

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/63693

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/63693

www.warwick.ac.uk

AUTHOR: Thomas Goffrey DEGREE: Ph.D.

TITLE: A Cylindrical Magnetohydrodynamic Arbitrary Lagrangian Eulerian
Code

DATE OF DEPOSIT: .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. .

. .

. .

. .

. .

A Cylindrical Magnetohydrodynamic Arbitrary

Lagrangian Eulerian Code

by

Thomas Goffrey

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Physics

January 2014

Contents

List of Figures vi

Acknowledgments xi

Declarations xii

Abstract xiii

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Timestep Control . 1

1.3 Eulerian Methods . 2

1.4 Riemann Solvers on Eulerian Grids 2

1.5 Lagrangian Methods . 3

1.6 Lagrangian Remap Codes . 4

1.7 Arbitrary Lagrangian Eulerian Methods 4

1.8 Thesis Outline . 5

Chapter 2 Governing Equations 6

2.1 Continuous Description . 6

2.1.1 Euler Equations, Eulerian Form 6

2.1.2 Tensor Review . 6

2.1.3 Euler Equations, Lagrangian Form 7

2.1.4 Reynolds Transport Theorem 9

2.1.5 Integral form of the Euler Equations 9

2.2 Discrete Description . 12

2.2.1 Hydrodynamical Variable Placement 12

2.2.2 Compatible Energy Update 14

2.3 Boundary Conditions . 23

i

2.3.1 Hydrodynamical Variables . 23

2.3.2 Polar Grids . 26

Chapter 3 Shock Viscosity 30

3.1 Introduction . 30

3.2 Edge Based Shock Viscosity . 31

3.2.1 Requirements of Shock Viscosity 31

3.2.2 Definition of Edge Based Shock Viscosity 32

3.2.3 Viscosity Limiters . 34

3.3 Time step limiting in Conjunction with Shock Viscosity 35

3.3.1 Cold Compression of a single cell 36

3.4 Edge Viscosity Results . 38

3.4.1 Sod’s Shock Tube Problem 38

3.4.2 Saltzman’s Piston Problem 40

3.4.3 Noh’s Problem . 42

3.5 Tensor Shock Viscosity . 44

3.5.1 Continuous Form of Shock Viscosity 45

3.5.2 Tensor Viscosity in a general Curvilinear system 47

3.5.3 Discrete form of Tensor Viscosity 50

3.5.4 Velocity Limiters for Tensor Viscosity 52

3.5.5 Final Form of Tensor Shock Viscosity 53

3.6 Tensor Shock Viscosity Results . 54

3.6.1 Sod’s Shock Tube Problem 54

3.6.2 Saltzman’s Piston Problem 56

3.6.3 Noh’s Problem . 56

3.6.4 Sedov Blast Problem . 60

3.7 Summary . 61

Chapter 4 Cylindrical Coordinates 63

4.1 Introduction . 63

4.2 Control Volume Differencing . 63

4.2.1 Cylindrical Stability in CVD 64

4.2.2 Symmetry Preservation in CVD 66

4.3 Area Weighted Differencing . 68

4.4 Shock Viscosity in Cylindrical Coordinates 72

4.4.1 Dissipativity in Area Weighting Schemes 73

4.5 Results . 75

4.5.1 Sod’s Problem . 75

ii

4.5.2 Noh’s Problem . 76

4.6 Summary . 76

Chapter 5 Subzonal Pressures 78

5.1 Introduction . 78

5.2 Modes of Grid Motion . 79

5.3 Subzonal Masses and Pressures . 79

5.4 Calculation of Subzonal Forces . 81

5.4.1 Dynamical and Non-Dynamical Points 81

5.4.2 Merit Factor . 88

5.4.3 Subzonal Pressures-an alternative formulation 88

5.4.4 Subzonal Pressures within the Compatible Framework 89

5.5 Temporary Triangular Subzones . 89

5.6 Results . 95

5.6.1 Sedov’s Problem . 95

5.7 Summary . 98

Chapter 6 First Order Remapping Methods 99

6.1 Introduction . 99

6.2 General Remapping Methodology . 100

6.2.1 One Dimensional Remap . 100

6.2.2 Kinetic Energy Conservation 105

6.3 Swept Region Based Remaps . 106

6.4 Intersection Based Remaps . 108

6.4.1 Equivalence to a Swept Region Based Remap in One Dimension110

6.4.2 Hybrid Remapping Strategies 110

6.5 Remapping within Odin . 111

6.5.1 Remapping Strategy . 111

6.6 Results . 114

6.7 Summary . 115

Chapter 7 Ideal MHD in Cartesian Coordinates 116

7.1 Introduction . 116

7.2 Divergence Cleaning Schemes . 117

7.3 Conventional Remapping Strategies 120

7.3.1 Out of Plane Magnetic field Component 124

7.4 Cell Centred Based Remaps . 124

7.4.1 Eight Point Cell Centred Remap 127

iii

7.4.2 Four Point Cell Centred Remap 127

7.4.3 Remap Summary . 129

7.5 Lagrangian Phase . 130

7.5.1 Lagrangian Remap Codes . 130

7.5.2 Cauchy Solution . 133

7.5.3 Equivalence to Induction Equation 140

7.6 Coupling of Remap to Cauchy Solution 142

7.7 Shock Capturing in ALE MHD . 143

7.8 Lorentz Force Term Calculation . 144

7.9 Summary of a single MHD ALE time step 145

7.10 Boundary Conditions . 146

7.11 Results . 146

7.11.1 Brio and Wu MHD Shock Tube 146

7.11.2 Magnetised Noh . 146

7.11.3 MHD Rotor . 149

7.11.4 Orszag Tang Vortex . 150

Chapter 8 Ideal MHD in Cylindrical Coordinates 155

8.1 Review of Cylindrical Hydrodynamics 155

8.2 Area weighted Cylindrical MHD . 156

8.3 Results . 158

8.4 Summary . 159

Chapter 9 Second Order Remaps 160

9.1 Corner Transport . 160

9.2 Split Remaps . 164

9.2.1 Isoparametric Remaps . 166

9.3 Extension to Second Order . 168

9.3.1 Geometric Based Remap . 169

9.3.2 Volume Based Remaps . 170

9.3.3 Extension to Magnetohydrodynamics 171

9.4 Split Volume Based Remap Method for Odin 172

9.4.1 Density Remap . 172

Chapter 10 Implosion Tests 176

10.1 Viscosity Testing . 176

10.1.1 Implosion Test Problem with B-field 177

10.2 Summary . 182

iv

Chapter 11 Further Work 195

11.1 Cylindrical Magnetohydrodynamics 195

11.2 Multi-material . 195

11.3 Additional Physics . 195

Appendix A Tensor Preliminaries 197

A.1 Tensor Preliminaries . 197

Appendix B Summary of Odin 200

B.1 Summary of Odin program flow . 200

v

List of Figures

2.1 Hydrodynamical variable placement on a staggered grid. 12

2.2 Indexing for the four velocity vectors associated with each cell (ir,iz). 13

2.3 Indexing used for the cells associated with a node. 13

2.4 Indexing used for the four nodes associated with a cell. 14

2.5 Illustration of the primary and median meshes 15

2.6 Indexing for the four corner masses contributing to the total mass of

cell (ir,iz). 17

2.7 Indexing for the four corner masses contributing to the total mass of

a node. 18

2.8 Indexing used for the primary mesh vectors, ~ai. 19

2.9 Indexing and orientation for median mesh vectors. 19

3.1 Results for Sod’s shock tube with edge viscosity. 39

3.2 Initial grid for Saltzman’s piston problem 40

3.3 Density contour plot for Saltzman’s piston problem at t=0.8 using

edge viscosity. 41

3.4 Grid for Saltzman’s piston problem at t=0.8 using edge viscosity. . . 41

3.5 Density scatter plot for Saltzman’s piston problem at t=0.8 using

edge viscosity. 42

3.6 Noh’s problem on a polar grid with edge viscosity. 43

3.7 Density contour plot for Noh’s problem run on a Cartesian grid with

edge based shock viscosity. 43

3.8 Grid for Noh’s problem run with edge based shock viscosity on an

initially Cartesian grid. 44

3.9 Scatter plot of density against radius for Noh’s problem run with edge

based shock viscosity. 45

3.10 Sod’s shock tube using tensor shock viscosity. 55

vi

3.11 Density contour plot for Saltzman’s piston problem at t=0.8 using

tensor shock viscosity. 56

3.12 Grid for Saltzman’s piston problem at t=0.8 using tensor shock vis-

cosity. 57

3.13 Density scatter plot for Saltzman’s piston problem at t=0.8 using

tensor shock viscosity. 57

3.14 Noh’s problem on a polar grid using tensor shock viscosity. 58

3.15 Density contour plot for Noh’s problem run on a Cartesian grid with

tensor shock viscosity. 59

3.16 Grid for Noh’s problem run with tensor shock viscosity on an initially

Cartesian grid. 59

3.17 Scatter plot of density against radius for Noh’s problem run with

tensor shock viscosity. 60

3.18 Grid resulting from Sedov’s problem on a Cartesian grid. 61

3.19 Density contour plot for Sedov’s problem run on a polar grid with

tensor shock viscosity. 62

4.1 Set up for cylindrical Collapse . 64

4.2 The vectors used to calculate CVD forces by Caramana et al. 67

4.3 Areas used to calculate nodal masses in AWD. 70

4.4 Sod’s shock tube in cylindrical coordinates. 75

4.5 Density contour plot for Noh’s problem run on a Cartesian grid with

tensor shock viscosity, in cylindrical coordinates. 76

4.6 Grid for Noh’s problem run with tensor shock viscosity on an initially

Cartesian grid, in cylindrical coordinates. 77

4.7 Scatter plot of density against radius for Noh’s problem run with

tensor shock viscosity, in cylindrical coordinates. 77

5.1 Modes of grid motion . 80

5.2 The dynamical (red) and non-dynamical points (green) of a cell. . . 83

5.3 The redistribution with weightings of forces from non-dynamical points

to dynamical points. 84

5.4 The initial forces calculated for subzonal pressures. 85

5.5 The intermediate forces in the rebound method. 86

5.6 The final forces in the rebound method. 87

5.7 Original force segments calculated for pressure perturbations in tri-

angular subzones. 90

vii

5.8 Vectors used to calculated forces arising from triangular subzonal

pressures. 92

5.9 Redistribution of forces from central non-dynamical point to nodes. . 93

5.10 Averaging of central force to nodes. 94

5.11 Density contour plot for Sedov’s problem at t = 1.0 run on a Cartesian

grid with tensor shock viscosity. 96

5.12 Grid for Sedov’s problem at t = 1.0 run with tensor shock viscosity

on an initially Cartesian grid. 96

5.13 Density contour plot for Sedov’s problem at t = 1.0 run on a Cartesian

grid with tensor shock viscosity, in cylindrical coordinates. 97

5.14 Grid for Sedov’s problem at t = 1.0 run with tensor shock viscosity

on an initially Cartesian grid, in cylindrical coordinates. 97

6.1 One dimensional remap. 101

6.2 Indexing used for redistribution of remap masses to nodal cells. . . . 105

6.3 Two dimensional remap. 107

6.4 Remapping illustrating double counting of overlap areas for swept

region based remap. 109

6.5 Density contour plot for Sedov’s problem, using a first order remap. 114

6.6 Line plot of the density obtained along y = 0 for Sedov’s problem

using a first oder remap. 115

7.1 Indexing used for a three dimensional cell. 122

7.2 Flux tube moving through a stationary grid at t = 0 (red) and one

time step later, blue. 123

7.3 Change in flux in ignorable direction. 125

7.4 The initial fluxes for a cell centred remap scheme. 126

7.5 The development of subzonal pressures. 128

7.6 Dynamic flux points in an eight point cell centred remap. 129

7.7 Eight point cell centred remap. 130

7.8 Dynamic flux points of a four point cell centred remap. 131

7.9 Four point cell centred remap. 132

7.10 Initial forces for the Brio and Wu problem. 133

7.11 The pre-initial magnetic field can be visualised as the flux through

the median mesh. ∂Xi/∂aj for each cell is calculated numerically

using the edge midpoint positions as indicated. 139

7.12 The pre-initial magnetic field is shown to be the correct calculation

of the flux through the median mesh. 139

viii

7.13 Notation for edge averaged velocities used for possible implementation

of evolution through the induction equation. 141

7.14 Brio and Wu magnetised shock tube problem, fully Lagrangian Re-

sults. 800 cells. 147

7.15 Brio and Wu magnetised shock tube problem, fully Lagrangian Re-

sults, with compression switch active. 800 cells. 148

7.16 Magnetised Noh problem, run with viscosity coefficients c1 = 0.1,

c2,= 0.5 Fully Lagrangian, 50x50. 149

7.17 Magnetised Noh problem, run with viscosity coefficients c1 = 1.0,

c2,= 1.0. Fully Lagrangian, 50x50. 149

7.18 MHD Rotor problem, fully Lagrangian Results. 200x200. 151

7.19 MHD Rotor problem, fully Lagrangian until t = 0.39, then fully Eu-

lerian. 400x400. 152

7.20 Orszag Tang Vortex, run in fully Eulerian mode. 400x400 153

7.21 Orszag Tang Vortex, run in fully Lagrangian mode until t=1.0, fully

Eulerian thereafter. 400x400 . 153

7.22 Orszag Tang Vortex, run with Gaussian remapping function. 400x400 153

8.1 Magnetised Noh problem, run with viscosity coefficients c1 = 0.1,

c2,= 0.5 in cylindrical coordinates. Fully Lagrangian, 250x1. 158

9.1 Overlap areas in the corner transport upwind method. 163

9.2 Overlap areas in an isoparametric remap. 167

9.3 Volume based remap for density. 173

9.4 Mass based remap for energy. 174

10.1 Results for implosion test with edge based shock viscosity. 177

10.2 Results for implosion test with tensor shock viscosity. 178

10.3 Reference solution for implosion test run with Eulerian grid motion

and tensor shock viscosity. 179

10.4 Density plot for implosion test case, without imposed B-field. 183

10.5 Density plot for implosion test case, with imposed B-field, in the z-

direction. 184

10.6 B-field plot for implosion test case, with imposed B-field, in the z-

direction. 185

10.7 Density plot for implosion test case, with imposed B-field, in the z-

direction, and reduced thermal pressure. 186

ix

10.8 B-field plot for implosion test case, with imposed B-field, in the z-

direction, and reduced thermal pressure. 187

10.9 Density plot for implosion test case, without imposed B-field, and

γ = 2.0. 188

10.10Density plot for implosion test case, with imposed B-field, reduced

thermal pressure, and γ = 2.0. 189

10.11B-field plot for implosion test case, with imposed B-field, reduced

thermal pressure, and γ = 2.0. 190

10.12Density plot for implosion test case, with imposed B-field, in the z-

direction, reduced thermal pressure, and compression switch active.

γ = 2.0. 191

10.13B-field plot for implosion test case, with imposed B-field, in the z-

direction, reduced thermal pressure, and compression switch active.

γ = 2.0. 192

10.14Density plot for implosion test case, with imposed B-field in the x-

direction. γ = 2.0. 193

10.15B-field plot for implosion test case, with imposed B-field in the x-

direction. γ = 2.0. 194

x

Acknowledgments

Thanks go first and foremost to my supervisor professor Tony Arber who has pro-

vided excellent support and advice throughout this project. I must also thank Dr

Chris Brady for providing useful discussions throughout this work, and for his work

in extending the capabilities of Odin. Dr Keith Bennett has also provided valuable

insights into numerical methods.

I would also like to thank Dr. Andrew Barlow for his advice on arbitrary Lagrangian

Eulerian methods, and whose thesis provided the starting point for my own research

in the field.

On a more personal note, I would like to thank my family for their encouragement

over the years, without which I would not be writing this thesis. Finally I would

like to thank Olivia, her guidance and patience were integral to the completion of

this work.

This work acknowledges the financial support of AWE.

xi

Declarations

I declare that this thesis has not been submitted for a degree at another university.

This thesis describes the development of a numerical code, and as such borrows

methods from previously published work, I declare that where such methods have

been used references to the original work has been provided.

The methods to extend the hydrodynamical remap to second order, described in

chapter 9 were implemented by Dr. C. S. Brady, although planned and tested in

conjunction with the author. The description and development of these methods

have been included for completeness as they are used in generating the results for

the final results. All other methods described were implemented by the author.

xii

Abstract

Arbitrary Lagrangian Eulerian methods are methods which seek to take advan-

tage of the strengths of Eulerian and Lagrangian methods, whilst circumventing

the weaknesses. This thesis discusses the development of such a code ,Odin, in

two dimensions, for both Cartesian and cylindrical coordinates. Odin is capable

of handling shocks through the addition of shock viscosity to the Euler equations.

Furthermore the hydrodynamical scheme is expanded to include magnetohydrody-

namics.

xiii

Chapter 1

Introduction

1.1 Introduction

Whilst this thesis covers the development of a two dimensional arbitrary Lagrangian

Eulerian (ALE) code, it is worthwhile discussing the merits and disadvantages of

more basic methods of modelling fluid flow, before introducing the ALE methodol-

ogy. The most basic methodical distinction is between pure Lagrangian and Eulerian

methods. Increasing in complexity, the next method is Lagrangian remap codes,

which is a hybrid method somewhere between Lagrangian and Eulerian methods,

and is in fact a limiting case of ALE codes.

1.2 Timestep Control

In analysing the relative advantages and disadvantages of particular numerical schemes

for hydrodynamics the question of time-step control and efficiency will be a recurrent

issue, as such it is prudent to explain briefly how a timestep is chosen for (explicit)

hydrodynamics. The Courant-Friedrichs-Lewy (CFL, [1]) essentially states from a

physical perspective that in a given time-step no information should be able to cross

more than one grid cell. For example in a one dimensional Lagrangian calculation

the time-step should be calculated according to,

∆t ≤ C

∆x
, (1.1)

where C is the sound speed, and ∆x is the width of the cell. For a complicated

grid the choice of length becomes more complicated and it is common to take some

simplification, and run with the time-step at some reduced factor of the maximum

allowed by the CFL condition. However, the important result remains that the time-

1

Draft of 3:35 pm, Monday, June 16, 2014 2

step is (neglecting higher order schemes not considered here) inversely proportional

to the minimum grid spacing.

1.3 Eulerian Methods

The most basic method of modelling fluid flow is the Eulerian method (e.g. [2],[3]).

In discretising the fluid in an Eulerian code, the computational cells remain fixed

in space, and allow fluid to flow through it. It is important to make a distinction

here, between a pure Eulerian method, in which the grid never moves, and Eulerian

mesh motion, in which at the end of the time step the grid is returned to its original

position.

The main advantage in using an Eulerian method is robustness. As shall be dis-

cussed Lagrangian methods often struggle to complete computations when the flow

becomes complex, this is not a problem for Eulerian methods. The physics within an

Eulerian code is usually simpler to expand than their Lagrangian counterparts, due

to the fact that the grid is known, and orthogonal. This simplicity of the grid means

that at first glance the computational cost of a single time-step should be cheaper

than Lagrangian codes, however in practice Eulerian codes can be dimensionally

split (where fluxes along each coordinate direction are calculated and applied indi-

vidually rather than simultaneously), so this advantage can be reversed.

Eulerian codes do also have disadvantages. As the grid is fixed in space they ex-

perience some numerical diffusion. This can damage the accuracy of the solution,

in particular shocks may become smeared across a large number of zones, however

this can also reduce numerical oscillations around shock fronts.

Providing the required resolution can also be problematic for Eulerian methods. As

the grid is fixed, it is necessary to provide resolution in all required areas at all

times. However for a number of applications the local resolution requirement may

change during the simulation; different areas may be interesting at different times.

This can increased the required number of cells by orders of magnitude for Eulerian

codes, thus rendering them potentially very computationally expensive.

1.4 Riemann Solvers on Eulerian Grids

Riemann solvers (e.g. [4]) work by treating the computational domain as piecewise

constant across cells, and solving the individual Riemann problem at each cell in-

terface to advance the solution to the next time step. The solution is then averaged

across each cell to return the domain to a piecewise constant state. The first of

Draft of 3:35 pm, Monday, June 16, 2014 3

such schemes [5] is only first order but higher order schemes have been developed.

Whilst due to their intrinsic nature such schemes are able to capture shocks, with-

out added complications such as shock viscosity, some Riemann solvers (both exact

and approximate) do encounter difficulties in modelling shock reflections and addi-

tional dissipative methods are needed [6]. Finally, such schemes have traditionally

been used for Eulerian codes, although recent efforts have seen them adapted for

arbitrary grids [7]. However such schemes are computationally expensive and have

further complications (such as the requirement of accurate sound speed which can

be problematic) and are not considered further in this work.

1.5 Lagrangian Methods

In contrast to Eulerian methods Lagrangian methods (e.g. [8]) have a mesh which is

attached to the fluid. This means that no fluid flows through cell edges during the

computation, the grid moves with the fluid. This has the result that the code is less

diffusive, due to the fact that the grid moves with the fluid, rather than smoothing

out features during advection. This grid motion also means that the method will

naturally provide time dependent resolution where it is needed. As the fluid moves

in one direction or piles up in an area of the domain the grid will follow it there,

providing the necessary resolution.

However these advantages come at a cost, particularly robustness. Should the flow

become complex the grid may begin to twist. As the grid twists (or indeed piles

up in a specific location) the distance across a cell can decrease by several orders

of magnitude, which consequently reduces the time step by a proportional amount.

Also the grid is completely arbitrary, so implementing increasingly complex physics

can become complicated.

Comparing run time and cost between Eulerian and Lagrangian methods is tricky.

Lagrangian methods do not need to be directionally split, but due to the potentially

complicated nature of the grid they lack simplifications that can be made in Eulerian

methods. Running with identical numbers of cells a Lagrangian method will almost

certainly require more time steps to complete a calculation than Eulerian methods,

due to the grid concentrating itself in areas of interest. To make a fairer comparison

a higher resolution Eulerian simulation should be run. In general if Lagrangian

simulations are able to complete, their results arrive quicker and more accurately,

but it is a big if.

Finally, although this thesis concerns itself (in the majority) with single material

methods it is worthwhile considering multi-material affects. Lagrangian methods do

Draft of 3:35 pm, Monday, June 16, 2014 4

not allow mass to flow between cells, and it is possible to set up the initial conditions

such that cells are only one material, i.e. the grid is aligned with material interfaces.

Eulerian codes will usually employ some form of interface reconstruction (e.g. [9]),

but despite this, Eulerian codes are still prone to artificial mixing.

1.6 Lagrangian Remap Codes

Lagrangian remap codes (e.g. [10]) represent the middle ground between Eulerian

and Lagrangian methods, and attempt to circumvent the respective problems, whilst

keeping the advantages. The idea is relatively simple, carry out a single Lagrangian

step, before carrying out a remap step to return the grid back to its original position.

This grid motion shall be referred to as Eulerian grid motion throughout this thesis.

The Lagrangian phase of a Lagrangian remap code is exactly that, and thus inher-

its its advantages of reduced numerical diffusion and better estimation of mixing.

However as the grid is returned to its original position at the end of the time step

a number of simplifications/approximations can be made without too large a drop

in accuracy, thus reducing the numerical cost of such a time step.

However the remap phase does still produce numerical diffusion. The remap step

comes at added computational cost, which is increased by the fact that it is often

directionally split, this obviously trades off against the reduction in complexity of

the Lagrangian phase.

Of course Lagrangian remap codes, due to their Eulerian grid motion do not inherit

the natural resolution of Lagrangian codes, but they do inherit the robustness of

pure Eulerian codes.

1.7 Arbitrary Lagrangian Eulerian Methods

Arbitrary Lagrangian Eulerian (ALE) methods (e.g. [11]) step beyond the com-

plexity of Lagrangian remap codes. The essential difference between ALE methods

and Lagrangian remap methods is that the remap is both optional, and no longer

constrained to return the grid to its original position; the grid is arbitrary hence the

name of the method. ALE codes attempt to run for as long as possible in Lagrangian

mode, thus inheriting all the advantages of Lagrangian scheme, but when the point

at which a pure Lagrangian simulation would halt is reached a remap is triggered,

thus enabling the computation to continue. ALE codes are by far the most complex

to develop, in that the Lagrangian scheme has the associated complications of an

arbitrary grid, but now the remap may become equally, or more complicated as it

Draft of 3:35 pm, Monday, June 16, 2014 5

too has to cope with an arbitrary grid. The question of directionally splitting the

remap is discussed in later chapters.

1.8 Thesis Outline

This thesis describes the development of a single material two-dimensional arbi-

trary Lagrangian Eulerian MHD code, Odin. The thesis first begins with a basic

description of the discretisation and derivation of the Lagrangian phase, in Carte-

sian coordinates. Chapter 3 then introduces shock viscosities, and tests two popular

methods. Chapter 4 discusses the necessary changes to be made to enable Odin to

run in cylindrical coordinates as well as Cartesian coordinates. Chapter 5 introduces

the problem of hourglass modes, and assess a widely used method to suppress them,

subzonal pressures. In practice subzonal pressures are not used in Odin.

Chapter 6 introduces a number of different remapping strategies, and discusses the

implementation of a first order remap method with an ALE code. The following

chapter explains how to implement ideal magnetohydrodynamics (MHD) within an

ALE code, both in its Lagrangian phase, and within the context of a first order

remap, before chapter 8 briefly covers how to adapt such a scheme to cylindrical

coordinates.

Chapter 9 then expands the remap to second order for ideal MHD, and discusses

directionally splitting such a remap, before chapter 10 which presents results of the

code running implosion problems with an imposed B-field. Finally chapter 11 briefly

outlines direction for further work.

Chapter 2

Governing Equations

2.1 Continuous Description

2.1.1 Euler Equations, Eulerian Form

The equations governing the evolution of an ideal fluid, the Euler equations, given

in their Eulerian form are:
∂ρ

∂t
+∇ · ρ~u = 0, (2.1)

∂

∂t
(ρ~u) +∇ · (~u⊗ (ρ~u)) +∇P = 0, (2.2)

∂

∂t
(ρeT) +∇ · (~u (ρeT + P)) = 0, (2.3)

where ρ is the density, ~u the velocity vector, P the (thermodynamic) pressure and

eT = ei + 1/2u2 is the specific total energy. ei is the specific internal energy, which

for an ideal gas has the form ei = P/ρ(γ − 1).These are simply statements of the

conservation of mass, momentum and energy in an Eulerian frame. These are closed

by an equation of state linking density, energy and pressure.

2.1.2 Tensor Review

A basic discussion of simple tensor calculus is included in appendix A.1. However

some key results are repeated here. The dyadic is defined as,

A = ~a⊗~b, (2.4)

where,

Aij = aibj . (2.5)

6

Draft of 3:35 pm, Monday, June 16, 2014 7

A generalised dot product is,

~n ·
(
~a⊗~b

)
= (~n · ~a)~b, (2.6)

and, (
~a⊗~b

)
· ~n =

(
~n ·~b

)
~a. (2.7)

The divergence of a rank two tensor is,

∇ · T =
∂Tji
∂xj

, (2.8)

so that the divergence of a dyadic is,

∇ ·
(
~a⊗~b

)
= (∇ · ~a)~b+ (~a · ∇)~b. (2.9)

Finally the divergence theorem for tensors is,∫
V

∂T ij...k...m

∂xk
dV =

∮
s
T ij...k...mnkdS, (2.10)

where nk is the rank one covariant tensor associated with the face, and dS is the

magnitude of that face area. Applying (2.10) to a dyadic,∫
V
∇ ·
(
~a⊗~b

)
=

∮
s

(~a · ~n)~b. (2.11)

2.1.3 Euler Equations, Lagrangian Form

As an ALE code evolves the equations in a Lagrangian frame the Euler equations

must be rewritten using the Lagrangian derivative given by,

Df

Dt
=
∂f

∂t
+ ~u · ∇f, (2.12)

for a general scalar f. Expanding (2.1) and using the definition of the Lagrangian

derivative, (2.12),
Dρ

Dt
= −ρ∇ · ~u, (2.13)

which is a mass conservation equation in the Lagrangian frame. Considering the

momentum equation, (2.2), and using (2.9),

∂

∂t
(ρ~u) + ~u (∇ · ρ~u) + ρ~v · ∇~u = −∇P. (2.14)

Draft of 3:35 pm, Monday, June 16, 2014 8

Next, expanding the time derivative,

ρ
∂~u

∂t
+ ~u

∂ρ

∂t
+ ~u (∇ · ρ~u) + ρ~v · ∇~v = −∇P. (2.15)

However, by (2.1), the second and third terms cancel, yielding our momentum equa-

tion in Lagrangian form,

ρ
D~u

Dt
= −∇P. (2.16)

For a scalar and a vector, the product rule states,

∇ · (f~a) = ~a · ∇f + f∇ · ~a, (2.17)

so it is possible to expand and rewrite (2.3),

∂

∂t
(ρeT) + ρeT (∇ · ~u) + ~u · ∇ (ρeT) = −∇ (~uP) , (2.18)

and by using (2.12),
DρeT
Dt

= −∇ · (~uP)− ρeT∇ · ~u. (2.19)

Once again, expanding the derivative,

ρ
DeT
Dt

+ eT
Dρ

Dt
= −∇ · (~uP)− ρeT∇ · ~u, (2.20)

noting (again by using (2.13)) that the second terms on each side cancel, an equation

for the Lagrangian evolution of total energy is obtained,

ρ
DeT
Dt

= −∇ · (~uP) . (2.21)

It is possible to recast (2.21) in terms of specific internal energy, ei,

ρ

[
Dei
Dt

+
1

2

Du2

Dt

]
= −∇ · (~uP) , (2.22)

and then applying the product rule (in the form of (2.17)) and the chain rule,

ρ
Dei
Dt

+ ρ~u · D~u
Dt

= −~u · ∇P − P∇ · ~u, (2.23)

and finally using (2.16) to cancel the second term on the left hand side with the first

on the right a final energy equation in the Lagrangian frame is acquired,

ρ
Dei
Dt

= −P∇ · ~u. (2.24)

Draft of 3:35 pm, Monday, June 16, 2014 9

2.1.4 Reynolds Transport Theorem

Reynolds Transport Theorem for fluid parcels is a statement of the Leibniz integral

rule. It is given by [12],

D

Dt

∫
Ω(t)

~fdV =

∫
Ω(t)

∂ ~f

∂t
dV +

∫
∂Ω(t)

(~v · ~n) ~fdA, (2.25)

where the integration is carried out over a fluid volume, Ω(t) bounded by a surface,

∂Ω(t). The vector, ~n is the unit normal vector to that surface. The velocity ~v

need not be the fluid velocity, it is simply the velocity of the bounding surface.

Before using the theorem on the Lagrangian form of the Euler equations, this can

be manipulated into a more useful form. Using first the generalised dot product,

(2.6) (which has been shown in appendix A.1 to be equivalent to the contraction

(A.7)),

D

Dt

∫
Ω(t)

~fdV =

∫
Ω(t)

∂ ~f

∂t
dV +

∫
∂Ω(t)

~n ·
(
~v ⊗ ~f

)
dA, (2.26)

Now using the divergence theorem for tensors (2.10), and the definition of the di-

vergence of a rank two (contravariant) tensor, (2.8),

D

Dt

∫
Ω(t)

~fdV =

∫
Ω(t)

∂ ~f

∂t
dV +

∫
Ω(t)

∇ ·
(
~v ⊗ ~f

)
dV. (2.27)

Expanding this using (2.9),

D

Dt

∫
Ω(t)

~fdV =

∫
Ω(t)

[
∂ ~f

∂t
+ ~v · ∇~f + ~f (∇ · ~v)

]
dV. (2.28)

Using (2.12) yields our final form of the Reynolds Transport Theorem,

D

Dt

∫
Ω(t)

~fdV =

∫
Ω(t)

[
D~f

Dt
+ ~f (∇ · ~v)

]
dV. (2.29)

2.1.5 Integral form of the Euler Equations

It is now possible to integrate the Euler equations in their Lagrangian form to gain

the final evolution equations of the Lagrangian scheme within Odin. Integrating

Draft of 3:35 pm, Monday, June 16, 2014 10

(2.13): ∫
Ω(t)

Dρ

Dt
dV = −

∫
Ω(t)

ρ∇ · ~udV, (2.30)

From (2.29) it follows,
D

Dt

∫
Ω(t)

ρdV = 0. (2.31)

It will be useful to define volume averaged quantities as,

f̄ =
1

V

∫
Ω(t)

fdV. (2.32)

Similarly to (2.32) a mass averaged quantity will be introduced,

f̃ =
1

M

∫
Ω(t)

fρdV, (2.33)

Using (2.32), (2.31) can be rewritten as,

D

Dt
ρ̄V =

D

Dt
M = 0, (2.34)

where M = ρ̄V is the cell mass. This is a familiar result, that the mass in a

Lagrangian cell is constant. Moving onto (2.16), and integrating,∫
Ω(t)

ρ
D~u

Dt
dV = −

∫
Ω(t)

∇PdV. (2.35)

Considering first the left hand side,∫
Ω(t)

ρ
D~u

Dt
dV =

∫
Ω(t)

(
D

Dt
(ρ~u)− ~uDρ

Dt

)
dV

=

∫
Ω(t)

(
D

Dt
(ρ~u) + ~uρ (∇ · ~u)

)
dV

=
D

Dt

∫
Ω(t)

ρ~udV,

where in the last step (2.29) has been used. Use (2.33) this can be rewritten as,

D

Dt

∫
Ω(t)

ρ~udV =
D

Dt
M~̃u. (2.36)

Draft of 3:35 pm, Monday, June 16, 2014 11

and by applying the divergence theorem to the right hand side and using (2.36)

the final integral equation for the momentum update in Cartesian coordinates is

obtained,

M
D~̃u

Dt
= −

∫
∂Ω(t)

P ~dS. (2.37)

It is desirable to apply the same method to define a model for updating the energy

equation. However as will be shown such a simple form cannot be obtained without

some questionable steps. In fact Odin uses a compatible energy update [13] in place

of such a model. The discussion that follows is provided for completeness. As with

the momentum equation it is possible to rearrange the left hand side of the integral

of the energy equation, (2.24),

M
Dẽi
Dt

= −
∫
Ω(t)

P∇ · ~udV. (2.38)

The pressure relates to density and specific internal energy through the equation

of state. As finite volume codes only ever model the volume/mass average of such

quantities, ρ̄ and ẽi, it follows that only a volume average pressure, P̄ is ever known.

Thus it is possible to remove the pressure from the integral, now being explicit that

only an average pressure value is known, to yield an energy update of the form,

M
Dēi
Dt

= −P̄
∫
Ω(t)

∇ · ~udV = −P̄
∫

∂Ω(t)

~u · ~dS. (2.39)

However in place of (2.39) a compatible energy update is used to ensure exact energy

conservation. This method shall be explained in a later section. In this section f̄

has been used to denote a volume averaged quantity and f̃ has been used to denote

a mass averaged quantity as defined by (2.32) and (2.33) respectively. It is these

quantities that a finite volume code works in terms of, however for the sake of brevity

this notation shall be dropped, and the variables being considered shall be assumed

to be mass (or in the case of density, volume) averaged quantities unless stated

otherwise.

Draft of 3:35 pm, Monday, June 16, 2014 12

2.2 Discrete Description

2.2.1 Hydrodynamical Variable Placement

Before discussing the details of the numerical scheme within Odin it is necessary to

define the placement of each variable on the grid. Odin employs a staggered grid

hydrodynamic scheme, where variables such as density, volume and internal energy

are defined at cell centres, and variables such as velocity and position are defined at

nodes. This is demonstrated by figure 2.1.

Figure 2.1: Hydrodynamical variable placement on a staggered grid.

A cell (or zone) is a quadrilateral formed by four nodes, nodes are intersections of

the grid, marked by a dot in figure 2.1. Any derived variables will be defined in the

same position as the relevant primary variables, so pressure will be defined at the

cell centre, as will cell mass. There is also a nodal mass, from which momentum

and kinetic energy can be derived, which are nodal values. The definition of the

nodal mass is described in detail in the next section. Figure 2.1 shows that each

cell (ir, iz) has four velocities associated with it, the indexing is demonstrated in

figure 2.2. This same indexing is used when associating position variables with cells,

and the four relevant nodal positions are averaged to define a cell centred position.

The use of (ir, iz) rather than (ix, iy) is to aid comparison with the code, which

was originally conceived as a cylindrical code with variable names that reflect that.

This convention will be used at various stages of this work, as a result (ir, iz) and

(ix, iy) should be seen only as labels, not necessarily associated with any particular

Draft of 3:35 pm, Monday, June 16, 2014 13

coordinate system. In order to calculate forces for each node, the four contributions

Figure 2.2: Indexing for the four velocity vectors associated with each cell (ir,iz).

from each of its four connected cells will need to be considered. When doing so it is

useful to define and retain an indexing. The four cells associated with each node are

numbered 1-4 in an anticlockwise manner, starting bottom left, this is demonstrated

by figure 2.3. A similar indexing is used for the nodes associated with each cell, this

Figure 2.3: Indexing used for the cells associated with a node (highlighted in red).

is demonstrated by figure 2.4. This diagram also provides the indexing of the edges

Draft of 3:35 pm, Monday, June 16, 2014 14

of each cell, which once again are defined in an anticlockwise manner, this time

starting at the bottom edge.

Figure 2.4: Indexing used for the four nodes associated a cell. The nodes are
highlighted in red. The indexing for the cell edges is also denoted by numbers, and
the cell edge midpoints have been highlighted blue for clarity.

2.2.2 Compatible Energy Update

A compatible energy update, [13], may be viewed as choosing a discretisation which

always analytically conserves energy. Essentially compatibility involves the calcula-

tion of the forces used for the update of the momentum equation, then replacing the

normal energy update equation with a combination of those forces and the half time

step velocities, in such a way that the total energy is conserved over the full timestep.

Definition of Corner Masses

In order to explain the full compatible energy update it is necessary to introduce

the concept of a corner mass. In (staggered grid) Lagrangian methods the mass

of the zone is considered constant, however the mass associated with a node, the

nodal mass is often recalculated at the beginning of each time step. This change

in nodal mass leads to a change in momentum and kinetic energy, which requires

an extra term in the momentum equation and is usually neglected. Caramana et al

[13] employed a stronger Lagrangian formulation in which both the zonal mass, Mz,

Draft of 3:35 pm, Monday, June 16, 2014 15

and the nodal mass, MP , are considered constant.

The result of this is that there are two sets of boundaries over which no mass flows,

the boundaries of the cells (the primary mesh) and the boundaries of the nodes

(or the median mesh). The median mesh is the mesh defined by connecting the

midpoints of each cell edge. Both meshes are demonstrated by figure 2.5.

Figure 2.5: The two meshes are illustrated. The primary mesh (solid lines) is
defined by the connection of nodes with their nearest (in logical space) neighbours.
The median mesh (dotted lines) is defined by the connection of the midpoints of
cell edges. The median mesh segments used to define the volume associated with
single node have been highlighted red. As both nodal and cell centred masses are
assumed to constant, no mass can flow through either mesh.

Thus two sets of constant masses are defined, however their sum must be equal,∑
p

Mp =
∑
z

Mz, (2.40)

where the first summation in (2.40) is carried out over all nodes (or points using the

nomenclature of [13]), and the second over all cells (zones). Given that these two

boundaries through which no mass flows intersect it is natural to assume that the

subzones formed by these intersections also have constant mass. It is these subzonal

Draft of 3:35 pm, Monday, June 16, 2014 16

masses that are referred to as corner masses, and shall be denoted mi
j , where the

indexing is explained in the following section.

It should be stressed that in fixing the subzonal masses as constant masses associated

with the intersection of the primary and median mesh a finite volume numerical

model is being defined. The centre of a zone is not itself a Lagrangian point, and

the assumption that no mass flows across the median mesh is again simply a step

in defining a numerical model. The finite volume model will converge to the correct

limit, but is not one derivable from the fluid equations. This is why the step to use

a compatible energy update in place of the integral energy equation is important.

As will be shown this numerical model does exactly conserve mass, energy and

momentum. To calculate the mass of a zone or node the following summations

(keeping for now the notation of [13]) are carried out,

M z =
∑
p

mz
p, (2.41)

and,

Mp =
∑
z

mp
z. (2.42)

where in (2.41) the summation is carried out over all points associated with the

zone (see figure 2.4) and in (2.42) over all zones associated with a point (see figure

2.3). To be clear, mz
p = mp

z, but summations are always carried out with respect

to the lower index. To summarise the mass of a zone is calculated by summing

over all corner masses with that fixed label z, and to calculate the nodal mass the

summation is carried out over fixed label p.

Clearly if there are nr×nz cells there will be 2nr×2nz corner masses. Within Odin

the corner masses (m) are given two indices, i and j, so

MCell(ir, iz) =
2ir∑

i=2ir−1

2iz∑
j=2iz−1

mi,j , (2.43)

and,

MNode(ir, iz) =
2ir+1∑
i=2ir

2iz+1∑
j=2iz

mi,j . (2.44)

These summations are illustrated in figures 2.6 and 2.7, and are the implementa-

tions of (2.41) and (2.42).

Draft of 3:35 pm, Monday, June 16, 2014 17

Figure 2.6: Indexing for the four corner masses contributing to the total mass of
cell (ir,iz).

Compatible Formulation

Before using the corner masses described in the previous subsection, some grid

vectors must be defined. There are two sets of grid vectors. For each cell there

are associated eight primary grid vectors, two to each cell face. These are equal in

magnitude to half the area of that cell face and point in an outward normal direction

with respect to the cell and it’s face. The indexing for these is illustrated by figure

2.8.

The median mesh is a secondary mesh defined by the line segments connecting the

midpoints of the primary mesh. Each cell has two median mesh lines associated

with it, and four corresponding median mesh vectors each equal in magnitude to

half the area associated with its median mesh line. This area in a two dimensional

Cartesian code is of course a length, but in different geometries this will not be the

Draft of 3:35 pm, Monday, June 16, 2014 18

Figure 2.7: Indexing for the four corner masses contributing to the total mass of node
(ir,iz). For clarity the line segments defining the nodal cell have been highlighted in
red.

case, and in three dimensions it will be an area, as such it is referred to as an area.

The direction and indexing of the median mesh vectors are defined by figure 2.9.For

a Cartesian code ~S1 = −~S3, however this is not the case for a cylindrical code, where

the vectors may be defined at a different radial coordinate.

Consider the integral form of the momentum equation in Cartesian coordinates

(2.37),

Mp
D~vp
Dt

= −
∫
V
∇PdV = −

∮
δS
P~ndS =

∑
z

~fpz . (2.45)

In the final step a similar notation to that of corner masses has been employed, where

the summation is carried out over all (yet to be defined) corner forces associated

with the node, p. In the context of (2.45) ~fpz is the force contribution due to pressure

of a zone z, on its node p. In general this force need not just be derived from the

Draft of 3:35 pm, Monday, June 16, 2014 19

Figure 2.8: Indexing used for the primary mesh vectors, ~ai.

Figure 2.9: Indexing and orientation for median mesh vectors. The median mesh
itself is shown by the dotted line. This diagram is used to define directions, so
that ~S1 = 0.5 (y1 − yc, xc − x1) and ~S3 = 0.5 (y3 − yc, xc − x3), where xc, yc are the
coordinates of the cell centre, and xi, yi are coordinates of cell edges, with indexing
defined by figure 2.4. In cylindrical coordinates these vectors will have an additional
radial weighting.

Draft of 3:35 pm, Monday, June 16, 2014 20

pressure gradient. Indeed a corner force is not the total force on a corner mass, but

the total force on a single node from a single zone.

Corner forces are the four force contributions of a cell to each of its nodes. As forces

are carried out by calculating the integral (2.37) around the median mesh the forces

from each of the four cells associated with each node can be written as four discrete

force contributions. These discrete forces are known as corner forces, and use the

same indexing system as the corner masses.

To examine the total energy of the domain two sums must be carried out, over nodes

and cells,

ET =
∑
Cells

Mzez +
∑
Nodes

Mpv
2
p

2
, (2.46)

where ez is the specific internal energy of the cell. The total energy across the

domain is,

ET =
∑
z

Mzez +
∑
p

Mp

v2p
2
. (2.47)

Taking the total derivative with respect to time, and using the Lagrangian nature

of both the cell masses, and the nodal masses,

D

Dt
ET =

∑
z

Mz
Dez
Dt

+
∑
p

∑
z

~fpz · ~vp

=
∑
z

(
Mz

Dez
Dt

+
∑
p

~fpz · ~vp

)
+
∑
i

~fbd,i · ~vbd,i. (2.48)

The final term in (2.48) represents contributions from boundary forces, which will

be neglected for the remaining part of this discussion. Now in order for the contri-

butions from the cells to total zero, the following condition is clear,

Mz
D

Dt
ez = −

∑
p

~fzp · ~vp. (2.49)

Caramana et al [13] went on to show that in fact compatibility is a natural conse-

quence of control volume differencing in Cartesian coordinates. Using (2.49) for the

Draft of 3:35 pm, Monday, June 16, 2014 21

update of internal energy gives the following,

Mz
Dez
Dt

= −
∑
p

~vp · ~fzp

= −Pz
[(
~S1 − ~S4

)
· ~v1 +

(
~S2 − ~S1

)
· ~v2 +

(
~S3 − ~S2

)
· ~v3

+
(
~S4 − ~S3

)
· ~v4
]

= −Pz [(~a8 + ~a1) · ~v1 + (~a2 + ~a3) · ~v2 + (~a4 + ~a5) · ~v3
+ (~a6 + ~a7) · ~v4]

= −
∮
∂S
Pz~n · ~vdS

= −
∫
V
Pz∇ · ~vdV. (2.50)

In the first step of (2.50) vector addition has been used; it should be stressed that

this equality is only true for Cartesian coordinates. The second step has carried out

a piecewise constant boundary integral, and the final step is just the application of

the divergence theorem.

Although (2.50) shows that compatible discretisation occurs naturally for Cartesian

coordinates in any dimension this is not true for other coordinate systems, where

the third equality does not hold. As such (2.51) is adopted as the canonical form of

the internal energy update in both Cartesian and cylindrical coordinate systems,

M zDei
Dt

= −
4∑
i=1

~fi · ~vi, (2.51)

where the forces are the same forces used to update the velocity components of the

nodes,

MpDvx
Dt

=

4∑
i=1

fx,i. (2.52)

The implementation of a compatible energy update can be viewed as the replacement

of the continuous energy change, defined as the product of pressure and change in

volume, with a discretised total work rate. The discrete forces are combined with

the discrete velocities to form a discrete rate of work, and thus energy change of the

cell.

The final step is to introduce time variation into the scheme described. Integrating

Draft of 3:35 pm, Monday, June 16, 2014 22

(2.48) over a single time step yields,

∑
z

Mz∆ez +
∑
p

Mp∆
v2p
2

=
∑
z

Mz∆ez +
∑
p

Mp~v
n+1/2
p ·∆~vp = 0, (2.53)

where ∆ represents the change in quantities between time steps n and n+1. The

discrete (in both time and space) form of the momentum update is

Mp∆~vp =
∑
z

~fp(n+1/2)
z ∆t, (2.54)

where ~f
p(n+1/2)
z represents a time centred force. Applying this and changing the

order of the resulting double summation,

∑
z

[
Mz∆ez +

∑
p

~vn+1/2
p · ~fz(n+1/2)

p ∆t

]
= 0, (2.55)

yields the final fully discretised form of the compatible energy update,

∆ez = −
∑
p

~fzp · ~vn+1/2
p ∆t/Mz. (2.56)

Additional Forces

The compatible framework is a very flexible one that allows new (hydrodynamical)

forces to be added in an energy conserving manner. Any force may be specified

directly as a force on the nodes and (2.56) provides an energy conserving framework

to calculate the resulting change in internal energy. This will prove a particularly

useful tool in specifying shock viscosity forces and calculating the resulting heating.

It is also worth noting that it is possible to reverse engineer such a process where

some heating mechanism may be specified, and the necessary energy conserving

forces may be calculated using the compatible framework.

There are a few notable exceptions. The first is the force resulting from the addition

of a B-field which has no effect on the internal energy, the forces here provide a

transfer of energy between the magnetic and kinetic energies. Secondly in the case

of gravity (2.47) must be modified as,

ET,cell = Mzez +
∑
p

mz
p

(
v2p
2

+ gyp

)
(2.57)

Draft of 3:35 pm, Monday, June 16, 2014 23

where yp is the height of the node and g is the strength of the gravitational field, to

account for the additional gravitational force,

~fgrav = −Mpgŷ. (2.58)

To show energy is still conserved, consider only the additional terms arising from

the inclusion of a (constant) gravitational acceleration,

D

Dt

∑
p

Mp~v
2
p

2
+ gyp =

∑
p

Mp~vp ·
D

Dt
~vp + gMp

D

Dt
yp

=
∑
p

Mpvp,y (−g) +Mpvp,y

= 0. (2.59)

Here it is assumed gravity acts in the negative y-direction, although a similar result

is obtained for a general gravitational field, as long as the definition of gravitational

potential is correctly adjusted.

2.3 Boundary Conditions

In order to calculate forces on nodes along the boundary of the domain, as well as

to carry out a remap (see Chapter 6, Chapter 9) it is necessary to define two ghost

values for each variable external to the domain. The values are set according to

boundary conditions. Throughout this work the only boundary conditions applied

will be periodic or reflective. For simplicity these will be explained in a one dimen-

sional context, application to a second dimension is trivial. The grid size is assumed

to equal n cells.

2.3.1 Hydrodynamical Variables

When using a periodic boundary condition, the density ghost values are applied as,

ρ0 = ρn,

ρ−1 = ρn−1, (2.60)

Draft of 3:35 pm, Monday, June 16, 2014 24

for the left hand boundary, and,

ρn+1 = ρ1,

ρn+2 = ρ2, (2.61)

for the right hand boundary. The specific internal energy is applied in an analogous

manner. For the velocity components the indexing is changed slightly, due to grid

staggering,

~v−1 = ~vn−1,

~v−2 = ~vn−2, (2.62)

for the left hand boundary, and,

~vn+1 = ~v1,

~vn+2 = ~v2, (2.63)

for the right hand boundary. Finally it is important to enforce,

~vn = ~v0. (2.64)

For reflective boundary conditions, the important principle is that no material is

permitted to flow through the boundary. Considering a reflective boundary in the

x-direction,

vx,0 = vx,n = 0. (2.65)

The other variables are calculated to be consistent with this,

ρ0 = ρ1,

ρ−1 = ρ2,

ρn+1 = ρn,

ρn+2 = ρn−1, (2.66)

Draft of 3:35 pm, Monday, June 16, 2014 25

for density, and similarly for energy. The y-velocity is calculated as,

vy,−1 = vy,1,

vy,−2 = vy,2,

vy,n+1 = vy,n−1,

vy,n+2 = vy,n−2. (2.67)

The y-velocity along the boundary is allowed to evolve as any other point, with forces

calculated using the other boundary values. Finally the other boundary values for

the x-component of the velocity are defined,

vx,−1 = −vx,1,

vx,−2 = −vx,2,

vx,n+1 = −vx,n−1,

vx,n+2 = −vx,n−2. (2.68)

This set of boundary conditions allow the first set of boundary values in each di-

rection to be updated during the predictor step in a consistent manner, without

the need for an additional application of the boundary conditions. For reflective

boundary conditions in the y-direction the roles of the x and y components of the

velocity are interchanged. The scalar quantities are unchanged.

It is also necessary to apply boundary conditions to the grid positions. For reflective

boundary conditions the following equations should be used,

x−1 = x0 − (x1 − x0) = 2x0 − x1,

x−2 = x0 − (x2 − x0) = 2x0 − x2,

xn+1 = xn + (xn − xn−1) = 2xn − xn−1,

xn+2 = xn + (xn − xn−2) = 2xn − xn−2, (2.69)

and,

y−1 = y1,

y−2 = y2,

yn+1 = yn−1,

yn+2 = yn−2. (2.70)

Draft of 3:35 pm, Monday, June 16, 2014 26

For periodic boundary conditions the following boundary conditions should be used,

x−1 = x0 − (xn − xn−1) ,

x−2 = x0 − (xn − xn−2) ,

xn+1 = xn + (x1 − x0) ,

xn+2 = xn + (x2 − x0) , (2.71)

and,

y−1 = yn−1,

y−2 = yn−2,

yn+1 = y1,

yn+2 = y2. (2.72)

finally, being sure to enforce,

y0 = yn, (2.73)

and,

x0 = xn. (2.74)

2.3.2 Polar Grids

Boundary conditions for a polar grid are required to be different than for a standard,

or Cartesian grid. It is also no longer possible to restrict the discussion to one

dimension. Consequently the grid is extended to be of size n × n. A polar grid

is formed by a set of degenerate grid points along what is logically the left hand

side boundary. All of these points are forced to be at (0, 0). This has the result

that the boundary which is the logical up, or positive y, boundary becomes the

left hand side boundary, the logical lower boundary, remains as such. The logical

right hand boundary becomes an outer radial boundary, and the left hand becomes

an inner radial boundary. The treatment of scalars remains unchanged, however

velocity components and positional boundary conditions must be altered. For the

upper and lower logical boundary the modified boundary conditions for the velocity

Draft of 3:35 pm, Monday, June 16, 2014 27

components are,

vy,i,−1 = −vy,i,1,

vy,i,−2 = −vy,i,2,

vy,i,n+1 = vy,i,n−1,

vy,i,n+2 = vy,i,n−2. (2.75)

Here it has been assumed the velocity (and later the position) is indexed (i, j).

These statements apply for all i and j. The x-component is calculated as,

vx,i,−1 = vx,i,1,

vx,i,−2 = vx,i,2,

vx,i,n+1 = −vx,i,n−1,

vx,i,n+2 = −vx,i,n−2. (2.76)

Velocity components normal to the boundaries are forced to be zero,

vy,i,0 = 0, (2.77)

and,

vx,i,n = 0. (2.78)

The velocity component tangential to the boundary are allowed to evolve as any

other interior point. For the logically left hand boundary, the velocity components

are given by,

vx,−1,j = −vx,1,j ,

vx,−2,j = −vx,2,j ,

vy,−1,j = −vy,1,j ,

vy,−2,j = −vy,2,j . (2.79)

The velocities at the origin are forced to be equal to zero,

vx,0,j = vy,0,j = 0.0. (2.80)

Draft of 3:35 pm, Monday, June 16, 2014 28

For the logically right, or outer radial boundary the following boundary conditions

are applied,

vx,n+1,j = vx,n−1,j ,

vx,n+2,j = vx,n−2,j ,

vy,n+1,j = vy,n−1,j ,

vy,n+2,j = vy,n−2,j , (2.81)

whilst velocities on the outer radial limit are calculated normally, using the values

from other boundary conditions to calculate forces.

Grid positions are done in a similar, consistent manner. Firstly the points on the

inner radial boundary are forced to remain at the origin,

x0,j = y0,j = 0.0 (2.82)

Positions on the inner radial boundary are given as,

x−1,j = −x1,j ,

x−2,j = −x2,j ,

y−1,j = −y1,j ,

y−2,j = −y2,j . (2.83)

Positions on the outer radial boundary are updated according to the respective

velocity values, whilst beyond this the positions are given by,

xn+1,j = 2xn,j − xn−1,j ,

xn+2,j = 2xn,j − xn−2,j ,

yn+1,j = 2yn,j − yn−1,j ,

yn+2,j = 2yn,j − yn−2,j . (2.84)

For the logically up boundary the positions are given as,

xi,n+1 = −xi,n−1,

xi,n+2 = −xi,n−2,

yi,n+1 = yi,n−1,

yi,n+2 = yi,n−2, (2.85)

Draft of 3:35 pm, Monday, June 16, 2014 29

whilst enforcing xi,n = 0.0 and allowing yi,n to update according the velocity in that

position. The positions for the logically lower boundary are given by,

xi,−1 = xi,1,

xi,−2 = xi,2,

yi,−1 = −yi,1,

yi,−2 = −yi,2, (2.86)

whilst enforcing yi,0 = 0.0 and updating xi,0 according to the velocity in that posi-

tion.

Finally, using periodic boundary conditions it is possible to model an entire (infi-

nite) cylinder, by linking the logically upper and lower boundaries. The method

for this remains the same as for periodic boundary conditions on a standard grid,

except the positions are now given by,

xi,−1 = xi,1,

xi,−2 = xi,2,

yi,−1 = yi,1,

yi,−2 = yi,2, (2.87)

and,

xi,n+1 = xi,n−1,

xi,n+2 = xi,n−2,

yi,n+1 = yi,n−1,

yi,n+2 = yi,n−2, (2.88)

whilst enforcing,

xi,0 = xi,n, (2.89)

and,

yi,0 = yi,n. (2.90)

Chapter 3

Shock Viscosity

3.1 Introduction

In an ideal fluid a shock is a discontinuous jump in velocity, density and pressure.

However in a non-ideal fluid dissipative effects act to smear the discontinuity over a

finite distance. In numerical modelling shock viscosity acts in a dissipative manner

to enable the numerical study of situations involving such phenomena. Early shock

viscosities acted as a scalar pressure added only in cells which were judged to contain

a shock. As such the momentum equation is modified to,

ρ
D~v

Dt
= −∇ (P +Q) , (3.1)

where Q is the shock viscosity. Von Neumann and Richtmeyer [14] were the first

to introduce such a concept whilst modelling the propagation of shocks in a one-

dimensional, inviscid fluid. Often referred to as the quadratic viscosity term it had

a general form of,

Qquad = c2qρ (∆x)2
(
∂~v

∂x

)2

, (3.2)

where ∆x is the width of the cell in question, and cq is a dimensionless constant

used to control the magnitude of the shock viscosity, which was set to zero when the

velocity gradient was greater than or equal to zero (when the cell was expanding).

Landshoff [15] introduced what is known as a linear viscosity term,

Qlinear = clρ∆xCs

∣∣∣∣∂~v∂x
∣∣∣∣ , (3.3)

where here Cs is the local sound speed and cl is another dimensionless constant

used to control the magnitude of the linear shock viscosity. He recommended a

30

Draft of 3:35 pm, Monday, June 16, 2014 31

combination of the two terms,

QTot = QLinear +QQuad. (3.4)

The size of these constants remained arbitrary and problem dependent (although

both must be positive during compression, and set to zero in expansion), until the

work of Kuropatenko [16], later repeated by Wilkins [17]. Kuropatenko considered

the Hugoniot relations and using an ideal gas equation of state derived an expression

for the pressure jump across a shock:

P1 − P0 =
γ + 1

4
ρ0 (∆v)2 + ρ0 |∆v|

[(
γ + 1

4

)2

(∆v)2 + C2
s,0

]1/2
. (3.5)

What is evident here is that the early a posteriori efforts of Von Neumann and

Richtmeyer, and Landschoff, were acting to try and fulfil the requirements of shock

physics; the early artificial (shock) viscosities were acting to provide a pressure jump

across the shock. The pressure jump provided by (3.5) is of the form of (3.4), a

combination of linear and quadratic forms. Kuropatenko also noted that in the limit

of small and large (∆v)2, relative to Cs,0, linear and quadratic terms like (3.2) and

(3.3) respectively are recovered. The pressure jump given by (3.5) shall be used in

the definition of shock viscosities and will be denoted,

qkur =
γ + 1

4
ρ0 (∆v)2 + ρ0 |∆v|

[(
γ + 1

4

)2

(∆v)2 + C2
s,0

]1/2
. (3.6)

3.2 Edge Based Shock Viscosity

Odin contains two (optional) types of shock viscosity, the first of which is the edge

based shock viscosity developed by Caramana et al [18]. Following the methodology

of Schulz [8], Caramana et al [18] set out a number of physical qualities that are

desirable for a shock viscosity to possess. It is this set that shall be considered in

this work.

3.2.1 Requirements of Shock Viscosity

The five requirements of shock viscosity outlined by Caramana, and now used as a

standard set are,

1. Dissipativity

Draft of 3:35 pm, Monday, June 16, 2014 32

2. Galilean Invariance

3. Self-similar motion Invariance

4. Wave front Invariance

5. Viscous Force Continuity

Dissipativity is simply the requirement that the shock viscosity must always act to

decrease kinetic energy and thus increase internal energy. This will sometimes be

referred to as the viscous heating requirement. Shock viscosity in Odin is imple-

mented within the compatible framework, so the sum of the viscous contributions

to the change in internal energy must always be positive.

The remaining four requirements are all in some way connected to the identifica-

tion of regions where the shock viscosity should act. In previous discussions the

dimensionality of the problem has been limited to one, and thus identifying a shock

has been limited to considering the (one dimensional) velocity gradient. When the

velocity gradient across the cell is negative the cell is being compressed and the

viscosity switches on, in regions of a positive gradient the viscosity is switched off.

Galilean invariance requires that the shock viscosity vanishes smoothly as the ve-

locity becomes constant. Put more simply the viscosity must not change under the

addition of a uniform velocity field. Such a requirement was also used by Schulz.

Self similar motion invariance requires the viscosity to not act in cells undergoing

rigid rotation or uniform contraction. This condition is actually split into two condi-

tions in Schulz’s work. Uniform contraction (or expansion) over the entire medium

is considered a reversible process. Most importantly (regardless of discussions of

entropy change) shock viscosity should only account for shock heating, so a shock

viscosity should be independent of such motion. Rigid rotation was Shultz’s fourth

requirement, and in fact was not fulfilled by his work. He linked this to his failure

to conserve angular momentum. Such a motion is not a shock, and shock viscosity

should not respond to it. Both rigid rotation and uniform contraction are considered

jointly under the self similar motion invariance requirement.

Wave front invariance simply requires that the shock viscosity has no effect along a

line of constant phase. Finally viscous force continuity requires that viscous forces

go to zero and remain so in the transition from compression to expansion.

3.2.2 Definition of Edge Based Shock Viscosity

Edge based viscosity differs from the previous discussions in that, in conjunction

with the aforementioned requirements, it was directly postulated as a force, rather

Draft of 3:35 pm, Monday, June 16, 2014 33

than as a scalar which when acted upon by the gradient operator would become a

force. The form of the force is,

~fvisci = qkur × (1− ψ)
(
∆~vi · ~Si

)
∆̂~vi, (3.7)

on the condition that
(
∆~v · ~S

)
≤ 0 and zero otherwise. This condition needs ex-

panding upon. Within the compatible framework, [13], forces are calculated around

the median mesh of each node, and these forces are then used in place of a PdV

energy update. As each median mesh segment of the cell is in contact with two

nodal cells, to which it applies equal and opposite forces it is possible to re-write

the compatible internal energy update, (2.51),

M
Dei
Dt

= −
4∑
i=1

~f ′i · ~∆v. (3.8)

Here ~f ′i = Pz ~Si is the force associated with median mesh segment i, and ~∆v is

the velocity difference along the cell edge to which the median mesh segment is

connected so that,

~∆vi = ~vi − ~vi+1. (3.9)

The definition is cyclical around the cell so that,

~∆v4 = ~v4 − ~v1. (3.10)

As the compatible energy update is used in terms of a PdV work, what (3.8) yields

is a compatible calculation of the change of volume of the cell,

dV =

4∑
i=1

~Si · ~∆vidt. (3.11)

This is the motivation for the dot product which triggers the shock viscosity of

(3.7). The change in cell volume has been decomposed in terms of the four primary

mesh cell edge contributions. It has already been stated that shock viscosity should

act in areas of compression, and (3.11) has provided compression switches for each

edge. Explicitly, when any of the four components of (3.11) are negative the edge

in question is acting to reduce to volume of the cell and the viscosity along this

edge should switch on, hence the concept of edge based viscosity. Thus numerically

compression and expansion along an edge are defined.

Although this adequately defines a force, it is a force associated with an edge. In

Draft of 3:35 pm, Monday, June 16, 2014 34

fact it is illustrative to follow the method of [18] and visualise these forces as been

associated with the triangles formed by the edges and cell midpoint. Each edge

force acts as an equal and opposite force on each of it’s nodes in order to oppose

the compression of the edge.

The compatible methodology requires that forces are defined in terms of corner

forces. In combining the edge based viscous force with the compatible method

Caramana used the viscous heating requirement in conjunction with the fact that

that ~f ∼ −∆̂~v. Thus to ensure that the heating term is positive, the rate of viscous

work was defined as ~fedge · − ~∆v and is thus positive definite. In Odin, to bring

edge viscosity fully in line with the compatible framework the viscous corner force

is coded as:
~f corner,ivisc = −~f i−1visc + ~f ivisc. (3.12)

This has the same total effect as the original formulation, but is now explicitly

defined in terms of corner force contributions. This force re-distribution is the

reverse method used to decompose PdV work in terms of median mesh contributions,

and has the effect that the heating from edge viscosity can be written in the form,

M
Dei
Dt

∣∣∣∣
visc

= −
∑
i

~f corner,ivisc · ~vi. (3.13)

3.2.3 Viscosity Limiters

In (3.7) ψ is used but not defined, it is the viscosity limiter. The purpose of the

limiter function in one dimension is to act to turn off the viscosity where the second

derivative of the velocity is zero, but without a direct calculation of the second

derivative. This will fulfil the self similar motion requirement of the shock viscosity.

In multiple dimensions Caramana showed that for a correct choice of viscosity limiter

the third and fourth requirements outlined for shock viscosity are fulfilled. The

limiter function for an edge, i, is defined as:

ψi = max [0,min (0.5 (rl,i + rr,i) , 2rl,i, 2rr,i, 1)] , (3.14)

where rr,i and rl,i are right and left velocity ratios, defined as:

rl,i =
∆ ~vi+1 · ~̂∆vi
∆ ~xi+1 · ~̂xi

/
|∆~vi|
|∆~xi|

, (3.15)

Draft of 3:35 pm, Monday, June 16, 2014 35

and,

rr,i =
∆ ~vi−1 · ~̂∆vi
∆ ~xi−1 · ~̂xi

/
|∆~vi|
|∆~xi|

. (3.16)

There are similar formulae for all edges. It is worth noting the suggestion from

Caramana that should the effective edge CFL-like condition |∆~vi|
|∆~xi|∆t be less than

round off the both of the edge ratios should be set to unity, thus turning off the

shock viscosity and reducing numerical noise.

3.3 Time step limiting in Conjunction with Shock Vis-

cosity

The preceding section provides enough information to construct a shock viscosity

and how to implement it within a finite volume compatible hydrodynamics scheme.

However one subtle part, which is often overlooked remains unconsidered. As the

shock viscosity alters the equations of the system it’s clear that it should also alter

the stable time step calculation of the system, however there has been little consensus

over the exact manner of the alteration. All methods define a generalised sound

speed, based upon the combination of thermodynamic pressure and an equation of

state with (possibly part of) the shock viscosity. One such method [11]is:

C2
s,gen. = C2

s,0 +
2Q

ρ
. (3.17)

Where Cs,0 is the normal equation of state based sound speed, and Q is some scalar

part of the shock viscosity. In the original paper outlining edge based viscosity

Caramana mentioned the use of a generalised sound speed, but not it’s exact form.

However in a later paper [19] where a vorticity damping term is added to the original

edge based viscosity the authors review the method, and although a simplified ver-

sion of the edge viscosity is presented by comparison of that with (3.7) an equivalent

generalised sound speed may be derived:

Cs,gen. =
(
C2
s,0 + C2

q,edge

)(1/2)
, (3.18)

where,

C2
q,edge =

qkur
ρ

(1− ψ) . (3.19)

This gives a generalised sound speed for each edge, and the most restrictive gener-

alised sound speed for each cell is used to calculate a stable time step.

In fact, a number of other (published) options (e.g. [20])for controlling the time step

Draft of 3:35 pm, Monday, June 16, 2014 36

in the presence of shock viscosity exist, so it is useful to examine the problem more

explicitly in the limiting case of cold (zero internal energy) shock compression. As

a number of standard test cases for shock viscosity have the initial condition of zero

internal energy, this is a relevant case to consider.

3.3.1 Cold Compression of a single cell

Consider a simplified test case on a uniform grid, density is set to unity everywhere

and internal energy zero. As previously mentioned this is not dissimilar to a number

of standard test cases. Without loss of generality we can assume the cell under

consideration is undergoing compression due to the motion of just one of its edges.

In the more general case the motion would be considered on an edge by edge basis,

and similar to before the most restrictive ∆t would be used. Let us further assume

that the shock viscosity in use is that of (or similar to) the edge based viscosity

previously defined. However it is useful to rewrite it as,

~f = −qKur
|∆~v|

(1− ψ)
(
~∆vi · ~Si

)
~̂∆v. (3.20)

This can be written in a more simple form,

~f = −k∆~v, (3.21)

where,

k =
qKur
|∆~v|

(1− ψ)
(
∆~v · ~S

)
. (3.22)

Assuming the edge being compressed is that defined by nodes 2 and 3, and using

(3.8)the rate of work on the cell is given by,

W = k
(
~∆v2

)2
= k (~v2 − ~v3)

2 . (3.23)

Clearly, this is positive definite. However, like in many other codes Odin only

calculates the viscous force at the start of the time step, or the predictor level. So

in the fully (both time and space) discretised situation the true rate of work is,

W = k ~∆vn2 ·
~

∆v
n+1/2
2 . (3.24)

This is positive if and only if,

SIGN
(
~∆vn2

)
= SIGN

(
~

∆v
n+1/2
2

)
. (3.25)

Draft of 3:35 pm, Monday, June 16, 2014 37

In the limit of zero internal energy, we can rewrite the half time step velocity jump us-

ing the masses associated with the nodes in question, and the viscous forces present:

~
∆v

n+1/2
2 = ~vn2 −

k∆t ~∆vn2
2M2

− ~vn3 −
k∆t ~∆vn2

2M3
, (3.26)

but in a uniform grid and density set up M2 = M3 = ρ∆x∆y and (3.26) can be

rewritten as,

∆v
n+1/2
2

∆vn2
=

(
1− k∆t

M2

)
. (3.27)

In this final step the vector notation on the velocity jumps as been dropped. In

a one dimensional case this step is trivial, in a multidimensional case a coordinate

by coordinate sweep/combination would be necessary to carry out this time step

consideration. Due to (3.25) the left hand side of (3.27) is required to be positive.

k can be rewritten in a slightly different form:

k =
qKur
|∆v|

(1− ψ) |~S|
(
∆v̂ · Ŝ

)
. (3.28)

For this simple case the dot product evaluates to one. For other cases it may be

smaller, but as shall be shown the case where it evaluates to unity provides the most

stringent limit on the time step. Define,

k′ = k
∆x

2
, (3.29)

and enforcing the right hand side of (3.27) to be positive yields

∆t <
2ρ∆y

k′
, (3.30)

This provides a constraint on ∆t based on the requirement of viscous heating in a

predictor corrector scheme. In the limit of zero energy it is easy to compare (3.17)

and (3.30). In order to ensure the viscous heating is positive, (3.17) shows the

requirement is,

2ρ|∆~v|
qKur (1− ψ)

>

(
ρ

2qKur (1− ψ)

)1/2

. (3.31)

In the limit of zero internal energy qKur as the simple form,

qKur = ρ |∆~v|2
(
γ + 1

2

)1/2

|∆~v| . (3.32)

Draft of 3:35 pm, Monday, June 16, 2014 38

The requirement that (3.17) is more stringent than the viscous heating requirement

is,

2ρ |∆v|
qKur (1− ψ)

>

(
ρ

2qKur (1− ψ)

)1/2

, (3.33)

or simplifying,

|∆~v| > 1

2
√

2

(
qKur (1− ψ)

ρ

)1/2

. (3.34)

Given the simplified form of qKur in the zero internal energy limit, this reduces to,

|∆~v| > |∆~v| 1

2
√

2

(
γ + 1

2

)1/2

(1− ψ) , (3.35)

or,

1 >
1

2
√

2

(
γ + 1

2

)1/2

(1− ψ) . (3.36)

Clearly (as γ ≤ 3) (3.17) fulfils the viscous heating requirement.

This calculation lead to (3.17) being implemented in Odin with all types of shock

viscosity, despite it being contrary to the original authors of edge based viscosity.

The above example is only that, it is not a stability calculation, but a limitation

on edge viscosity based on the ideal characteristics of shock viscosity as previously

quoted. It’s extension to two dimensions and a non-uniform grid is possible and

gives a similar result. In practice Odin uses a CFL number of 0.75, and takes the

most restrictive combination of grid spacing and viscosity magnitudes.

3.4 Edge Viscosity Results

3.4.1 Sod’s Shock Tube Problem

A very simple test of a shock viscosity is Sod’s shock tube problem [21], the initial

conditions for which are given by,

(ρ, ei) =

(1, 2.5) if x < 0.5

(0.125, 2) if x > 0.5

~v = 0.0

(3.37)

With an ideal gas equation of state, γ = 1.4 this corresponds to a pressure ratio

of 10 between the left and righthand states. The problem was run with nx = 100,

until t=0.15.

Draft of 3:35 pm, Monday, June 16, 2014 39

Figure 3.1: Results obtained for Sod’s shock tube problem using edge based viscosity.
The analytical solution is shown as a solid line, whilst the results obtained are shown
as crosses.

Draft of 3:35 pm, Monday, June 16, 2014 40

3.4.2 Saltzman’s Piston Problem

Saltzman’s piston problem [22] is a one dimensional problem, run on a two dimen-

sional grid. The problem consists of a piston moving in the positive x-direction with

a speed of 1.0 with respect to the gas, compressing an initially cold (zero internal

energy), unit density ideal gas, with γ = 5.0/3.0. The initial grid is perturbed by

a sinusoidal perturbation, and is shown in figure 3.2. The problem was run until

Figure 3.2: Initial grid for Saltzman’s piston problem

t=0.8 in pure Lagrangian mode, at which point the shock wave launched by the

pistons motion has bounced off the far wall. The analytic solution is a density of 4.0

in the singly shocked region, and 10.0 in the twice shocked region. Any deviations

from a one dimensional solution show effects of the grid on the core solver. The

grid for Saltzman’s piston problem at t = 0.8 is shown in figure 3.3. The density

is shown by both a contour plot, figure 3.4 and a scatter plot, figure 3.5. Some

loss of symmetry is apparent in the contour plot, and examining the scatter plot

highlights both a wall heating error near the piston, as well as significant overshoot

at the shock front. The grid is also beginning to tangle, a problem which causes the

time-step to collapse shortly after t = 0.8.

Draft of 3:35 pm, Monday, June 16, 2014 41

Figure 3.3: Density contour plot for Saltzman’s piston problem at t=0.8 using edge
viscosity.

Figure 3.4: Grid for Saltzman’s piston problem at t=0.8 using edge viscosity.

Draft of 3:35 pm, Monday, June 16, 2014 42

Figure 3.5: Density scatter plot for Saltzman’s piston problem at t=0.8 using edge
viscosity.

3.4.3 Noh’s Problem

Noh’s problem [23] in Cartesian coordinates consists of a cold (ei = 0) cylinder of

unit density, and initial velocity field of magnitude one, pointed inwards radially

everywhere. At t = 0 a shock wave forms at the origin and moves outwards. The

problem has a simple analytic solution and is a good test of a codes ability to handle

spherical shock waves. The problem was run on two different grids. The first is a

polar grid, with angular spacing of ∆θ = π/20, and radial spacing of ∆r = 0.02. At

t = 0.6 the shock should have reached r = 0.2.

As can be seen from figure 3.6 for a polar grid the edge based viscosity is successful

at obtaining the analytic solution. The undershoot of the density at the origin is

caused by the well known wall heating problem. The shock front is found to be in

the correct position, and only spread out across 2/3 zones.

The same problem was rerun on a Cartesian mesh, with ∆x = ∆y = 0.02, again

using edge based viscosity. Some loss of symmetry is apparent in figure 3.7, with

jet like structures appearing along the axis. This is coupled with the grid distortion

along both axes apparent in figure 3.8.

The loss of symmetry is most apparent when considering figure 3.9, as well as some

overshoot at the shock front.

Draft of 3:35 pm, Monday, June 16, 2014 43

Figure 3.6: Results for Noh’s problem run on a polar grid with edge based viscosity.
Analytic solution is shown as a solid line, and results marked with crosses.

Figure 3.7: Density contour plot for Noh’s problem run on a Cartesian grid with
edge based shock viscosity.

Draft of 3:35 pm, Monday, June 16, 2014 44

Figure 3.8: Grid for Noh’s problem run with edge based shock viscosity on an
initially Cartesian grid.

The results of these tests of the edge based viscosity show that whilst the method is

capable of capturing shocks across a small number of zones it has problems when the

grid is not aligned with with flow, and when run with a problem with significant grid

distortion appears (especially in the case of Saltzman’s piston problem) to increase

the grid distortion, which has obvious problems for Lagrangian simulations, as such

an improved shock viscosity was sought.

3.5 Tensor Shock Viscosity

The edge viscosity developed by Caramana et al. whilst not a scalar pressure term

is not a true tensor viscosity. Whilst it is considered to be the force resulting from

a postulated tensor, that tensor is never properly defined in a continuous sense.

Taking the example of Noh’s problem, on a polar grid the edge viscosity produces

good results, however when using a Cartesian grid, large scale jets occur along the

axes. This is a result of the edge viscosities dependence on the grid, due to the

method of development. The force was developed with conditions, and implicitly

a grid, in mind. Campbell and Shashkov first put this observation forward, and

sought to improve on edge based results by devising a proper tensor viscosity, whilst

Draft of 3:35 pm, Monday, June 16, 2014 45

Figure 3.9: Scatter plot of density against radius for Noh’s problem run with edge
based shock viscosity.

keeping the same previously outlined qualities as edge viscosity. This is the second

viscosity available in Odin .

3.5.1 Continuous Form of Shock Viscosity

Campbell and Shashkov [24] define a continuous form of shock viscosity in terms of

the gradient of the velocity tensor, G = ∇~v and a scalar coefficient, µ;

Q = µGT , (3.38)

where Gij = ∂vi/∂xj . Inclusion of a viscous stress tensor, τ in the equations of

motion for a compressible fluid (Navier-Stokes, neglecting heat conduction) yields,

ρ
Dui
Dt

= − ∂

∂xj
[Pδij + τji] , (3.39)

and,

ρ
De

Dt
= −P∇ · ~u+

∂

∂xj
[uiτij] . (3.40)

Draft of 3:35 pm, Monday, June 16, 2014 46

Using the viscous tensor given by (3.38) and neglecting pressure yields,

ρ
D~u

Dt
= ∇ ·QT = ∇ · (µG) , (3.41)

and,

ρ
De

Dt
= QijGji = µGijGij . (3.42)

Briefly reviewing the requirements of shock viscosity, consideration of (3.42) shows

that to fulfil the viscous heating requirement, µ ≥ 0. Galilean invariance requires

that µ is Galilean invariant, due to the tensor forms already fulfilling this require-

ment.

The viscous force continuity requirement is two-fold. Firstly µ must be equal to

zero in expansion. Previously edge viscosity used a switch of the form ~Si · ~∆vi as a

compression switch, but for the tensor viscosity an obvious choice is the divergence

of the velocity. The edge viscosity uses the fact that this switch multiplies all other

terms in order to fulfil the requirement that the force goes to zero smoothly. In

order to fulfil this requirement using µ, would require the loss of the linear viscosity

term. However with a quadratic only viscosity oscillations form behind the shock

wave. As such viscous force continuity is not fully satisfied in order to remove these

oscillations.

Self similar motion invariance is satisfied by viscosity limiters in an analogous way to

edge viscosity, although they are defined in a slightly different manner, as explained

in subsection 3.5.4. Finally, wavefront invariance is inherited by the tensor nature

of the viscosity. Considering the case for two dimensional cylindrical coordinates,

ρar =
∂Qrr
∂r

+
1

r

∂Qθr
∂θ

+
1

r
(Qrr −Qθθ) , (3.43)

and,

ρaθ =
∂Qrθ
∂r

+
1

r

∂Qθθ
∂θ

+
1

r
(Qrθ −Qθr) , (3.44)

where ar and aθ are accelerations in the radial and angular direction respectively.

For purely radial flow, vθ = 0 and ∂vr/∂θ = 0, the only non-zero components of Q

are the diagonal elements,

Qrr = µ
∂vr
∂r

, (3.45)

and,

Qθθ = µ
vr
r
. (3.46)

Draft of 3:35 pm, Monday, June 16, 2014 47

As such, the two acceleration components are,

ρar =
∂

∂r

(
µ
∂vr
∂r

)
+
µ

r

(
∂vr
∂r
− vr

r

)
, (3.47)

and,

ρaθ = 0, (3.48)

as required.

3.5.2 Tensor Viscosity in a general Curvilinear system

In order to derive a discrete form of the continuous tensor viscosity it is necessary

to consider the case in a general curvilinear system. The reason for this is that

as the two connecting edges of a cell can never be parallel, and are thus linearly

independent, they always represent the basis vectors of a curvilinear system. By

considering the tensor viscosity in such a system, the continuous form of a proper

tensor viscosity in the frame of reference of the cell is developed in terms of the

(known) local Cartesian velocity field.

Using two edges as basis vectors the gradient of the velocity tensor is rewritten

in terms of two vectors, formed by taking the dot product of the tensor with the

unit basis vector. These two basis vectors in a general coordinate system,(ξ, η) are

defined as,

~eξ =

(
∂x
∂ξ
∂y
∂ξ

)
, (3.49)

and,

~eη =

(
∂x
∂η
∂y
∂η

)
. (3.50)

In a general coordinate system a (rank 2) tensor may be represented by the two

vectors formed by contracting the tensor with each of the two basis vectors. These

resulting vectors are given by,

Gξi = Gi,j êξ,j , (3.51)

and,

Gηi = Gi,j êη,j . (3.52)

Components of the metric tensor are constructed as the relevant dot products of

basis vectors,

gξξ = ~eξ · ~eξ, gηη = ~eη · ~eη, gηξ = gξη = ~eξ · ~eη. (3.53)

Draft of 3:35 pm, Monday, June 16, 2014 48

It will be useful to calculate the determinant of the metric tensor,

|g| = gξξgηη − gξηgηξ

=

[(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2
][(

∂x

∂η

)2

+

(
∂y

∂η

)2
]

−
[
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η

]2
=

(
∂x

∂ξ

)2(∂y
∂η

)2

+

(
∂y

∂ξ

)2(∂x
∂η

)2

− 2

(
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

)
(3.54)

Rewriting the vectors defined by (3.51) and (3.52),

Gξ =
1
√
gξξ

(
∂vx
∂ξ
∂vy
∂ξ

)
=

(
Gξx

Gξy

)
, (3.55)

and,

Gη =
1
√
gηη

(
∂vx
∂η
∂vy
∂η

)
=

(
Gηx

Gηy

)
. (3.56)

Combining and reordering the two systems represented by (3.55) and (3.56) yield

the full system, 
∂x
∂ξ

∂y
∂ξ 0 0

∂x
∂η

∂y
∂η 0 0

0 0 ∂x
∂ξ

∂y
∂ξ

0 0 ∂x
∂η

∂y
∂η



∂vx
∂x
∂vx
∂y
∂vy
∂x
∂vy
∂y

 =


√
gξξG

ξx

√
gηηG

ηx

√
gξξG

ξy

√
gηηG

ηy

 (3.57)

The matrix on the left hand side of (3.57) can be block inverted. By noting that[
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

]2
= |g|, (3.58)

where the term in the square brackets in (3.58) is the determinant used in block in-

verting the matrix in (3.57), the following expressions for the Cartesian components

of G are obtained in terms of the projections:

Gxx =

√
gξξ√
|g|

∂y

∂η
Gξx =

√
gηη√
|g|

∂y

∂ξ
Gηx, (3.59)

Gxy =

√
gηη√
|g|

∂x

∂ξ
Gηx =

√
gξξ√
|g|
∂x

∂η
Gξx, (3.60)

Draft of 3:35 pm, Monday, June 16, 2014 49

Gyx =

√
gξξ√
|g|

∂y

∂η
Gξy =

√
gηη√
|g|

∂y

∂ξ
Gηy, (3.61)

and,

Gyy =

√
gηη√
|g|

∂x

∂ξ
Gηy =

√
gξξ√
|g|
∂x

∂η
Gξy. (3.62)

It is now possible to derive a form for the divergence of the tensor in terms of these

projections, using the following identity,∫
V
∇~u : Tdv =

∮
∂V
~u · (T · ~n) ds−

∫
V
~u · (∇ · T) dv, (3.63)

where G : T represents the contraction GijTij and the concept of a generalised dot

product from the previous chapter where T · ~n representing the contraction Tijnj

has been retained. Using (3.59) - (3.62) to rewrite the contraction on the right hand

side of (3.63) gives,

G : T = Gξ ·
[
T ξ
gξξgηη
|g|

− T η
gξη
|g|
√
gξξ
√
gηη

]
+Gη ·

[
T η
gξξgηη
|g|

− T ξ
gξη
|g|
√
gξξ
√
gηη

]
.

(3.64)

Finally using,
gξξgηη
|g|

=
1

sin2θ
,

gξη√
gξξ
√
gηη

= cosθ, (3.65)

where θ is the angle between the two edges used to construct the basis vectors. As

such the left hand side of (3.63) can be written,∫ ∫
∇~u : T

√
|g|dξdη

=

∫ ∫ (
∂~u

∂ξ
·
[
T ξ − cosθT η
√
gξξsin2θ

]
+
∂~u

∂η
·
[
T η − cosθT ξ
√
gηηsin2θ

])√
|g|dξdη. (3.66)

Integrating by parts, and neglecting the term that is equal to the surface integral in

(3.63) yields,∫ ∫
~u · (∇ · T)

√
|g|dξdη

=

∫ ∫ (
~u · ∂

∂ξ

[√
|g|T

ξ − cosθT η
√
gξξsin2θ

]
+ ~u · ∂

∂η

[√
|g|T

η − cosθT ξ
√
gηηsin2θ

])
dξdη.

(3.67)

Draft of 3:35 pm, Monday, June 16, 2014 50

The final expression for the divergence of a tensor is a general curvilinear system is,

∇ · T =
∂

∂ξ

[√
|g|T

ξ − cosθT η
√
gξξsin2θ

]
+

∂

∂η

[√
|g|T

η − cosθT ξ
√
gηηsin2θ

]
. (3.68)

3.5.3 Discrete form of Tensor Viscosity

The vectors defined by (3.55) and (3.56) in discrete form are calculated as projections

of the tensor ∇~v on cell edges, so that the projection onto edge p+ 1/2 is,

Gep+1/2 =
~vp+1 − ~vp
lp+1/2

, (3.69)

where lp+1/2 is the length of the cell edge. The support operator method [25],[26]

first defines a prime operator and derives other operators from it. Shashkov and

Campbell use the vector gradient as the prime operator and derive from it the diver-

gence of a tensor. To do this a discrete form of (3.63) is used, and “for simplicity”

the surface integral term is assumed to equal zero. This point will be returned to.

This means that the divergence is the negative adjoint of the gradient,

(div) = −(grad)∗, (3.70)

or writing (3.63) in discrete form neglecting the surface integral terms,∑
z

(G,T)z Vz = −
∑
p

(
~v, ~DIV T

)
p
Vp, (3.71)

where (,) represents a scalar product. The discrete form of the tensor product

on the left hand side of (3.71), defined in it’s continuous form by (3.64) is,

(G,T)z =
∑
p∈S(z)

W z
p

sin2θzp

(
Gep−1/2 · T

e
p−1/2 +Gep+1/2 · T

e
p+1/2

+cosθzp

[
Gep−1/2 · T

e
p+1/2 +Gep+1/2 · T

e
p−1/2

])
. (3.72)

The sign of the cosine has changed due to the convention adopted by Shashkov and

Campbell [24]. The terms W z
p are weights satisfying the following conditions,

W z
p ≥ 0,

∑
p∈S(z)

W z
p = 1. (3.73)

Campbell and Shashkov [24] defined the weights as half of the area of the triangle

containing the angle θzp divided by the volume of the zone. Inserting (3.72) into

Draft of 3:35 pm, Monday, June 16, 2014 51

(3.71) and collecting terms of ~vp gives,

−
∑
p

(
~v, ~DIV T

)
p
Vp =

∑
z

∑
p∈S(z)

~vp ·

(
W z
p

sin2θzp

{
T ep−1/2

lp−1/2
−
T ep+1/2

lp+1/2
+ cosθzp

[
T ep+1/2

lp−1/2
−
T ep+1/2

lp+1/2

]}
W z
p−1

sin2θzp−1

{
T ep−1/2

lp−1/2
+ cosθzp−1

T ep−3/2

lp−1/2

}
−

W z
p+1

sin2θzp+1

{
T ep+1/2

lp+1/2
+ cosθzp+1

T ep+3/2

lp+1/2

})
Vz.

(3.74)

This means that the expression for the divergence of a tensor at a point is,

(DIV T)p =
1

Vp

∑
z∈S(p)

Vz

[
1

lp+1/2

{
W p+1
z

sin2 θp+1
z

(
T ep+1/2 + cos θp+1

z T ep+3/2

)}

+
1

lp+1/2

{
W p
z

sin θpz

(
T ep+1/2 + cos θpzT

e
p−1/2

)}
− 1

lp−1/2

{
W p
z

sin2 θpz

(
T ep−1/2 + cos θpzT

e
p+1/2

)}
− 1

lp−1/2

{
W p−1
z

sin2 θp−1z

(
T ep−1/2 + cos θp−1z T ep−3/2

)}]
. (3.75)

Returning to the assumption of the surface integral in (3.67) equalling zero it is

worth nothing that the discrete forms of (3.41) and (3.42) are,

mp
D~vp
Dt

= Vp (DIVQ)p =
∑
z∈S(p)

~fpz , (3.76)

and

Mz
Dez
Dt

= Vz (Q,G)z = −
∑
p∈S(z)

~fzp · ~vp. (3.77)

Clearly (3.71) (and the association assumption that the surface integral is zero) is

in fact a statement of energy conservation in the discrete system.

The final step is to define the scalar coefficient of the tensor viscosity. In order

to satisfy dissipativity (see also, subsection 4.4.1) the scalar coefficient must be

constant in a corner volume. Analogously to the edge viscosity the Kurapatenko

pressure jump is used as a basis, and after dimensional considerations is multiplied by

a length scale specific to the corner volume. For the velocity jump the divergence of

the velocity is calculated for each subzone, and multiplied by a characteristic length

Draft of 3:35 pm, Monday, June 16, 2014 52

scale. These two length scales are equal to,

lpz = min(lp+1/2, lp−1/2), (3.78)

the minimum of the lengths of the two cell edges connected to the subzone.

The choice of the velocity divergence as the basis for the velocity jump provides a

compression switch for each viscous corner force, and has the added advantage that

it will also act to suppress hourglass modes (see also, chapter 5), which change the

volume of the subzone, but not the zone itself.

3.5.4 Velocity Limiters for Tensor Viscosity

The natural choice for constructing the limiters for tensor viscosity would be the

subzonal volume changes calculated for the viscosity coefficients. This, as pointed

out by Caramana and Shashkov [24] will give incorrect results, due to the fact that

three of the four velocities used to calculate this quantity are interpolated. This

error is most obvious when considering the one dimensional case, where a shock is

moving aligned with the grid. Corner based limiters would turn off the viscosity for

corners on the upstream side of the zone as a shock wave passes through, which is

incorrect. Instead limiters based on the change of volume associated with each edge

are used. This volume is defined by four points, the two nodes of the edge being

considered, and the centre points of the two adjacent zones. For each edge, four

ratios are constructed, the two previous ratios left and right, and two new ones, up

and down, where each direction is easily defined on a logical grid.

rl,k =
(∇ · ~v)l
(∇ · ~v)k

, rr,k =
(∇ · ~v)r
(∇ · ~v)k

(3.79)

ru,k =
(∇ · ~v)u
(∇ · ~v)k

, rd,k =
(∇ · ~v)d
(∇ · ~v)k

. (3.80)

These four ratios give rise to two different limiter functions for each edge, and the

minimum of these is taken to be the final edge limiter function,

ψk = min(ψ1, ψ2), (3.81)

Draft of 3:35 pm, Monday, June 16, 2014 53

ψ1 = max [0,min (0.5 (rl,k + rr,k) , 2rl,k, 2rr,k, 1)]

(3.82)

ψ2 = max [0,min (0.5 (ru,k + rd,k) , 2ru,k, 2rd,k, 1)]

(3.83)

A limiter function for the subzone is then constructed, being the minimum of the

two edge limiter functions connected to the subzone, so that

ψpz = min
(
ψp+1/2, ψp−1/2

)
. (3.84)

3.5.5 Final Form of Tensor Shock Viscosity

All that remains is to combine the previous subsections, to obtain the following

corner force representation of the tensor shock viscosity,

~fpz = Vz

[
1

lp+1/2

(
W p+1
z

sin2 θp+1
z

(
µp+1
z

~Gep+1/2 + cos θp+1
z µp+1

z
~Gep+3/2

))

+
1

lp+1/2

(
W p
z

sin2 θpz

(
µpz ~G

e
p+1/2 + cos θpzµ

p
z
~Gep−1/2

))
− 1

lp−1/2

(
W p
z

sin2 θpz

(
µpz ~G

e
p−1/2 + cos θpzµ

p
z
~Gep+1/2

))
− 1

lp−1/2

(
W p−1
z

sin2 θp−1z

(
µp−1z

~Gep−1/2 + cos θp−1z µp−1z
~Gep−3/2

))]
. (3.85)

To summarise here lp−1/2 is the length of side p−1/2, θpz is the interior angle of zone

z between edges p−1/2 and p+ 1/2. The weighting functions, W p
z is defined as half

the area of the triangle containing θpz divided by the cross sectional area of zone z.

The vectors, ~Gep+1/2 are defined by (3.69). Finally the scalars, µpz are defined as,

µpz = qpkur,zl
p
z (1− ψpz) , (3.86)

where qpkur,z is the Kurapatenko pressure jump for the subzone, calculated by using

|∇ · ~v| lpz as the subzonal velocity jump. The divergence of the velocity vector is

calculated using the divergence theorem. The length scale is defined using (3.78),

and the limiter functions, ψpz are defined in the previous subsection.

Draft of 3:35 pm, Monday, June 16, 2014 54

3.6 Tensor Shock Viscosity Results

3.6.1 Sod’s Shock Tube Problem

Sod’s shock tube problem was rerun with the tensor based viscosity. It is now worth

examining and comparing the two types of viscosity presented in the limiting case

of a one dimensional problem. For the edge viscosity the force in a one dimensional

problem on the node i is,

fedge = qkur (1− ψ) (vi+1 − vi)∆y. (3.87)

The force due to tensor shock viscosity is given by,

ftensor =
Vz

lp+1/2

(
vi+1 − vi
lp+1/2

(
W p+1
z µp+1

z +W p
z µ

p
z

))
. (3.88)

For the one dimensional case, the weights, W p
z are equal for fixed z, and given by,

W p
z =

lp+1/2lp−1/2

2Vz
. (3.89)

A second simplification can be made by noting that for a one dimensional problem

the scalar coefficients are equal for all subzones within a cell, and given by,

µpz = qkur (1− ψ) lmin, (3.90)

where lmin is the minimum of the two edge lengths of the cell. The tensor force is

therefore given by,

ftensor = qkur (1− ψ) lmin
∆y

∆x
. (3.91)

As discussed in [24] for a one dimensional case the limiter functions for each type

of viscosity are identical, thus the forces due to the two types of viscosity should

have the same form as long as lmin = ∆x. This condition should hold for all cells

undergoing compression for Sod’s problem, as long as the cells initially have aspect

ratio of unity. However the two methods differ in their calculation of qkur. Whilst the

tensor viscosity calculates qkur individually for each subzone, using subzonal density,

and zonal sound speed, the edge viscosity calculates it for each edge. This is done

by combining values for each point on the edge, which in turn uses values from each

of the four cells the node is attached to. Thus the edge viscosity contains additional

averaging which will change the magnitude of the force slightly. Comparing figure 3.1

and figure 3.10 there are small differences between the two sets of results, due to

Draft of 3:35 pm, Monday, June 16, 2014 55

Figure 3.10: Results obtained for Sod’s shock tube problem using tensor shock
viscosity. The analytical solution is shown as a solid line, whilst the results obtained
are shown as crosses.

Draft of 3:35 pm, Monday, June 16, 2014 56

the averaging procedure used by the edge viscosity.

3.6.2 Saltzman’s Piston Problem

Saltzman’s piston problem was also rerun using tensor based shock viscosity, with

the same original grid as for the edge based viscosity. Although the solution is one

dimensional, the grid is not, so this test represents a good chance to compare how

the grid will impact on the solution when using different shock viscosities. As

Figure 3.11: Density contour plot for Saltzman’s piston problem at t=0.8 using
tensor shock viscosity.

figure 3.11, figure 3.12 and figure 3.13 show the tensor shock viscosity maintains

the one dimensional aspect of the solution much more than the edge based shock

viscosity. There is also less grid distortion present. This enables the tensor viscos-

ity to run to later times than the edge based viscosity. Both schemes suffer from

similar amounts of the wall heating problem, this is to be expected as this is a one

dimensional problem, occurring at a point where the grid is still well aligned with

the flow.

3.6.3 Noh’s Problem

As with the edge viscosity Noh’s problem [23] was run with the tensor shock viscosity

on both a polar grid and a Cartesian grid. The resolutions remained the same as

Draft of 3:35 pm, Monday, June 16, 2014 57

Figure 3.12: Grid for Saltzman’s piston problem at t=0.8 using tensor shock viscos-
ity.

Figure 3.13: Density scatter plot for Saltzman’s piston problem at t=0.8 using tensor
shock viscosity.

Draft of 3:35 pm, Monday, June 16, 2014 58

the calculation for edge viscosity on a polar grid. When compared to the edge based

Figure 3.14: Results for Noh’s problem run on a polar grid with tensor viscosity.
Analytic solution is shown as a solid line, and results marked with crosses.

viscosity the tensor viscosity results are very similar. There is a reduction in the

error due to wall heating, but at the same time a slight ripple is observed in the

solution near the origin. The viscosities are now compared on the Cartesian grid.

Comparing contour plots of the edge based viscosity and tensor viscosity the first

point to note is some apparent structure along the π/4 line that is not apparent

when using edge based viscosity. However some reduction in the magnitude of the

features on the axes is apparent in the case of tensor viscosity. Considering now the

final grids for the two viscosities, tensor shock viscosity is the clear winner. The

grid tangling seen along the axes for the edge viscosity is almost completely avoided,

with only some slight tangling near the origin.

Some loss of symmetry is still apparent on the scatter plot for Noh’s problem

with the tensor shock viscosity, however the density is much more tightly packed

around the true solution, and the overshoot at the shock front has been significantly

reduced.

The results of these tests was that tensor viscosity is the preferred viscosity within

Odin, although both methods are implemented in the current version. Unless stated

otherwise the remaining plots in this thesis will use tensor shock viscosity.

Draft of 3:35 pm, Monday, June 16, 2014 59

Figure 3.15: Density contour plot for Noh’s problem run on a Cartesian grid with
tensor shock viscosity.

Figure 3.16: Grid for Noh’s problem run with tensor shock viscosity on an initially
Cartesian grid.

Draft of 3:35 pm, Monday, June 16, 2014 60

Figure 3.17: Scatter plot of density against radius for Noh’s problem run with tensor
shock viscosity.

3.6.4 Sedov Blast Problem

A final test problem to introduce is the Sedov blast wave problem [27]. In its

normal form, the Sedov problem consists of a uniform density stationary fluid, with

zero initial energy, except for the cell nearest the origin which has a high energy

value, e = 409.7 for Cartesian coordinates. However running this test problem on

a Cartesian mesh results in grid points piling up along the axis, and the time step

collapsing. This failure is illustrated by the grid in fig 3.18. However, it is possible

to run the problem with tensor shock viscosity on a polar mesh. In this variant of

the problem the inner annulus of cells are injected with energy, such that the total

energy in the initial conditions is the same so that the blast wave reaches r = 1.0

at t = 1.0. The results are shown in figure 3.19. Clearly it is desirable that such a

problem could also be run on a Cartesian grid. It is possible, but only by splitting

the hot cell at the centre into four cells. In order to run the original problem it

is necessary to either carry out a remap, or to introduce some other strategy to

mitigate grid motion, such as subzonal pressures, which will be described in a later

chapter, and used to successfully run Sedov’s problem on a Cartesian mesh.

Draft of 3:35 pm, Monday, June 16, 2014 61

Figure 3.18: Grid resulting from Sedov’s problem on a Cartesian grid.

3.7 Summary

Two types of shock viscosity have been described and implemented within Odin.

Whilst the edge based shock viscosity was successful at modelling shocks aligned

with the flow, difficulties occurred for problems where either the grid has been

perturbed from being aligned with the shock such as in Saltzman’s piston problem,

or in cases where the geometry of the mesh does not match the shock such as Noh’s

problem on a Cartesian mesh. The second variant of shock viscosity, tensor shock

viscosity was found to be an improved method for such cases, whilst not keeping

the quality of solution seen for edge based shock viscosity on simpler problems. For

this reason, it is referred to as being less grid dependent than the edge viscosity.

However as seen for the case of Sedov’s problem on a Cartesian mesh even the tensor

viscosity can still run into difficulties, and as such the need for either a strategy to

mitigate grid collapse, or an implementation of a remap phase has been made clear.

Both of these options shall be explored in future chapters.

Draft of 3:35 pm, Monday, June 16, 2014 62

Figure 3.19: Density contour plot for Sedov’s problem run on a polar grid with
tensor shock viscosity.

Chapter 4

Cylindrical Coordinates

4.1 Introduction

The previous chapters have implicitly assumed a two dimensional Cartesian geome-

try. Whilst first conceived as a cylindrical (rz) code, Odin was originally written in

Cartesian coordinates, before the necessary changes were made to enable it to run

in either xy, or rz coordinates. There are in fact two (main) options for construct-

ing a two dimensional cylindrical finite volume code, area weighted differencing,

(AWD), or control volume differencing (CVD), each with their own advantages and

disadvantages.

4.2 Control Volume Differencing

Control volume differencing, or volume weighted differencing (VWD), is the most

natural scheme to adopt. The forces, as with the Cartesian case, are calculated by

multiplying outward normal vectors, of magnitude equal to the surface area of the

face, with the pressure; essentially this means multiplying the Cartesian forces by

the average radial coordinate of the face. Volumes and masses are calculated in

the normal way for cylindrical coordinates, the product of the cell area, the radial

coordinate and the density, essentially the Cartesian volume has been multiplied

by the average radial coordinate of the cell or subcell. The true physical masses

and volumes are calculated by multiplying this value by 2π (or some other dφ), but

this is not included in the code, as it always cancels, and as such is dropped from

following discussions for the sake of brevity.

63

Draft of 3:35 pm, Monday, June 16, 2014 64

4.2.1 Cylindrical Stability in CVD

Whilst the above description is the most natural and physically motivated choice

of discretisations it fails to properly mimic the equations. This is clearly shown by

considering a cylindrical collapse, with the grid aligned with the flow, as shown in

4.1.

Figure 4.1: Set up for cylindrical Collapse

Denoting the velocity vector (u, v) the correct momentum update equations are,

ρ
Du

Dt
= −∂P

∂r
, ρ

Dv

Dt
= −∂P

∂z
. (4.1)

It is possible now to integrate directly (4.1) to obtain the forces in the radial and

z-directions. Denoting R = (ra+rb)/2 the centre of the (nodal) cell and considering

Draft of 3:35 pm, Monday, June 16, 2014 65

only the radial force only,

fr = −
∫
Ω(t)

∂P

∂r
dV

= −
∫
Ω(t)

∂P

∂r
rdφdrdz

= −2π∆z

ra∫
rb

∂P

∂r
rdr

= −2π∆z

ra∫
rb

(
∂

∂r
(rP)− P

)
dr

= −2π∆z

[rP]rarb −
ra∫
rb

Pdr


= −2π∆z (raP1 − rbP2)− 2π∆z

ra∫
rb

Pdr

= −2π∆z

[(
R+

∆r

2

)
P1 −

(
R− ∆r

2

)
P2

]
− 2π∆z

ra∫
rb

Pdr

= −2π∆z

[
R (P1 − P2) +

∆r

2
(P1 + P2)

]
− 2π∆z

ra∫
rb

Pdr. (4.2)

The final step is to evaluate the (piecewise constant) second integral to give,

2π∆z

ra∫
rb

Pdr = 2π∆z (P1 + P2)
∆r

2
. (4.3)

Where in line with previous discussions the pressure in a cell is taken to be constant

as only the average pressure is known. This cancels with the second term of (4.2)

and gives the final force as:

fr = −2π∆zR (P1 − P2) , (4.4)

Draft of 3:35 pm, Monday, June 16, 2014 66

This force is not equal to
∫
S P~ndS around the (nodal) cell boundary. To correctly

calculate the force by integrating over the volume of the cell one must use∫
V

[∇ · (P~a)] dV =

∫
V

[P (∇ · ~a) + (~a · ∇)P] dV

=

∫
S

(P~a) · ~ndS. (4.5)

Rearranging, ∫
V

(~a · ∇)PdV =

∫
S
P~a · ~ndS −

∫
V
P∇ · ~adV. (4.6)

Setting ~a as the unit vector in a coordinate direction gives the force component in

that direction. For the Cartesian case the second term on the right hand side is

zero. However for cylindrical coordinates,

∇ · r̂ =
1

r
. (4.7)

Hence,

Mp
Dur
Dt

= −
∫
S
P r̂ · ~ndS +

∫
V

P

r
dV. (4.8)

Both (4.4) and (4.8) are correct volume averages of the equations.

4.2.2 Symmetry Preservation in CVD

In their paper on symmetry preservation in cylindrical coordinates Caramana and

Whalen [28] use a different implementation of control volume differencing. Whilst

this paper was focused on polar grids rather than general grids it is still worth

consideration. In this implementation of volume weighted differencing the primary

grid lines were used to calculate the pressure gradient forces, rather than the median

mesh lines that actually form the boundary of the region in question.

This is simply a reversal of the previous compatible formulation. Previously it

has been assumed that the forces would be calculated, and these used to define a

compatible energy update. This scheme acts in reverse, defining forces associated

with the energy update, and using these to update momentum (and thus, kinetic

energy) in a compatible manner. In Cartesian coordinates of course, the two options

are exactly equivalent, indeed, in any code they would be numerically equivalent.

However in cylindrical coordinates this is not the case, due the to radial weighting

of the areas in question.

For the limiting case of an orthogonal grid the scheme described by Caramana and

Whalen [28] is actually equivalent to an area weighted scheme. This makes it a

Draft of 3:35 pm, Monday, June 16, 2014 67

good candidate for implementation of cylindrical coordinates in fixed grid codes.

For an arbitrary grid however the two schemes are different. The volume weighted

scheme described in [28] suffers from a loss of symmetry for spherical collapse in

cylindrical coordinates due to the differing magnitudes of forces on neighbouring

grid elements, due to different radial weightings. Whilst it may be possible to

carefully derive the P/r term in such a way that this symmetry loss is reduced, or

even entirely alleviated, the area weighted scheme does not require such additional

considerations. It should be pointed out however, that in Cartesian coordinates

when considering the collapse of a cylinder with uneven grid spacing a similar loss

of symmetry occurs, and as such this error is inherited by the area weighted scheme

in cylindrical coordinates.

Figure 4.2: The vectors used to calculate CVD forces by Caramana et al.

The mainstay of [28] is a modification of the gradient operator that accounts for, and

eliminates this problem. Essentially this method looks for some preferred directions

in the volume weighting calculated forces, and removes the non-radial (in a spherical

sense) component. However, whilst this allows cylindrical collapse in xy with an

unequal angular zoning, and spherical collapse in rz with an equal angular zoning, it

does not remedy the problem for unequal angular zoning in rz, the solution does not

Draft of 3:35 pm, Monday, June 16, 2014 68

work for an arbitrary grid. Secondly, it essentially tries to correct for an unnecessary

problem. The method is looking for a symmetric solution, thus assuming some a

priori knowledge of the solution, yet it is only useful when this a priori knowledge

has been ignored in the setting up of the simulation. For these reasons, it was not

included in the final version of Odin .

4.3 Area Weighted Differencing

As should be clear from the preceding discussion, whilst control volume differencing

is the most natural physical choice it is not without its problems. Thus an alternative

has been suggested and used in various forms, area weighted differencing [29]. The

motivation for this is that the momentum equation for rz looks identical to the

momentum equation for xy, with the variables changed appropriately. It is possible

to rewrite (4.4) as,

fr = rfx, (4.9)

where fr is the radial component of the force, and fx is the equivalent force calculated

in the x-direction in Cartesian coordinates. As previously mentioned the continuous

equations look identical in both coordinate systems, so it is desirable to write the

mass as,

Mnode = rAnodeρ, (4.10)

as by doing this it enables the radial factors on either side of the equation to cancel,

resulting in an identical numerical scheme to the Cartesian case, where M = ρA. In

both cases A is some cross sectional area associated with the node. It is necessary

that the sum of the nodal masses and the cell centred masses sum to give the same

total, as such each must be derived from the subzonal masses, where each subzonal

mass contributes to one cell-centred mass and one nodal mass, thus enforcing the

two totals to be the same.

The subzonal masses are calculated at t = 0 as

mz
i = ρcellv

z
i , (4.11)

where vzi is the i-th subzonal volume of the cell, z. In cylindrical coordinates the

mass of a subzone is therefore,

mz
i = ρcella

z
i |rzi |2π, (4.12)

Draft of 3:35 pm, Monday, June 16, 2014 69

where here azi is the cross sectional area of the subzone, and |rzi | is the (average)

radial coordinate of the subzone. However, as previously mentioned it is desirable to

write the mass of a subzone as being proportional to the radial coordinate of its node,

thus it is necessary to redistribute the subzonal masses within a cell. Combining

the four subzones of a cell to give the total cell centred mass yields,

Mcell = ρ2π
[a1

4
(r1 + 0.5(r1 + r2) + 0.5(r1 + r4) + rz)

+
a2
4

(r2 + 0.5(r2 + r3) + 0.5(r2 + r1) + rz)

+
a3
4

(r3 + 0.5(r3 + r4) + 0.5(r3 + r2) + rz)

+
a4
4

(r4 + 0.5(r4 + r1) + 0.5(r4 + r3) + rz)
]
. (4.13)

This form only holds at t = 0, after which the densities within the different subzones

may no longer be equal. Here rz is the radial coordinate of the cell given as,

rz =
1

4
(r1 + r2 + r3 + r4) . (4.14)

It is useful to note that the radial coordinate of the i-th subzone can be written as,

rzi =
1

16
(9ri + 3ri+1 + 3ri−1 + ri−2) , (4.15)

where the nodal indexing is defined in the same cyclic manner as used in previous

sections. Using this the sum of a cell’s contributions to its nodal masses can be

written as,

Mcell = ρcell2π
[a1

16
(9r1 + 3(r2 + r4) + r3)

+
a2
16

(9r2 + 3(r1 + r3) + r4)

+
a3
16

(9r3 + 3(r2 + r4) + r1)

+
a4
16

(9r4 + 3(r3 + r1) + r2)
]
. (4.16)

Considering figure 4.3 and (4.16) the area weighted nodal contribution from

the cell of volume V = a1|ra|+ a2|rb|+ a3|rc|+ a4|rd| is given by,

mz
1 = ρcell2π

1

16
|r1| (9a1 + 3 (a2 + a4) + a3) . (4.17)

Returning to the simple case of the cylinder, but now calculating the forces by

Draft of 3:35 pm, Monday, June 16, 2014 70

Figure 4.3: Areas used to calculate nodal masses in AWD. ai are the areas associated
with the subvolumes, ra is the average radial coordinate associated with a1, rb with
a2, rc with a3 and rd with a4. The radial coordinates associated with the nodes are
ri with i = 1 − 4 where the numbering scheme defined in the same manner as the
area numbering scheme

integrating about an area (as was effectively done in Cartesian coordinates),∫
A
ρ
Dvr
Dt

dA = −
∫
A

∂P

∂r
dA, (4.18)

which results in a momentum update of the form,

ρA
Dvr
Dt

= − (P1 − P2)∆z, (4.19)

or,
Mnode

r

Dvr
Dt

=
− (P1 − P2)

r
∆z. (4.20)

To update the energy in a compatible form, the normal compatible energy update

for Cartesian form is modified so that the dot product of the corner forces and the

nodal velocity vectors is multiplied by the magnitude of the radial coordinate of the

node, thus ensuring energy conservation in a proper sense. The final compatible

Draft of 3:35 pm, Monday, June 16, 2014 71

form of area weighted differencing is,

~fCompat,AWD = ~fCart.|r|, (4.21)

and,

∆ECompat,AWD = ~fCart. · ~u|r|. (4.22)

To summarise, this section has adapted a Cartesian numerical scheme to a cylindri-

cal one. The key similarity is that the momentum update equation has remained

unchanged. However the definition of subzonal (and thus cell centred and nodal)

masses has changed, as well as the forces used for heating. It is these differences

(effectively summarised as the addition of a radial weighting) which encompass the

change of geometry from Cartesian to cylindrical. The fact that the momentum up-

date scheme does not change has a key advantage in that it means that nodal masses

retain the same inertia in cylindrical coordinates as would be calculated for a given

density in Cartesian coordinates. This reduces numerical jetting sometimes seen

in cylindrical simulations. This does however mean that momentum is no longer

analytically conserved, due to the mass not exactly appearing in the momentum

equation, however in practice this effect is found to be negligible, approximately one

part in 1010.

The name of the area weighting scheme is derived from the fact that such a scheme

is arrived at by integrating about an area rather than a volume, for example, inte-

grating the continuous momentum equation in cylindrical coordinates yields,∫
A
∇PdA = ~fCart. (4.23)

The left hand side of the momentum equation results in the inertia of the node being

given as, ∫
A
ρdA = ρA. (4.24)

Both of these can be multiplied by the radial coordinate to then give the more obvi-

ous cylindrical scheme. The mass continuity requirement means that the subzonal

masses must then be distributed in such a way that the mass of the node can be

written as being proportional to the radial coordinate. This technique of integrating

the continuous equations about an area shall be applied in the development of the

cylindrical MHD scheme.

Draft of 3:35 pm, Monday, June 16, 2014 72

4.4 Shock Viscosity in Cylindrical Coordinates

As with the core hydrodynamic solver, both of the shock viscosities in Odin were

originally formulated in Cartesian coordinates. As discussed previously it is desirable

to carry over many qualities of the Cartesian scheme into cylindrical coordinates.

Thus in line with previous discussions on area weighted schemes, the conversion of

Cartesian viscosities into an area weighted scheme is simple, the Cartesian forces

are calculated as normal, and multiplied by the radial value of the node the corner

force is associated with,
~fvisc,rz = r ~fvisc,xy. (4.25)

There is however also the question of viscosity limiters and the scalar coefficient of

the tensor viscosity to consider when converting to an area weighted scheme.

Considering the case of the tensor viscosity coefficient, the only possible area which

may be changed is the calculation of the divergence of the velocity, and thus the ve-

locity jump. If calculating the (integrated) quantity properly in rz, analogously with

previous arguments in the control volume differencing section, an extra term would

appear, −u/|r|, where u is the radial component of the velocity. The addition of

this term gives incorrect results, this is made most obvious when returning to Noh’s

problem. This term would in fact cause uniform heating of the region, regardless

of the position of the shock. As well as going against the analytical solution for

this specific test case it also violates the self-similar motion invariance criterion, it

is causing heating in the presence of uniform compression. Thus this term is not

added, and the normal Cartesian form of the divergence is used to construct a ve-

locity jump. For this reason, the scalar coefficient and thus the viscosity trigger in

the tensor viscosity are left unchanged.

It is also worth considering the case of the tensor viscosity limiters. The question of

the inclusion of the extra term here is best answered by comparing with the Carte-

sian case of uniform compression. What is required of the viscosity limiters is to

turn off viscosity in cases where the velocity field is a linear function of the coordi-

nates. The Cartesian test case has already shown the limiters to be very effective in

doing this, and as the requirements are no different in cylindrical coordinates there

is little reason to modify them.

During development a number of different combinations were tried within the tensor

viscosity. Firstly the velocity jump was modified to include the extra term, but the

limiters left unchanged. Secondly both the limiter and the viscosity jump were mod-

ified to include the extra term. Neither of the trials resulted in significant (> 1%)

differences in final solutions, as such, and due to the reasoning above, neither change

Draft of 3:35 pm, Monday, June 16, 2014 73

was implemented in the final version.

Results with the shock viscosity in area weighted schemes are not as successful as in

the Cartesian case, most notably in Noh’s test case. Here the magnitude of the wall

heating is increased; the peak in post shock density is approximately 25% too low,

compared with the undershoot in xy, which is < 5% too low. Secondly the shock

speed in rz calculations is noticeably wrong, around 10% too fast. There are possible

causes for these errors, either the viscosity is incorrect, or the lack of momentum

conservation is causing shock calculations to be incorrect. These results are seen in

multiple implementations of the Campbell Shashkov tensor viscosity, the majority

of which use area weighted schemes. A noticeable exception is that of the astro-

physical code BETHE-HYDRO [30], which uses the viscosity in a control volume

differencing scheme. As a proper control volume scheme conserves momentum this

is a good test of the cause of the errors in Noh’s case. However, Campbell Shashkov

viscosity is introduced into this numerical scheme in an area weighted sense only, in

that the Cartesian forces are multiplied by 2πr. This violates momentum conserva-

tion again. However, BETHE-HYDRO [30] does show improved accuracy in shock

speed and post shock density when compared with full area-weight schemes, which

is further improved by increasing resolution.

4.4.1 Dissipativity in Area Weighting Schemes

Another problem with shock viscosity in area weighted schemes, that is lacking con-

sideration in the literature is that of dissapativity in rz. In the preceeding section,

dissapitivity was assumed, based on the reasoning that as the continuous tensor, an-

alytically had this quality the proper discretisation of it would inherit this property.

It is enlightening to prove dissipativity based upon the discrete form alone. For

simplicity an orthogonal grid will be assumed, thus reducing the number of terms

to be considered. However this assumption can be relaxed, and dissipativity can be

proven in a similar manner. Firstly considering the Cartesian case and once again

restricting the discussion to a pair of nodes, p, and p + 1. The respective viscous

forces are:

~fp = Vz

[
1

lp+1/2

(
WP+1µp+1 ~Gp+1/2 +WPµp ~Gp+1/2

)
+

1

lp−1/2

(
µp ~Gp−1/2 +W p−1µp−1 ~Gp−1/2

)]
, (4.26)

Draft of 3:35 pm, Monday, June 16, 2014 74

and,

~fp+1 = Vz

[
1

lp+3/2

(
WP+2µp+2 ~Gp+3/2 +W p+1µp+1 ~Gp+3/2

)
+

1

lp+1/2

(
µp+1 ~Gp+1/2 +W pµp ~Gp+1/2

)]
. (4.27)

It is also important to recall,

~Gp+1/2 =
~vp − ~vp+1

lp+1/2
(4.28)

Now consider only the first two terms in (4.26) and the last two terms in (4.27).

To consider all terms it would be required to in fact consider the entire cell, but

using the cyclical definition of velocity difference vectors, (4.28), the result of this

localised discussion can be applied to the entire cell. Grouping the terms under

consideration, and remembering the work due to a viscous force is W = −~f · ~v we

obtain,

W = −W
p+1

lp+1/2
µp+1 ~Gp+1/2 (~vp − ~vp+1)−

W p

lp+1/2
µp ~Gp+1/2 (~vp − ~vp+1)

=

(
W p+1µp+1 +W pµp

l2p+1/2

)
· (~vp+1 − ~vp)

2 . (4.29)

Which is positive definite as required. However repeating the calculation for an area

weighted scheme yields,

W = −W
p+1

lp+1/2
µp+1 ~Gp+1/2

(
~vp |rp| − ~vp+1 |rp+1|

)
− W p

lp+1/2
µp ~Gp+1/2

(
~vp |rp| − ~vp+1 |rp+1|

)
=

(
W p+1µp+1 +W pµp

l2p+1/2

)
· (~vp+1 − ~vp) ·

(
~vp+1

∣∣rp+1
∣∣− ~vp |rp|

)
. (4.30)

This is no longer positive definite. The reason for this is simple, the area weighting

discretisation of the tensor viscosity is not a proper discretisation of the tensor in

rz coordinates, thus it no longer inherits it’s continuous properties.

Draft of 3:35 pm, Monday, June 16, 2014 75

Figure 4.4: Results obtained for Sod’s shock tube problem using tensor shock vis-
cosity in cylindrical coordinates. The analytical solution is shown as a solid line,
whilst the results obtained are shown as crosses.

4.5 Results

In order to validate the scheme some of the test problems from the previous section

were rerun in cylindrical coordinates. In both the following test cases the velocity

on axis is set equal to it’s nearest of axis neighbour.

4.5.1 Sod’s Problem

Sod’s shock tube [21]is easily adapted to cylindrical coordinates by initialising a

cylinder, with the interface at z=0.5, so that,

(ρ, ei) =

(1, 2.5) if z < 0.5

(0.125, 2) if z > 0.5

~v = 0.0

(4.31)

with reflecting boundary conditions at z = 0.0 and z = 1.0. the results obtained are

in figure 4.4.

Draft of 3:35 pm, Monday, June 16, 2014 76

4.5.2 Noh’s Problem

Noh’s problem [23] is also easily cast into cylindrical coordinates, now the problem

consists of an imploding sphere rather than an imploding cylinder.

Figure 4.5: Density contour plot for Noh’s problem run on a Cartesian grid with
tensor shock viscosity, in cylindrical coordinates.

4.6 Summary

Two competing methods for discretising hydrodynamics in cylindrical coordinates

have been described, area weighted, and volume weighted. This distinction does not

occur in Cartesian coordinates, where the two methods are equivalent. The major

disadvantage of volume weighted methods is the lack of symmetry preservation.

This is not a disadvantage shared by the area weighted scheme, which inherits the

same symmetry preservation qualities of the Cartesian scheme discussed previously.

However, momentum conservation is no longer exact, although during testing the

magnitude of this violation was found to be small. The area weighted scheme also

has the advantage of ease of implementation; the Cartesian scheme requires very

little modification to be adapted to run in cylindrical coordinates. This is not

only beneficial for implementation, but also for code maintanance, as such an area

weighted method was used to implement cylindrical hydrodynamics within Odin.

Draft of 3:35 pm, Monday, June 16, 2014 77

Figure 4.6: Grid for Noh’s problem run with tensor shock viscosity on an initially
Cartesian grid, in cylindrical coordinates.

Figure 4.7: Scatter plot of density against radius for Noh’s problem run with tensor
shock viscosity, in cylindrical coordinates.

Chapter 5

Subzonal Pressures

5.1 Introduction

Lagrangian simulations have a major problem; grid tangling. Heavily distorted

meshes, or mesh segments that have almost collapsed lead to order of magnitude re-

duction in time step, and eventually to the premature end of the simulation. There

are many physically relevant motions that lead to time step reduction, such as tur-

bulent motion, or the collapse of cells during compression, however there are also

non-physical grid motions which can cause the simulation to end for non-physical

reasons. Most commonly referred to as hourglass modes, or keystone motion, or on

a larger scale as spurious vorticity these grid motions are the bane of Lagrangian

simulations.

Caramana and Shaskov [31] split these two motions into two types, the first type

being grid scale motion associated with hourglass modes, which occurs due to quadri-

lateral (hexahedral in three dimensions) cells being under-constrained with respect

to the total numbers of degrees of freedom of the grid. The second type was the

larger scale spurious vorticity, motion which was described as not relating to the

physical solution. As pointed out by Caramana and Shaskov [31] this type of mo-

tion can only really be defined with respect to a known one-dimensional solution,

where movement is seen to deviate away from the analytically expected motion.

This type of motion is most clearly seen by attempting to solve Noh’s problem

on a quadrilateral mesh, with edge based viscosity. Caramana and Shaskov [31]

explain such un-physical grid motion as being due to the solution gradients being

mis-aligned with the grid. Taking a more critical point of view however, it is in real-

ity caused by an over-reliance on the grid by the hydrodynamical solver. In attempt

to alleviate these problems Caramana and Shashkov [31] introduced the concept

78

Draft of 3:35 pm, Monday, June 16, 2014 79

of subzonal pressures, which result from the assumption that subzonal masses are

constant, and utilised these pressures to enable Lagrangian simulations to run to

longer time scales, by limiting artificial grid motion.

5.2 Modes of Grid Motion

For a two dimensional grid there are six physical degrees of freedom; translation,

shear and compression/expansion, in each direction. Rotation is obtained by com-

bination of shear in two dimensions. There is a fourth degree of freedom in each

dimension, which is non-physical. Caused by checkerboard pattern in the compo-

nents of the velocity, it is a situation where the sign of the velocity component

changes at each node, and each row of nodes in the second direction is out of phase

with it’s two neighbours. These non-physical degrees of freedom lead to quadri-

lateral grids being called under-constrained. The four degrees of freedom for the

x-direction are shown in figure 5.1.

Of the three physical degrees of freedom, only expansion/contraction causes a direct

hydrodynamical response, due to the fact that in it’s pure form it is the only one

that causes a change of volume of the cell, thus changing pressure and changing

the forces. However neither shear nor translation cause problems in regard to time

step collapse. Hourglass modes also cause no change in volume of the cell, and thus

illicit no hydrodynamical response, and as discussed previously do cause a timestep

collapse. They have also been found to grow in time, and thus their eradication is

imperative for Lagrangian hydrodynamical simulations.

5.3 Subzonal Masses and Pressures

Whilst hourglass modes do not change the total cell volume they do cause a change

in the volume of the subcells, the same subcells used to define subzonal masses in the

compatible formulation. At t = 0 all that is known is the cell centred density, and

this density is prescribed to each of the subzones within the cell, and the subzonal

mass is thus calculated. However during an hourglass mode (and it is worth pointing

out that this is not a quality shared by the physical modes) the subzones change

volumes at different rates, and their densities (due to their assumed constant mass)

diverges. This change in density causes the pressures associated with each subcell

to be different. These are calculated by

δP = δρc2s, (5.1)

Draft of 3:35 pm, Monday, June 16, 2014 80

(a) Shear (b) Translation

(c) Expansion (d) Hourglass

Figure 5.1: Modes of grid motion

Draft of 3:35 pm, Monday, June 16, 2014 81

where cs is the sound speed. The internal energy of the cell has been assumed

to be constant throughout the cell, for now only forces arising from the subzonal

masses being constant shall be considered. Although (5.1) is only an approximation,

Caramana and Shashkov [31] found it to be an adequate one, and it avoids the need

for four extra calls to equations of state routines which can become costly.

5.4 Calculation of Subzonal Forces

Having established the change in pressure due to constant subzonal masses it remains

to calculate the forces due to these pressure perturbations. Caramana and Shashkov

base their formulation around the conservation of momentum, and that discussion

is mirrored here. Considering for now only the bulk pressure of a cell (i.e. neglecting

subzonal pressure perturbations) conservation of momentum requires that the sum

of forces acting on nodes must sum to zero. Taking this sum over the cells this

requirement is, ∑
z

8∑
i=1

~fzi =
∑
z

8∑
i=1

pz~ai =
∑
z

pz

8∑
i=1

~ai = 0. (5.2)

Given that the pressure in a zone is arbitrary this requirement is simply,

8∑
i=1

~ai = 0, (5.3)

for each cell. This is achieved through the fact that each cell is a closed surface, so

the sum of the outward normal vectors sums to zero. This reasoning doesn’t change

for subzonal pressure forces, but now the reasoning must be applied to the subzones,

the sum of the forces from each subzone must sum to zero.

5.4.1 Dynamical and Non-Dynamical Points

At this stage it is important to differentiate between dynamical and non-dynamical

points. Dynamical points are simply the nodes of each cell, points for which the

velocity is directly calculated, and thus points over which momentum is summed.

These points are illustrated by figure 5.2.Thus the requirement for subzonal momen-

tum conservation may be stated as the requirement that the forces on dynamical

points arising from subzonal pressures must sum to zero. Non-dynamical points are

all other points throughout the domain. The position of these points changes with

the motion of the fluid, but the velocity of such points is simply an average of the

surrounding dynamical points, and thus the momentum of such points is not taken

Draft of 3:35 pm, Monday, June 16, 2014 82

into account in momentum considerations. Dynamical and non dynamical points

are illustrated by figure 5.2

This distinction is particularly important in calculating subzonal pressure forces.

As the subzones are quadrilaterals like the cells the forces on the corners of these

subzones can be calculated in the same way as corners of cells. However this results

in forces on non-dynamical points, specifically the centre of cells, and edge mid-

points. Unless these forces are properly accounted for momentum conservation will

be violated.

The simplest way of transferring these forces from non-dynamical to dynamical

points is to prescribe to each node a fraction of the force on each of the non-

dynamical points. This fraction is simply set equal to the fraction of the non-

dynamical points velocity given by the node in question. So specifically, the force

on the cell centre is prescribed to each node with a weighting of one quarter, and

the force on each edge mid-point is prescribed to the two nodes on that edge with a

fraction of one half. This method is illustrated by figure 5.3. This method is simple,

and easily applied to subzones of arbitrary shape, however it is not a unique force

differencing.

Caramana and Shashkov [31] go on to calculate what they call a more preferable

force differencing using the following two step procedure. This is carried out by

considering a rebound of forces onto neighbouring points. The original mesh forces

are illustrated by figure 5.4. The first step is to rebound the forces on the cell centre

associated with the median mesh back onto the midpoints of cell edges, whilst at

the same time rebounding the initial force contributions associated with the half

cell edge normals to their respective nodes. The force distribution after this step is

illustrated by figure 5.5. The second stage is to then prescribe the intermediate cell

edge midpoint forces onto the connected nodes with a weighting of one half, and a

sign illustrated by figure 5.6. The final resulting force on node 1 can be written in

the following three equivalent ways,

δ ~f1 = δP1 (~a1 + ~a8) +
1

2

[
(δP1 − δP4) ~S4 + (δP2 − δP1) ~S1

]
, (5.4)

δ ~f1 = δP1 (~a1 + ~a8) /2− δP4
~S4/2 + δP2

~S1/2, (5.5)

and,

δ ~f1 = (δP1 + δP2) ~S1/2− (δP1 + δP4) ~S4/2. (5.6)

Draft of 3:35 pm, Monday, June 16, 2014 83

Figure 5.2: The dynamical (red) and non-dynamical points (green) of a cell.

Draft of 3:35 pm, Monday, June 16, 2014 84

Figure 5.3: The redistribution with weightings of forces from non-dynamical points
to dynamical points.

Draft of 3:35 pm, Monday, June 16, 2014 85

Figure 5.4: The initial forces calculated for subzonal pressures, before any redistri-
bution of forces has occurred. The mesh segments contribution for forces on nodes
are highlighted in red, forces on mesh midpoints green, and cell centres blue.

Draft of 3:35 pm, Monday, June 16, 2014 86

Figure 5.5: The intermediate forces in the rebounding method. Force contributions
on the cell centre have been move to their nearest (logical) mesh midpoint neigh-
bours. Force contributions on the mesh midpoint neighbours along the primary
mesh have been moved to their nearest (logical) nodal neighbours.

Draft of 3:35 pm, Monday, June 16, 2014 87

Figure 5.6: The final rebounding of forces to nodes. To be clear, the force along a
mesh length is the pressure difference across it multiplied by its vector. For example
the force at ~S1 is (δP2 − δP1) ~S1. The final rebounding from median mesh to nodes
is with a weighting of one half and a sign shown by the + and − signs in the diagram.
For example the force along ~S2 is rebounded to node 2 with a weighting of +1/2
and to node 3 with a weighting of −1/2.

Draft of 3:35 pm, Monday, June 16, 2014 88

5.4.2 Merit Factor

Carmana and Shashkov [31] state that the form given by (5.4) multiplied by two is

used in their code. This multiplication does not appear justified, but this force is

what they term as having a merit factor of unity. The introduction of the concept of

a merit factor enables Caramana and Shashkov [31] to artificially reduce or increase

the magnitude relative to (5.4) as deemed necessary. Some automation of this merit

factor was discussed, centred around increasing the merit factor for higher fractional

variation in density, presumably motivated by the idea that as subzonal density

perturbations grow the grid is excessively tangling and thus stronger subzonal forces

are desirable.

Finally it should be pointed out that (5.4), (5.5) and (5.6) are all equivalent in

Odin. However Caramana and Shashkov employ the modification to the gradient

vectors described in [28]. Under such a scheme (5.4), (5.5) and (5.6) are no longer

equivalent. However as mentioned in previous chapters these modifications were not

employed in Odin, and as such (5.4), (5.5) and (5.6) remain equivalent.

5.4.3 Subzonal Pressures-an alternative formulation

The discussion in the proceeding two sections describe Caramana and Shaskov’s

[31] derivation of subzonal pressure forces, however it is a discussion that diverged

from physical intuition. An important observation is that the apparent problem

of forces acting on non-dynamical points arises even for all subzonal densities (and

thus pressures) being equal, should the pressure in neighbouring cells be different,

as this yields a net force on the edge mid points. However this does not in itself

cause a violation of momentum conservation.

A far simpler way of deriving subzonal pressure forces is to calculate pressure forces

along the median mesh. The pressure at the median mesh is taken to be the average

of the two subzonal pressures in each of the neighbouring subzones. The pressure

force on each of the nodes is then calculated in the normal way, except that in place

of the cell pressure the average pressure at the median mesh is used. This simple

formulation has two desirable quantities. Firstly, as each median mesh force acts

on two nodes with opposite signs it conserves momentum exactly, and secondly it is

exactly equivalent to (5.6), disregarding the non-physical methods of merit factors

and modifications to the gradient vector.

Draft of 3:35 pm, Monday, June 16, 2014 89

5.4.4 Subzonal Pressures within the Compatible Framework

Having shown that the subzonal pressure forces can be implemented in a way that

conserves momentum, it is important now to consider energy conservation. Fortu-

nately as the subzonal pressure forces have been conceived in terms of corner forces

they are easily implemented within the compatible framework and thus do not pose

any complications for energy conservation.

5.5 Temporary Triangular Subzones

The work by Caramana and Shashkov [31] was based around a number of previous

efforts to reduce grid tangling in Lagrangian calculations, an important example of

which was the work by Browne [32]. The work by Browne attempted to reduce time

step reduction in calculations involving long thin zones which were prone to twist-

ing, this was carried out by calculating forces due to triangular subzones, formed

by the connection of two nodes and the cell centre. These forces have two origins,

firstly the assumption that the mass within a triangular subzone is constant, and

secondly by temporarily depositing the energy due to viscous heating into the tri-

angular subzones.

The work of Carmana and Shashkov [31] resulted in forces due to quadrilateral sub-

zones based around the assumption of a constant subzonal mass, however triangular

subzones were also considered, and due to the lack of detail in the work of Browne

[32] that discussion shall now be followed.

The previous method of redistributing forces on non-dynamical points to dynam-

ical points for triangular subzones is simplified greatly by the fact that only one

non-dynamical point is being considered, the cell centre. However, given that the

previous discussion was simplified by already using the force calculation for quadri-

laterals developed for the primary cells, it is useful to briefly summarise how those

forces are calculated, and how this method can be applied for triangular zones. The

pressure within a cell can be seen to push out on the cell edges, and these forces

must be distributed to the nodes. This is done by simply equally dividing the force

on each cell edge (in three dimensions, a cell face) to each of the two (four in three

dimensions) nodes connected to the edge (face). For example the resulting force on

node one is,
~f1z = (~a1 − ~a8)Pz. (5.7)

In the previous chapter on compatible methods it was shown that this force arose

from energy conservation considerations alone, and it was in fact shown to be equiv-

Draft of 3:35 pm, Monday, June 16, 2014 90

Figure 5.7: Original force segments calculated for pressure perturbations in trian-
gular subzones.

Draft of 3:35 pm, Monday, June 16, 2014 91

alent to integrating directly around the median mesh, this of course is no longer

true for volume weighted differencing, but in order to aid comparison with the

work of Caramana and Shashkov [31] to calculate forces on dynamical and non-

dynamical points the method of distributing outward pressure forces from edges to

nodes shall be followed. For a quadrilateral subzoning these forces are illustrated by

5.4, whereas a similar approach for triangular subzones yields forces summarised by

5.7, and given by,

~f ′1 = δp1~a1 + δp4~a8 + (δp1 − δp4) ~D1/2, (5.8)

and

~f ′5 =
1

2

[
(δp4 − δp1) ~D1 + (δp1 − δp2) ~D2 + (δp2 − δp3) ~D3 + (δp3 − δp4) ~D4

]
,

(5.9)

where the vectors are shown by figure 5.8 and the δpis are defined at the centre of

triangular subzones. The forces of the cell centre are distributed back to the nodes

according to which node the relevant vector normal is associated with, for example

the forces proportional to ~D1 are assigned to node 1, so that the final force on node

1 is given by,
~f1 = ~f ′1 + (δp4 − δp1) ~D1/2, (5.10)

or simplifying,
~f1 = −δp4~S4 + δp1~S1. (5.11)

This force redistribution is demonstrated by figure 5.9. Of course, the force given by

(5.11) is simply the usual median mesh force differencing which can be calculated by

directly integrating around the median mesh. An alternative formulation is given by

redistributing the force on the cell centre to each of the four nodes with a weighting

of one quarter so that,

~f1 = ~f ′1 +
1

4
~f5. (5.12)

This is demonstrated by figure 5.10. Clearly in calculating (5.12) more averaging is

carried out than in calculating (5.11) so the forces due to a given value of δpi will

be reduced as they are spread out more over the nodes, although the total force

remains the same of course. For the remainder of the discussion the form of trian-

gular subzoning given by (5.11) shall be used, as it results from the more physical

consideration of integrating about the nodal volume, a method notable for the fact

that it will always conserve momentum. As the forces are once again calculated in

terms of the affect on a node these forces are easily incorporated into a compatible

Draft of 3:35 pm, Monday, June 16, 2014 92

Figure 5.8: Vectors used to calculated forces arising from triangular subzonal pres-
sures.

Draft of 3:35 pm, Monday, June 16, 2014 93

Figure 5.9: Redistribution of forces from central non-dynamical point to nodes.

Draft of 3:35 pm, Monday, June 16, 2014 94

Figure 5.10: Averaging of central force to nodes.

Draft of 3:35 pm, Monday, June 16, 2014 95

formulation.

The original work by Browne [32] considered forces due to both constant triangu-

lar subzonal mass and temporary viscous heating in the subzones. Given that the

assumption of constant quadrilateral subzonal mass was already present in Odin,

only forces arising from temporary heating of triangular subzones shall be consid-

ered. Secondly it was also decided that within Odin, forces arising from constant

quadrilateral subzonal mass, and temporary heating of triangular subzones would

be considered separately, so the methods could be used in isolation, or together.

The temporary heating of Browne [32] was originally rejected by Caramana and

Shashkov [31] due to the fact that there was no physical time scale over which the

energy was assumed to equilibrate across the cell; the temporary heating was only

applied at the predictor step, at the corrector the heating was applied to the en-

tire cell. However such a method is beneficial in that it always forces the subzonal

forces to be of order ∆t less than the original forces, hopefully reducing some of the

numerical artifacts seen in using subzonal pressures discussed in the last section of

this chapter. Temporary triangular subzoning has increased in usage over the past

decade or so and is often applied to calculations involving tensor shock viscosity,

perhaps due to the fact that for an arbitrary grid these viscous effects are discretised

into triangular subzones.

5.6 Results

5.6.1 Sedov’s Problem

Although subzonal pressures are not used in production runs of Odin as a brief test

of subzonal pressures, results obtained for Sedov’s problem [27] in both Cartesian

and cylindrical coordinates are presented. This case is of particular relevance as

running in pure Lagrangian mode on a Cartesian mesh without subzonal pressures

the time step collapses to such an extend the problem does not complete.

Draft of 3:35 pm, Monday, June 16, 2014 96

Cartesian Coordinates

Figure 5.11: Density contour plot for Sedov’s problem at t = 1.0 run on a Cartesian
grid with tensor shock viscosity.

Figure 5.12: Grid for Sedov’s problem at t = 1.0 run with tensor shock viscosity on
an initially Cartesian grid.

Draft of 3:35 pm, Monday, June 16, 2014 97

Cylindrical Coordinates

Figure 5.13: Density contour plot for Sedov’s problem at t = 1.0 run on a Cartesian
grid with tensor shock viscosity, in cylindrical coordinates.

Figure 5.14: Grid for Sedov’s problem at t = 1.0 run with tensor shock viscosity on
an initially Cartesian grid, in cylindrical coordinates.

Draft of 3:35 pm, Monday, June 16, 2014 98

5.7 Summary

Grid distortion and tangling, and the prevention of such problems has been exam-

ined, the main method of prevention being subzonal pressures. Whilst this method

has been shown to extend the range of problems that can be run in a pure Lagrangian

mode, it is known to alter the growth rate of the Rayleigh Taylor instability, a key

physical phenomenon to be examined by ALE codes. As such, whilst subzonal

pressures have been implemented within Odin for both cylindrical and Cartesian

coordinates, they are not used in production runs, due to concerns over the affect

of the method on the validity of the answer.

Chapter 6

First Order Remapping

Methods

6.1 Introduction

Whilst keeping a calculation purely Lagrangian for as long as possible is beneficial,

for most problems of physical interest where flow will either from the onset or at

some later stage be misaligned from the grid the need for a remap will eventually

arrive. In order to simplify the introduction to remapping strategies and concepts

the discussion in this chapter is limited to a donor cell, or first order basis.

Judging exactly when a remap should occur is a difficult, and nearly always prob-

lem dependent issue. The most basic criteria for remapping is based on time step

considerations alone, should the time step fall to below some value then a remap

can be triggered, here the decision to remap is centred on finishing the calculation.

In other cases some prior knowledge of the physical problem might be useful, for

example allowing the calculation for an implosion to remain Lagrangian until the

radius is reduced by a certain factor. Other more geometric criteria could be used,

having a maximum aspect ratio for cell, or a maximum and minimum value of inter-

nal angles of the cells. Within this thesis the time step criteria is used, as in general

the other criteria are encompassed by this implicitly, and it is by far the simplest to

implement, although it may require some trial test runs of the problem. This isn’t

always possible, in which case it may be useful to use other more complex criteria.

Having decided when to perform a remap it remains to calculate where to remap to.

Here again a number of options exist, from simply locking the grid in the simplest

case, to the more complex equipotential remapping. This is not always an obvious

question, and it is addressed in a later section.

99

Draft of 3:35 pm, Monday, June 16, 2014 100

A multi-material remap is more complex and has additional considerations. The

work described in this thesis is a single material ALE code, although Odin was

further developed into a multi-material code by Dr C. S. Brady. Where relevant

multi-material considerations will be mentioned in this and the later chapter on

higher order remaps, but the discussion focuses on single material remaps.

To begin the discussion on first order remaps a new grid shall be assumed, as remap-

ping methodology and mesh motion can be considered (almost) entirely separately.

6.2 General Remapping Methodology

There are two general remapping strategies, swept region based remaps, and inter-

section based remaps. Beyond these methodologies exist hybrid remapping method-

ologies. In order to explain and decide between remapping methodologies it is first

beneficial to explain a basic remapping method, before making it specific to any of

the aforementioned schemes.

Remapping is a purely geometric step, however basic physical ideas are involved,

specifically through the concept of conserved quantities. Having identified a new

mesh to which to move to, a decision must be made about how material is trans-

ferred between cells, it is this decision which is taken by the choice between swept

region and intersection based remaps. However, in a one dimensional code these

methods are the same, so it is within this context that a basic remap shall be ex-

plained. The discussion on intersection based remaps demonstrates how the scheme

reduces to a swept region based remap in the limiting case of a one dimensional

calculation.

6.2.1 One Dimensional Remap

Again for the sake of simplicity an Eulerian remapping mesh motion shall be as-

sumed, although no loss of generality occurs; this discussion is easily adapted to any

mesh motion strategy by replacing ~v∆t with a displacement vector defined by the

difference between the old and new meshes.

Consider the case demonstrated by 6.1. Here the fluid, and thus the mesh has

moved to the right by an amount ~v∆t and thus during the remap the mesh must

move minus this amount. Clearly there is a volume of fluid that must be transported

between the two cells being considered, given by,

Vremap,i = −~v∆tdydz. (6.1)

Draft of 3:35 pm, Monday, June 16, 2014 101

Figure 6.1: One dimensional remap with Eulerian grid motion. The displaced (post-
Lagrangian grid is shown by the dashed line, the original/remapped grid shown by
solid lines.

Note here the concept of a signed volume has been used, so that the post remap

volumes, denoted V are calculated in terms of the remap volume and the pre-remap

volume V ′ as follows,

Vi = V ′i − Vremap,i, (6.2)

and,

Vi+1 = V ′i+1 + Vremap,i. (6.3)

Expanding (6.2) and (6.3) to the case where the mesh has moved in multiple loca-

tions the following update for the volume of any cell is given by,

Vi = V ′i + Vremap,i−1 − Vremap,i. (6.4)

The sign convention in (6.4) is essentially arbitrary (although it is the one used in

Odin), but it is used in deciding the sign of the volume as used by (6.1). Having

made this sign convention, the first step is to calculate the transfer of mass due to

the remap. For each remap volume a remap mass is calculated, dMi,

dMi = ρremapVremap, (6.5)

where Vremap is given by (6.1) and ρremap is some interpolated value of the density in

the remap volume. As the present discussion is only considering first order remap,

Draft of 3:35 pm, Monday, June 16, 2014 102

ρremap is given by the donor cell method so that,

ρremap =

ρiif Vremap,i ≤ 0

ρi+1if Vremap,i > 0.
(6.6)

Having calculated the dMi the post remap densities are calculated in a way such as

to conserve mass,

ρi =
(ρV)′i + dMi−1 − dMi

Vi
, (6.7)

so that, ∑
cells

ρV =
∑
cells

ρ′V ′. (6.8)

The second step is to remap the internal energy of the cells. As this is also a cell

centred variable the strategy is very similar to that of remapping density, except

for the fact that rather than using volume as the independent variable, mass is now

used. This means that to calculate remapped energies dεi the following formula

should be used,

dεi = dMiεremap, (6.9)

where dMi is given by (6.5). For a donor cell scheme εremap is calculated in a similar

way to (6.6) such that,

εremap =

εiif dMi ≤ 0

εi+1if dMi > 0.
(6.10)

The final update formula is again constructed through conservation considerations,

specifically the conservation of internal energy,

εi =
M ′iε

′
i + dεi−1 − dεi

Mi
, (6.11)

where the masses, Mi are given by Mi = ρiVi.

The final step is to remap the velocity, but given that velocity is a node centred

variable, some intermediate steps must be carried out before following a similar

method to that of remapping energy. In order to do this (in a momentum conserving

manner) it is necessary to calculate the post remap nodal masses. Given that the

requirement that the two sets of masses sum to give the same total over the domain,∑
nodes

M =
∑
cells

M, (6.12)

Draft of 3:35 pm, Monday, June 16, 2014 103

this is in fact places a requirement on the recalculation of subzonal masses after

remaps, to ensure consistent sums. At t = 0 the subzonal masses, mi are calculated

as,

mi = ρcellwi, (6.13)

where wi is the volume of the subzone, here denoted w to avoid confusion with the

velocity. If (6.13) was applied after a remap the mass associated with the subzones,

and consequently the nodal cells, may change even if the grid remains stationary.

As such this method should not be used. This has introduced a requirement of the

velocity remap, that a remap which does not move the nodes should not change the

subzonal masses, this will be referred to as the passive remap requirement. This

may seem an artificial requirement given the fact that a remap which does not move

the grid at all should not need to be considered, but in cases where highly localised

remaps are used it is important. The main reason this requirement is needed is

that so when remapping momentum a passive remap does not change the velocities.

Secondly, if subzonal masses were to be used, this would clearly change the resultant

forces.

What may be apparent from considering parallels with the internal energy remap

is that it is necessary to calculate dMi values for the edge of nodal cells so that

momentum can be transferred in a conservative manner. These nodal values of dMi

shall be denoted ˜dM i. Considering the case of a constant velocity field assuming

some calculation of ˜dM i, the post remap velocity is given by,

vi =
M̃ ′iv

′
i + ˜dM i−1vremap,i−1 − ˜dM ivremap,i

M̃i

=
v
(
M̃ ′i + ˜dM i−1 − ˜dM i

)
M̃i

. (6.14)

Clearly this only reconstructs the constant velocity field correctly if and only if the

following requirement is met,

M̃i = M̃ ′i + ˜dM i−1 − ˜dM i. (6.15)

This shall be referred to as the constant velocity field requirement. Perhaps the

simplest method that passes both the passive remap and constant velocity remaps

is shown below. However as the velocity is a nodal quantity, it is necessary to

expand the one dimensional remap slightly, to a one dimensional remap in a two

dimensional code. The first step is to redistribute the overlap masses to the edge of

Draft of 3:35 pm, Monday, June 16, 2014 104

nodal cells, such that,

˜dM i,j =
dMi,j + dMi+1,j + dMi,j+1 + dMi+1,j+1

4
, (6.16)

and then to recalculate the nodal masses in a similar way to the cell centred masses

(assuming only fluxes through the x-facing cell faces),

Mnode = M ′node + ˜dM i−1,j − ˜dM i,j . (6.17)

The subzonal masses are then calculated as,

mi,j =
m′i,j
M ′node

Mnode, (6.18)

so that the post remap subzonal mass carries the same fraction of the nodal mass

post and pre remap. By construction (6.16) guarantees mass consistency between

cells and nodes, and a simple application of (6.15) passes the constant velocity re-

quirement. As for a passive remap all ˜dM i = 0 (6.18) passes the passive remap

requirement as it leaves the subzonal masses unchanged.

The above strategy works well for a number of problems, and fulfils all the require-

ments previously set out. It does have the interesting side effect however that it no

longer guarantees that the mass of a cell is the sum of it’s subzonal masses. In some

problems this scheme was found to cause subzonal masses in the same cell to vary

by several orders of magnitude, subzones would preferentially acquire mass over it’s

neighbours, this in turn caused spikes in viscous forces which use subzonal densities.

As such an improved scheme is used in Odin as follows. Firstly the mass fraction

for each subzone with respect to it’s cell is taken to be constant before and after

remap,

mi,j =
m′i,j
M ′cell

Mcell. (6.19)

This in fact implicitly gives a definition for the redistribution of the overlap masses

to nodal cells,

˜dM i,j =
ma
i,j

Ma
cell

(dMi,j + dMi+1,j) +
mb
i,j

M b
cell

(dMi,j+1 + dMi+1,j+1) , (6.20)

where the relevant cells and subcells are illustrated by figure 6.2.

Having used (6.20) to define the nodal cell remap masses each component of the

velocity is remapped individually in a momentum conserving manner. For a first

order scheme the remap velocity component is once again defined by the donor cell

Draft of 3:35 pm, Monday, June 16, 2014 105

Figure 6.2: Indexing used for redistribution of remap masses to nodal cells.

method,

vx,remap =

vx,iif ˜dM i ≤ 0

vx,i+1if ˜dM i > 0,
(6.21)

and similarly for the other components. The velocity is then updated as follows,

vx =
M ′nodev

′
x + dpxi−1 − dpxi
Mnode

, (6.22)

where dpx is the overlap x-component of the momentum, calculated as,

dpxi,j = vx,remap ˜dM i,j (6.23)

6.2.2 Kinetic Energy Conservation

It is worth pointing out that the scheme described above whilst conserving momen-

tum exactly, does not exactly conserve kinetic energy. It is possible to account for

this loss of kinetic energy by calculating the total kinetic energy before and after the

remap. This lost kinetic energy can then be deposited in the form of heat back into

the fluid, thus restoring energy conservation, as implemented in [10] for example.

This is not a problem unique to kinetic energy, a similar problem is encountered in

Draft of 3:35 pm, Monday, June 16, 2014 106

remapping the B-field, where although the remap is formulated to preserve the di-

vergence (free nature) of the B-field some loss of magnetic energy is seen. A similar

correction was used in [33]. These methods are not currently implemented in Odin.

6.3 Swept Region Based Remaps

Having explained a basic remapping strategy it now remains to decide firstly given a

new grid how remap volumes, and thus remapped quantities are transferred between

cells, and secondly how to calculate a new grid. The first, and simplest, option for

transferring material is a swept region based remap.

A swept region based remap (e.g. [34]) transfers material between a cell and it’s four

neighbours with which it shares and edge, or face in three dimensions. The remap,

or overlap, volumes are calculated by first calculating the area of the quadrilateral

formed by two pairs of new and old node positions, thus defining an overlap area

for each edge, which results in a volume by multiplying by either dz = 1 or 2π for

Cartesian or cylindrical coordinates.

However, it remains to decide upon a sign convention. This is based upon the pre-

vious arguments. As the problem must now be considered as two dimensional, the

overlap volumes are now labelled with a subscript of either x or y. This refers to

the logical grid direction, not necessarily some alignment with the coordinate direc-

tions. However for the moment assume that the logical and coordinate directions

are approximately aligned. Expanding the one dimensional case, the mass is now

assumed to update as,

Mi,j = M ′i,j + dMx
i−1,j − dMx

i,j + dMy
i,j−1 − dM

y
i,j . (6.24)

The signed area of a quadrilateral is calculated as,

A =
1

2
[(x3 − x1) (y4 − y2)− (x4 − x2) (y3 − y1)] , (6.25)

which will be positive if the nodes are arranged in a counterclockwise manner, or

negative if arranged clockwise. Considering the case shown in 6.3. Here the post

remap grid is slightly displaced from the pre-remap grid. Using the sign convention

of (6.24) the nodes of the overlap volume in the x-direction are numbered as,

Draft of 3:35 pm, Monday, June 16, 2014 107

Figure 6.3: Two dimensional remap, the post-Lagrangian grid is shown by a dashed
line, the post-remap grid by a solid line. x and y share the same indexing, however
only x is shown for clarity.

x1 = xi,j−1

x2 = x′i,j−1

x3 = x′i,j

x4 = xi,j (6.26)

and for the y-direction overlap volume as,

x1 = xi,j−1

x2 = xi,j

x3 = x′i,j

x4 = x′i,j−1. (6.27)

Corresponding definitions apply for the y-coordinates. Positions denoted as x′ rep-

resent node positions pre-remap and x post remap.

For some remaps that are slightly more complex than the remap denoted in fig-

Draft of 3:35 pm, Monday, June 16, 2014 108

ure 6.3 due to the simplified nature of a swept region based remap some regions

get misplaced. However, these misplacements occur in pairs, and act to cancel, so

that the volumes remain consistent. This does mean that the transfer of mass is not

what might be expected by a simple overlaying of the grids, this is one of the key

differences between swept region based remaps, and the intersection based remaps

described in the following section. In the case demonstrated by figure 6.4 there are

six regions which may be considered for transfer, as labelled. For a swept region

based remap the following transfer of areas occur,

a1 + a5 Cell 1 −→ Cell 3, (6.28)

a2 + a5 Cell 2 −→ Cell 1, (6.29)

a3 + a6 Cell 4 −→ Cell 3, (6.30)

and,

a4 + a6 Cell 2 −→ Cell 4. (6.31)

In the first of these equations it can be seen from inspecting figure 6.4 that cell

1 loses too much area (volume), as pre-remap A5 was in cell 2 rather than cell 1.

A5 however finishes correctly in cell 3. This apparent loss of volume is accounted

for by the second exchange, where cell 1 gains too much area, as it gains A2 + A5

despite the fact that A5 is in the post remap cell 3. A corresponding process occurs

in exchanges three and four, where in the third exchange cell 4 incorrectly loses A6,

but then gains it back (again incorrectly) in exchange four.

This process occurs due to the fact that only cells which share edges exchange

information. This limitation of swept region based remaps result in inaccurate

results, particularly in the case of circular wave fronts, causing a squaring off process.

This problem can be avoided in two ways. The simplest is a split remap, which was

one of the improvements implemented by Dr. C. S. Brady and is explained in a

later chapter. The second way is by use of an intersection based remap, which is

explained in the following section.

6.4 Intersection Based Remaps

Intersection based remaps (e.g. see discussion in [35] are considerably more compli-

cated than the previously described scheme. In this scheme, as well as exchanging

information with the 2 neighbouring cells in each dimension, a cell also interacts

with it’s diagonal neighbours. In terms of a finite difference stencil, in two dimen-

Draft of 3:35 pm, Monday, June 16, 2014 109

Figure 6.4: Remapping illustrating double counting of overlap areas for swept region
based remap.

Draft of 3:35 pm, Monday, June 16, 2014 110

sions it increased from four cells to eight, and in three dimensions, from six cells to

ten. Despite it’s increased computational complexity, it is perhaps the more intu-

itive from initial consideration.

As is implied by the name, an intersection based remap is carried out by calculating

the areas (or volumes) formed by the intersection of old and new grids. The overlap

areas are formed by overlaying the old and new grids and transferring the polygons

that are formed by the intersection of the two grids to the cell in which they lie in

the new grid. Of course the immediate added computational cost of finding multiple

intersection points is apparent, however no (incorrect) double counting of volumes

occurs, as for the swept region based remap. For the case of a donor cell method,

it is then necessary to calculate which cell the centre of the overlap volume was in,

again this is more complicated than the donor cell scheme for swept region based

remaps. Odin uses a swept region based remap, however it is insightful to compare

the two methods in some simple geometries.

6.4.1 Equivalence to a Swept Region Based Remap in One Dimen-

sion

As mentioned in the introduction to this chapter, the two remapping schemes are

equivalent in a one dimensional case. This is clearly seen by considering the diagram

of such a remap; the volume for each remapping scheme is the same. This occurs

for any remap with which the grid motion is aligned with the original grid. With

this in mind, it is clear why swept region based remaps struggle along the 45 degree

line of a radial flow, whereas intersection remaps do not. For a radial flow, along

the axes the grid is aligned with the flow, and thus the two remapping schemes are

equivalent. However they deviate in increasing amounts when moving away from

the axes. At 45 degree the flow is completely misaligned with the grid, and there

is a strong interaction between diagonal neighbours. As such here an intersection

based remap is expected to perform much more strongly than a swept region based

remap.

6.4.2 Hybrid Remapping Strategies

Intersection based remaps are often preferred for multi-material cases. This opinion

is usually justified by the idea that an intersection based remap always allows remap

volumes of single material to be constructed, assuming knowledge of the material

interface. In principal at least, assuming the material interface lies on the mesh, this

allows for the interface to be tracked exactly; no interface reconstruction method

Draft of 3:35 pm, Monday, June 16, 2014 111

is needed. The intersection of the old material interface with the new grid is au-

tomatically calculated during a multi-material intersection based remap, and this

information of the interface can be retained. In practice this is quite an added com-

putational cost, but an intersection based remap remains popular for multi-material

methods, even with interface reconstruction.

Hybrid remapping strategies [36] [37] are remapping schemes which identify sin-

gle material regions and remap these using the simplified swept-region based remap,

whereas regions which are identified as having more than one material, are remapped

using a intersection based remapping scheme.

6.5 Remapping within Odin

Odin uses a swept region based remapping scheme. An intersection based remap has

two advantages, information transfer between diagonal neighbours, and some (pos-

sible) advantage for multi-material. However as discussed this comes at a significant

extra computational cost, a cost which hybrid remapping schemes attempt to alle-

viate. This improvement for multi-material is unclear, it may even cause excessive

stiffening of the interface. A swept region based remapping scheme was chosen for

Odin on the basis that the diagonal information transfer problem could be simply

solved by using a split remap. This was implemented by Dr C. S. Brady, and is

described in a later chapter. With this in mind the intersection remap had only

some (somewhat unproven) advantage for multi-material, still at greatly increased

computational cost; swept region based remaps seemed an obvious choice.

6.5.1 Remapping Strategy

The topic of remapping strategy is two fold, when to remap, and where to remap

to. The question of when to remap can be answered either by some automatic

remapping criteria, or by a pre-defined remap strategy. Currently Odin employs the

latter strategy where the user can add a pre-defined remap strategy after a certain

time. Recently Dr. C. S. Brady extended this capability so that the user can add

multiple, possibly different, remap strategies for different times. The former option

usually depends on geometric considerations, for example limiting cell aspect ratios,

or the internal angle of cells. This is discussed throughout the literature, for example

see the discussion within [11]. The question of where to remap to is also a rather

open ended question, with no particular, single best answer for all applications.

However within Odin two simple grid movement strategies are implemented. The

first is to simply calculate the new grid by subtracting a fraction of the product of

Draft of 3:35 pm, Monday, June 16, 2014 112

the velocity and time step,

x = x′ − C∆tvx, (6.32)

where 0 ≤ C ≤ 1 is a constant which controls the grid movement. Clearly for C = 0

the grid movement is purely Lagrangian, whereas for C = 1 the grid movement is

purely Eulerian. Alternatively Odin also employs an equipotential remap, again a

popular strategy within ALE codes. Developed in [38], it is a method to automat-

ically calculate a smooth mesh. The method consists of assigning to potentials, φ

and ψ to each mesh coordinate. A smooth grid is then calculated by solving,

∇2ψ = 0, (6.33)

and,

∇2φ = 0. (6.34)

These equations can be inverted, to yield the following system,

α
δ2x

δφ2
− 2β

δ2x

δφδψ
+ γ

δ2x

δψ2
= 0, (6.35)

and,

α
δ2y

δφ2
− 2β

δ2y

δφδψ
+ γ

δ2y

δψ2
= 0. (6.36)

Here,

α =

(
δx

δψ

)2

+

(
δy

δψ

)2

, (6.37)

β =
δx

δψ

δx

δφ
+
δy

δψ

δy

δφ
, (6.38)

and,

γ =

(
δx

δφ

)2

+

(
δy

δφ

)2

. (6.39)

The next step is to make the following finite difference approximations,

δ2x

δφ2
= xφ−1,ψ − 2xφ,ψ + xφ+1,ψ, (6.40)

δ2y

δφ2
= yφ−1,ψ − 2yφ,ψ + yφ+1,ψ, (6.41)

δ2x

δψ2
= xφ,ψ−1 − 2xφ,ψ + xφ,ψ+1, (6.42)

Draft of 3:35 pm, Monday, June 16, 2014 113

δ2y

δψ2
= yφ,ψ−1 − 2yφ,ψ + yφ,ψ+1, (6.43)

δ2x

δφδψ
=

1

4
(−xφ+1,ψ−1 + xφ+1,ψ+1 − xφ−1,ψ+1 + xφ−1,ψ−1) , (6.44)

and,
δ2y

δφδψ
=

1

4
(−yφ+1,ψ−1 + yφ+1,ψ+1 − yφ−1,ψ+1 + yφ−1,ψ−1) . (6.45)

Define α, β, γ as,

α = (xφ,ψ+1 − xφ,ψ−1)2 + (yφ,ψ+1 − yφ,ψ−1)2 , (6.46)

β =
1

2
((xφ,ψ+1 − xφ,ψ−1) (xφ+1,ψ − xφ−1,ψ)

+ (yφ,ψ+1 − yφ,ψ−1) (yφ+1,ψ − yφ−1,ψ)) , (6.47)

and,

γ = (xφ+1,ψ − xφ−1,ψ)2 + (yφ+1,ψ − yφ−1,ψ)2 . (6.48)

These finite difference approximations can be combined to yield equations for x and

y,

x =
1

2 (α+ γ)
[α (xφ+1,ψ + xφ−1,ψ)

+ γ (xφ,ψ+1 + xφ,ψ−1)

+ β (xφ+1,ψ−1 − xφ+1,ψ+1 + xφ−1,ψ+1 − xφ−1,ψ−1)] , (6.49)

and,

y =
1

2 (α+ γ)
[α (yφ+1,ψ + yφ−1,ψ)

+ γ (yφ,ψ+1 + yφ,ψ−1)

+ β (yφ+1,ψ−1 − yφ+1,ψ+1 + yφ−1,ψ+1 − yφ−1,ψ−1)] . (6.50)

These equations can be applied iteratively to calculate a new grid,

xm+1 =
1

2 (α+ γ)

[
α
(
xmφ+1,ψ + xmφ−1,ψ

)
+ γ

(
xmφ,ψ+1 + xmφ,ψ−1

)
+ β

(
xmφ+1,ψ−1 − xmφ+1,ψ+1 + xmφ−1,ψ+1 − xmφ−1,ψ−1

)]
, (6.51)

Draft of 3:35 pm, Monday, June 16, 2014 114

Figure 6.5: Density contour plot for Sedov’s problem, using a first order remap.

and,

ym+1 =
1

2 (α+ γ)

[
α
(
ymφ+1,ψ + ymφ−1,ψ

)
+ γ

(
ymφ,ψ+1 + ymφ,ψ−1

)
+ β

(
ymφ+1,ψ−1 − ymφ+1,ψ+1 + ymφ−1,ψ+1 − ymφ−1,ψ−1

)]
, (6.52)

where in (6.51) and (6.52) α, β, γ are evaluated at iteration m. An important feature

of this grid movement strategy is that β is proportional to the dot product of the

mesh segments, φ and ψ, so β = 0 is the grid is orthogonal, and if the grid is

nearly orthogonal this grid movement strategy will act to make the grid closer still

to being orthogonal. Although this is an iterative method within Odin the default

method is to apply a single iteration only, as this has been found to provide sufficient

grid relaxation. As discussed in [11] it is possible to further refine this method by

applying weights to specific grid points, to force the resolution to be greater in some

regions, but this is not currently implemented within Odin.

6.6 Results

To briefly assess the implementation of the first order remap Sedov’s problem shall

be re-run. This problem is of particular interest as the pure Lagrangian scheme

failed to complete this problem using a Cartesian mesh. The results are shown

in figures 6.5 and 6.6. The contour plot, figure 6.5 shows a strong degree of

Draft of 3:35 pm, Monday, June 16, 2014 115

Figure 6.6: Line plot of the density obtained along y = 0 for Sedov’s problem using
a first oder remap.

symmetry maintained over the domain. However the line plot, figure 6.6, shows

that the shock speed has been miscalculated, and the peak density has been spread

over a larger number of cells than seen in the calculations using a polar grid, or

subzonal pressures.

6.7 Summary

A first order remapping method has been discussed and implemented. Whilst the

test results are promising, and show how the addition of a remapping step can

increase the robustness of the code the answer lacks an acceptable level of accuracy,

and as such higher order remapping methods shall be sought.

Chapter 7

Ideal MHD in Cartesian

Coordinates

7.1 Introduction

There exists limited published material on the use of Arbitrary Lagrangian Eule-

rian codes for MHD simulations. When writing an MHD algorithm it is imperative

to conserve the divergence free nature of the magnetic field. When extending this

principle to ALE methods it amounts to constraining the magnetic field to be diver-

gence free in both the Lagrangian step, and any potential remapping step. Initial

conditions (and their evolution) that do not obey the solenoidal condition aren’t

physically correct; thus the requirement reduces to conservation of the divergence.

Should the field be divergence free at t = 0, then it should remain so. Divergence is

calculated as the sum of discrete fluxes through mesh segments. The most natural

choice is to use the cell faces as these surfaces, thus making ∇ · ~B a cell centred

quantity. This mirrors the methodology of many (intrinsically divergence preserv-

ing) staggered grid codes. Driven partly by this, and partly to work in terms of

conserved quantities it is desirable for the stored quantity within the code to be

magnetic flux through faces.

However, in order to carry out the momentum update, it is necessary to calculate

a cell centred value of the magnetic field, at the end of the predictor step. Thus an

apparent contradiction appears, in that the momentum update requires a cell cen-

tred magnetic field, whereas conventional divergence conserving remap strategies,

require face centred quantities.

It may appear logical to consider first the Lagrangian evolution of the full MHD

equations, however the exact details of this process will be dictated by the place-

116

Draft of 3:35 pm, Monday, June 16, 2014 117

ment of the variables on the grid, recalling the need for a cell centred magnetic field

only applies at predictor level. At integer time step levels, the position of magnetic

field variables are decided by the choice of divergence conserving remapping strat-

egy, and as such the question of the remap will be addressed first. It is also worth

noting, that to keep this discussion separate from other numerical issues, for now the

remap will be limited to first order only. Numerically there are two approaches to

obeying the solenoidal condition; schemes which intrinsically keep the B-field diver-

gence free, or those which seek to correct any violation. Constrained transport [39]

is a remapping technique which intrinsically obeys the solenoidal condition. Alter-

natively a divergence cleaning scheme may be used. A divergence cleaning scheme

(early examples include [40], [41])is applied at the end of a time step, and acts to

remove the portion of the B-field which violates the solenoidal condition, and it is

this technique that shall be considered first.

7.2 Divergence Cleaning Schemes

In an effort to examine differences between staggered grid and divergence cleaning

schemes Balsara and Kim [42] conducted a review of divergence cleaning schemes.

In order to assess the viability of divergence cleaning schemes their discussion and

some key results will be summarised. Although their work was within the context of

Godunov solvers, some of the conclusions made about divergence cleaning schemes

are still relevant here.

Divergence cleaning schemes may be split into two distinct types, scalar and vector

divergence cleaners. Balsara and Kim [42] look at two different scalar divergence

cleaners, as well as a vector divergence cleaner. The first scalar divergence cleaner

(SDC1) is formulated as follows, and is applied at the end of every step. Firstly

write the modified (divergence free) B-field (B′) in terms of the original B-field (B),

and a scalar, φ,

B′x,i,j,k = Bx,i,j,k −
φi+1,j,k − φi−1,j,k

2∆x
;

B′y,i,j,k = By,i,j,k −
φi,j+1,k − φi,j−1,k

2∆y
; (7.1)

B′z,i,j,k = Bz,i,j,k −
φi,j,k+1 − φi,j,k−1

2∆z
;

It can then be shown that if B′ satisfies the discrete divergence condition,

B′x,i+1,j,k −B′x,i−1,j,k
2∆x

+
B′y,i,j+1,k −B′y,i,j−1,k

2∆y
+
B′z,i,j,k+1 −B′z,i,j,k−1

2∆z
= 0, (7.2)

Draft of 3:35 pm, Monday, June 16, 2014 118

if φ obeys,

φi+2,j,k − 2φi,j,k + φi−2,j,k
4∆x2

+
φi,j+2,k − 2φi,j,k + φi,j−2,k

4∆y2
+
φi,j,k+2 − 2φi,j,k + φi,j,k−2

4∆z2

=
Bx,i+1,j,k −Bx,i−1,j,k

2∆x
+
By,i,j+1,k −By,i,j−1,k

2∆y
+
Bz,i,j,k+1 −Bz,i,j,k−1

2∆z
. (7.3)

Thus the problem of removing the solenoidal condition violating part of the B-field

has been reduced to solving a Poisson equation, as defined by (7.3). Balsara and Kim

[42] list a number of advantages and disadvantages of the scheme. The key advantage

of this scheme is that it is exact. Whilst (7.3) represents a Poisson problem, it is one

derived by the exact application of the solenoidal constraint. However it is hampered

by odd even decoupling. It is clear from (7.3) that odd and even φ’s are decoupled

from each other, and in fact represent (for a three dimensional problem) eight (N/2)3

solutions to Poisson problems. There is also a need for an all to all communication,

and most importantly perhaps (as with any Poisson solve) the system is now non-

local. Explicitly, should one region develop a non divergence free solution this will

affect the solution everywhere; there is now effectively information propagating at

an infinite speed. This divergence cleaning scheme may be summarised as exact,

with odd-even decoupling.

Having summarised the first divergence cleaning scheme of Balsara and Kim it is now

worthwhile summarising the underlying methodology behind divergence cleaners.

Divergence cleaning is essentially taking a Hodge projection of the B-field. A vector

field may be uniquely decomposed into two parts, a solenoidal part, and irrotational

part. Thus the post Lagrangian B-field, ~BL, may be rewritten as,

~BL = ~B′ +∇φ, (7.4)

where ~B′ represents the solenoidal part (the part of the post Lagrangian field that

obeys the solenoidal condition) and ∇φ is the irrotational part as ∇×∇φ = 0 for

all scalars φ. Thus to secure a divergence free B-field all that remains is to solve for

∇φ. To do this take the divergence of (7.4),

∇ · ~BL = ∇2φ, (7.5)

which is a Poisson equation. All that remains is to solve (7.5) for φ and use (7.4)

to solve for ~B′.

As an aside it is worth pointing out that due to the definition provided by (7.4),

∇× ~BL = ∇× ~B′ and as such divergence cleaning does not change the MHD current,

Draft of 3:35 pm, Monday, June 16, 2014 119

~j = 1/µo∇× ~B, although it does still change the ~j × ~B force.

With this in mind it is possible to formulate different variations of the previously

defined scheme. One such version is the second scalar divergence cleaning scheme

described by Balsara and Kim, [42]. This scheme, SDC2, differs from the previous

one in that (7.3) is replaced by,

φi+1,j,k − 2φi,j,k + φi−1,j,k
∆x2

+
φi,j+1,k − 2φi,j,k + φi,j−1,k

∆y2
+
φi,j,k+1 − 2φi,j,k + φi,j,k−1

∆z2

=
Bx,i+1,j,k −Bx,i−1,j,k

2∆x
+
By,i,j+1,k −By,i,j−1,k

2∆y
+
Bz,i,j,k+1 −Bz,i,j,k−1

2∆z
. (7.6)

The remaining equations from the first scheme remain unchanged. Clearly what

defines a divergence cleaning method is the choice of finite difference template for

∇2φ. This second scheme shares the advantages and disadvantages of the previous

scheme, with the following exceptions. Clearly, from (7.6) this scheme does not

suffer from odd-even decoupling. However it is no longer exact. This is because the

finite difference template has not been derived to exactly obey the finite solenoidal

condition. It is also worth pointing out that repeated applications of this scheme

will result in different B-fields. This scheme may be summarised as non-exact, but

without odd-even decoupling.

The remaining scheme describe by Balsara and Kim is a vector divergence cleaner.

This scheme works by transferring the three components of the B-field into Fourier

space, and correcting for non-zero divergence. This is easily done as the divergence

operator in real space transforms to the dot product between ~k and ~B(k) in Fourier

space, thus a divergence free (in Fourier space) field can be calculated,

Bi

(
~k
)

=
3∑
j=1

(
δi,j −

kikj
~k2

)
Bj

(
~k
)
. (7.7)

Clearly the resultant field from (7.7) has zero component parallel to the wave vector,

and is thus divergence free in Fourier space. To complete the divergence cleaning

step this field is transformed back into real space.

The main advantage of this scheme over SDC1 is that it is not susceptible to odd-

even decoupling. Unlike SDC2 this scheme is exact in Fourier space, which also adds

the further advantage over SDC2 in that repeated applications of this scheme does

not change the divergence in real space, so it does not suffer from the ambiguous

nature of SDC2.

This scheme is though, like SDC2, not exact in physical space, due to the differing

definitions of the divergence operator in Fourier and real space. It is also compu-

Draft of 3:35 pm, Monday, June 16, 2014 120

tationally expensive (even compared to SDC1 and SDC2), needing three times as

many fast Fourier transforms as the scalar schemes. It should be stressed also that

this scheme is still a Poisson solving one, and as such still suffers from the associated

non-local solution. A further disadvantage is that it requires all-to-all communica-

tion in parallel, again requiring three times as much as SDC1 and SDC2. The most

pertinent disadvantage to this discussion however is that the scheme cannot be ex-

tended to non-Cartesian domains. This is a problem that could be rectified in the

context of ALE codes by transforming to an orthogonal space, such as the a-grid

used in the Cauchy solution of the B-field (see subsection 7.5.2), but this would

represent yet further computational cost. To summarise whilst multiple variants of

divergence cleaners exist, each with their own individual advantages and disadvan-

tages, there are some recurring themes. All methods involve a Poisson solve, and as

such are computationally expensive, and introduce a non-physical non-local part to

the system. This action at a distance causes a divergence free violation in one part of

the domain to lead to action at a distance, thus changing the result elsewhere. This

discussion reaffirms the previous point, that divergence cleaners are non-physical,

computationally expensive methods used to correct for previous failings. Should

those previous failings be avoidable, then divergence cleaners should not be seen as

an option.

7.3 Conventional Remapping Strategies

Constrained transport, [39], is a widely used method which enforces a divergence

conserving evolution of the magnetic field. Originally formulated for fixed grid

codes, it has also been adapted for the remap phase of Lagrangian remap codes,

[10], by using a remap velocity in place of the fluid velocity (relative to the grid)

used by [39]. The original method involved relativistic considerations (not relevant

here), and an arbitrary grid motion relative to the fluid, however it is most clearly

explained by considering the case of a stationary (Eulerian) grid. It is also worth

noting that in [39] a different staggering is used; velocity components are defined at

face centres, and magnetic fluxes (and corresponding components) are stored at the

midpoints of what is effectively the median mesh. The algorithm is easily switched

to the staggering used in Odin, and it is that context which shall be used to explain

the method.

The magnetic flux through a surface, ~S is given by:

φ =

∫
s

~B · ~dS, (7.8)

Draft of 3:35 pm, Monday, June 16, 2014 121

where S is the grid face being considered. Considering now the change in that

quantity as the fluid moves through the grid, and using the Leibniz integral rule

(for two dimensions),

d

dt
φ =

∫
S

∂ ~B

∂t
· d~S +

∮
∂S(t)

~B · ~vc × d~r, (7.9)

where ∂S is the bounding contour of the surface, S, and ~vc is the velocity of the line

element d~r. Enforcing the grid to be Eulerian, thus setting ~vc = 0, and assuming

ideal MHD
d

dt
φ =

∫
S

∂ ~B

∂t
· d~S =

∫
S
∇×

(
~v × ~B

)
d~S. (7.10)

Finally, the application of Stokes theorem yields,

d

dt
φ =

∮
∂S

(
~v × ~B

)
· d~r, (7.11)

where ∂S is (once again) the bounding contour of the surface, S. In order to carry

out this integral it is necessary to define where all points are on the grid, including

in the ignorable direction. Thus, a third index, k, is needed. The positioning, and

indexing of cells, nodes and edges are defined by figure 7.1. The change in flux due

to (7.11) is calculated by carrying out the integral along the edges in right handed

sense.

It is now possible to write the change in flux through a cell face as the sum of the

emfs calculated along each edge, as defined by the discrete parts of (7.11).

dφi
dt

=
4∑
l=1

εl. (7.12)

These are not the full emfs (which always equals zero for ideal MHD, since ε =∫ (
~E + ~v × ~B

)
.d~l), just one contribution to it. However for the sake of brevity,

and to aid comparison between the method described and Evans and Hawleys’ [39]

original method these discrete parts will be referred to as emfs.

Consider now, the left most face of figure 7.1, defined by (i − 1/2, j, k). The

two edge contributions from (i − 1/2, j, k − 1/2) and (i − 1/2, j, k + 1/2) are equal

in magnitude due to symmetry (either in the z direction for Cartesian, or theta

for cylindrical) but opposite in sign due to the opposite direction along which the

integration is carried out, and thus cancel. Whilst demonstrated for a face with

fixed i-coordinate, a similar cancellation of two (albeit different edges) occurs for

Draft of 3:35 pm, Monday, June 16, 2014 122

Figure 7.1: Indexing used for a three dimensional cell. The velocity is defined at
the node. In order to carry out a constrained transport step it is necessary to
interpolate the magnetic field and the velocity to the same point, although they
may be stored in separate locations during the Lagrangian phase. Edges are defined
by the midpoint of the varying index, for example the left most edge (highlighted
red) in this diagram is denoted (i− 1/2, j, k − 1/2).

faces with fixed j-coordinate. The emf contribution due to edge (i− 1/2, j − 1/2, k)

can be written as:

εi−1/2,j−1/2,k =

∫ z(k−1/2)

z(k+1/2)
(vxBy − vyBx) dz. (7.13)

As ~v and ~B do not vary along the ignorable direction the emf of that edge can be

written as:

εi−1/2,j−1/2,k = −
(
vxB̄y − vyB̄x

)
∆z, (7.14)

where B̄i represents an interpolated value for the B-field i-th component at the

node. The minus sign in (7.14) has appeared due to the ordering of the integration

limits in (7.13), and the actual displacement of the line over which the integral has

been carried out is −∆z. Various ways exist to calculate B̄i, but the choice is not

important for explaining the algorithm. Repeating this argument from the other

Draft of 3:35 pm, Monday, June 16, 2014 123

contributing edge, and dropping the (now obsolete) third index,(
dφ

dt

)
i−1/2,j

=
[
−
(
vxB̄y − vyB̄x

)i−1/2,j−1/2
+
(
vxB̄y − vyB̄x

)i−1/2,j+1/2
]
∆z.

(7.15)

This argument can be repeated for all faces of the cell, and it is easy to see, that due

to the shared nodes but opposing directions of integration of each face that the total

flux change through the faces of each cell is zero. It is worth examining constrained

transport in a more physical sense to explain this.

Figure 7.2: Flux tube moving through a stationary grid at t = 0 (red) and one time
step later, blue.

Consider the layout as shown in figure 7.2, where initially there is a tube of flux,

denoted by the red arrow, which during the time step moves to it’s new position

at the end of the time step, denoted by the blue arrow. Clearly as the flux tube

has moved through the grid there must be a change in flux through the top of

the main cell illustrated as that flux is transferred to it’s neighbour in the positive

x-direction, and a corresponding, and identical flux must be transferred in the y-

direction as illustrated. It is clear that during this flux transport the divergence

of the magnetic field has been conserved, and this is the physical process Evans

and Hawley’s constrained transport models [39]. The adaption of this method for a

remap phase is simple; having calculated the new grid, calculate an effective velocity

remap, where,

~vremap∆t = (~xnew − ~xold) . (7.16)

Here ~xnew refers to the post remap position, and ~xold the post Lagrangian velocity.

In fact, the negative of this velocity must be used as it is now the grid which is

Draft of 3:35 pm, Monday, June 16, 2014 124

moving, not the fluid. There is of course a second consideration when adapting this

algorithm for a remap phase. What has been implicit in the preceeding discussion

is that the B-field needs to be interpolated to the point at which the velocity vector

is defined, when using this scheme to evolve a B-field on a fixed grid, as with

the original Evans and Hawley implementation, [39]. However when being used to

remap a B-field, it is necessary to interpolate the B-field to the midpoint of the

remap vector, i.e. to the midpoint of the old and new node positions.

7.3.1 Out of Plane Magnetic field Component

For a two-dimensional code remapping the ignorable direction component of the

magnetic field requires no special treatment in terms of maintaining the divergence

of the magnetic field. Due to this the third component of the magnetic field is usually

stored as a cell centred variable, as such the evolution of the ignorable direction

component is separated from the evolution of the two in plane components. As such

it can be remapped in the same manner as any other cell centred variable, as shown

in figure 7.3.

This scheme can, like previously described non-split remaps, be extended to higher

order. However, as discussed in the chapter on second order remapping methods

this method does have some difficulties and discrepancies, and as such for higher

order remaps a directionally split remap is preferable.

7.4 Cell Centred Based Remaps

Both the original constrained transport algorithm [39] and the adaption described

above use magnetic field components located at different points on the grid. Com-

ponents in the non-ignorable direction are given at cell faces, the ignorable direction

component is a cell centred quantity. Due to the requirement of a cell centred mag-

netic field for all components in the Lagrangian step (at least at predictor level) it

is worth considering the possibility of a constrained transport remap that uses cell

centred magnetic field components. Using such a method the most natural choice

for the positioning of the divergence of the magnetic field would be to make it a

nodal quantity and for it to be calculated in terms of fluxes through the median

mesh, as previously defined by the connection of midpoints of the primary grid, as

defined by the nodes. Constrained transport remaps are not limited to the primary

grid, nor are they limited to quadrilateral grids. In this sense, constrained transport

remaps are well suited to ALE schemes, in that as long as proper connectivity is

maintained (i.e. cells are properly defined), a constrained transport remap may be

Draft of 3:35 pm, Monday, June 16, 2014 125

Figure 7.3: Change in flux in ignorable direction, as defined by a swept region
based remap. The areas associated with the remap are calculated as the area of
the quadrilateral formed by pairs of nodes of the new (~X) and old (~X ′) grids, for
example the area associated with dφεi,j is formed by ~Xi,j , ~X

′
i,j ,

~Xi,j−1, ~X
′
i,j−1. The

dφ’s (directed out of the page) are calculated by the product of this area and the
interpolated value of the ignorable component of the magnetic field in the centre of
that region.

implemented.

With this in mind it is possible to then carry out such a remap, once again calcu-

lating the flux transfer due to the motion of (as yet undefined) points of the median

mesh, and applying them with either a positive or negative sign, once again based

on (7.13). The question of which points to consider remains to be answered. If

calculating the flux purely in terms of motion of the end points of the median mesh

then only four points need be considered. However, with the nodal cell actually

Draft of 3:35 pm, Monday, June 16, 2014 126

being defined by eight points that would also appear to be an option.

Although there are multiple possible implementations of a cell centred constrained

transport remap, they all share a common method of calculating the divergence

of the B-field around the node. To calculate the divergence, discrete contributions

must be summed around the median mesh. The flux through the median mesh is

defined as the dot product of the median mesh vector and the cell centred magnetic

field. The flux through the segments contributing to each of the nodal values of

∇ · ~B is half of this. This is illustrated by figure 7.4.

Figure 7.4: The initial fluxes used for a cell centred remap scheme, calculated at
the end of the Lagrangian step. φA and φB are calculated from the dot product of
the cell centred magnetic field and the median mesh vectors. The half-median mesh
fluxes are set equal to half of the relevant full median mesh fluxes, φ1 = φ2 = φB/2,
φ3 = φ4 = φA/2.

Draft of 3:35 pm, Monday, June 16, 2014 127

7.4.1 Eight Point Cell Centred Remap

Perhaps the most obvious cell centred constrained transport remap is the eight point

cell centred remap. However this method is substantially more computationally

expensive than the previously described constrained transport method in that it

required twice as many flux transfers to be calculated.

The remap may be carried out (for the sake of transparency at least) on a node by

node basis. For each node, eight flux transfers are calculated, one at each dynamic

flux point defined by figure 7.6. Consider the point (i + 1/2, j). The flux transfer

is calculated as,

ε(i+1/2,j) = −v̄xB̄y + v̄yB̄x. (7.17)

The velocity at this point is calculated as the average of the velocity of the two nodes

of the edge. The magnetic field will need to be interpolated from the magnetic field

in the neighbouring cells. So the change in φ4 as defined by figure 7.7 can be written

explicitly as:
dφ4
dt

= ε(i+1/2,j) − ε(i+1,j). (7.18)

This process is carried out for each of the eight flux segments of the nodal mesh.

Computational cost aside the problem with this method is at the end of the remap

there is no guarantee that the two halves of a median mesh face within a cell will

have equal fluxes, in fact, it is quite probable they won’t. This process is illustrated

in figure 7.5.

This presents the difficulty of constructing the cell averaged magnetic field for the

following Lagrangian step. A simple (or weighted) averaging procedure would ren-

der the code with a cell centred quantity, however it is no longer guaranteed that

this magnetic field is divergence free when calculated around the nodes at the end

of the remap phase.

It may be possible to retain these subzonal fluxes and calculate subzonal magnetic

fields. Subzonal pressure forces [31] however have been shown to modify the un-

derlying physics of the problem being considered, changing physical measurements

such as the growth rate of Rayleigh Taylor instabilities, as such subzonal magnetic

fluxes (or indeed, fields) were not considered an option.

7.4.2 Four Point Cell Centred Remap

Mach2 [33] is an ALE code for MHD problems, which uses a cell centred remapping

strategy. However, unlike the scheme described in the preceding section, only four

Draft of 3:35 pm, Monday, June 16, 2014 128

Figure 7.5: The development of subzonal fluxes occurring in an 8-point remap.
The pre-remap grid is shown as a dash line, and the post-remap grid solid. The
corresponding median meshes are shown in red. Using the notation of figure 7.4,
φ4 → φ4 − dφi−1/2,j−1/2 φ3 → φ3 − dφi,j−1/2 + dφi−1/2,j−1/2, clearly post remap,
φ4 6= φ3. A similar argument may be applied to φ1 and φ2.

flux transfers are calculated for each node, at the intersection of the median mesh

and the primary mesh, and as such this method does not suffer from the increased

computational cost of the eight point method. Once again these change in fluxes

are applied in a constrained transport sense, and thus divergence is conserved.

The four dynamic flux points of this scheme are defined by figure 7.8 but the nodal

divergence retains the eight flux segments of figure 7.7. The flux transfer at (i +

1/2, j) is as defined by (7.17) but there is no corresponding flux transfer at (i+1, j),

so,
dφ4
dt

= ε(i+1/2.j). (7.19)

Figure 7.9 illustrates a single node, four point cell centred remap. It is clear this

scheme also introduced subzonal magnetic fluxes. This could lead to the inference of

subzonal B-fields; as the vectors associated with two differing flux segments (φi−1,j3

and φi,j4) are always equal, then the only possible conclusion is that the magnetic

field is different on the two faces associated with these flux segments. This of course,

would lead to subzonal magnetic fluxes acting on the nodes, which as discussed pre-

viously is undesirable. The authors do not describe how these are accounted for,

either in terms of some smoothing procedure or subzonal magnetic fields. In fact,

given the formulation presented, no subzonal magnetic fluxes are considered, and

Draft of 3:35 pm, Monday, June 16, 2014 129

Figure 7.6: The dynamic flux points (indicated in blue) for an eight point cell
centred remap. The velocities for the edge points and cell centres are calculated by
averaging the relevant nodes. The magnetic field will have to be interpolated at all
eight dynamic flux points to carry out a constrained transport remap.

thus it is unclear if the divergence of the magnetic field is conserved at all.

7.4.3 Remap Summary

The preceding discussion maybe be summarised by two main conclusions. A di-

vergence cleaning scheme, whilst numerically viable, is a scheme which introduces

a non-local effect at a considerable extra computational cost, added to correct for

previous failures, and as such should really be used as a last resort. Secondly, a

cell centred constrained transport remap, whilst conserving the divergence of the

magnetic field, inevitably leads to subzonal magnetic fluxes, and the emergence of

subzonal forces. Subzonal forces have been shown in the context of pure hydrody-

namics to alter the properties of key physical results, which is clearly undesirable.

With these facts in mind the development of the Lagrangian phase of the B-field

evolution was carried out assuming that it would ultimately be necessary to either

purely work in terms of flux through faces, or find some intermediate step, to al-

Draft of 3:35 pm, Monday, June 16, 2014 130

Figure 7.7: Eight-point cell centred remap. ∇ · ~B is defined around the nodal cell,
defined by the median mesh (dashed lines). There are eight flux contributions, φi,
labelled by solid arrows. For the most general remap eight different dφis will need
to be calculated.

low the coupling of the Lagrangian phase with a conventional constrained transport

remap.

7.5 Lagrangian Phase

What should be clear from the introduction and the discussion of cell centred remap-

ping schemes is that is is necessary to work in terms of fluxes through a cell face,

calculate a cell centred magnetic field, advance this to a half time step value, and

thus calculate the corrector level force needed to complete the Lagrangian phase.

7.5.1 Lagrangian Remap Codes

Lagrangian remap codes, like ALE codes, employ a staggered grid and store the

magnetic field components at face centres. This allows for a simple update of the

magnetic field at those locations by utilising the conservation of magnetic flux in

Draft of 3:35 pm, Monday, June 16, 2014 131

Figure 7.8: The dynamic flux points (indicated in blue) for a four point cell centred
remap, once again velocities are averaged to obtain edge values, and the magnetic
field components interpolated there. The other four vertices of the median mesh
cell (the primary cell centres) do move during remap, however, no flux transfer is
attributed to this movement.

ideal MHD. In order to carry out the calculation of the ~J × ~B force at the start

of the predictor step the two non-ignorable direction components of the B-field are

averaged to calculate a cell centred magnetic field. This can then be updated using

the induction equation,

∂ ~B

∂t
= ∇×

(
~v × ~B

)
. (7.20)

This allows for the cell averaged magnetic field to be advanced to the half time step

level, which in turn is used to update the momentum. The magnetic field at the

end of the time step is only needed for remapping, and is easily calculated at the

necessary locations through conservation of magnetic flux.

Perhaps the most obvious method of extending the method of Lagrangian remap

codes to ALE codes is to continue to store flux through the cell face, and mod-

ify somehow the method which calculates the cell centred magnetic fields. Before

continuing this idea further it should be noted that this method has the advantage

that it both keeps the inherent divergence conserving quality of Lagrangian remap

codes’ Lagrangian phases, and again, like Lagrangian remap codes, it is fully com-

Draft of 3:35 pm, Monday, June 16, 2014 132

Figure 7.9: Four point cell centred remap, as used by Mach2. ∇ · ~B is again defined
around the nodal cell, defined by the median mesh (dashed lines). There are eight

flux contributions, φi,ji , to the calculation of
(
∇ · ~B

)i,j
. Four such contributions

(which are undergoing change in this example) are shown by solid arrows. Prior
to the remap, φi−1,j3 = φi,j4 . In this remap, only flux changes calculated at the
intersection of the primary and median mesh are calculated and transferred, as
shown here, for the node i, j − 1 moving in isolation (red arrow), giving rise to just
one dφi, and hence φi−1,j3 6= φi,j4 post remap.

patible with constrained transport. Furthermore, it is desirable that in modifying

this method, that in the limiting case that the ALE code operates as a Lagrangian

remap code, that the method reduces to that of the Lagrangian remap code.

ALE codes have the added complication that cell faces are no longer guaranteed to

align with coordinate directions, but a magnetic field contribution can be recovered

by realising that the flux is just the dot product of the B-field and the surface nor-

mal vector. Thus an orthogonal B-field at each cell face can always be recovered.

This does not yet yield a cell centred B-field, nor will simply averaging these B-field

contributions, simply because the method has half the information it requires; in

order to average, both the parallel and perpendicular components at each cell face

would be required.

As a further attempt to adapt the method used within Lagrangian remap codes

it was proposed that averaging the perpendicular fields from each of the opposite

edges in the cell, then summing the averages would yield a more accurate cell cen-

tred B-field. This was inspired by the idea that the two methods should reduce to

Draft of 3:35 pm, Monday, June 16, 2014 133

being identical in the perpendicular limit. Promising as this would appear, it has

a very obvious shortcoming when used on the simple one dimensional MHD shock

tube of Brio and Wu [43].

At the interface between the left and right states, at the first time step there is both

an initial acceleration in the x-direction (due to the ∇P force), and an acceleration

in the negative y, as demonstrated in figure 7.10. Applying the previously described

Figure 7.10: The initial forces at t=0 for the Brio and Wu MHD shock tube problem.
The forces are shown by a red arrow (∇P) and a blue arrow (~J × ~B), on the old
grid (dashed lines). The resulting (not to scale) grid displacement is shown by the
solid lines. The flux is unchanged, φ = φ′.

scheme will produce clearly incorrect results. The two faces which were originally

x-facing continue to do so, and provide correct (and unchanged) contributions to

the cell centred B-field x-component.

However, the two originally y-facing components have had both their magnitude and

direction perturbed, thus they will both now contribute to both the y-component

and the x-component. Thus, the resulting cell centred B-fields has an x-component

that varies with x, which cannot be so; it is a one dimensional problem, and as such

such a variation will always violate the solenoidal condition. A more sophisticated

approach is clearly needed.

7.5.2 Cauchy Solution

The Cauchy solution for the evolution of the B-field is based upon a method devised

by Cauchy in the context of the vorticity equation for inviscid flow, but is explained

in the context of the evolution of the B-field by Moffatt [44]. This was later extended

by Craig and Sneyd [45] in studying the stability of coronal magnetic fields. This

is a method of calculating the magnetic field based solely on the initial positions

Draft of 3:35 pm, Monday, June 16, 2014 134

of nodes, the initial magnetic field, and the deviation from the initial positions;

there is no explicit time stepping. As will be shown, this is utilised to show that

the divergence of the time advanced B-field is equal to that of the original B-field

so, like constrained transport, this method is divergence conserving. This is in fact

what is used in the current version of LareXd [10] to advance the magnetic field to

the predictor level.

In order to explain the method, Craig and Sneyd’s [45] original development is

followed, and consequently the relevant sections of Moffatt [44]. It is necessary

to introduce the following notation, ~x
(
~X, t
)

which will denote the position of a

Lagrangian point, at time t. ~X shall denote the initial position,

~x
(
~X, 0

)
= ~X, (7.21)

so that,
∂xi
∂Xj

= δij , (7.22)

effectively ~X is our Lagrangian coordinate. Moffatt uses a different notation, ~a in

place of ~X, however here ~a is reserved for later use. Using this notation, a line

element connecting two Lagrangian fluid parcels may be described as,

δxi =
∂xi
∂Xα

δXα, (7.23)

keeping Craig and Sneyds [45] original notation of summing over Greek indices and

(7.22) is used to recover the desired result that δxi = δXi. Applying the Lagrangian

derivative to this yields,

D

Dt
δxi =

D

Dt

(
∂xi
∂Xα

)
δXα, (7.24)

as δ ~X is constant. This can be written in terms of the velocity vector:

D

Dt
δ~x =

∂~u

∂Xα
δXα

=
∂~u

∂xα

∂xα
∂Xβ

δXβ

= (δ~x · ∇) ~u, (7.25)

where (7.23) has been used in the final simplification. This result is equally derivable

from basic geometric considerations of a Lagrangian line element, where the rate of

change of a component of the line element is given by the velocity difference of the

Draft of 3:35 pm, Monday, June 16, 2014 135

corresponding component along the line element.

As expected (from (7.23)) this is just the change in velocity component along

the line element.

Now consider the evolution of the vector defined by the B-field, divided by the

density.

D

Dt

(
~B

ρ

)
=

1

ρ

D

Dt

(
~B
)
−

~B

ρ2
D

Dt
(ρ)

=
1

ρ

(
~B · ∇~u− ~B∇ · ~u+

~B

ρ
ρ∇ · ~u

)

=
~B

ρ
· ∇~u (7.26)

Clearly (7.26) has the same form as (7.25), and so it is possible to write the vector

~B/ρ in terms of it’s original value and the change in initial positions,

Bt
i

ρt
=

∂xi
∂Xα

B0
α

ρ0
, (7.27)

where the convention of summing over Greek indices has been retained, and super-

scripts refer to time levels. Time level 0 refers to initial values. Conservation of

mass gives,
ρ0
ρ

=
∂ (x1, x2, x3)

∂ (X1, X2, X3)
= ∆0, (7.28)

and the final equation of evolution of ~B/ρ is,

Bi =
∂xi
∂Xα

B0α∆
−1
0 . (7.29)

Whilst (7.29) is valid for any original grid, it is not a particularly convenient method

for a grid that is not originally aligned with the coordinate system. Similarly to the

case of (7.23), (7.29) is evolving the components of the B-field parallel to the original

line elements used to define the elements of ∂xi/∂Xj . ALE codes are often used to

model complex geometries, with computational domains that are not aligned with

the global coordinate space, as such, in it’s current form (7.29) will not (necessarily)

yield the evolution of the B-field in terms of xy (or rz) components, unless line

elements used to define the derivatives are aligned with the coordinate directions.

However given that the derivation of (7.29) is done assuming a Lagrangian line

element the (only fully) correct choice of points to define the derivatives are the

Draft of 3:35 pm, Monday, June 16, 2014 136

nodes. Of course, these directions do themselves provide a valid coordinate system

but as Odin works in terms of the global coordinates, rather than the Lagrangian

ones, it would be necessary to transform these components back into the global

space. This would however require some knowledge of the original grid to be retained

throughout, as well as extra computation, rendering the method as inconvenient for

the current purposes.

As discussed ideally the line elements used to define the derivatives in (7.29) would

be Lagrangian line elements, defined by two Lagrangian points. However given that

what is actually being considered is the evolution of ~B/ρ, the B-field components

will be (co-)located at the centre of the cell. Thus it is required that ∂xi/∂Xj will be

cell centred also, so the median mesh is an obvious candidate for calculating these

partial derivatives. It should be stated that these points are not true Lagrangian

points themselves (see also discussion on definition of corner masses), there is a finite

difference error present with such a method.

In a similar manner, having relaxed the criteria that the line elements be Lagrangian

it is always possible to select some arbitrary points on the mesh such that the

derivatives in (7.29) can be taken along line elements aligned with the coordinate

system and result in B-field components in that system. In fact, (7.29) can be used

to define B-field components in any direction (coordinate system) desired. Like the

median mesh method, this is subject to a finite difference error, but is guaranteed

to evolve the B-field components in the global coordinate system. However, like the

suggestion of transforming the components back every time step it does required

further storage and computation.

In order to find a more elegant solution to these problems Craig and Sneyd [45]

introduced a third coordinate space, ~a. They state that it is desirable that ~a is a

uniform space. As discussed previously what is really desirable is a grid aligned with

the coordinate system, and as will be shown it’s both numerically and physically

beneficial to make the ~a space an orthogonal coordinate space, with separation of

unity between neighbouring points everywhere. This shall be referred to as a unit

coordinate space. Before rewriting (7.29), it is useful to introduce some compact

notation for the Jacobian determinants,

∂ (x1, x2, x3)

∂ (a1, a2, a3)
= ∆x,a =

1

∆a,x
(7.30)

and correspondingly,
∂ (X1, X2, X3)

∂ (a1, a2, a3)
= ∆X,a =

1

∆a,X
. (7.31)

Draft of 3:35 pm, Monday, June 16, 2014 137

Finally,

∆x,X = ∆x,a ·∆a,X , (7.32)

so (7.29) can be first rewritten as,

Bi =
∂xi
∂Xα

B0α∆X,a∆
−1
x,a. (7.33)

Now application of the chain rule yields,

Bi =
∂xi
∂aα

∂aα
∂Xβ

B0β∆X,a∆
−1
x,a. (7.34)

Now, making the choice to make ~a a unit coordinate space no extra information

(i.e. a metric) would need be stored to calculate ∆ and the partial derivatives with

respect to ai, hence the previously mentioned numerical benefit. As an example,

∂x1
∂a1

= xi − xi−1, (7.35)

due to the uniform separation of points in ~a space. Collecting the terms in (7.34)

which do not vary in time, (7.34) can be rewritten,

Bi =
∂xi
∂aα

B̄α∆
−1, (7.36)

where,

B̄i = B0α
∂ai
∂Xα

∂ (X1, X2, X3)

∂ (a1, a2, a3)
. (7.37)

The field defined by (7.37) is what the original authors, [45], term the pre-initial

magnetic field. Thus the evolution of the B-field has been written in terms of two

separate coordinates, firstly the Lagrangian coordinates, X, and secondly the unit

space, a. As with the formulation of the Cauchy solution of (7.36) evolves the B-field

components parallel to the directions defined by the vectors ~a. These have though

been defined to be (unit) vectors aligned with the coordinate space so the full Cauchy

solution as developed by Craig and Sneyd [45] evolves the B-field components in the

global coordinate space.

Having derived the full expression for Bi at any time, the divergence of the evolved

B-field should be considered. The chain rule gives,

∂Bi
∂xj

=
∂aα
∂xj

∂Bi
∂aα

= aα,jBi,α, (7.38)

Draft of 3:35 pm, Monday, June 16, 2014 138

and substituting (7.36) gives,

∂Bi
∂xj

= aα,j
(
xi,αβB̄α∆

−1 + xi,αB̄β,α∆
−1 − xi,βB̄β∆−2∆,α

)
. (7.39)

For a nonsingular matrix (mi,j),

∂

∂mij
det(M) = (M−1)jidet(M), (7.40)

so that,

∆,i = xα,βi
∂

∂xα,β
∆

= xα,βiaβ,α∆, (7.41)

where the fact that ai,j is found from the inverse of xi,j has been used. Substituting

in and multiplying through by ∆ gives,

∆
∂Bi
∂xj

= aα,j
(
xi,αβB̄β + xi,βB̄β,α − xi,βB̄βxγ,δαaδ,γ

)
, (7.42)

and finally contracting on i and j to give the divergence yields,

∆
(
∇ · ~B

)
= aα,γxγ,αβB̄β +∇ · ~̄B − aδ,γxγ,δαB̄α = 0. (7.43)

The first and third terms cancel exactly, leaving the familiar result that if that B-

field was initially divergence free it will remain so.

This method describes the evolution of a B-field with components co-located on the

grid. As previously suggested these will be co-located at the cell centre, which is

also required as the location for the predictor B-field. It is worthwhile considering

exactly what the pre-initial B-field means in this case, considering the x-component:

B̄x =

(
B0x

∂ax
∂Xx

+B0y
∂ax
∂Xy

)
∂ (X1, X2, X3)

∂ (a1, a2, a3)
, (7.44)

where the fact that ∂ax/∂Xz = 0 always for a two dimensional code has been used.

The coefficients of the matrix ∂ai/∂Xj are calculated by the inverse of ∂Xi/∂aj , so

it is possible to rewrite the x-component of the magnetic field as,

B̄x = B0x
∂Xy

∂ay
−B0y

∂Xx

∂ay
. (7.45)

Draft of 3:35 pm, Monday, June 16, 2014 139

Figure 7.11: The pre-initial magnetic field can be visualised as the flux through
the median mesh. ∂Xi/∂aj for each cell is calculated numerically using the edge
midpoint positions as indicated.

By making ~a a unit space, B̄ is equal in magnitude to the flux through the median

mesh; the same fluxes that were previously suggested for the cell centred remap.

The apparently incorrect minus sign in the second term in (7.45) is accounted for

by the fact that in the case that a positive By should make a positive contribution

to the flux, ∂Xx/∂ay is negative, as illustrated by fig 7.12. All the points needed

to calculate both components of the pre-initial field are illustrated by figure 7.11.

Figure 7.12: The pre-initial magnetic field is shown to be the correct calculation of
the flux through the median mesh.

Unfortunately fluxes through the median mesh have been shown to be incompatible

Draft of 3:35 pm, Monday, June 16, 2014 140

with ALE schemes. Although B̄ is equal to the flux, it is still a field, with units

that reflect that, and with multiple components. It is a B-field defined on a unit,

orthogonal grid space. As such, borrowing a method from fixed grid codes, the cell

centred pre-initial B-field could be replaced with the average of the value of those

components on the faces of the cell. More simply, rather than use the median mesh

flux as the pre-initial B-field the average of the fluxes through the primary mesh

faces is used instead. Explicitly the pre-initial magnetic field has been replaced by,

B̄x =
1

2

(
φi−1/2,j + φi+1/2,j

)
, B̄y =

1

2

(
φi,j−1/2 + φi,j+1/2

)
. (7.46)

This avoids the problems described in the previous section as ~a space is always

orthogonal.

As the φ values in (7.46) are equal to the fluxes through the primary mesh (defined

by nodes) they are compatible with a constrained transport remap, and as such the

Cauchy solution, with the modification described can safely be implemented in an

ALE scheme, whilst maintaining a divergence free magnetic field. Of course, this

change in definition of B̄ introduces a finite difference error, but does remove the

previous finite difference error of the cell centred scheme by describing the evolution

of the B-field in terms of movement of Lagrangian points.

7.5.3 Equivalence to Induction Equation

It is in fact possible to show that, given (7.46) as an (pre) initial magnetic field,

that advancing it through either the induction equation, (7.20), or by the Cauchy

solution, (7.34) are equivalent. First (7.20) should be written in integral form, using

the definition of the Lagrangian derivative, and Reynolds Transport Theorem,

D

Dt

∫
Ω
BdΩ =

∫
Ω

(
~B · ∇

)
~vdΩ (7.47)

It is convenient to consider the product of the magnetic field and the control volume,

BCV , rather than simply the magnetic field, without obstructing the validity of the

proof, as volume is calculated consistently in the two methods. Now, writing the

x-component of (7.47) in its discrete form,

B1/2
x CV 1/2 = B0

xCV
0 +

∆t

2

[
φηi,j v̄

b
x − φ

η
i−1,j v̄

d
x + φεi,j v̄

c
x − φεi,j−1v̄ax

]
, (7.48)

where the superscripts 0, (1/2) refer to the initial and predictor time levels respec-

tively. v̄x is the edge averaged x-component of the velocity, and the superscript

Draft of 3:35 pm, Monday, June 16, 2014 141

denotes the corresponding edge, as denoted by figure 7.13.

Figure 7.13: Notation for edge averaged velocities used for possible implementation
of evolution through the induction equation.

Rearranging,

∆ (BCV) =
∆t

2

1

2

[(
φηi,j + φηi−1,j

)(
v̄bx − v̄dx

)
+
(
φηi,j − φ

η
i−1,j

)(
v̄bx + v̄dx

)
+
(
φεi,j + φεi,j−1

)
(v̄cx − v̄ax) +

(
φεi,j − φεi,j−1

)
(v̄cx + v̄ax)

]
, (7.49)

and finally grouping terms,

∆ (BCV) =
∆t

2

[
v̄x

(
φηi,j − φ

η
i−1,j + φεi,j − φεi,j−1

)
+

1

2

(
φηi,j + φηi−1,j

)(
v̄bx − v̄dx

)
+

1

2

(
φεi,j + φεi,j−1

)(
v̄cx − v̄ax

)]
. (7.50)

Here v̄x is the cell average of the x component of the velocity.

Assuming that the magnetic field has been specified to be divergence free, the first

term on the right hand side of (7.50) disappears. Noting that the velocity differ-

ences in the second terms on the right hand side constitute numerical derivatives in

uniform grid space, and writing the averages of opposing fluxes as barred quantities,

the final difference term for the explicit induction equation is,

∆ (BCV) =
∆t

2

(
φ̄η
∂vx
∂ax

+ φ̄ε
∂vx
∂ay

)
. (7.51)

Draft of 3:35 pm, Monday, June 16, 2014 142

To calculate the equivalent term for the Cauchy solution consider first the magnetic

field at t = 0,

B0
xCV

0 =
1

2

[(
φηi−1,j + φηi,j

) ∂x

∂ax
+
(
φεi,j−1 + φεi,j

) ∂x
∂ay

]
. (7.52)

Then by noting that,

∂x

∂ax

∣∣∣∣∣
t=1/2

=
∂x

∂ax

∣∣∣∣∣
t=0

+
∆t

2

∂vx
∂ax

∣∣∣∣∣
t=0

, (7.53)

it is clear that,

∆ (BCV) =
∆t

2

1

2

[(
φηi−1,j + φηi,j

) ∂vx
∂ax

+
(
φεi,j−1 + φεi,j

) ∂vx
∂ay

]
. (7.54)

Clearly, (7.54) and (7.51) are equivalent.

There is a caveat to the above proof however. The proposed method of implement-

ing the induction equation has been deliberately simplified. As given above the

method would (most likely) require the cell centred magnetic field, as well as the

fluxes through the face to be stored. Other choices may exist, but this discussion

is somewhat off topic. With this in mind, it must be stressed that what has actu-

ally been demonstrated is only equivalent evolution. The adaption of the Cauchy

solution to ALE codes as outlined previously effectively carries out an averaging

procedure at t = 0. Given that the induction equation may not carry out this step

the initial magnetic field, as calculated by the code from the initial conditions may

be different, and this of course will yield different results. The adapted Cauchy so-

lution is still used despite this averaging, as it is not clear how to combine evolution

through the induction equation with an arbitrary constrained transport remap, and

it is considerably computationally cheaper.

A second inference from the above proof is that it makes it clear that the Cauchy

solution does indeed involve time stepping, but only in the calculation of the partial

derivatives of the position with respect to the Lagrangian coordinates. The fact that

an ALE scheme would already have generated this information and carried out the

necessary time stepping reinforces the computational efficiency of the scheme.

7.6 Coupling of Remap to Cauchy Solution

All that remains is to couple the modified Cauchy solution to the adaption of the

constrained transport method for remapping. The remap for the ignorable direction

Draft of 3:35 pm, Monday, June 16, 2014 143

B-field component remains unchanged, and the following discussion is only relevant

to the two in plane components. Should a remap be triggered the following steps

are carried out.

The first step in a remap is to define a remap displacement vector as defined ac-

cording to (7.16). As previously mentioned, to calculate the flux transfers during a

remap it is necessary to interpolate the B-field to the midpoint of this vector. In

order to do this the Cauchy solution is used to calculate the cell centred B-field at

the end of the time step.

It is desirable to now upwind the B-field in order to carry out the remap. In a first

order scheme this reduces to a donor cell scheme. However for an arbitrary grid at

the end of the time step it is non-trivial to calculate which cell the midpoint of the

displacement vector lies in. This is complicated further by the fact that it is possible

this point lies along one of the edges itself.

Point in polygon schemes (such as the ray tracing algorithm) encounter difficulties

when the point in question lies along the polygon (cell) edge. Solutions do exist

where a specific cell could be chosen, or it may be suggested that an average of the

two cells in question be taken.

For a displacement vector lying along an edge it would however be more correct

to (for a first order scheme) calculate the flux transfer as a fraction of the flux

through the full edge. Clearly this scheme is more complicated than the previously

described hydrodynamic remap. For a higher order scheme complications grow. An

isoparametric remap (chapter 9) greatly simplifies these problems, but is beyond

the scope of this chapter, thus to demonstrate the basic scheme the average of the

four surrounding cell centred B-fields was used.

It may be argued that a distance weighted average might be more appropriate, but

as the aim is to simply demonstrate the scheme a simple average was used for the

tests presented in this chapter. Having obtained a value for the B-field at the node,

this is combined with the remap velocity as calculated from (7.16) and used to cal-

culate and apply flux transfers in a constrained transport remap. This gives post

remap fluxes through the cell faces which are then used for the pre-initial magnetic

field as in (7.46) for proceeding Lagrangian steps.

7.7 Shock Capturing in ALE MHD

Shock viscosities (e.g. [14], [18], [24]) are needed to enable calculations involving

shocks in ALE hydrodynamics codes, and are usually triggered by some form of

compression switch. However in MHD problems shocks may also occur in cells that

Draft of 3:35 pm, Monday, June 16, 2014 144

are not undergoing compression. Therefore to enable shock capturing the mimetic

tensor viscosity of Campbell and Shashkov, [24], was used, but with the compression

requirement relaxed. The viscosity limiters were left on, as they ensure the viscosity

will turn off smoothly in regions of smooth flow. The viscous heating, despite the

relaxation of the compression switch remains positive always.

For pure hydrodynamics the magnitude of this viscosity is derived from the jump

conditions across a shock, [16], [17]. However as pointed out in [10] no such deriva-

tion exists for MHD. For purely hydrodynamical cases this magnitude is dependent

on the sound speed, and in adapting the tensor shock viscosity of [24], the sound

speed is replaced by the fast speed. In practice running with the full Kuropatenko

magnitude for the viscosity (with sound speed replaced with fast speed) resulted

in excessive dissipation, and as such problems were run with reduced viscosity of

c1 = 0.1, c2 = 0.5 unless stated otherwise.

7.8 Lorentz Force Term Calculation

Having demonstrated how to couple a constrained transport remap, and an adapted

version of the Cauchy solution to an ALE code, and how to modify a shock viscosity

to work in MHD problems, the final required step is how to calculate the Lorentz

force terms. For ideal MHD in terms of normalised variables the acceleration is

given by,

ρ
D~v

Dt
= ~J × ~B −∇p

=
(
∇× ~B

)
× ~B −∇p. (7.55)

However in order to utilise the divergence theorem, (7.55) is rewritten in its conser-

vative form,

ρ
D~v

Dt
+∇ ·

(
Ip+

I ~B2

2
− ~B ⊗ ~B

)
= 0. (7.56)

Treatment of the second term in (7.56) is straightforward; the magnetic pressure

force is calculated in an analogous way to the thermodynamic pressure force, given

that the half time step B-field is cell centred. The final term is a little more complex.

Considering just the magnetic tension force,

~F = −
∫
Ω
∇ ·
(
~B ⊗ ~B

)
dV, (7.57)

Draft of 3:35 pm, Monday, June 16, 2014 145

where the integration is carried out over the nodal cell. Applying the divergence

theorem for tensors,

~F = −
∫
∂Ω

(
Bini

)
~BdV

= −
∮
∂Ω

~B
(
~B · ~n

)
dS

= −
8∑
i=1

~Bφi (7.58)

Thus the corner force resulting from the magnetic tension force is given by,

~fzi = − ~Bzφ, (7.59)

where φ is the (half time-step) flux through the median mesh segment associated

with the corner force.

7.9 Summary of a single MHD ALE time step

To summarise the development in this chapter the individual steps necessary in

adding ideal MHD to an ALE code are presented.

0. The fluxes through the primary mesh faces are stored. This is either done

through initial conditions if carrying out the first time step, or retained from a

previous Lagrangian step if no remap has taken place, or modified by a remap

step.

1. The half time step, cell centred, B-field is calculated in terms of the flux

through the primary mesh faces and the half time step nodal positions using

the modified Cauchy method.

2. The half time step flux through the median mesh face is calculated. The total

force due to the half time step B-field is calculated.

3. These forces are used to update the velocity fields, in conjunction with the

hydrodynamical forces.

Optionally:

4. A remap is carried out which modifies the flux through the primary mesh.

Draft of 3:35 pm, Monday, June 16, 2014 146

7.10 Boundary Conditions

All that remains is to define how the boundary conditions should be applied to

the B-field components. The third component of the B-field is treated in the same

manner as the scalar quantities within subsection 2.3.1. For periodic boundary con-

ditions, the in-plane B-field components are calculated in the same manner as the

velocity components. For reflective boundary conditions the in-plane components

are calculated in the same manner as the tangential velocity components in subsec-

tion 2.3.1. This yields the useful result that the B-field is consistent with the both

the reflective nature of the boundary conditions, and the solenoidal constraint.

7.11 Results

7.11.1 Brio and Wu MHD Shock Tube

Like its counterpart in hydrodynamics the Brio and Wu shock tube [43] represents a

basic test of a MHD codes ability to capture shocks. The initial conditions are very

similar to the Sod shock tube, but with an imposed constant B-field x-component,

and a y-component which changes sign at the interface between the states.

(ρ, P,By) =

(1, 1, 1) if x < 0.5

(0.125,−1, 0.1) if x > 0.5

Bx = 0.75

~v = 0.0

(7.60)

The initial tests with the Brio and Wu shock tube show good agreement with other

codes (e.g. [10]), but the simplicity of the problem allows an easy investigation into

the question of the compression switch in MHD. The results shown in figure 7.14

represent a calculation where the compression switch is relaxed, i.e. the viscosity is

applied everywhere for MHD problems. This follows the method presented in [10].

However it is also possible to run the test with the compression switch active, as

shown in figure 7.15. The results in figure 7.14 show less oscillations and undershoot

than in figure 7.15 justifying the decision to relax the compression switch.

7.11.2 Magnetised Noh

Like the previous test case the magnetised Noh problem represents an adaption of a

hydrodynamical shock test to MHD with the addition of a B-field. The Noh problem

in Cartesian coordinates (i.e. a collapsing sphere) is modified with the addition of a

Draft of 3:35 pm, Monday, June 16, 2014 147

Figure 7.14: Brio and Wu magnetised shock tube problem, fully Lagrangian Results.
800 cells.

radially varying Bθ. The problem was first devised to provide z-pinch codes with a

verification test [46], and has been used also as a test of expanding existing codes to

cylindrical MHD [47]. However, this problem can easily be transferred to a Cartesian

scheme, and represents a good test of the codes ability to model B-fields and flows

not aligned with the grid.

Draft of 3:35 pm, Monday, June 16, 2014 148

Figure 7.15: Brio and Wu magnetised shock tube problem, fully Lagrangian Results,
with compression switch active. 800 cells.

The initial conditions (given in cylindrical coordinates) are,

ρ = 3.1831× 10−5r2g/cm3

vr = −3.24101× 107cm/s

vz = 0

vθ = 0

Br = 0

Bz = 0

Bθ = 6.35584× 105rGauss

P = 0. (7.61)

Here r is the radial coordinate in cm, and the problem is run to 30 ns.

Draft of 3:35 pm, Monday, June 16, 2014 149

Figure 7.16: Magnetised Noh problem, run with viscosity coefficients c1 = 0.1,
c2,= 0.5 Fully Lagrangian, 50x50.

Figure 7.17: Magnetised Noh problem, run with viscosity coefficients c1 = 1.0,
c2,= 1.0. Fully Lagrangian, 50x50.

This problem was run twice, in fully Lagrangian mode. As discussed previ-

ously, when running with both viscosity coefficients set to unity excessive dissipation

appears in some MHD problems. However for this problem, which has a one dimen-

sional solution, significantly better results were obtained with coefficients at unity,

as shown by comparison of figure 7.16 and figure 7.17.

7.11.3 MHD Rotor

The MHD rotor test [48] represents a more demanding test of Lagrangian MHD

solver. Unlike in previous tests where the flow was strictly one dimensional the

flows in this case are more complex, and grid twisting is a natural part of the

solution. The problem consists of a rotating dense disc at the origin surrounded by

a less dense stationary background fluid. There exists a matching region between

the two materials, that is not strictly needed for ALE codes, however it was included

Draft of 3:35 pm, Monday, June 16, 2014 150

to aid comparison with previously published results.

The initial conditions are given by,

(ρ, vx, vy) =


(10,−v0 (y − 0.5) /r0,−v0 (x− 0.5) /r0) if r < r0

(1 + 9f,−fv0 (y − 0.5) /r,−fv0 (x− 0.5) /r) if r0 ≤ r < r1

(1, 0, 0) if r ≥ r1
(7.62)

Here r is the radial distance, r0 = 0.1 and r1 = 0.115. f is the matching function

given by,

f =
r1 − r
r1 − r0

. (7.63)

The pressure is given by p = 1.0 everywhere and finally, the B-field is given by,

~B = (Bx, By, Bz) =
(

5/
√

4π, 0, 0
)
. (7.64)

The first set of results shown in figure 7.18 show good resolution of features seen in

previous calculations of this problem. The two dimensional nature of this problem

also allows a good test of the basic remapping strategies presented in this chapter.

The remapping here is first order, however given the problem is shock dominated

this is not expected to damage the solution by a great amount. For the second run of

this test the problem was run until t=0.39, at which point the grid was locked and a

complete remap was carried out every time step. Due to the presence of a remap this

problem was able to be run at a higher resolution, previously such high resolutions

in conjunction with fully Lagrangian grid motion resulted in unacceptably small

time steps. The results in figure 7.19 show good agreement with figure 7.18. Some

additional (minor) features are present, most likely resulting from the increased

resolution.

7.11.4 Orszag Tang Vortex

The final test case presented here is the Orszag Tang vortex [49],[50]. Like the

previous rotor test the flows are complex and two dimensional, but it is also a

shock dominated problem, so allows a test of both the Lagrangian and remapping

techniques previously discussed.

Draft of 3:35 pm, Monday, June 16, 2014 151

Figure 7.18: MHD Rotor problem, fully Lagrangian Results. 200x200.

The initial conditions are given by,

ρ = 25/9

vx = − sin y

vy = sinx

vz = 0

Bx = − sin y

By = sin 2x

Bz = 0

P = 5/3. (7.65)

Draft of 3:35 pm, Monday, June 16, 2014 152

Figure 7.19: MHD Rotor problem, fully Lagrangian until t = 0.39, then fully Eule-
rian. 400x400.

The first test run is carried out with fully Eulerian grid motion for all time, as an

initial base example. When comparing the results in figure 7.20 with other published

results some short comings are apparent, particularly in the resolution of the central

bar which is not as distinct as in previous results. Also the central quadrilateral

feature is not particularly well defined, most likely due to the lack of upwinding in

the remap scheme. The second run of the Orszag Tang vortex figure 7.21 was run in

a fully Lagrangian mode until t=1.0, and then the grid was locked, and a full remap

was carried out at the end of all time steps. This allows a good test of how the

grid imprints on the solution. The results in figure 7.20 and figure 7.21 show good

qualitative agreement, which supports the idea that the Cauchy solution for the

Draft of 3:35 pm, Monday, June 16, 2014 153

Figure 7.20: Orszag Tang Vortex, run in fully Eulerian mode. 400x400

Figure 7.21: Orszag Tang Vortex, run in fully Lagrangian mode until t=1.0, fully
Eulerian thereafter. 400x400

B-field is grid independent. There is no clear winner as far as resolution of central

features is concerned. The final test with the Orszag Tang vortex was run with a

Figure 7.22: Orszag Tang Vortex, run with Gaussian remapping function. 400x400

Gaussian remapping function. This method remaps the grid every time step with a

Draft of 3:35 pm, Monday, June 16, 2014 154

weight of the fluid velocity. This weight is determined by a Gaussian function of the

distance from the radius, such that the point at the centre is allowed to move in an

entirely Lagrangian mode, whereas the points at the boundary are almost entirely

Eulerian. Considering the resolution of the central features this method is perhaps

the most successful.

The results presented here, whilst promising suggest improvement is required for the

remapping method, particularly the need to properly upwind solutions at shocks,

and to increase the order of the remap for other regions. However the Lagrangian

phase seems successful at modelling flows for arbitrary grids.

Chapter 8

Ideal MHD in Cylindrical

Coordinates

8.1 Review of Cylindrical Hydrodynamics

Odin carries out cylindrical hydrodynamic simulations by utilising an area weighting

scheme. In order to make the magnetohydrodynamics compatible with the cylindri-

cal calculation it is necessary to formulate an equivalent area-weighted acceleration

of nodes due to magnetic forces.

The cylindrical scheme is well explained in a previous chapter, however recalling

the key points is useful for the preceding discussion. The force in an area weighted

scheme is derived by integrating the continuous equations around an area,

~fAW =

∫
A

~fdA, (8.1)

and the inertia of the node is defined by the product of density and cross sectional

area. This area was calculated by decomposing the subzonal masses so that the

mass of the node had the form,

Mnode =
∑
z

4∑
i=1

wia
z
i ρ
z, (8.2)

where the first summation is over all cells connected to the node, and the second

over all subzonal cross sections of the cell. wi are weightings derived from the

decomposition of zonal mass. The hydrodynamic case for area weighted schemes

was particularly simple in that the continuous equations had the same form in both

coordinate systems, however this is not the case for the magnetic stress tensor, and

155

Draft of 3:35 pm, Monday, June 16, 2014 156

as shall be shown additional terms are needed.

8.2 Area weighted Cylindrical MHD

If the thermal pressure is neglected, the momentum equation for cylindrical coordi-

nates is,

ρ
D~v

Dt
= −∇ · T , (8.3)

where,

T =
B2

2
I + ~B ~B. (8.4)

It’s beneficial to split this tensor into two parts,

T = PBI + ~B ~B

= T + T, (8.5)

where PB is the magnetic pressure. Consider first T. Taking the divergence of a

rank-2 tensor,

(∇ · T)r =
1

r

∂

∂r
(rTrr)−

Tφφ
r

=
∂

∂r
PB, (8.6)

(∇ · T)φ =
1

r

∂

∂φ
PB

= 0, (8.7)

and,

(∇ · T)z =
∂

∂z
PB. (8.8)

Here the case is identical to the hydrodynamic case, the continuous equations are

identical in both coordinate systems, thus the magnetic pressure is implemented in

the same way as the hydrodynamic pressure in an area weighted scheme.

Considering now T,

(∇ · T)r =
1

r

∂

∂r

(
B2
rr
)

+
1

r

∂

∂φ
(BrBφ) +

∂

∂z
(BrBz)−

Bφ2

r

=
∂

∂r

(
B2
r

)
+

∂

∂z
(BrBz) +

B2
r

r
−
B2
φ

r
. (8.9)

Draft of 3:35 pm, Monday, June 16, 2014 157

This equation must now be integrated about an area, to derive the area weighted

force,

fAWD
r =

∫
dA

[
∂

∂r

(
B2
r

)
+

∂

∂z
(BrBz) +

B2
r

r
−
B2
φ

r

]
dA

=

∮
∂Ω

~B
(
~B · ~n

)
dS +

∫
A

(
B2
r

r
−
B2
φ

r

)
dA. (8.10)

The first term is identical to the Cartesian case, and can be inherited from the pre-

vious scheme, although it should be stressed that the force would now be calculated

in terms of a Cartesian flux. The second two terms are however additional forces

due to the geometry, and must be implemented separately. The forces derived by

integrating the equations about an area must be multiplied by a radial weighting so

as to be used in an equation of the form,

M
D~u

Dt
=
∑

~F . (8.11)

The implication of this is that rather than using the continuous source term multi-

plied by the volume (as would be the case if a volume weighted scheme were being

used), the source term is in fact multiplied by the area, so neglecting the first two

terms in (8.9),

fAWD
r =

(
B2
r

r
−
B2
φ

r

)
Arnode. (8.12)

Here barred quantities represent area weighted averages around the node. As a final

note, it must be remembered that the area associated with the nodal inertia in area-

weight cylindrical schemes, does not correspond exactly with the area associated

with a node in Cartesian coordinates. For example the area associated with the

node i = 1 is given by,

arz1 =
1

16
(9axy1 + 3 (axy2 + axy4) + axy3) . (8.13)

The other components follow a similar pattern,

(∇ · T)z =
∂

∂r
(BrBz) +

∂

∂z

(
B2
z

)
+
BrBz
r

, (8.14)

and,

(∇ · T)φ =
∂

∂r
(BrBφ) +

∂

∂z
(BzBφ) +

2BrBφ
r

, (8.15)

Draft of 3:35 pm, Monday, June 16, 2014 158

where the partial derivatives are taken from the Cartesian numerical scheme, and

the other terms are added as geometric correction terms in the same manner as for

the radial coordinate. The final area weighted forces are,

fAWD
r = rA

[
fCart.x +

B2
r −B2

φ

r

]
, (8.16)

fAWD
φ = rA

[
fCart.z +

2BrBφ
r

]
, (8.17)

and,

fAWD
z = rA

[
fCart.y +

BrBz
r

]
. (8.18)

These equations must be used in an equation of the form,

rAρ
D~v

Dt
= ~fAWD, (8.19)

where A results from decomposition of the subzonal masses.

8.3 Results

The magnetised Noh’s problem as defined in the Cartesian MHD result section can

now be calculated in cylindrical coordinates. The results compare well to the self

Figure 8.1: Magnetised Noh problem, run with viscosity coefficients c1 = 0.1, c2,=
0.5 in cylindrical coordinates. Fully Lagrangian, 250x1.

similar solutions presented in [46], as well as the previously published numerical

results, [47].

Draft of 3:35 pm, Monday, June 16, 2014 159

8.4 Summary

An area weighted scheme for modelling magnetohydrodynamic problems in cylin-

drical coordinates has been developed, and tested on a basic test problem. This

was done in order to try and preserve the benefits of area weighted schemes as

discussed previously; specifically simplicity in adaptation of an existing Cartesian

scheme, and symmetry preservation. However further testing and a detailed code

comparison would be required to assess the true validity of this scheme.

Chapter 9

Second Order Remaps

In the previous section on first order remaps a swept region based remap was chosen

over an intersection based remap, a decision based mostly on computational and

algorithmic simplicity, however a key required improvement to the swept region

based remap was identified; the need to introduce information transfer between

diagonal neighbours in a single remap. There are essentially two approaches to this

problem, a split remap, or direct corner transport. It is the second of these methods

which will be first explained and then assessed in the context of an ALE code.

9.1 Corner Transport

Upwinded corner transport was first introduced by Colella for use with fixed grid

codes, as an alternative to the operator split methods described in the next section.

However their order of discussion isn’t particularly important so Colella’s corner

transport upwinded (CTU) methods shall be described first.

Although derived for a fixed grid method, CTU has been previously suggested, e.g.

[51], as a solution to the corner coupling problem of ALE code remaps. However it

is most simply explained in the context of orthogonal fixed grids, before assessing

within the context of ALE codes. It should be pointed out however that Colella’s

original formulation was not limited to orthogonal grids, and in fact he explicitly

presented a formulation for non-orthogonal grids, however again for the sake of

simplicity it shall be presented in an orthogonal frame.

Colella first derived the CTU scheme for the two dimensional advection problem

described by,
∂ρ

∂t
+ ~u · ∇ρ = 0. (9.1)

160

Draft of 3:35 pm, Monday, June 16, 2014 161

The velocity components are denoted as,

~u = (u, v) , (9.2)

and for simplicity shall be assumed to be constant. Consider the case shown in 9.1,

given the values at t = tn the value at tn+1 could be estimated by tracing back the

area occupied by the cell at tn+1 to tn so that the updated density is given by,

ρn+1
i,j =

1

σi,j

(
A1ρ

n
i,j +A2ρ

n
i,j−1 +A3ρ

n
i−1,j +A4ρ

n
i−1,j−1

)
, (9.3)

where σi,j is the total cross sectional area of the cell at n + 1 and the cell’s extent

in the third direction, ∆z has been cancelled. It is possible to formulate (9.1) in

conservative (predictor corrector) finite volume form as,

ρn+1
i,j = ρni,j +

u∆t

∆x

(
ρ
n+1/2
i−1/2,j − ρ

n+1/2
i+1/2,j

)
+
v∆t

∆y

(
ρ
n+1/2
i,j−1/2 − ρ

n+1/2
i,j+1/2

)
, (9.4)

where the predictor level densities are given by,

ρ
n+1/2
i,j+1/2 = ρni,j +

u∆t

2∆x

(
ρni,j−1 − ρni,j

)
, (9.5)

and,

ρ
n+1/2
i+1/2,j = ρni,j +

v∆t

2∆y

(
ρni−1,j − ρni,j

)
. (9.6)

Colella justified the derivation of (9.5) and (9.6) by noting they are equal to the

average of the density of the region swept out by the cell edge during the half time

step. It should be noted that (9.5) and (9.6) are upwinded based on the direction

of the advective flow. Combining (9.4), (9.5) and (9.6) the following expression for

ρn+1
i,j is obtained,

ρn+1
i,j = ρni,j +

u∆t

∆x

[
ρni−1,j +

v∆t

2∆y

(
ρni−1,j−1 − ρni−1,j

)
− ρni,j −

v∆t

2∆y

(
ρni,j−1 − ρni,j

)]
+
v∆t

∆y

[
ρni,j−1 +

u∆t

2∆x

(
ρni−1,j−1 − ρni,j−1

)
− ρni,j −

u∆t

2∆x

(
ρni−1,j − ρni,j

)]
. (9.7)

Draft of 3:35 pm, Monday, June 16, 2014 162

Collecting terms,

ρni,j = ρni,j

(
−u∆t
∆x

+
u∆t

∆x

v

2

∆t

∆y
− v∆t∆y

+

v∆t

∆y

u

2

∆t

∆x

)
+ ρni−1,j

(
u∆t

∆x
− u∆t

∆x

v

2

∆t

∆y
− v∆t

∆y

u

2

∆t

∆x

)
+ ρni,j−1

(
−u∆t
∆x

v

2

∆t

∆y
+
v∆t

∆y
− v∆t

∆y

u

2

∆t

∆x

)
+ ρni−1,j−1

(
u∆t

∆x

v

2

∆t

∆y
+
v∆t

∆y

u

2

∆t

∆x

)
. (9.8)

Rewriting once more,

ρn+1i, j =
ρni,j
Ai,j

(
Ai,j − u∆t∆y − v∆t∆x+ uv (∆t)2

)
+
ρni−1,j
Ai,j

(
u∆t∆y − uv (∆t)2

)
+
ρni,j−1
Ai,j

(
v∆t∆x− uv (∆t)2

)
+
ρni−1,j−1
Ai,j

(
uv (∆t)2

)
, (9.9)

where Ai,j is the area (volume in 3D) associated with cell (i, j). Considering

figure 9.1 and rewriting in the following form,

ρn+1
i,j =

1

Ai,j

(
ρni,ja1 + ρni−1,ja3 + ρni,j−1a2 + ρni−1,j−1a4

)
, (9.10)

it is apparent this scheme is equivalent to a fist order intersection based remap.

However given its formulation in (9.1) it can be implemented as a swept region

based remap. The scheme demonstrated above shows a method of introducing

communication between diagonal neighbours for swept region based remaps, however

it needs extending to second order. This is achieved by modifying the definition of

the half time step densities, however if this scheme were to be adapted to a swept

region based remap it would essentially involve a modification of the definition of

Draft of 3:35 pm, Monday, June 16, 2014 163

Figure 9.1: Overlap areas arising from a corner transport upwind method. The fluid
is assumed to be moving with a constant velocity, shown by the arrows. The fluid
parcel moves from the area shown by the dashed line to the top right solid cell in a
single time step.

Draft of 3:35 pm, Monday, June 16, 2014 164

overlap densities. A second order estimate of the density takes the form,

ρ
n+1/2
i+1/2,j = ρni,j +

∆t

2

∂ρ

∂t
+
∆x

2

∂ρ

∂x

= ρni,j −
∆t

2

(
u
∂ρ

∂x
+ v

∂ρ

∂y

)
+
∆x

2

∂ρ

∂x

= ρni,j +

(
∆x

2
− u∆t

2

)
∂ρ

∂x
− v∆t

2

∂ρ

∂y
. (9.11)

The first and third terms in (9.11) are already included in the first order scheme

previously demonstrated. From this it may be inferred that the scheme is only first

order in the perpendicular direction. Thus the 2nd order correction looks like,

∆ρ2nd =

(
∆x

2
− u∆t

2

)
∂ρ

∂x
. (9.12)

Colella [52] used a simple central difference with van Leer’s flux limiter [53] of the

form,

∆x
¯(
∂ρ

∂x

)
=


min

(
1
2 |ρi+1,j − ρi−1,j | , 2 |ρi+1,j − ρi,j | , 2 |ρi,j − ρi−1,j |

)
·

SIGN (ρi+1,j − ρi−1,j) if (ρi+1,j − ρi,j) (ρi,j − ρi−1,j) > 0

0 otherwise.

(9.13)

A description of gradient/flux limiting is given in a later section. Colella’s CTU

scheme described above is the most basic presented in the original work [52]. For

strongly non-linear problems and for gas dynamics Colella suggested a more complex

algorithm. Given the apparent complexity of the CTU scheme (especially for com-

plex grids), complications of extension to multi-material, and (as shall be shown)

the simplicity of split remaps, corner transport upwinding was not pursued further

in Odin.

9.2 Split Remaps

Dimensionally splitting equations is common practice in fixed grid codes. Strang

[54] showed that it is second order accurate to perform half a time step in the

x-direction, a full time step in the y-direction, and a final half time step in the

x-direction. A more stable to version of this method [55] is to carry out a full step

in the x-direction, then one in the y-direction, and accuracy could be maintained

by varying the order in which the split steps were taken.

For a fixed grid, be it Eulerian or Lagrangian remap, code the directions along

Draft of 3:35 pm, Monday, June 16, 2014 165

which the splitting should take place are obvious; the coordinate directions. It was

often argued (e.g. [51]) that because the grid in an ALE code is arbitrary, and thus

not guaranteed to lie along any set of directions that splitting the remap section

of an ALE code in a similar way to that of Lagrangian remap codes (e.g. [10])

would not be appropriate. However a large number of ALE codes are structured

quadrilateral/hexahedral codes, and thus the grid connectivity provides a natural set

of directions along which to split the remap. This idea has been used in a number

of codes, for example [55], [56]. In fact this ideology can be equally applied to

unstructured quadrilateral grids, the grid connectivity provides the direction along

which to split the remap.

Direction here is perhaps a poor choice of nomenclature. In (directionally) splitting

the remap phase of a Lagrangian remap code first the advection is carried out in the

x-direction, then the y-direction. What this really means in terms of information

transfer, is that the remap transfers information along the x-direction then the

y-direction, or in other words through the x-interfaces and then the y-interfaces.

To split a remap in an ALE code all that is required is to split the information

transfer, and this is where the grid connectivity is used. Information is transferred

in the logical x-direction and then the logical y-direction, thus it is clear how grid

connectivity provides directions along which to split a remap.

The method of splitting the remap phase of an ALE code as used by [56],[55], is to

first define overlap volumes in all directions. Having done this the remap masses

and remap quantities of other variables are calculated in the logical x-direction, in

exactly the same manner as an un-split remap. The variables are then updated

according to these overlap values, and the intermediate volume calculated as the

pre-remap volume updated by just the overlap volumes in the logical x-direction.

These intermediate values are then used to calculate values in the logical y-direction

overlap regions, before completing the remap. This has the added benefit that

one-dimensional limiters can be applied without concerns over multidimensional

problems (see e.g. [57], [58]), although it has the conceptual oddity that there

is no intermediate grid like there is in a Lagrangian remap code. This, as will

be shown in the next section limits the choice of method for extension to second

order. Essentially this method uses swept volume in each logical direction as the

independent coordinate rather than spatial coordinates.

A simpler method of splitting the remap is to carry out a two dimensional remap

twice, by splitting the grid update first in the x-direction, then in the y-direction.

Essentially this method directionally splits the grid update, and carries out two

remaps. This has the advantage that having already developed a two dimensional

Draft of 3:35 pm, Monday, June 16, 2014 166

remap very little extra development is needed. It can also be easily applied to a non

quadrilateral/hexahedral grid, as it is not dependent on each cell having neighbours

in a set number of logical directions. However it may be necessary to apply true

multidimensional limiters [57] when extending to higher orders, and it is not clear if

Benson’s claims that a multidimensional remap can never be truly more than first

order have been addressed without the need for such a method as explicit corner

transport.

9.2.1 Isoparametric Remaps

An isoparametric remap was initially suggested as a generalisation for ALE codes

of the method used in Lagrangian remap codes. In a Lagrangian remap code the

remap is split along directions defined by the mesh, thus it was suggested that hav-

ing defined a remap vector for each node, this would be split in such a way that

the first part of the remap is carried out parallel to one of the two mesh vectors in

the logical x-direction, and the remaining displacement would be parallel to the re-

sulting vector in the logical y-direction. This method is obviously beneficial for the

remap of the B-field as it is effectively a remap in the a-space used in defining the

Cauchy method. This would enable the remap methods of Lagrangian remap codes

to be directly applied to this portion of the remap with only a change of coordinates

necessary to adapt the method to ALE codes.

However the method has a number of complications. Firstly the choice of which

of the two edge vectors in each logical direction to use isn’t straight forward. The

choice would (presumably) be made based on upwinding arguments, however both

vectors may have positive components in the direction of the remap vector. Also

the second vector is defined in terms of the first remap vector. The resulting system

of equations is not trivial and may involve a global solve.

A final complication when compared to the method of Lagrangian remap codes is

that although the remap may be carried out parallel to displacement vectors in

one logical direction there is no guarantee that the overlap volume in the second

logical direction would be zero. For example see figure 9.2. These remap volumes

in the second logical direction are smaller than the overlap volumes in the primary

direction, but may not always be negligible. As such isoparametric remaps are not

immune to the complications and possible short falls of two dimensional remaps.

For these reasons despite the obvious advantages for the B-field remap an isopara-

metric remap was not pursued for use within Odin.

Draft of 3:35 pm, Monday, June 16, 2014 167

Figure 9.2: Overlap areas resulting from an isoparametric remap. Two non zero
overlap areas in the (logical) parallel direction are shaded green. The remap vectors
are highlighted red, and the non-zero perpendicular overlap area is shaded blue.

Draft of 3:35 pm, Monday, June 16, 2014 168

9.3 Extension to Second Order

The extension to a second order remap is a simple concept, in the form of a correction

to the first order remap described in a previous chapter. This correction is applied

to the value of the variable being remapped in the centre of the remap volume, and

takes the form,

ρ = ρ0 +
∂ρ

∂x
∆x, (9.14)

where ρ0 is the first order (donor cell) value. The variable ρ need not be density, it

is only used as an example here. The variable x again need not be the x-coordinate,

it is not even required to be a length, for example it could be a volume or a mass.

∆x represents the change in this variable between the position at the centre of the

donor cell and the centre of the overlap volume.

This method requires a limiter to be applied to the gradient to prevent the de-

velopment of oscillations around shocks or rapidly variations in the variable field.

Numerous limiters exist, but the theory behind them is well explained in [59], [60].

Viewed simplistically it is desirable that a limiter switches the gradient to zero if

the donor cell is a local maxima or minima, and in other cases limits the gradient

such that the interpolated value does not go beyond local bounds, that is it does

not create a new maxima or minima in the solution. Such a scheme is known as

monotonicity preserving, and a scheme which preserves monotonicity is a total vari-

ation diminishing (TVD) scheme. Total variation regions for limiter functions may

be visualised using a Sweby [61]diagram.

For use within Odin Dr. C. S. Brady used a minmod limiter. A limiter (in gen-

eral, but not always, see e.g. [60]) requires as an input two gradients and limit the

gradient accordingly. The minmod limiter may be summarised as,

∂̄ρ

∂x
=

SIGN(∂ρ∂x l)×min
(∣∣∣ ∂ρ∂x l∣∣∣ , ∣∣∣ ∂ρ∂xr∣∣∣) if SIGN(∂ρ∂x l) = SIGN(∂ρ∂xr)

0 otherwise.
(9.15)

Here r, l represent right and left states, although to be clear both of these gradients

are upwinded. The right state is always the gradient taken across the interface in

question, the left state is the gradient across the next interface in the upwind di-

rection, which may not be left of the first state, but is denoted as such for the sake

of simplicity. Clearly the sign matching fulfils the requirement of switching to first

order in the case of the donor cell being a local maxima or minima. Should this not

be the cases there are two possibilities. Firstly if the gradient across the interface

being considered is the smaller in magnitude this gradient will be used, and the

Draft of 3:35 pm, Monday, June 16, 2014 169

resulting interpolated value of the variable will be a weighted average of the (true)

left and right states, with non negative weights, thus the scheme does not introduce

a new minima or maxima. Should the gradient across the interface be the larger

then this situation does not change, except the weights are limited such that the

resulting weighted average is still within local bounds.

As alluded to earlier such limiters are one dimensional in nature, they do not take

into account flux transfer or variable values in other logical directions, and if used in

a multidimensional remap no longer guarantee the characteristics described. This

may be addressed by either multidimensional limiters [57] or some form of repair

scheme (e.g. [62],[63]). The major problem in departing from local bounds is the

potential loss of positivity in variables such as density, energy, or in the case of a

multi-material scheme volume fraction. In the following sections two options for sec-

ond order remaps in ALE codes are presented. Loss of positivity only occurred in a

small number of cases, in the multi-material case where very small volume fractions

existed before the remap phase. Such problems are beyond the scope of this work,

but were easily mitigated using a simple repair method based around a threshold of

minimum volume fractions to consider.

9.3.1 Geometric Based Remap

Essentially the only choice to be made now is how to construct the unlimited gra-

dients. As alluded to in the introduction to this section differences will be taken

across the interface around which the overlap volume is formed, and the interface

to either the left or right, chosen in an upwinded manner based on the sign of the

overlap volume. Thus the remaining question is what to use as the independent

variable. The first method implemented by Dr C. S. Brady was to use the distance

between points. So the unlimited gradient across interface i is given by,

∂ρ

∂x
=

ρi+1 − ρi
|~ri+1 − ~ri|

, (9.16)

where ~ri is the position vector of the i-th cell. Having limited the gradient the

interpolated value in the overlap volume is given by,

ρremap = ρi +
∂̄ρ

∂x
|~roverlap − ~ri| , (9.17)

assuming cell i is the donor cell, and where ~roverlap is the position vector of the

centre of the overlap volume.

Draft of 3:35 pm, Monday, June 16, 2014 170

In splitting this remap it is required to actually carry out two two-dimensional

remaps, remapping once in the x-coordinate direction, and then another in the

y-direction. Such an approach is required as the geometric remap requires an inter-

mediate grid.

This scheme was relatively simple to implement and proved successful but had

some limitations when extending Odin to multi-material. When remapping a multi-

material cell materials are either remapped at the same time (in parallel) or se-

quentially depending on if the interface is inferred to be in parallel or perpendicular

to the logical direction currently being remapped. When remapping sequentially it

is necessary to know at which position a material has been exhausted, in order to

re-interpolate the value of a variable to the centre of what is effectively a new remap

volume. This requires solving a non trivial geometric problem. As will be shown in

the following subsection a volume based remap does not require such a problem to

be solved.

9.3.2 Volume Based Remaps

As suggested by the name, volume based remaps use volume as the independent

coordinate to be used to construct derivatives. Volume has been used in such a

manner in both un-split [11] and split [56] remaps in ALE codes. The unlimited

gradient is given by,
∂ρ

∂x
= 2

ρi+1 − ρi
Vi+1 + Vi

. (9.18)

Having limited this gradient the interpolated value is given by,

ρremap = ρi +
∂̄ρ

∂x

1

2
(Vi + Vremap) . (9.19)

Having updated the density using (9.19) mass is then used as the independent

coordinate rather than volume so that for calculating the second order estimate for

internal energy (9.18) becomes,

∂ε

∂x
=

εi+1 − εi
1/2 (Mi+1 +Mi)

, (9.20)

and the interpolated value is given by,

εremap = εi +
∂̄ρ

∂x

1

2
(Mi +Mremap) . (9.21)

This method has the interesting quality that it has no intermediate grid, unlike the

geometric remap method. However it is well suited to multi-material cases in that

Draft of 3:35 pm, Monday, June 16, 2014 171

the new position in volume space of the overlap volume is trivially calculated having

exhausted a material (of known volume).

9.3.3 Extension to Magnetohydrodynamics

The remap for the B-field is carried out in a-space, the unit space used in the

formulation of the Cauchy method. Firstly displacement vectors are defined for

each node,

~∆s =

(
x− x′

y − y′

)
. (9.22)

A local transformation matrix at each node is then calculated,

A =
1

2

(
xi+1,j − xi−1,j xi,j+1 − xi,j−1
yi+1,j − yi−1,j yi,j+1 − yi,j−1

)
. (9.23)

which enables the displacement vector to be transformed into a-space as,

~̄∆s = A ~∆s. (9.24)

The next step is to derive a first order, upwinded scheme. In a-space the flux through

a surface is equal to it’s area, so the first order scheme is given as

φremap,x =

φi+1,j
~̄∆sxif ~̄∆sx > 0

φi,j ~̄∆sx otherwise.
(9.25)

What can be inferred from this is that the displacement vector represents the fraction

of each flux surface being transferred. This is a natural result of the fact that the

a-space is a unit space.

To extend this to second order a gradient is constructed in perpendicular B-field.

The perpendicular B-field is calculated from the flux as,

B⊥ =
φ

A
, (9.26)

where A is the area of the face. The gradient is calculated with respect to the

perpendicular distance, so that the unlimited gradient taken at a node (ir, iz) would

be,

∂B⊥
∂x1

=
Bi+1,j
⊥ −Bi,j

⊥
1/2 (li+1,j + li,j)

, (9.27)

Draft of 3:35 pm, Monday, June 16, 2014 172

where li,j is the length of a cell edge, and equal to it the face area in xy. In cylindrical

coordinates an additional radial weighting is necessary.

Having calculated unlimited gradients a limited gradient is then calculated using

the same method as for other variables. The final second order remapped flux looks

like:

φ2 = φ1 +
¯∂B⊥
∂x1

·
(

1

2
− ∆̄sx

2

)
li,j , (9.28)

where the fact that the remap vector in a-space represents the fraction of the cell

edge (face) to be remapped has been used.

9.4 Split Volume Based Remap Method for Odin

The previous sections describe a number of remapping options. This section explains

how a directionally split volume based remap has been implemented in Odin. For

the sake of brevity, only the logical x-direction sweep is explained, but the necessary

changes for the y-direction sweep are trivial. Again for the sake of brevity only

the calculation of the unlimited gradients and calculation of overlap quantities is

explained. The limiting process uses a minmod limiter as described above, and

the actual update of the variables is not changed from the one directional update

formulae in chapter 5, only the calculation of overlap quantities is changed.

9.4.1 Density Remap

The density remap is calculated with volume as the independent coordinate. This

shown by figure 9.3. The unlimited right hand side gradient for this case is given

by,
∂ρ

∂x
=

ρi+1,j − ρi,j
vb + vc + ve + vh

, (9.29)

and the left hand side gradient is calculated in an analogous manner. Having ap-

propriately limited the gradient the interpolated value of the density is given by,

ρov = ρ0 +
∂̄ρ

∂x

1

2
(vov − (vb + vc)) , (9.30)

where ρ0 is the first order (donor cell) density value. The barred gradient is the

limited gradient, and vov is the overlap volume. The energy remap, shown by

figure 9.4 is carried out in a similar manner. In this case, the mass is the independent

variable rather than volume, and the remap is carried out in an analogous manner.

Draft of 3:35 pm, Monday, June 16, 2014 173

Figure 9.3: Volume based remap for density. The primary mesh is shown by solid
lines, and the median mesh by dashed lines. The remapped mesh is shown in red,
and the remap displacement by arrows.

Draft of 3:35 pm, Monday, June 16, 2014 174

Figure 9.4: Mass based remap for energy.

Draft of 3:35 pm, Monday, June 16, 2014 175

The unlimited gradient is given by,

∂e

∂x
=

ei+1,j − ei,j
mb +mc +me +mh

, (9.31)

and the interpolated value is given by,

eov = e0 +
∂̄e

∂x

1

2
(mov − (mb +mc)) . (9.32)

The remap masses are then distributed to the faces of the nodal cells, but otherwise

the momentum components are updated in the same manner as the energy.

Chapter 10

Implosion Tests

In order to test the final capabilites of Odin various implosion problems were run

in Cartesian coordinates. The general problem consisted of an imploding dense

cylindrical shell, with an imposed implosion velocity. The inner surface of the shell

was perturbed with a 5% perturbation, and upon stagnation of the implosion this

becomes Rayleigh Taylor unstable. At this stage bubbles and spikes form and mixing

occurs.

10.1 Viscosity Testing

In order to assess the differences between edge and tensor shock viscosity an implo-

sion problem was set up on a 256× 256 grid with the following initial conditions.

vx =
−15x

r

vy =
−15y

r

P =

2.0 if r ≤ 0.3

1.0 otherwise.

ρ =

1.0 if 0.3 ≤ r ≤ 0.4

0.01 otherwise.
(10.1)

Here r =
√
x2y2. The initial conditions correspond to a dense cylindrical shell

imploding with a Mach number of 15. The pressure is doubled in the inner region

to cause the implosion to stagnate earlier, and the inner radius was perturbed by

5%. An ideal gas equation of state was used, with γ = 5/3. These runs both used

a Winslow type remapping algorithm [38]. The resultant density is illustrated by

176

Draft of 3:35 pm, Monday, June 16, 2014 177

figure 10.1 and figure 10.2. The problem was also run with tensor based viscosity on

Figure 10.1: Results for implosion test with edge based shock viscosity.

a 1024× 1024 (uniform) grid with Eulerian grid motion. As discussed in subsection

3.6.1 for this case the two viscosities should be very similar (the edge viscosity

involves some additional averaging), so this test represented a good benchmark for

the two lower resolution tests. Clearly the tensor viscosity better recovers the high

resolution results. The edge viscosity results in excessive mixing, and an incorrect

shock speed.

10.1.1 Implosion Test Problem with B-field

In order to investigate the effects of the addition of a B-field a similar problem was

run with and without B-fields in varying directions. The problem was modified so

that pressure was now unite everywhere, and the implosion was reduced to having

a Mach number of 10. Otherwise the basic (without B-field) problem remained un-

changed. All problems were run with viscosity coefficients of c1 = 0.1 and c2 = 0.5,

Draft of 3:35 pm, Monday, June 16, 2014 178

Figure 10.2: Results for implosion test with tensor shock viscosity.

and a Winslow remapping function throughout. Initially the problem was run with

no B-field until t=0.1 to provide a reference solution. The resulting density plot is

shown in figure 10.4. The inner surface has begun to undergo mixing caused by the

Rayleigh Taylor instability.

The same problem was then run with an imposed B-field in the z-direction, of mag-

nitude 1.0. As the B-field is in the third direction it should act in the same manner

as the pressure, thus slowing the implosion.

The resulting density plot is shown in figure 10.5, again at t = 0.1. Clearly the

implosion has been slowed significantly, with the outer edge now reaching approxi-

mately 0.26 whereas previously the corresponding position was approximately 0.18.

The inner most point of the shell material has also changed from 0.075 to approx-

imately 0.11. The corresponding plot of the magnitude of the B-field is shown in

Draft of 3:35 pm, Monday, June 16, 2014 179

Figure 10.3: Reference solution for implosion test run with Eulerian grid motion
and tensor shock viscosity.

10.6.

As discussed previously, the B-field in the third direction should act in the same

manner as the thermodynamic pressure. As such by halving the initial thermody-

namic pressure whilst adding a B-field of size Bz = 1.0 the total initial pressure

would be the same as the reference problem, so it would be expected a more similar

result would be obtained. This problem is illustrated by figure 10.7 and figure 10.8.

Whilst the results shown in figure 10.7 are closer to the original pure hydro-

dynamic test case there are still significant differences. It is worthwhile at this point

to examine the evolution of thermodynamic pressure, and total pressure. In it’s

continuous form (neglecting viscosity), for an ideal gas the thermal pressure evolves

Draft of 3:35 pm, Monday, June 16, 2014 180

as,

D

Dt
P = (γ − 1.0)

[
ρ
De

Dt
+ e

Dρ

Dt

]
= (γ − 1.0) [−P∇ · ~v − eρ∇ · ~v]

= −γP∇ · ~v. (10.2)

Now including magnetic pressure the equation for total pressure becomes,

D

Dt
Ptot =

D

Dt
Pthermal +

D

Dt
PB

= −γPthermal∇ · ~v +
D

Dt

B2

2
. (10.3)

For the case of the B-field being purely in the third direction, this can be simplified

as,

D

Dt
Ptot = −γPthermal∇ · ~v −B2

z∇ · ~v

= −γPthermal∇ · ~v − 2PB∇ · ~v. (10.4)

This has the interesting result, that if γ = 2 the magnetic and thermal pressure

evolve in the same way, thus presenting an interesting test, running an implosion

problem with a thermal pressure of unity should produce the same result as running

with a thermal pressure of 0.5 and an initial B-field of Bz = 1.0, if γ = 2.0. The

previous argument omits viscous heating, however if the viscous forces are equal,

which they will be if the fast speed in the modified test is the same as the sound speed

in the purely hydrodynamic case, then the same behaviour should be expected. It

should also be noted that this argument neglects discrete considerations. Neither the

thermal pressure nor the magnetic pressure are evolved directly, so some differences

may occur.

To investigate if the expected behaviour can be recovered a new reference solution

was calculated. This is the same problem as at the start of this section, but run

with γ = 2.0. This is shown in figure 10.9. A second computation was then made,

with halved thermal pressure, applied Bz = 1.0, and γ = 1.0. The density plot

is shown for this in figure 10.11. Whilst there are still slight differences between

the two results, there is a strong similarity between the two sets of results, much

more so than the previous comparison when using γ = 5/3. These small differences

occur due to the different methods of evolving the thermal and magnetic pressure,

both in the Lagrangian step, and the remap step. The resulting B-field for the

Draft of 3:35 pm, Monday, June 16, 2014 181

run in figure 10.11 is shown in figure ??. One of the major differences between

hydrodynamic and magnetohydrodynamic calculations in Odin is the relaxation of

the compression switch on the shock viscosity, so that it is applied everywhere rather

than just cells undergoing compression. This was previously introduced in line with

previous methods [10], and was shown to produce improved solutions. However it

is not clear why this should be applied in calculations with a B-field only in the

third direction. It is also possible that the increased viscous heating could cause

the implosion speed to change, specifically make them slower. As such the same

problem as shown in figure 10.7 and figure 10.8 but with the compression switch

imposed.

The results from running with the compression switch imposed are shown in

figure 10.12 and figure 10.13. There are some differences in the runs, most notably

in the peak density, however the speeds do not to have been significantly altered.

As a final test case the original problem was run, but with a uniform B-field in the

x-direction. This case is a little more difficult to predict. Along the x-axis (i.e.

parallel to the B-field) similar results to the case with reduced thermal pressure and

imposed Bz = 1.0 field would be expected; as the motion is parallel to the B-field

here it will not evolve, so the pressure gradient should remain unchanged. Along

the y-axis the B-field will be compressed and a similar result to the first example

with an imposed B-field would be expected.

Clearly these expectations are simplistic, and a break in symmetry will occur, and

grow at all times. This break in symmetry will cause the results to become more

difficult to predict as time increases. The results from this simulation are shown in

figure 10.14 and figure 10.15.

The predictions discussed have some quantitative agreement with the results

shown, particularly in the case of the inner extent of the shell material. Along the

x-axis the problem with reduced thermal pressure and imposed Bz field the inner

edge reached approximately 0.1, which is very similar to the position shown for the

case for imposed Bx. However the position of the outer edge is approximately 0.22

when running with a purely Bz whereas with an in-plane B-field along the x-axis

the outer edge is at approximately 0.16, and the surface is about to break. This

is not the case along the y-axis, although the position is only slightly different, at

approximately 0.17. These approximations could be better quantified by running a

multi-material calculation where material position could be better known. Whilst

the peak density is approximately double in the case with Bx, the peak magnitude

Draft of 3:35 pm, Monday, June 16, 2014 182

of the B-field is much closer to the purely out-of-plane B-field calculations. It is

also apparent there is a reduced amount of Rayleigh Taylor induced mixing in the

presence of imposed Bx. This may in part be due to the break in symmetry, indeed a

saw tooth motion is beginning to occur due to this break in symmetry and it is likely

that this will cause mixing in this region. Along the x-axis significant structure is

present in the B-field caused by the beginning of Rayleigh Taylor related motion.

However this localised build up of B-field appears to have stiffened the material,

reducing mixing.

10.2 Summary

The first section of this chapter tested the two types of shock viscosities described

earlier, but for a more realistic test problem. The tensor shock viscosity was shown

to be significantly more accurate than the edge viscosity, with more accurate speeds

and mixing.

In the second section implosion problems were run, with and without imposed B-

fields. Whilst there were some deviations from expected behaviour, which was pos-

tulated to be caused by increased viscous heating, the results largely agreed with

expectations.

Draft of 3:35 pm, Monday, June 16, 2014 183

Figure 10.4: Density plot for implosion test case, without imposed B-field.

Draft of 3:35 pm, Monday, June 16, 2014 184

Figure 10.5: Density plot for implosion test case, with imposed B-field, in the z-
direction.

Draft of 3:35 pm, Monday, June 16, 2014 185

Figure 10.6: B-field plot for implosion test case, with imposed B-field, in the z-
direction.

Draft of 3:35 pm, Monday, June 16, 2014 186

Figure 10.7: Density plot for implosion test case, with imposed B-field, in the z-
direction, and reduced thermal pressure.

Draft of 3:35 pm, Monday, June 16, 2014 187

Figure 10.8: B-field plot for implosion test case, with imposed B-field, in the z-
direction, and reduced thermal pressure.

Draft of 3:35 pm, Monday, June 16, 2014 188

Figure 10.9: Density plot for implosion test case, without imposed B-field, and
γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 189

Figure 10.10: Density plot for implosion test case, with imposed B-field, reduced
thermal pressure, and γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 190

Figure 10.11: B-field plot for implosion test case, with imposed B-field, reduced
thermal pressure, and γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 191

Figure 10.12: Density plot for implosion test case, with imposed B-field, in the
z-direction, reduced thermal pressure, and compression switch active. γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 192

Figure 10.13: B-field plot for implosion test case, with imposed B-field, in the z-
direction, reduced thermal pressure, and compression switch active. γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 193

Figure 10.14: Density plot for implosion test case, with imposed B-field in the x-
direction. γ = 2.0.

Draft of 3:35 pm, Monday, June 16, 2014 194

Figure 10.15: B-field plot for implosion test case, with imposed B-field in the x-
direction. γ = 2.0.

Chapter 11

Further Work

11.1 Cylindrical Magnetohydrodynamics

Of the work presented in this thesis the section requiring the most additional work

is the expansion to cylindrical magnetohydrodynamics. The test cases presented

shows promising results, but has an orthogonal grid for all time. To be completely

sure of the accuracy and successful implementation of the cylindrical MHD scheme

an in-depth comparison with existing codes would have to be made. This is due to

the lack of test problems with known solutions for such a scheme, in particular test

problems with a non-zero r − z B-field.

11.2 Multi-material

In order to fully take advantage of the strengths of an ALE scheme a multi-material

code is desirable. Much of this work has already been completed by Dr C. S. Brady in

conjunction with the author. This includes extension to arbitrary equation of state,

and material interface reconstruction within the remap, as well as the generalisation

of the Lagrangian scheme to more than one material; this involves the calculation

of an effective pressure for the combination of all materials.

11.3 Additional Physics

Beyond this the next step to take would be to add additional physics such as radia-

tive transport and laser ray tracing. Both of these, as with other extra physics are

complicated by the arbitrary nature of the grid, and as mentioned in the introduc-

tion to this work this is one of the disadvantages of the ALE method. However this

195

Draft of 3:35 pm, Monday, June 16, 2014 196

work, in particular the final section on implosions has demonstrated the significant

strengths of an ALE scheme.

Appendix A

Tensor Preliminaries

A.1 Tensor Preliminaries

As dyadics are rank 2 (contravariant) tensors, it is necessary to introduce the di-

vergence theorem for tensors, and a few tensor definitions. Firstly, the dyadic is

defined as,

A = ~a⊗~b, (A.1)

where,

Aij = aibj . (A.2)

The divergence theorem for a general tensor is [64],∫
V

∂T ij...k...m

∂xk
=

∮
s
T ij...k...mnkds, (A.3)

where tensor contraction occurs over the index k. A surface (nk in (A.3) is in fact

a rank one covariant tensor (a one form, see e.g. [65]), and the definition of (A.3)

has been limited to a general rank m contravariant tensor for simplicity.

Tensor contraction is a mathematical operation which reduces the rank of a tensor by

summing over a pair of repeated indices. Some texts (e.g. [66] will state a stronger

definition of tensor contraction, that it requires one of the repeated indices to be

contravariant and the second covariant. Tensor contraction is in fact the second half

of the calculation of the dot product of two vectors, so it is worth examining these

concepts within a familiar context,

~a ·~b = aibjηij = aibi, (A.4)

197

Draft of 3:35 pm, Monday, June 16, 2014 198

where η is the metric tensor. In the form of (A.4) the metric tensor is a rank 2

covariant tensor. The second equality in (A.4) is the result of a process known as

index lowering, which has transformed the vector (a rank one contravariant tensor)

into a one-form (a rank one covariant tensor). The final result for the dot product

is calculated by contracting these two tensors over their repeated index. There is a

corresponding index raising operation, which can give a mixed or purely contravari-

ant form of the metric tensor. A tensor may also be contracted on itself.

It is clear that for a rank n (contravariant tensor) there are n possible contractions

with the surface normal. Examining the two cases for the dyadic,

aibjnj = ~a
(
~b · ~n

)
, (A.5)

and,

aibjni = ~b (~a · ~n) , (A.6)

where in both (A.5) and (A.6) the vector ~n is the vector corresponding to having

raised the index on the surface normal, to aid comparison with vector calculus. It

is common to see (e.g. [67]) equations relating the dot product between a dyadic

and a vector, which gives results equivalent to (A.5) and (A.6). Presumably some

generalised form of the dot product based on (A.4) has been carried out so that,

~n ·
(
~a⊗~b

)
= niajbkηij

= niajηijb
k

= (~n · ~a)~b, (A.7)

and similarly, (
~a⊗~b

)
· ~n = ajbkniηki

=
(
~n ·~b

)
~a. (A.8)

Clearly whilst (A.7) and (A.8) aren’t particularly well defined, they do represent

similar relationships to (A.5) and (A.6) and are sometimes used in conjunction with

the tensor divergence theorem. As such they are included to aid comparison with

other texts.

Like the surface normal, the divergence operator is a one form. Taking the divergence

of a tensor is simply another contraction operation, and as such there are n possible

divergences for a rank n tensor. However for the purpose of these discussions, the

Draft of 3:35 pm, Monday, June 16, 2014 199

tensor divergence shall be defined as,

∇ · T =
∂Tji
∂xj

, (A.9)

for a rank 2 (contravariant) tensor, T . This builds upon the previous concept of a

generalised dot product. Using this definition of the divergence of a rank two tensor

the divergence of a dyadic can be shown to be,

∇ ·
(
~a⊗~b

)
=
∂aibj

∂xi

=

(
a1b1

∂x1
+
∂a2b1

∂x2
+
∂a3b1

∂x3

)
~e1

+

(
a1b2

∂x1
+
∂a2b2

∂x2
+
∂a3b2

∂x3

)
~e2

+

(
a1b3

∂x1
+
∂a2b3

∂x2
+
∂a3b3

∂x3

)
~e3

= (∇ · ~a)~b+ (~a · ∇)~b. (A.10)

Similarly, the definition of tensor divergence, (A.9) and be combined with the di-

vergence theorem for tensors, (A.3) to give,∫
V
∇ ·
(
~a⊗~b

)
=

∫
V

∂
(
aibj

)
∂xi

=

∮
s
aibjnids

=

∮
s

(~a · ~n)~b. (A.11)

Appendix B

Summary of Odin

B.1 Summary of Odin program flow

This appendix contains a brief summary of the program flow within Odin. It delib-

erately omits a number of details such as file input and output, and various parallel

considerations, instead concentrating on the physical applications.

1. Calculate initial grid positions, cell volumes and subzone volumes.

2. Calculate initial values of density, energy and velocity components according

to initial conditions. Also calculate conserved quantities, subzonal masses and

pre-initial B-field.

3. Call boundary conditions.

4. Begin main evolution loop:

(a) Calculate forces due to shock viscosity.

(b) Calculate time step limited by the CFL condition, and the requirement

that grid cells do not cross over.

(c) Carry out a predictor-corrector Lagrangian time step, evolving density,

specific internal energy, and velocity components. Also update grid po-

sitions, and volumes.

(d) Call boundary conditions.

(e) Decide if a remap should be applied. If not, return to (4.a)4, otherwise:

i. Calculate new grid positions, according to remap strategy.

ii. Carry out a B-field remap, calculating new values for pre-initial B-

field.

200

Draft of 3:35 pm, Monday, June 16, 2014 201

iii. Remap third component of B-field.

iv. Calculate remap volumes.

v. Calculate remap masses, and remap density.

vi. Remap specific internal energy.

vii. Calculate nodal remap masses.

viii. Remap velocity components.

ix. Calculate new corner masses.

x. Call boundary conditions, and return to (4.a).

Bibliography

[1] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference

equations of mathematical physics. IBM journal of Research and Development,

11(2):215–234, 1967.

[2] Culbert B Laney. Computational gasdynamics. Cambridge University Press,

1998.

[3] Joe D Hoffman and Steven Frankel. Numerical methods for engineers and

scientists. CRC press, 2001.

[4] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics:

a practical introduction. Springer, 2009.

[5] Sergei Konstantinovich Godunov. A difference method for numerical calculation

of discontinuous solutions of the equations of hydrodynamics. Matematicheskii

Sbornik, 89(3):271–306, 1959.

[6] Rosa Donat and Antonio Marquina. Capturing shock reflections: an improved

flux formula. Journal of Computational Physics, 125(1):42–58, 1996.

[7] AJ Barlow and PL Roe. A cell centred lagrangian godunov scheme for shock

hydrodynamics. Computers & Fluids, 46(1):133–136, 2011.

[8] WD Schulz. Two-dimensional lagrangian hydrodynamic difference equations,

in” methods in computational physics”, vol. 3, alder, fernbach and rotenberg,

eds, 1964.

[9] William F Noh and Paul Woodward. Slic (simple line interface calculation).

In Proceedings of the Fifth International Conference on Numerical Methods

in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, pages

330–340. Springer, 1976.

202

Draft of 3:35 pm, Monday, June 16, 2014 203

[10] T.D. Arber, A.W. Longbottom, C.L. Gerrard, and A.M. Milne. A staggered

grid, lagrangianeulerian remap code for 3-d mhd simulations. Journal of Com-

putational Physics, 171(1):151 – 181, 2001.

[11] Andrew Barlow. An adaptive multi-material arbitrary Lagrangian Eulerian

algorithm for computational shock hydrodynamics. PhD thesis, University of

Wales Swansea, 2002.

[12] Jerrold E Marsden and Anthony Tromba. Vector calculus. Macmillan, 2003.

[13] E.J. Caramana, D.E. Burton, M.J. Shashkov, and P.P. Whalen. The construc-

tion of compatible hydrodynamics algorithms utilizing conservation of total

energy. Journal of Computational Physics, 146(1):227 – 262, 1998.

[14] John VonNeumann and RD Richtmyer. A method for the numerical calculation

of hydrodynamic shocks. Journal of Applied Physics, 21(3):232–237, 1950.

[15] R Landschoff. A numerical method for treating fluid flow in the presence of

shocks. Technical report, Los Alamos Scientific Laborarory Report LA-1930,

1955.

[16] V. Kuropatenko. Dierence Methods for Solutions of Problems of Mathematical

Physics. 1967.

[17] Mark L. Wilkins. Use of artificial viscosity in multidimensional fluid dynamic

calculations. Journal of Computational Physics, 36(3):281 – 303, 1980.

[18] EJ Caramana, MJ Shashkov, and PP Whalen. Formulations of artificial viscos-

ity for multi-dimensional shock wave computations. Journal of Computational

Physics, 144(1):70–97, 1998.

[19] EJ Caramana and R Loub re. Curl-q: A vorticity damping artificial viscosity

for essentially irrotational lagrangian hydrodynamics calculations. Journal of

Computational Physics, 215(2):385–391, 2006.

[20] DL Hicks. Stability analysis of wondy (a hydrocode based on the artificial

viscosity method of von neumann and richtmyer) for a special case of maxwells

law. Mathematics of computation, 32(144):1123–1130, 1978.

[21] Gary A Sod. A survey of several finite difference methods for systems of non-

linear hyperbolic conservation laws. Journal of Computational Physics, 27(1):

1–31, 1978.

Draft of 3:35 pm, Monday, June 16, 2014 204

[22] John K Dukowicz and Bertrand JA Meltz. Vorticity errors in multidimensional

lagrangian codes. Journal of Computational Physics, 99(1):115–134, 1992.

[23] William F Noh. Errors for calculations of strong shocks using an artificial

viscosity and an artificial heat flux. Journal of Computational Physics, 72(1):

78–120, 1987.

[24] JC Campbell and MJ Shashkov. A tensor artificial viscosity using a mimetic

finite difference algorithm. Journal of Computational Physics, 172(2):739–765,

2001.

[25] James M. Hyman and Mikhail Shashkov. Adjoint operators for the natural

discretizations of the divergence, gradient and curl on logically rectangular

grids. Applied Numerical Mathematics, 25(4):413 – 442, 1997.

[26] J.M. Hyman and M. Shashkov. Natural discretizations for the divergence,

gradient, and curl on logically rectangular grids. Computers & Mathematics

with Applications, 33(4):81 – 104, 1997.

[27] LI Sedov. Similarity and dimensional methods in mechanics (similarity and

dimensional methods in mechanics, new york, 1959.

[28] E. J. Caramana and P. P. Whalen. Numerical preservation of symmetry prop-

erties of continuum problems. J. Comput. Phys., 141(2):174–198, 1998.

[29] ML Wilkins. Calculation of elastic-plastic flow, in” methods in computational

physics”, vol. 3, alder, fernbach and rotenberg, eds, 1964.

[30] Jeremiah W Murphy and Adam Burrows. Bethe-hydro: an arbitrary

lagrangian-eulerian multidimensional hydrodynamics code for astrophysical

simulations. The Astrophysical Journal Supplement Series, 179(1):209, 2008.

[31] EJ Caramana and MJ Shashkov. Elimination of artificial grid distortion and

hourglass-type motions by means of lagrangian subzonal masses and pressures.

Journal of Computational Physics, 142(2):521–561, 1998.

[32] PL Browne and KB Wallick. Reduction of mesh tangling in two-dimensional

lagrangian hydrodynamics codes by the use of viscosity, artificial viscosity, and

tts (temporary triangular subzoning for long, thin zones). Technical report, Los

Alamos Scientific Lab., N. Mex., 1971.

Draft of 3:35 pm, Monday, June 16, 2014 205

[33] Robert E. Peterkin Jr., Michael H. Frese, and Carl R. Sovinec. Transport of

magnetic flux in an arbitrary coordinate ale code. Journal of Computational

Physics, 140(1):148 – 171, 1998.

[34] M Kucharik and M Shashkov. Extension of efficient, swept-integration-based

conservative remapping method for meshes with changing connectivity. Inter-

national journal for numerical methods in fluids, 56(8):1359–1365, 2008.

[35] L.G. Margolin and Mikhail Shashkov. Second-order sign-preserving conser-

vative interpolation (remapping) on general grids. Journal of Computational

Physics, 184(1):266 – 298, 2003.

[36] Markus Berndt, Jérôme Breil, Stéphane Galera, Milan Kucharik, Pierre-Henri

Maire, and Mikhail Shashkov. Two-step hybrid conservative remapping for mul-

timaterial arbitrary lagrangian–eulerian methods. Journal of Computational

Physics, 230(17):6664–6687, 2011.

[37] M Kucharik, J Breil, S Galera, P-H Maire, M Berndt, and M Shashkov. Hybrid

remap for multi-material ale. Computers & Fluids, 46(1):293–297, 2011.

[38] Alan M Winslow. Numerical solution of the quasilinear poisson equation in a

nonuniform triangle mesh. Journal of Computational Physics, 1(2):149 – 172,

1966.

[39] C. R. Evans and J. F. Hawley. Simulation of magnetohydrodynamic flows - A

constrained transport method. Astrophysical Journal, 332:659–677, September

1988.

[40] J.U Brackbill and D.C Barnes. The effect of nonzero ∇ · B on the numerical

solution of the magnetohydrodynamic equations. Journal of Computational

Physics, 35(3):426 – 430, 1980.

[41] Andrew L. Zachary, Andrea Malagoli, and Phillip Colella. A higher-order go-

dunov method for multidimensional ideal magnetohydrodynamics. SIAM Jour-

nal on Scientific Computing, 15(2):263–22, 1994.

[42] Dinshaw S Balsara and Jongsoo Kim. A comparison between divergence-

cleaning and staggered-mesh formulations for numerical magnetohydrodynam-

ics. The Astrophysical Journal, 602(2):1079, 2008.

[43] M Brio and C.C Wu. An upwind differencing scheme for the equations of ideal

magnetohydrodynamics. Journal of Computational Physics, 75(2):400 – 422,

1988.

Draft of 3:35 pm, Monday, June 16, 2014 206

[44] H. K. Moffatt. Magnetic field generation in electrically conducting fluids. 1978.

[45] I. J. D. Craig and A. D. Sneyd. A dynamic relaxation technique for determining

the structure and stability of coronal magnetic fields. Astrophysical Journal,

311:451–459, December 1986.

[46] AL Velikovich, JL Giuliani, ST Zalesak, JW Thornhill, and TA Gardiner. Ex-

act self-similar solutions for the magnetized noh z pinch problem. Physics of

Plasmas, 19:012707, 2012.

[47] P Tzeferacos, M Fatenejad, N Flocke, G Gregori, DQ Lamb, D Lee, J Meinecke,

A Scopatz, and K Weide. Flash magnetohydrodynamic simulations of shock-

generated magnetic field experiments. High Energy Density Physics, 2012.

[48] Gábor Tóth. The ∇ · B = 0 constraint in shock-capturing magnetohydrody-

namics codes. Journal of Computational Physics, 161(2):605–652, 2000.

[49] Steven A Orszag and Cha-Mei Tang. Small-scale structure of two-dimensional

magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 90(01):129–

143, 1979.

[50] Wenlong Dai and Paul R Woodward. A simple finite difference scheme for mul-

tidimensional magnetohydrodynamical equations. Journal of Computational

Physics, 142(2):331–369, 1998.

[51] A Barlow, D Burton, and M Shashkov. Compatible, energy and symmetry

preserving 2d lagrangian hydrodynamics in rzcylindrical coordinates. Procedia

Computer Science, 1(1):1893–1901, 2010.

[52] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation

laws. Journal of Computational Physics, 87(1):171–200, 1990.

[53] Bram van Leer. Towards the ultimate conservative difference scheme. v. a

second-order sequel to godunov’s method. Journal of Computational Physics,

32(1):101 – 136, 1979.

[54] Gilbert Strang. On the construction and comparison of difference schemes.

SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.

[55] J. M. Morrell. A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian

Eulerian method for the numerical solution of the Euler equations. PhD thesis,

The University of Reading, 2007.

Draft of 3:35 pm, Monday, June 16, 2014 207

[56] James S Peery and Daniel E Carroll. Multi-material ale methods in unstruc-

tured grids. Computer Methods in Applied Mechanics and Engineering, 187(3):

591–619, 2000.

[57] Steven T Zalesak. Fully multidimensional flux-corrected transport algorithms

for fluids. Journal of computational physics, 31(3):335–362, 1979.

[58] David J Benson. Computational methods in lagrangian and eulerian hy-

drocodes. Computer methods in Applied mechanics and Engineering, 99(2):

235–394, 1992.

[59] Bram van Leer. Towards the ultimate conservative difference scheme. ii. mono-

tonicity and conservation combined in a second-order scheme. Journal of Com-

putational Physics, 14(4):361 – 370, 1974.

[60] Bram Van Leer. Towards the ultimate conservative difference scheme iii.

upstream-centered finite-difference schemes for ideal compressible flow. Journal

of Computational Physics, 23(3):263 – 275, 1977.

[61] Peter K Sweby. High resolution schemes using flux limiters for hyperbolic

conservation laws. SIAM journal on numerical analysis, 21(5):995–1011, 1984.

[62] Mikhail Shashkov and Burton Wendroff. The repair paradigm and application

to conservation laws. Journal of Computational Physics, 198(1):265–277, 2004.

[63] Milan Kucharik, Mikhail Shashkov, and Burton Wendroff. An efficient linearity-

and-bound-preserving remapping method. Journal of Computational Physics,

188(2):462–471, 2003.

[64] KF Riley, MP Hobson, SJ Bence, and Donald Spector. Mathematical methods

for physics and engineering. American Journal of Physics, 67:165, 1999.

[65] Bernard Schutz. A first course in general relativity. Cambridge university press,

2009.

[66] David C Kay. Schaum’s outline of theory and problems of tensor calculus.

McGraw-Hill, 1988.

[67] Jon Mathews and Robert Lee Walker. Mathematical methods of physics, volume

271. WA Benjamin New York, 1970.

	WRAP_THESIS_Goffrey_2014.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

