied to interest rate derivative pricing by Kennedy

(1994) who models the instantaneous forward rate as a Gaussian field. In slightly

a different setting, Goldstein (2000), and Santa-Clara and Sornette (2001), have in-

corporated random field shocks which are solutions of stochastic partial differential

equations into the dynamics of the instantaneous forward rates. However, to use

any of these approaches one need to find a flexible family of covariance functions,

and thus a flexible class of field models, that can fit the empirical covariance matrix

observed in the market. Functions from this class should be strictly positive defi-
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nite, thus providing a truly infinite-factor structure for the model. Neither Kennedy

(1994), nor Goldstein (2000), nor Santa-Clara and Sornette (2001) have addressed

this question. Without this class of covariance functions one cannot capitalise on the

main advantage of the field models, Le. capturing the inter-dynamics of movements

in the term structure.

We believe that true value of random field models lies in application to risk manage-

ment of interest rate sensitive portfolios. Field models are unique in capturing the

infinite-dimensional structure of the yield curve, and explaining the interdependence

of the rates. Thus field's ability to fit the observed covariance function exactly, or

at least very closely, becomes paramount in risk management applications.

Our main objective is to construct Gaussian field models that can fit the sample

covariance matrix observed in the market. In this chapter we described the modelling

framework. Unlike previous authors, we work with the yield curve as fundamental,

and model it as a Gaussian random field. This is not essential, as the results

will be equally applicable to other term structure parameterisations. We require

that the covariance function of the Gaussian field is strictly positive definite, so

that the evolution of the yield is driven by infinite-factor structure. Additionally,

we have discussed several desirable smoothness properties of the yield curve and

its evolution that one might desire. We have derived sufficient conditions on the

covariance function that are needed to produce such a degree of smoothness.

To achieve our objective we will develop three methodologies for constructing strictly

positive definite functions, and thus infinite-factor Gaussian fields. In particular, in

Chapter 4, we develop a method that produces a covariance function on a grid of

a desired size. The method consists of two steps. In the first step we use surface

interpolation and approximation techniques to construct a covariance or correlation

function approximation based on the sample covariance or correlation matrices. Of

course, the constructed surfaces will lack the SPD properties. In the second step
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we evaluate the surface on the chosen grid, which gives us a matrix. Then we

approximate this matrix by a closest PD covariance or correlation matrix.

In Chapter 5, we identify a large class of strictly positive definite functions. Un-

fortunately, SPD functions produce only stationary fields. In our case this means

that the covariance function of the increments of the yields will be a function of

differences of maturities, Le. a function of g(x) = g(ITl - T21). Unfortunately, such

a model is misspecified: the empirical covariance matrices strongly indicate that

the covariance function is a function of Tl and T2 separately. We adjust for non-

stationarity by deforming time to maturity and obtain an SPD kernel of the form

g(x) = g(lf(Td - f(T2)1), where 9 is an SPD function. This idea resembles the

change of time technique in Diffusion Theory.

The class of models developed in Chapter 5 might prove to be too restrictive. Thus

In Chapter 6, we approach our problem from a different angle. The idea is based on

superposition: we model the covariance function as a sum of SPD functions devel-

oped in Chapter 5 and a PD kernel that corrects the function for non-stationarity

and enables an exact fit to the sample covariance matrix. The correction term is

obtained from Principal Component Analysis of the error matrix, which in turn is

obtained from the fit of the SPD functions to the covariance matrix. The sum of

SPD and PD kernels is again SPD, thus this construction satisfies the modelling as-

sumptions. We test all three construction on the sample covariance and correlation
\

matrices obtained from US and Japanese bond market data.

3.5 Appendix

Proof. (Lemma 3.3.3)

We use Lemma (3.3.3) together with mean-square differentiability to obtain sample

path differentiability of the Gaussian field Fs,t with respect to maturity t. From

Theorem 2.2.2, Adler (1981), it follows that if the derivative 82c(SlAs2' t}, t2)/8t18t2
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exists and is finite, then the mean-square partial derivative of Fs,t with respect to

maturity time, d~~!t, exists. We only need to show that this derived field is sample

path continuous. Standard calculations yield,

Cov [dFs"t" dFs2.t2] = a2C(81" 82, tl, t2) = t1AS2 a2g(tl - U, t2 - u) du
dtl dt2 atlat2 10 atlat2

The functional form of the covariance function of the derived field d~;!t is the same as

the covariance function of the original field. Thus, Lemma 3.3.3 guarantees sample

path continuity of the derived field d~;!t. o
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Chapter 4

SPD Covariance and

Correlation Functions via SPD

Approximations

4.1 Introduction

In Chapter 3 we introduced the Gaussian random field framework for modelling the

term structure of interest rates. As we observed, the only missing information in

specifying a Gaussian field model is a covariance function. Furthermore, we argued

that the term structures are generated by infinite-factor driving processes. To cap-

ture this property we need to model the term structure as an infinite-factor random

field. In the case of a Gaussian random field, this requirement is equivalent to the

strictly positive definite (SPD) property of the covariance or correlation function of

the random field.

This chapter is the first of three in which we develop techniques for constructing func-

tions with this property. In this chapter we provide two alternative non-parametric

methodologies. The first is designed to estimate the SPD covariance functions, the
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second for the SPD correlation functions. In both case we assume that the instan-

taneous functions depend on the time to maturities. The empirical sample matrix!

can be interpreted as an estimator of the continuous function sampled on a finite

grid. The grid represents the maturities of the sampled interest rates. Our goal is to

find estimates of that function on a grid that is finer than the observed maturities

and is compatible with the requirement that the function be SPD. Moreover the

estimate must be consistent with the observed sample matrix. We do not construct

continuous SPD functions, but take the view that an estimate of that function on

a finite grid is sufficient for all practical purposes. We are able to provide positive

definite estimations of the covariance and correlation functions for any number of

maturities, consistent with the observed sample covariance and correlation matrices

and possible smoothness requirements of the yield curve.

The first methodology, in which we derive an estimate of the instantaneous covari-

ance function, consists of two steps. In the first step we approximate the covariance

function on the unobserved grid points, i.e. we exploit the smoothness property

of the covariance function. We employ surface interpolation procedures compatible

with the smoothness requirements of the Gaussian field to make the first order ap-

proximation to the unobserved covariance function. In the second step, we evaluate

this approximating function on a grid represented by the required set of maturities.

This generates a matrix, which among other entries includes the observed covari-

ance values. However, this matrix will not be positive definite in general, though we

might expect that the true values of the covariance function for these maturities are

not too far from this estimate matrix. Next, we approximate this estimate matrix

with the closest positive definite matrix in some norm. We use the Matrix Nearness

approach to solve this problem. Thus, we obtain a strictly positive definite approx-

imant, and we choose this approximant as the estimate of the covariance function

lWhen we speak about empirical sample matrices, we mean empirical sample covariance or
correlation matrices.
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on the chosen grid. We provide several numerical studies of the methodology based

on US interest rate data and evaluate its performance.

The second methodology, in which we derive an estimate of the instantaneous cor-

relation, again consists of two steps. The first step is identical to the first step of

the previous methodology, except that we add an additional interpolation technique

that takes into account the unit diagonal property of a correlation function. The

second step, however, is more involved: the approximation technique used in the

previous methodology is not applicable in this case, as the approximating positive

definite matrix does not necessarily have unit diagonal. To find a solution in the

case of the correlation matrix, we specify a Hilbert space setting for the problem.

We then apply a modified Alternating Projection Method to find an approximating

positive definite correlation matrix in the intersection of two convex sets: symmet-

ric matrices with unit diagonal and positive definite matrices''. Thus, we obtain a

positive definite approximant with a unit diagonal. We choose this approximant as

the estimates of the correlation functions on the chosen grid. Again, we test our

methodology numerically on the US interest rate data.

As our procedure for estimating the covariance and correlation functions is numer-

ical in nature, we need to investigate consistency questions. The first question is

consistency with the observed data: does the Sf'D approximant coincide with or

approximate sufficiently closely the observed sample covariance or correlation ma-

trix? We measure the distance between the matrices in terms of Frobenius norm.

I.e. sum of squared distance of corresponding matrix entries. This means that we

approximate the individual variances and covariances, and consequently, the aggre-

gated exposure of the portfolio. The Frobenius norm is also a common choice in

statistical applications.

The second question is consistency for a different choice of grid. I.e. if we choose two

2Here the problem is that the set of positive eigenvalues is not closed, so we will restrict the set
to the positive definite matrices with eigenvalues larger than some fixed small value.
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grids, that have some maturities in common, do the SPD approximants coincide,

or are they at least reasonably close to each other for the common maturities? We

address these questions in the numerical study of the methodologies.

The organisation of this chapter is as follows. In Section 4.2 we discuss the data

set used in the numerical and empirical analysis. In Section 4.3 we develop the first

methodology for the estimation of the covariance function. The second methodology

for the estimation of the correlation function is developed in Section 4.4. Section 4.5

offers some concluding remarks and discussions.

4.2 Data

For this study we use the yields coming from the Treasury STRlPS (Separate Trad-

ing of Registered Interest and Principal Securities) program, which have been traded

since 1986. These instruments were created to meet the demand for zero coupon

obligations. They are not special issues: the Treasury merely declares that specific

notes and bonds (and not others) are eligible for the STRIPS program, and the strip-

ping of these issues is done by government bond dealers who give a special security

identification number for these issues. The data used for this study is obtained from

coupon STRIPS.

In Table 4.7, we provide the descriptive statistics of the whole sample, daily data

on 13 maturities,in the period from 01/07/91 to 23/02/01, for the yield differences.

Observe that the distribution of the yield differences for each maturity is centred at

zero, and it has a very small standard deviation. However, they are not normal, since

they are skewed with very fat fails. Skewness is negative for the first 11 maturities

and it generally decreases for higher maturities. The yield differences show a high

degree of kurtosis that increases dramatically for long maturities.

We plotted in Figure 4.3 the sample covariance and correlation matrices for the

first half of the data sample. The plot of the sample correlation shows an expected
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decreasing behaviour: the further distance between any two maturities the lower

the correlation. Around the centre correlation decreases quickly showing a convex

pattern. The shape of the correlation becomes concave for maturities away from the

centre.

The actual values of sample covariance and correlation are in the Tables 4.8 and 4.9.

Observe the high correlation between maturities. The figures fluctuate between

0.486 and 0.953. Also observe that the drop in correlation closer to the diagonal is

more significant than those correlations further away from the diagonal.

We admit that the data used in this study is probably of not very good quality. We

point out that our objective is not to conduct an empirical study but merely to test

the flexibility of the proposed methodology. Thus, we believe the quality of the data

is sufficient for our purpose.

4.3 SPD Approximation of the Covariance Function

As discussed in the introduction, in this section we develop the non-parametric

methodology for the estimation of the covariance function. This is done in two steps.

In the first step we interpolate sample covariance matrix to obtain approximation

of the the covariance function on the unobserved grid points. In the second step,

we evaluate this approximating function on a grid represented by the required set

of maturities. This generates a matrix, which we approximate with the closest

positive definite matrix in some norm. We use Matrix Nearness approach to solve

this problem. Thus, we obtain a strictly positive definite approximant, and we

choose this approximant as the estimate of the covariance function on the chosen

grid.

We start this section with the second step. I.e. we develop a strictly positive definite

approximation for any given matrix. Then we discuss several surface interpolation
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and approximation procedures used in the first step of the methodology. Simulta-

neously with the discussion we conduct several case studies of the methodology on

the US data and assess its performance.

4.3.1 Matrix Nearness Solution

In this section we present a solution to the following problem. For a given matrix,

we are interested in finding the closest positive definite matrix. One possible way

to solve this problem is to use a Matrix Nearness approach.

In general, a matrix nearness problem consists of finding, for an arbitrary matrix A,

the nearest member of some given class of matrices. The distance between matrix A

and the approximant is measured in a matrix norm. A survey of nearness problems

can be found in Higham (1989). One considers a distance function

o(A) = min {IIEII : A + E E S has property P} A E S, (4.3.1)

where S stands for cmxn or JRfflxn. The property P has to define a subspace or

compact subset of S, otherwise the function (4.3.1) is not well-defined. The problem

consists then of finding a formula for o(A), or at least some characterisation, and

determining X = A+Emin, where Emin is a matrix for which the minimum in (4.3.1)

is attained. The uniqueness of X is of interest as well. In the case that the property P

stands for positive semi-definiteness, we call any X satisfying IIA - XII = o(A)

positive-approximant of A. Even though the first two question can be answered

positively, in practise one will be interested in efficient algorithms for computing o(A)

andX.

Frobenius norm and 2-norm3 yield usually most tractable results for nearness prob-

3For matrices of fixed dimension one can introduce norms IIAII,with A E cmxn with the usual
norm axioms, see for example Stoer and Bulirsch (1980). Some of examples are IIAII = maxi E~lajk I

( )
1/2

row-sum norm, IIAIIF= EiJ laijl2 = trace(A· A)1/2 Frobenius or Schur norm, and IIAII2 =
p(A· A)1/2 2-norm, where p stands for spectral radius: p(A) = max{I>'1 : det(A - >.1) = OJ. The
last two norms are unitary invariant, that is, IIUAVII = IIAII for any unitary U and V.
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lem. The Frobenius norm is more natural in our case as it measures the Euclidean

distance between a matrix A and its approximant. It can be viewed as a least-square

approximant, which is common in statistical applications.

Next we state Higham's (1988) result that deals with positive definite approxi-

mations. Furthermore, we provide a generalisation of this result for the case of

strictly positive definite approximants. The following theorem has been proved in

Higham (1988):

Theorem 4.3.1 (Higham 1988). Let A E Rnxn and let AH = UH be a polar

decomposition", Then

XF = (AH +H)/2 (4.3.2)

is the unique positive approximant of A in the F'robenius norm, and

8F(A)2 = ~ Ai(AH)2 + IIAKII}
'x,(AH)<O

The proof of the Theorem 4.3.1 is simple. Let X be positive semi-definite. From

the decomposition

follows that one needs to approximate only the hermitian part of A. From the

unitary invariance ofthe Frobenius norm and spectral decomposition of AH = IIAIIT

follows

IIAH - XII} = IIA- YII} = ~ Yfj + ~(Ai - Yii)2 ~ ~ A~
i~j ~<O

(4.3.3)

where Y = IITXII. The unique minimum and the equality in the last inequality is

4Polar decomposition of a matrix A E C"xn is given by UH where U is a unitary matrix (U'U =
I), and H is a positive semidefinite matrix of the same rank as that of A. Any matrix A E C"xn
may be expressed in the form A = HA +A') +!(A - A') == AH +AK. AH is called the hermitian
part of A (A = A') and AK the skew-hermitian part.
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attained for Y = diag(di), with

(4.3.4)

Thus, Xp = ITdiag(di)ITT. The representation (4.3.2) follows, since H = ITdiag(IAiI)ITT.

For the class of normal matrices'', Halmos (1972) showed that Frobenius and 2-norm

positive approximants are the same.

In our problem, we are interested in approximating a given matrix A with positive

definite matrices and not merely with positive semi-definite. Unfortunately, the

set of positive-definite matrices is not closed so the distance function (4.3.1) is

not well defined. To circumvent this problem, we constrain the set of positive

definite matrices by bounding the smallest eigenvalue to be a positive number. In

this case, simple modification of the above Theorem 4.3.1 would apply. We term

this approximant as a strictly positive approximant with the bound b and denote it

with x». Next Corollary 4.3.2 states this modification:

Corollary 4.3.2. The unique strictly positive approximant for a matrix A E jRnxn

with the positive lower bound b in Frobenius norm is given by

and

d~(A)2 = L (Ai(AH) - b)2 + IIAKII~.
).i(AH)<b

The diagonal matrix diag(d~) is defined similarly to (4.3.4) with

5A matrix is called normal when AAT = AT A. For example, symmetric matrices, in particular
covariance and correlation matrices, are normal.
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The result follows then from (4.3.3). For the case b = 0, we obtain the same result

as in the Theorem 4.3.2. The question arising in this context is the importance of

the bound b. In financial terms, this means, what is the variance of the smallest

disturbance factor on the term structure can have. This is an empirical issue, so we

do not follow this matter any further at this stage.

Computation of the strictly positive approximant X} is straightforward. We only

need to compute the spectral decomposition of AH• To find the distance between

the original matrix and the strictly positive approximant O-}(A), we only need to

sum up all (>\i(AH) - b)2 over all i, with Ai(AH) < b, and find IIAKII~. The latter

part of the calculation can be omitted if A is symmetric.

A review of the methods for finding the spectral decomposition, i.e. eigenvalues and

eigenvectors for matrices, can be found, for example, in Stoer and Bulirsch (1980).

The best method, currently known, for the eigenvalue problems is the QR algorithm

of Francis (1961/62). This is an iterative method with the number of operations

proportional to O(n3) for a general matrix A, but only to O(n) for a symmetric

tridiagonal matrix, per iteration step. Thus for QR algorithm to be efficient, one

has to apply first the Housholder algorithm which reduces a given matrix to a

tridiagonal one. This method requires for a symmetric matrix O(~n3) operations.

Disregarding exceptions, QR-algorithm has a cubic convergence rate.

4.3.2 Surface Approximation, Numerical Analysis, and Empirical

Results

In this section we discuss several surface interpolation and approximation tech-

niques, and present an analysis of our methodology applied to covariance function

estimation.
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Interpolating Two-Dimensional Cubic Splines for Constructing Smooth

Surfaces

This algorithm works on a specified rectangular grid G = [a, b] x [c,dJ, in the x,

y-plane

G = {(Xi, Yi) : a = Xo < ... < Xn = b, c = Yo < ... < Yn = d}

with heights Uij := U(Xi' Yj), i = 0, ... , rn, j = 0, ... ,n. We want to find an

interpolating smooth surface for the ordinates Uij, which is described by a two-

dimensional spline function S = S(x, y) for (x, y) in the rectangle R = {(x, y) : a ~

x ~ b,c ~ Y ~ d}. The bi-cubic spline function S = S(x, y) is defined for (x, y) E R

by the following properties:

1. S fulfils the interpolating conditions: S(Xi' Yj) - Uij, i - 0, ... , rn, j -

O, ••. ,n.

2. S is continuously differentiable on Rand 82/ 8x8y is continuous on R.

3. In each sub-rectangle ~j,

~j:= {(x,y): Xi ~ X ~ XHbYi ~ Y ~ Yi+1},

S is defined as a bi-cubic polynomial iij = iij(X, y) .

4. S fulfils certain boundary conditions.

Due to property (3), the bi-cubic spline function S has the form

3 3

S(x, y) == iij(X, y) = L: L: aijks(x - Xi)k(y - Yj)8
k=Os=O

for (x, y) E ~j, i = 0, ... , rn - 1, j = 0, ... ,n - 1. This problem can always be

solved, as shown by Boor (1962).
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Results

To test our methodology we devised the following experiment. Starting from the

sample covariance matrix for 13 maturities, we estimate covariance for intermediate

maturities, for which yields are not observed. We estimate the covariances using

interpolating two-dimensional cubic splines. The idea is to mimic a portfolio with

the appropriate asset and liability cash flows. Thus, we considered three matrices

corresponding to yearly, monthly, and weekly cash flows. Correspondingly, the

dimensions of the interpolated matrices are 30 for yearly, 349 for monthly, and 1509

for weekly cash flows. A portfolio consisting of 1500 asset and liability positions

is quite appropriate for a middle size bank or a hedge fund. Table 4.1 summarises

the results. The first row shows the Frobenius distance between the interpolated

Table 4.1: Comparison between strictly positive definite approximant with the
b d 1 15 d i tit doun e- an m erpo a e covariance.
Grid Yearly Monthly Weekly
dF(A - XF) 3.66e-12 8.77e-ll 4.92e-IO
Max. Diff. 7.95e-13 2.25e-ll 9.10e-ll
Max. % Diff. 0.00034 0.0092 0.037

covariance matrix and the closest positive definite approximant with a bound Ie-

15, for three portfolios. The approximation worsens, when we go from yearly to

monthly and weekly estimations. However, it is still very good. The second and

third lines, shows the maximum absolute and maximum percentage distance between

the matrices. It is quite remarkable, that maximum percentage distance between the

interpolated matrix of dimension 1509 and the closest positive definite approximant

is as small as 0.037%. Additionally, we can look at the behaviour of the eigenvalues

of the interpolated and the positive-definite approximant. Figure 4.6 displays the

sorted eigenvalues in the natural log-scale for three portfolios. The natural logarithm

is taken on the absolute value of the sorted eigenvalues. The values on the graph

first decline, then when they become negative because of the absolute value they

rise again. Thus we can see that roughly half of the eigenvalues of the interpolated
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matrices are negative. However, the negative eigenvalues are of order less then le-

10. This explains why the positive definite approximant approximate the matrices

with such a good fit.

Unfortunately, the two-dimensional cubic spline share the same problems with their

one-dimensional counterpart and with general polynomial interpolations. The sam-

ple path behaviour of the surface though smooth is very irregular. As can be seen

from the Figure 4.4, the interpolated covariance surface has many bumps that are

not in the original data. This effect can be seen in the plot of the variance function

resulting from the two-dimensional cubic interpolation in Figure 4.9. In this plot we

displayed the original data together with variances resulting from the three positive-

definite approximants (yearly, monthly, weekly). As one can see the approximants

are consistent. The common points from three different approximants are very close

to each other and the data. However, the variance function is very "wiggly" and is

not believable from a practical point of view. In the fix income markets, one would

expect a monotonic function, with a bump around two years to maturity. This ex-

ample shows, that the choice of the interpolating surface is very important. In the

next section we describe an alternative interpolation technique and compare results

with the two-dimensional cubic interpolation.

Two-Dimensional Interpolating Surface Splines

As in the Section 4.3.2, we want to compute a smooth two-dimensional interpolating

surface for a set of prescribed points (Xi, Yi, Ii) E ]R3, i = 1, ... ,N X, with Ii =
f(xi' Yi). However instead of using one-dimensional splines, the surface shall be

interpreted in a physical way as described by the bending of a thin plate that is

deflected at several independent points vertically in such a way as to minimise the

bending energy. This approach generalises natural splines from one dimension to
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two dimensions. We want to find a function

n
<l>(X, y) =L Cj¢j(x, y)

j=1

so that the interpolating conditions

n

<l>(Xi, Yi) =LCj¢j(Xi, Yi) :!: Ii,
j=1

are fulfilled, for i = 1, ... ,N X, as well as certain minimal properties. We define the

functions ¢j as follows:

1. ¢j+N X (X, y) = pf -1 (X, y), for j = 1, ... ,M M, monomials up to degree M -1,

2. ¢j(x,y) = E(x - Xj,y - Yj) for j = 1, ... ,NX with E(x,y) := (r2)M-1lnr2

for r2 = x2 + y2 (kernel function).

This conditions lead to a linear system with N X + M M rows and columns.

(4.3.5)

where G = (E(Xi - Xj,Yi - Yj)), for i,j = 1, ... ,NX, and P = (pf-1(Xi,Xj)),

i = 1, ... ,NX, j = 1, ... ,M M. Unfortunately, the linear systems that arise in this

context are generally ill conditioned'', If the diagonal elements of G are zero one

speaks of interpolating surface splines.

Results

Here, we make the same analysis as with the two-dimensional cubic splines. Ta-

ble 4.2 summarises the results. Compared with the previous section the fit between

the interpolated matrix and the positive-definite approximants is less good. We can

see in the third line of the table that maximum percentage distance reaches 1.6%

for the monthly cash flows matrix. This result can be confirmed from the plot of

6For more details see, for example, Engeln-Miillges and Uhlig (1996)

88



Table 4.2: Comparison between strictly positive definite approximant with the
bound b and interpolated covariance.
Grid Yearly Monthly Weekly
dF(A - XF) 1.55e-OS 1.74e-07 5.72e-S
Max. Diff. 4.16e-09 4.S5e-09 3.95e-9
Max. % Diff. 1.36 1.61 1.56

the absolute values of the sorted eigenvalues in Figure 4.7. The negative eigenval-

ues are of higher order then in the case of two-dimensional cubic splines. Another

interesting feature is that decay of positive eigenvalues is slower than in the first

cubic splines case. However the two-dimensional interpolating surface splines share

the same problems with the cubic splines: the interpolated surface is not monotonic

enough. This can be seen in Figure 4.4. The way forward is to use the regulari-

sation techniques to smooth out the "wiggly" surface. In this case one would not

have interpolating surface but will achieve a smoother surface. The argument for

interpolating surface is questionable, as we do not work with the true covariance

matrix but merely with its estimate.

Two-Dimensional Smoothing Surface Splines

Given the same set up as in the interpolation case one can relax the condition that

the surfaces passes through the observed points. So achieved degree of freedom can

be used to obtain more smooth surfaces. More precisely, we can define the penalised

residual sum of squares of a surface c:P by

S(c:P) = l)h - c:P(Xi' Yi))2 + pJ(c:P).
i

The parameter p is a smoothing parameter, and the function S(c:P) combines a term

quantifying the lack of fit of c:P to data with a roughness penalty term. The penalty

functional J(c:P) measures the overall roughness or "wiggliness" of c:P. A common

choice for J is

J(~)= f L,{(~x;)'+2(:~~)'(:;)'}dxdY
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For p = 0 we obtain interpolating surface, and for p -t 00 <I> becomes a plane. It can

be shown7 that to solve this smoothing problem one need to solve the same linear

system as in (4.3.5). The only difference is that matrix G needs to be replaced by

matrix G+ pl.

Results

To test the smoothing spline case we choose the smoothing parameter p equal to ten.

According to our experience this value is quite high and we cannot expect a good

fit to the sample covariance matrix. This rather extreme choice is made to test the

behaviour of the approximants. We performed the same analysis for the smoothing

splines as for the interpolating case. The summary of the results is in the Table 4.3.

It can be seen that the fit between the matrix obtained from the smoothing surface

Table 4.3: Comparison between strictly positive definite approximant with the
bound b and interpolated covariance.
Grid Yearly Monthly Weekly
dF(A - XF) 6.1ge-09 6.40e-08 2.7e-07
Max. Diff. 8A9e-IO 1.10e-09 1.2e-09
Max. % Diff. 0.38 0.58 0.6

and the positive definite approximant is very good. The percentage error of the

maximum distance is less than one. However, as can bee seen in Figure 4.5, the

smoothing surface, is much smoother then in the interpolating case. This difference

is even more pronounced if we compare variance of the data points with the variances

of the approximants in Figure 4.9. The variances of the approximants exhibit little

variation, however the fit to the data is rather poor. The truth lies somewhere in

between. One needs to make a choice between the degree of smoothness and the

goodness of fit to the data. The behaviour of eigenvalues can be seen in Figure 4.8.

Though the surface has quite different shape from the interpolating case, eigenvalues

are quite similar.

7See, for example, Green and Silverman (1994).
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4.4 SPD Approximation of the Correlation Matrix

In the previous Section 4.3 we approximated the covariance function on a designated

grid by a positive definite matrix. Often, researchers and practitioners prefer to work

with the correlation rather than covariance. The above approach would fail, if we

wanted to approximate correlation function on a grid. The reason is that the positive

definite approximant from above analysis is not guaranteed to have unit diagonal.

In this section we develop the second non-parametric methodology for the estima-

tion of the covariance function. This, again, is done in two steps. In the first step

we interpolate sample correlation matrix to obtain an approximation of the corre-

lation function on the unobserved grid points. We use the same techniques as for

the previous methodology, one exception being that we add an additional interpo-

lation technique, Shepard interpolation, that takes into account the unit diagonal

property of a correlation function. In the second step, we evaluate this approxi-

mating function on a grid represented by the required set of maturities. We then

apply a version of the Alternating Projection Method to find an approximating pos-

itive definite correlation matrix. As we deal with sets and not spaces, the original

Alternating Projection Method is not applicable in our case.

We start this section with the second step. I.e. we develop a strictly positive definite

approximation with a unit diagonal. Then we apply conduct several numerical stud-

ies on the US interest data using surface interpolation and approximation procedures

used in the first step of the methodology.

4.4.1 Method of Alternating Projection

Recently, Higham (2002) developed an iterative procedure for finding the nearest

correlation matrix. We modify his method and use this modification in the con-

struction of a strictly positive definite approximant with a unit diagonal.
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To simplify the reading of this section, we briefly sketch its content. We start with

the statement of the problem, then we restate it in a Hilbert space setting. Hilbert

space structure allows us to show the existence of the solution. Next, we state the

general result on the Alternating Projection Method. We then note that it is not

directly applicable in our case, so we introduce a modification of the result. We

finish the section with the the algorithm for finding the solution.

First, we state the problem. For a given correlation function on a grid, with the

matrix A E IRnxn we want to find the positive definite matrix X which solves

d(A} = min{IIA - XIIF : X is a ph, correlation matrix} (4.4.1)

where ph stands for the set of positive definite matrices with the smallest eigenvalue

greater than or equal to b E 114. We consider sets

p = {y = yT E IRnxn : pb},

U = [Y = yT E IRnxn : u« = l,i = 1 :n}.

The solution to problem (4.4.1) should be in the intersection of the sets P and U.

Next we restate the problem within Hilbert space setting. On the linear space IRnxn

we define an inner product function (-, .):

(A, B) = trace(AT B), for all A, BE IRnxn

The space (IRnxn, (-,.)) is complete, that is, every Cauchy sequence in IRnxn con-

verges with respect to the norm induced by the inner product IIAII := J (A, A),

A E IRnxn. In particular, this is the norm we are using in defining the minimum

norm optimisation problem {4.4.1}. In following, this additional geometrical struc-

ture will be exploited to find the solution to (4.4.1). We observe, that both sets, P

and U, are convex and closed. It follows then, Luenberger (1968), Proposition 2.4.1,

that the intersection, s tvt: is a closed convex set, as well. From Hilbert space

theory we have following standard result about projection on closed convex sets,

Luenberger {1968}, Theorem 3.12.1,
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Theorem 4.4.1. Let x be a vector in a Hilbert space H and let K be a closed convex

subset of H. Then there is a unique vector ko E K such that

Ilx - ko II :5 IIx - kll

for all k E K. Furthermore, a necessary and sufficient condition that ko be unique

minimising vector is that

(x - kolk - ko) :5 0 (4.4.2)

for all k E K.

Though Theorem 4.4.1 guarantees existence of a unique solution in the intersection

of P and U, it does not give any means for finding it and the condition (4.4.2) on

the angle of the solution is the only characterisation one has.

Next step in finding the solution is a result originally proved by von Neumann (1950),

Theorem 13.7, for k = 2 and, independently, by Wiener (1955). The case k ~ 2 has

been generalised by Halperin (1962). It is generally known as the Method of Alter-

nating Projection, which is an iterative scheme for finding the best approximation

to any given point in a Hilbert space from the intersection of a finite collection of

closed subspaces.

Let Ml, M2, ••• , Mk be k ~ 2 closed subspaces in the Hilbert space X. The mapping

in Theorem 4.4.1, which associates with every element x of the Hilbert space X the

closest element in a convex subset M is termed orthogonal projection ifM is a closed

subspace. We denote this projection by PM, i.e. PM(x) is the best approximation

of nearest point in M to any x EX. We can state now the

Theorem 4.4.2 (von Neumann-Halperin). For each x EX.
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That is, Pn~Mi{x} is the limit of the sequence {xn} defined inductively by Xl = X

and

which is obtained by determining best approximation onto the individual sub-

spaces M; in a cyclic manner. The expression {PM/cPMk-l •.. PMl}n stands for

the n-th cycle of the projection PM/cPM/C-l ••. PMl' Unfortunately, in our problem,

the intersection set P nU is not a subspace, thus Ppnu is not a projection.

Example 4.4.3. We borrow the following example from Shih-Ping Han {1988}.

Consider space R2 equipped with the Euclidean inner product. Let M; := {{(1, (2) '(2 ~

O}and M2 := {((l!(2}'(1 + (2 ~ O}. The projection method of Theorem 4.4.2 does

not work for any vector X outside Ml and M2• This is demonstrated in Figure 4.1.

The first drawing represents application of of the standard projection method on the

vector x. The vector X12= PM2PMl is clearly suboptimal. The iterative projection

terminates at X12 since the vector is in the intersection of Ml and M2•

To overcome this constraint, Dykstra {1983}, developed, within a least-square esti-

mation setting, an algorithm for projecting an element in a finite-dimensional inner-

product space onto a closed convex cone M, when K can be written as Ml n···nMr

is also a closed convex cone. This result has been generalised in Boyle and Dyk-

stra {1985}. In particular, it is shown that closed convex cones can be replaced by

arbitrary closed convex sets OJ and the finite-dimensional inner-product space by a

general Hilbert space.

The idea of Dykstra {1983} was to introduce a correction procedure which will

prevent the pathological cases such as in the above example. Let MI, ... , Mk be

closed convex subsets of a Hilbert space H. Given a vector X E H one applies the
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first cycle of the standard projection method, obtaining so the sequence:

Xu = PMl (x), 111= Xll - X,

Xlk = PMl (Xl(k-l»), hk = Xlk - Xl(k-l)'

In the second cycle, the operator PMl is applied on Xlk - 111, instead of on Xu. The

increment III can be interpreted as the normal to the orthogonal projection Xll'

Repeating this procedure with following PMi one obtains

X21 = PMl (Xlk - 111), 121= X21 - (xu - 111),

X2k = PMl (Xl(k-l) - hk), 12k = x2k - X2(k-l)'

Continuing this routine of removing the increment in the previous cycle associated

with Mi, before projecting onto Mi, generates the infinite arrays {Xni} and {lni},

where n ~ 1 and 1 :5 i :5 r. The sequence {Xni} satisfies following

Theorem 4.4.4 (Boyle and Dykstra (1985), Theorem 2). For any 1 :5 i :5 r

the sequence {Xni} converges strongly to z", i.e., IIXni - x*lI-+ O.

The second drawing in Figure 4.1 represents the effect of correction by normal 111.

The vector X12 is effectively taken out of the intersection Ml nM2 and the iterative

procedure will proceed with the limit as the projection of X onto Ml n M2•

Thus, to find the closest strictly positive definite correlation matrix for a given

matrix A, we can apply the following algorithm,

Algorithm 4.4.5. D.So= 0, Yo= A

for k = 1,2, ...

Rk = Yk-l - D.Sk-b where D.Sk-l is Dykstra's correction.

Xk = PP(Rk)
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end

Projections Pp and Pu

To apply above algorithm to the problem (4.4.1) we only need to find the projec-

tions Pp and Pu on sets P and U. The projection of a matrix A E ][ftxn on the

closed set of all positive definite matrices with the smallest eigenvalue bounded by

a positive constant b has been found in Section 4.3. In particular, for a symmetric

matrix A = IIdiag(Ai)IIT, we have the projection Pp(A) = IIdiag(max(Ai, b))IIT.

It is simple to show that the projection Pu(A) is of the form,

Pu(A) = {aii i =J t.
1, i=i-

I.e., we simply need to set the diagonal entries of A to 1.

Remark 4.4.6. In a recent working paper Zhang and Wu (2003) developed a pro-

cedure for a low-rank approximation of a correlation matrix using Lagrange mul-

tipliers. Wu (2003) applied this approximation withing pricing framework in the

context of calibration of LIBOR market models.

Recently, the author of this thesis, in Weigel (2003) applied the above developed

procedure to the calibration of LIBOR market models to historic correlations. The

preliminary results suggest that this method presents a more simple and easier to

implements solution than that of Zhang and Wu (2003).

Additionally, Brace and Womersley (2000), performed an implicit calibration to the

implied correlation matrix, within swaption pricing framework, using semidefinite
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programming. However, the relations to the above mentioned procedure is rather

involved.

4.4.2 Numerical Analysis and Empirical Results

Interpolating Two-Dimensional Cubic Splines for Constructing Smooth

Surfaces

Here we employ the same interpolating methodology as in the case Section 4.3.2.

The summary results can be seen in the Table 4.4. We considered only yearly and

Table 4.4: Comparison between strictly positive definite approximant with a bound
and interpolated correlation function, using two-dimensional cubic splines.
Grid Yearly Monthly
dF(A - XF) 0.43 4.27
Max. Diff. 0.17 0.16
Max. % Diff. 14.20 16.52
Data % Diff. 1.88 1.96
Bound 1e-5 1e-2
Tolerance 1e-6 1e-3
Number of Iter. 42 55

monthly maturity spans, as the numerical computations were quite expensive. Line 4

provides maximum percentage difference between the unit diagonal SPD approxi-

mant and the data. For both yearly and monthly holding it is almost two percent

and is substantially larger then in the covariance approximation case. Moreover,

the line 3 describes the maximum percentage difference between the interpolating

surface and the approximant. This error is as large as 16%. This indicates, that

unit diagonal approximants are not as flexible as the simple SPD approximants.

The plots of ordered eigenvalues in the log scale can be seen in the Figure 4.10.

Tables 4.10 and 4.11 present the unit diagonal SPD approximant for yearly and

monthly maturities together with the percentage error fit relative to the sample

correlation matrix.
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Two-Dimensional Interpolating Surface Splines

Here, we consider the interpolating surface splines. The percentage distances be-

Table 4.5: Comparison between strictly positive definite approximant with a bound
and interpolated correlation function, using two-dimensional interpolating surface
splines.
Grid Yearly Monthly
dF(A - XF} 0.17 1.05
Max. Diff. 0.076 0.145
Max. % Diff. 8.25791 16.98
Data % Diff. 2.25 2.22
Bound le-5 le-2
Tolerance le-6 le-4
Number of Iter. 25 9

tween the data and the unit diagonal SPD approximants are even larger then in the

case of two-dimensional cubic splines.

The plots of ordered eigenvalues in the log scale can be seen in the Figure 4.11.

Tables 4.12 and 4.13 present the unit diagonal SPD approximant for yearly and

monthly maturities together with the percentage error fit relative to the sample

correlation matrix.

Shepard Interpolation

The disadvantage of the previous two interpolation techniques when evaluated on

the diagonal they do not have unit values. I.e. they do not have the properties of the

correlation functions. One could impose this by adding unit diagonal as additional

interpolation points. This, however, will produce a grid that is not rectangular.

Next we analyse a technique that can deal with this type of problems.

If the nodes (xi, Yi), j = 0, ••• , N, with (xi, Yi) E B c 1R2, do not form a rectangular

grid but are arranged in a completely arbitrary and unordered way, common method

of choice is method Shepard (1968). This method has proved to be well suited
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for the graphic representation of surfaces. Its interpolating function q> is uniquely

determined independently from the ordering of the nodes {Xj, Yj}. The function

! :z = !(x,y) for (x,y) E B, where B is an arbitrary region of the X,Y plane, is

interpolated for the given nodes (Xj,Yj) by the function

N

</J{x,y) = L,Wj{x,Y)!j.
j=O

(4.4.3)

Here </J{Xj,Yj) = !{Xj,Yj} for j = O, ... ,N, where the Ii are the given functional

values !(Xj, Yj) at the nodes (Xj, Yj), j = 0, ... ,N, and Wj = Wj(x, y) is a weight

function. Setting

Tj(X,y) = J(x - Xj)2 + (y - yl) j = 0, ... ,N,

we can define Wj as

T-:IL
Wj(x, y) = EN' -IL' ° < J1. < 00.

i=O Ti

With (4.4.3) the Shepard function </J has the representation

"N -ILl,I..(x ) = L.,j=o Tj j
'I' ,Y "N-IL

L.,i=O Ti

(4.4.4)

The exponent J1. in (4.4.4) can be chosen arbitrarily, depending on how smooth one

wants the interpolating surface to be. If 0 < J1. $ 1, the function </J has peaks at the

nodes. If J1. > 1, the function is level at the nodes.

Results

The summary of result for Shepard interpolation can be seen in the Table 4.6. As

in two previous cases the fit is quite poor. Plot of eigenvalues in Figure 4.12 reveals

that negative eigenvalues of the matrix resulting from interpolation has very high

negative eigenvalues, this might explain the performance of the unit diagonal SPD

approximant. Tables 4.14 and 4.15 present the unit diagonal SPD approximant for

yearly and monthly maturities together with the percentage error fit relative to the

sample correlation matrix.
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Table 4.6: Comparison between strictly positive definite approximant with a bound
d . tit d I ti f ti Sh d I tit"an m erpo a e corre a Ion unc ion, usm_g_ epar n erpo a Ion.
Grid Yearly Monthly
dF(A - XF) 0.42 4.12
Max. Diff. 0.067 0.16
Max. % Diff. 6.73 19.28
Data % Diff. 1.66 1.86
Bound le-5 le-2
Tolerance le-6 le-3
Number of Iter. 65 20

4.5 Conclusions

,In this chapter we developed two alternative non-parametric methodologies for the

estimation of strictly positive definite covariance and correlation functions. Both

methodologies consist of two steps. In the first step we interpolate or approximate

the sample matrix to obtain the values of the covariance or correlation function

on the unobserved grid points. In the second step, we evaluate this approximating

function on a grid represented by the required set of maturities. This generates a

matrix. However, this matrix will not be positive definite in general. However, we

might expect that the true values of the SPD functions for these maturities are not

too far from this estimate matrix.

In the second step, we approximate the estimate matrix by its closest positive definite

matrix in some norm. This approximant is then chosen to be the estimate of the

SPD function on chosen grid. At this point the two methodologies differ. For the

SPD covariance function approximation we use the Matrix Nearness approach. This

yields the closest positive definite matrix in the Frobenius norm. This is sufficient,

as any positive definite matrix is covariance function. For the SPD correlation

function we apply a modification of the Alternating Projection Method to find an

approximating positive definite correlation matrix in the intersection of two convex

sets: symmetric matrices with unit diagonal and positive definite matrices.
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To test the methodologies, we conducted several numerical studies on US interest

data. Both methodologies work quite well. However, we feel that the methodology

for the estimation of an Sf'D covariance function is slightly superior to the method-

ology for the estimation of an Sf'D correlation function, the reason being that the

algorithm for approximation with positive definite matrices is simpler to implement

than that for with positive definite matrices with unit diagonal, i.e. correlation ma-

trices. Moreover, our numerical results suggest that the quality of fit is better when

we estimate an spn covariance function.

Although we achieved very good overall results, the methodologies we developed

have serious drawbacks. They depend crucially on the choice of the interpolating

procedure. In general, it is difficult to decide what method to choose. Additionally,

it must be noted that we do not know exactly the sample matrices even on a finite

grid. Instead, we deal with sample estimators. The interpolation procedures tend

to pick up all the noise in the estimate and produce "wiggly" surfaces which are

not justified economically. Smoothing instead of interpolating is a natural way

to proceed in this context. Thus we introduced a smoothing approach based on

two-dimensional smoothing splines. This allowed us to get rid of "wiggliness" in

the interpolating surface. However, the smoothing parameter becomes an issue in

this context. It can be chosen by the researcher or practitioner at their discretion.

Alternatively, one can apply a cross-validation methodology to estimate a smoothing

parameter.

Two types of consistency problems arise in this context. The first is to do with

consistency with the data. Once an interpolation procedure is chosen, it is neces-

sary that the approximants have similar covariances and correlations to the sample

covariance and correlation. We performed several experiments and found that the

differences in the case of covariance are negligible. However, correlation approxi-

mants in some cases have shown considerable errors. The second type of consistency

concerns different choices of maturities. Given two approximants, arising from two
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different choices of maturities, do covariances and correlations differ for common

maturities? Again, we found that the estimators are consistent in the case of co-

variances. Correlation approximants exhibited quite large errors.

The methods for estimating SPD functions developed in this section may seem to

be awkward. They do not produce an actual function, only its values on some

grid. In the next two chapters we will develop semi-parametric and fully parametric

approaches for estimation of SPD covariance and correlation functions. These ap-

proaches will yield proper functional forms of the SPD covariance and correlation

functions. The degrees of freedom arising in the present context will be reduced to

the estimation of a small number of parameters.

102



4.6 Appendices

4.6.1 Figures

Figure 4.1: Alternating Projection on closed subsets of]R2.
cK={AIA= a[l~l J. a>=O}

z

Figure 4.2: The positive semidefinite matrix cone K.
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Figure 4.3: Sample covariance matrix (above) and sample correlation matrix.
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Chapter 5

SPD Correlation Function with

Functional Deformation of

Maturity

5.1 Introduction

In this chapter we continue the study of strictly positive definite instantaneous co-

variance and correlation functions. In the Chapter 4 we developed two alternative

non-parametric methodologies for constructing Sf'D covariance and correlation func-

tions for Gaussian random fields. We now turn our attention to semi-parametric or

fully-parametric forms of these functions. In particular, we develop a general class

of Gaussian random field models that satisfies our modelling assumption. I.e. the

covariance and correlation functions of this class are strictly positive definite and fit

the observed sample covariance and correlation matrices.

We suggest a class of correlation functions of the form,

Corr(s, t) = C(g(8) - g(t)), (5.1.1)

where 9 IR -t IR some strictly increasing function and C is an Sf'D function.
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The map g acts as a deformation from the original "maturity" to an alternative

"deformation" space. This approach will yield a large, sufficiently flexible class of

non-stationary Gaussian fields with strictly positive definite covariance function. I.e.

this field will exhibit an infinite-dimensional factor structure.

To make this approach practical we identify a class of strictly positive definite func-

tions. Furthermore, we find sufficient conditions on the deformation functions g, so

that these deformations leave the SPD property of the function invariant. Further-

more, we implement our methodology and test it on Japanese Yen interest data, We

also provide a discussion of the advantages and disadvantages of this methodology.

Here is a summary of the chapter. In Section 5.2 we describe the modelling frame-

work and give some motivation for the class of models introduced. A large class of

SPD functions together with the maturity deformation functions are characterised

in Section S.3. We also provide several parametric examples of SPD functions and

discuss their properties. The data set used for the empirical analysis is discussed

in Section S.4. In the following three sections we develop procedures for implemen-

tation and parameter estimation of the SPD functions and deformation mappings.

In particular, in Section 5.5 we develop a two-step implementation procedure. In

the first step we estimate the deformation functions using the non-metric Shepard-

Kruskal MDS-Algorithm to find the deformation function, and in the second we use

a very general SPD function to fit the resulting correlation function to the correla-

tion sample matrix. In Section 5.6 we represent the deformation function as a linear

combination of some basis functions. This allows a simultaneous fit to the sample

correlation function using the coefficients of the basis functions and the parameters

of the SPD functions. In Section S.7 we develop an iterative two step procedure.

The first step is based on a modified downhill simplex which provides a very efficient

search tool for the deformation function, and the second step is based on minimi-

sation of the SPD function parameters. Additionally, we test all three approaches

on Japanese Yen interest rate data. In Section 5.8 we discuss alternative estimation
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techniques, such as maximum likelihood and Bayesian methods, that can be used

in our framework. We conclude and provide a discussion for further research in

Section 5.9.

5.2 Modelling Framework

We start this section by highlighting the difficulties in modelling functional forms of

instantaneous Sf'D covariance and correlation functions. We present several exam-

ples of Sf'D functions which we use as a motivation for our modelling framework.

We then present the modelling framework itself in terms of a generic Sf'D corre-

lation function. Finally, we discuss other approaches for constructing correlation

functions and matrices which have appeared in the research literature and can be

related to our framework.

It is well known from empirical observations of the historical sample and implied cor-

relation matrices that they exhibit quite complex shapes. For example, the changes

in yields are more highly correlated for long maturities than they are for short ma-

turities. The so called "decorrelation", i.e. the decline of the correlation off the

diagonal, is faster for maturities close to each other and slows down for maturities

farther apart, etc. These observation indicates that examples of field models, sug-

gested by Kennedy (1994), Goldstein (2000), and Santa-Clara and Sornette (2001),

which we reviewed in Chapter 3, are not flexible enough to take into account this

behaviour of the instantaneous correlation function.

Ideally, we would like to have an spn kernel with sufficient flexibility in parameters

so that it fits the sample correlation matrix and satisfies some smoothness require-

ments. Unfortunately, there is a limited number of known spn kernel. Moreover,

it is difficult, in general, to show whether a given function is spn or not. There

has been considerable interest throughout last century from both pure and applied

mathematicians in positive and strictly positive definite functions and kernels. An
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extensive treatment of these properties can be found in a seminal work by Kar-

lin (1968). The recent book by Sasvari (1994) contains a theoretical exposition of

positive definite functions. For a historical review of positive definite functions and

kernels see Stewart (1976). We provide a short discussion of the original study of

these properties in Appendix 5.10.3.

A simple example of an SPD function on (-00, (0) is

K(s, t) = exp(st). (5.2.1)

The matrix resulting from this function is a generalised Vandermonde matrix, the

determinant of which is always positive. Since any minor of a generalised Vander-

monde matrix is also a generalised Vandermonde matrix, the function K(s, t) is

SPD. Moreover, for cp(x) strictly increasing, the function

K(s, t) = exp(cp(s), cp(t))

is SPD as well. We will justify this observation later in the chapter. This example

provides us with a general strategy: find a suitable kernel and then deform the

coordinates using a strictly positive function. If we assume that function (5.2.1) is

a covariance function then the corresponding correlation function is of the form

1
Corr(s, t) = exp( -2(s - t)2).

This correlation function has been obtained from the covariance function by scaling

with variance functions. Thus we observe that an SPD function remains SPD after

scaling with a positive function. Note, the last correlation is a function of sand

t only via Is - tl. We will see later, that SPD functions with this property are

easier to find and to characterise than than those which depend on both arguments

separately.

Other examples of SPD functions are the covariance and correlation of standard

Brownian motion,

Cov(s, t) = min(s, t), C ( ) min(s, t)
orr s, t = .r::; ,

vst
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and of the Ornstein-Uhlenbeck process, with initial random variable having a normal

distribution with mean zero and variance 0'2/2a,

Cov(s, t) = (0'2/2a) exp( -It - sI), Corr(s, t) = exp( -It - sI).

Note again, in the last example the function correlation and covariance functions

depend on sand t only via It - si.

In the above examples we have noted the frequent appearance of SPD functions that

depend on their argument only through their difference. This is not accidental. The

situation with positive definite (PD) functions which depend on their arguments

through their difference is not as bad as with general PD kernels. This class of

functions can be characterised either in terms of Fourier transforms of finite Borel

measures, or using the theory of completely monotone functions. Furthermore, one

can derive sufficient condition to restrict this class further to include only SPD

functions. We will say more on this in the next section. We also have observed that

one can depart from the dependence of the arguments on their difference through

deformation of the coordinates via a strictly increasing transformation.

Drawing on these observations we postulate the following generic form for the in-

stantaneous SPD covariance function,

Cov(s, t) = O'(s)O'(t)C(g(s) - g(t)), (5.2.2)

where 0'2 is a strictly positive variance function and C an SPD function, with the

function 9 acting as a deformation mapping. We assume that we have methods for

constructing the variance function 0'2. This can be done by various means. E.g.,

one can use some parametric family of functions, or non-parametric techniques such

as splines', Thus we restrict our attention only to the instantaneous correlation

function. This is because it is well known in fixed income markets that the variance
IFor a summary of possible variance function construction techniques see, Corexample, James

and Webber (2000).
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depends on maturity. Consequently, by modelling the correlation function we reduce

the amount of non-stationarity we need to capture, and can concentrate on capturing

purely spatial dependence.

Remark 5.2.1. Rebonato (1999b), within the pricing framework of calibration of

market models, suggested a procedure for constructing a correlation matrix. A

particular case of his procedure, the two factor model/, can be seen as a degenerate

example of our approach. In particular, his two-factor correlation matrix is given

by

Pij = COS(Oi - OJ),

for some angles Oi, i = 1, ... ,n. The continuous time-equivalent of this matrix is a

correlation function,

p(t,s) = cos(f(t) - J(8)),

with the deformation function J (t) being a continuous time-equivalent of the discrete

mapping i --+ 0i'

Remark 5.2.2. Kurbanmuradov et al. (2000), again within the pricing framework

of calibration market models suggested" the following form for the implied correla-

tion matrix,
min(bi' bj)

Pi; = (b b)'max i, ;
(5.2.3)

with

bi = exp[,B(i - 1)°], {3 > 0,0 < a < 1. (5.2.4)

One can arrive at this function by considering the covariance function of the standard

Brownian sheet W,t,

2More details on this approach can be found in Chapter 6, Remark 6.2.1.
3See also Coffey and Schoen makers (1999) and Coffey and Schoenmakers (2000) for further

details.
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Ifwe restrict the field on the diagonal, i.e. for s = t in Wst, then the covariance and

correlation of lVtt become

Cov(Wsu Wtt) = min2(5, t), min(s, t)
Corr(Wss, Wtt) = () .max 5, t (5.2.5)

Furthermore, deforming the coordinates of the last correlation function by a strictly

monotone mapping f (.)leads to the function

K{t, s) = min(J(s), f(t)) ,
max(J(s), f(t))

which is the continuous time-equivalent of the function (5.2.3). The deformation

function f is just the continuous time-equivalent of the discrete time deforma-

tion (5.2.4). The function (5.2.5) can also be obtained by a square of the covariance

function of the standard Brownian motion,

K(t, s) = min(s, t).

The powers of the function can be seen as a special case of the iteration! of func-

tions over a sigma-finite measure. The iterated function is SPD, provided that the

starting function is. In the matrix formulation, function iteration corresponds to

the Hadamard product of two matrices. The SPD property of the iterated function

is then a simple consequence of the Schur'' Product Theorem.

In this section we have introduced a general framework for constructing SPD corre-

lation functions. In the next section we characterise a large class of SPD functions

which can be used in the construction of the generic SPD correlation function (5.2.2).

Furthermore, we provide sufficient conditions on the deformation mapping so that

our generic correlation function is well defined.

4For more details on iterated functions in particular, and composed functions in general, see
Karlin (1968), Chapter 3.

aSee, for example, Horn and Johnson (1985), Chapter 7.
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5.3 Deformation Mappings and Strictly Positive Defi-

nite Functions

In the previous section we suggested a generic correlation function of the form,

Corr(t,s) = C(g(t) - g(s)),

where C is an SPD function and 9 is a maturity deformation mapping. For this

approach to be useful in practice we need to find examples of such functions. Ad-

ditionally, we need to derive sufficient conditions on the deformation mapping so

that it does not destroy the SPD property of the initial function. In this section

we address both of this problems: we characterise a class of SPD functions that

depend on their arguments via their difference. We also discuss several examples of

SPD functions which have been used in spatial statistics to represent homogeneous

random fields. Finally, we justify the use of strictly increasing transformations in

our construction.

As we mentioned in the previous section, positive definite (PD) functions which

depend on their arguments through their difference are quite common. This class

of functions can be characterised in terms of finite Borel measures. Consider the

n-dimension Borel-measurable space (JR.n, 8n). We call every finite measure'' J1. on

B", a finite Borel measure, and denote the set of these measures by M~(Rn). The

Fourier transform7 of a measure I' E M~(Rn) is the complex function p. on Rn

defined by

Dochner (1932) and (1933) characterised all positive definite and continuous func-

tions in terms of the set M~ (Rn). His results states, that in order a function

6A measure IJ is called finite if its total mass, in our case IJ{lR") is finite.
TIn probability theory one is interested in Fourier transforms of distributions lPx of random

variables X with values in R". In particular, Px e M~{lRn) for b = 1, and Px is called the
characteristic function of X. It follows then that continuous positive definite functions are basically
characteristic functions.
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, : Rn -+ C be positive definite and continuous, it is necessary and sufficient that it

be the Fourier transform of a nonnegative finite-valued Borel measure on Rn.

For our construction (5.2.2) we need a subclass of the PD functions, namely the

SPD functions. Recently Chang (1996) and Cheney and Light (2000), pp. 87-92,

have strengthened the result of Bochner and derived sufficient conditions for the

functions on Rn to be strictly positive definite. For the case n = 1, their result

states for, a nonnegative Borel function on lR, such that 0 < fIR.' < 00, the j is

strictly positive definite.

Thus one can find strictly positive definite functions by using the above result

and a table of Fourier transforms. The pairs shown in Table 5.1, from Oberhet-

tinger (1973), give some examples''.

Table 5.1: Stricti ositive definite functions on lIt

'(x) = 1/2 Ixl:5 1 j = X-I sinx
o Ixl > 1

, = (1+ x2)-2/,rr

I= e-1xl/2
, = 7r-1/2e-x2

, = (1/27r)(1 +x-2)
, = sech(7rx)

j = e-1xl

j = (1 + x2)-1
j = e-x2/4

j = Ixl-l(l- e-1xl)

j = sech(y/2}

, = (2x}-1(x-1 - cschx) j = 10g(1+ e-1I"/lxl)

Another way to obtain SPD functions is to use the theory of complete monotone

functions. A function is said to be completely monotone on [O,oo}if three conditions

are satisfied:

1. , E C[O,oo},

8In that volume the Fourier transform is defined by j = J:O f(y)ei"~dy.
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2. I E Coo[O, 00),

3. (_I)k I(k) ~ 0 for t > 0 and k = 0, 1,2, ...

Such functions exist in great abundance. Here are some examples that can be quickly

verified directly from the definition:

1. I(t) = a, where a ~ 0,

2. I(t) = (t + alb, where a > 0 ~ b,

3. I(t) = e-at, where a ~ O.

The class of complete monotone functions can be characterised in terms of the

Laplace transforms. I.e. a functions is completely monotone if and only if it is

the Laplace transform of a nonnegative bounded Borel measure'', This result can be

formulated in terms of the Riemann-Stieltjes integral: A function I :[0,00) -t [0,00)

is completely monotone if and only if there is a nondecreasing bounded function 'Y

such that I(t) = 1000e-std'Y(s),

The complete monotone functions in turn can be used to find the strictly positive

definite functions. This result is due to Schoenberg (1938). It states that if I is

completely monotone but not constant on [0,00), then the function x ....-t J(lIxIl2) is

strictly positive definite function.

Next, we discuss several examples of SPD functions. This examples come from the

spatial statistics literature. They are usually used to model the correlation functions

of isotropic and homogeneous processes'",

Exponential:

9This is the Bernstein and Widder theorem.
10A comprehensive review of this type of models can be found, for example, in Cressie (1993).
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Figure 5.10.4 (a) plots the exponential correlation function for several parameters a.

For lower values of the parameter a the correlation exhibit a fatter tail, but it

maintains a convex shape.

Exponential-Power:

C(h) = exp( -allhllb), h E Rn,

where 0 < b ~ 2 and a ~ O. This class of correlation functions generalises the expo-

nential form. Figure 5.10.4 (b) plots the Exponential-Power correlation function for

fixed a and several parameters b. For smaller values of the exponent the correlation

function exhibits a larger tail and is increasingly convex at the origin. However, for

higher values of the exponent, the tail tends to be smaller and the function becomes

concave at the origin.

Gaussian:

This correlation is a special case of Exponential-Power with b = 2. It is called a

Gaussian correlation Junction because of its functional form. The corresponding

spectral density is given by

Triangular: has the form

C(h) = (1 - allhll)+, h E Rn,

and its plot can be seen in Figure 5.10.4 (c).

Power Law: has the form
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Figure 5.10.4 (d) plots this function for several parameters of the exponent. The

function changes shape from convex to concave as the parameter goes from 0 to 2.

Positive definiteness requires 0 $ a < 2.

The Matem class: This class of isotropic covariance functions was originally given

by Matern (1986). There are several parameterisations of this family of covariance

functions. We use a parametrisation given by Handcock and Wallis (1994). They

write the isotropic spectral density as

9'1(U) = ( )V+d/2'
4v +u2
pi

O"C(v, p)

where n = (0', v, p), with 0', v, p > 0, and

( )
_ r(v + ~)(4v)V

c v, p - 7rd/2r(v)p2v

The corresponding covariance function is

_ 0" (2v1/2h)V (2v1/2h)
C"(h) - 2",-1r(v) p K; p , hE ]Rn, (5.3.1)

which has the nice property that it does not depend on n. The function r(-) is

the usual gamma function and x:.v is the modified Bessel function of order v. The

parameter 0' is just variance of the field, and p measures how quickly the correlations

of the random field decay with distance. Figure 5.10.4 (e) plots Matern covariance

functions for 0" = 1, v = 1 and several values of p, and shows that decorrelation

occurs more slowly as p increases. The influence of the parameter u, for fixed 0"

and p, is shown in Figure 5.10.4 (f). The special case v = 0.5 corresponds to the

exponential correlation function, and the limit as v --+ 00 results in the Gaussian

form.

Additionally, it is important to mention for later use, that the class of covariance

functions is closed under addition, multiplication, and passages to the limit; see
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Loeve (1960), p.468, for the proof and several examples. Through use of the closure

property one obtains, for example, a general Gaussian correlation function,

(5.3.2)

where F(t) is an arbitrary one-dimensional distribution function. This correlation

function is positive definite in every dimension simultaneously.

Next we want to determine what kind of maturity transformations are allowed.

Starting from an SPO function, we are only interested in deformations that do

not distort the SPO property. The next theorem can be seen as a special case of

Theorem 2.1, in Karlin (1968).

Theorem 5.3.1. Let K(x, y) be an SPD-function and x, yE [0,T].

1. Let ¢(x) be positive on [0,T], then L(x, y) = ¢(x)¢(y)K(x, y) is an SPD-

function.

fJ. Additionally, let ¢-l be a strictly increasing function mapping [0,T] onto [0,8],
where ¢-I is the inverse function of ¢. Denote u = ¢-l(x) and v = ¢-l(y)

Then L(u, v) = K[¢(x), ¢(y)] is SPD.

Theorem 5.3.1 shows, in particular, that we are allowed to deform the maturity

by a strictly monotone function. The correlation function C(lf(s) - f(t)1) will

remain SPO.

To summarise, in this section we have described sufficient conditions for the func-

tions to be strictly positive definite, in the case when they depend on the arguments

via their difference. Moreover, we have shown that if the deformation functions are

strictly monotonic they will not destroy the SPO property of a function. Further-

more, we have provided several examples of PO and SPO functions that have been

used in spatial statistics applications. We will use some of these examples in the

implementation and testing of our methodology. In the next section we discuss the

data set used for the testing.

135



5.4 Data

Later in the chapter we will study the implementation procedures for our generic

SPD correlation function (5.2.2). To test the flexibility of this framework we use

the sample correlation matrix arising from Japanese Yen for the period 2/12/96 to

25/10/01. The data is courtesy ofLeH, London, and has been obtained by stripping

the Japanese government issues.

In Table 5.2, we provide the descriptive statistics of the whole sample of yield

differences. Observe that the distribution of the yield differences for each maturity

is centred at zero, and it has a very small standard deviation. However, they are

not normal, since they are skewed with very fat tails. Skewness is positive for all

maturities and it generally decreases for higher maturities. The yield differences

show a high degree of kurtosis that is roughly constant, with the exception of three

and four years to maturity.

In Figure 5.2 we plotted the sample covariance and correlation matrices. The plot

of the sample correlation shows an expected decreasing behaviour: the further the

distance between any two maturities, the lower the correlation. The actual values

of sample covariance and correlation are in Tables 5.3 and 5.4. Observe the high

correlation between maturities. The figures fluctuate between 0.659 and 0.998. Also

observe that the drop in correlation closer to the diagonal is more significant than

those correlations further away from the diagonal.

In the next three sections we study several implementation procedures for our generic

SPD correlation function. Their flexibility in fitting sample correlation matrices will

be tested on the Japanese Yen interest rate data discussed above.
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5.5 Sampson and Guttorp Approach

This section is the first of three in which we implement the framework suggested

above for the construction of instantaneous SPD correlation functions. The imple-

mentation idea comes from the work pioneered by Sampson and Guttorp (1992) in

the field of spatial statistics. Traditionally, models in spatial statistics were based

on homogeneous fields, i.e. fields based on correlation functions which depend on

their arguments only via their difference. Sampson and Guttorp (1992) suggested

an extension to non-homogeneous fields. We adapt their procedure to our problem.

In the first part of this section we describe the implementation. Then, in the second

part we test the methodology on the Japanese Yen interest rate data and discuss

the results.

5.5.1 Description of the Method

The generic form of the instantaneous correlation function (5.1.1) which we study in

this chapter consists of two ingredients: an SPD function and a strictly increasing

deformation mapping. The idea of the implementation method is to decouple the

choice of the these two ingredients into two steps: i.e. first find a deformation

mapping under the assumption of a very general correlation function, then, for a

fixed deformation mapping, find the best correlation function.

First we find the deformation mapping of n maturities, TI, ... ,Tn, by applying the

non-metric Shepard-Kruskal MDS-Algorithm, as described, for example, in Mar-

dia et al. (1979), or Cox and Cox (2001). This algorithm determines a monotone

function ~ such that the matrix of ~ij = 8(dij) can be accurately represented by

inter-point distances in a one-dimensional metric rescaling. That is, it determines a

configuration of maturities Ti so that
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Solving this relationship for di; we obtain a function 9 that serves a role analogous

to the usual variogram function. For a homogeneous field a variogram function,

can be written as ,(h) = 1 - p(h), where p is the correlation of the field. The

function 9 can be thought of as applied to distances in the deformed maturity space

D,

The multidimensional scaling algorithm proceeds by searching a configuration of

maturities Ti, so that the distances hi; = ITi -Tjl minimise a stress criterion defined

as
. ~i<j[8(djk) - hi;]2

mm " 2 '6 L.Ji<; hi;
where the minimum is taken over all monotone functions. We obtain a monotonic

maturity deformation mapping on a discrete set of n maturities, TI, .•• ,Tn. To

obtain the mapping for a continuum of maturities, we can extend the deformation

to the entire maturity space M. This can be done in various ways, but we must

bear in mind that this mapping has to be strictly increasing.

In the first step we found a maturity deformation mapping under the assumption of

a general monotonic function 9 which played the role of variogram, or equivalently

correlation function in the deformed space. To finish our construction we need to

find an SPD function to replace g. Thus, the second step consists in finding an

SPD function which depends on its arguments only through their difference. To

do this, we choose a general Gaussian correlation function, which we described in

Section 5.3,

C(h) = /_: exp( -h2t2)dF(t),

where F(t) is an arbitrary one-dimensional distribution function.

Next, for a given vector (Tl' ... ,Tn) of deformation we determine a least squares fit

for the observed sample correlation matrix in terms of a discrete distribution F, spec-
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ified by its support tl, ... , tn, and corresponding nonnegative numbers at, ... , an.

We provide the details in Appendix 5.10.1.

In the next section we test our procedure on a sample correlation matrix calculated

from the Japanese Yen interest rate data.

5.5.2 Numerical Results

To test the methodology described above we used the sample correlation matrix

obtained from the data discussed in Section 5.4. The original Sampson-Guttorp

approach using a general correlation function of the type (5.3.2) is rather disap-

pointing. Table 5.5 shows the function values of the fit evaluated on the observed

maturities together with percentage errors compared with the sample correlation

matrix, as in Table 5.4. However, as can be seen from Figure 5.3 (below), it does

capture the general shape of the sample correlation matrix, as compared with Fig-

ure 5.2. We also plotted in Figure 5.3 (top) the deformation mapping obtained with

the MOS algorithm.

By way of comparison, instead of the general Gaussian correlation function (5.3.2),

we fitted the Matern correlation function (5.3.1). We achieved much better results.

The best fit to the sample correlation matrix is obtained for the parameter vector

."= (1,1.397,6.386). Table 5.6 shows the values of our constructed SPO correlation

function, together with percentage errors compared with the sample correlation

matrix. The maximum percentage error is 7.5 for the maturities of 2 and 9 years.

The error is still quite large, but it is encouraging that the fit can be substantially

improved by a better choice of correlation function.

In this section we have described a general procedure for implementation of the

generic instantaneous SPO correlation functions of the form (5.1.1). It consists

of two steps: First, using the Multidimensional scaling find a strictly increasing

deformation mapping. Then choose a general SPO correlation that provides the best
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fit to the sample correlation matrix. Furthermore, we have implemented the method

and tested it on a sample correlation matrix from Japanese Yen. We achieved a

rather disappointing quality of fit for a general Gaussian SPD correlation function.

However, the fit could be considerably improved by a different choice of the SPD

function.

In the following sections we will further investigate the possibility of improving the

fit by investigating alternative implementations of the methodology.

5.6 Minimisation of an Objective Function

In the last section, we implemented our generic SPD correlation function,

Corr(t,s) = C(lg(t) - g(s)I),

using a two-step procedure, consisting first of finding a deformation function and

then an SPD correlation function. This approach did not result in a good quality of

fit to the sample correlation matrix. The obvious problem with this construction is

that the choice of deformation mapping was independent of the fitting of the corre-

lation function. We would need to perform a search among all possible correlation

functions to find the best fit. We believe that an alternative method would perform

better if we combined this two steps into one: i.e. simultaneous fit of both the

deformation mapping and an SPD function is bound to improve the quality of fit.

In the present section we will study this approach.

5.6.1 Description of the Methodology

In this section we propose an alternative approach. We choose a particular para-

metric SPD correlation function together with some set of functions which is used

as a basis for the deformation mapping. We then search among the parameters of

the correlation function and the coefficients of the basis functions for the best fit to
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the sample correlation matrix. Let Pij, i,j = 1,2, ... ,n denote sample correlations

for n-maturities. Then the criterion to minimise is, for example,

(5.6.1)

where a denotes the set of parameters of the SPD correlation function p and {3 the

set of parameters of some family of functions. The best fit is found by minimising

this criterion over the parameter sets a and {3.

Intuitively, we should obtain better results in this case than in the method we used

in the last section. However, one problem here is that the deformation mapping has

to be strictly increasing. To achieve this we can use a strictly increasing family of

functions as a basis for the deformation mapping. Alternatively, we can choose some

general set of functions and then introduce some restrictions into the minimisation

procedure to keep the function monotonic. Other methods for achieving this are

also available and we discuss them later in the section.

5.6.2 Implementation Details and Numerical Results

To test our methodology, we assume that the deformation function can be approx-

imated by a cubic spline. A cubic spline is a piecewise-cubic polynomial joined at

so-called knot points!'. At each knot point, the polynomials that meet are restricted

so that the level and the first two derivatives of each cubic are identical. Each addi-

tional knot point in the spline adds one independent parameter, as three of the four

parameters of the additional cubic polynomial are constrained by the above restric-

tion. By increasing the number of knots, cubic splines provide increasingly flexible

functional forms. A simple, numerically stable parametrisation of a cubic spline is

provided by a cubic B-spline basis. The cubic B-spline basis can be represented by

11In Finance, several spline techniques have been used for extracting the term structure of interest
rates from a cross-section of coupon bond prices. Among others, McCulloch (1975) uses regression
cubic splines, and Vasicek and Fang (1982) use exponential splines to estimate the discount function.
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the row vector

Over any interval between adjacent knot points Sk and Sk+lt there are four non-

zero B-splines, with adjacent intervals sharing three of them. This gives </>(r) a

semi-orthogonal structure from which it gets its numerical stability. Any cubic

spline can be constructed from linear combinations of the B-splines, </>(r)f3, where

13 := (131, •.• ,I3It)T is a vector of coefficients. We provide a short description of the

B-spline basis in Appendix 5.10.2.

As our test SPO function we chose the Exponential-Power correlation function,

We minimised criterion (5.6.1), using the choice of the SPO function and B-spline ba-

sis. The parameters we obtained for the SPO function are a = 0.0059 and b = 1.575.

We have plotted the deformation mapping in Figure 5.4 (above). We can see clearly

that the function is strictly increasing. Its shape is similar to the deformation map-

ping we obtained in the previous section, Figure 5.3 (above). Additionally, we have

plotted the fitted deformed Exponential-Power correlation function in Figure 5.4

(below). It clearly has the shape of the sample correlation matrix, Figure 5.2.

Table 5.7 shows the values of our constructed SPO correlation function. We eval-

uated them at the observed maturities together. Table 5.7 also shows percentage

errors of the fit compared with the sample correlation matrix. We can see that the

fit is very good, with the largest percentage error 1.34, for the maturities of 2 and 4

years.

Next, we tested our SPO correlation function for the SPO property. We evaluated

the deformed correlation function on a semi-annual grid for a the maturities up

to 30 years. We then calculated the the eigenvalues of this matrix. We plotted

the natural logarithm of the eigenvalues in Figure 5.5. As we can see, they are
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all positive, confirming our result. Next, we discuss a possible extension of our

implementation methodology which can reduce the number of coefficients in the

deformation mapping representation.

5.6.3 Extensions

In this section we discuss one possible extension of the above implementation proce-

dure which may allow smoothing out the non-bijectivity in the spline representation.

Moreover, it can effectively reduce the number of parameters.

In our methodology, the number of parameters is determined by the number of

knot points. Too few knot points can lead to a poor estimation and too many to

over-fitting. To overcome this problem we use smoothing splines which incorporate

a "roughness" penalty. An increase in penalty reduces the effective number of pa-

rameters, the reason being that splines resulting from a higher roughness penalty

are smoother and this forces an implicit relationship between the parameters of the

spline. We consider a penalty of the form,

i.e. a constant times the integral of the squared second derivative of the function

being splined. We assume that the measure of the degree of smoothness A is constant,

though this assumption can be relaxed. Our problem now consists of minimising

the residual sums of squares plus the penalty:

{5.6.2}

where 1£ is the space of all functions defined on ll4 with squared second derivative

which integrate to a finite value.

The primary factor influencing the choice of the smoothing parameter A is the ap-

parent smoothness of the mapping itself. In the limit, as A -t 00, the mapping
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becomes affine - a mapping corresponding to a stationary or homogeneous corre-

lation model. Dy choosing A sufficiently large we can guarantee that the mapping

will become bijective. For small values of A we may get over-fitting of the sample

correlation and a mapping that is not bijective. One choice of the parameter A can

made by using the cross-validation technique'j.

In terms of the spline, ha(T,{3), the penalty can be written as follows:

where H is a K, x K, band-diagonal matrix. Since any (3 that makes hs(T,{3) linear

in T is not penalised, H has two zero eigenvalues. The matrix H is completely

determined by the knot points.

For a fixed value of A the minimisation problem can be stated as follows:

(5.6.3)

Criterion (5.6.3) can be minimised using a Newton-type iterative algorithm. Min-

imisation is done iteratively in two stages. The first stage involves minimisation

of the criterion with respect to the parameters underlying the spn function Pa,

for fixed co-ordinates. The second stage involves minimisation of the criterion with

respect to the co-ordinates, for fixed correlation parameters.

In this section we have developed a simple procedure for the implementation of our

generic Sf'D correlation function. The method is simple to understand and to imple-

ment. It is very parsimonious as it involves only small number of parameters. The

number of parameters can be controlled by the user, depending on particular choice

of Sf'D function, deformation mapping representation, and the form of the sample

correlation matrix. We also have discussed a possible extension of the methodology

12See, for example, Wahba (1990) for details.
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by introduction of a "roughness penalty". This can further reduce the number of

parameters and smooth out possible non-bijectivities in the deformation mapping.

Our numerical results indicate that this method is superior in terms of quality of fit

to the two-stage procedure introduced in the previous section. In the next section we

introduce a third implementation method, based on a modification of the downhill

simplex algorithm of Nelder and Mead (1965).

5.7 Iterative Two-Step Implementation: MNM-LM Al-

gorithm

In this section we introduce a third method for the implementation of our generic

SPD correlation function (5.1.1). Like the first method introduced in Section 5.5,

this one is implemented in two steps. However, unlike the first it is possible to

iterate these two steps, and so considerably improve its performance.

We denote the sample correlation estimates by fJ{Ti, Tj) for each pair of maturities

(Ti' Tj). Then the method consists in minimising the objective function,

U(T,o) =L [fJ{Ti, Tj) - Pa(IITi - Tjll)]2 ,
i<j

(5.7.1)

with respect to the deformation vector T = (Tl' T2, ... ,Tn) subject to a strict mono-

tonicity condition, and with respect to the parameter vector 0 of the SPD function.

To obtain the optimal deformation vector we introduce a modification of the down-

hill simplex algorithm of Nelder and Mead (1965), which we abbreviate as the MNM

algorithm. This modification allows a very efficient search for the strictly increasing

deformation vector T. In the second step, we perform a search for the parameter vec-

tor 0 of the SPD function using Levenberg-Marquardt (LM). We then iterate these

two steps. We abbreviate our implementation method as the MNM-LM algorithm.

Next, we describe the method in detail.
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5.7.1 Description of the MNM-LM Algorithm

Our algorithm consists of two steps: the first is minimisation of the objective func-

tion (5.7.1) with respect to the deformation vector T, and the second is minimisation

of the objective function with respect to the parameter vector a.

To perform the first step we modify the downhill simplex algorithm originally pro-

posed by Nelder and Mead (1965). The Nelder-Mead algorithm is widely used for

non-linear unconstrained optimisation. It should not be confused with the simplex

algorithm for linear programming: both algorithms employ a sequence of simplices,

but are otherwise completely different. The Nelder-Mead algorithm attempts to

minimise a scalar-valued non-linear function of n real variables using only function

values, without any derivative information. The Nelder-Mead algorithm maintains

at each step a non-degenerate simplex, a geometric figure in n dimensions of non-zero

volume that is the convex hull of n + 1 vertices.

Each iteration of a simplex-based direct search method begins with a simplex, spec-

ified by its n + 1 vertices and the associated function values. One or more test

points are computed, along with their function values, and the iteration terminates

with a new simplex such that the function values at its vertices satisfy some form of

descent condition compared to the previous simplex. In the standard Nelder-Mead

algorithm, at the end of the iteration step there can be a reflection away from the

high point, a reflection and expansion away from the high point, a contraction along

one dimension from the high point, or a contraction along all dimensions toward the

low point. Four scalar parameters control the size of each possible movement of the

simplex. The NM algorithm is particularly parsimonious in function evaluations per

iteration, since in practice it typically requires only one or two function evaluations

to construct a new simplex. It should be pointed out that there has been almost no

published theoretical analysis treating the NM algorithm. One exception is Lagarias

et al. (1998), who consider the convergence properties of the NM algorithm in low
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dimensions.

To incorporate a constraint optimisation into the NM algorithm we propose the

following modification of the algorithm. We start with a simplex that satisfies the

strict monotonicity conditions. I.e., we start with a simplex such that all of its

vertices have coordinates of the type T = (TI, T2' ... ' Tn), with TI < T2 < ... < Tn.

Then, at the end of each iteration step, once the movement of a simplex is performed,

we perform a check on the new chosen vertex. If this vertex satisfies the monotonicity

condition, we accept this movement; otherwise we assign this vertex new coordinates,

by simply reordering the coordinates to form an increasing sequence.

The second part of the algorithm is done by minimisation of the objective func-

tion (5.7.1) with respect to the parameter vector 1/ by application of the Levenberg-

Marquardt (LM) method. This method has become the standard on nonlinear

least-square routines in the case where the derivatives with respect to the minimi-

sation are available. The description of the method can be found, for example, in

Press et al. (1992).

Summary of the minimisation algorithm:

1. Starting step: Define initial simplex. Set TO = (Tb T2, ... , Tn), for the first

vertex. Then -r = TO + ),ej, for the remaining n vertices. Choose starting

value for the parameter vector 1/.

2. Iteration step: Perform modified Neider-Mead algorithm. Perform Levenberg-

Marquardt algorithm on the parameter vector 1/.

3. Reinitialisation step: Define new initial simplex. Take the solution of the

modified Nelder-Mead algorithm as the first vertex TO. Define the vertices -r
for i = 1, ... ,n as in starting step, with), half of the minimum distance of the

coordinates in TO.
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4. Stopping criterion: Terminate the iteration if the objective function changes

by less than a specified tolerance for two consecutive iteration steps.

The MNM-LM algorithm provides us with only a discrete set of data for the defor-

mation function, i.e. with TI, T2, ... , Tn. For our application we require knowledge

of the deformation for all points in the specified interval. There are several ap-

proaches one can use to find the deformation function CP. The choice should be

made from case to case depending on the set TI, T2, ..• , Tn. One could apply a least-

square procedure together with some parametric family of functions, interpolation,

or smoothing procedure. One should bear in mind that whatever the choice is,

the resulting function has to be strictly increasing, thus preserving strict positive

definiteness of the correlation function. Regularisation techniques are particularly

appealing in this framework, as they allow the choice of the degree of smoothness

of CP.The smoothing parameter can be used to smooth out non-bijectivity in the

function CP.

In our experience, the proposed MNM-ML algorithm works extremely well. How-

ever, it is quite simple to generalise the method to provide it with more flexibility.

In general, the objective function (5.7.1) may have several local minima. In such

situations, the simulated annealing method, which is probabilistic in nature, has

proved to be very useful. Simulated annealing can be used in combination with the

MNM-ML algorithm to improve its efficiency. This is, however, a matter for further

research. In the next section we present results from the numerical implementation

of the MNM-ML algorithm.

5.7.2 Numerical Results

For the first test of the methodology we used the Exponential-Power correlation

function. We achieved a maximum percentage error of 1.46 at the maturities of 2

and 4 years. The parameters of the stationary correlation function were a = 1
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and b = 1.56. We have plotted the Exponential-Power correlation function with

these parameters in Figure 5.9 (above). The deformation mapping is plotted in Fig-

ure 5.6 (above). The values of the deformed Exponential-Power correlation function

together with percentage errors for the observed maturities are in Table 5.8.

For the second test we used the Matern correlation function. We achieved a maxi-

mum percentage error of 1.3 at the maturities of 2 and 4 years. The minimisation

procedure yielded the following parameters for the correlation function: a = 1,

1I = 1.3, and p = 3.57. The deformation mapping is plotted in Figure 5.6 (below).

Note the slope of this map is much steeper at the short end of the curve. We plotted

the Matern correlation function with these parameters in Figure 5.9 (below). The

fit is slightly better than in the case of the Exponential-Power correlation function.

We expected this result as the Matern correlation function is more flexible. The

values of the deformed Matern correlation function together with the percentage

errors for the observed maturities are in Table 5.9.

Additionally, we evaluated the deformed correlation functions on a grid consisting

of 250 x 250 equidistant points. The log of the absolute values of the eigenvalues of

these matrices are plotted in Figure 5.7. It is interesting to compare the behaviour

of the eigenvalues in both cases. In the case of the Exponential-Power correlation

function, the eigenvalues collapse very fast toward zero. However, in the case of the

Matern correlation function, the descent is slower. This behaviour may be explained

by the behaviour on the diagonal of the deformed correlation functions in Figure 5.8.

It is quite flat in the first case and shows some decorrelation in the second. This

decorrelation is caused by the steep slope of the corresponding deformation function

as mentioned above. Thus, we observe that fast decorrelation causes slow decay in

the eigenvalues. This will become more apparent in Chapter 6.

In this section we have introduced a third method for the implementation of our

generic SPD correlation function {5.1.1}. The method is iterative in nature, com-
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bining two minimisation steps. The numerical implementation and fitting results

indicate that the method is very simple to use and provides a very good quality of

fit. In the next section we discuss alternative estimation techniques such as maxi-

mum likelihood and Bayesian methods, which can be used to fit our generic SPD

correlation function (5.2.2).

5.8 Alternative Estimation Methods

All three implementation methods we presented above could be classified in terms

of statistical methodology as method of moments. They involved fitting the SPD

correlation function directly to the sample correlation matrix. These methods could

be expected to be inferior in terms of statistical efficiency compared with the max-

imum likelihood and Bayesian approaches. In this section we discuss a possible

implementation method for the maximum likelihood approach and briefly discuss

the advantages of the Bayesian framework.

First we discuss the maximum likelihood approach 13. We start with N realisations

Zr, ... , ZN of the random field for n observed maturities. Thus each observed re-

alisation k is a vector Zk = (Zk(Td, ... , Zk(Tn)), where TI, ••• ,Tn are observed

maturities, for k = 1,2, ... ,N. We assume that these realisations are independent

with

where Nn denotes the n-dimensional normal distribution, J1. the n-vector of means,

and ~ an n x n covariance matrix.

Furthermore, we assume O'ij = Cov{Zk(Ti), Zk(Tj)} is of the form,

O'ij = C(h(T;) - h(Tj)),

13In geostatistics, the possibility of fitting models of spatial type with a maximum likelihood
approach has been considered by Mardia and Goodall (1993), and Smith (1996).
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where C is an Sf'D function and h is represented by a linear combination of some

function sequence.

Next we assume that the data is normalised, or that the variances have already

been estimated by some methods; thus we concentrate on the estimation of the

correlation functions. Under these assumptions the negative log-likelihood based on

Zl,"" ZN becomes

L = ~ log I~I+ M; 1 tr (~-lt),
where t is the usual N x N sample correlation matrix.

In our case, as in Section 5.6, we might consider cubic splines to represent the

function h. h can be defined in terms of constants aI, a2, 81,82, ••• , 8n, and tl <
tz < ... < t« by the expression

1 n
h{t) = al + a2t + 12L 8i''li{t),

1

(5.8.1)

subject to the constraints,
n n
L 8j =L 8itj = 0, and l1i{t) = It - till.
i=l i=l

(5.8.2)

Thus (5.8.1) represents h as a sum of linear terms and n radial basis functions l1i

with centres at the observed maturities Ti' It can be shown that h is a cubic spline,

with knots at the points Tb T2,"" Tn; furthermore the constraints (5.8.2) imply

that h" and hili are both zero outside [tb ... , tn], so the curve h is a natural cubic

spline'".

As we discussed in Section 5.6, one way to reduce implicitly the number of param-

eters in the regression splines is to use a penalty functional (see equation (5.6.2)).

Alternatively one can simply restrict the representation (5.8.1) to a subset of radial

basis functions. Thus we assume

(5.8.3)

14For further details on this characterisation see, for example, Green and Silverman (1994).
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where il, ... , im are some subset of indexes to be determined. This formulation

reduces the number of parameters in the log-likelihood minimisation problem and

can make the computational burden manageable. The set of indexes in (5.8.3) can

be found by some criteria, for example by a cross-validation study.

As an alternative to the maximum likelihood approach one can consider the Bayesian 15

point of view, as it also involves calculation of the likelihood function. This method

involves sampling from the posterior distribution. When applied with efficient

Markov Chain Monte Carlo methods this may prove to be not much more diffi-

cult computationally than maximisation of the likelihood function with respect to

a high number of parameters. Bayesian methods have the advantage that when

used in prediction, they correctly allow for the uncertainty in the parameters being

estimated.

In this section we have briefly described the implementation of alternative estimation

approaches that can be used to estimate our generic SPD correlation function (5.2.2).

Whether these methods achieve a better statistical fit of our Gaussian field to the

data can only be answered by empirical studies. In the next section we present

conclusions of this chapter and discuss some ideas for further research.

5.9 Conclusions and Discussions

In this chapter we have continued the study of SPD instantaneous correlation func-

tions for the construction of infinite-factor random field models. We suggested a

generic SPD correlation function of the form

Corr[s, t) = C(g(8) - g(t)),

l6In geostatistics, recent papers by Damien et al. (2001) and Schmidt and O'Hagan (2000) have
adapted Bayesian modelling within the deformation approach. The difficulties in their approach
lie in specification of a suitable parametric model with associated prior distribution. These choices
are often arbitrary.
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where C is a SPO functions and 9 strictly increasing maturity deformation mapping.

We characterised a large class of SPO function and derived sufficient conditions on

the deformation mapping so that our generic correlation function would have the

SPO property.

Furthermore, we provided three implementation methods. The first method is based

on a two-step implementation. In the first step we find the deformation mapping

using multidimensional scaling algorithm under the assumption of a very general

SPO function. Then in the second step we fit the SPO function under a fixed

deformation mapping.

The second method is based on choosing some parametric SPO function and some

function basis to represent the deformation mapping. The SPO correlation function

is then found by minimising some objective function over the parameters of the SPO

function and the coefficients of the function basis.

The third implementation method is an iterative two-step procedure. Both steps

minimise in turn an objective function, the first step finding an optimal deformation

vector, and the second by minimising the parameter vector of the SPO function. We

are able to loop over these two steps and so considerably improve the quality of the

fit.

We have implemented and tested all three methods on the Japanese Yen interest

rate data. We found that the first method is rather disappointing. It produced

instantaneous SPO correlation function that could only capture the overall shape

of the sample correlation matrix. The actual fit however was not very good. The

second and third methods produced much better results. Not only did they capture

the shape of the sample correlation matrix, but they had an excellent fit, with

maximum percentage error less than 1.5.

The main advantage of the methodology developed in this chapter is that it provides
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a parsimonious functional form for the SPO correlation functions. The number of

parameters is relatively small and can be further reduced by various means discussed

in the chapter. Thus, we can relatively easily construct random field models that fit

empirical sample correlation matrices and have infinite-factor structure. Thus, the

class of field models we developed in this chapter shows that random field models

are able to capture the properties of the instantaneous correlation matrix observed

in the market. Furthermore, the implementation methodology we develop should

make them more accessible for practical use in the pricing and risk-management of

interest rate products.

There are two remaining problems for further research. The first is concerned with

alternative estimation methods. We briefly discussed the maximum likelihood and

Bayesian estimation approaches in this chapter. It remains to be found whether

they provide a better statistical fit to the data. The second problem is to find out

how flexible the class of field models we suggested in this chapter is. Obviously, the

functional form of the generic correlation function is quite restrictive despite the

maturity deformation mapping. However, only empirical testing on a wider set of

interest rate data coming from different currencies can validate this methodology.

In Chapter 6 we will develop alternative methodology for the construction of a

functional forms of the SPO covariance function. This construction consists of su-

perposition of an SPO function with a PO function. The PO function can be thought

of as capturing the main driving factors in the yield changes and the SPO function

as providing general correlated noise affecting all maturities. The SPO correlation

function resulting from this method fits exactly the sample correlation matrix. Fur-

thermore, the random field resulting from this methodology has a very intuitive

financial interpretation.
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5.10 Appendices

5.10.1 Simar's Algorithm

In this appendix we explain how we fitted a general Gaussian correlation function,

(5.10.1)

to the sample correlation matrix.

In our application we want to minimise the functional ¢(F) given by

4>(F) = 2:)Pij - p(lhijljF))2.
i<j

(5.10.2)

That is, we want to compute a least-square fit of the sample correlations Pij to

the correlation function evaluated at D-space distance hij. We apply an algorithm

suggested by Simar (1976). The result of this minimisation will be a discrete mea-

sure, supported on points tl,"" tk, with corresponding masses ab ... , ak, where

k $ n/2, and n = N(N - 1)/2 - N, the number of maturities pairs minus the

number of maturities.

We start with the first step of the algorithm, Le. with a distribution Fh that puts

mass 1 at tl and has ¢(F) < 00. In the second step of the algorithm we select

the next point in the support of F by minimising the directional derivative of the

functional (5.10.2) in the direction of the point mass at t. This is defined as

and simplifies in our case to

-2 2)p(lhijli Ft) - p(lhijlj F))(Pij - p(lhijlj F)).
i<j

This derivative is minimised at the solution to

E Ihijl2 exp( -lhijI2t2)(pi; - P(lhi;lj F)) = O.
i<;
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Having added this value of t to the support of P, in the third step we minimise ¢(P)

as a function of the masses ai, constrained to be non-negative and adding up to 1,

so that the diagonal of the correlation function is 1. We iterate the whole procedure,

choosing first a new t, and then a new set of ai, until either we have n/2 points in

the support, or the directional derivative for adding a new point to the support is

less than a specified amount.

5.10.2 B-Spline Basis

In this Appendix we provide a short description of a B-spline basis. Let {sdF
denote the knot points, with Sk < Sk, SI = 0, and SK =M, the maximum maturity

of any bond in the sample. The knot points define K - 1 intervals over the domain

of the spline, [0, T]. For the purpose of defining a B-spline basis, it is convenient

to define an augmented set of knot points, {dk}f=i6, where dl = d2 = d3 = SI,

dKH = dK+S = dK+6 = SK, and dH3 = Sk for 1< k $ K.

A cubic B-spline basis is a vector of r;, = K + 2 cubic B-splines defined over the

domain. A B-spline is defined by the following recursion, where r = 4 for a cubic

B-spline and 1< k $ r;,:

,/,r( ) _ ¢~-I(T)(T - dk) ¢~-l(T)(dk+r - T)
't'k T - + --=---:-'-----:----

dHr-l - dk dHr - dk+l

for T in [0,T], with

1 {I, if dk s T < dHl!
¢k(T) =

0, otherwise.

5.10.3 SPD Functions and Kernels

We start this appendix with a definition of positive definite functions and kernels in

a way they are usually presented in integral equation and approximation theories.

We give a short historical discussion of their earliest treatments.
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If S is a subset of lRn, then a function P : S x S -t lR is called a positive definite

kernel or PD kernel if the matrix M = (P(Xi, Xj)kj=l, ...,n is positive semi-definite;

i.e.,
nL c;CjP(Xi, Xj) ~ 0

i,j=l

for all c = (cl, ... ,en) E lRn and for all choices of finite subsets X = {Xl, ... ,Xn} ~

(5.10.3)

S. A function P is called a strictly positive kernel or SPD kernel if the strict

inequality holds in (5.10.3) for all c E lRn with c =f 0 and all choices of X. When a

PD/SPD kernel depends on sand t only via the difference t-s, i.e. K(s, t) = /(t-s),

then it is referred to as a PD /SPD function.

General interest in positive definite kernels and functions goes back at least one

hundred years. PD kernels, as defined by (5.10.3), arose for the first time in a paper

by Mercer(1909) on integral equations. Mercer's work itself followed from a paper

by Hilbert (1904) on Fredholm integral equations of the second kind:

/(s) = 4>(s)- A lab K(s, t)4>(t)dt,

where K is a continuous real symmetric (K(s, t) = K(t, s)) kernel. Mercer(1909)

defined a continuous real symmetric kernel K(s, t) to be of positive type if

J(x) = lab lab K(s, t)x(s)x(t)dsdt ~ 0

for all real continuous functions X on [a, b), and he proved that (5.10.3) is a necessary

and sufficient condition for a kernel16 to be of positive type. At about the same time,

Young (1909), motivated by a different question in the theory of integral equations,

showed that for continuous kernels, (5.10.3) is equivalent to J(x) ~ 0 for all X E

Ll [a, b). Note however, that to date there has been no equivalent characterisation

result for SPD kernels.

5.10.4 Figures

161n Finance, integral kernels have been used by Heaney and Cheng (1984) in the framework of
mean-variance portfolio selection with an infinite number of securities.
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Figure 5.1: Examples of stationary correlation functions. (a) Exponential, with
a = 0.5,1,2. (b) Exponential-Power, with a = 1, b = 0.5,1,2. (c) Triangular, with
a = 0.5,1,2. (cl) Power law, with b = 1 and a = 0.5,1,1.5. (e) Matern, with er = 1,
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Figure 5.2: Sample covariance matrix (above) and sample correlation matrix (be-
low). Currency: Yen.
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Figure 5.5: Eigenvalues of the matrix resulting from the deformed Exponential-
Power correlation function with parameters a = 0.0059 and b = 1.575. Deformation
is represented by B-splines.
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Chapter 6

SPD Covariance Functions via

Superposition

6.1 Introduction

This chapter is the last of three in which we construct strictly positive definite co-

variance functions, and thus infinite-factor Gaussian fields. In the last chapter we

developed a procedure for the construction of functional forms of strictly positive

definite (SPD) correlation functions. This involved taking an SPD stationary func-

tion and deforming its coordinates in a strictly increasing fashion. Though this

methodology provided us with some flexibility in fitting instantaneous correlation

and covariance functions, it might prove to be too restrictive.

In this chapter we suggest an alternative methodology for the construction of SPD

covariance functions. The idea is very intuitive and is close to the way participants

in fixed income markets think about the structure of yield curve changes. We model

the instantaneous covariance function as a superposition of two components. The

first component captures the covariation of the main driving factors. The second

part of the covariance function captures the infinite-factor noise. We implement this
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methodology and study it on the US Dollar and Japanese Yen interest rate data.

Our results suggest that this methodology provides the best solution for construction

SPD correlation and covariance functions.

The organisation of this chapter is as follows. In Section 6.2 we introduce the

modelling framework. The implementation methodology is presented in Section 6.3.

In Section 6.4 we test the methodology in a number of numerical experiments and

discuss the results. In Section 6.5 we set out conclusions.

6.2 Modelling Framework

In this section we present our modelling framework. We start the section by con-

structing a generic SPD covariance function. Then, we remark on other construc-

tions that have appeared in the research literature and can be related to our method-

ology.

We suggest covariance functions of the form,

N

C(s, t} =L An¢n(S)¢n(t) + aa{s)a{t)p(s - t),
n=l

(6.2.1)

where ¢n are basis functions, An > O. The function a2 is strictly positive, the func-

tion p is SPD, and 0 ~ a ~ 1 is a scaling factor. It is a simple consequence of the

results in linear algebra that the function (6.2.1) is SPD. The main ingredient in

this construction is the SPD function p, as it carries the infinite-factor structure.

We have characterised a large class of such SPD function in the previous chapter.

This should provide us with a sufficient number of function that we can use in con-

struction (6.2.1). Of crucial importance is the parameter a in (6.2.1). It defines the

proportion of variance explained by the stationary part of the covariance function.

For high values of et the correlation function of the process becomes nearly station-

ary. For low values of a the process becomes degenerate, as it is only driven by the

finite factor structure in the second part of (6.2.1).
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If we assume that the changes in the yield curve come from a Gaussian field, as in

our case, the covariance function (6.2.1) can be thought of a coming from the field

N

R(t) = vaS(t) +LXnA<Pn(t),
n=l

where S is a field with a strictly positive stationary correlation function p and

positive variance function 0'2. The random coefficients Xn are uncorrelated random

variables with zero mean and unit variance.

Thus, the field is a sum of N random factors Xn and a stationary infinite-factor

noise structure represented by the field S. The fraction of variance contributed by

the stationary part of the covariance function is a. We refer to the parameter a as

the stationarity parameter.

This type of construction is analogous to the N-factor APT model, Ross (1976),

where the return of each security depends on N market risks plus an idiosyncratic

risk. Similar ideas can also be found in the multiple-factor risk models used in fixed

income markets. They are based on the notion that the returns of a bond can be

explained by a linear combination of common factors plus an idiosyncratic element

that pertains to that particular bond. That is if we denote by X the vector of spot

rate changes, the objective is to approximate X as a linear combination of a small

set of fundamental shifts. Thus,

K

X = X +Luo, +E,
k=l

where X is the vector of average yield changes, hk the random factors, Uk the

eigenvectors, or the directions of the changes, and E is the error vector. Note, these

models usually assume that errors are independent. To determine the set of vectors

U1, ••• , UK we can perform a Principal Component Analysis. In this case, the set

Ul, ... , UK is the set of the first K eigenvectors of the covariance matrix ranked by

the corresponding eigenvalue.
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It is common to find that the largest part of the variation of the term structure can

be explained by only three factors I . The largest impact comes from the parallel

move or level factor, followed by steepness and curvature. These names come from

the shape of the first three eigenvectors.

Remark 6.2.1. Within the pricing framework, Rebonato (1999b) suggested a pro-

cedure for constructing a correlation matrix for calibration of LIBOR market mod-

els2• Next, we will show how his procedure can be seen as a degenerate example

of our approach. In particular, Rebonato (1999b) suggested approximating the im-

plied correlation matrix 6 by a matrix of the form BBT, where the matrix B is

constructed via the following algorithm,

bij = cos (Jjj n{:,~sin (Jjk

b" - nj-I sl'n(}'k'.1 - k=1 ,

j = 1,,,.,n -I,

j =n,

for an arbitrary set of angles (}jj. To embed his procedure into our framework, we

start with the sequence of functions,

1fj(t) = cos(t) sinj-I(t)

1fj(t) = sinj-I(t)

j = 1,,,.,n -1,

j =n,

which are linearly independent in some function space. Trivially, we obtain a new

sequence by a simple transformation of the old one, i.e.

l/>j(t) = 1fj (/j (t))
l/>j(t) = 1fj(/j(t))

j = 1,... ,n-l,

j=n.

The transformations /j(t) are continuous time-equivalents of the discrete mapping

ij -t (Jjj. The functional sequence l/>j(t), j = 1, ... ,n, is a continuous time-equivalent

of the sequence bjj that Rebonato used in his constructions. The sequence l/>j(t) in

turn can be used in the construction of a degenerate (not SPD) covariance func-

tion (6.2.1), with a = 0 and .An = 1, for n = 1, ... ,N.

ISee, for example, Litterman and Scheinkman (1988), Barber and Copper (1996), Knez et
al. (1994), Reitano (1992) and (1996).

2These are models developed by Miltersen et al. (1997), and Brace et al. (1997).
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Remark 6.2.2. Here, we note how the covariance construction of type (6.2.1) arise

naturally in the theory of stochastic processes.

As a first example, we consider the Karhunen-Loeve expansion for a Brownian mo-

tion on an interval [0,T]. To obtain the bi-orthogonal series we need to solve the

integral equation,

loT K(t, s)¢(s)ds = A¢(t) 0:5 t :5 T, (6.2.2)

where the function K(t, s) = min(t, s) is the covariance function of a Brownian

motion. Differentiating twice with respect to t yields

-¢(t) = A¢(t) 0 :5 t :5 T, (6.2.3)

with boundary conditions ¢(O) and ¢(T) = O. With the help of equation (6.2.3) we

obtain the eigenvalues'' of (6.2.2),

T2
An 1 n = 0, 1,2, ...

(n + 2)21("2

with normalised eigenfunctions

It then follows from Mercer's theorem that

uniformly on [0,Tj2. In particular, all the eigenvalues An are positive, so the func-

tion min(t, s) is definite in the sense of Hilbert. Moreover, the Karhunen-Loeve

expansion of the Brownian motion is
00

Wt = L:A¢n(t)Zn,
n=O

"For a detailed discussion of this example, see Wong (1971).

(6.2.4)
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where Zo, Zt, ... are independent standard normals. The eigenvalues An decrease

with n and the eigenfunctions ¢n are of increasing frequency, so the Zn fill in in-

creasingly fine details in this representation of the Brownian path.

Representation (6.2.4) in the last equation can be seen as an example of our con-

struction (6.2.1) with a = 0 and N = 00, i.e. an infinite number of basis functions

¢nO, and weights An. Alternatively, we could have cut of the series after finitely

many basis functions and used the remaining part of the function as the field in

analogy to the field S in construction (6.2.1).

Other expansions of the Brownian motion covariance function min( t, s) are possible.

The counterpart of the discrete Brownian bridge construction for continuous paths

is the Levy-Ciessilski expansion'[. We define Haar functions on [0,1] by setting

Ht(t) == 1, H2(t) = Ion [0,1/2) and -Ion [1/2,1]'

H2n+! (t) =I 2n/2, o < t < 2-(n+1)- ,
_2n/2, 2-(n+t) < t < 2-n,- ,

0, otherwise,

and
j-l

H2"+i(t) = H2"+1 (t - "2rl)' j = 1, ... ,2n - 1.

The Haar functions form a complete orthonormal basis in L2 [0,1]. From the Haar

functions we define the Schauder functions

With the help of the Schauder functions the continuous Brownian path can be

represented as

(6.2.5)
n=O

4For a detailed exposition of this construction see, for example, Janicki and Weron (1994).

180



Again, representation (6.2.5) can be embedded in construction (6.2.1), with a = 0

and N = 00, i.e. an infinite number of basis functions <Pn(') = FnO with weights

An = 1.

The Karhunen-Loeve expansion and Principal Components construction are opt i-

mal5 in the sense that they allocate maximum variability to each initial portion of

the driving sequence Zo, ZI, ....

6.3 Implementation Methodology

In this section we explain how we can implement the methodology suggested above.

The implementation consists of several steps. First we need to decide which SPD

function we want to use. Next we need a means for choosing the parameter vector for

the SPD function p, the stationarity parameter a, and the weights An. Furthermore,

we need to find appropriate basis functions <Pn, and the variance function (72.

We start with the variance function (7(.). This is relatively easy. Starting from the

sample variance, the problem consists in interpolating the variance for the unknown

maturities. There is a wide range of interpolation techniques that can be used for

this problem. However, whatever the choice, the resulting function should reflect

the commonly observed properties of the sample variance, Le. a hump around early

maturities and monotonic behaviour elsewhere. In particular, the function shouldn't

exhibit "wiggliness", as commonly observed in polynomial interpolations".

Next, we choose an SPD function and fit it to the sample correlation matrix. We are

not concerned with achieving a perfect fit at this stage. We mainly want to capture

6These properties of the expansions are usually used in the context of Monte Carlo simulations
of second-order stochastic processes. Two of the most powerful techniques are the Brownian bridge
and Principal Component. For a description of these techniques see Acworth et al. (1998), and
references therein. The generalisation of principal component analysis for general second-order
processes is the Karhunen-Loeve 6 expansion. This procedure allows an expansion of a process in
the quadratic mean in terms of the hi-orthogonal series.

7For a discussion of a possible choice of approximation or interpolation technique for the variance
functions see, for example, James and Webber (2000)
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the general shape of the sample correlation matrix. To complete the construction of

the second part of the SPD covariance function {6.2.1}, we choose the stationarity

parameter 0 < a < 1.

The remaining part of the implementation is to construct the the first part of the

SPD covariance function {6.2.1}, the driving finite-factor structure. We calculate

the residual matrix RaJ,

This residual matrix RaJ captures the main factor structure in the covariance matrix.

We then perform the PCA analysis on this residual matrix. This gives us a set of

eigenvalues and corresponding eigenvectors.

To obtain a perfect fit of our SPD covariance function {6.2.1} to the sample covari-

ance matrix, all eigenvalues of the residual matrix should be positive. However, if

they are not, we need to calculate the residual matrix with a lower choice of the

stationarity parameter a. We will say more on the choice of this parameter in the

next section.

Once we are satisfied with the choice of eigenvalues A, we need to find "basis" func-

tions8 ¢n. A natural choice would be just the interpolants or approximants of the

eigenvectors obtained from the PCA. The same comments apply to the interpola-

tion/approximation of eigenvectors as to the case of sample variance discussed at

the beginning of the section.

This completes the construction of our SPD covariance function {6.2.1}. We sum-

marise the implementation algorithm:

1. Construct the variance function 0"2.

8These functions are not basis functions in the usual sense, as used in Functional Analysis or
elsewhere in mathematics. They are sometimes referred to as empirical basis functions.
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2. Fit an Sf'D function to the sample correlation matrix.

3. Choose the variance contribution parameter o.

4. Obtain the residual sample covariance

5. Perform Principal Component Analysis (PCA) on the residual matrix R(Ti' Tj).

6. If all eigenvalues obtained from the PCA are nonnegative, set An equal to the

first N positive eigenvalues from the PCA. Otherwise go to step 3 with a lower

parameter o.

7. Construct the basis functions ¢n.

In this section we have discussed the implementation procedure of the methodology

presented in the previous section. The procedure almost completely avoids opti-

misation, and is mainly based on the interpolation of several quantities. Several

numerical tests have shown that the procedure is very robust. In particular, the

search for the optimal parameters for the Sf'D function p, by far the most difficult

part of the algorithm, appears to be very stable. This procedure provides an exact

fit of the Sf'D covariance function (6.2.1) to the sample covariance and matrices. In

the next section we present numerical tests of the methodology on several data sets.

6.4 Numerical and Empirical Studies

We applied the methodology to the data sets used in the two previous chapters,

specifically to US Dollars and Japanese Yen. For this purpose we chose two examples

of spn functions described in Chapter 5, Section 5.3: the Exponential-Power
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and the Matern correlation functions,

_ 1 (2Vl/2h)V (2Vl/2h)
C'I(h) - 2J1-1r(v) p K:JI p ,

where the function r(.) is the usual gamma function and K:v is the modified Bessel

function of order v, Both functions depend on two parameters, but the latter is

more flexible.

We conducted four numerical studies based on these two SPD functions and the

two data sets. Next, we describe the results and then conclude the section with a

general discussion of the different aspects of the methodology.

Exponential-Power SPD function. Currency: Yen.

We began the numerical investigation of our methodology by fitting the SPD covari-

ance function (6.2.1) to the sample covariance matrix coming from Japanese Yen

interest rate data.

As stationarity parameter we chose a = 0.1. We performed one step of the above

suggested algorithm, i.e. we did not change the values of a. Not all of the eigenvalues

of the residual matrix were positive, so we did not achieve a perfect fit.

Table 6.5 presents the values of the correlation function resulting from our construc-

tion together with the percentage errors. Table 6.6 presents the same values, but

for the covariance function. As can be seen, though the fit is not perfect, it is very

good. In the case of the covariance function we achieved a maximum percentage

error of the 0.42, and in the case of correlation function we obtained a slightly larger

maximum percentage error of 0.55 for the maturities 25 and 30.

Observe that the fit for most of the maturities is exact, with the exception of distant

maturities. The parameters for the SPD function are a = 0.0294 and p = 0.537.

We plotted the resulting SPD covariance and correlation functions in Figure 6.1.

Furthermore, we presented the ordered set of eigenvalues of the residual covariance
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matrix R in Table 6.1. There are six negative eigenvalues. This is the source of the

error we observed in our fit. However, they are relatively small, so the percentage

error is less than 0.5 %.

As a test, we evaluated covariance and correlation functions on the equidistant grid

with intervals of half a year. The logs of the resulting eigenvalues are plotted in

Figure 6.2 (above). As can be seen, this confirms our theoretical result that all

eigenvalues should positive. Additionally, we plotted in Figures 6.2 (below) and 6.3

the first nine empirical basis functions ¢n.

The first three eigenfunctions exhibit the well-known shapes that are usually referred

to as level, steepness, and curvature. It should be noted, however, that Principal

Component Analysis was performed on the residual sample covariance matrix and

not on the sample covariance matrix itself, as is usually the case. The higher-order

empirical basis functions exhibit higher frequencies and are harder to interpret. The

Exponential-Power SPD function with fitted parameters is plotted in Figure 6.13

(above). Note the spiky shape at the origin. We have also plotted the constructed

covariance and correlation functions (Figure 6.1). Note that the spike of the SPD

function is reflected in the spike along the diagonal of the correlation function.

Matern correlation function. Currency: Yen. In this experiment, we investi-

gated the Matern SPD function on the same data set, Japanese Yen, as in the first

exercise. The stationarity parameter a = 0.1 as before.

Table 6.7 presents the values of the correlation function resulting from our construc-

tion, together with the percentage errors. Table 6.8 presents the same values but

for the covariance function. As expected all percentage errors are zero. In both

cases, the maximum percentage error of the covariance function is practically nil.

The same is true of the correlation function. The quality of the fit is not surprising,

as the Matern SPD function is more flexible than the Exponential-Power.
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We have plotted the Matern SPD function with the fitted parameters v = 109.341

and p = 51.975 in Figure 6.13 (above). Note the rounded shape at the origin. We

also plotted the constructed SPD covariance and correlation functions in Figure 6.4.

Note, that the diagonal of the correlation function is smooth. This can be explained

by the shape of the Matern correlation function in Figure 6.13 (above).

The eigenvalues of the residual covariance matrix are presented in Table 6.2. There

is only one negative eigenvalue, which explains the quality of fit of our covariance and

correlation functions. Again, as a test, we evaluated the covariance and correlation

functions on an equidistant grid with intervals of half a year. The logs of the resulting

eigenvalues are plotted in Figure 6.5 (above). All eigenvalues are positive. We have

plotted the first nine empirical basis functions <Pn in Figures 6.5 (below) and 6.6.

The shapes of the basis functions are similar to those in the previous exercise.

Exponential-Power SPD function. Currency: Dollar. We continued our

numerical analysis with construction of the SPD covariance functions based on the

sample covariance matrix coming from US Dollar interest rate data. As the SPD

function we chose the Exponential-Power. The stationarity parameter was again

a = 0.1.

This construction resulted in the exact fit of covariance and correlation functions

to the sample correlation and covariance matrices. Tables 6.9 and 6.10 present the

values of the correlation and covariance functions resulting from our construction

together with the percentage errors. The ordered set of eigenvalues of the residual

covariance matrix R can be seen in Table 6.3. All eigenvalues are positive, so the

fit is exact.

The constructed SPD covariance and correlation functions can be seen in Figure 6.7.

Note the fast decorrelation and non-smoothness of the correlation function on the

diagonal. This effect results from the spiky stationary component of the covariance
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function. To show this, we have plotted the Exponential-Power SPD function with

the fitted parameters a = 0.1035 and p = 0.4315. in Figure 6.13 (below). Note the

spiky shape at the origin.

As in the exercises above, we evaluated the covariance and correlation functions on

a equidistant grid with intervals of half a year, and plotted the logs of the resulting

eigenvalues in Figure 6.8 (above). Again, all of the eigenvalues are positive. The

first nine empirical basis function ¢In are plotted in Figures 6.8 (below), and 6.9.

The first three empirical basis functions do not exhibit any clear shapes. This might

be due to poor data quality.

Matern correlation function. Currency: Dollar.

For this exercise, we constructed the SPD covariance function, based again on sample

covariance functions coming from the US Dollar interest data. We used Matern SPD

function as the stationary component of the covariance function, and the stationarity

parameter et = 0.1 We achieved an an exact fit of the SPD covariance and correlation

functions to the sample matrices.

We have plotted the Matern correlation function with the fitted parameters v =

106.33 and p = 31.429 in Figure 6.13 (below). Again, note the rounded shape at the

origin. The correlation and covariance functions can be seen in Figure 6.10. Note

that the diagonal of the correlation function is smooth. This can be explained by the

shape of the Matern correlation function in Figure 6.13 (below). The eigenvalues of

the residual covariance matrix R are again positive as can be seen in Table 6.4.

The logs of the eigenvalues of the function evaluated on a semi-annual grid are

plotted in Figure 6.11 (above). All eigenvalues are positive. We have plotted the

first nine empirical basis functions ¢In in Figures 6.11 (below) and 6.12. The shapes

of the basis functions are similar to those of the previous exercise.
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General Remarks. It is interesting to understand the influence of the stationarity

parameter et on the SPO covariance construction. To see this, we constructed the

SPO covariance function for several different values of et, for both types of SPO

functions, the Exponential-Power and the Matern functions. We have plotted the

percentage errors of the fit against et in Figure 6.14.

Observe that the percentage error crucially depends on the type of SPO function

used. In the case of the Exponential-Power function a significant error can be seen

for et larger than 0.25. However, the increase in the error with increasing a is linear

with a small slope. The behaviour of the percentage error is entirely different in

the case of the Matern SPO function. It becomes significant for et larger than 0.5.

However, the increase is sharp and non-linear.

Next we have investigated the role of the underlying SPO functions. We plotted

both constructed correlation functions for the high value et = 0.9 in Figure 6.15.

This is, of course, a very high value, but it should highlight the importance of the

choice of underlying SPO function. The correlation functions in Figure 6.15 show

entirely different behaviour on the diagonal, though they have been fitted to the same

data. Both functions have infinite-dimensional structure, but only in the case of the

stationary Exponential-Power function do we achieve fast decorrelation. This raises

an important point: when dealing with functions the speed of decorrelation cannot

be explained simply by the dimensionality of the underlying eigenvalue structure.

We believe that the behaviour of eigenvalues plays an important role in the speed of

decorrelation. To see this, compare Figure 6.2 (above) with Figure 6.5 (above). Both

figures present eigenvalues of the fitted SPO covariance and correlation functions

to the sample covariance matrix of the Japanese Yen evaluated on an equidistant

grid. However, they differ in the type of the underlying SPO functions. The first

figure results from the Exponential-Power and the second from the Matern function.

Though the fit is equivalently good for both types of stationary correlation functions,
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the behaviour of eigenvalues is markedly different.

In the case of the Exponential-Power function we have a smooth decay in the log

values of the eigenvalues. In the case of the Matern function, the decay shows a

jump toward extremely small values of the eigenvalues. This shows that there is

only a finite number of significant factors that drives this covariance function. This

behaviour is reflected in the shape of the correlation function. The correlation func-

tion resulting from the use of the Exponential-Power stationary function exhibits a

spiky form on the diagonal in Figure 6.1. The behaviour of the correlation function

resulting from the Matern function is smooth on the diagonal in Figure 6.10. We

observe exactly the same phenomenon if we compare equivalent figures for the US

Dollar. The log decay of eigenvalues is smooth in Figure 6.8, but exhibits discon-

tinuity in Figure 6.11. The shape of the correlation function is spiky in Figure 6.7

and smooth in Figure 6.10. From these observations we conclude that correlation

functions exhibiting fast decorrelation have a smooth and slow decay of log eigen-

values.

6.5 Conclusions and Further Research

In this chapter we have developed a further methodology for constructing of the

instantaneous SPD covariance and correlation functions. It consists of a superposi-

tion of an SPD function, a large class of which we described in the previous chapter,

with a PD function. One possible interpretation of this construction is that the PD

function captures the main finite-dimensional structure, whereas the SPD function

captures the general stationary infinite-factor noise.

Furthermore, we have described an implementation algorithm, and conducted ex-

tensive numerical studies based on the sample covariance matrices coming from the

Japanese Yen and US Dollar interest rate data. The numerical results show that

this construction is very flexible and can handle sample correlation matrices with
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both monotonic and non-monotonic decay. In most cases we achieved a perfect fit

to the sample covariance and correlation matrices.

We believe that the methodology developed in this chapter provides the best solution

for our problem: the construction of instantaneous SPD covariance and correlation

functions for use in random field models of term structure of interest rates. The

SPD covariance and correlation functions constructed here are extremely flexible,

and will probably fit any term structure sample covariance and correlation matrices.

The computational burden is very small. It involves, mainly, function interpolation

and calculation of the eigenvalues and eigenvectors of relatively low-dimensional

matrices.

In Chapter 7 we turn our attention to the study of finite-factor models. Within the

general framework of the pricing kernel, we develop a class of arbitrage-free multi-

factor term structure models. This class of models is mainly intended for pricing

interest rate derivatives.
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6.6 Appendices

6.6.1 Figures
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j

30

Figure 6.1: Sf'D covariance function (above) and spn correlation function resulting
from Exponential-Power Sf'D function with the parameters a = 0.0294 and p =
0.537, and the stationarity parameter Cl = 0.1. Currency: Yen.
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6.6.2 Tables
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Table 6.1: Eigenvalues of the residual covarinace matrix R using stationary
Exponential-Power SPD function. Currency: Yen.

1 190.567 6 0.041 11 -0.024
2 8.715 7 0.018 12 -0.044
3 1.489 8 0.008 13 -0.085
4 0.275 9 -0.005 14 -0.117
5 0.074 10 -0.014

Table 6.2: Eigenvalues of the residual covarinace matrix R using stationary Matern
SPD function. Currency: Yen.

1 189.821 6 0.106 11 0.041
2 8.549 7 0.076 12 0.035
3 1.553 8 0.065 13 0.031
4 0.356 9 0.056 14 -0.0003
5 0.164 10 0.045

Table 6.3: Eigenvalues of the residual covarinace matrix R using stationary
Exponential-Power SPD f ti C D 11unc Ion. urrency: o ar.

1 3.333 6 0.043 11 0.015
2 0.320 7 0.040 12 0.010
3 0.168 8 0.037 13 0.007
4 0.073 9 0.024
5 0.062 10 0.016

Table 6.4: Eigenvalues of the residual covarinace matrix R using stationary Matern
SPD function. Currenc D IIv: o ar.

1 3.287 6 0.047 11 0.019
2 0.319 7 0.047 12 0.013
3 0.172 8 0.042 13 0.010
4 0.076 9 0.028
5 0.068 10 0.021
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Chapter 7

Implied Kernel Models

7.1 Introd uction

In Chapter 2 we described the state of the art of modern fixed income modelling.

We saw that the market models are very popular among practitioners, as they allow

almost instantaneous calibration to liquid market prices. The main disadvantage

of market models turned out to be their high-dimensional Markov structure. This

inhibits the use of these models for pricing exotic products, where the short rate

approach is still the preferred choice. Furthermore, extensions of the market models

to account for volatility smiles and skews are quite complex.

At this point we ask what we might expect from a good term structure model. We

want it to produce explicit solutions for interest rate derivatives. Most ofthe interest

rate derivatives in a portfolio will have quite distinct structures. To obtain explicit

solutions for even a small subset of derivatives we will need to make very strong

modelling assumptions at the expense of the other derivatives. It is questionable

whether we want to sacrifice prudent modelling assumptions to achieve this.

Do we want exact calibration to the prices of all traded derivatives? All derivatives

are traded with bid-ask spread. So the price is not uniquely defined. Furthermore,
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the prices are not updated continuously and simultaneously. Calibrating the model

exactly to the quoted prices will mean calibrating the model to old and not synchro-

nised information. So, it is again questionable whether it is sensible to calibrate the

model exactly. However, one might expect that the actual prices will not be too far

from the observed ones, so the prices should be reasonably well approximated by

the model.

Do we want the model to produce simple numerical solutions? The answer is yes.

This is an important property. In a trading environment one needs the price infor-

mation very fast. So, one expects a model to deliver a price within seconds, even

for exotic-type products.

Thus there is a need for finding a class of models that enjoys the same ease of

calibration to liquid market prices as the market models, and at the same time has

a low-dimensional Markov structure as in the case of short rate models. It should be

flexible in fitting volatility smiles and skews. Furthermore, it should produce simple

numerical solutions for most of the interest rate derivatives.

To achieve this goal we have chosen the pricing kernel framework, Le. framework in

which the bond price can be represented as

!pO [KT ]B(t, T) = lE Kt 1Ft , (7.1.1)

where Kt is positive pricing kernel and JP>* some probability measure equivalent to

the objective P. In Chapter 2 we described this approach in details and examined

its relation with the HJM and short rate frameworks. We found that the latter have

been studied heavily and it is unlikely they will yield any class of models with desired

properties. On the other hand the pricing kernel framework has been studied far

less. We feel that it has enough scope and flexibility to achieve our goal. Only a few

authors have exploited this framework directly. The idea of using this framework

in arbitrage pricing was pioneered by Constantinides (1992). It was then pursued
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by Flcsaker and Hughston (1996a), Rogers (1997b), Balland and Hughston (2000),

and Hunt et al (2000). We describe their ideas in Section 7.2.

Though we model the pricing kernel, we link its construction explicitly with the

calibrating set of instruments. Thus, once the kernel is constructed it prices correctly

the chosen set of instruments and has a low-dimensional Markov structure. In

particular, we assume that a pricing kernel Kt can be approximated by a series of

functionals of some underlying Markov process, l.e.,

The coefficients of this approximation are then implied from the set of liquid market

instruments, such as bond, caps, swaptions, etc. We call models of this type Implied

Pricing Kernel (IPK) models.

The outline of this chapter is as follows. In Section 7.2, we motivate our modelling

framework and describe its relation to other pricing kernel models. We also briefly

describe the literature on modelling non-flat implied volatilities. In Section 7.3, we

introduce several families of approximating functions that can be used to approxi-

mate the pricing kernel. We also discuss a general Gaussian diffusion process that

we use in the implementation of IPK models. Furthermore, we present pricing for-

mulae for several fixed income instruments within the pricing kernel approach. We

discuss implementation issues and conduct several calibrating studies in Section 7.4.

We conclude in Section 7.5.

7.2 Related Research

In this section we motivate our class of models and describe its relation with the ex-

isting pricing kcrnclliterature. As our approach can also handle non-flat volatilities,

we also discuss literature relating to this topic.
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7.2.1 Kernel Models

To define a pricing kernel model one needs two ingredients: a model for the un-

derlying noise in the economy and a functional form relating that noise to the

pricing kernel. The underlying noise in the economy is usually modelled by a simple

stochastic process, such as the Ornstein- Uhlenbeck process. Then the pricing kernel

is defined to be some strictly positive function of the process.

For example, Constantinides (1992) chooses the kernel,

where the stochastic process is a sum of squares of displaced Ornstein-Uhlenbeck

processes Xi,t, and the function relating the process to the kernel is simply the

exponential. Das and Foresi (1996) choose as the driving process the sum of two

components, the Ornstein- Uhlenbeck process Xt with stochastic mean, and a pure

jump process y(t). The function is again exponential,

K(t) = exp( -Yt - Xt}.

Flesaker and Hughston (1996a) in their rational log-normal model use a kernel that

can be be written

Kt = f(t) + exp{ct+ Xt),

where it and Ct are deterministic functions. In this kernel the underlying process

is a simple Gaussian diffusion and the kernel is again defined as the exponential of

this diffusion plus some deterministic functions. Rogers {1997b} considers kernels

of the form
K _ e-ot Rog(Xt)
t - Rag(Xo) ,

which is a positive supermartingale, i.e. he defines a positive supermartingale of the

resolvent of some process Xt with function exp( -at). As examples of his framework,
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among others, he considers the exponential-linear kernel

Kt = exp( +od: +a . Xt),

the exponential-quadratic

(ITKt = exp =ot + 2(Xt - c) Q(Xt - e)),

and the quadratic kernel,

1 TKt = "Y + 2(Xt - c) Q(Xt - e).

In all above examples the functional form was a simple positive function such as

an exponential or quadratic. An opposite point of view has been taken by Hunt!

et al (2000). They develop a class of pricing kernel models, the Markov-functional

interest rate models (MFM), in which the positive functional is constructed from

the market price information. As the underlying noise in the economy they choose

a simple Gaussian diffusion.

For example, in their LIBOR Markov-functional model they choose the reciprocal of

a bond of fixed maturity as a pricing kernel, Kt == 1/ B(t, Tn+1)' The market price

information, in this case, is given by a set of cap prices. More precisely, they take

as given the set of caplet prices for maturities 11, i = 1, ... ,n, and for all possible

strikes. They choose as the underlying Markov process Gaussian diffusion of the

form

where ur = a exp(at). To specify the model completely they use a backward induc-

tion. To start the induction they assumed that the last forward LIBOR rate follows

a log-normal diffusion- dLt = UtLtdWt, under the forward measure JIDn+lt corre-

sponding to the numcraire B(t, Tn+1)' Thus, the distribution of B(Tn, Tn+d can

'See, also, Hunt et al (1996) and Hunt and Kennedy(1998b}.
2This assumption is not necessary; we only need to assume that the functional form of the

forward LII30R rate with respect to some underlying Markov process is explicitly known (and is
monotone function of the process).
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be recovered from its dependence on LTn' To determine the model completely one

needs to find functional forms of the kernel K (XT.) for the dates Ti, i= 1, ... ,n - 1.

These functional forms can be found by inverting the digital caplet prices into the

bond price B(Ti, Tn+l)'

To summarise, the main idea of Markov functional models is that the distribution

of a pricing kernel can be recovered from the prices of digital options via an inver-

sion procedure. Thus, by construction, the LIBOR Markov-functional model prices

exactly the digital caplets for a given set of maturities and a continuum of strikes,

and consequently the initial term structure. However, the main disadvantage of this

method is that it imposes a rather rigid distribution on the kernel which is needed

to price the digital caplets correctly. Furthermore, the method is rather difficult to

generalise to higher dimensions. We have implemented elsewhere a multidimensional

version of the Markov functional model and have found that the results are quite

similar to the one dimensional case. Thus, it is not clear if this method provides

any more generality when working in higher dimensions.

It is worth mentioning a parallel paper by Balland and Hughston (2000). They

develop a lattice type model based on exactly the same idea as the MFM framework.

However, the implementation of this lattice model is rather cumbersome. They make

use of the change of numeraire technique in every time step, which makes the method

very tedious to implement. At the heart of the method, as with MFM, is the relation

of the digital option prices with the functional form of the kernel.

The pricing kernel models described above can be thought of as belonging to two

classes: parametric and non-parametric. Models belonging to the parametric class

are pricing kernel which are defined as simple positive functional forms, such as an

exponential or quadratic, of some Markov process. In the models belonging to the

non-parametric class the functional form of the kernel is implied non-parametrically

from the data.
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In this chapter we take a "middle way" point of view. We assume that the pricing

kernels can be approximated by a series of functions of some Markov process. The

actual coefficients and parameters of the series are then implied from the market

prices, such as bonds, caps, swaptions, etc. We refer to this class of models as Implied

Pricing Kernel models (IPK). This class of models presents several advantages over

previous pricing kernel models. It has low-dimensional Markov structure. It isjust as

simple in a one- as in a multi-dimensional framework. It is flexible in fitting volatility

skews. Furthermore, it does not require fitting continuum of price information to

construct its functional form. Moreover, this method allows the analytical pricing

of certain instruments, as in the case of parametric kernel models.

7.2.2 Modelling Non-Flat Volatilities

When plotting implied volatilities of the caplet prices observed in the interest rate

marker' against strikes and maturities, one usually observes non-flat surfaces. This

means that the distribution of the forward LIBOR rates is not log-normal as implied

by the Black formula. To account for this phenomenon several modelling approaches

have been suggested. They range from simple parametric to fully non-parametric

methods. We briefly describe them in this section.

The first approach is based on an extension of the standard log-normal LIBOR

market model by assuming alternative dynamics for the forward-rate process that

lead to volatility smiles or skews. For example, Andersen and Andreasen (2000),

used the Cox (1975) CEV process for the forward rate. Ziihldorf (2000) considered

affine and quadratic volatility functions for the instantaneous volatility function

of the forward rate diffusions. All these extensions exhibit quite flexible volatility

skews. However, these extensions do not allow for the calibration of the whole

volatility surface.

liThe same phenomenon occurs in the equity and foreign-exchange markets as well.
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The class of models for the dynamics of forward LIBOR rates introduced recently

by Brigo and Mercurio (2000), and Brigo et al (2002), can be considered as a semi-

parametric approach. It is based on the assumption that the forward rate density is

given by a mixture of known basic densities. Simple log-normal dynamics as well as

mixture dynamics can be generalised by a displace-diffusion technique. This involves

shifting a process by a constant. Both, the mixture-diffusion and displace-diffusion

techniques enable better, albeit not exact, fit to the implied volatilities.

Yet another way of modelling non-flat volatilities has recently been considered by

Joshi and Rebonato (2001). They consider a stochastic volatility extension of the

standard LIDOR market model. In particular, they assume a certain paramet-

ric form for the instantaneous forward volatility function. The parameters of this

volatility function are assumed to follow certain stochastic processes. By a clever

choice of implementation procedures they achieve very good results both in fitting

the implied volatilities (though not exact), and in rapid pricing of path-dependent

options.

Finally, the approach based on the assumption of continuum of traded strikes can be

considered as a fully parametric. This goes back to Breeden and Litzenberger (1978),

and has been recently applied'[ in an interest rate framework by Kuan and Web-

ber (1998). This method is commonly referred to as implied pricing. The main

problems of this method are numerical instability and the need for interpolation

between option prlces'' between consecutive strikes. The models described above by

Hunt et al (2000) and Balland and Hughston (2000) can be considered as examples

of this approach as well.

In this section we have described several approaches to model non-flat volatilities.

They range from parametric to fully non-parametric methods. The characteristic

·See also Amin and Ng (1997), and Coutant et al (2001).
aAlternatively, the interpolation can be performed on Arrow-Debreu prices, the density function,

or local drift and volatility functions.
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feature of parametric methods is that they are rather limited in their flexibility to

fit shapes of the implied volatility structures whereas non-parametric methods fit

any implied volatility exactly. As we have noted in the introduction the exact fit

is probably not desirable, although a reasonably good fit may be expected from a

good term structure model. In this light the semi-parametric model yield the best

result. In the next section we describe our implied pricing kernel class of models

which, can be considered as a semi-parametric approach.

7.3 Modelling Framework

Assume that the unknown kernel is of the form

(7.3.1)

where Xt is some Markov process and It is a strictly positive continuous function

on JRd for every t. Furthermore, we take the view that the pricing kernel (7.3.1) can

be approximated by a kernel of the form,

(7.3.2)

where Xt is some Markov process and Ii a family of strictly positive continuous

functions.

Next, we describe the underlying process we used in the implementation of the

model, and several function families that can be used in approximating kernel (7.3.2).

7.3.1 The Underlying Markov Process

For numerical implementation of the models of the form (7.3.2) we choose a d-

dimensional linear stochastic differential equation of the form

dx, = (A(t)Xt + a(t))dt + B(t)dWt, Xto = C (7.3.3)
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where A(t) is a d x d-matrix valued function, a(t) is R"-valued function, and B(t) is

d x m-matrix valued. This process is very tractable and has been a popular choice

in interest rate modelling, especially within the short rate framework. Examples are

Vasicek (1977), Langetieg (1980), El Karoui and Lacoste (1995).

The solution of the linear SDE (7.3.3) is a Gaussian stochastic process Xt, with

mean value

mt = Ext = ~(t) (c+1: ~(u)-la(s)dS)
and covariance matrix

(7.3.4)

K(s, t) = 1E(x.. - Ex, )(Xt - Exd

(
rmin(s,t) )

= ~(s) ltD If>(u)-lB(u)B(u)' (If>(u)-l)' du ~(t)',

where the matrix ~(t) = ~(t, to) is the matrix of solutions of the homogeneous

equation'[

with the unit vectors c = ei in the xi-direction as initial value If, for example,

A(t) == A is independent of t, then
00

~(t) = exp(A(t - to)) =2:An(t - to)n In!.
o

Furthermore, we assume that the matrices A and B, and the vector a, are inde-

pendent of t. In this case, to obtain the moments of (7.3.3), we need to evalu-

ate the integral of the matrix exponentials in (7.3.4) and (7.3.5). We employ the

method of diagonal Pade approximation with scaling and squaring as described in

Van Loan (1978). See Appendix 7.6.3 for the details of the algorithm.

Most of the integration in the numerical implementation of the model in this chapter

has been done with Gauss-Hermite quadrature. This type of quadrature is partic-

ularly useful when we consider stochastic processes with Gaussian distributions, as

6Further details on SDE's of the form (7.3.3) can be found in Arnold (1974).
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they approximate integrals of the type

loo 2
-00 F(x)e-X dx,

and the Gaussian density can be used as the weight function. This method can be

generalised to integrals in higher dimensions, see Appendix 7.6.4.

7.3.2 Approximation by Radial and Ridge Functions

In this section we describe two classes of functions which can be used to approxi-

mate a pricing kernel. The member functions of both classes are strictly positive.

Thus, if we choose only positive coefficients in the approximation then our model

will be arbitrage-free. Note, both classes of functions are suitable for multivariate

approximation. This allows a simple extension of the IPK models from a one-factor

to a multi-factor framework.

The first class of functions is that of positive functions which have radial symmetry.

A real-valued function F on an inner-product space is said to be radial if F(x) =

F(y} whenever IIxll = lIyll. If this property is present, the value of F(x) depends

only on IIxll, and consequently there exists another function f : [0,00) -+ IRsuch

that

This type of function is referred to in Approximation Theory as a radial basis func-

tion.

Certain classes of radial basis functions have nice interpolating and approximating

properties. Specifically, it can be shown that for, say, a radial function f, for each

compact Q in IRn, the set

{x -+ f(x - y) : yE Q}
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is fundamental in C(Q), where C( Q) is the set of all continuous functions. Put in

another way, for each 9 E C(Q) and for each e > 0, there is a linear combination

EyEQ cjf(x - y), so that IIg(x) - EyEQ cjf(x - y)11< e. (The sum is finite.)

For example, if f is completely monotone" but not constant on [0,00), and Q is a

compact subset in IRn, then the set of functions

{x --+ f(lIx - yiD: y E Q}

is fundamental in C(Q).

This result provides a rich source of functions that are suitable for approximation of

data in the Euclidean spaces ]RI,]R2 , •••• The following functions satisfy the specified

conditions

1. J(t)=(t+l)-l,

2. f{t) = e-t,

3. f{t) = (t + 1)-1/2.

In Figures 7.1 and 7.2 we plot two examples of functions of this class. Note the

typical bell-shaped form. These functions can be used to interpolate or approximate

arbitrary data by functions of the form,

1. F(t) = ~1~ 1 J Cj ,
L.J :: 1+lIx-Xj 112

2. F(t) = Ej::l cje-llx-xjIl2,

The following belong to another type of radial function, that are not included in the

above class, but have similar approximating properties:

TThis class of function is due to Schoenberg (1938). In particular, he showed, that the function
:E -+ 100xll') is a radial strictly positive definite function on any inner-product space. I.e., for any n
distinct points Xl, %2, ••• ,:En in such a space the matrix Aij = !(lIx; - Xj 112)is positive definite.
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1. /(t) = ..;'i,

2. /(t) = ..;t+I,

3. /(t) = log(t + 1).

This type of function is quite different from the radial positive definite functions.

Figures 7.3 and 7.4 present two examples. These functions'' belong to the class with

the properties that l is completely monotone but not constant on (0,00), /(0) ~ 0,

and that /(00) = O. In Appendix 7.6.2, Lemma 7.6.1, we show that under certain

assumptions radial basis functions can approximate in distribution a pricing kernel.

The second class of functions that we suggest for the approximation of the pricing

kernel is the class of so-called ridge functions. As the radial basis function, the

ridge functions have been used in multivariate approximation theory. We denote a

normed linear space by X, and by X· the space of all continuous linear functionals

on X. A function / : X -+ lRis called ridge function if it can be represented in the

form / = go ¢, where 9 : lR -+ R and ¢ E X·. Every continuous linear functional

on lR;' is of the form

A ridge function on lR"is then a function of the form

Figure 7.5 shows the ridge function z = p(x-y), where p is a polynomial of degree 4.

A single ridge function is very limited in its capacity to approximate an arbitrary

continuous function on X. In particular, the graph of a ridge function is a ruled

8This class of functions has been described by Micchelli (1986). Functions from this class have
the property that for any n distinct points Xl, X2"., ,Xn the matrix Aij = f(lIxi - xjll2) is 11011-

singular.
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surface. For approximation purposes one considers a linear combination of ridge

functions of the form
m

f =LCigi 0 <Pi (gi E C(lR), <Pi EX·).
,=1

The coefficients Ci are unnecessary in this representation, since they can be absorbed

by the functions gi. It is important to note that not all continuous functions on X

are linear combinations of ridge functions. But every continuous function on X can

be well approximated by such linear combinations.

For some applications, such as neural networks'', it is very desirable to employ a

single function 9 in the ridge functions, which is usually called a sigmoid function

and denoted a, and has the property that

lim u(t) = 1 and lim u(t) = o.
t~oo t~-oo

The following functions are examples of sigmoids:

1. The logistic sigmoid f(x) = l+ex;(-ax)'

2. The Heaviside function f(x) = 1 if x ~ 0, f(x) = 0 if x < O.

A typical example of ridge function is plotted in Figure 7.5, and sigmoid ridge

functions in one and two dimensions are shown in Figure 7.6 and 7.7.

In this section we have described two classes of positive functions, the radial basis

functions and the ridge functions, that can be used to approximate a pricing kernel.

In Section 7.4 we will implement an implied pricing kernel model based on the

Gaussian radial basis function e-t• I.e., we will approximate the pricing kernel by a

linear combination of the form F(t) = Ej=1 cje-llx-xjIl2.

IIThis type o( (unction have been used by Bansal and Viswanathan (1993), and Bansal et al (1993)
used the logistic sigmoid, to approximate the pricing kernel within the asset pricing framework.
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7.3.3 Formulae for Pricing Zero-Coupon Bonds, Caps, and Swap-

tions

In this section we derive expressions for pricing formulae for zero-coupon bonds,

caplets and swaptions. These expressions will be used in the calibration stud-

ies of the model in the next section. Assuming that the pricing formula has the

form (7.3.2), the price of a zero coupon bond can be expressed as

where IE['IFt1, expectation operator conditional on the sigma algebra Ft, taken with

respect to a reference measure, the equivalent to the risk neutral measure. The

value of a caplet at time t with maturity date Tn-l and payoff at the date Tn,follows

from observing that P(Tn-lt Tn) = (1+L(Tn_1)8)-1, where L(Tn-d is the 8-period

LIDOR rate,

Cpl(t, Tn-lt Tn) = IE [ K~t_l P(Tn-lt Tn)o(L(Tn-d - K)+IFt]

= IE [K~t-l (1- JP(Tn-ltTn))+IFt]
(7.3.5)

where J = 1+ oK, with K the strike of the caplet and 0 the accrual period of the

underlying LIDOR rate.

Similarly, the price of a (payer) swaption at time t with maturity date To and last

payment at time TN, with the length of the accrual period 8, is given by

where K is the strike, It is the swap rate defined as

1t(11 T ) = (1 - P(To, TN ))
0, N 0L:f P(To, Ti) ,

and D(To, TN) = 0L:~l P(To, Ti).
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For our numerical study of the model in the next section we are going to use one

particular family of radial functions.
n

F(t) = I:aj(t)e-lIx-bj(t)1I2
j=1

This kernel allows analytical solution for the zero-coupon bond price,

,,~_ a ·(T)e-(mTt-bj(T))T(1+2VTt)-1(mTt-bj(T))
P(t T) = _L.-F.='-::::;:1=:==) =:==:;~-;::::;;------;--:--{7;"-;:-:i:\\7~--"T"~

, Jdct(I + 2VTt) ~j=l aj(t)e (Xt bj(t))T(Xt-bj(t))'

wherelo mTt and VTt are conditional mean and variance of the process XT condi-

tioned on the process at time t.

7.4 Implementation and Numerical Study of the Model

In this section we calibrate the implied kernel model to the data and study its prop-

erties. We choose the model based on the Gaussian radial functions and calibrate

it to three sets of data: the yield curve and at-the-money caps for the GB pound

on February 3, 1995, the yield curve and the caplet black implied volatility surface

for the GD pound on August 4, 2000, and the yield curve and at-the-money black

implied swaption matrix for 4th August, 2000. For all implementations we use only

three basis functions.

7.4.1 Yield Curve and ATM Caps

In the first study of the model, we investigate whether our implied pricing kernel

model was able to fit zero-coupon yield curve and ATM caps. To calibrate the

models we used data from the UK market on February, 3, 1995, which we obtained

from Drace et al (1997). The zero coupon discount curve is given in Table 7.1. To

obtain the yield and forward rate on other dates than in Table 7.1. we used spline

approximation techniques, described in Dierckx (1993), and in the accompanying

IOThis expression for the bond price can be easily confirmed by completing the square in the
Gaussian density.
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Fortran software package FITPACK. The approximations by smoothing splines led

to oscillations in the forward curve. The best results, were achieved by using the

weighted least-squares spline with a judiciously chosen set of knots. The plots of

the resulting forward rate and yield curves are in Figure 7.8, and the corresponding

values are in Table 7.2.

To calibrate the model to the ATM cap prices we used a similar algorithm to the

one used in calibration of the market models. I.e., we recovered the black implied

forward-forward volatilities. This gave us prices of individual caplets comprising the

caps. The details of the recovery of the forward forward volatilities are described

in Appendix 7.6.1. We plotted the forward forward volatilities in Figure 7.9. As

we see, it has the typical hump shape around 2 years to maturity and is monotonic

elsewhere. We then calibrated our model to these caplet prices and subsequently to

the quoted ATM cap prices.

The calibration results of our model are presented in Tables 7.3 and 7.4. The fit

to the yield curve is exact. The fit to cap prices is quite good. The largest error

is just below 3bp. Measured in percentage terms most of the errors are less than

0.5 percent with the exception of the 3-year cap, which has an error of 1.5 percent.

For comparison reasons we also calculated the swaption prices implied by our cali-

brated model. Then we compared the results with the swaption market prices. We

presented the results in Table 7.5. Note that we did not try to calibrate the model

to these swaption prices. As can be expected the errors are quite large.

Most of the swaption prices are higher than the market prices. This is in line with

other findings in the literature. For example, de Jong et al (2001) analyse the LIBOR

market models on the US caplet and swaption data. They find that swaptions are

overpriced with the average absolute pricing error around 1 volatility point. Similar

results have been found by Driessen et al (2000) who investigate the performance of

IIJM multi-factor models on the US data.
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We also calculated the implied black swaption volatility matrix resulting from the

model's calibration to the ATM caps. This matrix can be seen in Table 7.6. In most

of the cases the contracts change smoothly from maturity to maturity, and between

different underlying swap lengths.

7.4.2 The Yield Curve and Caplet Volatility Surface

In this study we tested whether the implied pricing kernel model could fit the yield

curve and caplet volatility surface. The dataset was the yield curve and the caplet

black implied volatility surface for the GB pound on August 4, 2000. In particular,

we fitted the yield curve with maturities from 2 to 10 years with quarterly steps,

and caplet prices with the same maturities and strikes ranging from 2% to 10%,

with 0.01% step size. As in the previous exercise, the forward rate curve implied

by the bond data was not smooth and exhibited oscillating behaviour. To overcome

this, we applied some smoothing. We have plotted the resulting yield and forward

curves in Figure 7.10.

We have presented the zero coupon bond prices together with model bond prices

and percentage errors in Table 7.7. The fit is not perfect; but most of the errors

are below 0.1%. In Table 7.8, we present the results of the fit to the caplet prices.

The first line in each block presents the market prices, and the second the model

prices. The third and forth lines present errors expressed in percentage terms and

basis points.

The quality of fit of the caplet surface is very good for the longer maturities. In

most cases it is less than 1%. However, for maturities less than 5 years and high

strikes the quality decreases significantly. The reason for, we believe, lies in the low

precision of the implementation programme. We plotted the market caplet prices

in Figure 7.12, and the model caplet prices in Figure 7.13. We have also plotted

market and model caplet prices together for selected maturities of 2.5, 5, 7.5, 10
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years to maturity in Figures 7.18 to 7.21.

7.4.3 The Yield Curve and ATM Swaptions

In this exercise we tested whether the implied pricing kernel model could fit the yield

curve and ATM swaption prices. The dataset was again GB pounds on August

4, 2000, comprising the zero coupon bond prices and ATM swaptions. We have

presented the zero coupon bond together with the model prices and the percentage

error in Table 7.10. As we see the model bond prices fit the market prices almost

exactly. The Table 7.11 presents the market and model swaption prices for several

maturities and lengths of the underlying swap contracts together with percentage

errors of the fit. In many cases the fit is quite good, but in some cases the error

is quite large. This is not unexpected, as our model is only one-factor. We would

need higher-factor models to achieve a better fit.

7.4.4 Properties of the Model

We also investigated distributional properties of the implied kernel model calibrated

to the yield curve and the caplet black implied volatility surface for GB pound on

August 4, 2000. We simulated the 3-month LIBOR rates implied by our model

using Monte-Carlo technique. In Table 7.9 we present the descriptive statistics

for the LIllOR rates for maturities between 2 and 10 years, resulting from our

simulation, including the mean, standard deviation, skewness and kurtosis. Observe

the presence of skewness and kurtosis which grows for longer maturities.

We have also plotted in Figures 7.14 to 7.17, the histograms of the LIBOR rates

with maturities of 2.5, 5, 7.5, and 10 years. In each plot we have also added the

density functions of normal and log-normal distributions with the same moments

as the simulated distribution of the LIBOR rates. Note the IPK model produced

positive interest rates though, it was not constrained to do so.
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7.5 Conclusions

In this chapter we have introduced a class of pricing kernel models, the Implied

Pricing Kernel (IPK) models, for the term structure of interest rates. This class is

mainly intended for pricing interest rate derivatives. The main motivation for its

development has been the goal of finding an alternative to the market models. This

alternative should combine the advantages of the market models such as the ease

of calibration to liquid market prices, with the advantages of the short rate models,

such as low-dimensional Markov structure. We also wanted this class to be flexible

in fitting other price information such as skews etc.

Unlike previous literature which has utilised a pricing kernel approach, we have

approximated the pricing kernel by a functional series. Thus, implicitly, we have

acknowledged that we do not know its correct functional form. However, we believe

that the pricing kernel can be approximated sufficiently closely by a judiciously

chosen functional series and the underlying process. We have suggested two types

of approximating series: the first is based on the radial basis functions, and the

second on the ridge functions. The basis functions of both types are strictly positive.

Thus, by choosing only non-negative coefficients in the series we have achieved a

strictly positive pricing kernel which guarantees absence of arbitrage in the model.

Furthermore, the coefficients and parameters of the series have been chosen so that

the model fits the market price information, such as zero coupon bond prices, caps,

caplets, and swaptions. As the underlying noise in the economy we chose a simple

multi-factor Gaussian diffusion. Our approach is just as simple in a one-factor as in

a multi-factor setting. In a summary, the class of implied kernel models is Markov

by construction, calibration for a small number of factors is relatively easy, it can

deal with American type options, and is flexible in fitting to skews.

The IPK class models have an advantage over the models with a fixed pricing kernel

designed by Constantinides (1992), or Flesaker and Hughston (1996a). They are
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more flexible in fitting the market price information. It also has an advantage

over the non-parametric type of kernel models designed by Hunt et al (2000), and

Balland and Hughston (2000). This non-parametric approach relies on inferring

the kernel from the digital caplets or swaptlon prices. For a given maturity such

kernels can only fit one type of instrument only, e.g. a cap price or possibly a set

of caplets with different strikes. However, they are incapable of dealing with say a

set of caplets and swaptions at the same time, or swaptions with different lengths of

underlying swaps. The possibility of extending that type of model to a multi-factor

setting is questionable. The IPK models can fit simultaneously to any market price

information available. The quality of the fit can be improved by adding more basis

functions in the approximating series. Moreover, the extension of the underlying

noise to a multi-factor structure is trivial.

We conducted several model calibration studies for one-factor IPK models. This

comprised of calibrations to the yield curve and at the money cap prices, the yield

curve and caplet implied volatility surface, and the yield curve and swaption data.

Overall, we achieved a reasonably good quality of fit. We also studied numerically

the distributional properties of the forward LIBOR rates implied by a calibrated

IPK model. These studies are, of course, only preliminary. More extensive tests of

this class of models is needed to assess its full advantages and shortcomings.

There are several questions that can be addressed by further research. We have

suggested two classes of strictly positive approximating functions. It is not clear

which class of functions and which members of these classes are better suited for

approximation of the pricing kernel. We have assumed a Gaussian diffusion as

the underlying noise structure. Other processes may be more appropriate in this

case. On the implementation side, better evaluation and calibrating techniques may

be needed, especially for multi-factor IPK models. We suggest further research

directions for the pricing kernel model in concluding Chapter 8.
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7.6 Appendices

7.6.1 Recovering Forward-Forward Volatilities

The market typically quotes volatilities for caps with first reset date either in three

months (To equal to three months, a = 0 and all other T's equally spaced three

months apart) or in six months (To equal to six months, a = 0 and all other

T's equally spaced six month apart), and progressively increasing maturities. In

our case UK market caps are quarterly while swaptions are semiannual. We set

Tj = [To,... ,7j] for all [, An equation is considered between the market price

CapMKT(O, Tj,K) of the cap with a = 0 and f3 = i, and the sum of the first j

caplet prices,

j

CapMKT(O, Tj, K) = LTiP(O, Ti)BI(K, Fi(O), ~VTj_cap)
i=l

(7.6.1)

where a same average-volatility valuevTj_Caphas been substituted in all caplets up

to j. The quantities urj-cap are sometimes called forward volatility. The market

solves the above equation in VTj_cap and quotes VTj_cap annualised and in percentages.

One can obtain another representation for the value of the cap by using

;
LTiP(O, T;)Bl(K, Fi{O), y'1G"vTj_cap) =
i=l
;
LTiP(O, Ti)BI(K,Fi(O), ~VTj_caPlet)'

i=l

(7.6.2)

The quantities urj-capletare called sometime forward-forward volatilities. Notice that

different average volatilities urj-caplet are assumed for different caplets occurring to

the T;-maturity cap.

We used a stripping algorithm to recover the VTj_caplet'S from the market quoted

urj_cap'S based on the 18..<;tequality applied to j = 1,... ,5,7,10. We parametrised

the forward forward volatility curve by the family of curves described by Nelson and
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Siegel {1987}. The curve f(t} is of the form

f(t} = /30 + (/31 + /32t) exp( -kt}

with four parameters (/30,/3l,/32,k). We minimised the criterion

which resulted in the parameter vector (/30, /31, /32, k) = (0.124, -0.0167,0.105,0.553)

and M SE = 0.00015.

7.6.2 Proof of Lemma 7.6.1

Lemma 7.6.1. Let X E JRd be a random variable such that its push forward

measure IPx is a measure with density 9 relative to the Ad-Lebesgue measure on

{nr', Bd}. Furthermore, let {In}, be a sequence of real, measurable function on Rd

converging point-wise to a measurable function f. Then the sequence of random

variables fn(X) converges to f{X) in distribution.

Proof. To prove convergence in distribution we need to show only that the charac-

teristic function of fn(X), in(t), converges point-wise to the characteristic function

of f(X}, i(X).

From the point-wise convergence of fn to f follows point-wise convergence of e-itf"

to e-itf• Furthermore, from

le-itf"g(x)1 :5 g(x}

it follows that the integrand is dominated by a function 9 E Ll(Bd,Ad}. The in-

terchange of limit and integration is justified by Lebesgue's dominated convergence

theorem. (See Rudin (1976), Theorem 11.32.) o
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7.6.3 Computing Integrals of Matrix Exponentials

Here we sketch the algorithm used in this chapter to calculate the integral of the

matrix exponential. For a full discussion of the method and the quality of the

approximation see Van Loan {1978}.

Let A, B, and Qc be real matrices of dimensions n x n, n xp, and n x n, respectively.

Assume that Qc is symmetric (Qr = Qc) and positive definite (xTQcx ~ o). The

methodology involves calculating the following integrals

H{Ll} = loll. eAs Bds,
Q(Ll} = loll. eATsQceAsds,

M(Ll) = loll. eATsQsH(s)ds,
W(Ll) = loll. HT(s}QcH{s)ds. {7.6.3}

The method for calculating these integrals involves computing the exponential of a

certain block triangular matrix and combining various sub-matrices of the result to

obtain (7.6.3)-(7.6.3). In particular, if we apply Theorem 1. in Van Loan (1978) to

o
o
o

o
o

A B

o 0
we find

o
o

o
o

F3(t) G3(t)

o F4(t)

Fl(t) G1(t) ih(t} Kdt)

o F2(t) G2(t) (Hh(t)

where
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G2(t) = e-ATt 1t eATsQceAsds,

G3(t) = fot eA(t-s) Bds,

iI2(t) = e-ATt fot fos eATsQceAr Bdrds,

Kl(t) = e-ATt 1t1S

for eATrQceAw Bdwdrds.

It turns out that the integrals (7.6.3}-(7.6.3) can be expressed in terms of these

sub-matrices of eet when we set t = ~:

H(~) = G3(~),

Q(~) = P3(~)TG2(~)'

M(~) = P3{~)T iI2(~)'

W(~) = [BTP3(~)TKd~)] + [BTP3(~)TKI(~)]T.

. (7.6.4)

(7.6.5)

(7.6.6)

(7.6.7)

To use (7.6.4}-(7.6.7) for practical applications we need a means for estimating eel::..

One possibility is to use Ward's algorithm, with estimates of the form

[ (

A )]2iCl::. C~
e = Rqq 2i ' q,j ~ 0,

where Rqq(z) is the (q, q)-Pade approximant to eZ,

(2q - k)!q!
Ck = (2q)!k!(q _ k)!'

(7.6.8)

The scaling by 2i followed by repeatedly squaring greatly enhances the numerical

properties of the ordinary Pade approximation. It is clear that the approximation

in (7.6.8) has the form

FI(t) GI(t) HI(t) KI(t)

[n.. (~)f 0 F2(t) G2(t) H2(t)-
0 0 F3(t) G3(t)

0 0 0 F4(t)
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Thus, in accordance with (7.6.4)-(7.6.7), we obtain the following approximations

to (7.6.3)-(7.6.3):

H(l1) ~ G3(11),

Q(l1) ~ F3(11)TG2(11),

M(l1) ~ F3(11)T H2(11),

W(l1) ~ [nT F3(11)T Kdl1)( + [BTF3(11)T Kl(l1)] .

This procedure is easy to implement. All that is involved is a single call to any Pade

matrix exponential subroutine, followed by some elementary matrix computations.

7.6.4 Gauss-Hermite Quadrature

This type of quadrature is particularly useful when we consider stochastic processes

with Gaussian distributions, as they approximate integrals of the typei:F(x)e-X2 dx.

The general idea of Gaussian quadrature is to choose not only the weighting coeffi-

cients, but also the location of the abscissas at which the function is to be evaluated.

Thus one can achieve Gaussian quadrature formulae whose order is twice that of

Newton-Cotes formulae with the same number of function evaluations. The useful

feature of Gaussian quadrature formulae is that we can arrange the choice of weights

and abscissas to make the integral exact for the class of integrands "polynomials

times some known function W(x)" rather than for the usual class of integrands

"polynomials". Given weights Wi and abscissas Xi the approximation

is exact if F(x) is a polynomial. If the integration interval is (-00,00), and the

weight function is Gaussian density W(x) = e-x\ we speak of Gauss-Hermite
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quadrature. In general, high order quadrature corresponds to high accuracy only

if the integrand is very smooth. For further details on Gaussian quadrature see, for

example, Stoer and Bulirsch (1980).

This method can be generalised to higher dimensions as well. As an example of

its use, let us assume that we want to compute the first order moment of the two-

dimensional function F(Xb X2), where

We therefore have to compute the integral

, (0'11 0'12)where x = (X1,X2) , I' = (1'1,/-l2), ~ = . Let ~ be the Cholesky
0'21 0'22

decomposition of ~ such that ~ = ~~', and make the change of variable

Then the integral rewrites as

We then use the product rule, relying on one-dimensional Gauss-Hermite quadra-

ture, so that we approximate the integral by

RI R2

11"-1E E wllwl2F(V2<pllY1 + /-l1, V2(<P21Yl + <P22Y2) + /-l2).
il =1 i2=1

1.6.5 Figures
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Figure 7.1: A radial basis function of the form exp( -allx - bll)' with a = 1 and
b = (3,3).
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Figure 7.2: A radial basis function of the form 1/ ../1 + allx - bll, with a = 0.5 and
b = (3,3).
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Figure 7.3: A radial basis function of the form log(1.1 + -allx - biD, with a = 200
and b = (3,3).

o 0

Figure 7.4: A radial basis function of the form y'0.1 + allx - bll, with a = 0.1 and
b=(3,3).
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Figure 7.5: A typical ridge function.
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Figure 7.6: A logistic sigmoid with the parameter a = 2.
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Figure 7.7: A sigmoid ridge function.
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Figure 7.8: Yield and forward rate curves. Date: 03-Feb-95.
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Figure 7.9: Forward forward volatility curve. Date: 03-Feb-95.
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Figure 7.10: Yield and forward rate curves. Date: 04-Aug-00.
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Figure 7.11: Black caplet implied volatility surface. Date: 04-Aug-OO.
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Figure 7.12: Market caplet prices. Date: 04-Aug-OO.
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Figure 7.13: Model caplet prices. Date: 04-Aug-OO.
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Figure 7.14: Histogram for the forward LIBOR rates with maturity 2.5 years, to-
gether with normal and log-normal densities. The LIBOR rate distribution results
from the model fit to the bond and caplet prices. Date: 04-Aug-OO.

Figure 7.15: Histogram for the forward LIBOR rates with maturity 5 years, together
with normal and log-normal densities. The LIBOR rate distribution results from
the model fit to the bond and caplet prices. Date: 04-Aug-OO.
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Figure 7.16: Histogram for the forward LIBOR rates with maturity 7.5 years, to-
gether with normal and log-normal densities. The LIBOR rate distribution results
from the model fit to the bond and caplet prices. Date: 04-Aug-OO.
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Figure 7.17: Histogram for the forward LIBOR rates with maturity 10 years, to-
gether with normal and log-normal densities. The LIBOR rate distribution results
from the model fit to the bond and caplet prices. Date: 04-Aug-OO.
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Figure 7.18: Model and caplet prices with 2.5 years to maturity. Date: 04-Aug-OO.
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Figure 7.19: Model and caplet prices with 5 years to maturity. Date: 04-Aug-OO.
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Figure 7.20: Model and caplet prices with 7.5 years to maturity. Date: 04-Aug-00.
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Figure 7.21: Model and caplet prices with 10 years to maturity. Date: 04-Aug-OO.
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7.6.6 Tables

Table 7.1: Zero Coupon Discount Function (ZCDF) for 3 Feb 1995.
Tenor: x ZCDF (x) Tenor: x ZCDF (x) Tenor: x ZCDF (x)
0.07671233 0.99489605 2.37260274 0.82165363 6.50136986 0.56589374
0.10958904 0.99268989 2.62191781 0.80338660 7.00821918 0.53980408
0.37808219 0.97422289 2.87123288 0.78546824 7.50684932 0.51675532
0.62739726 0.95577923 3.12054795 0.76794952 8.00547945 0.49467915
0.87671233 0.93669956 3.49863014 0.74763879 8.50410959 0.47353468
1.12602740 0.91730596 4.00273973 0.71105063 9.00547945 0.45317677
1.37534247 0.89785353 4.49863014 0.67976222 9.50410959 0.43378439
1.62465753 0.87847062 5.00273973 0.64895804 10.00821918 0.41501669
1.87397260 0.85927558 5.50136986 0.62032221 10.50821918 0.39720417
2.12328767 0.84029504 6.01095890 0.59213852 11.00821918 0.38015617

Table 7.2: Market Data for 3 Feb 1995.
Tenor Yield Forward Tenor Yield Forward Tenor Yield Forward
0.25 6.794 7.359 3.50 8.488 9.183 6.75 8.755 9.028
0.50 7.043 7.963 3.75 8.527 9.197 7.00 8.761 9.018
0.75 7.324 8.426 4.00 8.563 9.202 7.25 8.766 9.012
1.00 7.577 8.676 4.25 8.594 9.201 7.50 8.771 9.012
1.25 7.779 8.811 4.50 8.622 9.193 7.75 8.776 9.011
1.50 7.935 8.870 4.75 8.647 9.182 8.00 8.780 9.007
1.75 8.055 8.891 5.00 8.666 9.165 8.25 8.784 9.001
2.00 8.147 8.908 5.25 8.687 9.146 8.50 8.787 8.991
2.25 8.221 8.957 5.50 8.703 9.125 8.75 8.790 8.978
2.50 8.284 9.025 5.75 8.717 9.103 9.00 8.793 8.961
2.75 8.343 9.082 6.00 8.729 9.082 9.25 8.794 8.941
3.00 8.396 9.126 6.25 8.739 9.067 9.50 8.796 8.917
3.25 8.444 9.160 6.50 8.747 9.046 9.75 8.796 8.888
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Table 7.3: Discount bond price for 3 Feb 1995 together with model price and per-
t ~ tl fitcen age error or le .

Maturity ZCD Model Error (%) Maturity ZCB Model Error (%)
0.25 0.9832 0.9832 0.00 5.00 0.6483 0.6483 0.00
0.50 0.9654 0.9654 0.00 5.25 0.6338 0.6338 0.00
0.75 0.9466 0.9464 0.00 5.50 0.6196 0.6196 0.00
1.00 0.9270 0.9270 0.00 5.75 0.6058 0.6058 0.00
1.25 0.9073 0.9073 0.00 6.00 0.5923 0.5923 0.00
1.50 0.8878 0.8878 0.00 6.25 0.5791 0.5791 0.00
1.75 0.8685 0.8685 0.00 6.50 0.5663 0.5663 0.00
2.00 0.8496 0.8496 0.00 6.75 0.5538 0.5538 0.00
2.25 0.8311 0.8311 0.00 7.00 0.5416 0.5416 0.00
2.50 0.8129 0.8129 0.00 7.25 0.5296 0.5296 0.00
2.75 0.7950 0.7950 0.00 7.50 0.5180 0.5180 0.00
3.00 0.7773 0.7773 0.00 7.75 0.5065 0.5065 0.00
3.25 0.7600 0.7600 0.00 8.00 0.4954 0.4954 0.00
3.50 0.7430 0.7430 0.00 8.25 0.4845 0.4845 0.00
3.75 0.7263 0.7263 0.00 8.50 0.4738 0.4738 0.00
4.00 0.7100 0.7100 0.00 8.75 0.4634 0.4634 0.00
4.25 0.6940 0.6940 0.00 9.00 0.4532 0.4532 0.00
4.50 0.6784 0.6784 0.00 9.25 0.4433 0.4433 0.00
4.75 0.6632 0.6632 0.00 9.50 0.4336 0.4336 0.00
5.00 0.6483 0.6483 0.00 10.00 0.4149 0.4149 0.00
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Table 7.4: Results from the model calibration to the ATM caps and zero coupon
b dDt 03 B 1>-1991':on prices. a e: - e \).

Length A-T-M mack Market Model Error Error
Strike (%) Vol (%) Price (bp) Price (bp) (%) (bp)

1 7.91 15.50 27 27 0.04 0.01
2 8.41 17.75 99 99 0.32 0.32
3 8.60 18.00 183 186 1.57 2.92
4 8.74 17.75 272 273 0.40 1.09
5 8.82 17.75 356 356 -0.07 -0.25
7 8.88 16.50 508 507 -0.25 -1.25
10 8.90 15.50 701 699 -0.24 -1.71

Table 7.5: Model and market swaption prices, resulting from calibration to the ATM
d b d nri D t 03 B b 1995caps an zero coup_on on ~nces. a e: - e -

Maturity x A-T-M mack Market Model Error Error
Swap Length Strike (%) Vol (%) Price (bp) Price (bp) (%) (bp)

0.25 x 2 8.56 16.75 51 44 -13.05 -6.6
0.25 x 3 8.74 16.50 73 73 -0.44 -0.3
0.25 x 5 8.93 15.00 105 121 15.58 16.3
0.25 x 7 8.99 13.75 124 158 26.70 33.2

1 x 4 9.13 15.50 172 193 11.99 20.6
1 x 9 9.13 13.25 270 316 16.99 46.0
2x8 9.17 12.75 312 352 12.62 39.4

Table 7.6: Implied black swaption volatility, resulting from calibration to the ATM
d h d nri D t 03 F b-1995caps an zero coupon on prices. a e: - e

1 2 3 4 5 6 7 8
2 16.43 14.67 16.92 16.15 15.04 9.87 5.66 9.54
3 17.06 15.63 16.76 15.88 11.94 8.94 7.91
4 17.39 15.84 16.53 13.52 10.91 9.92
5 17.40 15.96 14.66 12.52 11.45
6 17.39 14.62 13.75 12.80
7 16.14 13.92 13.89
8 15.45 14.08
9 15.52
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Table 7.7: Zero coupon bond prices together with calibrated model prices and per-
centage error. The model was calibrated to the caplet and bond prices. Date:
04-A 00ug-
Maturity zcn Model Error (%) Maturity ZCB Model Error (%)

2.00 0.9·183 0.9473 0.101 6.25 0.6406 0.6409 -0.048
2.25 0.9361 0.9351 0.107 6.50 0.6212 0.6216 -0.055
2.50 0.9234 0.9223 0.114 6.75 0.6023 0.6027 -0.063
2.75 0.9098 0.9088 0.114 7.00 0.5839 0.5842 -0.063
3.00 0.8950 0.8942 0.098 7.25 0.5660 0.5664 -0.072
3.25 0.8791 0.8783 0.090 7.50 0.5487 0.5491 -0.074
3.50 0.8620 0.8613 0.085 7.75 0.5319 0.5323 -0.075
3.75 0.8·139 0.8432 0.088 8.00 0.5158 0.5162 -0.077
4.00 0.8250 0.8244 0.076 8.25 0.5002 0.5006 -0.087
4.25 0.8053 0.8047 0.069 8.50 0.4852 0.4856 -0.086
4.50 0.7850 0.7845 0.061 8.75 0.4707 0.4711 -0.087
4.75 0.7643 0.7639 0.050 9.00 0.4568 0.4572 -0.087
5.00 0.7434 0.7431 0.038 9.25 0.4435 0.4439 -0.087
5.25 0.7223 0.7222 0.019 9.50 0.4307 0.4311 -0.089
5.50 0.7014 0.7014 0.002 9.75 0.4184 0.4188 -0.087
5.75 0.6808 0.6809 -0.016 10.00 0.4067 0.4070 -0.088
6.00 0.6605 0.6608 -0.035
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Table 7.8: Calibrated model and market caplets prices for a range of strikes and
maturities, together with errors expressed in basis points and percentage. Date:
04-A 00ug-

0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.1%
2 75.09 51.79 30.37 14.51 5.95 2.06 0.61 0.15 0.03
M 74.60 51.48 30.42 14.69 5.84 1.77 0.48 0.13 0.04
bp -0.49 -0.30 0.05 0.18 -0.10 -0.29 -0.13 -0.02 0.01
% -0.65 -0.59 0.16 1.20 -1.79 -16.18 -26.78 -15.97 24.54
3 114.73 93.01 72.08 52.97 36.62 23.29 14.16 8.31 4.11
M 115.55 93.70 72.45 52.85 36.11 22.93 14.06 8,43 5.07
bp 0.83 0.69 0.37 -0.12 -0.51 -0.37 -0.09 0.13 0.96
% 0.71 0.73 0.51 -0.23 -1.41 -1.60 -0.67 1.53 18.94
4 156.05 136.02 116.27 97.28 79.21 62.76 48.63 36.05 26.61
M 156.70 136.61 116.71 97.29 78.81 62.00 47.98 36.63 27.82
bp 0.64 0.59 0.44 0.01 -0.40 -0.76 -0.65 0.57 1.21
% 0.41 0.43 0.38 0.01 -0.50 -1.23 -1.35 1.57 4.35
5 172.70 154.79 137.11 119.90 103.18 87.53 73.04 59.31 48.43
M 174.06 156.03 138.09 120.38 103.10 86.73 72.14 59.46 48.77
bp 1.36 1.24 0.99 0.48 -0.09 -0.80 -0.90 0.15 0.34
% 0.78 0.79 0.71 0.40 -0.09 -0.92 -1.25 0.26 0.70
6 165.99 150.03 134.27 118.65 103.95 89.30 76.71 64.13 53.54
M 166.74 150.75 134.86 119.17 103.85 89.30 76.13 64,45 54.36
bp 0.75 0.73 0.59 0.52 -0.10 0.00 -0.58 0.32 0.82
% 0.45 0.48 0.44 0.43 -0.10 0.00 -0.77 0,49 1.50
7 150.13 136.14 122.35 108.64 95.78 82.91 71.42 60.56 49.80
M 150.45 136.34 122.35 108.59 95.26 82.69 71.28 61.10 52.22
bp 0.32 0.20 -0.00 -0.06 -0.52 -0.21 -0.14 0.54 2,43
% 0.21 0.14 -0.00 -0.05 -0.54 -0.26 -0.19 0.89 4.65
8 130.67 118.36 106.21 94.33 83.07 71.82 62.37 53.02 44.24
M 130.92 118.48 106.18 94.18 82.69 72.01 62.30 53.64 46.08
bp 0.25 0.12 -0.03 -0.15 -0.38 0.19 -0.07 0.62 1.84
% 0.19 0.10 -0.02 -0.16 -0.46 0.26 -0.12 1.16 3.99
9 111.21 100.11 89.25 79.01 69.14 60.36 52.29 44.23 38.17
M 111.15 100.15 89.35 78.92 69.13 60.16 52.00 44.75 38.44
bp -0.06 0.0·1 0.10 -0.09 -0.01 -0.19 -0.29 0.52 0.28
% -0.05 0.0-1 0.11 -0.11 -0.02 -0.32 -0.57 1.17 0.72
10 92.96 83.11 73.54 64.62 55.92 48.73 41.75 35.12 30.51
M 92.91 83.13 73.59 64.48 56.08 48.55 41.68 35.63 30.42
bp -0.05 0.02 0.05 -0.14 0.17 -0.17 -0.07 0.52 -0.09
% -0.06 0.03 0.07 -0.21 0.29 -0.36 -0.17 1.45 -0.29
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Table 7.9: Mean, standard deviation, skewness and kurtosis for LIBOR rates, result-
ing from the calibration of the model to the zero-coupon bond and caplets. Date:
04-A 00ug-
Maturity Mean St.Dev. Skewness Kurtosis

2.00 0.054 0.014 0.686 0.646
2.25 0.058 0.016 0.715 0.678
2.50 0.063 0.019 0.533 0.407
2.75 0.070 0.023 0.482 0.332
3.00 0.078 0.025 0.492 0.354
3.25 0.085 0.028 0.491 0.354
3.50 0.093 0.032 0.740 0.733
3.75 0.100 0.036 0.508 0.373
4.00 0.107 0.038 0.557 0.443
4.25 0.114 0.041 0.540 0.422
4.50 0.120 0.044 0.552 0.444
4.75 0.126 0.047 0.556 0.452
5.00 0.131 0.050 0.516 0.398
5.25 0.136 0.053 0.635 0.587
5.50 0.139 0.055 0.620 0.562
5.75 0.143 0.058 0.682 0.677
6.00 0.145 0.059 0.699 0.713
6.25 0.148 0.061 0.739 0.797
6.50 0.149 0.058 0.633 0.694
6.75 0.154 0.067 0.880 1.055
7.00 0.153 0.061 0.627 0.699
7.25 0.156 0.068 0.822 0.975
7.50 0.158 0.071 0.873 1.083
7.75 0.159 0.071 0.862 1.100
8.00 0.158 0.070 0.811 1.086
8.25 0.163 0.080 0.983 1.364
8.50 0.16·t 0.081 0.999 1.414
8.75 0.164 0.082 1.043 1.619
9.00 O.lM 0.082 0.977 1.371
9.25 0.165 0.085 1.035 1.579
9.50 0.166 0.088 1.092 1.734
9.75 0.166 0.090 1.171 2.077
10.00 0.165 0.089 1.153 2.006
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Table 7.10: Zero coupon bond prices together with calibrated model prices and
percentage error. The model was calibrated to the ATM swaptions and bond prices.
D 04 A 00ate: - ug-
Maturity ZCD Model Error (%) Maturity ZCB Model Error (%)

2.00 0.9483 0.9·198 -0.160 6.25 0.6406 0.6406 0.000
2.25 0.9361 0.9361 0.000 6.50 0.6212 0.6212 -0.000
2.50 0.9234 0.9234 0.000 6.75 0.6023 0.6023 0.000
2.75 0.9098 0.9098 -0.000 7.00 0.5839 0.5830 0.151
3.00 0.8950 0.89·16 0.042 7.25 0.5660 0.5660 0.000
3.25 0.8791 0.8791 0.000 7.50 0.5487 0.5487 -0.000
3.50 0.8620 0.8620 0.000 7.75 0.5319 0.5319 0.000
3.75 0.8439 0.8439 -0.000 8.00 0.5158 0.5112 0.885
4.00 0.8250 0.8248 0.024 8.25 0.5002 0.5002 0.000
4.25 0.8053 0.8053 0.000 8.50 0.4852 0.4852 0.000
4.50 0.7850 0.7850 -0.000 8.75 0.4707 0.4707 -0.000
4.75 0.7643 0.7643 -0.000 9.00 0.4568 0.4579 -0.226
5.00 0.743·1 0.7448 -0.196 9.25 0.4435 0.4435 -0.000
5.25 0.7223 0.7223 -0.000 9.50 0.4307 0.4307 -0.000
5.50 0.7014 0.7014 0.000 9.75 0.4184 0.4184 0.000
5.75 0.6808 0.6808 0.000 10.00 0.4067 0.4045 0.536
6.00 0.6605 0.6638 -0.502 10.25 0.3954 0.3954 -0.000
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Table 7.11: Swaptions contracts expressed as maturity x length. Model fit to
the ATM swaption prices in basis point units together with market prices and the

t D t 04 A 00percen age errors. a e: - u~-
2 3 4 5 6 7 8 9 10

0.5 24 41 55 62 64 64 58 53 47
Mk 24 41 55 62 64 64 58 53 47
% 0.07 -0.00 0.00 0.01 -0.00 -0.00 0.00 0.00 -0.00
1 43 74 113 91 121 117 113 79 80

Mk 51 87 113 124 123 117 106 95 84
% 15.36 15.63 -0.00 26.08 1.99 -0.01 -5.97 17,47 5.38
2 102 174 197 201 225 182 175 157 150

Mk 119 179 220 232 228 212 191 171 150
% 14.50 2.91 10.51 13.33 1,40 14.11 8.75 7.99 0.00
3 184 247 298 302 295 258 240 227 216

Mk 195 269 310 318 307 284 255 227 202
% 5.33 8.05 3.88 4.95 4.14 8.98 5.94 -0.00 -7.12
4 244 339 381 364 369 332 305 291

Mk 265 346 384 385 369 340 305 272
% 7.86 2.03 0.61 5,42 -0.00 2.24 0.00 -6.98
5 323 410 444 435 440 399 368

Mk 329 410 444 435 415 381 344
% 1.95 0.00 0.01 0.00 -6.05 -4.77 -6.85
6 387 467 502 502 505 461

Mk 385 465 496 484 461 427
% -0,45 -0,42 -1.26 -3.65 -9,41 -7.99
7 428 520 560 563 564

Mk 428 510 538 523 499
% 0.00 -1.92 -4.13 -7.68 -13.01
8 473 571 616 619

Mk 470 545 569 556
% -0.77 -4.81 -8.14 ·11.33
9 515 619 666

Mk 492 569 597
% -4.59 -8.69 -11.62
10 554 665

Mk 513 593
% -8.06 -12.03
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Chapter 8

Conclusions and Further

Research

In this concluding chapter we will simultaneously summarise the main contribution

of the thesis, and suggest some interesting areas for further research. In this thesis

we investigated interest rate modelling with the emphasis on applications in pricing

and risk management of interest rate derivatives and portfolios.

The first part of the thesis was developed within the random field framework sug-

gested by Kennedy (1994). To use the random field approach one needs to find

a flexible family of covariance functions, and thus a flexible class of field models,

that can fit the empirical covariance matrix observed in the market. Functions from

this class should be strictly positive definite, thus providing a truly infinite-factor

structure for the model. Neither Kennedy (1994), nor subsequent research by Gold-

stein (2000), and Santa-Clara and Sornette (2001) have addressed this question.

Without this class of covariance functions one cannot capitalise on the main advan-

tage of the field models, i.e. capturing the inter-dynamics of movements in the term

structure.

We have developed three methodologies for constructing strictly positive definite
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covariance functions, characterising infinite-factor Gaussian fields. We tested all

three constructions on the sample covariance and correlation matrices obtained from

US and Japanese bond market data. The empirical and numerical test suggest

that these classes of field models present a very satisfactory solution to the posed

problem. The models we have developed make the random field methodology a much

more practical tool, which can fully incorporate the key market information: the

covariation of the yield curve. This should allow a better understanding of the risk

exposure in the positions sensitive to the interest rates. Furthermore, our research

should facilitate the usage of field models within the pricing context, especially for

instruments depending on the evolution of the whole yield curve.

We achieved some very good results in constructing and fitting infinite-factor Gaus-

sian field models, but more extensive empirical testing still needs to be conducted.

Comparison studies should reveal if these classes of models are superior to alterna-

tive model specifications in pricing and risk management of fixed income instruments

and portfolios.

A number of further extensions suggest themselves. In this thesis we have not ex-

hausted all possible ways of constructing SPD covariance and correlation functions.

Other methods are possible. In fact, inspired by the research in this thesis, in a

joint work Johnson and Weigel (2003) investigate a method for the construction

such functions using the tools of Matrix Completion! Theory. The idea is to con-

sider the observed sample correlation matrix as a sub-matrix of a larger matrix. The

missing entries can then be filled subject to constraints, such as positive definiteness,

monotonicity, etc. Preliminary results are very promising.

1A partial matrix is a matrix in which some entries are specified and others are not. A completion
of a partial matrix is a specific choice of values for the unspecified entries. A pattern for n x n
matrices is a list of positions of an n x n matrix, that is, a subset of {I, ..., n} x {I, ... , n}. A
partial matrix specifies the pattern if its specified entries are exactly those listed in the pattern.
For a particular class P of matrices, the P-matrix completion problem for patterns asks which
patterns have the property that any partial P-matrix that specifies the pattern can be completed
to a P-matrix. In our case the class P comprises unit diagonal and positive definite matrices.
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In the field models we have considered that the instantaneous covariance and cor-

relation functions depend on the time to maturity. This may not be justified in

practice. A more general model, such as one that allows a time-varying covariance

structure, might be needed. One example of this type of model is Collin-Dufresne

and Goldstein (2000). As we have mentioned, such extensions are relatively trivial

within our framework.

An area that is closely related to fixed income modelling is credit risk. The random

field methodology could be extended to include defaultable term structures as well.

Credit risk can be incorporated by adding an additional dimension in the random

field that results in a correlation function of the form Corr{T, S, RI, R2), where RI

and R2 represent ratings, T and S maturities of defaultable bonds. Thus, changes

in yield of a defaultable bond can be modelled by a random field XT,R with (T, R) E

IR+X JR+. In fact, in a recent working paper, Douady and Jeanblanc (2002), have

presented a default bond pricing model that is driven by a spread field. This spread

field depends on the continuous rating and time to maturity.

The extension of field methodology to credit markets might provide a more inte-

grated approach to risk management. This should have a number of consequences

in practice. For example, from the banking supervision point of view, this should

allow for more accurate capital requirements, which will release capital that can be

invested somewhere else. From risk management point of view, this methodology

should allow for a better risk assessment across different divisions of a bank or other

financial institutions.

The second part of this thesis deals with pricing kernel (potential) models of the

term structure, first introduced by Constantinides (1992). We have observed that

market models are very popular among practitioners, as they allow instantaneous

calibration to market prices. However they suffer from several restrictions. They

have non-Markov dynamics. Though they are easy to calibrate to instruments for
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which they were specifically designed, calibration to other instruments may be also

a problem. Extensions to smiles and skews are complex.

Motivated by these observations, we set out to find a class of models that enjoys

the same ease of calibration to the liquid market prices as the market models, and

at the same time has a low-dimensional Markov structure, as in the case of short

rate models.

We have developed a class of models within the pricing kernel framework. We have

modelled the pricing kernel directly by approximating it with a set of radial basis

functions. As the underlying noise in the economy, we have chosen a simple multi-

factor diffusion. Our approach is just as simple in a one-factor as in a multi-factor

setting. We have linked the construction of the kernel explicitly to the calibrating

set of instruments. Once the kernel is constructed it prices correctly the chosen set

of instruments and has a low-dimensional Markov structure. We tested our model

on yield, at-the-money cap, caplet implied volatility surface, and swaption data. We

achieved a very good quality of fit. In a summary, the class of implied kernel models

is Markov by construction, calibration for a small number of factors is relatively

easy, it can deal with American type options, and is flexible in fitting to smiles and

skews.

Again, a number of further extensions suggest themselves. Our modelling framework

in particular, and the kernel approach in general, might be extended to default able

bonds. In a recent working paper, Polenghi (2002a), shows how the potential ap-

proach may be extended to handle default able bonds. He introduces a theoretical

framework to price both risk-free and defaultable bonds. The model allows for mul-

tiple sources of dynamics with an unrestricted correlation matrix, and is consistent

with positive interest rates.

In another development of the kernel framework, Rogers and Yousaf (2001) began

to study what could be achieved with a finite-state Markov chain as the underlying
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Markov process. The advantages of such a modelling approach are compelling: pric-

ing of European options reduces to summing over some small finite set. Moreover, a

relatively small number of instruments would be required to hedge any given asset,

by hedging out the jumps of the asset value at the time when the Markov chain

jumps. This replaces the concept of delta-hedging within this model. A further

stage of this development would be the incorporation of credit-risky instruments.

However, the potential approach would need some modification at a theoretical level

to allow for this.

Another possible application of the kernel approach lies in pricing convertible bonds.

A convertible bond is a coupon paying corporate bond that can be converted into

company stocks at the discretion of the holder. A convertible bond is a challenging

instrument to value, because it is both an equity and an interest rate derivative.

These two components are subject to different credit risks. The traditional approach

to this problem has been to write down stochastic differential equations for, say, the

value of the firm and the short term interest rate, and to derive no-arbitrage pricing

from solving the resulting partial differential equation. These equations support a

pricing kernel which is obtained directly from the solution. Thus, in principal by

modelling the kernel directly we could price the convertible securities as well. This

would require an extension of the framework to deal with equities as well. These

can be modelled within the existing kernel approach, but it may turn out to be

easier, especially for applications in practice, to set up a model where the shares are

log-Brownian within the overall framework of a kernel model for interest rates.

Beyond possible applications to convertibles, there is considerable scope for test-

ing the kernel approach to modelling interest rates in many countries. A major

advantage of the kernel approach over conventional approaches is that adding new

countries does not require new sources of noise to be introduced. Rather one simply

sets up a new state-price density process for the new country. The exchange rates

between the countries are automatically modelled consistently by this. Pilot stud-
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ies by Rogers and Zane (1996) of various simple diffusion models resulted in quite

favourable fits, and it seemed important to investigate this more deeply. Of special

interest are applications of the kernel approach to pricing cross currency derivatives.

As the underlying dimension can be kept low this approach should allow for more

effective pricing methods.

Further applications of the kernel approach might include the study on sovereign

debt. In a recent study, Polenghi (2002b) develops a multi-factor econometric model

for the joint dynamics of the sovereign debt issued by the US and by a representative

set of developing countries. The potential approach is again used to price both risk-

free and defaultable bonds. He finds that the correlations among spreads and the US

yield curve changes with the sample period, with the maturity of the instruments

and with the ratings of the emerging countries.

264



Bibliography

[1) P. Acworth, M. Broadie, and P. Glasserman. A comparison of Some Monte
Carlo and Quasi Monte Carlo techniques for Option Pricing. In Monte Carlo
and Quasi-Monte Carlo Methods 1996, pages 1-18. Springer-Verlag New-York,
1998.

[2) R.J. Adler. The Geometry of Random Fields. John Wiley and Sons, 1981.

[3] C.M. Ahn and H.E. Thompson. Jump Diffusion Processes and the Term
Structure oflnterest Rates. Journal of Finance, 431:155-174, 1988.

[4) D.H. Ahn and D. Gao. A Parametric Nonlinear Model of Term Structure
Dynamics. The Review of Financial Studies, 12(4):721-762, Special, 1999.

[5) DJ!. Ahn, R.F.Dittmar, and D. Gao. Quadratic Term Structure Models:
Theory and Evidence. The Review of Financial Studies, 15(1):243-288, Spring
2002.

[6] Y. Ait-Sahalia. Testing Continuous-Time Models of the Spot Interest Rate.
Review of Financial Studies, 9:385-426, 1996b.

[7] Y. Ait-Sahalia, Do Interest Rates Really Follow Continuous-Time Markov
Diffusions? Working paper, University of Chicago, 1997.

[8) A. Akgun. Model Risk with Jump-Diffusion Process. Working paper, Univer-
sity of Lausanne, 2000.

[9] A.J. Amin, K.I. Morton. Implied Volatility Functions in Arbitrage-Free Term
Structure Models. Journal of Financial Economics, 35:141-180, 1994.

[10] K.I. Amin and V.K. Ng. Inferring Future Volatility from the Information in
Implied Volatility in Eurodollar Options: A New Approach. The Review of
Financial Studies, 10(2):333-367, 1997.

[11] L. Andersen and J. Andreasen. Volatility Skews and Extensions of the Libor
Market Model. Applied Mathematical Finance, 7:1-32, 2000.

265



[12] L. Andersen and J. Andreasen. Factor Dependance of Bermudian Swaptions:
Fact or Fiction. Journal of Financial Economics, 62:3-37, 2001.

[13] L. Arnold. Stochastic Differential Equations: Theory and Applications. John
Willcy and Sons, 1974.

[14] P. Artzner and F. Delbaen. Term Structure of Interest Rates: The Martingale
Approach. Advances in Applied Mathematics, 10:95-129, 1989.

[15] K.T. Au and D.C. Thurston. A New Class of Duration Measures. Economics
Letters, 47:371-375, 1995.

[16] D.K. Backus and S.E. Zin. Reverse Engineering the Yield Curve. Working
paper, NBER 4676, 1994.

[17] P. Balland and L.P. Hughston. Markov Market Model Consistent With Cap
Smile. International Journal of Theoretical and Applied Finance, 3(2):161-
181, 2000.

[18] R. Bansal, D.A. Hsieh, and S. Viswanathan. A New Approach to International
Arbitrage Pricing. The Journal of Finance, XLVIII(5):1719-1747, December
1993.

[19] R. Bansal and S. Viswanathan. No Arbitrage and Arbitrage Pricing: A New
Approach. The Journal of Finance, XLVIII(4):1231-1261, September 1993.

[20] J.R. Barber and M.L. Copper. Immunizing Using Principal Component Anal-
ysis. The Journal of Portfolio Management, pages 99-105, Fall 1996.

[21] M. Baxter. General Interest Rate Models und the Universality of HJM. In
M.A.H. Dempster and S.R. Pliska, editors, Mathematics of Derivative Securi-
ties, pages 315-335. Cambridge University Press, Cambridge, England, 1997.

[22] G.O. Bierwag, G.G. Kaufman, R. Schweitzer, and A. Toevs. The Art of Risk
Management in Bond Portfolios. Journal of Portfolio Management, 7(3):27-
36, 1981.

[23] G.O. Dierwag, G.G. Kaufman, and A. Toevs. Duration Analysis and Im-
munization. In G.O. Dierwag, G.G. Kaufman, and A. Toevs, editors, Innova-
tions in Bond Portfolio Management. JAI Press Inc., Greenwich, Connecticut,
1983b.

[24] T. Bjork, G. Di Masi, Y. Kabanov, and W. Runggaldier. Towards a General
Theory of Bond Markets. Finance and Stochastics, 1:141-174, 1997.

[25] T. Bjork, Y. Kabanov, and W. Runggaldier. Bond Market Structure in the
Presence of Market Point Processes. Mathematical Finance, 7:211-239, 1997.

266



[26] T. Bjork and L. Svensson. On the Existence of Finite Dimensional Realizations
for Nonlinear Forward Rate Models. Working paper, Department of Finance,
Stockholm School of Economics, 1999.

[27] F. Black, E. Derman, and W. Toy. A One-Factor Model of Interest Rates and
Its Application to Treasury Bond Options. Financial Analysts Journal, pages
33-39, Jan/Feb 1990.

[28] F. Black and P. Karasinski. Bond and Option Pricing When Short Rates are
Lognormal. Financial Analysts Journal, pages 52-59, July/Aug 1991.

[29] S. Bochner. ~'orlesungen Uber Fouriersche Integrale. Akademische Verlagsge-
sellschaft, Leipzig, 1932.

[30] S. Bochner, Monotone Funktionen, Stieltjes Integrale and Harmonisch Anal-
yse. Math.Ann., 108:378-410, 1933.

[31] C. de Door. Dicubic Spline Interpolation. J. Math. Phys., 41:215, 1962.

[32] M. Bossy, R. Gibson, F.S. Lhabitant, N. Pistre, and D. Talay. Model Risk
Analysis For Bond Options in a Heath-Jarrow-Morton Framework. Report,
RiskLab, 1998.

[33] J.P. Doyle and R.L. Dykstra. A Method for Finding Projections onto the
Intersection of Convex Sets in Hilbert Spaces. In Advances in Order Restricted
Inference, volume 37 of Lecture Notes in Statistics, pages 28-47. Springer-
Verlag, 1985.

[34] P.P. Doyle. Immunization Under Stochastic Models of the Term Structure.
Journal oj the Institute oj Actuaries, 105(2):177-187, 1978.

[35] A. Drace. Non-Bushy Trees for Gaussian HJM and Lognormal Forward Mod-
els. Working paper, UNSW, Australia, 1996a.

[36] A. Drace. Dual Swap and Swaption Formulae in the Normal and Lognormal
Models. Working paper, School of Mathematics, UNSW, Australia, 1996b.

[37] A. Drace. Rank-2 Swaption Formulae. Working paper, School of Mathematics,
UNSW, Australia, 1997.

[38] A. Drace. Simulation in IIJM and LFM models. Working paper, School of
Mathematics, UNSW, Australia, 1998.

[39] A. Drace, D. Gatarck, and M. Musiela. The Market Model of Interest Rate
Dynamics. Mathematical Finance, 7:127-154, 1997.

[40] A. Drace and M. Musicla. A Multifactor Gauss Markov Implementation of
Heath, Arrow, and Morton. Mathematical Finance, 4:259-283, 1994.

267



[41] A. Drace and M. Musicla. Durtion, Convexity and Wiener Chaos. Technical
report, University of New South Wales, 1997.

[42] A. Drace, M. Musiela, and Schlogl, A Simulation Algorithm Based on Measure
Relationships in the Lognormal Market Models. Working paper, FMMA and
The University of New South Wales, 1998.

[43] A. Drace and R.S. Womersley. Exact Fit to the Swaption Volatility Matrix
Using Semidefinite Programming. Working paper, National Australia Bank,
2000.

[44] M.W. Brandt and P. Santa-Clara. Simulated Likelihood Estimation of Multi-
variate Diffusions with an Application to Interest Rates and Exchange Rates
with Stochastic Volatility. Working paper, Whe Wharton School, University
of Pennsylvania, 1999.

[45] D.T. Breeden and R.H. Litzenberger. Prices of State-Contingent Claims Im-
plicit in Option Pricess. Journal of Business, 1978.

[46] M.J. Drennan and E.S. Schwartz. A Continuous Time Approach to the Pricing
of Bonds. Journal of Banking and Finance, 3:133-155, 1979.

[47] M.J. Drennan and E.S. Schwartz. Duration, Bond Pricing, and Portfolio Man-
gagement. In G. Dierwag, G. Kaufman, and A. Toevs, editors, Innovations
in Bond Portfolio Management: Duration Analysis and Immunization. JAI
Press, Greenwich, CT, 1983.

[48] D. Brigo and F Mercurio. A Mixed-up Smile. Risk, 2000.

[49] D. Drigo and F Mercurio. Interest Rate Models: Theory and Practice. Springer,
2001a.

[50] D. Brigo and F. Mercurio. Lognormal-Mixture Dynamics and Calibration to
Market Volatility Smiles. International Journal of Theoretical and Applied
Finance, 5(4):427-446, 2002.

[51] D. Brigo, F. Mercurio, and F. Rapisarda. Pricing the Smile in a forward
LIllOR Market Model. Working paper, Banca IMI, 2001.

[52] S. Drown and P. Dybvig. The Empirical Implications of the Cox, Ingersoll,
Ross Theory of the Term Structure of Interest Rates. The Journal of Finance,
41:617-630, July 1986.

[53] W. Buhler, M. Uhrig, U. Walter, and T. Weber. An Empirical Comparison
of Alternative Models for Valuing Interest Rate Options. Working paper,
University of Mannhcim, 1995.

268



[54] A.N. Bumetas and P. Ritchken. On Rational Jump Diffusion Models: An
Approach Using Potentiall. Review of Derivatives Research, 1:325-349, 1997.

[55] A.J.G. Cairns. A Multifactor Model for the Term Structure and Inflation
for Long-Term Risk Management. Working paper, Department of Actuarial
Mathematics and Statistics, Heriot-Watt University, 1999.

[56] P. Carr and G. Yang. Simulating Bermudian Interest Rate Derivatives. Work-
ing paper, Morgan Stanley, 1997.

[57] P. Carr and G. Yang. Simulating American Bond Options in an HJM Frame-
work. Working paper, Morgan Stanley, 1998.

[58] A. Carverhill. When is the Short Rate Markovian. Mathematical Finance,
4(4):305-312, Oktober 1994.

[59] K.C. Chan, G.A. Karolyi, F.A. Longstaff, and A.B. Sanders. An Emprical
Comparison of Alternative Models of the Term Structure of Interest. The
Journal of Finance, 47:1209-1228, 1992.

[60] K. Chang. Strictly Positive Definite Functions. Journal of Approximation
Theory, 87:148-158, 1996.

[61] R.R. Chen and L. Scott. Pricing Interest Rate Options in a Two-Factor Cox-
Ingersoll-Ross Model of the Term Structure. Review of Financial Studies,
5(4):613-636, 1992.

[62] R.R. Chen and L. Scott. ML Estimation for a Multifactor Equilibrium Model
of the Term Structure. Journal of Fixed Income, 3:14-31, 1993.

[63] W. Cheney and W. Light. A Course in Approximation Theory. Brooks/Cole
Series in Advance Mathematics. Brooks Cole, 2000.

[64] J.lI. Cochrane. Asset Pricing. Princeton University Press, 2001.

[65] B. Coffey and J. Schoenmakers, LIBOR Rate Models, Related Derivatives
and Model Calibration. Working paper, Weierstrass-Institute, Berlin, 1999.

[66] B. Coffey and J. Schoenmakers. Stable implied calibration of multi-factor
LIDOR Model via a Semi-Parametric Correlation Structure. Working paper,
Weierstrass-Institute, Berlin, 2000.

[67] P. Collin-Dufresne and R. Goldstein. "True" Stochastic Volatility and Gener-
alized Affine Models of the Term Structure. Working paper, Carnegie Mellon
University, 2000.

[68] G.M. Constantinides. A Theory of the Nominal Term Structure of Interest
Rates. The Review of Financial Studies, 5(4):531-552, 1992.

269



[69] S. Coutant, E. Jondeau, and M. Rockinger. Reading PIBOR futures options
smiles: The 1997 snap election. Journal of Banking and Finance, 25:1957-
1987, 2001.

[70] J.C. Cox. Notes on Option Pricing I: Constant Elasticity of Variance Diffu-
sions. Technical report, Stant ford University, 1975.

[71] J.C. Cox, J.E. Ingersoll, and S.A. Ross. Duration and the Measurement of
Basis Risk. Journal of Business, 52(1):51-61, January 1979.

[72] J.C. Cox, J.E. Ingersoll, and S.A. Ross. A reexamination of Traditional
Hypotheses about the term structure of interest rates. Journal of Finance,
XXXVI(4):769-799, September 1981b.

[73] J.C. Cox, J.E. Ingersoll, and S.A. Ross. An Intertemporal General Equilibrium
Model of Asset Prices. Econometrica, 53(2):363-384, March 1985a.

[74] J.C. Cox, J.E. Ingersoll, and S.A. Ross. A Theory of the Term Structure of
Interest Rates. Econometrica, 53(2):385-407, March 1985b.

[75] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and Hall,
second edition, 2001.

[76] N.A. Cressie. Statistic for Spatial Data. Wiley, New-York, revised edition
edition, 1993.

[77] Q. Dai and K.J. Singleton. Specification Analysis of Affine Term Structure
Models. The Journal of Finance, 55:385-407, 2000.

[78] D. Damien, P.O. Sampson, and P. Guttorp. Dayesian Estimation of Semi-
Parametric Non-Stationary Spatial Covariance Structures. Environmetrics,
12:161-178, 2001.

[79] S.R. Das. A Direct Discrete-Time Approach to Poisson-Gaussian Bond Option
Pricing in the Ileath-Jarrow-Morton Model. Journal of Economic Dynamics
and Control, 23:333--369, 1999a.

[80] S.R. Das. The Surprise Element: Jumps in Interest Rate Diffusions. Working
paper, Harvard University and NDER, 1999b.

[81] S.R. Da.'Jand S. Foresi. Exact Solutions for Bond and Option Prices with
Systematic Jump Risk. Review of Derivatives Research, 1:1-24, 1996.

[82] F. de Jong, J. Dries.sen, and A. Pelsser. Libor Market Models versus Swap
Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis.
European Finance Review, 5:201-237, 2001.

270



[83] F. Dclbacn and W. Schachermayer. A General Version of the Fundamental
Theorem of Asset Pricing. Mathematische Annalen, pages 463-520, 1994.

[84] F. Dclbaen and W. Schachermayer. Non-Arbitrage and the Fundamental The-
orem of AssetPricing: Summary of Main Results. Proc. Symp. Appl. Mathe-
matics, 1997.

[85] P. Dierckx. Cunle and Surface Fitting with Splines. Oxford Science Puclica-
tions, 1993.

[86] II. Dillen. A Model of Term Structure of Interst Rates in an Open Economy
with Regime Shifts. Journal of International Money and Finance, 16:795-819,
1997.

[87] F. Dobcrlein. On Term Structure Models Generated by Semimartingales. PhD
thesis, Technische Universitat Berlin, 1999.

[88] R. Douady and M. Jcanblanc, A Rating-Based Model for Credit Derivatives.
Working paper, Stochastic Finance Software, 2002.

[89] J. Driessen, P. Klaassen, and B. Melenberg. The Performance of Multi-Factor
Term Structure Models for Pricing and Hedging Caps and Swaptions. Working
paper, Tilburg University, 2000.

[90] A. Dudenhausen, E. Schlegel, and L. Schlegel. Robutstness of Gaussian Hedges
and the Hedging of Fixed Income Derivatives. Working paper, 1711, 1999.

[91] D Duffie. Dynamic Asset Pricing Theory. Princeton University Press, Prince-
ton (New Jersey), 2nd edition, 1996.

[92] D. Duffie and R. Kan. Multi-factor term structure models. Philosoph.
Trans.R.Soc.Lond.A, 347:577-586, 1994.

[93] D. Duffie and R. Kan. A Yield Factor Model of Interest Rates. Mathematical
Finance, 6:379-406, 1996.

[94] D. Duffie and K.J. Singleton. Simulated Moments Estimation of Markov Mod-
els of Asset Prices. Econometrica, 61:929-952, 1993.

[95] R.L. Dykstra. An Algorithm for Restricted Least Square Regression. Journal
of the American Statistical Association, 78(384}:837-842, December 1983.

[96] N. El Karoui and V. Lacoste. Multifactor Models of the Term Structure
of Interest Rates. Working Paper DR95010, Ecole Superieure des Sciences
Economiques et Commersialcs, 1995.

271



[97] R.J. Elliott and J. Van Der Hoek. Using the Hull and White Two Factor
Model in Dank Treasury Risk Management. Working paper, Department of
Mathematical Sciences, University of Alberta, August 1999.

[98] E.J. Elton, M.J. Gruber, and R. Michaely. The Structure of Spot Rates and
Immunization. Journal of Finance, 45(2):629-642, 1990.

[99] E.J. Elton, M.J. Gruber, and NadarmP.G. Bond Returns, Immunization and
the Returning Generating Process. Studies in Banking and Finance, 5:125-
154, 1988.

[100] G. Engeln-Miillges and F. Uhlig. Numerical Algorithms with C. Springer,
1996.

[101] L. Fisher and R.L. Weil. Coping with Risk of Interest-Rate Fluctuations.
Journal of Business, 44(4):408-431, Oktober 1971.

[102] M. Fisher, D. Nychka, and D. Zervos. Fitting the Term Structure of Inter-
est Rates with Smoothing Splines. Finance and economics discussion paper,
Federal Reserve Dank, 1995.

[103] D. Flesaker and L.llughston. Positive Interest. Risk, 9(1):1-4, January 1996a.

[104] D. Flesaker and L. Hughston. Positive Interest: Foreign Exchange. In Vasicek
and Beyond, pages 351-367. Risk Publications, 1996b.

[105] J.F. Francis. The QR Transformation. A Unitary Analogue to the LR Trans-
formation. Computer J., 4:265-271, 332-345, 1961/62.

[106] S.K. Gandhi and P. lIunt. Numerical Option Pricing Using Conditioned Diffu-
sions. In M.A.H. Dempster and S.R. Pliska, editors, Mathematics of Derivative
Securities, pages 457-472. Cambridge Unvcrsity Press, 1997.

[107] R. Gibson, F.S. Lhabitant, N. Pistre, and D. Talay. Interst Rate Model Risk:
an Overview. Ri.'1k, 1(3):37-62, 1999.

[108] R. Gibson, F.S. Lhabitant, and D. Talay. Modeling the Term Structure of
Interest Rates: a Review of the Literature. Working paper, University of
Lausanne, 1999.

[109] L.R. Goldberg. Volatility of the Short Rate in the Rational Lognormal Model.
Finance and Stochastic, 2:199-211, 1998.

[110] R. Goldstein. The Term Structure of Interest Rates as a Random Field. The
Review of Financial Studies, 13:365-384, 2000.

[111] D. Goldys, M. Musiela, and D. Sondermann. Lognormality of Rates and Term
Structure Models. Working paper, University of New South Wales, 1994.

272



[112] P.J. Green and D.W. Silverman. Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach. Monographs on Statistics and
Applied Probability 58. Chapman and Hall, London, 1994.

[113] N.D. Gultekin and R.J. Rogalski. The Alternative Duration Specifications
and the Measurement of Basis Risk: Empirical Tests. Journal of Business,
51(2):2·H-26·t, 198·1.

[114] P.R. Ilalmos. Positive Approximants of Operators. Indiana University Math-
emaiical Journal, 21:951-960, 1912.

[115] I. Halperin. The Product of Projection Operators. Acta. Sci. Math. (Szeged),
23:96-99, 1962.

[116] Shih-Ping lIan. A Successive Projection Method. Mathematical Programming,
40:1-14, 1988.

[111] M.S. lIandcock and J.R. Wallis. An Approach to Statistical Spatial-Temporal
Modeling of Mctheorological Fields (with discussion). Journal of American
Statistical Association, 89:368-390, 1994.

[118] J.M. Harrison and D.M. Kreps. Martingales and Arbitrage in Multiperiod
Securities Markets. Journal of Economic Theory, 20(30):381-408, 1979.

[119] W.J. Heaney and P.L. Cheng. Continuous Maturity Diversification of Default-
Free Bond Portfolious and a Generalization of Efficient Diversication. The
Journal of Finance, XXXIX(4):1101-1111, 1984.

[120] D. Heath. Term Structure Models based on Future Prices. Working paper,
Carnegie Mellon University, 1998.

[121] D. Heath, R. Jarrow, and A. Morton. Dond Pricing and the Term Structure
of Interest Rates: A Discrete Time Approximation. Journal of Financial
Quantitative Analy.'iis, 25:419-440, December 1990a.

[122] D. lIeath, R. Jarrow, and A. Morton. Contingent Claim Valuation with a
Random Evolution of Interest Rates. Review of Futures Markets, 9:54-76,
1990b.

[123] D. Heath, R. Jarrow, and A. Morton. Dond Pricing and the Term Struc-
ture of Interest Rates: A New Methodology for Contingent Claims Valuation.
Econometrica, 60(1):11-105, January 1992.

[124] J.n. Hicks. ~'altJe and Capital. Clarendon Press, Oxford, 1939.

[125] N.J. Higham. Computing Nearest Symmetric Positive Semidefinite Matrix.
Linear Algebra and Applications, 103:103-118, 1988.

273



[126] N.J. Higham. Matrix Nearness Problem and Applications. In M.J.C. Gover
and S. Barnett, editors, Application of Matrix Theory. Oxford University
Press, 1989.

[127] N.J. lligham. Computing the Nearest Correlation Matrix - A problem from
Finance. IMA Journal of Numerical Analysis, 22:329-343, 2002.

[128] D. Hilbert. Grundziige einer Allgemeinen Theorie der Linearen Integralgleich-
nungen I. Golt.Nachrichten, math.-phys. K1, pages 49-91, 1904.

[129] T.S. Ho. Key Rate Duration. Journal of Fixed Income, 2(2):29-44, 1992.

[130] T.S.Y. 110 and Lee SeD. Term Structure Movements and Pricing Interest Rate
Contingent Claims. The Journal of Finance, XLI(5):1011-1029, 1986.

[131] M. Hogan and K. Weintraub. The Lognormal Interest Rate Model and Eu-
rodollar Futures. Working paper, Citibank, 1993.

[132] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge Unviversity Press,
1985.

[133] J. Hull and A. White. One Factor Interest Rate Models and the Valuation
of Interest Rate Derivative Securities. Journal of Financial and Quantitative
Analysi." pages 235-254, June 1993a.

[134] P.J. Bunt and J.E. Kennedy. Implied Interest Rate Pricing Models. Finance
and Slochastics, 2:275-293, 1998b.

[135] P.J. Bunt and J.E. Kennedy. Financial Derivatives in Theory and Practice.
John Wiley and Sons Ltd, 2000.

[136] P.J. Hunt, J.E. Kennedy, and A. Pelsser. Markov-Functional Interest Rate
Models. Finance and Stochastics, 4:391-408, 2000.

[137] P.J. Bunt, J.E. Kennedy, and E.M. Scott. Terminal Swap-Rate Models. Work-
ing paper, University of Warwick, 1996.

[138] J. Ingersoll, J. Skelton, and R. Weil. Duration Forty Years Later. Journal of
Financial and Quantitative Analysis, 13:627-650, 1978.

[139] S.D. Jacka, K. Hamza, and F.C. Klcbaner. No Arbitrage Condition in SPDE
Model for Interest Rates. Preprint, The University of Melbourne, 1999.

[140] P. Jalali and II. Kazcmi. A New Approach to the Valuation of Interest Rate
Derivatives: Arrow-Dobreu Prices Implicit in the Term Structure of Interest
Rates. Working paper, The University of Massachusetts, 1997.

[141] J. James and N. Wd>bcr. Interest Rate Modelling. John Wiley and Sons, 2000.

274



[142] F. Jamshidian. An Exact Bond Option Pricing Formula. Journal of Finance,
4·1:205-209, March 1989.

[143] F. Jamshidian, Bond and Options Evaluation in the Gaussian Interest Rate
Model. Rcs. Finance, 6:131-170, 1991a.

[144] F. Jamshidian. Forward Induction and Construction of Yield Curve Diffusion
Models .. The Journal of Fixed Income, pages 62-74, June 1991b.

[145] F. Jamshidian. A simple class of square-root interest-rate models. Applied
Mathematical Finance, 2:61-72, 1995.

[146] F. Jarnshidian. Libor and Swap Market Models and Measures. Finance and
Stochastics, 1:293-330, 1997.

[147] A. Janicki and \Veron.A. Simulation of Chaotic Behavior of a-Stable Stochas-
tic Processes. Marcel-Dekker, New-York, 1994.

[148] R. Jarrow and D. Madan. Option Pricing Using the Term Structure oflnterest
Rates to Hedge Systematic Discontinuities in Asset Returns. Mathematical
Finance, 1995.

[149] R.A. Jarrow and M.S. Turnbull. Delta, Gamma, and Bucket Hedging of In-
terest Rate Derivatives. Applied Mathematical Finance, 1:21-48, 1994.

[150] A. Jeffrey, Single Factor I1eath-Jarrow-Morton Term Structure Models Based
on Markov Spot Interest Rate Dynamics. Journal of Financial and Quantita-
title Analy.~i.., 30(4):619-642, December 1995.

[151] A. Jeffrey, Duration, Convexity and Higher Order Hedging. Working paper,
Yale School of Management, 2000.

[152] Y. Jin and P. Glasscrrnan. Equilibrium Positive Interest Rates: A Unified
View. The Retnew of Financial Studies, 14(1):187-214, 2001.

[153] Y. Johnson and P. Weigel. Construction of a Strictly Positive Correlation
Function via Matrix Completion. Working paper, FORC, Warwick Business
School, 2003.

[154] M. Joshi and R. Rebonato. A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LmOR Market Model. Technical report, Royal Bank of Scotland
Quantitative Research Centre, 2001.

[155] 1. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus.
Springer-Verlag, New York, second edition, 1991.

[156] S. Karlin. Total Po.'lititrity. Stanford University Press, Stanford, 1968.

275



[157] D.P. Kennedy. The Term Structure of Interest Rates as a Gaussian Random
Field. Mathematical Finance, 4:247-258, 1994.

[158] D.P. Kennedy. Characterizing Gausssian Models of the Term Structure of
Interest Rates. Mathematical Finance, 7:107-118, 1997.

[159] C. Khang. Bond Immunization When Short-Term Interest Rates Fluctuate
More Than Long-Term Rates. Journal of Financial and Quantitative Analysis,
XIV(5):1086-1090, December 1979.

[160] T.F. KlafIky, Y.Y. Ma, and A. Nozari. Managing Yield Curve Exposure.
Journal of Fixed Income, 2(3):39-45, 1992.

[161] P.J. Knez, R. Litterman, and J. Scheinkman. Explorations Into Factors Ex-
plaining Money Market Returns. The Journal of Finance, XLIX(5):1861-1882,
December 1994.

[162] C.H. Kuan and N.J. Webber. Valuing Interest Rate Derivatives Consistent
with a Volatility Smile. Working paper, University of Warwick, 1998.

[163] O. Kurbanmuradov, K. Sabelfeld, and Schoenmakers. Lognormal Approxi-
mations to LIBOR Market Models. Working paper, Weierstrauss Institute,
Berlin, 2000.

[164] V. Lacoste. Wiener Chaos: A New Approach to Option Hedging. Mathemat-
ical Finance, 6(2):197-213, April 1996.

[165] J.C. Lagarias, J.A. Reeds, M.H. Wright, and M.P. Wright. Convergence Prop-
erties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal
on Optimization, 9(1):112-147, 1998.

[166] T.C. Langetieg. A Multivariate Model of the Term Structure. The Journal of
Finance, 35(1):71-97, March 1980.

[167] M.L. Leibowitz, W. Krasker, and A. Nozari. Spread Duration: A New Tool for
Bond Portfolio Management. Technical report, Salomon Brother Inc., 1988.

[168] A. Li, P. Ritchken, and Sankarasubramanian. Lattice Methods for Pricing
American Interest Rate Claims. Journal of Finance, 50:719-737, 1995a.

[169] O. Linton, E. Mammen, J. Nielsen, and C. Tanggaard. Yield Curve Estimation
by Kernel Smoothing Methods. Technical report, London School of Economics,
1999.

[170] R. Litterman and J. Scheinkman. Common Factors Affecting Bond Returns.
Report, Goldman Sachs, September 1988.

276



[171] M. Loeve. Probabilty theory. D. Van Nostrand Company, Inc., 3d edition,
1960.

[172] F.A. Longstaff. A Nonlinear General Equilibrium Model of the Term Structure
of Interest Rates. Journal of Financial Economics, 23:195-224, 1989.

[173] F.A. Longstaff, P. Santa-Clara, and E.S. Schwartz. The Relative Valuation
of Caps and Swaptions: Theory and Empirical Evidence. The Journal of
Finance, 2001a.

[174] F .A. Longstaff, P. Santa-Clara, and E.S. Schwartz. Throwing Away a Billion
Dollars: the Cost of Suboptimal Exercise Strategies in the Swaption Market.
Journal of Financial Economics, 62:39-66, 2001b.

[175] F.A. Longstaff and E.S. Schwartz. Interest Rate Volatility and the Term
Structure: A Two-Factor General Equilibrium Model. Journal of Finance,
47:1259-1282, 1992a.

[176] D.G. Luenberger. Optimatization by Vector Space Methods. John Wiley and
Sons, Inc., 1968.

[177] J. Lund. Non Linear Kalman Filtering Techniques for Term Structure Models.
Working paper, University of Aarhus, 1997.

[178] F.R. Macaulay. Some Theoretical Problems Suggested by the Movements of
Interest Rates, Bond Yields, and Stock Prices in the United States since 1856.
Columbia University Press, New York, 1938.

[179] K.V. Mardia and C.R. Goodall. Spatial-Temporal Analysis of Multivariate
Environmental Monitoring Data. In G.P. Patil and C.R. Rao, editors, Multi-
variate Environmental Statistics, pages 347-386. Elsevier Science Publishers,
1993.

[180] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic
Press, New York, 1979.

[181] B. Matern. Spatial Variation. Lecture Notes in Statistics. Springer Verlag,
New York, 2 edition, 1986.

[182] L.A. McCarthy and N.J. Webber. An Icosahedral Lattice Method for Three-
factor Models. Working paper, University of Warwick, 1999.

[183] J.H. McCulloch. The Tax Adjusted Yield Curve. Journal of Finance, 30:811-
29, June 1975.

[184] J. Mercer. Function of Positive and Negative Type and their Connection with
the Theory of Integral Equations. Philos. Trans. Roy. Soc., 209:415-446, 1909.

277



[185] C.A. Micchelli. Interpolation of Scattered data: Distance Matrices and Con-
ditionally Positive Definite Functions. Constructive Approximation, 2:11-22,
1986.

[186] K. Miltersen, K. Sandmann, and D. Sondermann. Closed form solutions for
the Term Structure Derivatives with log-normal interest rates. Journal of
Finance, 52:409-430, 1997.

[187] K.R. Miltersen. An Arbitrage Theory of the Term Structure of Interest Rates.
Working paper, Odense University, 1999a.

[188] C. Munk. Stochastic Duration and Fast Coupon Bond Option Pricing in
Multi-Factor Models. Review of Derivative Research, 3(2):157-181, 1999a.

[189] M. Musiela. Stochastic PDEs and Term Structure Models. Working paper,
The University of New South Wales, 1993.

[190] M. Musiela. Nominal Annual Rates and Log-Normal Volatility Structures.
Working paper, University of New South Wales, 1994.

[191] M. Musiela, S.M. Turnbull, and L.M. Wakeman. Interest Rate Risk Manage-
ment. Review of Futures Markets, 12:221-261, 1993.

[192] J.A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308-313, 1965.

[193] C.R. Nelson and A.F. Siegel. Parsimonious Modeling of Yield Curves. Journal
of Business, 60(4):473-489, 1987.

[194] J .A. Nielsen and K. Sandman. On the Market Model of Future Rates. Working
paper, Johannes Gutenberg-University of Mainz, Germany, 2000.

[195] F. Oberhettinger. Fourier Transforms of Distributions and Their Inverses.
Academic Press, 1973.

[196] B. 0ksendal. Stochastic Differential Equations. Springer, fourth edition, 1995.

[197] B. 0ksendal. An Introduction to Malliavin Calculus with Appliations to Eco-
nomics. Technical report, Department of Mathematics, Univesity of Oslo,
1997.

[198] K. Pang. Calibration of Kennedy and Multi-Factor Gaussian HJM to Caps
and Swaptions Prices. Working paper, FORC, Warwick Business School, 1997.

[199] N.D. Pearson and T. Sun. Exploiting the Conditioanal Density in Estimating
the Term Structure: An Application tothe Cox, Ingersoll, And Ross Model.
Journal of Finance, 49:1279-1304, 1994.

278



[200] M.B. Pedersen. A new approach to maximum likelihood estimation for
stochastic differential equations based on discrete observations. Scandinavian
Journal of Statistics, 22:55-71, 1995.

[201] M. Polenghi. A Kernel Approach To Valuing Defaultible Debt. Preprint,
Birkbeck College, 2002.

[202] M. Polenghi. The Correlation Structure Of Emerging Market Sovereign
Spreads: A Kernel Approach. Preprint, Birkbeck College, 2002.

[203] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

[204] P. Protter. Stochastic Integration and Differential Equations. Springer, 1990.

[205] R. Rebonato. Interest-Rate Opion Models. John Wiley and Sons, 2 edition,
1996.

[206] R. Rebonato. On the Simultaneous Calibration of Multifactor Lognormal
Interest Rate Models to Black Volatilities and to Correlation Matrix. Journal
of Computational Finance, 2{4}:5-27, Summer 1999.

[207] R Rebonato. Modern Pricing Theory of Interest-Rate Derivatives. Princeton
University Press, 2002.

[208] R Rebonato and 1. Cooper. Limitations of Simple Two-Factor Inerest Rate
Models. Jour. Fin. Eng., pages 1-16, 1995.

[209] RR. Reitano. Non-Parallel Yield Curve Shifts and Immunization. Journal of
Portfolio Management, 18{3}:36-43, 1992.

[210] RR. Reitano. Non-Parallel Yield Curve Shifts and Stochastic Immunization.
Journal of Portfolio Management, 22(2):71-78, 1992.

[211] P. Ritchken and L. Sankarasubrama. Volatility Structures of Forward Rates
and the Dynamics of the Term Structure. Mathematical Finance, 5(1):55-72,
January 1995.

[212] C. Rogers and O. Zane. Fitting Potential Models to Interest Rate and Foreign
Exchange Data. In Vasicek and Beyond, pages 327-342. Risk Publications,
1996.

[213] L.C.C. Rogers. Which Model for Term-Structure of Interest Rates Should
One Use? In IMA: Mathematical Finance, volume 65, pages 93-116. Springer,
Berlin Heidelberg New York, 1995.

[214] L.C.C. Rogers. One For All. RISK Magazine, 10, March 1997a.

279



[215] L.C.G. Rogers. The Potential Approach to the Term Structure of Interest
Rates and Foreign Exchange Rates. Mathematical Finance, 7(2):157-176,
April 1997b.

[216] L.C.G. Rogers and D.Williams. Diffusions, Markov Processes, and Martin-
gales, volume 1. Wiley Series in Probability and Mathematical Statistics,
1994.

[217] S.A. Ross. Arbitrage Pricing Theory of Capital Asset Pricing. Journal of
Economic Theory, 13:341-360, 1976.

[218] W Rudin. Principals of Mathematical Analysis. McGraw-Hill, 1976.

[219] M. Rutkowsky. A Note on the Flesaker-Hughston Model of Term Structure of
Interest Rates. Appl.Math.Finance, pages 151-163, 1997b.

[220] P.D. Sampson and P. Guttorp. On the nonparametric estimation of covariance
function. Journal of American Statistical Association, 87:108-119, 1992.

[221] K. Sandmann and D. Sondermann. A Note on the Stability of Lognormal
Interest Rate Models and the Pricing of Eurodollar Futures. Mathematical
Finance, 7(2):119-125, 1997.

[222] K. Sandmann, D. Sondermann, and K.R. Miltersen. Closed Form Term Struc-
ture Derivatives in a Heath-Jarrow-Morton Model with Log-Normal Annually
Compounded Interest Rates. In Proceedings of the Seventh Annual European
Futures Research Symposium Bonn, 1994, pages 145-165. Chicago Board of
Trade, 1995.

[223] P. Santa-Clara and D. Sornette. The Dynamics of the Forward Interst Rate
Curve with Stochastic String Shocks. The Review of Financial Studies, 14:149-
185, Spring 2001.

[224] Z. Sasvari. Positive Definite and Dejinitizable Functions. Akademie Verlag
GmBH, Berlin, 1994.

[225] E. Schlagel and D. Sommer. On Short Rate Processes and Their Implica-
tions for Term Structure Movements. Discussion Paper B-293, Department of
Statistics, University of Bonn, 1994.

[226] E. Schlagel and D. Sommer. Factor Models and the Shape of the Term Struc-
ture. Discussion Paper B-395, Department of Statistics, University of Bonn,
1997.

[227] A.M. Schmidt and A. O'Hagan. Bayesian inference for Nonstationary Spa-
tial Covariance Structure via Spatial Deformations. Preprint, University of
Sheffield, 2000.

280



[228] I.J. Schoenberg. Metric Spaces and Completely Monotone Functions.
Ann.Math., 39:811-841, 1938.

[229] D. Shepard. A Two Dimensional Interpolation Function for irregularly-spaced
data. In ACM National Conference, pages 517-524,1968.

[230] L. Simar. Maximum Likelihood Estimation of a Compound Poisson Process.
The Annals of Statistics, 4(6):1200-1209, 1976.

[231] R.L. Smith. Estimating Nonstationary Spatial Correlations. Working paper,
Cambridge University and University of North Carolina, 1996.

[232] D. Sommer. Continuous-Time Limits in the Generalized Ho-Lee Framework
under the Forward Measure. Working paper, University of Bonn, 1996.

[233] R. Stanton. A Nonparametric Model of Term Structure Dynamics and the
Market Price of Interest Rate Risk. Journal of Finance, 52, 1997.

[234] R.C. Stapleton and M.G. Subrahmanyam. The Term Structure of Interest
Rates Futures Prices. Working paper, Lancaster University, 2001.

[235] M. Steely, J. Estimating the Gilt-Edged Term Structure: Basis-Splines and
Confidence Intervals. Journal of Business Finance and Accounting, 1991.

[236] J. Stewart. Positive Definite Functions and Generalizations, an Historical
Survey. Rocky Mountain Journal of Mathematics, 6(3):409-434, 1976.

[237] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
1980.

[238] S.M. Sundaresan, Continuous-Time Methods in Finance: A Review and an
Assessment. The Journal of Finance, 2000.

[239] M. Uhrig. Bewertung von Zinsoptionen bye stochastischer Zinsvolatilitiit: ein
Inversionansatz. Dissertation, Universty of Mannheim, 1995.

[240] C.F. Van Loan. Computing Integrals Involving the Matrix Exponential. IEEE
Transactions on Automatic Control, 33:395-404, 1978.

[241] O. Vasicek. An Equilibrium Characterization of the Term Structure. Journal
of Financial Economics, 5:177-188, 1977.

[242] O.A. Vasicek and G.H. Fong. Term Structure Modeling Using Exponential
Splines. The Journal of Finance, 37:339-348, 1982.

[243] J. Von Neumann. Functional Operators. The Geometry of Ortogonal Spaces,
volume II. Princeton University Press, NJ, Princeton, N.J., 1950. This is a
reprint of mimeographed lecture notes first distributed in 1933.

281



[244] D.F. Waggoner. Spline Methods for Extracting Interest Rate Curves from
Coupon Bond Prices. Working paper, Federal Reserve Bank of Atlanta, 1997.

[245] G. Wahba. Spline Models for Observational Data. SIAM: Philadelphia, 1990.

[246] M. Waldman. Beyond Duration: Risk Dimensions of Mortgage Securities.
Journal of Fixed Income, 2(3):5-15, 1992.

[247] P. Weigel. A Note on Optimal Calibration of the LIBOR Market Model to
the Historic Correlations. Working paper, University of Warwick, Warwick
Business School, 2003.

[248] N. Wiener. On Factorization of Matrices. Comment Mathematici Helvetici,
29:97-111, 1955.

[249] E Wong. Stochastic Processes in Information and Dynamical Systems, vol-
ume 1. McGraw-Hill, 1971.

[250] L. Wu. Fast At-The-Money Calibration of the LIBOR Market Model Through
Lagrange Multipliers. The Journal of Computatonal Finance, 6(2), Winter
2003.

[251] X. Wu. A New Stochastic Duration Measure by the Vasicek and CIR Term
Structure Theories. mimeo, City University of Hong Kong, 2000.

[252] W.H. Young. A Note on a Class of symmetric functions and on a Theorem Re-
quired in the Theory of Integral Equations. Phillos. Trans. Roy. Soc. London,
Ser. A, 209, 1909.

[253] F.A. Yousaf. Three Mathematical Topics from the Financial Markets. PhD
thesis, The University of Baths, 2001.

[254] Z. Zhang and L. Wu. Optimal Low-Rank Approximation to a Correlation
Matrix. Linear Algebra and Its Applications, 364:161-187, 2003.

[255] C.C. Zheng. An Arbitrage-free SAINTS Model of Interst Rates. Working
paper, First National Bank of Chicago, 1993.

[256] C. Ziihldorf. Extended Market Models with Affine and Quadratic Volatility.
Working paper, University of Bonn, 2000.

282



  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/63584 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/63584

	coversheet2.pdf
	WRAP_Theses_Weigel_2003.pdf
	396969.pdf
	coversheet2.pdf


