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Moduli of continuity of local times of random walks on
graphs in terms of the resistance metric

D. A. Croydon

Abstract

In this article, universal concentration estimates are established for the local times of random
walks on weighted graphs in terms of the resistance metric. As a particular application of these,
a modulus of continuity for local times is provided in the case when the graphs in question
satisfy a certain volume growth condition with respect to the resistance metric. Moreover, it is
explained how these results can be applied to self-similar fractals, for which they are shown to
be useful for deriving scaling limits for local times and asymptotic bounds for the cover time
distribution.

1. Introduction

Over the last couple of decades, extensive efforts have been devoted to studying the behaviour
of random walks on general graphs, work that has yielded, for instance, estimates for the
corresponding heat kernel and mixing times in terms of quantities such as volume growth and
electrical resistance, which do not depend on precise structural information (see, for example,
[7, 9, 31, 36]). Furthermore, for a wide range of families of fractal and random graphs,
scaling limits have been established for the laws of the random walks upon them [10, 12–
15, 29, 30], as well as corresponding asymptotic results for heat kernels and mixing times
[16, 17]. More delicate properties of random walks on graphs, particularly the cover time, are
also becoming better understood. Indeed, recent years have seen the order of growth of the
cover time computed for various families of graphs [1, 8], and a strong connection has been
made between the cover time and the maximum of the Gaussian free field for any graph [20].
Moreover, in some special cases where there is concentration of the cover time about its mean,
extremely precise distributional convergence results are known, notably for the two-dimensional
discrete torus [18, 19]. Partly motivated by providing techniques for studying the cover time in
settings where there is not concentration of the cover time, as is the case for many self-similar
fractals, in this article we study the continuity properties of local times on graphs. Since the
first time that local times of a simple random walk on a graph are non-zero everywhere gives
the cover time, we believe that our results will provide another tool for studying the latter;
this is a point upon which we will expand later in the article.

In order to present our main results, let us start by introducing the framework in which
we are working. In particular, let G = (V (G), E(G)) be a finite connected graph, where V (G)
denotes the vertex set and E(G) the edge set of G. To avoid trivialities, we always assume
that G has at least two vertices. Let μG : V (G)2 → R+ be a weight function that is symmetric,
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that is, μG
xy = μG

yx, and satisfies μG
xy > 0 if and only if {x, y} ∈ E(G). The associated discrete-

time simple random walk is then the Markov chain ((XG
t )t�0,PG

x , x ∈ V (G)) with transition
probabilities (PG(x, y))x,y∈V (G) defined by

PG(x, y) :=
μG

xy

μG
x

,

where μG
x :=

∑
y∈V (G) μ

G
xy. We note that the invariant probability measure of this process is a

multiple of the measure version of μG obtained by setting μG({x}) := μG
x for x ∈ V (G). The

process XG has corresponding local times (LG
t (x))x∈V (G),t�0, given by LG

0 (x) = 0 and, for
t � 1,

LG
t (x) :=

1
μG

x

t−1∑
i=0

1{XG
i =x}.

It is providing a modulus of continuity of these random functions in the spatial variable x that
is the focus of this article.

It is widely known that there are close connections between the study of random walks on
graphs and electrical networks. Our work will contribute to this area by providing estimates
for the fluctuations in the local times of a random walk in terms of the so-called resistance
metric, which we now introduce. More specifically, the process XG has an associated Dirichlet
form given by

EG(f, g) :=
1
2

∑
x,y∈V (G):
{x,y}∈E(G)

(f(x) − f(y))(g(x) − g(y))μG
xy,

for f, g : V (G) → R, which can in turn be used to define the resistance operator through the
variational formula

RG(A,B)−1 := inf{EG(f, f) : f : V (G) −→ R, f |A = 0, f |B = 1}
for A,B disjoint subsets of V (G); the latter is so-called because it describes the effective
resistance between A and B in the graph when it is viewed as an electrical network with
conductances along edges given by the weight function μG. We then define the resistance
metric on the vertices of G by setting RG(x, y) := RG({x}, {y}) if x �= y, and RG(x, x) := 0.
We note that the resistance metric is indeed a metric (see [3, Proposition 4.25]).

In studying cover times of random walks on graphs, continuity properties of local times
in terms of the resistance metric have previously been considered. Indeed, applying the key
identity

PG
x (τy < τ+

x ) =
1

μG
xRG(x, y)

, (1)

where τy = inf{t � 0 : XG
t = y} is the first hitting time of y, and τ+

x = inf{t � 1 : XG
t = x}

the first return time to x (see [33, Proposition 9.5], for instance), the following Gaussian
concentration result was established as [26, Lemma 5.2]: if τx(0) = 0 and, for i � 1, τx(i) is
defined to be the time of the ith subsequent visit to x by XG (so that τx can be considered to
be the inverse local time at x), then

PG
x (LG

τx(i)(x) − LG
τx(i)(y) � λ) � e−(λ2μG

x /4iRG(x,y)),

for all i � 0, λ > 0 and x, y ∈ V (G) (cf. [20, Lemma 1.12]). Our concentration estimates
(Theorem 1.1) are of a similar form, with an important distinction being that we are interested
in estimating the fluctuations of the local time at deterministic times, rather than at the random
inverse local time. In the first estimate, we sacrifice Gaussian tails to establish a bound that
holds uniformly over time intervals, this is the discrete-time analogue of [11, (V.3.28)]. In the
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second, Gaussian tails are obtained at the cost of truncating the local times (cf. [2, Lemma
2.8]). For the statement of these bounds, as two important measures of the scale of G, we define

m(G) := μG(V (G)), r(G) := max
x,y∈V (G)

RG(x, y),

to be its total mass with respect to the measure μG, and its diameter in the resistance metric,
respectively. Note that the product m(G)r(G) gives the maximal commute time of the random
walk, for example, [33, Proposition 10.6], and so gives a natural time-scaling. We also introduce
the rescaled resistance metric R̃G(x, y) := r(G)−1RG(x, y), and define the notation x ∧ y :=
min{x, y}.

Theorem 1.1. (a) For each T > 0, there exist constants c1 and c2 not depending on G
such that

max
x,y,z∈V (G)

PG
z

(
max

0�t�Tm(G)r(G)
r(G)−1|LG

t (x) − LG
t (y)| � λ

√
R̃G(x, y)

)
� c1 e

−c2λ

for every λ � 0. (NB. The constants can be chosen such that only c1 depends on T.)
(b) For any G, it holds that

max
x,y,z∈V (G)

PG
z

(
max
t�0

∣∣∣∣L ∧
(
LG

t (x)
r(G)

)
− L ∧

(
LG

t (y)
r(G)

)∣∣∣∣ � λ

√
R̃G(x, y)

)
� 2e1/2−λ2/8L

for every λ � 0 and L � 1.

To provide a modulus of continuity for the local times, the goal is to bring the maximum over
the arguments of the local times inside the estimates of the previous result. In the continuous
setting, this has been achieved by applying a general estimate on the fluctuations of a function
on Euclidean space known in the literature as Garsia’s lemma (after [22, Lemma 1], cf. [23,
Lemma 1.1]). Indeed, this approach was first used in [24, Theorem 2] to deduce the continuity
of local times of Markov processes on the real line. (A similar argument was applied to the
local times of the Brownian motion on the Sierpiński gasket in [10, Theorem 1.11].) Moreover,
the argument was subsequently strengthened for Lévy processes in [2] (see also the estimates
for the Sierpiński carpet that appear as [6, Theorem 8.2]). The aim here is to adapt the same
approach to the discrete setting, and so for this we derive below a version of Garsia’s lemma
for graphs (see Proposition 3.1). To obtain a modulus of continuity estimate from this, the one
restriction we need is some uniform control on the volume growth of the graphs in question.
To state the condition we need, we define

BG(x, r) := {y ∈ V (G) : RG(x, y) < r}
to be the open ball in the resistance metric, and set r0(G) := minx,y∈V (G):x�=y RG(x, y).

Definition 1.2. A collection of finite connected weighted graphs (Gi)i∈I is said to satisfy
uniform volume growth with volume doubling ( UVD) if there exist constants c1, c2, c3 ∈ (0,∞)
such that

c1v(r) � μGi(BGi
(x, r))

for every x ∈ Gi, r ∈ [r0(Gi), r(Gi)], i ∈ I, and moreover,

m(Gi) � c2v(r(Gi))

for every i ∈ I, where v : R+ → R+ is non-decreasing function with v(2r) � c3v(r) for every
r ∈ R+.
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Remark 1.3. The above condition is weaker than is sometimes called uniform volume
growth with volume doubling, since we do not require the upper volume bound to hold for
balls smaller than the full space.

Our next main result is that, under UVD, R̃Gi
(x, y)1/2(1 + ln R̃Gi

(x, y)−1)1/2 provides, with
uniformly high probability, a modulus of continuity for the rescaled local times r(Gi)−1LGi

t (x)
in the spatial variable (uniformly over the appropriate time interval). Observe that the
particular form of v that appears in the UVD property does not affect the modulus of continuity.

Theorem 1.4. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

⎛
⎝ max

x,y∈V (Gi)
max

0�t�Tm(Gi)r(Gi)

r(Gi)−1|LGi
t (x) − LGi

t (y)|√
R̃Gi

(x, y)(1 + ln R̃Gi
(x, y)−1)

� λ

⎞
⎠ = 0.

Whilst we do not pursue it here, we expect that the above bound on the modulus of continuity
for rescaled local times is sharp up to constants. In the one-dimensional case, where XGi is
simple random walk on the interval {0, 1, . . . , i}, in particular, it should be possible to check
this, either directly or by a coupling of the rescaled random walks with reflected Brownian
motion on the interval, using a Ray–Knight-type description of the relevant local times and
an appeal to Levy’s modulus of continuity theorem for Brownian motion (or the discrete
adaptation thereof).

The remainder of the article is organized as follows. In Section 2, we establish the
concentration estimates of Theorem 1.1. Our discrete version of Garsia’s lemma is established in
Section 3, and applied under the assumption of UVD in Section 4, thereby proving Theorem 1.4.
Subsequently, in Section 5, we present a number of examples, including self-similar fractal
graphs, to which these results apply. Moreover, in Section 6, an adaptation of the results to a
class of infinite graphs is derived. Finally, in Section 7, we consider some of the consequences
of our equicontinuity results. In particular, we show that if we have a sequence of graphs such
that the associated random walks admit a diffusion scaling limit that has jointly continuous
local times, and a suitable local time equicontinuity result holds, then it is further possible to
obtain convergence of rescaled local times. We also discuss an application to the study of cover
times of random walks on graphs.

2. Local time concentration estimates

The aim of this section is to prove Theorem 1.1. We begin with a lemma that provides an
estimates for the distributional tail of the return time. We note that similar estimates to this
and the next result have appeared elsewhere in the literature, for example, [28, Section 3], but
we include their proofs for completeness.

Lemma 2.1. There exist universal constants c1, c2 such that

μG
x r(G)PG

x (τ+
x � λm(G)r(G)) � c1 e

−c2λ

for every λ � 4.

Proof. By applying the Markov property at times 2�m(G)r(G)�, 4�m(G)r(G)�, . . ., we
deduce that PG

x (τ+
x � λm(G)r(G)) is bounded above by

PG
x (τ+

x � 2�m(G)r(G)�)
(

max
y∈V (G)\{x}

PG
y (τx � 2�m(G)r(G)�)

)k−1

,
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where k := 	λm(G)r(G)/2�m(G)r(G)�
 � 	λ/4
 � 1 (note that m(G)r(G) � 1). Since

EG
x τ

+
x =

m(G)
μG

x

, EG
y τx � RG(x, y)m(G) (2)

for all x, y ∈ V (G) (see, for example, [33, Lemma 10.5 and Proposition 10.6]), we obtain that

PG
x (τ+

x � λm(G)r(G)) � m(G)
2μG

x �m(G)r(G)�
(

r(G)m(G)
2�m(G)r(G)�

)k−1

� 1
μG

x r(G)

(
1
2

)k

,

and the result follows.

The above lemma readily yields the following corollary.

Corollary 2.2. There exists a universal constant c such that

EG
x (e−θτ+

x ) � e−(θm(G)/μG
x )+cθ2m(G)2r(G)/μG

x

for every θ � 0.

Proof. Since 1 − x � e−x � 1 − x+ x2/2 for x � 0, we have that

EG
x (e−θτ+

x ) � 1 − θEG
x (τ+

x ) +
θ2

2
EG

x ((τ+
x )2) � e−θEG

x (τ+
x )+(θ2/2)EG

x ((τ+
x )2). (3)

From (2), we know that EG
x (τ+

x ) = m(G)/μG
x . For the second moment, we apply this and

Lemma 2.1 to deduce

EG
x ((τ+

x )2) � 2
∞∑

k=0

kPG
x (τ+

x � k)

� 2
4m(G)r(G)∑

k=1

EG
x (τ+

x ) +
2c1

μG
x r(G)

∞∑
k=4m(G)r(G)+1

k e−c2k/m(G)r(G)

� 8m(G)2r(G)
μG

x

+
2c1 e−c2/m(G)r(G)

μG
x r(G)(1 − e−c2/m(G)r(G))2

� cm(G)2r(G)
μG

x

.

For the final inequality, we again use that m(G)r(G) � 1. Inserting this estimate into (3), we
obtain the desired result.

Proof of Theorem 1.1 (a). To begin with, suppose that the random walk starts from
z = x, where x �= y. As in Section 1, let τx(0) = 0 and, for i � 1, τx(i) be the time of the ith
subsequent visit to x by XG. Since local times are monotonic in the time variable, we have for
t ∈ (τx(i), τx(i+ 1)] that |LG

t (x) − LG
t (y) � |LG

t (x) − LG
τx(i)(y)| + |LG

t (x) − LG
τx(i+1)(y)|. For t

in this range, we also have that LG
t (x) = LG

τx(i+1)(x). Moreover, LG
τx(i+1)(x) − LG

τx(i)(x) = 1/μG
x .

Thus

|LG
t (x) − LG

t (y)| �
1∑

j=0

|LG
τx(i+j)(x) − LG

τx(i+j)(y)| +
1
μG

x

.
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Consequently, for λ > 0 and L � 0,

PG
x

(
max

0�t�Tm(G)r(G)
|LG

t (x) − LG
t (y)| � λ

√
r(G)RG(x, y)

)

� PG
x (μG

x L
G
Tm(G)r(G)(x) > L+ 1) + PG

x (1/μG
x � λ

√
r(G)RG(x, y)/2)

+ PG
x

(
max

1�i�L+1
|LG

τx(i)(x) − LG
τx(i)(y)| � λ

√
r(G)RG(x, y)/4

)
=: T1 + T2 + T3,

where we note that the condition μG
x L

G
Tm(G)r(G)(x) > L+ 1 is equivalent to τx(L+ 1) <

Tm(G)r(G). We will bound each of the above three terms separately. To this end, we first
note that μG

x

√
r(G)RG(x, y) � 1, and so T2 is equal to 0 whenever λ > 2.

We next consider T1. Using the fact that under PG
x the variables (τx(i+ 1) − τx(i))i�0 form

an independent sequence, each distributed as τ+
x , one can deduce that, for θ � 0,

T1 = PG
x (τx(L+ 1) < Tm(G)r(G))

= PG
x

(
L∑

i=0

(
τx(i+ 1) − τx(i) − m(G)

μG
x

)
< Tm(G)r(G) − (L+ 1)m(G)

μG
x

)

� e−θ((L+1)m(G)/μG
x −Tm(G)r(G))EG

x (e−θ(τ+
x −m(G)/μG

x ))L+1.

By Corollary 2.2, it therefore holds that

T1 � e−θ((L+1)m(G)/μG
x −Tm(G)r(G))+c(L+1)θ2m(G)2r(G)/μG

x ,

and optimizing over θ yields, for L+ 1 � TμG
x r(G),

T1 � e−μG
x ((L+1)/μG

x −Tr(G))2/2c(L+1)r(G).

We now turn to T3, and for the moment we assume that μG
y RG(x, y) > 1. Observe that the

term in question can be written as

T3 = PG
x

⎛
⎝ max

1�i�L+1

∣∣∣∣∣∣
i∑

j=1

(
1
μG

x

− ηj

)∣∣∣∣∣∣ � λ
√
r(G)RG(x, y)/2

⎞
⎠ ,

where ηi := LG
τx(i)(y) − LG

τx(i−1)(y) for i � 1. Now, (ηi)i�1 is an independent and identically
distributed sequence, and it is a simple application of the Markov property to obtain from (1)
that if Ni := μG

y ηi, then

PG
x (Ni = k) =

1
μG

xRG(x, y)

(
1 − 1

μG
y RG(x, y)

)k−1 1
μG

y RG(x, y)
, (4)

for k � 1. Moreover, it is elementary to check from (4) that EG
x (ηi) = (μG

x )−1. This means that
(Mi)i�0, where M0 = 0 and, for i � 1,

Mi :=
i∑

j=1

(
1
μG

x

− ηi

)
(5)

is a martingale, and further, for θ ∈ (0,−μG
y ln(1 − 1/μG

y RG(x, y))), we have that (eθ|Mi|)i�0

is a sub-martingale. (The condition θ < −μG
y ln(1 − 1/μG

y RG(x, y)) ensures integrability.)
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Therefore, applying Doob’s sub-martingale inequality, we deduce that

T3 = PG
x

(
max

0�i�L+1
|Mi| � λ

√
r(G)RG(x, y)/2

)

� PG
x

(
max

0�i�L+1
eθ|Mi| � eθλ

√
r(G)RG(x,y)/2

)

� EG
x (eθ|ML+1|) e−θλ

√
r(G)RG(x,y)/2

� (EG
x (eθML+1) + EG

x (e−θML+1)) e−θλ
√

r(G)RG(x,y)/2

= (EG
x (e−θ(ηi−1/μG

x ))L+1 + EG
x (eθ(ηi−1/μG

x ))L+1) e−θλ
√

r(G)RG(x,y)/2.

A routine computation using (4) gives that EG
x (eθ(ηi−1/μG

x )) is equal to

e−θ/μG
x

(
1 − 1

μG
xRG(x, y)

)
+

eθ(1/μG
y −1/μG

x )

μG
xRG(x, y)2μG

y (1 − eθ/μG
y (1 − 1/μG

y RG(x, y)))
.

By considering the Taylor expansion of this expression, we deduce that

EG
x (eθ(ηi−1/μG

x )) � 1 + θ2EG
x ((ηi − 1/μG

x )2) � eθ2EG
x ((ηi−1/μG

x )2)

uniformly over θ � c1 min{μG
x , μ

G
y , RG(x, y)−1} = c1RG(x, y)−1, where c1 ∈ (0, 1) is some small

universal constant. (Note that RG(x, y)−1 � −μG
y ln(1 − 1/μG

y RG(x, y)), and so the integrabil-
ity condition for the martingale is also satisfied if θ ∈ (0, c1RG(x, y)−1].) Again appealing to
(4), it is possible to compute that

EG
x ((ηi − 1/μG

x )2) =
2(1 − 1/μG

y RG(x, y))RG(x, y)
μG

x

+
1

μG
x μ

G
y

− 1
(μG

x )2

� 2RG(x, y)
μG

x

. (6)

So we obtain
T3 � 2 e2θ2(L+1)RG(x,y)/μG

x −θλ
√

r(G)RG(x,y)/2.

Again optimizing over θ, we find

T3 � 2e−μG
x λ2r(G)/16(L+1),

at least assuming that μG
x λ
√

(r(G)RG(x, y))/8(L+ 1) � c1.
In summary, we have so far shown that if μG

y RG(x, y) > 1, λ > 2 and it also holds that
L+ 1 � TμG

x r(G) and μG
x λ
√

(r(G)RG(x, y))/8(L+ 1) � c1, then

PG
x

(
max

0�t�Tm(G)r(G)
|LG

t (x) − LG
t (y)| � λ

√
r(G)RG(x, y)

)

� e−μG
x ((L+1)/μG

x −Tr(G))2/2c(L+1)r(G) + 2e−μG
x λ2r(G)/16(L+1).

Setting L+ 1 := c−1
1 λμG

x r(G), so that

μG
x λ
√
r(G)RG(x, y)

8(L+ 1)
=
c1
8

√
RG(x, y)
r(G)

� c1

we obtain that the relevant probability is bounded above by c2 e
−c3λ for λ > max{2, T c1},

where only c2 depends on T . This bound is readily extended to hold for all λ � 0 by adjusting
the constants as necessary, which establishes the desired estimate in this case.

When μG
y RG(x, y) = 1, essentially the same argument applies. The main difference is that,

because in this case the vertex y is connected to x by a single edge of resistance RG(x, y) =
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1/μG
y , the distribution of Ni is given by

PG
x (Ni = 0) = 1 − 1

μG
xRG(x, y)

= 1 − PG
x (Ni = 1).

In particular, the bound for T1 does not change, T2 is still equal to 0 for λ > 2, and a similar
martingale argument can be used to estimate T3. We omit the details.

Clearly, one could also reverse the role of x and y in the above argument, so that we start
the process XG from y instead. Hence, in the case that we start from an arbitrary vertex z,
by applying the strong Markov property at the first time we hit the set {x, y} (noting that the
local times of both x and y are zero up until this time), one can also deduce a similar result.
This concludes the proof.

Proof of Theorem 1.1(b). We note that the proof of this part of the theorem is an adaptation
of the proof of [2, Lemma 2.8]. We will use the same notation as in the proof of Theorem 1.1(a),
though to account for arbitrary starting points will redefine τx(0) to be the first hitting time of
x. (For i � 1, τx(i) will continue to denote the time of the ith subsequent visit to x by XG.) In
particular, for x, y, z and x �= y, by applying the strong Markov property at τx(0), this allows
us to deduce that, for L � 0,

PG
z

(
max

0�t�τx(L+1)
(LG

t (x) − LG
t (y)) � λ

√
r(G)RG(x, y)

)

� PG
x

(
max

0�t�τx(L+1)
(LG

t (x) − LG
t (y)) � λ

√
r(G)RG(x, y)

)

= PG
x

(
max

1�i�L+1

(
i+ 1
μG

x

− LG
τx(i)(y)

)
� λ

√
r(G)RG(x, y)

)

= PG
x

(
1
μG

x

+ max
1�i�L+1

Mi � λ
√
r(G)RG(x, y)

)
,

where (Mi)i�0 is the martingale defined at (5). For L � 0 and any θ � 0, we have that

PG
x

(
max

1�i�L+1
Mi � λ

)
� EG

x (eθML+1) e−θλ

= EG
x (e−θ(ηi−1/μG

x ))L+1 e−θλ

� e(θ
2/2)EG

x (η2
i )(L+1) e−θλ

� eθ2RG(x,y)(L+1)/μG
x −θλ,

where we have applied Doob’s sub-martingale inequality, e−x � 1 − x+ x2 for x � 0, and
the second moment estimate of (6), similarly to the proof of Theorem 1.1(a). We note that,
because we are only seeking a one-sided bound, integrability is not an issue here, and hence no
restrictions on θ � 0 are required. Optimizing over θ � 0 yields

PG
x

(
max

1�i�L+1
Mi � λ

)
� e−λ2μG

x /2RG(x,y)(L+1),

from which conclude that

PG
z

(
max

0�t�τx(L+1)
(LG

t (x) − LG
t (y)) � λ

√
r(G)RG(x, y)

)
� e−λ2μG

x r(G)/8(L+1) (7)

whenever λ > 2.
Next, define the event

A(x, y, λ, L) :=
{

max
t�0

(
L ∧

(
LG

t (x)
r(G)

)
− L ∧

(
LG

t (y)
r(G)

))
� λ

√
R̃G(x, y)

}
.
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On this event, for some t � 0 we have that(
L ∧

(
LG

t (x)
r(G)

)
− L ∧

(
LG

t (y)
r(G)

))
� λ

√
R̃G(x, y),

and so, assuming λ > 0 and x �= y, it must also hold that r(G)−1LG
t (y) < L. In particular, this

implies

L ∧
(
LG

t (x)
r(G)

)
� λ

√
R̃G(x, y) +

LG
t (y)
r(G)

.

Setting s = t ∧ τx(	LμG
x r(G)
), we thus deduce that

LG
s (x)
r(G)

= L ∧
(
LG

t (x)
r(G)

)
� λ

√
R̃G(x, y) +

LG
t (y)
r(G)

� λ

√
R̃G(x, y) +

LG
s (y)
r(G)

.

Again applying the strong Markov property at τx(0), we have therefore shown that

PG
z (A(x, y, λ, L)) � PG

x

(
max

0�t�τx(�LμG
x r(G)�)

(LG
t (x) − LG

t (y)) � λ
√
r(G)RG(x, y)

)
.

Recalling the bound at (7), this implies

PG
z (A(x, y, λ, L)) � e−λ2μG

x r(G)/8�LμG
x r(G)� � e−λ2/8L

for every λ > 2 and L � 1. The result follows.

3. A discrete version of Garsia’s lemma

For our discrete version of Garsia’s lemma, we continue to work in a general framework. In this
section, though, we do not need to restrict our attention to the resistance metric, and instead
consider an arbitrary metric dG on V (G). We write d0(G) := minx,y∈V (G):x�=y dG(x, y) for the
shortest distance between two distinct points,

d(G) := max
x,y∈V (G)

dG(x, y) (8)

for the diameter of V (G), and

Bd(x, r) := {y : dG(x, y) < r} (9)

for the open balls with respect to this metric. To state our main result, we further suppose:
v : R+ → R+ is a non-decreasing function; p : R+ → R+ is a non-decreasing function with
p(0) = 0 and ψ : R → R+ is symmetric, convex and satisfies ψ(0) = 1 and limx→∞ ψ(x) = ∞.

Proposition 3.1. Suppose that the measure μG satisfies

min
x∈V (G)

μG(Bd(x, r)) � v(r) (10)

for every r = [d0(G), d(G)]. Given a function f : V (G) → R, define

Γ(f) :=
∑

x,y∈V (G)

ψ

(
f(x) − f(y)
p(dG(x, y))

)
μG

x μ
G
y .

(By convention, we set (f(x) − f(y))/p(dG(x, y)) = 0 when x = y.) It is then the case that

|f(x) − f(y)| � 2
�log2(dG(x,y)/d0(G))�+1∑

i=1

p(d0(G)2i+1)ψ−1

(
Γ(f)

v(d0(G)2i−1)2

)
(11)

for every x, y ∈ V (G), where ψ−1(x) := inf{y � 0 : ψ(y) > x}.
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Proof. Fix x0, y0 ∈ V (G), x0 �= y0. For i = 0, 1, 2, . . ., define Ai to be a set of the form
Bd(xi, d0(G)2i) that contains x0. Similarly, define Bi to be a set of the form Bd(yi, d0(G)2i)
that contains y0. Note that A0 = {x0} and B0 = {y0}. Moreover, we can choose the sets so
that An = Bn, where n := min{i : d0(G)2i > dG(x0, y0)} = 	log2(dG(x0, y0)/d0(G))
 + 1.

For a set A ⊆ V (G), if we define fA := (1/μG(A))
∑

x∈A f(x)μG
x to be the mean of f on the

set A, then, by applying the convexity of ψ, we deduce that, for i = 1, . . . , n,

ψ

(
fAi

− fAi−1

p(d0(G)2i+1)

)
� 1
μG(Ai)μG(Ai−1)

∑
x∈Ai

∑
y∈Ai−1

ψ

(
f(x) − f(y)
p(d0(G)2i+1)

)
μG

x μ
G
y

� 1
μG(Ai−1)2

∑
x∈Ai

∑
y∈Ai−1

ψ

(
f(x) − f(y)
p(dG(x, y))

)
μG

x μ
G
y

� Γ(f)
v(d0(G)2i−1)2

.

In particular, this implies

|fAi
− fAi−1 | � p(d0(G)2i+1)ψ−1

(
Γ(f)

v(d0(G)2i−1)2

)
.

Since fA0 = f(x0), summing over i gives

|fAn
− f(x0)| �

n∑
i=1

p(d0(G)2i+1)ψ−1

(
Γ(f)

v(d0(G)2i−1)2

)
.

Repeating the argument for y0 yields the desired result.

Remark 3.2. An elementary argument gives that the sum at (11) can be bounded above
by the integral

4
∫2dG(x,y)

d0(G)

p(4s)
s

ψ−1

(
Γ(f)
v(s/2)2

)
ds.

By extending the lower limit of integration to 0, one obtains an upper bound that does not
depend on d0(G).

4. Local time continuity under UVD

In this section, we prove Theorem 1.4. We start by combining Theorem 1.1(a) with the discrete
version of Garsia’s lemma derived in the previous section to establish a slightly weaker result.
Although this has a worse power of the log term in the modulus of continuity than we will
eventually obtain, it will allow us to uniformly control the maximum value of local time over
the relevant time scales, as we do in the subsequent lemma.

Lemma 4.1. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

(
max

x,y∈V (Gi)
max

0�t�Tm(Gi)r(Gi)

r(Gi)−1|LGi
t (x) − LGi

t (y)|
R̃Gi

(x, y)1/2(1 + ln R̃Gi
(x, y)−1)

� λ

)
= 0.

Proof. Set dGi
:= R̃Gi

, vGi
(x) := v(r(Gi)x) (where v is the function that appears in the

definition of the UVD property), pGi
(x) :=

√
x and ψGi

(x) := ec|x| for some c which will later
taken to be small. By the lower bound of UVD, we know that (10) holds for each i with this
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choice of dGi
and vGi

. We therefore obtain from Proposition 3.1 (and Remark 3.2) that

r(Gi)−1|LGi
t (x) − LGi

t (y)| � 8
c

∫2R̃Gi
(x,y)

0

1
s1/2

ln+

(
Γ(r(Gi)−1LGi

t )
v(r(Gi)s/2)2

)
ds

for every x, y ∈ V (Gi), i ∈ I, t � 0.
Assume now that Γ(r(Gi)−1LGi

t ) � λm(Gi)2 for some λ � 1. From the UVD property, we
deduce

Γ(r(Gi)−1LGi
t ) � λm(Gi)2 � λc22v(r(Gi))2 � λc22c

4
3s

−2 log2 c3v(r(Gi)s/2)2,

where c3 is the constant such that v(2r) � c3v(r). Hence, setting λ̃ = λ1/2 log2 c3 ,

r(Gi)−1|LGi
t (x) − LGi

t (y)| � c4

∫2R̃Gi
(x,y)

0

1
s1/2

ln+

(
c5λ̃

s

)
ds

for every x, y ∈ V (Gi), i ∈ I. This implies

r(Gi)−1|LGi
t (x) − LGi

t (y)| � c6

√
R̃Gi

(x, y)(ln(c5λ̃) + ln R̃Gi
(x, y)−1)

� c7(1 + lnλ)
√
R̃Gi

(x, y)(1 + ln R̃Gi
(x, y)−1)

for every x, y ∈ V (Gi), i ∈ I.
It follows from the conclusion of the previous paragraph that

sup
i∈I

max
z∈V (Gi)

PGi
z

(
max

x,y∈V (Gi)
max

0�t�Tm(Gi)r(Gi)

r(Gi)−1|LGi
t (x) − LGi

t (y)|
R̃Gi

(x, y)1/2(1 + ln R̃Gi
(x, y)−1)

� λ

)

� sup
i∈I

max
z∈V (Gi)

PGi
z

(
max

0�t�Tm(Gi)r(Gi)
Γ(r(Gi)−1LGi

t ) > λ′m(Gi)2
)
,

where λ′ is defined by λ = c7(1 + lnλ′). Hence, to complete the proof, it will be enough to
show that

sup
i∈I

max
z∈V (Gi)

m(Gi)−2EGi
z

(
max

0�t�Tm(Gi)r(Gi)
Γ(r(Gi)−1LGi

t )
)
<∞. (12)

Now, by definition, we have that the left-hand side is bounded above by

sup
i∈I

max
x,y∈V (Gi)

EGi
z

⎛
⎝exp

⎧⎨
⎩cmax0�t�Tm(Gi)r(Gi) r(Gi)−1|LGi

t (x) − LGi
t (y)|√

R̃Gi
(x, y)

⎫⎬
⎭
⎞
⎠ .

Consequently, assuming that c is chosen to be suitably small, the bound at (12) can be deduced
by applying Theorem 1.1(a).

Lemma 4.2. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

(
max

x∈V (Gi)
r(Gi)−1LGi

Tm(Gi)r(Gi)
(x) � λ

)
= 0.

Proof. First note that, for λ � 1, PG
x (r(G)−1LG

Tm(G)r(G)(x) > λ) is bounded above by
PG

x (τx(	λμG
x r(G)
) < Tm(G)r(G)). Recalling the bound for T1 that appeared in the proof

of Theorem 1.1(a), it follows that

PGi
x (r(Gi)−1LGi

Tm(Gi)r(Gi)
(x) > λ) � e−μGi

x (�λμGi
x r(Gi)�/μGi

x −Tr(Gi))
2/2c�λμGi

x r(Gi)�r(Gi),

and the upper bound here converges to 0 as λ→ ∞, uniformly in x ∈ V (Gi), i ∈ I. The
result follows by applying this convergence and Lemma 4.1, together with the observation
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that PGi
z (maxx∈V (Gi) r(Gi)−1LGi

Tm(Gi)r(Gi)
(x) � λ) is bounded above by

PGi
z (r(Gi)−1LGi

Tm(Gi)r(Gi)
(z) � λ/2)

+ PGi
z

(
max

x,y∈V (Gi)
r(Gi)−1|LGi

Tm(Gi)r(Gi)
(x) − LGi

Tm(Gi)r(Gi)
(y)| � λ/2

)
.

Lemma 4.3. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each L > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

⎛
⎝ max

x,y∈V (Gi)
max
t�0

|L ∧ (LGi
t (x)/r(Gi)) − L ∧ (LGi

t (y)/r(Gi))|√
R̃Gi

(x, y)(1 + ln R̃Gi
(x, y)−1)

� λ

⎞
⎠ = 0.

Proof. Since the proof of this is essentially the same as that of Lemma 4.1 with the local
times being replaced by the truncated local times, we omit the details. We merely note that
to obtain the square root of the log term of the modulus of continuity, we take ψGi

(x) :=
ecx2

and estimate the expectation of maxt�0 Γ(L ∧ (LGi
t /r(Gi))) using the Gaussian bound of

Theorem 1.1(b).

Proof of Theorem 1.4. Clearly, the probability we are trying to bound is no greater than

PGi
z

⎛
⎝ max

x,y∈V (Gi)
max
t�0

|L ∧ (LGi
t (x)/r(Gi)) − L ∧ (LGi

t (y)/r(Gi))|√
R̃Gi

(x, y)(1 + ln R̃Gi
(x, y)−1)

� λ

⎞
⎠

+ PGi
z

(
max

x∈V (Gi)
r(Gi)−1LGi

Tm(Gi)r(Gi)
(x) � L

)
.

Hence the result is an easy consequence of Lemmas 4.2 and 4.3.

5. Examples

In this section, we present some examples of collections of graphs for which UVD can be
checked, and therefore to which Theorem 1.4 applies. Although in these examples we restrict
our attention to collections of unweighted graphs (that is, those for which μG

xy = 1, for all
{x.y} ∈ E(G)), we note that the assumption UVD is stable under perturbations that keep the
weights uniformly bounded. In particular, the discussion would equally apply if we supposed
μG

xy ∈ [c1, c2] for all {x.y} ∈ E(G) (uniformly over the graphs in the collection), where 0 <
c1 � c2 <∞. We further note that for the majority of the graphs described explicitly in our
examples, we have that for some α � 1, β � 2,

μG(Bd(x, r)) 
 rα, RG(x, y) 
 dG(x, y)β−α, (13)

for x, y ∈ V (G), r ∈ [r0(G), r(G)] (again, uniformly over the collection), where dG is the usual
shortest path graph distance, Bd(x, r) is the corresponding ball (defined as at (9)), and 

means ‘bounded above and below by constant multiples of’. As a result, the conclusion of
Theorem 1.4 can be written as

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

⎛
⎝ max

x,y∈V (Gi)
max

0�t�Td(Gi)β

d(Gi)−(β−α)|LGi
t (x) − LGi

t (y)|√
d̃Gi

(x, y)β−α(1 + ln d̃Gi
(x, y)−1)

� λ

⎞
⎠ = 0

(14)
for each T > 0, where d̃Gi

(x, y) := dGi
(x, y)/d(Gi) is the graph distance rescaled by the graph

diameter (as defined at (8)). Note that β gives the relevant time-scaling exponent (cf. the
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Figure 1. The Vicsek set graphs G0, G1, G2.

heat kernel estimates for infinite graphs of [7]). We describe the extension of this local time
continuity result to the infinite graph setting in the next section.

5.1. One-dimensional graphs

Consider (Gi)i∈I to be a collection of unweighted graphs for which there exists a finite
constant c such that m(Gi) � cr(Gi) for all i ∈ I. Since the shortest path graph distance dGi

satisfies dGi
� RGi

, we immediately deduce that μGi(BGi
(x, r)) � r for r ∈ [r0(Gi), r(Gi)],

which confirms UVD holds in this case with v(r) = r. In particular, this class of examples
covers collections of essentially one-dimensional graphs. For example, it includes the case when
Gi is the graph with vertices {0, . . . , i} connected by nearest neighbour edges, i ∈ N. (This
latter example satisfies (13) uniformly over (Gi)i∈N with α = 1, β = 2.)

5.2. Trees

Suppose that (Gi)i∈I is a collection of graph trees. Since in this case dGi
≡ RGi

, it follows
that we can replace the resistance metric by the shortest path metric in the UVD condition
to be checked, and in the conclusion. In particular, if we have a family of trees with uniform
polynomial volume growth of exponent α with respect to the graph distance (so that the
left-hand estimate of (13) holds uniformly over (Gi)i∈I), then UVD holds and Theorem 1.4
applies. (NB. In this case, the right-hand estimate of (13) immediately holds with β = α+ 1.)
For instance, if we take the Gi to be the ith level graph tree approximation of the Vicsek
set, the first three such graphs are shown in Figure 1, then it is easy to check that we have
the requisite polynomial volume growth with exponent α = ln 5/ ln 3, and so we conclude (14)
holds with this α, β = α+ 1 and d(Gi) = 2 × 3i.

5.3. Nested fractal graphs

The nested fractals were originally introduced in [34], and are a class of self-similar fractals
that are finitely ramified, embedded into Euclidean space and admit a high degree of symmetry.
The volume and resistance growth of such fractals and associated graphs are well-understood,
and so fit naturally into the framework of the present article. Although the discussion of this
section would readily extend to any nested fractal, for simplicity of presentation we restrict
ourselves to the graphs associated with the Sierpiński gasket in two dimensions.

Let V0 := {x1, x2, x3} ⊆ R
2 consist of the vertices of an equilateral triangle of side length 1.

Write ψi(x) := |x+ xi|/2. Then there exists a unique compact set such F that F =
⋃3

i=1 ψi(F );
this is the Sierpiński gasket. We define the associated Sierpiński gasket graphs (Gi)i�0 by
setting V (Gi) := Vi, where Vi :=

⋃3
i=1 ψi(Vi−1) for i � 1 (note that V0 was already defined)

and defining E(Gi) to be the collection of pairs of elements of Vi at a Euclidean distance 2−i

apart. (The first three graphs in this sequence are shown in Figure 2.) For such graphs, it is easy
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Figure 2. The Sierpiński gasket graphs G0, G1, G2.

to check that balls in the shortest path graph distance dGi
satisfy c1rdf � μGi(BdGi

(x, r)) �
c2r

df for every x ∈ V (Gi), r ∈ [1, d(Gi)], i � 0, where df := ln 3/ ln 2. Moreover, for the
resistance metric RF on the limiting fractal, it is known that c3|x− y|dw−df � RF (x, y) �
c4|x− y|dw−df for all x, y ∈ F , where dw = ln 5/ ln 2 (see [37, (1.6.10)], for example). From
the standard construction of RF in terms of resistances on approximating subsets, it is
possible to deduce that RGi

(x, y) = (5/3)iRF (x, y) for all x, y ∈ V (Gi), i � 0. It is also straight-
forward to verify c52i|x− y| � dGi

(x, y) � c62i|x− y| for all x, y ∈ V (Gi), i � 0. Hence it
follows that

c7dGi
(x, y)dw−df � RGi

(x, y) � c8dGi
(x, y)dw−df

for all x, y ∈ V (Gi), i � 0. (For nested fractals in general, a discussion of the connection between
the various distances can be found in [21, Remark 3.7].) Putting these estimates together, we
deduce UVD holds for this example, and an application of Theorem 1.4 yields the following.
We note that a similar modulus of continuity for the local times of the limiting diffusion was
established in [10, Theorem 1.11, see also the remark following its proof].

Theorem 5.1. If (Gi)i�0 is the sequence of Sierpiński gasket graphs, then, for each T > 0,

lim
λ→∞

sup
i�0

max
z∈V (Gi)

PGi
z

(
max

x,y∈V (Gi)
max

0�t�5iT

(3/5)i|LGi
t (x) − LGi

t (y)|
|x− y|ln(5/3)/2 ln 2(1 + ln |x− y|−1)1/2

� λ

)
= 0.

5.4. Sierpiński carpet graphs

There are various definitions of generalized Sierpiński carpets and associated graphs to which
the following argument could be applied. Again, though, to avoid unnecessary complication,
we take one representative example. Let {x1, . . . , x8} ⊆ R

2 be the corners and edge-midpoints
of the unit square [0, 1]2. Write ψi(x) := |x+ xi|/3. Then there exists a unique compact set
such F that F =

⋃8
i=1 ψi(F ); this is the Sierpiński carpet. We define the associated Sierpiński

carpets graphs (Gi)i�0 by first setting V (Gi) := Vi, where V0 is the set consisting of the centres
of the squares (ψj([0, 1]2))8j=1, and Vi :=

⋃8
i=1 ψi(Vi−1) for i � 1. Moreover, we define E(Gi)

to be the collection of pairs of elements of Vi at a Euclidean distance 3−(i+1) apart. (The first
three graphs in this sequence are shown in Figure 3.) Let us also define an infinite version of
the graphical Sierpiński carpet G by setting V (G) :=

⋃∞
i=0 3i+1Vi, and defining E(G) to be the

collection of pairs of elements of V (G) a unit distance apart.
Now, for the infinite graphical Sierpiński carpet, it is a consequence of results in [5, 7] that

c1dG(x, y)dw−df � RG(x, y) � c2dG(x, y)dw−df (15)

for every x, y ∈ V (G), where RG and dG are the resistance and shortest path metric,
respectively, df := ln 8/ ln 3 and dw := ln(8ρ)/ ln 3 for some ρ > 1. Hence, if we consider Gi

with ‘wired’ boundary conditions, by which we mean we identify all the vertices on the
outer edge of the graph to obtain a new graph Gw

i , then a straightforward application of
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Figure 3. The Sierpiński carpet graphs G0, G1, G2.

Figure 4. The left-hand figure shows A (black) and B (dark grey). The right-hand figure shows
A′ and B′.

Rayleigh’s monotonicity law (see, for example, [33, Theorem 9.12]) allows us to deduce that
RGw

i
(x, y) � c3dGw

i
(x, y)dw−df for all x, y ∈ V (Gw

i ), i � 0. It is also an elementary exercise
to check that μGw

i (BdGw
i
(x, r)) � μGi(BdGi

(x, r)) � c4r
df for every x ∈ V (Gw

i ), r ∈ [1, d(Gw
i )],

i � 0. (If x is the boundary vertex in Gw
i , then we can take any x on the boundary in the

middle expression above.) This confirms that the first part of the UVD condition holds with
v(r) = rdf /(df−dw).

For the second part of the UVD condition, let us start by defining A to be the union of two
rectangles of height 1/9 and width 1, one at the top and one at the bottom of the unit square
[0, 1]2. Moreover, define B to be the square of side 1/9 located on the middle of the right-hand
side of [0, 1]2. (See left-hand side of Figure 4.) From [35, Theorem 6.1], it follows that there
exists a constant c5 such that

RGi
(A ∩ Vi, B ∩ Vi) � c5ρ

i (16)

for every i � 1. (The graphs considered in [35] have larger vertex sets than ours, but it is
easy to see that the resistance in the two settings is comparable.) Next, let A′ and B′ be the
image of A and B under the map that takes the unit square [0, 1]2 to [2/9, 1/3] × [4/9, 5/9]
(see the right-hand side of Figure 4). By again applying Rayleigh’s monotonicity law, it
follows from (16) that if x ∈ B′ ∩ V (Gw

i ) and y ∈ V (Gw
i )\[2/9, 1/3] × [4/9, 5/9] (where i � 3),

then RGw
i
(x, y) � RGw

i
(A′, B′) � c6ρ

i. In particular, this implies that r(Gw
i ) � c7ρ

i, and we
conclude that m(Gw

i ) � c78i � c8r(Gw
i )df /(df−dw), as desired. Thus, since the graph distance

dGi
is comparable to the wired Euclidean distance | · − · |w (that is, the quotient of the
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usual Euclidean distance on [0, 1]2 under the identification of the boundary) multiplied
by 3i, we obtain the following. We expect that by developing further the techniques of
[35] (see also [5]), it should be possible to verify the corresponding result for the unwired
graphs (Gi)i�0.

Theorem 5.2. If (Gw
i )i�0 is the sequence of wired Sierpiński carpet graphs, then, for each

T > 0,

lim
λ→∞

sup
i�0

max
z∈V (Gi

w)
PGw

i
z

(
max

x,y∈V (Gi
w)

max
0�t�(8ρ)iT

ρ−i|LGw
i

t (x) − L
Gw

i
t (y)|

|x− y|ln(ρ)/2 ln 3
w (1 + ln |x− y|−1

w )1/2
� λ

)
= 0.

6. Infinite graphs

In this section, we consider the application of the techniques developed in this article to a
class of infinite graphs. In particular, we suppose that G = (V (G), E(G)) is an infinite, locally
finite, connected graph, with weights μG and distinguished vertex 0 ∈ V (G). We assume that
this satisfies (13) for some α < β (where α � 1, β � 2). We note that, as is discussed following
[7, Definition 1.2] (see also [7, Proposition 3.5]), these conditions imply that the random walk
XG is recurrent. As a consequence, the identity at (1) still holds in this setting (see [4, Lemma
2.48], for example). This will be useful in proving the following adaptation of Theorem 1.4 to
the present setting, which is the main result of this section. Since the proof is in many aspects
similar to that of Theorem 1.4, we will be brief with the details. At the end of the section, we
describe a particular application to the infinite graphical Sierpiński carpet.

Theorem 6.1. If G is an infinite graph satisfying (13) for some α � 1, β � 2 such that
α < β, then, for each T > 0,

lim
λ→∞

sup
i�1

PG
0

⎛
⎝ max

x,y∈V (G)
max

0�t�Tiβ

i−(β−α)|LG
t (x) − LG

t (y)|√
R

(i)
G (x, y)(1 + ln+(R(i)

G (x, y))−1)
� λ

⎞
⎠ = 0,

where R
(i)
G (x, y) := i−(β−α)RG(x, y).

To prove the above result, we start with a lemma that controls the rate of growth of the
local times at a given vertex. Throughout this section, we suppose dG is the usual shortest
path metric on G, and denote balls with respect to this metric by Bd(x, r).

Lemma 6.2. If G is an infinite graph satisfying the conditions of Theorem 6.1, then, for
each T > 0, there exist constants c1 and c2 such that

sup
i�1

sup
x∈V (G)

PG
x (i−(β−α)LG

Tiβ (x) � λ) � c1 e
−c2λ

for every λ � 0.

Proof. We will first show the existence of constants ε1, ε2 > 0 such that

PG
x (τ+

x � ε1i
β) � ε2

μG
x i

β−α
(17)
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for all x ∈ V (G), i � 1. Given x ∈ V (G), let y ∈ V (G) be such that dG(x, y) = i. We then have
that

PG
x (τ+

x � ε1i
β) � PG

x (τy < τ+
x )PG

y (τBd(y,i)c > ε1i
β)

� 1
μG

xRG(x, y)
(1 − c1 e

−c2ε
−(1/(β−1))
1 )

� c3
μG

x i
β−α

,

where τBd(y,i)c is the exit time of the ball Bd(y, i). Note that we have applied (1) and [7,
Proposition 3.4 and Lemma 3.7] to deduce the second inequality, and (13) to obtain the third.
This confirms the desired bound.

Now, define (τx(i))i�0 as in the proof of Theorem 1.1(a). It is then the case that

PG
x (i−(β−α)LG

Tiβ (x) > λ) � PG
x (τ(	λμG

x i
β−α
) < Tiβ)

� PG
x

⎛
⎝�λμG

x iβ−α�−1∑
j=0

1{τx(j+1)−τx(j)�ε1iβ} < T/ε1

⎞
⎠

= P(Bin(	λμG
x i

β−α
,PG
x (τ+

x � ε1i
β)) < T/ε1)

� P(Bin(	λμG
x i

β−α
, ε2/μG
x i

β−α) < T/ε1),

where we denote by Bin(n, p) a binomial random variable with parameters n and p, built on a
probability space with probability measure P. Note that the final inequality is a consequence
of (17). Hence,

PG
x (i−(β−α)LG

Tiβ (x) > λ) � eT/ε1EG
x (e−Bin(�λμG

x iβ−α�,ε2/μG
x iβ−α))

� eT/ε1 e−(1−e−1)�λμG
x iβ−α�ε2/μG

x iβ−α

.

Next, note that if y ∈ V (G) is such that dG(x, y) = 1, then, by applying (1) and (13), we
have that 1 � Px(τy < τ+

x )−1 = μG
xRG(x, y) � c4μ

G
x dG(x, y)β−α = c4μ

G
x . In conjunction with

the above inequality, it follows that, for λ � 2c4, PG
x (i−(β−α)LG

Tiβ (x) > λ) � c5e
−c6λ, and the

result follows.

The following result is a version of Theorem 1.1 for infinite graphs. Since on replacing r(G)
by iβ−α, and m(G) by iα, the proof of the result is almost identical to that of Theorem 1.1,
we omit it. (The one other change that is required is the use of Lemma 6.2 to bound the term
corresponding to T1 in the proof of part (a).)

Lemma 6.3. Suppose that G is an infinite graph satisfying the conditions of Theorem 6.1.

(a) For each κ, T > 0, there exist constants c1 and c2 such that

sup
i�1

max
x,y,z∈V (G):
dG(x,y)�κi

PG
z

(
max

0�t�Tiβ
i−(β−α)|LG

t (x) − LG
t (y)| � λ

√
R

(i)
G (x, y)

)

� c1 e
−c2λ

for every λ � 0.
(b) It holds that

sup
i�1

max
x,y,z∈V (G)

PG
z

(
max
t�0

∣∣∣∣L ∧
(
LG

t (x)
iβ−α

)
− L ∧

(
LG

t (y)
iβ−α

)∣∣∣∣ � λ

√
R

(i)
G (x, y)

)

� 2e1/2−λ2/8L

for every λ � 0 and L � 1.
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We are now in a position to prove the main result of the section.

Proof of Theorem 6.1. Given κ � 6, let Gi be the graph with vertex set V (Gi) := Bd(0, κi)
and edge set E(Gi) := {x, y ∈ E(G) : x, y ∈ Bd(0, κi)}. From (13), it is possible to check that
there exists a constant c1 such that

μG(Bd(x, r) ∩Bd(0, κi)) � c1r
α (18)

for every x ∈ V (Gi), r ∈ [1, 2κi], i � 1. Indeed, for balls such that Bd(x, r) ⊆ Bd(0, κi) (which
includes the case r = 1) this is obvious. Otherwise, x ∈ Bd(0, (κi− r)+)c. If we further suppose
2 � r � 2κi/3, then 1 � 	r/2
 � κi− r, and it is possible to select y ∈ V (Gi) to be a point on
a shortest path from 0 to x such that dG(x, y) = 	r/2
. For this y, we have μG(Bd(x, r) ∩
Bd(0, κi)) � μG(Bd(y, 	r/2
)) � c2r

α. On the other hand, assume 2κi/3 � r � 2κi. Let y ∈
V (Gi) to be a point on a shortest path from 0 to x such that dG(x, y) = 	dG(0, x)/2
.
Then μG(Bd(x, r) ∩Bd(0, κi)) � μG(Bd(y, κi/6)) � c3(κi)α � c4r

α. This confirms (18), and
thus we deduce that the measures μGi := μG(· ∩Bd(0, κi)) satisfy (10) uniformly in i � 1 for
v(r) = c1r

α.
Next, from Lemma 6.3(a), we deduce that, for each κ, T > 0, there exists a constant c5 such

that

sup
i�1

i−2αEG
0

⎛
⎝ max

0�t�Tiβ

∑
x,y∈Bd(0,κi)

ec5i−(β−α)|Lt(x)−Lt(y)|/
√

R
(i)
G (x,y)μG

x μ
G
y

⎞
⎠ <∞.

Hence, setting dGi
:= R

(i)
G , vGi

(x) := iαxα/(β−α), pGi
(x) :=

√
x and ψGi

(x) := ec|x| for suitably
small c, and applying the volume bound of the previous paragraph, one can proceed as in the
proof of Lemma 4.1 to show that, for any κ, T > 0,

lim
λ→∞

sup
i�1

PG
0

(
max

x,y∈Bd(0,κi)
max

0�t�Tiβ

i−(β−α)|LG
t (x) − LG

t (y)|
R

(i)
G (x, y)1/2(1 + ln+R

(i)
G (x, y)−1)

� λ

)
= 0.

Together with the conclusion of Lemma 6.2, this implies that, for each κ, T > 0,

lim
λ→∞

sup
i�1

PG
0

(
max

x∈Bd(0,κi)
i−(β−α)LG

Tiβ (x) � λ

)
= 0 (19)

(cf. the proof of Lemma 4.2). Moreover, Lemma 6.3(b) implies that for each κ > 0, L � 1, there
exists a constant c6 such that

sup
i�1

i−2αEG
0

⎛
⎝max

t�0

∑
x,y∈Bd(0,κi)

ec6|L∧(LG
t (x)/iβ−α)−L∧(LG

t (y)/iβ−α)|2/R
(i)
G (x,y)μG

x μ
G
y

⎞
⎠ <∞.

Thus, as in Lemma 4.3, taking ψGi
(x) := ecx2

in a similar application of Garsia’s lemma yields

lim
λ→∞

sup
i�1

PG
0

⎛
⎝ max

x,y∈Bd(0,κi)
max
t�0

|L ∧ (LG
t (x)/iβ−α) − L ∧ (LG

t (y)/iβ−α)|√
R

(i)
G (x, y)(1 + ln+R

(i)
G (x, y)−1)

� λ

⎞
⎠ = 0. (20)

Putting (19) and (20) together, we can emulate the proof of Theorem 1.4 to obtain

lim
λ→∞

sup
i�1

PG
0

⎛
⎝ max

x,y∈Bd(0,κi)
max

0�t�Tiβ

i−(β−α)|LG
t (x) − LG

t (y)|√
R

(i)
G (x, y)(1 + ln+R

(i)
G (x, y)−1)

� λ

⎞
⎠ = 0. (21)

Finally, we know from [7, Proposition 3.4 and Lemma 3.7] that if τBd(0,κi)c is the exit time of
XG from Bd(0, κi), then limκ→∞ supi�1 PG

0 (τBd(0,κi)c � Tiβ) = 0. The result readily follows
by applying this together with (21).
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A simple application of Theorem 6.1 yields the following corollary for the infinite graphical
Sierpiński carpet introduced in Subsection 5.4. The key estimate verifying (13) is stated at
(15). (The relevant volume bound is easy to check.) In stating the result, we write the infinite
carpet F∞ :=

⋃∞
i=0 3iF , where F is the Sierpiński carpet defined in Subsection 5.4. We extend

the definition of discrete local times to this set in such a way that for each x ∈ F∞, LG
t (x) is

bounded below (above) by the minimum (maximum) of LG
t over the graph vertices contained

in the same and adjacent unit squares, and also (LG
t (x))x∈F∞ is continuous. We then extend

to all times by linear interpolation. As is explained in the next section, were it known that the
random walks converged under rescaling to a diffusion with jointly continuous local times, then
this result would be enough to confirm that the local times of the random walk also converged
under suitable rescaling.

Corollary 6.4. For the infinite graphical Sierpiński carpet, for each t � 0, the laws of

(i−(dw−df )LG
idw t(ix))x∈F∞ ,

i = 1, 2, . . . , form a tight sequence of probability measures on C(F∞,R), where df := ln 8/ ln 3
and dw := ln(8ρ)/ ln 3.

7. Local time and cover time-scaling

In this section, we consider the implications of local time equicontinuity for sequences of graphs
for which the associated random walks admit a scaling limit. As in Subsection 5.3, for brevity
we restrict ourselves to the unweighted Sierpiński gasket graphs. It should be noted, however,
that the arguments below are relatively generic, and should be transferable to many other
models once the relevant inputs are established. Indeed, this is the reason why, despite it being
possible to prove a stronger result for cover times than the one we derive below using a simple
time-change argument in the particular case of nested fractal graphs, we believe the techniques
developed here are still of interest (see Remarks 7.2 and 7.4 for further discussion on this
point).

Let (Gi)i�0 be the sequence of Sierpiński gasket graphs of Subsection 5.3, and F be the
limiting Sierpiński gasket into which these are embedded. By [10, 25, 32], we know that if the
associated random walks XGi are started from xi ∈ V (Gi), where xi → x ∈ F , then

(XGi

5it)t�0 −→ (XF
t )t�0 (22)

in distribution in C(R+, F ), where XF is Brownian motion on the Sierpiński gasket started
from x. (We suppose that discrete-time processes are extended to elements of C(R+, F ) by
linear interpolation.)

In [10], it was shown that the Brownian motion XF admits local times (LF
t (x))x∈F,t�0 that,

almost-surely, are jointly continuous in (x, t) and satisfy the occupation density formula:
∫
F

f(x)LF
t (x)μF (dx) =

∫ t

0

f(XF
s ) ds,

for any continuous function f : F → R and t � 0, where μF is the (ln 3/ ln 2)-dimensional
Hausdorff measure on F , normalized to be a probability measure. For t ∈ N, we similarly
have ∫

F

f(x)LGi
t (x)μGi(dx) =

t−1∑
j=0

f(XGi
j ).
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Hence, by applying the random walk scaling limit of (22), it is possible to check that, for each
continuous f : F → R and t � 0,

5−i

∫
F

f(x)LGi

5it(x)μ
Gi(dx) −→

∫
F

f(x)LF
t (x)μF (dx)

in distribution. (Note that, for this statement to make sense, we suppose that the definition of
the discrete local time processes it extended to all times by linear interpolation at each vertex.)
By [27, Theorem 16.16], this is enough to imply that, for each t � 0,

5−iLGi

5it(x)μ
Gi(dx) −→ LF

t (x)μF (dx) (23)

in distribution in the topology of weak convergence of Borel measures on F . (We view μGi as
an atomic measure on F in the obvious way.)

Now, for each t, we extend (LGi
t (x))x∈V (Gi) to a continuous function on F by setting

LGi
t (x) =

∑3
k=1 |x− xk|−1LGi

t (xk)∑3
k=1 |x− xk|−1

when x is contained in the ith level triangle with vertices x1, x2, x3. Given the equicontinuity
result of Theorem 5.1 and uniform boundedness of Lemma 4.2, we can apply the Arzela–Ascoli
theorem to deduce that the laws of ((3/5)iLGi

5it(x))x∈F form a tight sequence of probability
measures on C(F,R+). In particular, the sequence ((3/5)iLGi

5it(x))x∈F admits a distributionally

convergent subsequence. Suppose that we have such a subsequence ((3/5)ijL
Gij

5ij t
(x))x∈F , and

(�(x))x∈F is the distributional limit in C(F,R). Since μG/(6 × 3i) → μF , it is an easy appli-
cation of the continuous mapping theorem to deduce from this that 5−ijL

Gij

5ij t
(x)μGij (dx) →

6�(x)μF (dx) in distribution in the topology of weak convergence of Borel measures on F . In
conjunction with (23) and the almost-sure continuity of (LF

t (x))x∈F , it follows that (6�(x))x∈F

is equal to (LF
t (x))x∈F in distribution. Since this conclusion is independent of the particular

subsequence chosen, we obtain that, for each t � 0,(
6
(

3
5

)i

LGi

5it(x)

)
x∈F

−→ (LF
t (x))x∈F

in distribution in C(F,R+). Given that the convergence of the rescaled XGi to XF holds
in the uniform topology over compact time intervals, this result is readily extended to hold
simultaneously over a finite collection of times 0 � t1 � · · · � tk. Moreover, because local times
are increasing in t and the limit is continuous in the temporal variable, an elementary argument
allows us to deduce the convergence is also uniform over time (cf. the proof of Dini’s theorem).
In particular, by following these steps, we obtain the following result.

Theorem 7.1. Let (Gi)i�0 be the sequence of Sierpiński gasket graphs of Subsection 5.3.
If the associated random walks XGi are started from xi ∈ V (Gi), where xi → x, then(

6
(

3
5

)i

LGi

5it(x)

)
x∈F,t�0

−→ (LF
t (x))x∈F,t�0

in distribution in C(F × R+,R), where (LF
t (x))x∈F,t�0 are the local times for the Brownian

motion XF on the Sierpiński gasket F started from x.

Remark 7.2. We now discuss a simpler proof of the corresponding result for the
continuous-time version of the random walk, similar to the proof of [3, Theorem 7.22]. If
we define Ai

t :=
∫

F
LF

t (x)μGi(dx)/m(Gi) and τi(t) := inf{s : Ai
s > t}, then (XF

τi(t)
)t�1 gives

the continuous time random walk on Gi with exponential mean 5−i holding times. Moreover,
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similarly to the argument of [13, Lemma 3.4], one can check that the local times of this process
with respect to μGi/m(Gi) are given by (LF

τi(t)
(x))x∈V (Gi),t�0. Now, since μGi/m(Gi) → μF ,

the continuity of the local times LF imply that (τi(t))t�0 → (t)t�0 almost-surely. Thus a simple
reparametrization yields that if (L̃Gi

t (x))x∈V (Gi),t�0 are the local times of the continuous-time
simple random walk on Gi with exponential mean one holding times, with respect to the
measure μGi , then (6(3/5)iL̃Gi

5it(x))x∈F,t�0 → (LF
t (x))x∈F,t�0 in distribution in C(F × R+,R),

where the local times on the discrete spaces are suitably extended to take values in this space.
We note, however, that this result would not transfer to the discrete-time case without the
use of some form of equicontinuity property, such as the one we have proved in this article.
Moreover, the construction of the time-changed processes that the proof depends on is quite
specific to the particular situation, and would not readily transfer to other settings, such as
the Sierpiński carpet.

To conclude the article, we show that, as a consequence of this local time convergence, we
are able to deduce the asymptotic behaviour of the cover times of the Sierpiński gasket graphs
in the sequence. To this end, for a random walk XG on a graph G, we define

τG
cov := inf{t � 0 : {XG

0 , . . . , X
G
t } = V (G)} (24)

to be the first time that XG has hit every vertex of G. We note that if

τ̃G
cov := inf{t � 0 : LG

t (x) > 0, ∀x ∈ V (G)}, (25)

then τ̃G
cov = τG

cov + 1; this equality will be crucial for our argument. We note that, as in the first
part of this section, the steps we follow are not specific to the Sierpiński gasket example, and
will apply to any sequence of graphs for which we have a scaling limit for the random walks
and local times. In order to state our main result, for a diffusion XF with state space F and
corresponding local times (LF

t (x))x∈F,t�0, we define τF
cov and τ̃F

cov analogously to (24) and (25),
respectively.

Corollary 7.3. Let (Gi)i�0 be the sequence of Sierpiński gasket graphs of Subsection
5.3. If xi ∈ V (Gi) satisfy xi → x, then

lim sup
i→∞

PGi
xi

(5−iτGi
cov � t) � PF

x (τF
cov � t), (26)

lim inf
i→∞

PGi
xi

(5−iτGi
cov � t) � PF

x (τ̃F
cov < t), (27)

for every t � 0, where PF
x is the law of the Brownian motion XF on the Sierpiński gasket F

started from x.

Proof. Suppose that t < τF
cov. Then there exists an x ∈ F such that x is not contained

in the set {XF
s : 0 � s � t}. By the continuity of XF , it follows that there exists an ε > 0

such that BE(x, ε) ∩ {XF
s : 0 � s � t} = ∅, where BE(x, ε) is the Euclidean ball of radius ε

centred at x. Now, applying the Skorohod representation theorem, it is possible to assume
that we have a realization of the relevant processes such that the convergence at (22) occurs
almost-surely. Since we are assuming convergence in the uniform topology, it follows that,
for large i, BE(x, ε/2) ∩ {XGi

5is : 0 � s � t} = ∅, and so 5it � τGi
cov. Thus we conclude that

lim infi→∞ 5−iτGi
cov � τF

cov, and the bound at (26) follows.
Suppose that t > τ̃F

cov. As local times are increasing in t, it must be the case that
LF

t (x) > 0 for every x ∈ F . Together with the continuity of the local times, this implies that
there exists an ε > 0 such that LF

t (x) > ε for every x ∈ F . Again applying the Skorohod
representation theorem, we may suppose that the conclusion of Theorem 7.1 holds almost-
surely. Since this statement is also in the uniform topology, it follows that 6(3/5)iLGi

5it(x) > ε/2
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for every x ∈ V (Gi) for large i. It thus holds that 5it � τ̃Gi
cov for large i, which establishes

lim supi→∞ 5−iτGi
cov = lim supi→∞ 5−iτ̃Gi

cov � τ̃F
cov. This readily yields the statement at (27).

Remark 7.4. (a) One can check that 0 < τF
cov � τ̃F

cov <∞, almost-surely (cf. the proof of
[10, Theorem 6.3]), and so the limiting expressions are non-trivial.

(b) It is an interesting open problem to determine for which limiting diffusions the identity
τF
cov = τ̃F

cov holds almost-surely, as it does for reflected Brownian motion on an interval, for
example. Indeed, if this were true for the Brownian motion on the Sierpiński gasket, then the
above result would actually demonstrate that 5−iτGi

cov → τF
cov in distribution.

(c) In fact, in the Sierpiński gasket case, it is possible to check that 5−iτGi
cov → τF

cov in
distribution using the time-change argument of Remark 7.2. Indeed, if

τF,i
cov := inf{t � 0 : V (Gi) ⊆ {XF

s : 0 � s � t}},
then it is possible to check from the continuity of XF that τF,i

cov → τF
cov, almost-surely. Hence we

also have that τi(τF,i
cov) → τF

cov, almost-surely. Since τi(τF,i
cov) is the cover time of the continuous-

time random walk with exponential mean 5−i holding times, by a reparametrization and the
law of large numbers, it follows that the rescaled cover times of the discrete-time walks converge
in distribution. We reiterate, though, that we expect the argument of this article to be more
widely applicable than this.
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