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Summary

In the first part of the work, we consider the problem of giving upper
bounds for Ix(T) - z(T)I, the error between the final states of a nominal
finite dimensional system x = Ax + Bu, x(O) = Xo, and of the system
disturbed by multiple structured perturbations of the form

r

z(t) = Az(t) + LDkFk(CkZ(t), t) + Bu(t)
k=l

which accounts for the uncertainties on the entries of the matrix A.
In approaching the problem we introduce a framework which involves
some weight-functions and provides a scaling technique that allows for
enlarging the class of perturbations and for getting lower bounds for
the error.
In the second part, we contribute towards the problem of robustness
of stability of i: = Ax. To account for the uncertainties we consider
linear but time-varying structured perturbations yielding the disturbed
system

z(O) = x;

i: = Ax + BD(t)Cx x(O) = Xo

We determine the real time-varying stability radius

rR,t = {IIDIILoo j the equilibrium of (*) is not asymptotically stable}

for the linear oscillator by means of a special algorithm. Also we study
its asymptotic behaviour for small dampings by using an averaging
method. Finally we study n-dimensional systems under periodic per-
turbations and give a result which generalises the characterisation of
destabilising perturbation from time-invariant to that of time-varying
periodic perturbations.
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INTRODUCTION

There are several situations in which a mathematical model may arise.
Some of these situations are essentially mathematical in their nature
and lead to theoretical objects in a somewhat abstract and precise way.
Others, however, may lead to a model that contains uncertain param-
eters. This is the case in many applications in control engineering and
other areas where usually the uncertainty is a result of some approx-
imation or simplification undertaken on originally more sophisticated
models of real phenomena. In this way, order reduction, linearisation
around equilibria of nonlinear system, finite dimensional approximation
of infinite dimensional problems, and many other practical situations
will produce mathematical models bearing some kind of uncertainty on
the knowledge of most of their parameters. Ultimately, a model is a
representation of the real world and as such it is necessarily an ideali-
sation of the real dynamics. The essence of the robustness approach is
to interpret the real system (reality) as a perturbation of the ideal one.
Thus, the question of robustness of a model plays a fundamental role
on the problem of designing a controller for a plant. 1

The focus of this dissertation is rather on the robustness issues of
conditioning of controllability and stability radii for finite dimensional
deterministic systems. The mathematical model, referred to as the

1Here, the term robustness is used in the sense that "a controller is said to be
robust if it works well for a large class of perturbed systems." (Hinrichsen-Pritchard
[12])
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nominal system, will be the abstract differential equations

:i; = Ax + Bu x(O) = xo (0.1 )

for the controllability problem (B is a given real n x m matrix, u the
input function and x; E R" the initial condition) and

X =Ax x(O) = x; (0.2)

for the stability study.
The work on conditioning of controllability provides a new ap-

proach, inaugurated in Pijnacker-Pritchard-Townley[19], to the prob-
lem of designing controllers with a desired performance in face of un-
certainties. Contributions to the more theoretical issue of continuous
metrics (as opposed to discrete metrics of the type yes/no) and the dis-
tance between "controllable" and "uncontrollable" appeared as early
as 1986 (v. Eising [20] and [21]), but in this dissertation the problem is
posed somewhat in a more practical fashion as that of giving estimates
for the error between the final states of a nominal system and a system
that accounts for its uncertainties.

Concerning the problem of robustness of stability, Doyle-Stein[25]
emphasised the importance of explicit uncertainty models such as multi-
plicative and additive and towards the beginning of the 1980's there was
a renewed interest in frequency domain to address the problem of feed-
back design to provide perfomance in the face of uncertainties (Doyle-
Stein[25], Postelthwaite-Edmunds-McFarlaine[26], Cruz-Freudenberg-
Looze[27], for instance). However, most of these results do not exploit
information about the structure of a perturbation. Doyle[24] introduced
the JL-analysis for systems with structured uncertanties, a general ap-
proach to norm-bounded perturbation problems with arbitrary struc-
ture, which was based on an extension of singular values techniques.
This method has motivated a series of works on robustness where the
use of structural information is essential. Most of those works cen-
tered on single-input, single-output (scalar) systems and, although the
study of multivariable control systems has begun by the same time
(v. Safonov[22] and the special issue [23]), one can argue that with
state-space methods there is less need for explicitating a distinction
between scalar and multivariable systems. In Hinrichsen-Pritchard[8]
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and [9], state-space technique were brought into the issue of robustness
of stability by means of the concept of real and complex stability radii
which asserts the problem as that of finding a minimum norm desta-
bilising structured perturbation belonging to certain classes. Following
the lines of Hinrichen and Pritchard, the present work attempts to give
some contributions towards a characterisation of real stability radius
for a class of linear but time-variyng structured perturbations.

The dissertation is organised as follows. Chapter 1 establishes an
estimate for the error between the final states of the nominal system
and of the system disturbed by multi-structured perturbations of the
form

r

i(t) = Az(t) + EDiFi(CiZ(t), t) + Bu (0.3)
i=l

which accounts for the uncertainties on the entries of the matrix A. The
perturbations Pi : RPi x [0, T] --+ Rqi are assumed to be Lipschitz
maps.

Some weight functions are introduced in the problem, requiring
a special topological framework and some weighted operators to be
brought in. The result is translated into an inequality of the form

where the operators MOe, COl and LOI are properly introduced in terms
of the weight a = (al,··· ,ar). It should be noted that the novelty
of introducing the weights allows for a subsequent improvement on the
estimates and on the class of perturbation.

The evaluation of the norms IIMal1 and IICOexl1 does not present
much conceptual difficulty, but with respect to IILOIII the situation is dif-
ferent. Chapter 2 provides a characterisation of the norm of the opera-
tor La by means of introducing a linear quadratic optimal control prob-
lem. The characterisaton is then obtained in terms of a parametrised
differential Riccati equation and, equivalently, via a Hamiltonian ap-
proach. The question of computational algorithms for evaluating and
minimising IILOIII is also assessed. In chapter 3 we consider the problem
of minimising IICOIxl1 with respect to the input u. For this it is used the
technique from Functional Analysis of reducing a constrained problem
into an unconstrained one by means of Lagrange multipliers.
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The second part of the work concerns the problem of robustness of
stability. Chapter 4 introduces what will be the focus of the following
chapters, namely the concept of stability radii. In chapter 5 we use a
result from the theory of dynamical systems and implement an algo-
rithm culminating in the exact evaluation of rn« for the damped linear
oscillator. The time-varying real stability radius rns is defined as the
infimum of allllDllLoo such that the equilibrium of:i; = Ax + BD(t)Cx
is not asymptotically stable. This result is complemented in chapter
6 with an asymptotic study of rR,t for small dampings by means of a
slight modification of the classical averaging method.

An outcome of the study of the oscillator is that rR t can be made,
strictly less than the time-invariant real stability radius and at the
boundary between the regions of stability and instability we can have
the combination of a periodic perturbation yielding a periodic solution
of the system. Inspired by this result, in chapter 7 we address the
case of periodic perturbations to culminate in a generalisation of the
time-invariant characterisation of destabiling perturbations to the case
of periodic ones.

Finally, chapter 8 constitutes a conclusion to the work and presents
some comments as well as some directions for further research.

In any academic relationship there is always an interplay of power,
scopes and interests, even if tacit or unnoticed. My supervisor's inter-
est has basically been on scientific results while mine have sometimes
pointed to recognising the cognitive process underlying a research activ-
ity. I would gratefully concede that the nature and scope of the present
work is a result of the supervisor's sound guidance. And the circum-
stances plus the turbulence of collateral thoughts, feelings and failures
have been so mine! This comment brings about two crucial aspects of a
thesis which are usually overlooked by the academic community: that
it is ultimately a text, and that it is written by a student (a learner).

It is commonly mentioned that usually you do not finish a work
such as a music record or an academic thesis. You abandon it when
it is assumed that it has reached a fair status. Basically, you want
to evolve to other (or further) enquiries or rather you are led to its
completion due to unbearable pressures to finish it off. However, it is



INTRODUCTION 13

at the end of such work that we feel that it would have been then the
right moment to start it on. But how many times do we need until we
learn to recognise when the time is next to us? Anyway, at this point
there is often an awareness of what was going on while it happened and
a willingness to carry out some new enterprise that is to some extent
the continuation of what was done, even if in a totally different scope
and form.

There is a huge distance between the idealisation of a work and its
accomplishment. Since my time as an undergraduate student I have felt
something very frustrating whenever we undertake some task. Before
starting it off we urge ourselves with enthusiasm like that of a child.
\fI./e make plans and conceive projects which would virtually lead to the
creation of a masterpiece, so daring and ambitious and complete are
they. But indeed, things start running differently. Some excuses arise
to put the work off which hasten it towards the deadline. Unexpected
elements in the contents which our naivete or lack of knowledge did
not consider at the beginning. A friend who calls for our attention in a
crucial moment (or it is us who call for the friend). Someone who falls
ill, the little niece who arrives for silly conversations. The gas which
starts leaking. The money which we run out of and the debts which
increase.

Then we do what is possible, hurry what we can, alter the project,
catch up with time, put off sleeping!. .. Then, the work is finished at
last. It turns out to be exactly of our size, smaller than the idealisation
and with the taste of time. If it was not for this rivalry between the
mind and the arms, the mind and the heart, and the heart and the
ghosts, life would be less painful. But I think I know the end of the
story: the heart wins over only to give in afterwards. However, when the
work is called finished, our heart is uplifted by the feeling of "mission
accomplished". We smile to ourselves and make the vow that next time
everything will be different and hopefully better.
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Chapter 1

CONDITIONING OF
CONTROLLABILITY

This chapter deals with the problem of giving upper bounds for Ix(T) - z(T)I,
the error between the final state of a nominal finite dimensional system
x = Ax + Bu and that of the one disturbed by multiple structured pertur-
bations of the form

r

i(t) = Az(t) + 2:o.r, (Cjz(t), t) + Bu(t)
j=1

for the same initial condition.
The novelty here is twofold: we consider multiple structured perturba-

tions and the class of perturbations is envisaged by means of some artefact
which allows for a tightening of the bounds.'

1.1 Introduction
We shall consider a linear multivariable control system with m inputs
described in state space form by the following set of first order linear
ordinary differential equations

x(t) = Ax(t) + Bu(t) t E [O,T] (1.1)

1A slightly different version of this chapter appeared in Botelho-Pritchard[34].

15



16 CHAPTER 1. CONDITIONING OF CONTROLLABILITY

where T > 0 and the matrices A E Rnxn and B E Rnxm (with m and
n being positive integers) are given so that the system (1.1), denoted
(A, B) for short, is controllable. .

For a given initial state x(O) = x; E R" and any time t E [0,T], the
coordinates of x(t) are

x(t) = eAtxo + it eA{t-S)Bu(s)ds

After it was shown that the traditional discrete methods providing
yes- no answers for testing the controllability of a system might lead to
wrong conclusion, some efforts have been made in order to overcome
this drawback by considering the distance between a system and the
set of uncontrollable systems (Eising [20],[21]). However, this approach
is more of theoretical importance than of practical relevance since in
general the purpose of a nominal model is to enable one to design some
suitable control to implement on the real system. Thus, once a control
is designed in order to steer a system from a given initial state to a
desired final state, a number of circumstances like considering simplified
models to represent plants with complicated dynamic behaviour, or the
lack of precise knowledge of the values of the parameters involved, in
short the presence of uncertainties on the system, will imply that it
may not result in the desired performance. So it is useful to have an
estimate of the error between the final states of the nominal and the
perturbed system which accounts for the uncertainties. We can apply
the same method introduced in Pijnacker-Pritchard- Townley[19] and
consider time-invariant perturbations yielding a perturbed system of
the form

i = Az + D~Cz + Bu
Then we can show that

IILII'Yo < 1 :::::}Ix(T) - z(T)I s 1:1~~~IIIICxll

where 'Yo = II~IIand
Mv = J{ eA{T-I)Dv(s)ds

Lv (t) = J~CeA{t-s) Dv(s )ds

This interesting result nonetheless presents some shortcomings, namely
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1. We have single structured perturbations. So it does not account
for disturbances on all entries of A.

2. The class of perturbation is restricted to the time-invariant ones
only.

3. There is no flexibility allowed on the sufficient condition. There-
fore, the result is inconclusive if la ~ liLli-I.

We shall present here a generalisation of this theory by considering
multiple-structured, possibly nonlinear, time-varying perturbations. Hence
we avoid the first two shortcomings above. To cope with the third, we
bring about a novelty in the method of approaching the proof by in-
troducing weight-functions a = (all' .. ,ar). Thus we shall prove the
following conditioning of controllability:

where la is a constant and Mat) Le., COl are now maps which depend on
the weight-functions.

This result allows the designer some flexibility to seek convenient
ai to reduce the value of IILOIII· The significance of this is that one can
find a such that IILoillo < 1 even when IILII,o ~ 1 or, more generally,
liLa Ilia ~ 1 for other choices of a. Furthermore, we can improve the
estimate (i.e., tighten the upper bound) by first minimising IILOIII with
respect to a and then, for the optimal a, to minimise IICoxl1 with
respect to the input u.

In order to account for the uncertainties of the system, assume per-
turbed systems of the form

x(t) = Ax(t) + f(x(t), t) + Bu(t) (1.2)

where f :R" X [0, T] ---+ R" is given by multiple nonlinear mappings
given by

r

f{x{t), t) = LDiFi(Cix(t), t)
i=1

(1.3)
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where each D, E Rnxg; and C, E RP;xn, with pi, qi E N, are given
matrices.

Each perturbation F, : RP; X [0,T] ---+ Rg; is assumed to be Lips-
chitz in the sense that there exists a positive number Ii such that, for
all x, y E RP;,

and we shall denote
10 = max Ii

l$;i$;r

In particular, note that Pi constant and Pi (x, t)
examples of this class of perturbations.

(1.4)

x are classic

Also we shall illustrate this scaling technique by considering an ex-
ample for which we can determine analytically the error Ix(T) - z(T)1
as a function of the magnitute of the perturbation:

Example 1.1.1 (Linear undamped oscillator) As the nominal sys-
tem, consider the case of small oscillations of a frictionless pendulum
near its equilibrium position. Assume that we have zero initial condi-
tions and the system is subjected to a constant unitary force during the
time interval [0,11"]:

cp(t) + cp(t) = 1 t E [0,71"]
cp(O) = cp(O) = °

whose matrix representation is j; = Ax + Bu with u( t) = 1,

A = [0 1 1-1 0 and B = [ ~ 1
On the other hand, suppose we have uncertainty in the nominal

values for the "spring constant" and "damping factor" so that the per-
turbed system is taken to be of the form

i(t)

z(O)

Az(t) + (f n.E.C.z(t)) +Bu(t)

o
(1.5)
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with 6),62 being two real numbers and

Cl = [1 0] C2 = [0 1]

The solution of the nominal system is

x (t) = [ 1 --:cos t 1
smt

so that

Concerning the perturbed system, note that it reduces to

cp(t) - 6zrp(t) + (1 - 6J)cp(t) = 1
'P(O) = rp(O) = 0

whose solution will depend on the nature of the roots

of the characteristic equation. Since we expect the perturbations to
be "small" and hence 6~< 4(1 - 6d, the oscillatory solutions of the
perturbed system are given by
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1.2 The scaling technique

Let B : [0,T] ~ R" denote the difference B = z - x, where x is the
solution of the nominal system and z the solution of the perturbed sys-
tem with x(O) = z(O) = z,, for any given Xo E R". By differentiating,
we have the initial value problem

E(t)
T

AB(t) +2:DiFi(CiZ(t), t) (1.6)
i=l

B(O) 0

Consider the integral form of (1.6), namely

E(t) = z(t) - x(t) = /,' eA(H) (~D;F;(C;Z(S)' S)) ds (1.7)

In order to study the problem within a concise formulation, it is
convenient to set up a tidy framework to work within.

Let
Vi(.) = Ciz(.)
Yi(') = Cix(.)

From equation (1.7), we have

for t E [O,T] and i = 1,2, ... ,r.
At this point we artificially introduce some weight functions.

Consider ab' .. ,aT any real valued positive continuous functions
defined on the closed interval [0, T]

Thus, equation (1.8) can be rewriten as follows:

( 1.9)
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Once the inpu t u is fixed (u(.) E U>O,say), each O'i (.)Yi (.) is al so fixed
in L2[0, T; RPi]. Thus, our first concern is to guarantee the existence of
Z E L2[0, T; Rn] so that

satisfies the above system of equations.
For any given r-tuples

0' = (0'1, , O'r) o, E C[O, T; a, b]
P = (PI, , Pr) E N"
q = (Ql, , qr) E N"

we construct the following linear spaces structures:

1. Let RP = RPl X ... x RPr.

For convenience, we will write either a = [ J: ] or a = (at. ... , a, )

for an element a E RP.

On RP, we shall take the usual inner product

r

< (P},···,Pr),(lII,···,lIr) >RJ>= L < Pi, Vi >RPi
i=l

2. Let L2,p denote the following product of Hilbert spaces

with the inner product

r

< (gI,'" .s-), (hJ,"" hr) »i»-=L < s.. hi >L2,p,
i=l
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L2,p, is a short notation for L2[0, T; RP' j,
\Ve have that L2,p is a Hilbert space with

r

IlgIIL2,P =L IlgiIIL2,P'
i=l

3. We define Rq and £2.q similarly.

Also, for consistency of notation we put, say,

Now, we move on to introduce some operators.

Let FOt : RP X [0, T] ----t Rq be given by

for all Il = (1l1,"" Pr) E RP, and define the operator r. on L2,p by
putting

The Lipschitz assumption on F; is translated into a nice property
for FOt:

Proposition 1.2.1

POt is a map from L2,p into L2,Q satisfying the Lipschitz condition
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Proof:
Given any 9 = (9b··· ,9r) and h = (hI, ... , hr) in L2,p, we have

L:i=l J[ IQj(t)Fi (Qj(tt19j(t), t) - Qj(t)Fj (Qj(ttl hi(t), t)12 dt :::;
= L:i=l J[ Qj(t)2IFi (Qi(t)-19i(t), t) - F; (Qi(t)-lhi(t), t)12 dt
:::;L:i=l ,t J[ 19i(t) - hj(t)l2dt

from which the result follows. o

By introducing a few more definitions, the system of equations gen-
erated by (1.9) can be written in a concise form as

where

For each t, we define

by setting

and for all p E Rq,

It is easy to check that the adjoint operators
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are given respectively by
r

Co(tr II =LQi(t)Ctlli
i=1

Also,
r

Do(t)Do(tr 9 = LQi(tt2 DiD;g
i=]

r

Co(tr Co(t) x =L ll'i(t)2CtCiX
i=l

Motivated by equation (1.10) we can define the operator La from
L2,q into L2,p by setting, for all W in L2,q,

(1.11 )

or, equivalently,

so that
r

(Low)j =L ll'i(.)Lijll'j(·t1Wj
j=l

(1.12)

with

Note that each component (Low)j is the classic input-output opera-
tor, which is a bounded linear mapping from L2,p, into L2,Qj. Therefore,
La is a bounded linear operator from L2,q into L2,p. This follows from
Young's theorem and the fact that 9 E L2[0, T:Rn] when W E L2,Q,
where

(1.13)
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\Ve take
IILall = sup IILavllu,p

v¥O IIVIIL2,Q
Note that when Q'l(t) = ... = Q'r(t) = J..l, for some positive constant

/1, we have that IILal1 is invariant with respect to /1.
Also, since each Lij is compact, this implies that La is also compact.
The proposition below provides the expression for L~.

Proposition 1.2.2 The adjoint L~ : L2,p ~ L2,q is given by

(1.14)

Proof: For any W E L2,Q and Y E L2,p,

< y, Law >u,p= E~=l < Yi, (LaW)i >L2,Pi

= E~=lJ[ < Yi(t), Q'i(t)Ci J~ eA(t-s)g(s )ds >RP; dt

so that

< Yi,(Law)i >L2,p;= J[ Jci < eA·Ct-")Q'i(t)C;Yi(t),g(s) >Rn dsdt
= J[ J"T < eA·(t-")Q'i(t)C;Yi(t),g(S) > dtds
= Ej J[ < Q'j(stl Dj J"T eA·(t-")Q'i(t)C;Yi(t)dt, Wj(s) >RqJ ds
=< Do(s)* ff' eA·(t-")Q'i(t)C;Yi(t)dt, w(s) >Rq

Therefore, we have

< y,Low >L2,,.= Ei=) < Yi,(Low)i >L2,p;
=< Do(s)" J; eA·(t-s) (Ei=l Q'i(t)C;Yi(t)) dt, w(s) >Rq
=< Do(s)* JsT eA·(t-s)Co(t)"y(t), w(s) >Rq

o

In virtue of (1.14), we have

We can write equation 1.10 in a more convenient way as

(1.15)
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and this establishes the above equation as an equivalent representation
for our previous system 1.6:

E(t)
r

AE(t) +L DjFj(Cjz(t), t) (1.16)
j=1

E(O) 0

Finally, from what has been constructed, we have the following ex-
pression for E(T):

and we introduce the operator Mo: : L2,q --+ H" by

(1.17)

One easily have that AI; :R" --+ L2,q is given by

for each 9 ERn.
Such Mo: is a bounded linear operator. In fact, for every w in L2,Q,

IAlo:Wlhn < (It IeA(T-")Do:(s)w(s)IRnds)2
< e211AIIT (It ILl=1aAst1Djwj(s)IRn dS)2

< e211AIIT (Li=11IDjll. (max" O:j(S)-1). It IWj(s)lds f
< e2IAIIT. (max, IIDill). (max{max., O:;(S)-1}) rT2.llwllu.Q

where we have used the inequalities:

(Li=1 aj) 2 < r Ei=1 a;
(I: If(t)ldt)2 < (b - a) (1: If(t)12dt)
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both being consequences of the Cauchy-Schwartz inequality in different
measure spaces.

Hence, we take

Remark 1.2.1: Eventually, an alternative way of establishing the
framework for the theory in dealing with the weight-functions 0' is to
develop the analysis using weighted spaces L!,. Since the o, are taken
to be continuous on the compact interval [0,T], the L2 and L;, norms
are equivalent because

(min O'i(t)) Ilulli2(OT) ~ Ilulli2 (OT) ~ (max O'i(t)) Ilulli2(OT)te[o,Tj , 0, ' te[O,T] ,

However, incorporating the weights on the operators seems to be
more prevalent when the matter in question is to apply some scaling
technique to tighten the upper bounds.

1.3 Upper bound for the error

From what we have seen, the existence of solution E(t) for the prob-
lem 1.6 is equivalent to the existence of some Va such that

Va = Ya + La(Favo,)

where Ya is fixed in L2,p, and the final state E(T) is given by

(1.18)

(1.19)

We shall make use of the classical contraction mapping argument
in order to estimate the error IE(T)I = Iz(T) - x(T)I. The following
theorem is the main result of the chapter ..

Theorem 1.3.1 (Conditioning of controllability)
Suppose

1
la < liLa II
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Then, we have

Iz{T) - x{T)IRn ~ 1~~~~~IIIIYoIIU'p (1.20)

where Ya = {a} C}x, ... ,arCrx) E L2,1' is fixed for each fixed input u in
Loo[O, r,Rm].

Proof: For Yo fixed, define the operator HOI from L2,1' into itself by
putting

Ha(w) = Ya + La(Faw) \fw E L2,1'

We have, for every g,h E L2,1',

IIHa(g) - Ha(h)llu,p - IILo(Fa9 - Fah)llu,p
< IILall.IIF09 - Fohllu,q
< IILolI')'ollg - hllu,p

Since IILaillo < 1, it follows that HOI is a strict contraction.
Therefore, from the Contraction Mapping Theorem, it follows that

there exists a unique W = (w}, ... , wr) E L2,p such that H a( w) = W.
Define v E L2,p by putting Vj(t) = aj(tt1wj(t).
Then, Vo = Yo + Lo(Fovo) and

IIVoIIL2,p ~ IIYaIIL2,p + IILall . IIFovoIIL2,Q
s IIYaIIU,p+ IILol1 ')'0 IlvollL2,p

and, since IILall')'o < 1, we have (1 - IILoIIl0)lIvoIlL2,p ~ IIYaIIL2,p. So,

1
Ilvo11L2,P s 1 -IILalho IIYoIIL2,P

On the other hand, by equation 1.19 we can write

and the result follows. o

Remark 1.3.1: This theorem generalises the cases of single struc-
tured perturbations and of time-invariant perturbations, In particular,



1.3. UPPER BOUND FOR THE ERROR 29

for the case of single time-invariant perturbations, the conditioning re-
sult becomes:

Iz(T) - x(T)1 ~ 1: ~~21"Cxl
with la being the operator norm of the perturbation. We shall refer
to the above upper bound as conditioning number for this perturbation
configuration. Accordingly, for our configuration we define

(1.21)

and shall refer to it as the weighted conditioning number. A welcome as-
pect of theorem 1.3.1is the presence of the functions a = (0'1, ... , aT)
which allows for an improvement both on the condition ,01lLoll < 1,
which may eventually be achieved even when ,01lLII ~ 1, and on the
weighted conditioning number by conveniently choosing a. This flexi-
bility enables at least in principle the following optimisation strategy:
first pick the optimal a which renders IILal1 minimal; then, for this
choice of Ii find the optimal input such that IICaxll is also minimal.

Remark 1.3.2: Concerning the evaluation of the norms involved,

(i) for IICoxll we easily have

IICQxW = t. faT lak(t)Ckx(t)12dt

(ii) for II.Mall, first note that

(1.22)

Thus, MQM~ is a linear transformation from R" into itself and
as such can be identified with a n X n real matrix. So the deter-
mination of 11MO'ilcan be reduced to the problem of evaluating
the operator norm of a matrix;

(iii) for IILall, the situation is more complicated and we address this
problem in next chapter.
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Chapter 2

CHARACTERISATION OF
IILal1

We provide a characterisation of the norm of the operator La by introducing
a linear quadratic optimal control problem. The characterisaton is obtained
in terms of a parametrised differential Riccati equation. The new frame-
work derived from the multi-structured character of the perturbation and
the presence of the weight-functions adds some new complications to the
algebraic developments of the proof. Also it is shown the equivalence of
this characterisation and another one in terms of Hamiltonian systems. The
study is completed by assessing the question of a computational algorithm
for evaluating IILall. Finally we illustrate the result on the conditioning of
controllability problems to the example of the undamped linear oscillator.

2.1 Introduction

To motivate the method pursued here, consider the system

x(t) - Ax(t) + Da(t)v(t) x(O) = 0
y(t) - Ca{t)x(t)

(2.1 )

where Q' = (Q'll"" Q'r) , A , Ca and Da are the ones defined in the
conditioning study.

31
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For any given V E L2,q, the output y is given in L2
,p by

so that
y = Li;»

liy1lL2,P s IILall·llvIIL2,q
This enables us to write IILall-2 = sup A where

A = {p > 0 i Ilvlli2,p - pllylli2,Q ~ 0 , Vv E L2
,9 }

where y(t) = Co(t)x(t) and x is the solution of the system 2.1.
Note that y also depends on the input v since the state of the system

is a function of the input. So we can introduce the following optimiza-
tion problem on L2,Q, which is a Linear Quadratic Optimal Control
Problem and we shall refer to it as (OP):

Minimise (properly or not) the cost functional given by

(2.2)

subject to the constraint:

x(t) - Ax(t) + Da(t)v(t) x(O) = 'P t E [0, T] (2.3)
y(t) - Ca(t)x(t)

We should mention that a more clarifying notation for the cost
should read Jp( Vi 'P, [0,T]), since the initial state and the time interval
also determine the value of the cost functional.

The analysis of this problem follows the technique presented by
Dietmar Salamon in his course Control Theory given at the University
of Warwick in 1987.

We will provide a twofold characterisation of IILal1 because it brings
about the resolution of a matrix Riccati equation which can be con-
nected with Hamiltonian systems.
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2.2 Solution of the optimal control prob-
lem

Let us introduce the operator :FOt : R" --+ L2,p by putting Vt.pE R"

(2.4)

Thus the output of ( 2.3 ) is

(2.5)

and, along the system ( 2.3 ), the functional Jp can be expressed as

Jp(V) < V,V >p.q -p < :FaY + Lav,:Fat.p + L;» >p.p
- < V,V >p.q -p{ < :FOt,;?, :FOt,;? > ts-» +

+2 < :FOt';?,LOtv >L2.p + < Lav,LOtv >p.p}

Therefore, by solving J~(v) = 0 we obtain the necessary condition
for the optimal input:

v - pL~y
y - :FOtt.p+ LOtv

(2.6)
(2.7)

The question now is to know if I - pL~LOt is invertible and positive
definite, where I represents the identity map on L2,Q.In other words,
to know if equations 2.6 and 2.7 have a unique solution. The next
proposition shows that the answer is affirmative, provided that p is
restricted.

Proposition 2.2.1 Suppose p < IILOtII-2• Then (GP) admits a unique
solution.

Proof: Given any V E L2,p,

where (1 - pIlLOtW) > 0 does not depend on v. This shows that
I - pL~LOt admits continuous inverse.
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Also, we have that I - pL~Lo is positive definite, since

o

Once we have established the existence and uniqueness of solution
for the optimization problem, we might wish to obtain it explicitly. To
do this, first notice that the optimal input is given by

v(s) = p(L~y)(s) = -D:(s) J: eA·(t-s)pC~(t)Y(t)dt
Now, denote

w(s) = J: eA·(t-s)pC~(t)y(t)dt (2.8)

In particular, note that w is absolutely continuous and therefore is in
L2,n.

Thus, we have that equations 2.6 and 2.7 are equivalent to the
following coupling, which we shall refer to as (CS):

x(t) = Ax(t) + Do(t)v(t) x(O) = cp
y(t) = Co(t)x(t)

w(t) = -A*w(t) + pCo(t)*y(t) w(T) = 0
v{t) = -Do(t)*w(t)

and we can establish the existence and uniqueness of solution for our
optimisation problem:

Theorem 2.2.2 Suppose p < IILO'II-2. Then, there exists a unique
optimal control v E L2

,Q for the problem (OP):

Minimise Jp( v; v, [0,Tn = IIvlli2,Q - pllylli2,,,
Subject to

x(t) - Ax(t) + DO'(t)v(t)
y(t) - CQ(t)x(t)

x(O) = ip E R"
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Moreover, iJ is continuous and given by the feedback law

iJ(t) = -Do(t)* P(t)x(t) "It E [0, T] (2.9) ,

where each n x n matrix P(t) is self-adjoint and defined by

< 'P, P(t)'P >Rn= inf Jp(v; 'P, [0,T])
vEL2,q

(2.10)

In particular, P(T) = O.

Proof: For the optimal cost we have (we will leave out the tildes for
simplicity of notation):

Jp(v) - <v,v>-p<Y,Y>
- < V,V > -p < Fa'P + Lov,y >

< v,v - pL~y > -p < Fa'P,y >

So,
Jp(v) = -p < Fo'P,y >u,p

since v - pL~y = O. On the other hand,

(2.11 )

< Fo'P, y >L2,p - Jt < Ca(t)eAt'P, y(t) >RP dt
- < 'P, Jf eAOtCo(tty(t)dt> Rn

which gives

Fa *y = loT eAOtCo(t)*y(t)dt

Using equations 2.8 and 2.11, we can write

Jp(V) =< tp,-p:Fa*y >=< tp,w(O) >

for the optimal cost. At this point, we can introduce the operator P(O)
from R" into itself (which we shall identify with its matrix) by defining

P(O)'P = w(O) (2.12)
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To write P(O) explicitly in terms of the others operators involved, we
recall that equations 2.6 and 2.7 combined yield Fa'P = (1- pLaL~)y.
So, provided p < liLa 11-2 we have

P(O)'P = w(O) = -pFa·Y
= -pFo *(1 - pLoL;tl Fa'P

So, P(O) = -pFOI *(1 - pLoL;tl FOI, which is clearly a bounded
linear operator on R", Moreover, it is self- adjoint. Indeed, for any
h,g E L2,p, put H = (1- pLOtL:tlh and G = (1 - pLOtL:tlg. Then,

< h, (/ - pLcrL;tlg > < (I - pLaL;)H, G >
< H,G > -p < H,LoL~G >

- < H, (I - pLaL:)G >
- < (I - pLaL;t1h,g >

To procede to the definition of P(t), for t =I 0, first note that

v(O) = Do(Orw(O) = -Do(Or P(O)x(O)

Now, take 0 < e < T arbitrary and consider the problem:
Minimize Jp(v; x(e), [e, T)) = IIvlli2,9 - pllylli2,p
Subject to

x = Ax + Dov on [e, T]
Y = Gox

It follows from the uniqueness of the solution of (OP) that V =
-Daw restricted to [e, T] is optimal for the problem above. Also, we
have that the optimal cost is

Jp(Vj X(~), [~, T)) =< x(~), w(O >=< x(O, p(Ox(e) > (2.13)

where P(~) is defined by:

P(~)'P = w(e) = - leT eA·Ct-e) pCa(t)*y(t)dt (2.14)

with w being the solution of

x Ax + Dov
y - Cox
w -A·w + pC~y
v -tr»0

x(e) = r.p

w(T) = 0
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on [<, T]. Finally, since < is arbitrary on the open interval (0, T), we
have defined a family of self-adjoint bounded operators {P(t)}tE[O,TJ
with

w{t) = P(t)x(t) "It E [0, T]
o

2.3 Riccati equation
As an important consequence of the last theorem, we can obtain a
characterisation of IILa II in terms of a parametrised differential Riccati
equation on [0, T], which we shall refer to as (DRE).

Corollary 2.3.1

(i) If
1

p < IILal12
then there exists a family {P( t) hE[O,TJ of self-adjoint bounded lin-
ear operators (a posteriori, matrices) such that P(.) E CI[O, T; Rnxn]
and P(t) is the unique solution of the following (DRE):

?(t) + A* P{t) + P(t)A - pCa(t)*Ca(t) - P(t)Da(t)Da(t)* P(t) = 0
P{T) = 0

(ii) Conversely, if P(.) E Cl [0,T,Rnxn] is such that P(t) is a self-
adjoint solution of (DRE) on [0, T], then

< 1
p - IILol12

Proof of (i) For p < IILoll-2, we define P(.) as before by putting,
for any fixed rp E H" and ~ E [0, T],

P(~)v> = w(~)
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where
:i:(t) = Ax(t) - Dar(t)Dar(t)'"w(t) x(e) = 'P
w(t) = -A*w(t) + pCar(t)*Co(t)x(t) w(T) = 0 .

or, equivalently,

w(e) = - leT eA·(t-e> pCo(t)*Co(t)x(t)dt

(Cf. equation 2.14 ).
Moreover, x given by x(t) is continuous on [e, T], so that w is differ-

entiable on e, \Ie E [0, T]. From this it follows that P(.) E Cl [0, r, Rnxn]
and

p(e)x(e) + p(e):i:(O = w(e)
p(e)x(e) + p(eHAx(e) - Do(e)Do(O* p(Ox(e)} =

= -A* p(e)x(e) + pCo(e)*Co(e)x(e)
{p(e) + A* p(e) + p(e)A - pCo(e)*Co(e)-

-p(e)Do(e)Do(e)* p(e)} 'P = 0

Since 'P is arbitrary, (DRE) follows. Also, P(T) = w(T) = o.
The uniqueness is a consequence of the theory of ordinary differen-

tial equations with initial (and, by a change of variables, final) condi-
tions. 0

Proof of (ii) Equation 2.14 gives the optimal cost:

In particular, the case 'P = 0 yields

Thus, along
:i: = Ax + Dov x(O) = 0
y = Cox

it follows that
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for every v =I o.
H . IlL II IILavll,2.p th f i ItOence, since or = supv¥o IIv1l

L
2.9 ' e proo is comp e e.

Remark 2.3.1: IILal! is obtained iteratively by searching for the

smallest value of p > 0 which breaks down the regularity of the solution
of the Riccati equation (more precisely, its boundedness). Of course,
one can argue that when it comes to the computations, to detect this
breaking down of boundedness brings in itself some pratical and logical
difficulties. The approach via Hamiltonian systems, which we consider
now, turns out to be more accessible for the numerical computations.

2.4 Hamiltonian systems
Another way to consider the coupling system (CS) is to rewrite it as

This is brought up because a connection between Hamiltonian sys-
tems and matrix Riccati equations can be established and this is stated
in the proposition below. When it comes to computations, the approach
via Hamiltonian systems may turn out easier to tackle.

Recall that a linear Hamiltonian system is one that may be writ-
ten as V(t) = JH(t)V(t) where H(t) is a symmetric matrix which is
continuous on an interval and

In is the identity matrix of order n and On is the n x n-matrix with
zeroes as entries.

Consider the matrix equation (HS):

[ X(t) ]_ [ A -Dor(t)Dor(tt ] [ X(t) ]
W(t) - pCa(t)*Cor(t) -A* IV(t)



40 CHAPTER 2. CHARACTERISATION OF IILal1

with final time conditions

[
X(T) ]_ [ In ]
W(T) - On

where each X(t) and W(t) are n X n real matrices.

Theorem 2.4.1 (i) If P(.) E Cl [0,T; Rnxn] is such that P(t) is the
unique self-adjoint solution of the Riccati equation (DRE), then

X(t) = <I>(t,T)
W(t) = P(t)<I>(t, T)

is the unique solution of the Hamiltonian system (HS).

Here, <1>(.,.) is the evolution operator generated by

(ii) Conversely, if [ ~~!~]is the Cl-solution of (HS) and X(t) is

invertible on [0, T), then

P(t) = W(t)X(ttl

is the self-adjoint Cl-solution of (DRE).

Proof of (i) Consider (HS) in the form

X(t) = AX(t) - DQ(t)DQ(t)*W(t)
W(t) = -A*W(t) + pCQ(t)*CQ(t)X(t)

X(T) = I
W(T) = 0

If we write X(t) = (A - Da{t)Da{t)* P(t))X(t), it follows that

IIA - Dar{t)DQ(t)* P(t)1I ~ IIAII + IIDQ(t)II·IIP(t)11

So, since both Da(.) and P(.) are continuous on the compact [0,T] and
therefore bounded, it follows that
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generates the evolution operator ~(t, s) satisfying

~(t, T) = (A - Do(t)Do(t)* P(t))~(t, T) (2.15)
~(T, T) = I (2.16)

We claim that X(t) = ~(t, T) and W(t) = P(t)~(t, T) solve the sys-
tem (HS).

Indeed,

X(t)
W(t)

- ~(t, T) = (A - Do(t)Do(t)* P(t))X(t)
F(t)~(t, T) + P(t)~(t, T)

(2.17)
(2.18)

Substituting the expressions for p(t) from (DRE) and ~(t, T) from (2.15)
into equation 2.18, we can see that (HS) is satisfied. The final condi-
tions are easily seen to be verified as well. 0

Proof of (ii) Define

P(t) = W{t)X-I(t)

Then we have that P(T) = W(T) = 0 and P(.) E GI[O, T; Rnxn]
whenever X and Ware continuously differentiable. Therefore,

?(t)X(t) + P(t)X(t) = W(t)

and, again, substituting the expressions for X(t) and W(t) from (HS)
in the above equation, we have:

{F(t) + A* P(t) + P(t)A - pGo(t)*Go{t)-
-P(t)Do(t)Do(t)* P(t)} X(t) = 0

Since X(t) is invertible, it follows that P{t) satisfies (DRE). To
prove that W{t)* X{t)-l = (X(t)-l)* W(t) (i.e., P{t) is self-adjoint),
first note that this is equivalent to

X{t)*W{t) = W{t)* X(t)

Thus, consider h given by

h(t) = X{t)*W(t) - W(t)* X(t) 'Vt E [0, T]



42 CHAPTER 2. CHARACTERISATION OF IILerl1

By differentiating, we have

h(t) = (X(t)*W(t) + X(t)*W(t») - (W(t)* X(t) + W(t)* X(t»)

Now, inserting the expressions for X(t) and W(t) from (HS) and
manipulating the simplifications, we get h(t) = 0. So, since h(T) = 0,
it follows that h(t) = 0, Vt E [0,T]. 0

Corollary 2.4.2 (i) If p < IILerll-2, then there exist X(t) and W(t)
which solves (HS) uniquely, with each X(t} invertible.

(ii) If X(t) and W(t) are the unique solution of (HS), with X(t) in-
vertible, then p < IILerll-2.

Proof: Immediate. o

2.5 Numerical evaluation of IILal1
Corollary 2.4.2 indicates that if, for each fixed a, we solve (HS) back-
wards in time from the final condition X(T) = I, W(T) = 0, starting
with small values of p > ° to obtain detX(t) -! 0, Vt E [0,T], and keep
on increasing p, the value of IILerll-2 will be equal to the first p for
which the solution of (HS) is such that detX(i) = 0, for some i E [0,T).
Hence the computation of IILerl1 can be done by scanning the values of
detX(t) along the interval [0,T], for each p, until we find the first value
of p which gives detX(t) -! ° for some t.

We can improve our insight into this algorithm that allows for the
numerical evaluation of the norm of the input-output operator by try-
ing to get a better understanding of it as a function of the time interval.
For simplicity of reasoning, let us focus only on the case of single per-
turbation.

Consider the map f : [O,T] -+ [0,00) defined by f(~) = IILell,
where, for each e E [0,T], Le is the bounded linear operator from
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L2[e, T; RP] into L2[e, T; R9] given by

Lew (t) = ~t K(t - s)w{s)ds

where K(t-s) = CeA(t-')D. It is our purpose to study some properties
of f so that we could be able to derive an algorithm for the evaluation
of IILII = 1(0) by means of iterations on the parameter p in either the
·Riccati equation or Hamiltonian characterisation of IILII (cf. corollary
2.3.1 and theorem 2.4.1). Concerning such an algorithm, it is desirable
that it could be useful for implementations on computers.

It is immediate from the definition that each Le is bounded and the
function f is non-increasing, i.e., IILel II s IILb II for ° < {I < {2 < T.

In Hinrichsen-Ilchmann-Pritchard [18] it was shown, for the case
Le from L2[e, 00; RP] into L2[{, 00; Rq] defined similarly, that IILeli is
constant, for all e E [0,00]. The next proposition shows that the
situation is different in our case.

Proposition 2.5.1
There exists a sequence (Tk) on [0, T] converging to T such that

Proof:
For each kEN, let

k .
Tk= --Tk+l

Take w E L2[0, T; RP]. In particular, w E L2[Tk' T; RP] and we
have:

IILTr.wll2 = fT II I' K(t - s)w(s)dsWdt ~ -y2(T _ Tk? fT Ilw(s)Wdsh h h
where -y = (IICII.IIDIIMco)2.

Therefore, for each kEN,
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and the result follows.
o

Note that, as a straightforward consequence of Lebesgue's theo-
rem of dominated convergence, we have that f:£ Ilw(s)Wds ___,. ° as
Tk ___,.T.

Also, proposition 2.5.1 and the fact that I is non-increasing yield
that there exists 6 > 0 such that I(e) < 1(0), \Ie E (6,T) .

So, the set P defined by

P = {6 E [O,T] j IILel1< liLli, \Ie E (6,T)}

is bounded and non-empty. So, let us denote i = inf P.
It can be shown that f(i) = f(O) by using continuity arguments.

This yields that the bounded set

1-£= {J.t E [O,T] j IILel1= IILII \Ie E [0,J.t)}

is non-empty and we have the following result:

Proposition 2.5.2

(i) i = infP = max1-£

(ii) Suppose p. E 1-£and IILjltOl1= IILjlll.llwll lor some to E L2[J.t,TjRm].

Then, w defined by

w={~ on [0, J.t)
on [p., T]

is such that IILwl1 = IILjlll.llwIIL2[o,T;Rm).

Proof of (i) Denote sup 1-£= #0'
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If i < j.Lo, then either j.Lo E 'P, which contradicts the fact that
i E 1-£, or there exists P E (j.Lo, T] such that IILill1 = IILII. But the non-
increasing character of f implies that IILell = liLli, Ve E [0,p]. Hence, .
p > j.Lo and p E 1-£, which is a contradiction.

If i > j.Lo, take m such that j.Lo < m < i. Then, m > j.Lo implies that

and m < i implies that

30m E (m,~ such that IILel1= IILII Ve E [O,Om]

Therefore em E [0,8m) C [0,T], which gives IILemII = IILII. This
contradicts 2.19

Finally, since sup 1-£ = i and i E 1-£, the result follows. 0

Proof of (ii)

IILwW J(f IIIJK(t - s)w(s)dsI1
2

dt = I; III: K(t - s)w(s)dsI12 dt =
- IILIlwl12 = IILIlW·llwIIL2[I',T;Rml

o

It is important to note that if i = 0 then f is strictly decreasing.
Indeed, if

i = 0 and IILell = liLli, Ve E [0,l]
for some l in (0, T], then there would exist a 6 > 0 such that

IILel1< liLli, Ve E (6, T]
with 0 < 6 < l + 0 :5 T. This means that lE (6,T]. Therefore,
IILel1 < liLli, which is a contradiction.

2.6 Example of application of the theory
Now we address example 1.1.1 in order to study the bounds for the error
between the nominal and the perturbed systems. For this example we
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can obtain analytically the exact value of E{7r) = IX{7r) - z{7r)1. The
first interesting aspect of this double structured perturbation is that,
for the same value of

"Yo = max{loll, 1821}
we have different values of E{ 71') corresponding to different combina-
tions of perturbations 01 (uncertainty on the spring factor) and 02 (un-
certainty on the damping constant) that produce the same "Yo. The
table below shows this feature of the response of the system, which we
were able to notice ad hoc.

0.1 0.07 0.1 0.33
0.08 0.1 0.1 0.34
-0.1 0.05 0.1 0.18
0.0 -0.1 0.1 0.15
0.1 0.0 0.1 0.22

Figure 2.1: Some magnitudes of perturbations yielding the same "Yo =
0.1

We shall concentrate on small perturbations, say, lod < 0.1, for
which "Yo= 0.1.

Define

and let n~o be a subset of n-yo with a finite number of elements. Then
we denote

E-yo{7I') = max{E{7r) j (8},02) E n~J
and, for the weighted conditioning numbers,

K "YoliMa II IIG II
a = 1_ "YoliLa II aX L2,2
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With this notation, we have that E-Yo(7r) = EO.1(7r) = 0.34 for the
set of values of perturbations of figure 2.6.

In order to compare the upper bounds 1(;z with this exact error .
e;(7r) we set

Ko
ra=-

E-ro
We proceed to the relevant computations for the example.

Applying the algorithm for determining IILall we have, considering
the Hamiltonian approach and after the change of variables t = 71' - 7',

the following initial value problem

X(T) = -AX(T) + L:~=1(Xi(7I' -7't2DiD;W(T) X(O) = 12
W{T) = pE~=1 (Xi(7r - T)2CtCiX{T) + A*W(T) W(O) = O2

This yields the system of equations

Xn = -X21
X12 = -X22
X21 = +X11 + (f312 + f32"2)W21
X22 = +X12 + (f312 + f32"2)W22

Xn(O) = 1
XI2(0) = 0
X21(0) = 0
X22(0) = 1

W11 = -W21 - p/3:Xn W11{O) = 0
W12= -W22 - p/3:X12 WI2(0) = 0
W21 =+Wu - Pf3~X21 W21{O) = 0
W22 = +W12 - pf3~X22 W22(0) = 0

where f3i{T) = (Xi(7I' - 1').

Proceding in an analogous manner, similar sets of differential equa-
tions can be obtained considering the Riccati equation approach:

Pt = -2P2 - pf3; - ({312 + f3;2)p~ Pl(O) = 0
P2 = -P3 + PI - (f312 + /32"2)P2P3 P2(O) = 0
P3 = 2P2 - pf3~ - (f312 + f3;2) P3{O) = 0

Using Runge-Kutta method, we can integrate either system to ob-
tain IILall. Obviously, for finite time problems the integration of the
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Hamiltonian equation is the natural alternative, since it is logically
sound to detect the vanishing of the determinant of a matrix as opposed
to the blowing up of some matrix entry. For infinite time problems the
right-hand side of the Riccati equation vanishes as t tends to infinity
and the differential equation reduces to an algebraic one.

Figure 2.2 shows the behaviour of detX(t) as P varies for the case
at (t) = 1+0.3t and a2(t) = 1.5-0.lt. Note that, as you increase P from
values near zero, P2 = 0.115 is the first one that renders detX(t) = 0
for some t. Hence IILolI = (P2tt/2 = 2.95 for this choice of weight a.
A remarkable aspect of all these computations is that always the first
time that detX(t) vanishes is at zero. So the experimentation gives
i = 0 in our theoretical considerations.

0.8····

......i' ~ oj' ........•.•.

..... ~ ~ ~ .

.......... .~ ,;. - -~ .. . .
: :

-O.40:---:0.s;---71----:1"':.s-~2~-='"2.S:---~3-~3.S
.1 (1)-1+0.31 a2(tj-1.5+-O.1t

Figure 2.2: The graph detX(t) x t for successive values of p: PI = 0.10,
P2 = 0.115, P3 = 0.15, P4 = 0.20.

Case 1: Constant weights O"t(t) = a and a2(t) = c

For the determination of IICoxl1 we have

IICaxW = 10'1( (at(t)2xt(t)2 + a2(t)2x2(t)2) dt

where x = (XllX2) E L2[0,1rjR2] the solution of the nominal system.
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Thus,

and so
(2.20)

With respect to the evaluation of IIMall, we have

M M* = r ( 1 + 1 ) eA(1f-') D D*eA·(1f-')ds
a a 10 al(t)2 a2(t)2 1 1

We can easily check from

x(t) = [ 1~i~~s t 1= /.' eACH) [ ~ 1 ds
and eA(H,) = eAteA' that

eAt = [ co~t sin t 1
- sm t cost

Thus,

M M* - [ J; h(s) sin2 sds - J; h(s) sin s cos sds 1
a a- -J;h(s)sinscossds J; h(s) cos2sds

where
(2.21)

So,

*_(1 1) [~ 0]MaMa - a2 + c2 0 ~

For this particular case of constant weights, the evaluation of IIMQM~II
can be made rather easily by noticing that

IIMoW - < Mog, Mag >=< g, MoM~g >
= (;\ +~) tlgl
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Then

(1 1)7r-+- -
a2 c2 2

It is worthwhile to note that for the even more particular case when
the constant weights are the same, al(t) = a2(t) = 1',then

independently of the value of 1'. Since IILol1 = 2.42 also is invariant
with I' in this case, the conditioning number can be promptly evaluated:

Also,
/(1 0.58

rl = EO•1{1r) = 0.34 = 1.72

Figure 2.3 surrunarises the outcome for some choices of constant
weights a. .

al (t) a2(t) IICaxl1 IIMol1 IILoli r{a)

I' I' Vi/Jl. 1'$ 2.42 1.72

a c j(3a2 + c2)7r/2 j(a-2 + c-2)7r/2

1.0 0.5 2.26 2.80 3.45 2.80
0.5 1.0 1.66 2.80 2.67 1.86
0.5 2.0 2.73 2.58 4.59 3.84

Figure 2.3: Case of constant weights. 'Yo = 0.1 and EO•1 (7r)= 0.34

Case 2: Time-varying weights.
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Since we do not have an algorithm for the minimisation of liLa II,
we shall consider weights given by

Ql(t) - a + bt
Q2 - C+ dt

where a,c =F 0 and b > -a7r-t, d > -cr-1 to avoid singularities. Then,
by scanning over the values of admissible a, b, c and d, we can search for
a convenient pair of weight-functions that improves our estimate either
by allowing a larger class of perturbations - if IILall is smaller than
the one for time-invariant weights - or by tightening up the bounds.

We have

For the evaluation of IIMall we can use a computer program! to get
the norm via

IIMal12
- IIHII = maxlgl=llHgl
- max{~ j ,\ E u(H*H)}

where H = MaM;.
Naturally, the norm IILall is obtained by means of the algorithm

from chapter 2. Figure 2.4 illustrates the results obtained for some
choices of Q. Note that it was possible to get lower values for IILall
than any of the ones obtained in the case of constant weights.

1We have used the Mathematica software on a PC.
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0'1(t) 0'2(t) IICoxl1 IIMol1 IILol1 r( 0')

1 1+0.5t 3.14 2.41 3.00 3.18
1 1.8-0.5t 2.54 4.58 2.19 4.38

1.8-0.5t 1.8-0.5t 1.92 7.18 1.45 4.75
1+0.3t 1.5-0.lt 4.12 1.42 2.95 2.44

Figure 2.4: Case of weights depending on t.



Chapter 3

ON THE OPTIMISATION
OF THE CONDITIONING
NUMBER

We present a remark on the nature and status of the problem of finding
the optimal et which gives the minimal IILali. Namely, we characterise it
as a convex non-differentiable minimisation problem in infinite dimensional
spaces for which no algorithm is availab~ so far. Also, we give a complete ~ (\.
functional analytic abstract approach to the problem of minimising IICaxl1
with respect to the input.

3.1 Introduction
We recall that with respect to the nominal system x = Ax + Bu for
which the account for the uncertainties on its structure led to the study
of perturbed systems of the form

,.
i(t) = Az(t) +LDiFi(CiZ(t), t) + Bu(t)

i=l

with Lipschitz perturbations, the error in the final state after a time T
- and starting at a given initial state Xo - was estimated as follows

53
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whenever
IILoll.10 < 1 {3.2}

The artificial introduction of the weight 0' allows one "to seek for a
convenient 0' that guarantees the sufficient condition (3.2) to be satis-
fied. So, even when IILII ~ 1;1, inequation (3.2) can still be satisfied
for a convenient choice of 0' and this in principle enlarges the class
("magnitude") of perturbations that can be considered. Moreover, one
can move a step further and try to find 0' which gives smaller values of
IILoll and, for this choice of the weight-function, to get a control that
gives the minimal I ICO' II·

3.2 Remark on the minimisation of IILO'II
Wee have already seen that merely evaluating ilLG\'il was on itself a
problem far from being trivial (Cf. chapter 2). So, not surprisingly, the
question of providing an algorithm for minimising liLa II with respect
to 0' turns out a very difficult and as yet unsolved one.

We shall prove here that, after a change of variables given by O'i(t) =
e'Pi(t), the mapping 'P I-t IIL~L'PII is convex. However, no result on its
smoothness is available and, more than this, we are somewhat inclined
to expect that this mapping is non-differentiable at the point where it
achieves its minimum.' Therefore, what we have at hand here is an
extremely nontrivial non-differentiable convex minimisation problem.
Although in the literature one can find simple algorithms for minimiz-
ing a convex optimization problem in finite-dimensional spaces, finding
general results is a more delicate task. There is a proof of convergence
of the subgradient method for constrained convex problems in Hilbert
spaces (cf. comments in Shor [18]) but as yet no algorithm is avail-
able for finding sub differential in the context of more general infinite
dimensional spaces for non-differentiable functionals.

Thus, at the present stage of the research we have to content our-
selves with searching for a satisfactorily small value of IILO'II by trying
different choices of Q. This was the procedure privileged in last chap-

1Because, according to Pritchard '5 informal comments, this is not so for constant
single weights.
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ter's treatment of example 1.1.1, where the choice for a's of the form
of straight lines was assumed - as opposed to argued - as providing
a reasonably wide range of possibilities.

Now, in order to prove the convexity of the mapping c.p t-+ IIL~L'PII,
we first recall the following facts which establish the context for a non-
differentiable convex minimisation problem.

If X is a real Banach space and / : X ---+ R is a convex mapping,
then

/(0:) = min /(0') iff 0 E a/co:)x
Moreover, every local minimum is also a global one.
If n is a convex subset of X and / : n ---+ R convex, then

• 0'* E X* such that /(0') ~ /(a) + 0'*(0' - 0:), \;fa E 0, is called a
subgradient of / at o.

• a/ (0) = {o" E X· j 0'* is a subgradient of / at 0 } is called the
subdifferentialof / at 0:.

The monotone multivalued map a/ : 0 ---+ 2x• is called the subdiffer-
ential of [,

Since the dual of X = C[O, T; a, b) is the space X* = N BV[O, T;a, b)
of the functions of bounded variations, it is not a straightforward task
to find out the 0 for which 0 E a/co) is verified.

On the other hand, since Qa = L;La is a compact self-adjoint
operator in £(L2,9), it has some useful properties:

(ii) IIQal1 = sup{1 < Qaw, W > I such that IIwIIL2'9= I}

(iii) IIQal1 = max{A j A is an eigenvalue of Qa}

Based on a short proof for the convexity of the largest singular
value of a matrix given in Sezginer-Overton [15] we show the convexity
of the function that associates the largest eigenvalue of L~L'P to each
c.p defined by the change of variables 'P = ('Pt, ... 'Pr) given by

(3.3)
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Proposition 3.2.1

Let n be a convex subset of C[O, T: a, b) x ... x C[O, T;«, b).
Then, the mapping <p E f2 ~ IIQ""II is convex.

Proof:

Let S = {w E L2,9 ; IIwllL2,Q= I}.
We remind that

and
r

IIQ",wlli2,Q =L II (Q""w)i IIi2,Pi
i=l

Consider f(ep) = IIQ",II . We remind that f is convex on n if

hf(ep) + (1 - h)f(¢) ~ f(hep + (1 - h)¢) Vep,¢ E n 0 ~ h ~ 1

and one can show that if f continuous is such that

then f is convex on f2.
For any ep,¢ E n the triangle inequality yields

Denote r = (ep + ¢)/2. We wish to prove that

1
211Q""+ Qlbll ~ IIQrl1

For each ep E f2, consider the operator E(ep) : L2,9 -+ L2,9 where
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For simplicity of notation we shall write

E(vJ;~)=E
E ( _ vJ ; ~) = E-1

Thus
Q<p= E-1QrE
Q", = EQrE-1

Indeed, for w E L2,Q

(E-IQrEw)i

By the Cauchy-Schwartz inequality we can write

IIQ<p+ Q",II = IIE-1QrE + EQrE-111
~ 1< u, (E-1QrE + EQrE-1)v >p,ql

for all u, v E S, lIull = Ilvll = 1.
So, in particular, choose

57

e-,v = _ ___,_
IIEvollp,q

where Vo is an eigenvector corresponding to the largest eigenvalue of
QrQr, that is,

and
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Then, denoting a = IIEuoIIL2,Q and b = IIEvollu,q,

> (abtl 1< Euo, E-IQrE2vo >L2,q +.
+ < Eu.; EQrE-1 Eo; >L2,ql

- (abtll< uo,QrE2vo > + < Euo,EQrvo >1
- (ab)-l 1< Qruo, E2vo > + < Euo, Ev; >1
- (ab)-l 1< QrQrvo, E2vo > +a21
- (ab)-l 1< Vo, E2vo > IIQrW + a21
- (abtl (b211QrW + a2)

so that
b 2 a

IIQIP+ Q,pll ~ ~IIQrll + b
Therefore, writing 1I = IIQrll(bja) , we have

1 1 ( 1)2"IIQ<p+ Q,pll > IIQrll2" 1I +; ~IIQrl1

SInce

o

From what has been proved, and taking J to be given by

J(ep) = IIQ<p11

we have that if

° E af( epo) for some epo E C[O, T; a, b] X ••• X C[O, T; a, b]

then

IIL<poW= IIQ<Poll= min{IIQ<p11 j ep E C[O,Tja,b] X ••• X C[O,T;a,b]}

3.3 The minimisation of IICoxl1
Consider the problem of determining the optimal input it that renders
IICoxl1 minimal so that the upper bound for the error is tightened.
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We will consider the following functional as the one to be minimised:

1 [T { rCPt:(x,u) = 2 10 ~ < (ki(t)CiX(t), Qi(t)CiX(t) >RP, +

+ c2 < u(t), u(t) >Rm} dt
The introduction of the parameter e > 0 is to avoid complications

from the fact that the extremum problem may have no relevant solu-
tions otherwise. For instance, by plugging this regularity factor in, one
can yield convexity of the cost functional.

The problem is formulated under the constraints

X= Ax+Bu x(O) = x; and x(T) = XT

which can be integrated to give

x(t) - Xo - lot (Ax(t) + Bu(t)) dt = 0

x(T) - XT = 0

with the additional condition that the system (A, B) is controllable.
Thus, we are left with a classical problem of minima under equality
constraints where the objective functional and the map defining the
constraint are differentiable. The ordinary way to attack this kind of
problem is to reduce it to an unconstrained one via Lagrange multipliers
method. The precise formulation of the method is summarised in the
following result from the literature:

Theorem 3.3.1 (Theorem 26.1 in Deimling [1] )
Suppose Z, Y are real Banach spaces, and that

are continuously (Frichet- )differentiable.
Also, assume that Fe; = 0 and that the range R(F'(i)) is closed.
If

cp(i) = min {cp(z) : z E BIl(i) and Fz = O}
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then there exist). E Rand y. E Y·, not all zero, such that

).<p'{z) + (F'{z))*y* = 0

Moreover, iJ F'{z) is onto, then). :f; O.

Now, we explore this theory in the context of our control problem.
Consider the spaces

Z - C[O,T;Rn] X LOO[O,T;Rm]
Y C[O, T; Rn] X Rn

and the problem:
Minimise ( on Z)

I".(z) = ~J.T {~O<;(t)' < CtC;x(t), x(t) >R" +,' < u( t), u(t) >1<"' } dt

subject to

(Fz)(t) = (x{t) - Xo - lo\Ax{s) + Bu(s ))ds , x(T) - XT) = (0,0)

where xo, XT E R" are given.
One can easily check that, for every z = (x, u) E Z,

cp'{z)z = loT {~O'i(t)2 < C;CiX(t),X(t) >Rn +e;2 < u{t),u{t) >Rm}dt

and
(F'{z)z)(t) = (x(t) - lot(Ax{s) + Bu{s))ds,x{T))

Since the system (A, B) is controllable, we have that the range of
F'{z) is the whole space Y and so it is closed.

Proposition 3.3.2
A necessary condition [or (x, u) E Z = C[O,T; Rn] X LOO[O, T; R'"] to be
optimal Jor our minimization problem is that there exist). E R, c E R"
and an absolutely continuous Wo, not all zero, such that

wo(t)
x(t)

).u(t)

- A·wo(t) + x (Er=1 O'i(t)2C;Cix(t))
- Ax{t) + Bu{t)

e;-2B*wo{t)

wo{T) = -c
x{T) = XT

x{O) = Xo
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Proof: For convenience, in the environment of the proof we will use
the notation z = (x, u) for the optimal element. Thus, by theorem 3.3.1,
we have that there exist>. E Rand v: E Y*, not all zero, such that

).<p:(z)z + ((F'(z))*y*)z = 0 (3.4)

for all z = (x, u) E Z.
Since Y* = NBV[O,TjRn] x R", we can write y* = (g,c), for some

normalized vector function of bounded variation 9 = (g1, g2,' .. ,gn) and
some vector c in R", Also, Vz = (x, u),

((F'(z))*y*)z < (g, c), F'(z)z >
< g,x(.) - Io(Ax + Bu)ds > + < c,x(T) >

- It [x(t) - I~(Ax + Bu)ds] dg(t)+ < c, x(T) >Rn

where the Riemann-Stieltjes integral of the last equality follows from
Riezs Representation Theorem for the dual space of C[O,T;R"],

So, equation 3.4 becomes

AJ.T [<E<>;( tl'C;C;i( t), x( t) >R" +<' < il(t), u( t) >Rm1dt +
+ loT [x(t) - fot(Ax(s) + Bu(s))ds] dg(t)+ < c,x(T) >Rn= 0

which is valid for every z = (x, u) E Z. \Ve can obtain representations
for 9 and u by considering the cases u = 0 and x = 0, respectively.
Indeed, for u = 0 we have

loT y(t)dg(t) = ->. loT < a(t), x(t) > dt- < c, x(T) > (3.5)

where

y(t} = x(t} - lot Ax(s )ds

and, for simplicity, we are denoting

(3.6)

r
a(t) =L (}:i(t)2CtCiX(t)

i=1
(3.7)
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Now, for every y E C[O, T; R"], we know that equation 3.6 has a
unique solution x = By, where B is given by

By (t) = y(t) + lot eA{t-s)y(s)ds

Hence, equation 3.5 becomes

f[ y(t)dg(t) =
= ->..fl' < a(t),(By)(t) >Rn dt- < c,x(T) >Rn=
= - ft < >..a(t), y(t) > dt - fl' >..a(t), f~ eA(t-s)y(s)ds > dt-

- < c,y(T) > - fl < c,eA{T-s)y(s) > ds =
= - ft < >..a(t), y(t) > dt - f[ ft < >..a(s), eA{s-t)y(t) > dsdt-

- < c,y(T) > - ft < c,eA{T-s)y(s) > ds =
= fl' < y(t),->..a(t) - >"ft eAO("-t)a(s)ds + eA·{T-t)c > dt-

- < y(T),c >

Thus

fl' y(t)dg(t) - fl' < y(t), >..a(t) +
+ A·e-AOt [>"ft eAO"a(s)ds + eAo

T c] > dt- < y(T),c >

Let us introduce

Such Wo is absolutely continuous and satisfies:

tho(t) = -A·wo{t) + >..a(t)
wo(T} = -c

So, we are left with the following representation for dg(t):

foT y(t)dg(t} = - foT < y(t), tho(t) >Rn dt- < y(T), c >Rn (3.9)

and
(3.10)
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On the other hand, for x = 0 we obtain:

I[ < .\c:2u(t), u(t) >nm dt =
= I[ V~But(s)ds] dg(t~
= - 10 < 10 Bu(s)ds, wo(t) >nn dt-

- I[ < Bu(s),c >nn ds
= I[ < Bu(s), IT wo(t)dt >nn ds-

- I[ < Bu(s),c >nn ds

Therefore,

fa < u(t), .\c:2u(t) > dt = faT < u(t), B*(wo(t) - wo(T)) - tr« > dt

so that
.\c:2u(t) - B*wo(t) + B*( wo(T) + c) = 0

from which the result follows. o

Since the controllability of the system (A, B) is an inherent assump-
tion for the whole study we are taking up, the possibility of having
.\ = 0, which would render the last proposition inconclusive, is denied
because (A, B) controllable is obviously equivalent to R(F'(z)) = Y.
This implies that .\ =I- O. We remark, in passing, that although we only
need for our purposes that the controllability of (A, B) is a sufficient
condition for .\ =I- 0, it can be shown that the condition is also necessary
(V. Deimling [1]).

We summarise the optimisation result as follows:

Theorem 3.3.3
If (x, u) E C[D,T:R"] X LOO[O, T; Rm] is optimal for the minimization
problem, then there exist p E R" and a absolutely continuous function
w, not all zero, such that we have the coupling (CSJ):

x(t) - Ax(t) + Bu(t) x(O) = Xo
u(t) - C;-2 B*w(t)

x(T) = XT
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Proof: Take W = (1/>')wo and P = -(1/ >.)c. o

The system (CSl) can be transformed into an initial value problem
by means of the change of variables:

w(r) = w(T - r)
x(r) = x(T - r)

resulting

with

[ w(O) 1 [p 1
x(O) - XT

and x(T) = Xo

Example 1.1.1 revisited: In the case of our example of the fric-
tionless pendulum, the system becomes:

WI = -W2 - t3fXI
W2 = WI - t3~X2

Xl = -X2

X2 = Xl + e;-2w2

WI(O) = PI
W2(O) = P2
Xl(O) = XTl XI(7r) = Xol
X2(O) = XT2 X2(7r) = Xo2

(3.11)
(3.12)
(3.13)
(3.14)

for t3i(r) = Qi(T - r},
The optimal control is given by

1
u(r) = "2w2(r)e;

From (3.14) and (3.13) we get

u(r) = -(Xl + it)

(3.15)

(3.16)

so that all we need to do to get the minimising input is to find xI(r).
By differentiating (3.14) twice we have

- 2( (iv) -)W2 = -e; Xl + Xl (3.17)
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On the other hand, equations (3.11) through (3.14) yield

W2 - WI - (2{32/32X2 - (3~X2)
-C2{XI + Xl) - PixI + 2P2/32XI + (3~xI

which comparing with (3.17) gives the following fourth-order boundary
value problem:

(3.18)

Xl{O) = 2
Xl (O) = -X2(0) = 0

XI(7I") = 0
XI{7I") = -X2{7I") = 0

with tL = -{Xl + xd.
Note that for PI {T )(32{ T) = 1, which is the optimal weight that gives

the minimal IILall in the case of constant weights, the problem to be
solved reduces to

(itl) ( 1 )_ ( 1 )Xl + 2 + 2' Xl + 1 - 2' Xl = 0C C
(3.19)

Xl{O) = 2 Xl{1r) = 0
Xl{O) = 0 Xl{7I") = 0

U= -41 + Xl}

For e > 1, the characteristic roots of the above equation are all
complex numbers and equation (3.19) can be solved analytically to
yield a solution in terms of sines and cosines.

Figure 3.1 shows the values of c,oe{x, u) for e between 1 and 2. Note
that for e = 1.1 we have a minimum. Figure 3.2 shows the graphs of
the optimal control tL against t and the phase diagram Xl x Xl for this
optimal value of c.

Remark 3.2.1: The classical state-space approach to our optimi-
sation problem is to formulate the optimum control problem of seeking
a linear input

u(t) = -B* P{t)x{t)
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subject to the dynamics x = Ax + Bu. The optimal gain matrix P is
supposed to minimise the performance criterium

J(u) =< x(O),P(O)x(O) > +c? loT Ilu(t)112dt

The closed-loop dynamic behaviour is the one given by

x=(A-BB*P)x

that is,

x(t) = eAtx(O) + lot ~(t, s)Bu(s )ds with Ix(T) - xTI ~ k

where ~(t,s) is the transition matrix of the closed-loop system.
The optimal gain P is then given by P = B*M, where M is the

solution of the Riccati equation:

M(t) + M(t)A + A*M(t) - M(t)BB* M(t) - 0
M(T) 0

The reason for privileging a more abstract functional analytic ap-
proach is that one idea of further research is to readdress all the topics
in this work with an abstract formulation. This could provide an insight
to these robustness problems which could facilitate some generalisation
to infinite dimensional systems. In particular, it seems that one way to
approach the problem of finding algorithms for nondifferentiable convex
functional in infinite dimensional spaces is by means of approximating
schemes and A-proper mappings techniques, which are again nontrivial
abstract formulations.
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Figure 3.1: Graph of the minimal costs 'Pe(x, u) plotted for different
values of the regularity factor e
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Chapter 4

INTRODUCTION TO THE
PART ON STABILITY

We focus on the robustness of stability for linear autonomous systems by
considering a class of minimum norm destabilisation problems. The present
chapter is an introductory one, where we set up the backgrounds and the
context for what is to be the concern of chapters 4 through 6. Nothing here
is original work, except the treatment of the well-posedness of the perturbed
system, which was adapted from the one in Hinrichsen-Pritchard [13].

4.1 Preliminaries

Consider the nominal system:

x=Ax (4.1)

where it is assumed that O'{A) C C-. This means (in other words,
it is equivalent to the fact) that, for any norm 11.11 in R", there exist
constants M, JL > 0 such that

(4.2)

for all t ~ 0, Xo E R". So, the equilibrium point x = 0 is asymptotically
(more precisely, exponentially) stable and we shall say, for short, that
the system is stable.

69
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We recall from the theory of ordinary differential equations the def-
initions:

The equilibrium point x = 0 of x = I(x) - for somevector field
1 with 1(0) = 0, possibly after a suitable change of variables - is
(Lyapunov) stable if V e > 0, 3 h > 0 depending only on e and not on
t, such that for every Xo, Ixol < h, the solution of x = I(x) with initial
condition x(O) = Xo can be extended onto the whole half-line t > 0 and
satisfies Ix(t}l < e, Vt > O.

The equilibrium point x = 0 is said to be asymptotically stable if
it is (Lyapunov) stable and x(t) --+ 0 as t --+ 00, for every solution x(t)
with initial condition x(O) lying in a sufficiently small neighbourhood
of the origin.

To account for the uncertainties on the nominal system we shall con-
sider time-varying perturbations of the class given by disturbed systems
of the form:

x = Ax + BV(Cx) (4.3)

with the matrices B E Rnxm and C E RPxn giving the structure of the
perturbation.

V: L2(0,oojRP) --+ L2(0,00)jRm) is given by

Vy(t) := D(t)y(t) Vt ~ 0

for some D E DX>(O, OOjRmxp) n Ll(O, OOjRmxp). Notice that this im-
plies D E LP, 'rip > 1.

Clearly, such V is a bounded linear operator with

IIVII = IIDllLoo
(cf. Royden [3]).

Sometimes it is convenient to represent the system (4.3) as the fol-
lowing formal I output feedback configuration:

x - Ax + Bu
y - Cx
u - Vy---------------------

1Formal in the sense that the matrices Band C only account for the structure
of the perturbations and do not bear any correspondence with the concepts of
controllability and observability of the system. For the present study we do not
need any assumptions on controllability of (A, B) at all.

(4.4)
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Obviously, a better representation of the structure of the perturba-
tion that accounts for the uncertainties in the original open-loop model
would be covered by multiple pairs (Bb Ck) yielding systems of the
form

x = Ax + EBkV(Ckx)
k

but it seems premature to pursue this level of complexity as yet.
In Hinrichsen-Pritchard[8] and [9] it was introduced a state space

approach to the problem of measuring the robustness ofstability, Es-
sentially the problem was formalised as a minimum norm destabilising
perturbation one. This means that we look for parameters TK,P with
the property that

IIVII< TK,P ==> (4.3) is asymptotically stable

and such that

TK,P = inf{IIVII ; V is in P and (4.3) is not asymptotically stable}

The symbol P is used to indicate some particular class of perturba-
tion (not necessarily the one we are considering in this work). Onj'the
other hand, K stands for the scalar field, which is allowed to be either
R or C. This flexibility for K might seem somewhat unfounded, since
we are dealing with matrix A with real entries, but the reasons for this
allowance will become clear in the sequel.

Clearly, in order to be consistent one should expect only real per-
turbations to be considered. After all, the matrix A is real and so
should the perturbations be, since our account for uncertainties should
match our perceptions derived from concrete applications. Also, from
the definition it follows immediately that

o :5 Te,p < TR,P

which means that res is a more conservative bound of stability. Ac-
tually, in some cases, it is arbitrarily conservative in the sense that for
some special choices of A, B, C and the class of perturbations, the quo-
tient TR,p/re,p can become unbounded (cf. Hinrichsen-Pritchard [12]).

However, the problem is that, contrary to its real counterpart, re»
presents some robust features in the sense that they are invariant with
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respect to different classes of perturbations which are relevant in the
applications. So, in the case of doubt about the class of perturbation
to be considered, the choice for complex stability radii seems more
reasonable. Furthermore, it should be noted that for some classes of
perturbations we can have rc.r = rR,P (cf. Hinrichsen-Pritchard [13]) .

In Hinrichsen-Pritchard[8] the notion of stability radii was intro-
duced for the class of unstructured time-invariant perturbations, i.e.,
for systems of the form 2

x = (A + ~)x ~ E Knxn constant matrix

by essentially measuring the distance of A from the set of unstable
matrices. The next step undertaken in Hinrichsen-Pritchard [9]was to
consider structured constant perturbations:

x = (A + B~C)x

with B E Knxm , C E KPxn , ~ E Kmxp, and to introduce the
stability radii

r« = inf{II~11 ; u(A + esc, n iR 1= 0}

It is assumed that

r« = 00 if u(A + B~C) n iR = 0 t/ ~
Since the set of unstable matrices (more properly not asymptotically

stable) is closed and its boundary consists of matrices with at least one
eigenvalue on the imaginary axis, it follows that for any stable matrix
A (that is, such that u(A) C C-), whenever the set

{~ ; u(A + B~C) n iR 1= 0}
is non-empty there exists a matrix ~o E Kmxp such that

u(A + es.c, n iR -:F 0
and

lI~oll = inf{ Iltlll ; u(A + B~C) n iR -:F 0}
2Note that B = 1m and C = Ip in this case.
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so that the infimum is attained.
The stability radii re (for the case K = C) and rn (for K = R) are

in general different and have been characterised:

1 1
re = =--

maxwERIIG(iw)11 IILII
rn = [max{IIGR(iw)11 ; wE Rand GJ(iw) = O}tl if m = p = 1

1
rR - if m = 1

- maxwERdist{GR{iw),GJ(iw)R)

[
. f [GR(iW) -,GJ{iw) ]]-1

rn = ~~~I'~~o,l) 0"2( ,-lG J(iw) GR( iw) ) for m # 1

If G = 0, the stability radii are said to be 00 by definition.
Here, G(s) = GR(s) + iGJ(s) = C(s1 - Atl B E cpxm is the

transfer function for the system (4.4) and L represents its input-output
operator given by

Lu (t) = lot CeA(t-s}Bu(s)ds
All the norms in question are the operator norms.

We recall that the real and imaginary parts of the transfer matrix
G{s) for s = Q + iw is given by

GR{a + iw) = C(w21 + (01 - A?tl{a1 - A)B
GJ{o+iw) = -wC(w2I+{oI-A)2)-lB

The global maximisation of IIG(iw)l1 may eventually present com-
putational difficulties for some systems. As a way around this problem,
one can count on alternative characterisation involving the notions of
Hamiltonian matrix and algebraic Riccati equation.

First, for a cost function of the form

to be minimised subject to

i(t) = Ax(t) + Bv{t) t ~ 0 x(O) = x;
y{t) = Cx(t)
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we have that Jp(O, v) ~ 0, for all v E L2(0, 00; CP), if and only if p ::; re.
So, the Riccati equation associated with the above minimisation

problem is .

A*P + PA - p2C*C - PBB*P = °
and we have

Theorem 4.1.1

Let 11.n denote the real vector subspace ofRnxn consisting of all Her-
mitian n x n matrices and 11.~ the convex cone of positive semidefinite
matrices in 11.n.

Suppose u(A) C C- and p ~ ° .
Then, the complex stability radius re has the following properties:

(i) It is the largest value of p for which (AREp) has a solution in 11.~.

(ii) If p ::; re then there always exist solutions of (AREp) in 11.~ and
if p < re and P(p) is the smallest such solution, then P(.) is an
increasing, analytic function on (0, re) and it is stabilising in the
sense that u(A + BB- pep)) C C-.

(iii) If p = re and P( re) is the smallest solution in 11.~, then there
exists (w, x) E R x C" such that

(A + BB- P(re ))x = iwx

Moreover,
tl. _ B- P(re}x(Cxt
0- ICxl2

is a minimum norm destabilising perturbation.

We have also a characterisation of destabilising time-invariant per-
turbations

Proposition 4.1.2 tl. E Kmxp is destabilising

iff

there exist w E R and a nonzero y E CP such that

G(iw)tl.y = y (4.5)
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Agreeably, re can be an acceptable lower estimate for rn, although
there are cases where this estimate is too conservative. One remark
concerning pros and cons of these two stability radii is that re de- .
pends continuously on (A, B, C) whereas in certain cases rn may be an
over-optimistic indicator of robustness since it may jump under slight
changes in the structure.

Finally, Hinrichsen- Pritchard [13]investigated the robustness of sta-
bility of linear finite-dimensional systems under complex or real pertur-
bations by considering perturbed systems

x(t) = Ax(t) + B£(Cx)(t)

with the operator £ being one of the following types'':

1. £(y) (t) = N(y(t)) where N : KP --+ Km is differentiable at 0,
is locally Lipschitz and of finite gain, and N(O) = o.

2. £(y) (t) = D(t)y(t) where D(.) E £C)O(R+;KPxm).

3. £(y) (t) = N(y(t), t) where N(.,.) : KP X R+ --+ Km is locally
Lipschitz in the first variable, and continuous and of finite gain
uniformly in the second variable. Also, N(O, t) = 0 for all t E R+.

4. £: L2(R+jKP) --+ L2(R+jKm) is causal, weakly Lipschitz con-
tinuous and of finite gain. £(0) = O.

For each of the above classes of perturbation it was defined the real
and complex stability radii of the system as the norm of the "small-
est" destabilising perturbation. Interestingly, if complex perturbations
are considered, the four corresponding complex stability radii coincide,
whereas for real perturbations they depend on the specific class.

Our aim in this part of the work on robustness of stability is to
give some contributions to the study of the real stability radius for the
class of linear but time-varying perturbations given by item 2 above,
namely, £y (t) = Vy (y) = D(t)y(t). We define and denote this real
stability radius as

rR,t = inf{IIDIILoo; DE Loo and (4.3) is not asymptotically stable}

3In each case, K is taken to be either R or C.
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To illustrate and apply our study on robustness of stability we shall
always be addressing the following

Example 4.1.3 (The damped linear oscillator) Consider the equa-
tion of small oscillations of a pendulum with friction

which can be put in the form

x = Ax

with

x = [ :: 1 = [ ~ 1

For this system we have that

so that if the coefficient of friction is positive then a(A) C c- and the
lower equilibrium position of the pendulum (Xl = X2 = 0) is a stable
focus. (As { -+ 0, the focus becomes a center).

The explicit formula for the solution is

<p(t)= reetcos( wt - 0) = oeetcoswt + (3eetsinwt
w = J1 - e2

where the coefficients rand 0 (or 0 and (3) can be determined from the
initial conditions.

For small e we have w ~ 1 -~. Thus, the friction increases the
period only very slightly.

If the coefficient of friction is large ({ > 1), the pendulum does not
execute damped oscillations but rather goes directly into its equilibrium
position.
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Now, we assume a perturbation of the restoring force:

<p(t) + 2~cp(t) + (1 + d(t))cp(t) = 0 (4.6) .

or equivalently
x(t) = Ax(t) + Bd(t)Cx(t)

with

B= [n and C = [1 0]

The transfer function for this system is

1
G(s) = C(sI - AtlB = 2 2~ 1s + s+

so that

Simple calculations give the stability radii re and TR. Thus,

The frequency Wowhich yield IG(iwo)1 = maxwERIG(iw)1 are

Wo= ±JI - 2~2 for 0 < { < ~
Wo= 0 for ~ < ~ < 1

On the other hand, since TR = IG(iw.)I-t, for w. E Rsuch that G1(iw.) =
0, we have that TR = 1.

We wish to compare TR,t with this value of the real stability radius
for time-invariant perturbations with those concerning time-varying
ones.

\Ve close this introduction with a proof of the existence and unique-
ness of (global) solution for the perturbed system (4.3).
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Figure 4.1: rn and re as functions of the parameter ~.

4.2 Well-posedness of the perturbed sys-
tem

The question on the existence of solution for the system can be in-
terpreted as a problem of existence of fixed point for linear bounded
operators in Hilbert spaces. Indeed, note that for every initial condition
x(O) = Xo E R", the formal solution of (4.3) is

where y = ex. Thus, we can consider the functional equation

y = :Fxo + LVy (4.8)

by introducing the operator :F : R" --+ L2(R+; K") and the input-
output operator L : L2(R+j Km) --+ L2(R+j K"), defined respectively
by

:Fxo(t) - CeAtxo

Lu(t) ~ lot CeA(t-r) Bu( r)dr

(4.9)

(4.1 0)
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The hypothesis on the stability of the matrix A yields that both F
and L are bounded linear operators.

Now, iffor each initial condition Xo E R'' arbitrarily fixed, we define
the operator 'H.xo from L2(R+j KP) into itself by

(4.11)

the question of global solutions of equations becomes equivalent to a
problem of existence and uniqueness of fixed points for 'H.xo'

Proposition 4.2.1

Suppose IIV 11< liLli-I.
Then given any initial condition Xo E R", the operator 'Hxo above

has a unique fixed point y E L2(R+j KP). This means that there exists
a unique x(.) E L2(R+jKP) such that

x(t) = Ax(t) + BV(Cx)(t) Vt > 0
x(O) = Xo

Moreover, the equilibrium of » = Ax + BV( Cx) is asymptotically
stable.

Proof:
The operator 'Hxo is easily seen to be a contraction if IIVII < liLli-I. So,
the contraction mapping theorem gives the existence and uniqueness of
a fixed point y for 'Hxo. This L2-function y obviously vanishes at infinity.

To prove the asymptotic stability we write, given any to > 0 ,

where z E R" is the solution of y(to) = Cz,
We have from (4.2),
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So, for t > to,

Ix(t)1 ~ Me-~(t-to)lzl +M.IIBII.IIVII. r Ile-~(t-'T)IY(T)ldTi;

We have, from Schwarz inequality, that:

Jt~e-~(t-'T)IY(T)ldT < (ILe-2~(t-'T)dTr/2 (IL IY(T)12dTf/2

< (2Jl tl/2 (1 - e-2~(t-to)2Jl r/2I1YIIU(to.t;KP)
< (2Jltl/2I1yIIL2(to.t)
< (2JltI/2I1yIIL2(to.oo)

and we can write

But lIyIIL2(to.oo;KP) __. 0 as to __. 00, which means that for any
given e > 0 there corresponds Q > 0 such that

Now, for this to sufficiently large, take

- 1 (2Mlzl)t > to + -; log e

Then,
Me-~(t-to)lzl < :.

2
so that Ix(t)1 < e for all t > l. o

The proposition above establishes that liLli-I is a bound for the
stability of the perturbed system in the sense that it gives the radius of
a circle such that the system is asymptotically stable for perturbations
whose "magnitude" is within it.



Chapter 5

EXACT
DETERMINATION OF TR t,

We use a result from the theory of dynamical systems as a tool for deriving
an algorithm yielding the exact evaluation of the time-varying real stability
radius fR,t for the second-order linear oscillator parametrised by the damp-
ing factor. The interesting outcome is that rR,t can be a less conservative
measure of the robustness of stability than rR as long as one consider linear
oscillations with sufficiently small damping factor. This result originally ap-
peared in Hinrichsen-Prltchard[l S], where only perturbations on the spring
constant were assumed. Here we consider perturbations on both the damp-
ing and the spring factors and conclude that in this case fR,t is invariant
with respect to the structure of perturbation.

5.1 Preliminaries
In Hinrichsen-Pritchard[13] one can find a characterisation, due to H.
Gonzales, of asymptotically stability of the equilibrium of 2-dimensional
time-varying system of the form:

x(t) = M(t)x(t)

with M(t) = [mij(t)], or in the extended notation,

M(t) = [mll(t) m12(t) 1
m21(t) m22(t)

(5.1)

81
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and each mij(.) : [0,00) ---+ R, i, j = 1,2, is measurable (or piecewise
constant) and satisfies

t ~ 0 (5.2)

where mij < mt are given real numbers.
To state the theorem, first we need to go through some definitions

and notations.
For each k = 1,2, ... ,16, denote by

[

(k) (k) 1
V(k).- Vu V12

.- (k) (k)
V21 Vn

the 2 x 2 real matrix such that the (i,j)-th entry v~) is either mij
or mt. Note that this really comes up to 16 distinct variations at the
most.

Denote by V the set of all these matrices V(k). Also, we are taking
tr X and detX to mean the trace and the determinant of a given matrix
X, respectively.

We shall consider the following optimal control problem, which we
shall refer to as (AP):

Find the optimal T > 0, N(.) and y(T) so that yeT) is the maxi-
mal element of the set of all yeT) such that y(.) is the solution of the
following boundary value problem:

yet) - trN(t) yet) + detN(t) yet) = 0
yeO) = -1
yeT) = 0
yet) =F 0 for 0 < t < T

where N(.) : [0, T] ---+ V is piecewise constant. (Thus, the aspect of the
maps N{.) is that the interval [0, T] is partitioned into r sub-intervals
so that, for all t in each sub-interval, N (t) = V(k) for some V(k) E V.

Finally, let us consider the two following conditions:
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Gl: maXV(k) E V trV(k) < 0 and minV(k) E V detV(k) > 0

G2 : at least one of the following conditions is satisfied:
G2.1 : Either

(trV(k))2 - 4det V(k) ~ 0 for all V(k) E V (5.3)

G2.2 : or y(T) < 1, where y(T) is the solution of (AP).

Then, the theorem that gives the characterisation of asymptotical
stability can be stated as follows.

Theorem 5.1.1 (Gonzales's theorem, v. Hinrichsen-Pritchard[13])

Consider the system 5.1 as described above and the optimal control
problem (AP).

The equilibrium of (5.1) is asymptotically stable iff (Gl) and (G2)
are satisfied.

The problem (AP) admits an optimal triple (y(.), N(.), T) that can
be constructed by means of an algorithm, which we present here:

Step 1: Let V(ko) be the determinantwise maximal element of V,
in the sense that

detV(ko) = max{ detV(k) ; V(k) E V}

and let tl > 0 denote the first time at which one of the lines

Ll - {(y,z) E R2 ; Z = v~~o)y}
L2 - {(y,z) E R2; z = v~~o)y}
L3 - {(y, z) E R2 ; Y = O}
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is hit by the orbit (yt{i), yt{i)), i > 0, given by the solution of the initial
value problem:

ih(i) - trV(ko)Yl(t) + deiV(ko)Yl(i) = 0 t > 0
Yl(O)=-l
Yl(O) = 0

Figure 5.1 illustrates such situation when v~~o) < 0 < v~~o).
1

y

/
Figure 5.1: The switching lines for the optimal trajectory.

At this point we have the optimal N(.) and y(.) on the interval [0, tl]'
More specifically, let us denote by nij(i) the entries of the optimal N(.).
Then,

niAi) = v~o)

y(i) = Yl (i)
Vi E [0, il]
Vi E [0, i1]

Now, we move on towards their construction for t > tl.

Step 2: If (Y1(td, Y1(tdL1' that is, L1 is the first line to be hit by
the orbit, we switch 7122(t) according to the following rule:

if limhti" 7122(t) = mt2 then set limt_tt 7122(t) = m22;
if limt_ti' 7122(t) = m22 then set limt_tt n22(t) = mt2'
The other entries of N(t) remain unchanged for t -+ tt (that is, in

a right-neighbourhood of tl)'
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If (Yl(t1),Yl(td E L2, we change n11(t) in an analogous way:
if limt_t} nn(t) = mIl then set limt_tt nu (t) = mil;
if limt_t} n11(t) = mil then set limt_tt n11(t) = mIl'
The other entries remain the same.

If (Yl(tl), £II (td) E L3, we change both n12(t) and n2l(t) in the same
way, sticking to the other entries.

Step 3: Consider the matrix N(tt), where we are denoting

and let t2 > 0 denote the first time at which one of the lines Ll, L2
or L3 is hit by the orbit (Y2(t),Y2(t)), t > 0, of the new initial value
problem:

ih(t) - trN(ti)Y2(t) + detN(tt)Y2(t) = 0 t » 0
Y2(0) = YI(td
£12(0)= Ih(tt)

Step 4: Set

N(t) = N(tt) "It E ttl, tl + t2]
y(t) = Y2(t) "It E [tb tl + t2]

Step 5: Again, the same rules for changing N(t) are applied re-
sulting a new matrix

with t3 being determined by means of the same rules.
The process is continued until the line iJ = 0 is reached for the first

time, say t., This time gives the optimal t = il + i2 + ... + i; and the
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functions y(.) and N (.) constructed by means of the algorithm yield
the maximal triple

(N(.), y(.), T)
In the case ofthe linear oscillator, and more generally, 2-dimensional

systems, we can use this characterisation to determine rR,t exactly. This
is done in the modes of Hinrichsen-Pritchard [13], where the method is
founded on a result by H.Gonzales. We shall provide the method here,
but this time assuming perturbations on both the "spring constant"
and the "damping factor" .

5.2 Time-varying real stability radius TR,t

for the linear oscillator
Consider the following perturbation of the linear oscillator introduced
in example (4.1.3):

r;? + (2e + q(t))<p + (1 + p(t))cp = ° (5.4)

where ° < e ~ 1 is a given parameter.
We assume that, given a, (3 ~ 0,

p(.): [0,00) --+ [-a,a]

and
q(.) : [0,00) --+ [-(3, (3]

are two LLOC functions defined a.e.
In particular, this means that p(.),q(.) E LOO(O,oo). Also, we re-

mind that functions which are measurable and essentially bounded be-
long to LLOC.

The phase-space representation of (5.4) is

oX = Ax+ Bu
y= Cx
u(t) = d(t)y(t)

where
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d(t) = [-p(t) - q(t)]

The case studied in Hinrichsen-Pritchard [13], namely, d(t) = p(t)
and C = [1 0], can be reproduced from our treatment by taking 13
to be zero and performing the obvious changes in the structure of the
perturbation.

\Ve shall apply Gonzales's theorem to our perturbed oscillator (5.4),
in which case the corresponding matrix .M(t) is given by

[ -1 ~ pet) -2( ~ q(t) 1
so that

m:-· < mj)·(t) < mt. t ~ 0
I) - - I)

with
m- - m+ - 011- 11-

m- - m+ -112 - 12-

m21 = -1 - 0: mt = -1 + 0:
m22 = - 2{ - 13 mt2 = - 2{ + 13

\Ve have the set V = {V(k) = [v!;)] with k = 1,2,3, 4} where

V (1) = [0 1 1 V(2) = [OIl
-1 - 0: - 2{ - 13 -1 - 0: - 2{ + 13

V(3) = [0 1 1 V(4) = [OIl
-1 + 0: - 2{ - 13 -1 + 0: - 2{ + f3

and we have the following table:

V(k) trV(k) detV(k) (tr V(k») 2 _ 4det V(k)

V(1) -2{ - 13 1+0: (2{ + 13)2 - 4(1 + 0:)
V(2) -2{ + f3 1+0: (2{ - (3)2 - 4(1 + 0:)
V(3) -2{ - f3 1-0: (2{ + (3)2 - 4(1 - 0:)
V(4) -2{ + f3 1-0: (2{ - (3)2 - 4(1 - 0:)
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The way we shall use the theorem is by seeking the first destabilising
perturbation. More precisely, we shall start off from a situation of
asymptotic stability and seek d(t) with minimum norm·lld(.)llu)(' =

SUPt~O Vp(t)2 + q(t)2 which renders the system not asymptotic stable.
Hence, rR,t(~) = Ild(.)lIL<>Ofor this minimum norm destabilising d(.).

For V(k) E V we have

max trV(k) = trV(2) = trV(4) = -2~ + f3 < 0 iff f3 < 2e
min detV(k) = detV(3) = detV(4) = 1 - a > 0 iff a < 1

It is natural to start from hypothesis that guarantee (G 1) and ex-
pect the destabilisation to come from the study of (G2), for otherwise
Ild(.)11 ~ 1= rn- Therefore, we shall assume

(5.5)
(5.6)

We have

lemma 5.2.1 Under our assumptions, condition (G2.1) is not satis-
fied.

Proof: Just note that

(
2e - (3)

sup 2 = e ~ 1 < 1+ a
O:S;P<2(

and (G2.1) fails for V(2). o

This lemma means that the destabilising process will be carried out
through following the steps of the algorithm for the optimal problem
(AP).

Step 1: We have that

Vt = [v!~)] = [0 1 1
J -1-0: -2e-f3

is maximal in the sense that

detVt = max detV(k) = 1+ a
V(k) E V
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The three switching lines are

Ll {(y,Z); Z = O}
L2 = {(y,z)j z=(-2e-.8)y}
L3 = {(y,z); Y = O}

However, the lines Ll and L2 can be neglected, since the starting
point (-1,0) already belongs to iI = 0 and, with respect to the line L2,

there is no change to be carried on once it is hit because mIl = mtl'
So, the only switching line that is relevant is y = O.

Exploring the algorithm further, we need to determine tl, the first
time at which the line Y = 0 is hit by the solution Yl (.) of

ih + (2e + .8)ill + (1 + a)Yl = 0
Yl(O) = -1
ill (O) = 0

(5.7)

Its characteristic equation is

(5.8)

whose solutions are

In order to study these roots of the characteristic equation, we ought
to analyse three cases. For convenience of notation, let us put

2e +.8a=
2

and

C,IO = {(t, s) E [0,I) X [0,20; 1+ t < C€; S)'}

C,(O = {(t,S)E [O,I)x [0,2{); I-t< Ce;s)' <Ht}
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An initial study of Cl and C2 allows us to show that rR,tCO = 1 for
~ 2: .../2/2. First, (a, /3) E Cl gives the following lemma

Proof: The characteristic equation 5.8 has two distinct real roots
in this case, so that the solution of the initial value problem 5.7 is

Yl(t) = _e-at (COSh (dt) + ~sinh (dt)) (5.10)

d = Ja2 - (1 + a), which gives that the system goes directly to its
equilibrium position without executing any oscillation.

The asymptotic stability can only be broken by putting either a = 1
or /3 = 2~. Therefore, the destabilising d(.) with minimum norm will
give Ild(.)IIT-co = ';p + 02. 0

Figure 5.2 shows the phase-diagram for (a, {3) E C1(t).

0,3

0,2

0.1

0,0

0,0

Figure 5.2: Trajectory for a = 0.20, {3 = 1.0 and ~ = 0.80

-I,D -0,8 ·0,6 -0.4 -0,2

y
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On the other hand, suppose (a,p) E C2{e). We have that (5.7)
yields a characteristic equation with two complex roots. Denoting

b = J(1 + 0') - a2

which is also positive, the roots are -a±ib. Using the initial conditions,
we obtain the solution of (5.7) :

Yl{t) = _e-at (cosbt+ ~sinbt) (5.11)

y{t) = e-at (1 : a) sin bt (5.12)

Since tl is the first time at which y(td = 0, we have that

tl = ~arctan (-~)

is such that
7r 7r
- < tl <-2b b cos btl = a . b bsin tl= ~

vI +a
Now we set, for all t E [0, tIl,

y{t) = YI(t) = _e-at (cosbt+ ~sinbt)

which yields

YI(td = e-eltl (a2 ; b
2
) sin btl = yn:-a e-at1

Within the same approach we can obtain :

() -elt ( a a b )YI tl = -e 1 - yn:-a + b.yn:-a = 0

Therefore, at this time tJ the solution YI (t) hits the line Y = 0 and
we are supposed to change nI2(t) and n21(t). The new initial value
problem after switching at time tb namely

Y2 + (2e + .B)Y2+ (1 - a)Y2 = 0
Y2(0) = 0

Y2(O) = YI(tJ)

(5.13)
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has the solution
Y2(t) = Jl- (e,x!t - e,x2t) (5.14)

where Al = -a + va2 - (1 - 0') and A2 = -a - va2 - (1 - 0') are the
two real roots of the characteristic equation associated to 5.13 and we
are denoting

v'f+O -at!Jl-= eAl - A2
The time t2 for which Y2(t2) = 0 is uniquely determined by

(5.15)

(Note that AI/A2 > 0, since 0 < 0' < 1, which can be shown by a
contradiction argument).

Also,

So we have

Proposition 5.2.3 rR,t{<) = 1 for < ~ ../2/2.

Proof: The system is asymptotic stable whenever Y2(t2) < 1, that
IS,

v'f+O e>'!t2e-at! < 1
a + Va2 - (1 - 0')

So, if .J2 a > e-ai!, with £1 determined by

cos ";2 - a2 £1 = - ~ and ~ < ";2 - a2 [1 < 7rv2 2 - -

we have
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Hence, for ~ ~ 1/../2 we have that ~ + /3/2 ~ 1/../2 and

.J2 a > 1 > e-at1

so that the asymptotic stability is guaranteed. Therefore, the minimum
norm destabilising perturbation gives Ild(.)11 = Jp + 02•

This together with lemma 5.2.2 complete the proof. 0

To study the asymptotic stability for { < v'2/2, we need to analyse
the cases C2({) and C3({). With respect to the first one, the solution
of the initial value problem after switching at time tl was determined
above. For the case (a, 13) E C3(~)' we have a2 < 1+a so that equation
(5.8) has two complex roots, giving the same Yl(t) and tl as before. The
initial value problem obtained after the switching time is the following:

ih(t) + (2{ + f3)i/2(t) + (1 - a)Y2(t) - 0 t E [0, t2l
Y2(O) 0

Y2(0) = Yl(t1) _ e-at1~

t2 to be determined in the sequel.
Its solution is given by

where c = /(1- a) - a2•
Hence, t2, the time at which the solution hits iJ = 0, is uniquely

determined by

o < t2 < ~ t2 = ~arctan (~)

and the value of Y2(t2) is

y,(t,) = VI +Q .-0(',+,,)
I-a

a
cosct2 = rr=»:

vI-a

In order to evaluate rR,t({) for each positive { < .../2/2 fixed, we
proceed as follows: First, we choose a pair of values for a and 13 and
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check if (0,13) E Ck(~) with k = 2,3. If the answer is negative, we
pick another pair of values. If positive, we input their values in the
corresponding computer program that returns the phase-diagram with
the switching curves and check whether the trajectory hits the axis
y = 0 at (1,0). If so, the choice (0,13) gives a destabilising perturbation
(in the boundary between stability and instability). If it hits the axis to
the left of (1, 0), we have a perturbation giving asymptotically stability.
If it hits to the right, the system is unstable. Figure 5.3 shows three
choices of (et, (3) representing each of the possibilities.

Figure 5.3: Phase-diagrams corresponding to three choices of (et, 13)
when ~ = 0.20. (a) 0 = 0.80, 13 = 0.20; (b) 0 = 0.80, 13 = 0.16; (c)
o = 0.80, 13 = 0.05

For each value of ~ this procedure is repeated so that we obtain a
curve giving all the values of the critical (Ii,~) for which the trajectory
of the switching systems hits the axis y = 0 at (1,0). The value of rR,t(~)
will be equal to min.j li2 + 132. Figure 5.Il gives this curve (the boundary
between stability and instability) for the case ~ = 0.20. Note that the
minimum norm destabilising d(.) happens to be the one corresponding
to Ii = 0.60 and ~ = 0, giving Ild(.)11 = v'0.602 + 02 = 0.60. Hence,
the minimum norm destabilising perturbation is the one obtained for
ffi = O. It turned out that this behaviour was characteristic for all ~ <
../2/2. So, the structured of perturbation favoured in our study (with
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disturbances both on the damping and on the spring constant) resulted
in the same rtu obtained in Hinrichsen-Pritchard[I3] for perturbations
only on the spring constant.

u···

0,25

CQ. 0,15

0,10

0,05

0,00
0,0 0,1

s
.; ..

0,2 0,3 0,4 0,8 0,9 1,00.5

a
Figure 5.4: Instability region for a damping factor ~ = O.:W. l::;) repre-
sents the stability region whilst (U) represents the instability region,

Figure 5.2 shows the graphics of re, rR,t and rn == 1 against ~,
obtained by performing Gonzales's algorithm and studying, for different
values of a and (J, the points at. which tho asymptotic stability W;I.S

broken by having Y2(t2) = 1.
Obviously, the asymptotic analysis for rR,t is made when f3 = 0 and

hence is the same as the one that appears in [13], yielding rR,t(e) ~ 7re
near ~ = O. Next chapter will provide in detail an asymptotical analysis
by an averaging method.

An important additional conclusion is that for the minimum desta-
bilising d(.) the solution of the oscillator is periodic. Its closed orbit is
obtained by mirroring the critical phase-diagram (that is, the one that
hits (1,0)) of figure 5.2 over the horizontal axis.
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Figure 5.5: Stability radii as functions of the damping parameter ~.



Chapter 6

ASYMPTOTIC ANALYSIS

We show that, for the 2-dimensional linear oscillator with small damping,
there exists a periodic perturbation on the spring factor with Loo-norm
strictly less than TR. Moreover, the corresponding asymptotic behaviour
of the solution turns out to be also periodic.

The relevant point here is that we provide an alternative perturbation
method which is conceptually simpler than the one in the previous chapter
and can eventually be generalised to systems of any order n.

6.1 Introduction

The motivation for the method we provide here is the observation that,
for linear systems subject to periodic perturbations, the boundary be-
tween regions of stability and instability will present periodic solutions.
To make this statement more precise, we borrow from Verhulst[2] a
summary of the Flocquet theory.

By analysing simple examples, we can see that dynamical systems
represented by equations with periodic coefficients may have both peri-
odic and non-periodic, even unbounded, solutions. The essential issue
here is provided by the result that each fundamental matrix cI>{t) of
equations of the form x = A{t)x with A(t) a continuous T-periodic
n x n matrix can be written as

cI>(t) = P{t}eMT

97
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with P{t) aT-periodic n x n matrix and M a constant matrix of the
same order. Indeed, by using simple arguments one can show that the
fundamental matrices 4>(t) and 4>{t+ T) are linearly dependent, which
implies that there exists a constant n x n matrix M such that

4>(t+ T) =-t(t)eMT

and from this one has that P(t) = 4>(t)e-MT is T-periodic.
The eigenvalues ~ of eMT are called characteristic multipliers. Each

complex number Q such that

is called a characteristic exponent. One can choose the exponents Q in a
way that they coincide with the eigenvalues of the matrix M. Both the
stability of the trivial solutions and the existence of periodic solutions
of x = A( t)x are determined by the eigenvalues of the matrix AI. We
summarise this comment as follows:

• If there exists a T-periodc solution, then one or more of the char-
acteristic exponents are purely imaginary (and the absolute value
of multiplier equals 1).

• The trivial solution is asymptotically stable if and only if all char-
acteristc exponents have negative real part (multipliers have ab-
solute values less than 1).

• The trivial solution is stable if and only if all characteristc expo-
nents have real part ~ 0 while all the exponents with real part
zero have multiplicity 1.

Concerning the problem of calculating the characteristc exponents
and multipliers, we have:

Theorem 6.1.1 (v. Verhulst, p. 82) Suppose ~i and ea, i = 1,2, ... ,n
are the characteris~ multipliers and exponents, respectively, of x =
A{t)x Then
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n 1 loTI>}'i = - trA(t)dt
i=) T 0

(mod
21ri

)
T

where tr A(t) is the trace of the matrix A(t).

So, the existence of characteristic exponents a with real part zero
(for certain values of the parameter { > 0) can mean the transition case
between unstable and stable solutions. (It can be shown that) in such
a transition case the system has periodic solutions (of period either T
or 2T). Thus, by criteriously searching for periodic solutions we are
determining the boundaries of the stability domains and, as such, an
estimate for r R,t.

6.2 Asymptotic analysis of the linear os-
cillator under periodic perturbations

In the present section we apply a perturbation method to the linear os-
cillator parametrised by the damping { and show that, for small values
of ~, rR,t can be made strictly less than rn-

Thus, consider the perturbed linear oscillator given by:

x = (A + Bd(t)C)x (6.1 )

with

A = [~1 _~~ 1 B = [ ~1 C = [1 0]
Since we are interested in the behaviour for small values of the

parameter ~, we assume:

The perturbation near eo = 0 is given by

00

d(t; 0 = a(t) I:Pleele
1e=1

(6.2)

where Pie E R, not all zero, and a(.) is a continuous real T-periodic
function. Note that this power expansion start at k = 1, or equivalently,
we are taking po. The reason for this will become clear in the sequel.
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The periodic solution near eo = 0 is of the form

00

x(t; e) =L xlt(t)e
It=o

(6.3)

with each Xlt(t) E R2 periodic of the same period. We assume that the
power series are absolutely convergent.

Furthermore, note that A = A(e) = Al + A2e with

Substituting (6.2) and (6.3) into (6.1),

00 00

xo(t) +L xlt(t)e = AIXo(t) +L AIxlt(t)e +
It=} It=I

so that

2:,- A,x,(t)+ t. (2:.(t) - A,x.(t) - A,x._, (t) - Ba(t) t.PjYk-j) {. ; 0

where Yit = eXit.

Hence we have:
(6.4 )

and, for k ~ 1,

It
XIt(t) - AIxlt(t) = A2xlt-I(t) +L Ba(t)pjYIt_j (6.5)

j=I

In terms of the state coordinates of the oscillator, the above set of
equations give

(6.6)
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and
k

th(t) + 'Pk(t) = -2tPk-1 (t) - a(t) LPjYk-j k = 1,2"" (6.7)
j=l

At this point the reason for assuming Po = 0 becomes clear: equation
(6.6) would be

tPo(t) + (1 + poa(t))'Po(t) = 0

otherwise. For a( t) = cos t, the stability considerations lead to the
study of a Mathieu equation

tPo(t) + (6 + cpcost)'Po(t) = 0

and to forced Mathieu equation for k ~ 1. This would add unnecessary
complications to the problem. Furthermore, the classical perturbation
analysis for this equation gives e = 0 when 6 = 1 in the boundary
between stability and instability (see, for instance, [28]).

Going back to our procedure, the general solution of (6.6) is

'Po(t) = cicosi + C2sint (6.8)

which is bounded and, as such, stable.
Inserting (6.8) into tPI + tpl = -2tpo - a(t)PI'Po yields

tPl + tpl = 2clsint - 2C2cost - a(t)PI(Clcost + C2sint) (6.9)

We observe that a 21r-periodic perturbation a(t) = dl cos t + el sin t,
the outcome is that the only stable solution is the trivial one tp = 0,
which can be easily checked. Note that we can embed PI into the
notation of the coefficients of a(t).

For a 1r-periodic perturbation of the form

a(t) = ~ + d2 cos 2t + e2sin 2t

we have

tPI + tpl = MI cos t + NI sin t + M3 cos 3t + N3 sin 3t (6.10)
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where

do 1d 1
NI = 2CI - -C2 + - 2C2 - -e2cI222

1
M3 = -2 (d2CI - e2c2)

1
N3 = -2 (d2c2 + e2cd

Again, according to the theory of stability of forced oscillations we
have that the solution 'PI of (6.10) is stable when the coefficients of
cos t and sin t all vanish so that forced terms with frequency equal to
the natural frequency of the system do not appear and resonance is
avoided. Thus,

cld2 + C2e2 - -doCI - 4C2

c2d2 - Cl e2 - doc2 - 4CI

This system of equations yields:

d
2
= _ do (Cl 2 - C22) + SCI C2

Cl2 + C22

4 (Cl 2 - C22) - 2docI C2
e2 = ____;,,--..,.......;;....___-___;;,~

Cl2 + e22

and we have the following expression for a(t):

a(t) = ~ + Vd2
2 + e22 cos(2t + 9) = ~ + Vdo

2 + 16 cos(2t + 9)

with

so that
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For ~ > 0 sufficiently small such that

we have that

Ild(71lLoo = max lea(t)1 = e max Id20+ Vdo2 + l6cos(2t + 8)1
teIO,,,,) teIO,"')

We can get the minimal estimate by taking do = 0, which yields

Ild(·)IILOO = 4e near e = 0

To obtain the asymptotic behaviour of the trajectory, we can use
an averaging method. For this, we shall be relying on the classical
Lagrange method sununarised in the following lemma:

lemma 6.2.1 (v. theorem 11.1 in Verhulst [2])
Consider the initial values problems

x={f(t,x) x(o) = Xo

and
Ya = Xo

where X,Ya,Xo E D eRn, t E [0,(0) and f : [0.(0) x D ~ R" ss
T -periodic in t, with T a constant independent of e.

1 (T
fO(y) = T 10 f(t,y)dt

(y is kept constant in performing the integration).
Suppose also that

1. f and ~ are defined, continuous and bounded by a constant M
(independent of 0 in [0,(0) x D.

2. Ya is contained in an internal subset of D.

Then, x(t) - Ya(t) = O(e) on the time-scale lIe, that is, there exist
constant K, and K2 independent of e such that

Ix(t) - Ya(t)IRn s Kle for 0 s ~t s 1(2

ase ~ o.
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Consider the perturbed oscillator

",(t) + 2{",(t) + [1+ {( it + d2 cos 2t + e2 sin 2t ))'P(t) = 0
'P(O) = c
",(0) = 0

for small values of the parameter e >j).
We apply the transformation:

cp(t) = Yt(t)cost+Y2(t)sint
",(t) = -Yt(t)sint+Y2cost

(6.11 )
(6.12)

Note that this implies that

Yt cos t + Y2 sin t = 0 (6.13)

By differentiating (6.12) with respect to t and substituting <p,'" and
r:p in the equation for the perturbed oscillator, we get

-Yt sin t + Y2 cos t =
-{ [2(-y, sin 1+ y, cos I) + (~ + d, cos 21+ e, sin 21)(y, cos 1+ y, sin I)1

Hence we can prove the following

Theorem 6.2.2
Consider the system:

",(t) + 2etP+ (1 + d(t))<p(t) = 0 t > 0
<p(O)= c
",(0) = 0

Then, for sufficiently small values of e > 0, there exists a periodic
perturbation oftheformd(t) = ea(t) for some continuous function a(.),
with a(t + T) = a(t), such that

Ild(·)IILoo = 4e near eo = 0
and the corresponding solution 'P(t) is periodic of the same period T.

In particular, for the linear oscillator

Ip + ecp(t) + 'P(t) = 0

with uncertainty on the spring constant, the time-varying real stability
radius rn« is strictly less than rn in some neighbourhood of <0 = o.
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Proof: \Ve can think of this equation together with (6.13) as an
algebraic system for the unknowns iII and il2' Solving it and averaging
over [0,11"]yields

ilIa = ~ [(e2 - 4)Yla + (do - d2)Y2a]

il2a = ~ [(do + d2)Yla + (e2 + 4)Y2a]

Yla(O) = C

Y2a(0) = 0

Solving this system of differential equations for do = d2 = 0 and
e2 = 4, we have that 'Pa(t) = c cos t, so that

'P(t) = c cos t + 0(0

being the periodic solution for (, near zero and

d( t) = 4(,sin 2t

Moreover, note that the solution is periodic. Hence d( t) is a desta-
bilizing perturbation and we have:

TR,t < Ild(·)IILoo = 4(, < 1 = TR

for (, sufficiently small. This completes the proof. o

So we can conclude that the norm of the perturbation for small
~ turns out to be a reasonably tight upper bound for TR,t since the
asymptotical study derived from Gonzales's approach gave TR,t ~ 11"(,
(cf. Hinrichsen-Pritchard [13]).

An advantage of the present result is the simplicity of its method
in comparison with the one undertaken in the previous chapter. Note
also that there is nothing special with the order of the system. This
method can be applied to parametrised systems of any order n as long
as the time-invariant matrix A(O can be written as
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where

Al = [_OQ ~ 1
for some positive definite matrix Q.

This resultaalso opens up the possibility of having a method for
obtaining TR.t approximately by imposing periodic perturbation with a
periodic solution with the same period. In a way, the next chapter is
related with this approach.



Chapter 7

PERIODIC
PERTURBATIONS

This chapter explores the situation where one can have periodic solution
as a response to periodic perturbation. The main result is a characterisa-
tion of destabilising periodic perturbations which generalises the existing
time-invariant version. Another relevant point is that it broadens the field
of investigations on time-varying real stability radius: this resonance phe-
nomenum may eventually be explored to provide some algorithm to give
approximations for rR,t in the case of general n-dimensional systems.

7.1 Introduction
We consider the usual open-loop asymptotically stable system x = Ax,
with O'(A) c C-, and the following feedback configuration to account
for its uncertainties:

x(t) - Ax(t) + Bu(t} (7.1 )
y(t) - Cx(t)
u(t) - D(t)y(t)

A E Rnxn O'(A) C C-
BE Rnxm C E RPxn

107



108 CHAPTER 7. PERIODIC PERTURBATIONS

We assume that DCt) is defined on [0,00) as a real m x p matrix
and of period T = 27r/wo, for some positive parameter Wo, in the sense
that

DCt + kT) = DCt) k = 0 ± 1,±2, ...

whenever DCt) is defined. Also, D(.) E L(O, T;Rmx,,), and so inte-
grable over every finite interval and hence its Fourier coefficients are
wen defined.

Furthermore, we suppose that D(.) E LOO(O, T; Rmx,,). Then the
extension of D(t) by periodicity to (-00,00) is in L2(Rj Rmxp) and
the Fourier series of D(.) converges to D(t) almost everywhere:

1 00

D(t) = -Do + ~)Dk cos kWot + Ek sin kWot) a.e. (7.2)2 }
where Dk, Ek E Rmxp are the Fourier coefficients of D{t).

Given a initial condition x(O) = Xo E R", we shal1 impose the
solution of (7.1) to be periodic of the same period T and also in
L2( -00, oo; R"], Thus, we can write

1 00

x(t) = 2ao + L(ak cos kWot + bk sin kWot) a.e. (7.3)
1t=1

where alt, bit E R" are the Fourier coefficients of x(t).
In terms of the observation y = Gx, equation (7.3) gives

1 00

yet) = 2 + L{YIt cos kWot + Yit sin kWot) a.e. (7.4)
It=}

Sometimes it is convenient to treat the problem by means of the
complex form of the Fourier series. Thus, we have the following equiv-
alent expressions for D(t) and yet}:

00

D( t} = L .llke,kwot a.e.
It=-oo

(7.5)

where E~oo means the limit as N ~ 00 of E~N'
00

yet} = L Ylteiltwot a.e.
k=-oo

(7.6)
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Recall that the coefficients in the trigonometric and complex form
of the Fourier series are related as follows:

Do - 2~o
Dk = ~k + ~-k

Ek = i(~k - ~-k)
for k = 1,2, .
for k = 1,2, .

or equivalently, for k > 1,

~k = t(Dk - iEk)

~-k = 2(Dk + iEk)

Note that, for k ;f 1, ~-k = ~k whenever D(t) is a real perturba-
tion.

Analogous expressions are valid for the Fourier coefficients of y(t).

7.2 Periodic destabilisation
First we derive a necessary condition to be satisfied by the correspond-
ing Fourier coefficients.

lemma 7.2.1 (Compatibility equations) Consider the closed-loop
system (7.1) with the above periodicity assumptions on the perturbation
and the solution. Then

00

G(ikwo) L ~jYk-j=Yk fork=0,±I,±2,... (7.7)
j=-oo

where G(s) = C(sI - Atl B E c"xm is the transfer matrix of the
open-loop system.

Proof: The equation x(t) - Ax(t) - BD(t)Cx(t) = 0 implies that
the Fourier coefficients satisfy

ikwoXk - AXk - B(D(.)Cx)k = 0

where (D(.)CX)k = L~-oo s.cx,., = L~-oo ~k_jCXj is the Fourier
coefficient of the product D(t)Cx(t). Then.

00

(ikwoln - A)Xk - B L ~jCXk_j = 0
j=-oo
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Since u(A) C C-, we have that (ikwoI - A) is nonsingular and (7.7)
follows. 0

The next theorem is the main result of this chapter. Recall that
(Yk) in 12 means that Ek:-oo IYkl2 < 00. Also, the hypotheses on
D(.) guarantee tIlat it is in L2 and hence the sequence of its Fourier
coefficients is in 12.

Theorem 7.2.2 Suppose D(.) E LOO(O,r,Kmx,,) nC(O, T; Kmx,,).
D(t) T-periodic is destabilising

iff

there exists a nonzero sequence (Yk)k:-oo in [2 such that. the set of
equations (7.7) is satisfied, i.e.,

00

G(ikwo) L ~jYk-j = Y"
j=-oo

Proof:

For D(t) T-periodic and destabilising whose Fourier coefficients are
such that the perturbation is at the boundary between stability and
instability, the Flocquet's theory gives the existence of periodic solution
x(.) E L2(0, TjKn) of period either T or 2T. We can assume the period
of the solution to be the same, for if TD is the period of D and 2TD
is the period of x, we can consider the Fourier expansion of D(t) as a
2TD-periodic function. The necessity follows from lemma 7.2.1.

On the other hand, suppose (7.7) holds. Take x(t) such that

00

x, = (ikwoI - Atl B L ~jY"-j
j=-oo

Then the Fourier coefficient ofAx(t) + BD(t)Cx(t) is

00

(Ax(.) + BD(.)Cx(.))" = AX" + B E ~jYk-j

j=-OG
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- AXk + (ikwoI - A)(ikwoI - A)-l BEi=-oo ~iYk-i
- AXk + (ikwoI - A)Xk

ikwoXk

which is the Fourier coefficient of x(t). o

Remark 7.2.1: This result generalises proposition 4.1.2 from the
context of time-invariant perturbations to periodic ones. Also, we can
regard it as providing a method for obtaining upper bounds for the
time-varying stability radii by considering the following problem:

Problem (*): Find ~k with E II~kIl2 < 00 and D(t) E Kmxp of
minimum norm

IID(.)IILOO = sup IID(t)11
tE(O,T)

such that there exist Yk, not all zero and with E IYkl2 < 00, so that
(7.7) is satisfied, i.e.,

00

G(ikwo) L ~iYk-i = Yk
i=-oo

Thus, such D(t) is destabiling and hence rK,t :5 IIDIILoo.
It is worthy to note at this point that the Fourier coefficients ~k

of the perturbation, and consequently the norm IIDIILoo, depend on
certain parameters. They are the frequency Wo and the nature of the
unstable periodic solution imposed by equation (7.6), that is, the initial
conditions for the system. So we can say that the variables Wo and
Yk = exk, for k E Z are the entities to play with in order to search for
a relevantly small IIDIILoo.

Obviously, to solve this infinite set of solutions is far from being
a simple task but the expectation that one can obtain upper bounds
which are less conservative than rn opens a new front of research that
can be pursued on. The natural aim, of course, is to culminate in a
complete methodology to approach the compatibility equations (7.7) in
its full generality (that is, infinite number of Fourier coefficients).
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Let us first establish that problem (*) has a solution and, more pre-
cisely, that theorem 7.2.2 reproduces the time-invariant complex sta-
bility radius:

Proposition 7.2.3 Suppose t10 E cmx" is the minimum destabilising
_!!I.atrix that gives IIt10ll = re-

Then, D( t) = ~o is a solution for problem (*).

Proof: Suppose t11e= 0 for all k # 0 (i.e., time-invariant perturba-
tion) and let ko and Wo be such that IIG(ikowo)11 = maxwERIIG(iw)1I
(without loss of generality, we can assume ko > 0).

Then (7.7) becomes G(ikwo)t1oYIe = Yle for all k,
Take Yle = 0 for all k # ko, with Yleo # 0 such that

t1oG(ikowo)Uleo = U»,

where Us, = t1oYleo'
Then, the (destabilising) minimum norm solution of the above equa-

tion is

t1
0
= Ulco[G(ikowo)Uleo]*

IIG(ikowo)UleoI12

where [G(ileoWo)Uko]* is a linear form in (C")*, the dual space of C",
whose existence is guaranteed by the Hahn-Banach theorem (v. Hinrichsen-
Pritchard[12]).

We have lI~oll = re.
o

Also we have the following:

Proposition 7.2.4 The compatibility equation (7.7) provides an upper
bound for rn.

Proof:

Take t11c = 0 for k # 0 and, for a nonzero t10 E Rmx", equation
(7.7) gives
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Hence

for any real Yo f:. o. o

In the context of real perturbations (K = R) we have that ~o .e
Rmxp and D.-i = D.i for j f:. o. Similar relations are valid for Yk , the
Fourier coefficients of y = ex. Therefore, (7.7) can be written as

-1 00

L G(ikwo)~iYk-i + [G(ikwo)~o - J] Yk +LG(ikwo)~iYk-i = 0
i=-oo i=l

and we have the new expression for the compatibility equation in
the case of real perturbations:

00

[G(ikwo)D.o - J] Yk +L G(ikwo) (~iYk+i + s,Yk-i) = 0
i=l

Thus we have:

Theorem 7.2.5

Suppose D.o E Rmxp and ~}, ~2 ••. ~2ko E Cmxp are the minimum
norm solutions of

for k = 0,1, ... , ko - 1 and

2ko
[G(ikowo)~o - J] Yk + G(ikowo) L ~iYko-i = 0 (7.9)

i=l

for some vectors Yo E RP and}), Y2, ••• , Yko E Cp.
Let s, for j 2:: u,+ 1 be given by

k=ko+1,ko+2, ... (7.10)
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where Yk+ko in the dual space (CPt is aligned with Y-ko .
If'L/j=2ko+I l~jl2 < 00 then

00

D(t) = L ~keikwot
j=-oo

is destabilising in the sense that the equilibrium of the closed-loop sys-
tem is not asymptotically stable.

Proof:
Take y(t) = ,,~o Yikeikwotwith y_. = y:. for 1 < J' < k .i.JJ=-ko J J - - 0

Then equation (7.7) reduces to (7.8) for 0 s k s ko•
For k ~ ko + 1, we have that Yk = 0 and equation (7.8) reduces to

(7.11 )

which is verified "minirnum-normwise" when ~k+ko is given by (7.10).
Therefore D(t) = Lk:-oo ~keikwot yields a periodic solution of x =

Ax + BD(t)Cx and the result follows. 0

Example 7.2.6 Suppose ko = 1 in theorem 7.e.S.
Then (7.8) and (7.9) become

(G(O)~o -1) Yo+ G(O) (~IYt + ~IY-I) - 0 (7.12)
(G(iwo)Ao - I)YI + G(iwo) (AI Yo + A2Y_1) - 0 (7.13)

The task of solving the above equations for ~o, ~1,.6.2 imply some
compromises. First, we should bear in mind that we are aiming for
solutions with minimum norm. Second, there are parameters that are
open to choice. They are the frequency of the periodic perturbation
(wo) and Yo, Yi, which ultimately have to do with the initial conditions
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to be applied on the closid-loop system. The parameters should be cho-
sen conveniently in a way that the ~k 's to be determined subsequently
are such that 2:r:-oo l~kl2 < 00.

For k;? 2 we take YA: = 0 and

(7.14)

is a (minimum-norm) solution of

(7.15)

This difference equation can be solved once Yo,Yi, ~o, ~l and ~2

are already given from ( ??) and ( 7.13).
We shall develop this reasoning in detail for the linear oscillator of

example 4.1.3. There we had a single-inputfsingle-output system (i.e.,
rn=p=L) so that the Fourier coefficients of D(t) and y(t) are scalars.
Also, at this point it is convenient to bring about also the trigonometric
representation of the Fourier coefficients since we are interested in real
perturbations.

Thus, let us write

boo = ~do
~k = ~(dA: - iek) k;:::: 1
Yo = iyo .•
Yi = 2(Yl - lYl)

Recall that we have Y-k = Yk for k;:::: 1 and Y-1 = Y1•

Furthermore, Y":1 = Y1•

Now we can reduce the two-steps difference equation (7.14) to a one-
step equation by introducing the trigonometric coefficients in (7.14) to
yield:

d . (. A ) (Yl - iYl) (d . )
k+I - ZEk+l = - YI - ZYI 2 .2 k-I - Zfk-l -

Yl + Yl

Yl + iYl .- Yo 2 .2 (dk - tek)
Yl + Yl
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which, after carrying out the multiplications, give

dk+l - iek+l = 2: ~2 [(-(Y~ - y~) + i2YIyddk-1 +
Yl Yl

+ (2YIYl + i(y~ - yD)ek-l - (YoYt + iYoYddk - (YoYl - iYoYl)ek-l]
Thus

dk+! = adk-l - bek-l + cdk - dek
ek+l = bdk-l + aek-l + ddk + ces

where

YoYlc= - Y? + Y?
d = YoYl

yf + yr
Define, for k ~ 2,

[ :~~: 1
Then we have the following one-step difference equation

(7.17)

The idea now is that if F2 is taken to be a linear combination of
eigenvectors of A associated to an eigenvalue .x with l.xl < 1, then we
have that Lk:-oo IFkl2 < 00 and, consequently, that the Fourier series
of D( t) converges in L2.

So the first point is to ensure that there is a convenient choice of
Yo. Yl and 'fIl for which there exists an eigenvalue of A with absolute
value strictly less than 1:

Fk+l = AFk k~2

[0 0 1

~d 1
A= 0 0 0

a -b c
b a d

Fk+l = Ak-1 F2 k ~ 1

(7.16)

where

whose solution is
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lemma 7.2.7 Suppose m = p = 1.
Then, there are values of Yo, YI, YI E R which yield that there exists

at least one eigenvalue A of the matrix A with IAI < 1.

Proof:

First note that the entries Vk of an eigenvector V in ker (A - A1)
are given by the system of equations:

AVI
AV2

{a + (c - A).\)VI - (b + dA)v2
(b + dA)VI + (a + (c - A)A)V2

- V3

- V4

- 0
0

so that (VI,V2) -:I (0,0) if and only if

(a + (c - A)A)2 + {b + d.\)2 = 0 (7.18)

If Yo = 0 then c = d = 0 and any eigenvalue has absolute value
equal to 1. Indeed, equation (7.18) becomes:

(a - A2) 2 + b2 = 0

so that A2 = a ± ib which gives

IA21 = va2 + b2 = 1

for any values of YI and YI not simultaneously equal to zero.

If Yl = 0 (with YI -:I 0), then the choice Yo/Yl = v + v-I for any
v E R with Ivi > 1 gives one real eigenvalue A = V-I with absolute
value less than 1.

Indeed, (7.18) gives

A2 + Yo A + 1 = 0
Yl

which yields A= ±i when Yo = O. If Yo -:I 0, it follows that any complex
root has absolute value equal to 1, since the product of the roots equal
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1 and the coefficients are real. However, if YoY")) > 2, which implies
that both the roots are real, choose

Yo 1-=v+-
YI v

for any v E R with Ivl > 1. Then the roots are

Al = -v and
1

).2 = --
V

If YI = 0 (with Yl :f:. 0, then the choice YO/YI = v + v-I for any
v E R with Ivl < 1 results in one purely imaginary eigenvalue). = vi
with absolute value less than 1.

In fact, now equation (7.18) is

This equation is satisfied if

).2 _ i~o ). _ 1 = 0
YI

Again, Yo = 0 gives). = ±1 but the choice

Yo 1-:-=v+-
Yl v

with -1 < II < 1 gives the result.
o

\Ve observe that the case YoY) Yl =F 0 is not as elegant to treat
analytically, but one can easily check computationally that there will
be choices of the numbers above giving complex nonreal eigenvalues
with moduli less than 1. Figure 7.2 lists some values of 1).1 obtained in
the case of the damped linear oscilllator.
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Proceeding with the algorithm, choose Yo, Yl, Yl so that A has eigen-
values with absolute values strictly less than 1 and let A be one such
eigenvalue.

The choice for

is restricted by equations (7.12) and (7.13).
After substituting the complex Fourier coefficients by their trigono-

metric pairs and equating the real and imaginary parts respectively,
those equations result in the following system of compatibility equa-
tions which we shall refer to as (SCE):

!Yodo + YId! + YIel = G(ot1yo
GR(Yodl + yldo + yId2 + YIet} + GI(y1do - yId2 + Yoel + Yle2) = 2Yl
Gl(yod1 + yldo + yId2 + YIe2) + GR(y1do - y1d2 + Yoel + Yle2) = -2y!

We note that GR and GI are simplified notation for GR(iwo) and
Gl(iwo), respectively.

Observe that (SCE) consists of three equations and five unknowns,
namely, do, d1, d2, el and e2. Reminding that the eigenvectors of A are
of the form

v= [ ~: 1AV!

AV2

we can avoid the drawback of having the number of equations less than
the number of unknowns by taking F2 to be a certain linear combina-
tions of eigenvectors of A. Thus, we have to consider two cases.

We first consider the instance when the geometric multiplicity of the
eigenvalue A, which is never greater than its (algebraic) multiplicity,
equals 2.

Suppose dim ker(A - AI) = 2 , that is, there exist two linearly
independent eigenvectors V and U associated to A.
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In this case, set

Substituting these expressions for db d2, eb e2 in (SCE) results in a
consistent system of three equations and three unknowns: do, v and p:
\Ve shall refer to this modified (SCE) as (modSCE).

It can easily be checked that (modSCE) has a unique solution.
Therefore, for v, II determined from (modSCE), we have

F3 = AF2 = vAV + IlAU = ..\(vV + IlU)

F4 = AF3 = ..\2(vV + IlU)

and so on, to yield the solution

Fk+l = ..\k-l(vV + IlW) k = 1,2,... (7.19)

More precisely,

so that, for k ~ 1,

(7.20)

On the other hand, if dim ker(A - ..\/) = 1, take an eigenvector

v = [ A~' ] E ker(A - ..\/)
..\V2
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and set
F2 = vV + pV

for u, pER being the solution of (modSCE), the resulting consistent
system when F2 is plugged in (SCE). '

Since AV = ).V and A is a real matrix, we have that AV = ).V,-
i.e., X also is an eigenvalue of A.

So it follows that

k-l -k-l -r.; = ). vV +). pV

Then

Therefore, for the case when the eigenspace of A has dimension 1,
we have for k ~ 1,

A 1 [\k-l ( .) + \"k-l (_ ._)]
Uk = 2 A V VI - W2 A P VI - 'V2 (7.21 )

The following proposition summarises the algorithm for obtaining
the destabilising periodic perturbation D(t).

Proposition 7.2.8 Let ). = reiD E(1(A) be such that 1).1 < 1 for some
Yo, Yt, Yl·

(1) Suppose dim ker(A - )'I) ~ 2 and

are two linearly independent eigenvectors of.A associated to A.
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Let
1 r Re (Pei(Wot+6)) - r2Re P

D(t) = -do + (722)
2 1 - 2rcos(wot + 6) + r2 .

where
P = A-I«IIVI + JLut} - i(IIV2 + JlU2))

and do, II, Jl are the solutions of (modSCE).
Then D(i) given by (7.~~) is a (21r/wo)-periodic destabilising per-

turbation of ± = Ax + BD(i)Cx.

(2) Alternatively, suppose dim ker(A - AI) = 1 and

is an eigenvector of A.
Let

1d r Re (p"ei(Wot+9)) - r2Re( P,,)
- + +2 0 1 - 2rcos(woi + 6) + r2

r Re (P"ei(Wot-8)) - r2Re(P,,)+--~~--~~~~~--
1 - 2rcos(wot - 6) + r2

where do, II, Jl are the solutions of (modSCE) and

DCi) (7.23)

P" = A-111(VI - iV2)

P" = X-I Jl( VI - iV2)
Then D(t) git'en by (7.~3 is a 21r/wo-periodic destabilising pertur-

bation of ± = Ax + BD(t)Cx.

Proof:
In virtue of (7.20) we can write, for the case (1),

~k = ~rkeik8p k ~ 1
2
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Therefore, we have that the perturbation D(t) which solves the
compatibility equation (7.7) is

The two geometric series above are convergent since r < 1. Also,

Substituting and performing the straightforward calculations lead
to the result.

The proof for case (2) is analogous. 0

Example 4.1.3 revisited: Concerning the example of the damped
linear oscillator, we illustrate here the theory for some specific choices
of the parameters which allow a flexibility for seeking upper bounds for
rns-

The choice
Yo - 2.5
YI - 0.5
YI = 0

gives

[ ~l

0 1 jJA = 0 0
0 -5
-1 0

The corresponding eigenvalues are

Al = -0.2087 with algebraic multiplicity 2

A2 = -4.7913 with algebraic multiplicity 2

so that we choose AI, since IAII = 0.2087 < 1.
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Hence we have the eigenvectors

v = [ -O.~087 ] [
0 ]1

U = 0

-0.2087

Plugging F2 = vV + p,U into (modSCE) gives

do - 2.1822
v = -0.4554
p, = -0.8348

Thus, fixing e = 0.3, proposition 7.2.8 yields

Ild(.)llvx, = max Id(t)l = 2.1847 for Wo = 1

IId(.)IILoo = max Id(t)1 = 1.0256 for Wo = 0.1
Figure 7.2 shows the graphs of d(t) for two different values of Wo'

Figure 7.2 illustrates the behaviour of IId(.}1I with respect to Wo and
Yl (for ~0.3, Yo = -5, Yl = 0 and Yl = 1 in the first case and e = 0.3,
Yo = 6, Wo = 1 and Yl = 0 in the second case). Note that the value
of IId(.)1I "jumps" at Wo = 0.7. This unexpected behaviour happens
again for other values of Wo (near Wo = 1.3, for instance) and whether
this is a consequence of some eventual mistake on the computation or
something intrinsic to the nature of the problem it is a question still to
be solved.

Remark 7.2.2: Suppose we consider a truncated expansion of the
perturbation in the form:

or equivalently

D(t} = ~_le-iwot +s,+ ~leiwot

Then the compatibility equation gives

(7.24)
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Assuming ~-1 # 0, we can write the following homogeneous differ-
ence equation:

(7.25)

Again, we only need to consider this equation for k ~ 1, since we
are dealing with real systems and therefore Y-k = Yk•

Define

Then equation (7.25) can be expressed as

k ~ 1 (7.26)

with

A(k) = [Oa 1 1bk

The transition matrix for this system is

cfl(k + 1, I) = A(k - I)A(k - 2) ... A(/) k > 1
cfl(k, k) = I

and the solution of (7.26) is

k=I,2, ...

One can check that t(k, 1) has terms of the form b)b2 ••• bj in its
entries.

Since the transfer matrix G(ikwo) is "low pass" for most practical
systems, i.e., IG(ikwo)1 ~ 0 as k ~ 00, it follows that b)b2 ••• bk ~ 00

as k ~ 00. Then, any sequence of solutions (YK) wilJ not be on [2

unless the coefficients of D(t) are chosen in a way that A(ko)Zko = 0
for some ko, so that one can have Zk = 0 for k > ko.

But
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if and only if Nko-1 = 0 and a.Mko-r= 0, which one can easily check
that is not achievable for real perturbations (i.e., a i:- 0).

We remark that if we allow for complex perturbations, one such
solution would be to choose Wo such that IIG(iwo)ll = IIGIIHoo.

Therefore ~o = G(iwotl gives b1 = O.
For ~1 = 0, we would have

A(J)Z, = [~ ~1 [~] = [ ~1
for any initial condition of the form

But then IID(.)II could be made arbitrarily close to re by taking
~-l sufficiently small. This is no upper bound for rR,t.

Finally, we observe that if we consider a perturbation with more
harmonics

JI
D(t) =L~keikUlot

-JI

the nature of the problem with the transition matrix is still the same.
The difference is only that its order would be greater, but one still
would have to cope with the unboundedness of some of its entries.
Even the fact that then one would have more parameters (that is, more'
coefficients ~k) to fiddle about is hardly promising.



7.2. PERIODIC DESTABILISATION 127

Figure 7.1: Some examples illustrating different values of IAI for differ-
ent choices of initial condition for the oscillator.
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Figure 7.2: Variation of IAI with respect to Yo when YI= 1 and YI= O.
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CONCLUSION

This chapter presents a concluding remark on the whole set of the disserta-
tion and the research work herein developed. It adds to a number of such
remarks which have already appeared in each chapter when opportune. Also
some suggestions for further investigations are here outlined.

The first part of the work has to do fundamentally with a new ap-
proach to problems of designing controllers in the face of uncertainties.
This conditioning of controllability problem breaks out of the paradigm
of giving yes/no answers to the question of controllability to concern
with the more practical aim of giving a measure of the robustness of
the controllability.

A peculiarity of our approach is that it assumes multiple-structured
nonlinear perturbations. Thus, it accounts for a class of perturbations
which is very general both in the structural and substantial aspects
of the disturbances. In other words, it stretches the reach of concrete
systems, plants and situations for which the results can be employed
as useful tools for designing.

Another peculiarity is that it :'ltroduces a scaling technique which
allows one to consider perturbations with "magnitude" bigger than
those allowed when no scaling is considered. In this sense, it enlarges
the class of perturbations under consideration. On the other hand,
this scaling technique opens up the possibility of minimising the con-

129
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ditioning number. However, this optimisation perspective relies on the
availability of minimising algorithms for the norms of the operators in-
volved. With respect to IICQxl1 there is no setback because the problem
can be posed in the context of differentiable functionals and the La-
grange multipliers method can be used. But the minimisation of IILQ II
is not as gratifying since its dependence on the weight 0' is not dif-
ferentiable and an algorithm for non-differentiable infinite dimensional
minimisation problems is not available as yet.

Eventually, this can be an interesting area of investigation and to
this respect, it may turn out of some use the theory of approximation
schemes (approximation of infinite dimensional problems by a sequence
of finite dimensional ones, Galerkin methods, and the like) via A-proper
mappings, along the same lines as, say, Botelho [31].

Central to the part of the work concerned with robustness of stabil-
ity is the contribution towards an approximation of the values of rsu,
the real stability radius in the context of time-varying linear perturba-
tions. For second order systems, we presented an algorithm culminating
in the exact evaluation of rR,t and an asymptotic analysis which can
be generalised for parametrised systems of arbitrary order. Both the
algorithm and the asymptotic study were applied to the damped linear
oscillator so that the results add to the analysis presented in Hinrichsen-
Pritchard [13] and re-approach early works on the stability boundaries
for the Mathieu equation (Narendra- Taylor [28] and Parks [29] among
.others).

In order to overcome the drawback that no characterisation of rR,t is
as yet available for systems of dimension greater than 2, what one can
have at the present stage of research is to count on bounds for it. After
proving that, for certain values of the damping, rR,t can lie between
re and rR in the case of the linear oscillator, we introduced a new
approach to the problem by means of considering periodic perturbations
and the theory of Fourier series with the purpose to generate a method
that yields upper bounds for rR,t in the general case of n-dimensional
systems.

One nice outcome of this approach is a characterisation of destabil-
ising periodic perturbations which generalises Hinrichsen-Pritchard's
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characterisation for constant perturbations. As such, the new result
generalises or reproduces previous propositions in the theory of time-
invariant stability radii re and rn. This fact has theoretical relevance
on itself. On what concerns computability and practical design of con-
crete systems, a very welcome result would be to show some instance
of the method leading to less conservative upper bounds to rn,t than
the time-invariant real stability radius. Unfortunately, this remains an
open question still.

We have been able to prove unfounded the original expectation of
the supervisor that imposing on the system a periodic perturbation,
with infinitely many harmonics and yielding an elliptic orbit as a re-
sponse, would lead to the desired tighter upper bound. This task de-
manded a great deal of conceptual meanderings and difficult technical
manipulations until we were able to negate the conjecture. The rea-
son for this struggle was the intrinsic compromise between topological
and algebraic issues: the need to guarantee L2-convergence of Fourier
series together with compatibility algebraic constraints on the Fourier
coefficients. But some very promising insights have come out of this
strive which are directing some of my further research activities. They
concern some concepts on dynamical systems, control theory and the
nature of research activity. One of these directions is on improving the
method in order to tackle the problem of tightening the bounds for rn,t:
it seems crucial to drop the continuity on the resulting destabilising pe-
riodic perturbation. This is already being done in Botelho-Guimaraes
[33], where together with this point we focus on the question of how
bad or good (computationally) it is to replace nonlinear terms by linear
perturbations on the linearisation of the van der Pol's equation.

We conclude this chapter with some remarks. The first three of them
(two other suggestions for further research and one result obtained by
means of frequency domain methods) are organised as three separate
sections whilst the remaining minor comments were concentrated in
one last section.
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8.1 The dual observability problem
A natural question which arises, once the problem of conditioning of
controllability is tackled, concerns the search for similar results for its
dual problem, the observability one. The idea is that, given a mathe-
matical model of the dynamics of a real process, the observation of the
state for the model may not lead to the actual initial condition of the
process. Again, this is due to a number of uncertainties on parame-
ters or concessions on behalf of some simplification assumed during the
modelling of the system.

An approach to be favoured here would be to consider both the
model and a perturbation of it and then to deduce an estimate for the
error between the initial conditions coming out from each system (that
is, the nominal and the perturbed ones).

Thus, suppose that the system:

x - Ax
y:::::: PMy - Cx

x(o) :::::Xo::::: My

is continuously initially observable on [0,T].
Here, we aretaking A E Rnxn, C E RPxn and P is a bounded linear

operator from R" into L2[0, Tj RP] defined, for every cp E R", by

M is assumed to be a bounded linear operator from L2[0, T; RP]
into R" such that the product (in the sense of composition) MP is
the identity map In. Obviously, the natural candidate for M would be
M::::: (p*p)-l P*.

The perturbed system is taken to be of the form:

Z :::::Az + g(z) z(O)::::: zo
y::::: Cz

To avoid unnecessary formal complications at this stage of the anal-
ysis, we will consider single nonlinear perturbations. So we assume 9
to be given by

g(z) :::::EN(Gz)
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We are given the output y of the nonlinear system and we use the
observer to estimate the initial state Xo = ,My so we can solve for x(.)
and Gx. Then the error is given by

e = Ae + EN(Gz)
MCe=O

e(O) = eo = Zo - Xo
(i.e., y - y E ker M)

whose solution is
(8.1) .'

Hence, 0 = MGe = eo + MGLEN(Gz), from which it follows the
expression for the auxiliary initial state:

(8.2)

So, we can write ( 8.1 ) more conveniently as

or
u = G(I - eA'MC)LEN(u) + Gx for u = Gz

and we are faced again with the problem of ensuring the existence of a
unique fixed point for a map H(u) = G(I - eA'MC)LEN(u) + Gx on
some ball Ba(O) C L2[0, r,RP], for a convenient value of a > O.

Now, for a E S, it follows that

Therefore, if u, v E Ba(O) we have

IIH(u) - H(v)11 ~ IIG(I - eA'MC)LEII k(a) Ilu - vii
which gives that H is a strict contraction from Ba(O) into itself, since

IIH(u)11< IIG(I - eA'MC)LEII k(a) Ilull + IIGxl1~ a

So, it follows that H(u) = u has a unique solution in Ba(O) and
the estimate can be performed in the same way as in the proof for the
controllability case.
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o

From the result above, one could expect a good deal of similarities
to be shared with on the treatment of both the controllability problem
and its dual. However, the remaining task of characterising the norms
of some of the operators involved may turn out to be even more delicate
than that for the controllability problem.

8.2 Impulsive perturbations
Consider again the oscillator

cp(t) + 2ecjJ+ (1 + d(t))cp = 0 (8.3)

with the following solution and perturbation:

d(t) = -1+w! + 6(t) (8.5)

with 6(t) periodic of period T = 27rfwD.
Substituting (8.4) and (8.5) in (8.3) gives

(8.6)

as the necessary condition for compatibility.
Such d(.) is not in V:>O,since Id(t}l-+ 00 as t -+ i = T, 2T, .... Hence,

one can infer from this observation that one way to get an elliptic orbit
is to apply some periodically impulsive forcing on the system. This
suggests that an approach in the sense of distributions to the conver-
gence of the Fourier series can eventually be fruitful in some problems
of robustness of stability.

Thus, we can consider the disturbances on the nominal system to be
represented by periodic tempered distributions, that is, perturbations
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D(.) with Fourier coefficients ~k satisfying
00

L (1+ k2)'/2 II~kll < 00
k=-oo

Of course, this approach requires some theoretical issues (existence
of global solutions for the system and stability theory) to be considered
in this new context. We present here the main points of one such
stability theory.

Suppose j is a generalised function of some kind, say, a tempered
distribution, that is, j E S', the space of bounded linear functionals on
the Schwarz space S' of rapidly decreasing functions.

We say that
j E 1iT(0, 00)

if for each pEN, j is identified with a sequence (Fpk hez of generalized
Fourier coefficients obtained via either one of these procedures:

(i) if i is regular (i.e., i = j, an ordinary function),

Fpk = .!. r" f(t)e-ik(21r/T)tdt
T J(P-l)T

(ii) otherwise, we make use of the following theory:

Theorem( Champeney [5])
If ip E S' has period t, then the Fourier transform Fp of t, (exists) and
can be written in the form:

• 00 •• ( k)
Fp(w) = k~OO FpkO W - T in S'

where Fpk E C, k E Z and 6 is the Dirac's delta "function".
Moreover, 3 Ap > 0,M;» ° such that for each k

IFpkl< AplklMp

When j is regular and periodic, the generalized Fourier coefficients
Fpk are identical to the ordinary ones.
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Theorem( Champeney [5])
If jp E 5' has period T and has Fourier coefficients Fpk, then

00

jp(t) = L Fpkeik(2r./T)t in 5'
k=-oo

Basically, by taking these Fpk, what we are doing is to identify
j with a Fourier series Ek Fpkeik(21f /T)t on each interval Jp = «p-
1)t, pT):

Of course, we need to make explicit sense to the convergence
00

jp(t) = L Fpkeik(21f/T)t
k=-oo

in the theorem above.

The characterisation can now be formalised by saying that

iff

for each pEN, j is identified with a sequence (Fpk)kEZ of generalized
Fourier coefficients satisfying

00

IlipIIH':= L (1 + k2f IFpkl < 00
k=-oo

and
Ililhq.(o,oo) .- sup IljpllH' < 00

pEN

We can have the well-posedness of this perturbed system by first
establishing the boundedness of the operators D and L.

Assume the periodic perturbation D(.) is such that it has a Fourier
senes

00

D(t) "" L Dokeik(2Tr/T)t
k=-oo
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with
sup 16k-jl = mk < 00 Vk E Z
j

Note that this is the case when, for instance, 6k is constant and
therefore D(.) is a tempered distribution.

Then

so that Lk(l + K2t",/216k_jl converges uniformly with respect to j if
we assume that Lk(l + k2t",/2Imkl converges for some s > O.

Now, concerning the operator V defined by

Vy (t) = D(t)y(t)

we have that, given yE 11HO,oo), then for each pEN, Vy can be
identified with a sequence ((pk)k, that is

D(t)y(t) "oJ E (l'keik(21r/T)t on each Jp
. k

where

j=-oo

Note that for each p and k, the Holder's inequality yields

I(pkl s E16k-jl·IYpkl s mk E IYpkl< 00
j j

Thus, we can write
00

E(1+ k2t",/21(pkl s E E(1+ k2r·/216k_jl.IYl'kl = cs» E IYl'kl
k k j j=-oo

where
00

C. = E (1+ k2r·/216k_jl < 00

k=-oo

independently of j E Z, so that the order of "summation" can be
interchanged. So,

00 00

E E (1 + k2)-",/21(pkl s Cs sup E IYpkl< 00

peN k=-oo peN j=-oo
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which proves that V is a bounded linear operator from ?-tHO, 00) into
?-ti-$/2 (0, 00) and

00

IIVII ~ C$= L (1 + k2)-$/21~k_jl < 00
k=-oo

independently of j E Z.
On the other hand, in order to have that the input-output operator

L is a bounded linear operator from H.'TS/2(0, 00) into ?-tHO, 00) we can
pursue the following reasoning:

Suppose u : [0,00) --+ C is an ordinary function. The hypothesis
that u E ?-tHO, 00) implies that, for each pEN, we would take a
T-periodic function up such that Up= u on Jp = «p - l)T,pT).

So, Lu = Lup on Jp and we can say that (Lu)p = La; is aT-periodic
function such that Lu = (Lu)p on Jp and the system

x(t) = Ax(t) + BUp(t) t > 0
y(t) = Cx(t)
x(O) = 0

yields
yes) = G(s)up(s) and y = (Lup)"(s)

Hence
(Lup)"(s) = G(s)up(s)

so that the Fourier coefficients of (Lup) are given by

Therefore,

(Lu)". = (L..,,) = G (i~)
where Upk are the Fourier coefficients of Up and

G (i~) = C (i~I - A) -I B
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so that
00 00

sup L I(Lu)pkl ~ 1'a sup L (1 + k2)-a/2Iupkl <: 00
peN k=-oo peN k=-oo

where

is assumed to be finite.
This gives that L is bounded and IILII ~ 1'a'
It should be noted that the construction of the spaces 'HT, although

allowing a simple treatment in the proof of the boundedness of the oper-
ator V, resulted somewhat ackward when dealing with the boundedness
of the operator L. This feature is inverted if we change from a series
approach to a Fourier transform formulation of the problem. In fact,
consider the Sobolev space Ha, s E R, defined as the completion of the
Schwartz space S of the smooth functions f with f(t) = 0, 'Vt < 0 and
for which sup W:t f({3) f(t)1 < 00, for all 0:,(3 E {O, 1,2, ... }, with respect
to the norm

where
(N'f)"{w) = (I + IwI2y/2j(w)

(V. Folland[14], for instance.)
Suppose s > O. Then we have

Proposition 8.2.1
Consider L : HO = L2{0, 00; Rm --+ H'(O, 00; RP), given by

If 1:= sup(l + IwI2)'IG(iw)12 < 00
weR

then L is bounded and IILII < 1,.
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Proof:
The result followseasily, since

o

Proposition 8.2.2
Suppose V is the operator from HS(O, 00; RP) into L2(0, 00; R'"] defined
by

Vy (t) = D(t)y(t)

where D(.) E H-"(O,oo;RP) is such that DEJ(-", the space of all
locally integrable j with

Then, V is bounded and

Proof:
Consider the map y E HB 1--+ D-sys where

Note that
DE H:: <==> A-BD E L2
yE HB <==> ASy E L2

\\le have
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~ 2since u, D_, EL. Hence,

(D_,.ys)"(w) = i:h(w -TJ)·f(TJ)dTJ

where
h{w) = (1 + IwI2t,/2D(w)
f(w) = (1+ IwI2)5/2y{W)

Now, using Holder's inequality, we can write

I(D-sys)"{w)1 = 11:h{w - '7)I/2h{w -TJ)I/2!{,.,)dTJI ~

s (1: Ih(w - ,.,)Id,.,) 1/2 (1: Ih(w -TJ)I.lf(TJ)12dTJ) 1/2

because the translation invariance property of Lebesgue measure gives

and also

1:(1+ Iw - TJI2)-'/2I1D(w -TJ)ld'7 =

= i:(1 + 1{12t'/2ID{{)ld{ = c

1:Ih(w - TJ)I·lf(TJ)12dTJ < 00

since h, Ifl2 E £1.
So, by the Plancherel's and Fubini-Tornelli's theorems

IID_,y,llh - f~oo I(D_,y,)"{w)12dw
< cf~oo (I~oo Ih(w -TJ)I.lf{TJ)12d,.,) dw
- f~oof~oo Ih{w - '7)i·I!{,.,)12dwd'7
- cllyllh.

o

The following result shows that this theory generalises the case of
constant perturbations.
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Proposition 8.2.3
If V : L2 ---+ H-II, S ~ 0, is given by

'Oy (t) = ~y(t)

lor ~ E Rmxp constant, then

11'011=11611

Proof:
Consider y E L2(0, 00; RP). Then

IIVyll~_. - IIULs6y)"llh
- f~oo(1 + IwI2tIl16y(w)12dw
- 116W f~oo(1 + IwI2tsly(w)12
< 11611·lly11L2

since (1 + Iwl2ts ::; 1.
This shows that IIVII s 11611.
On the other hand, for any e > 0, take y~ E L2(0, 00; RP) such that

y~(w) = Je/(ew) v

where f : R. ---+ R+ is an integrable function with f~oo 1= 1 and
v E RP is such that lvl = v·v = 1.

Then lyc(w)12 = ef(ew) and

IIY~m.2= j_: 1= 1

Also, lim~_oe/(ew) = 6(w) in S'.
Therefore,

Buti:(1 + IwI2)-SIYc(w)12dw = j_: (1 + IwI2tse/(ew)dw -+ 1
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as e -- O. Since Yeis in the boundary of the unit ball and tends to
some Yo in S' as E -e+ 00, it follows that IIYol1= 1 and

\Ve have

lime_o IIDYell~-, - lime_oo 11~112J~oo(1 + IwI2tscf(cw)dw
II~W J~oo(l + IwI2ts6(w)dw
11~112

from which it follows that IIVII> II~II. o

The theory for evaluation of IIDllLoocan be constructed following
exactly the same steps developed in last chapter. Naturally, there still
remains a number of questions concerning the topology that has been
constructed. Some of interesting ones are:

1. Is 1-£T(0,00) a Banach space?

2. Is S dense in each 1-£1-(0,00) with respect to the norm defined
above?

3. Denote P the space of functions from [0,00) into C that are T-
periodic and Coo.
For

f E P ~ fp = L Fpkeik(271"/T)t
k

where the convergence is in the normal sense, define Ap.s on P
setting,

(Ap ••h = (1 + k2f Fpk

We should have that Ap••! E P.

4. Do we have the crucial decaying property that f( t) -- 0 as t -- 00
for all f E 1lT(O,oo)?

5. Can we have any result of the form II . II1it ::; II . 111i,.?
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6. Can we have some kind of Sobolev lemma in this context?

7. What happens when j has period T?

8. Note that for s = 0, the characterisation gives

Can we characterise ?tHO, 00) for s > ° and s < O?

8.3 Convolutive perturbations
The approach to robustness analysis favoured in the whole body of
the present dissertation is the state space one. Also relevant is the
Boo-approach to robustness of stability, which uses frequency domain
techniques and started to flourish at the beginning of the 80's (see
Zames[35] and Francis[36]). Regardless of any eventual reasoning ei-
ther to differentiate the scope of each approach or to point out their
merits and drawbacks, some class of perturbations can be more natu-
rally dealt with in one or the other approach preferentiably. In particu-
lar, if we consider convolutive perturbations, the natural technique for
studying the real stability radius turns out to be the frequency domain
one. In this remark we provide a proof, by means of a frequency do-
main method, that the real stability radius for the class of convolutive
perturbations is equal to the time-invariant complex stability radius.

Let K (.) E Hoo be given. We recall that

IIKllHoo := ess sup IK(iw)1
tileR

where K(iw) is the Fourier-Plancherel transform of K.
We consider a perturbation of the form

Ny (t) = (K * y)(t) = lat K(t - T)y(T)dT

for every y(.) E L2(0, 00; RP).
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Clearly, we have that Ny E L2(0, 00; Rm) and

so that we can define the robustness measure for this case as being

rR.* = inf{IIJ<IIHoo j K(t) E Rmxp and

x = Ax + B(1( * ex) is not asymptotically stable}

\'le have the following result:

Proposition 8.3.1

Proof: Take ~o E Cm xp such that

lI~oll = re = inf{II~11 ; u(A + B~C) n iR f:. 0}

Clearly, rR.* 2:: re-
V\Te have that ~o = ~1 + i62 for 6}, 62 E Rmxp.
Also,

1 1
116011= re = maxweR IIG(iw)11 - IIGIiHoo

where IIGllHoo= maXweR IIG(iw)11 = IIG(iwo)11 for some Wo E R.
Since we are focussing on real perturbations, we can consider only

w > O. So we introduce K E H'" by putting J«O) = 0 and

A 61 + i~~2
K(iw) = .( Wo ) V'w > 0l+z ~-~ q

Wo W

for some q > O.
Note that, since k (iwo) = 60 is destabilizing, there exists a non-

zero y E CP such that
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or, for the non-zero vector u = K(iwo)Y,

From this we conclude that

and consequently

inf Idet(1- K(s)G(s))I = 0
Re,,~O

This finally implies that K is destabilising.
On the other hand,

l~ozl2 = < ~lZ + i~2Z, ~lZ + i~2Z >
= l~lZl2 + 1~2Z12+2~m « ~lZ'~2Z »

l~lZl2 :5 l~ozl2 ~ rl:-lzl2
1~2Z12 :5 l~ozl2 ~ rl:-lzl2

and
2~m« ~lZ'~2Z » :5 r&lzl2 - (l~lZI2 + 1~2ZI2) (8.7)

This enables us to write
2

IK(iw)zl' = (1 t) . < l>tZ + i"l>,z, l>,z + i"l>,z >
1+ et - '0 qt

where et > 0 denotes the ratio et = w/wo .
Hence, by using (8.7), we have

IK (iw)z I' s (1 t) , [(1- ,,)Il>tzl'+ (,,' - ,,)Il>,zl' +"r~lzl'l
1+ et - '0 q2

Note that IIK(iw)11 -+ 0 as w -+ 0, that is, Cl' -+ o.
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Now, for 0 < Q ~ 1 we have

and for a> 1,

2 4 2
A,. 12 a 2 I 12 q 2 I 12IIi(Zw}z ~ 2 re z ~ 2 1re Z

1+ (Q - ;2) q2 4q -

where
4q2 a2

=max 2
4q2 - 1 0>1 1+ (a _ ~) q2

Therefore,

and

if W > Wo

Since

we have that

and we have the result. o

8.4 Other remarks
Remark 8.4.1: (Minimisation of IILol1 revisited)

We have already commented on the problem of non-availability of
an algorithm for the minimisation of IILol1 elsewhere on the disser-
tation. One of the major obstacles to this purpose is that presently
there is no result showing any smoothness property on the dependence
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of the norm on the weights a and, more than this, the differentiabil-
ity of IIL~Ll>11 seems unlikely. Although for the time being we are not
prepared to venture on computability issues to the respect of minimisa-
tion algorithms and we are not supposed to expect any differentiability
on the problem, we present here an optimality condition for the case
when the functional is differentiable at the point where the extremum
is achieved.

For simplicity, we shall assume r = 1 (i.e., single structured pertur-
bations). Note that once more the condition is expressed in terms of a
Hamiltonian system.

Proposition 8.4.1

Suppose>. = mina max{A ER; ). is an eigenvalue of L~Lo}
Furthermore, suppose that

f(a) := max{). ; ). is an eigenvalue of L~Lo}

is differentiable at Ci, where feCi) = min; f(a).
Then, ). can be expressed by the following coupling

i(t)
wet)

- Az(t) + (),,B(t))-l DD·w(t)
- -A·w(t) - ,B(t)C·Cz(t)

z(O) = 0
weT) = 0

with ,B(t) = a(t)2.
Moreover, suppose Z(t), 1V(t) E Rnxn solve

[
~ ] = [ A (A,Bt1DD.] [ Z ]
W -,BC·C -A* W

Z(T) = In
WeT) = On

Then, for any." E kerZ(O),

z(t) = Z(t)."
wet) = W(t)."

solve the above coupling.
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Proof:
Let u be an eigenvector of L~Lo associated with ~ (which we shall
denote merely as ,\ for simplicity). Then L;Lou = '\u. Putting

1
v(t) = O'(t) u(t)

we can write the expression that gives implicitly the functional ,\ = IIL; LOtII
to be minimised:

r-> 111t D* eA (lI-t) j3(s)C*C 0 eA(s-p)Dv(p )dpds = ,\j3(t)v( t)

Here, ,\ and the eigenvector v depend on 13.

iT D*eA·(II-t)c* j3(s) {ill CeA(II-p)Dv(p)dp} ds = '\j3(t)v(t)

L*({iLv)(t) = ,\j3(t)v(t)
< v(t), L*(j3Lv)(t) > = < v(t), '\,B(t)v(t) >

where L is the ordinary input-output operator which is obtained for
0'=1.

Without loss of generality, assume that v is normalized. Then,
< v.B» >= 1 and

< dj3v, v> +2 < (iv,dv >= 0

We have
L*(f3Lv) = '\(iv

so that
L*(dj3Lv) + L*(f3Ldv) = d,\f3v + '\f3dv

Take inner product on the right with v to yield

< Lv, df3Lv >= d'\ + ,\ < v, df3v >

So the equations are

< Lv, df3Lv > -,\ < v, df3v > - d'\
< f3v, v> - 1

(8.8)

(8.9)
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Thus, equation 8.8 above is

iT dfiCtHILv(tW - ~lvCtW}dt = d~ (8.10)

Therefore, the optimal f3 will be the one that renders

ILv(t)12 = ~lv(t)12 a. e. (8.11)

so that the right-hand side is zero.
On the other hand, denote

z(t) = 1t eA(t-a) Dv(s)ds
Then

i = Az + Dv z(O) = 0 and Cz = Lv

Also, ~fiv = L ·(f3Lv) and Lv = Cz yield

).fi(t)v(t) = iT D·eAO(a-t)p(s)C·Cz(s)ds

Denote
wet) = iT eAO(a-t)!3(s)C·Cz(t)dt

For the second part of the proof, we have

i(t) - Z(t)", = [AZ(t) + ()',8(t))-l DD·W(t)]",
- Az(t) + ().,8(t))-l DD·w(t)

wet) - W(t)7] = [-A·W(t) - !3(t)C·C Z(t)]",
- -A·w(t) - ,8(t)C·Cz(t)

and
z(O) = Z(O)7] = 0 (since 7] E kerZ(O))
weT) = W(T)7] = 0", = 0

o

Particularly interesting is equation (8.11) to the extent that it may
suggest one direction for investigation on what concerns problems of
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stability. One can think of introducing the weight-functions and use
the scaling technique to get (de-)stabilisation.

Remark 8.4.2: (Formalisation at a higher degree of abstrac-
tion)

The whole body of the work done here can be put in a more ab-
stract functional analytic approach. We have already done this in the
section on the minimisation of IICo-xl1 in chapter 3. The existence of
T-periodic solution for x = Ax + BD(t)Cx with T-periodic continuous
perturbation D(.) can be set as a problem of existence of solution for an
operator equation Px = Qx, with P being a strictly-v-contraction and
Q completely continuous after a certain projection technique is applied.
This is being done in detail in Botelho-Goncalves [32]. The concept of
controllability may eventually be addressed under some approximation
scheme formalisation, via the theory of A-proper mappings and encom-
passing infinite dimensional systems as well. In the context of reflexive
Banach spaces, the exact controllability of a system x = Ax + Bu with
L2-inputs is equivalent to a map B being A-proper with respect to a
projection scheme n. Here, B is defined by

e« = loT S(T - s)Bu(s)ds

where (S(t)k~o is a nonexpansive semigroup generated by A (which is
the case when A is strongly dissipative). Cf. Deimling (1].

Remark 8.4.3: (Cognitive processes and "discourse analy-
sis" )

A question about robustness is one about the nature of a model, and
the affinity of the notions of model and interpretation is self-evident.
As an exercise of thought, we could move from the notion of robust-
ness of dynamical systems to a broader one which could encompass
thought, consciousness and cognitive processes as its objects. Or else,
we could use the concept of dynamical systems to represent and study
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cognitive processes. In any case, for these representations the notion
of robustness gets some distinct meanings: whilst for the usual repre-
sentation of plants in engineering applications it is desirable that the
system is robust, for cognitive processes the more robust the system
the less efficient it. After all, the role of life is to introduce as much
indetermination as possible on the natural tendency towards stability
and geometrisation. Thus, in some examples a measure of robustness
could be understood in the sense of establishing the degree of openness
(or maybe randomness) of the system in order to operate efficiently:
it needs to be opened to all kinds of disturbances that can eventually
redirect the fate of its performance and undermine its aims. In this
sense, robustness would have to do with the lack of comprehension of
the way language works (and the way it works out).

However, in order to engage in such line of questionings, some ba-
sic issues in an alien domain should be tackled preliminarily to ground
further discussions in the domain of science. And my point is that this
calls for a new linguistic approach to Mathematics and to the math-
ematical thought in the process of doing research. A more extensive
analysis of these claims are to be found in Botelho [30].
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Last words

- ... and at the end of the World, what is left for the
last man'?

- The last word!
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