THE UNIVERSITY OF MARMGML

Original citation:

Bisset, Alexander A., Dishington, Allan, Jones, Teyrnon, Clarkson, Guy J. and Wills, Martin. (2014) Synthesis and reduction reactions of pyridones and 5-acyl-2methoxypyridines. Tetrahedron, Volume 70 (Number 40). pp. 7207-7220.

Permanent WRAP url:

http://wrap.warwick.ac.uk/63849

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.
Synthesis and Reduction Reactions of
Pyridones and 5-Acyl-2-Methoxypyridines
Alexander A. Bisset, Allan Dishington, ${ }^{\mathrm{b}}$ Teyrnon Jones, ${ }^{\text {b }}$ Guy J. Clarkson ${ }^{\mathrm{a}}$ and Martin Wills ${ }^{\mathrm{a} *}$
a Department of Chemistry, The University of Warwick, Coventry, CV4 7AL UK. b AstraZeneca, Oncology
Innovative Medicines and Early Development (IMED), Alderley Park, Macclesfield, Cheshire, SKlO 4TG, UK
, Leave this area blank for abstract info.

Synthesis and Reduction Reactions of Pyridones and 5-Acyl-2Methoxypyridines

Alexander A. Bisset, ${ }^{\text {a }}$ Allan Dishington, ${ }^{\text {b }}$ Teyrnon Jones, ${ }^{\text {b }}$ Guy J. Clarkson ${ }^{\text {a }}$ and Martin Wills ${ }^{\mathrm{a}^{*}}$
${ }^{\text {a }}$ Department of Chemistry, The University of Warwick, Coventry, CV4 7AL UK.
${ }^{b}$ AstraZeneca, Oncology Innovative Medicines and Early Development (IMED), Alderley Park, Macclesfield, Cheshire, England. SK10 4TG, UK

Abstract

The synthesis of a series of pyridones, from their 2-hydroxypyridine or 2-methoxypyridine precursors, is described, along with studies into their reductions to saturated heterocycles. A number of 5 -acylpyridones were prepared and were evaluated as substrates for asymmetric transfer hydrogenation prior to conversion to saturated heterocycles. The enantioselective reduction of 5-acetyl-1-benzylpyrimidine-2,4(1H,3H)-dione is also described. © 2015 Elsevier Science. All rights reserved

[^0]
1. Introduction

The full or partial reduction of heterocyclic substrates provides a route to numerous target molecules, several of which are represented in pharmaceuticals, fine chemicals and materials. In this paper we describe the development of routes to a series of substituted N -containing heterocycles, including alkoxypyridines, N-benzyl pyridines and acyl pyridines, together with a racemic and asymmetric reduction of the latter.

As part of an ongoing project, we were interested in developing routes to bis-piperidine (general structure 1) and close derivatives. ${ }^{1}$ We envisaged that these could be prepared from 2-methoxypyridines $\mathbf{2 a}-\mathbf{2 e}$, via $\mathbf{3 a - 3 e}$, to the saturated products $\mathbf{4 a}-\mathbf{4 e}$. In addition, the conversion of 5-acyl-2-methoxy pyridines $\mathbf{5 - 9}$ to alcohols $\mathbf{1 0 - 1 4}$ by asymmetric transfer hydrogenation (ATH) was investigated. The subsequent formation of $\mathbf{1 5}$ and $\mathbf{1 6 a} / \mathbf{b}$ serves to illustrate the synthetic value of the latter transformation.

2. Results and Discussion.

We initially studied the reductions of a number of 5substituted pyridones. Acid 3a was prepared by the reaction of 6-hydroxynicotinic acid with benzyl bromide in the presence of KOH in methanol. Esterification of 2a with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and methanol (72% yield, Scheme 1) gave 2b which underwent reaction with benzyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give methyl N -benzylpyridone-5carboxylate 3b in 29 \% yield. ${ }^{2}$

Scheme 1. Synthesis of pyridones 3b and 3c.

Pyridone 3c was prepared via reduction of ester $\mathbf{2 b}$ with LiAlH_{4} to give pyridine 2c followed by reaction with benzyl bromide (Scheme 1). ${ }^{2}$ The reduction reactions are summarised in Table 1. Pyridone 3a was reduced with Pd / C under forcing conditions (25 bar hydrogen) to give lactam $4 \mathbf{a}$ in near quantitative yield (entry 1). No reduction was observed with the catalysts $(R)-\left[\mathrm{Ru}(\mathrm{BINAP})(\mathrm{OAc})_{2}\right]^{3}$ $(R)-\mathbf{1 7}$ or $[\mathrm{Rh}(\mathrm{I})((R, R) \text {-EtDuPhos })]^{4} \quad(R, R)-\mathbf{1 8}$ under a variety of conditions. Transfer hydrogenation catalyst $(R, R)-19$ (a catalyst related to the Noyori catalyst 20) ${ }^{5}$ was tested but with no success (entry 4). Pyridone 3b was readily reduced with Pd / C under a balloon of hydrogen to give lactam $\mathbf{4 b}$ (entry 5). The use of $(R, R)-18$ resulted in 75 $\%$ conversion to racemic $\mathbf{4 b}$ (entry 6). When $\mathrm{Pd} / \mathrm{BaSO}_{4}$ was used to reduce $3 \mathbf{c}$, the fully hydrogenated and $\mathrm{C}-\mathrm{O}$ cleaved product 21 was obtained in 71% yield (entry 7). The hydrogenation of the pyridone group was achieved with PdO_{2} however, resulting in formation of the desired lactam $\mathbf{4 c}$ in 65% yield (entry 8). An asymmetric synthesis of a compound related to $\mathbf{4 c}$ (95% ee) has been reported by Park et al., via the phase transfer organo-catalytic monoalkylation of a malonamide. ${ }^{6}$

Table 1. Reduction of pyridones $\mathbf{3 c}, \mathbf{3 a}$ and $\mathbf{3 b}$.

(R, R) $\mathbf{- 1 9}$

$(R, R)-20$

An approach to the natural product cytisine ${ }^{7}$ was envisaged through the asymmetric hydrogenation of pyridone $\mathbf{3 d}$, since the product, lactam $\mathbf{4 d}$, may be converted to the cytisine precursor lactam $4 \mathrm{e}^{8}$ through the three step method detailed by Sivaguru et al. ${ }^{9}$ Imide 3d was prepared via the pyridine $2 \mathbf{d}$, formed by the coupling of pyridine $2 \mathbf{c}$ with
glutarimide under Mitsunobu conditions ${ }^{10}$ (Scheme 2). Pyridine 2d was then converted to $\mathbf{3 d}$ upon treatment with benzyl bromide in 59% yield as a colourless powder. An X-ray crystallographic analysis confirmed the structure (Figure 1), and that alkylation had occurred exclusively on $N(8) .{ }^{11}$

Scheme 2. Synthesis of 3d.

Figure 1: X-ray crystal structure of 3d.
The hydrogenation of pyridone $\mathbf{3 d}$ was carried out using a range of homogeneous and heterogeneous catalysts (Table 2). Using platinum oxide in ethanol for 6 h at room temperature, the desired lactam $4 \mathbf{d}$ was formed in 100% conversion (entry 1).

Table 2. Asymmetric Hydrogenation of pyridone 3d.

En- try	cat.	scale /mg	$\mathbf{m o l} \%$	$\mathbf{T} /$ ${ }^{\circ} \mathbf{C}$	$\mathbf{t} /$ \mathbf{h}	$\mathbf{P} /$ bar	conv. /\%
$1^{\text {a }}$	PtO_{2}	40	10	30	6	1^{b}	100
2^{a}	PtO_{2}	1140	5	Rt	18	5	$95^{\text {c }}$
3	$(R, R)-\mathbf{1 8}$	30	5	40	72	30	$54^{\text {d }}$
4	$(R)-\mathbf{1 7}$	20	5	30	6	50	100^{d}

a. EtOH as solvent; b. under a balloon of hydrogen; c. isolated yield; d. the product was racemic.

Conducting the reduction at an elevated pressure of 5 bar at room temperature for 18 h was reproducibly found to give the desired product $\mathbf{4 d}$ in high yield (entry 2). Asymmetric hydrogenation of pyridines is generally known to be challenging, ${ }^{12,13}$ however some attempts were made. Partial conversion to lactam 4 d was observed using (R, R) - $\mathbf{1 8}$ following a prolonged reaction time of 72 h at $40^{\circ} \mathrm{C}$ under 30 bar of hydrogen (entry 3) however the product was racemic. (R) - $\mathbf{1 7}$ was remarkably active, resulting in 100% conversion to 4 d after 6 h at $30^{\circ} \mathrm{C}$ (50 bar hydrogen) however again the sample was found to be racemic. The absence of any enantioselectivity may be due to the tautomeric forms of the structure. ${ }^{14}$ With lactam (\pm)-4d in
hand, a racemic formal synthesis of cytisine was completed (Scheme 3). ${ }^{9}$ Treatment of (\pm)-4d with sodium borohydride and cerium chloride gave α-hydroxylactam 22 in 70% yield as an inseparable mixture of diastereomers which were not purified.

Scheme 3. Conversion of $\mathbf{3 d}$ to cytisine precursor $\mathbf{4 e}$.
Treatment of α-hydroxylactam 22 with titanium chloride and DIPEA mediated the formation of the enamide $23 .{ }^{15}$ Oxidation was achieved by treatment of the lithium enolate of $\mathbf{2 3}$ (formed with LDA) with PhSeCl at $-78^{\circ} \mathrm{C}$ followed by oxidation with NaIO_{4} in a solution of THF : MeOH : $\mathrm{H}_{2} \mathrm{O}(18: 6: 2)$, resulting in formation of a sample containing a mixture of the desired pyridone $4 \mathbf{e}$ and an unidentified product.

Reaction of chloride 24 (formed from 2c using thionyl chloride) with 2-hydroxypyridine and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in toluene at $115{ }^{\circ} \mathrm{C}$ for 10 h , successfully gave methoxypyridine 2 e in 63% yield as the major isomer, alongside the O-substituted isomer, $\mathbf{2 5}$ which was isolated in 12% yield, (Scheme 4). Longer reaction times (18 h) resulted in formation of only traces of 25.

Scheme 4. Synthesis of $\mathbf{3 e}$
Methoxypyridine 2e, readily underwent alkylation with benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile at $80{ }^{\circ} \mathrm{C}$ for 8 h to give pyridone 3 e in 51% yield as a colourless powder, following recrystallisation from ethanol (Scheme 4). An Xray diffraction solution served to confirm the structure (Figure 2). ${ }^{11}$

Figure 2. X-ray crystallographic structure of 3e.
Pyridone 3e was reduced with Pd / C under a balloon of hydrogen at $30{ }^{\circ} \mathrm{C}$ to give lactam 26 in 90% conversion after 17 h (Table 3, entry 1). Preferably (due to ease of subsequent purification) reduction was achieved with PtO_{2} under a balloon of hydrogen at $30^{\circ} \mathrm{C}$. At a larger scale of $644 \mathrm{mg}, 90 \%$ conversion of the starting material was achieved (as determined by ${ }^{1} \mathrm{H}$ NMR) after 20 h , providing pure lactam 26 in 75% yield following silica gel chromatography (entry 2). Treatment of 22 with $\mathrm{Et}_{3} \mathrm{SiH}$ also resulted in its conversion to lactam 26. Pyridone $\mathbf{3 e}$ underwent partial conversion to lactam 26 with $(R, R)-\mathbf{1 8}$ following a reaction time of 18 h at room temperature under 20 bar hydrogen (entry 3), however the product was racemic.

Table 3. Asymmetric Hydrogenation of pyridone 3e.

Entry	cat.	scale / mg	$\begin{gathered} \mathrm{mol} \\ \% \end{gathered}$	$\begin{aligned} & \text { T / } \\ & { }^{\circ} \mathbf{C} \end{aligned}$	t/h	$\begin{aligned} & \text { P./ } \\ & \text { bar } \end{aligned}$	$\begin{gathered} \text { conv. / } \\ \% \end{gathered}$
1	Pd / C	110	5	30	17	$1{ }^{\text {b }}$	90
$2^{\text {a }}$	PtO_{2}	644	5	30	20	$1{ }^{\text {b }}$	90
3	(R, R) -	30	5	rt	18	20	$40^{\text {c }}$

a. DCM used as solvent; b. run under a balloon of hydrogen; c. the sample was racemic.

The racemic synthesis of bis-piperidine was completed by treatment of $\mathbf{2 6}$ with LiAlH_{4} in THF $\left(0^{\circ} \mathrm{C}\right.$ to rt) to give $\mathbf{1}$ $(\mathrm{R}=\mathrm{Bn})$ in 37 \% yield following careful purification. Alternatively, reduction with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(2 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{SiH}$ (7 eq.) in toluene at $100^{\circ} \mathrm{C}$ for 18 h resulted a clean crude reaction (${ }^{1} \mathrm{H}$ NMR), ${ }^{16}$ to give product $1(\mathrm{R}=\mathrm{Bn})$ in 57 \% yield. Debenzylation of bis-piperidine $1(\mathrm{R}=\mathrm{Bn})$ was achieved with $\mathrm{Pd}(\mathrm{OH})_{2}$ under an atmosphere of hydrogen. A sample containing the free amine was isolated through the use of an Isolute-XL SCX amine scavenger thiol resin. The crude reaction mixture was conveniently passed through the resin which was then washed with solvent to remove non basic impurities. A sample containing the amine $\mathbf{1}(\mathrm{R}=\mathrm{H})$ was obtained showing only a trace of the starting material by ${ }^{1} \mathrm{H}$ NMR.

The asymmetric transfer hydrogenation (ATH) of pyridyl methyl ketone $\mathbf{5}$, to $\mathbf{1 0}$, followed by conversion to the corresponding pyridone, $\mathbf{1 5}$ and then hydrogenation would be predicted to lead to the formation of two enantiomerically enriched diastereomers, 16a and 16b, ${ }^{17}$ (Scheme 5) An alternative approach to $\mathbf{1 5}$ would be through the formation of $\mathbf{2 7}$ followed by reduction.

Scheme 5. Synthesis of diastereomers 16a and 16b.
In principle, lactams $\mathbf{1 6 a} / \mathbf{b}$ may be subsequently converted to methylated derivatives of the cytisine precursor (lactam 4e) through substitution with 2-hydroxypyridine. ${ }^{7}$ However, optically pure 5 -substituted lactams are in themselves potentially useful in other applications. ${ }^{1,18}$ The synthesis of ketones 5 and 27 was achieved via the alkylation of Weinreb amide $\mathbf{2 8}{ }^{19}$ which was obtained in 68 \% yield from the ester 2b. Direct alkylation with methyl magnesium chloride gave the pyridyl methyl ketone 5 in 61 \% yield. The synthesis of pyridone methyl ketone 27 was achieved via treatment of 5 with benzyl bromide in acetonitrile at $80^{\circ} \mathrm{C}$ (Scheme 6).

Scheme 6. Synthesis of ketones 5 and 27.

The ATH of pyridyl ketones, similar in structure to 5, has been reported. ${ }^{20,21}$ Ikariya described the reduction of a range of pyridyl alkyl ketones in high enantioselectivity with (S, S)-Ru(TsDPEN), (S, S)-20. Pyridyl alcohols ((S)-29, (S) 30, and (S) - $\mathbf{3 1}$ were obtained in $93 \%, 98 \%$ and 92% ee respectively (Figure 3). ${ }^{21}$ Enantioface selection during these reductions was comparable to the reduction of aromatic ketones.

92%
$0.5 \mathrm{~mol} \%(S, S)-21$

Figure 3. Optically pure pyridyl alcohols obtained by ATH with $(S, S)-21 .^{21}$

The ATH of ketones 5 and 27 was carried out with the catalyst $(R, R) \mathbf{1 9}$. Neat formic acid/triethylamine (FA/TEA) was used as solvent at a substrate concentration of 1 M in all cases (Table 4).

Table 4. ATH of ketones 5 and 27 with (R, R)-19.

Entry	ketone $^{\mathbf{a}}$	cat.	\mathbf{t} / \mathbf{h}	Conv. / $\%^{\mathbf{d}}$	Prod.	Ee /
$\%$						

a. $[\mathrm{SM}]=1 \mathrm{M}$; b. determined by chiral GC; c. determined by chiral HPLC; d. determined by ${ }^{1} \mathrm{H}$ NMR; e. config. assigned by comparison of $[\alpha]_{\mathrm{D}}$ values of an authentic sample f. reaction run at rt and in methanol, $[S M]=0.16 \mathrm{M}$.

Pyridyl methyl ketone 5 underwent complete conversion to alcohol, (S)-10 in 82% ee (entry 1). The ee was slightly lower (75% ee) when run in methanol at room temperature (entry 2). Pyridone methyl ketone 27 underwent complete conversion to (R)- $\mathbf{1 5}$ in only 42% ee (entry 3). The absolute configuration of the alcohol product obtained from reduction of ketone $\mathbf{5}$ with (S, S)-19 is in accordance with what would be expected through the standard reduction mechanism of aryl methyl ketones such as acetophenone. ${ }^{5}$ Pyridone ketone 27 appeared to also follow this trend; the use of the (R, R) catalyst resulted in formation of the (R) alcohol.

A further series of alkyl derivatives $\mathbf{6 - 9}$ was studied; each was directly obtained via alkylation of Weinreb amide 28. ${ }^{19}$ Neat FA/TEA was used as solvent at a concentration of 2 M for these ATH studies, together with 5 (Table 5).

Table 5. ATH of ketones 5-9.

Entry	ketone ${ }^{\text {a }}$	R	t/ h^{g}	Prod.	$\begin{gathered} \mathrm{Ee} / \\ \% \end{gathered}$
1	$5{ }^{\text {b }}$	Methyl	21	(R)-10 ${ }^{\text {h }}$	$83^{\text {d }}$
2	6	n-butyl	20	$(R)-11^{\text {i }}$	$76^{\text {d }}$
3	7	i-propyl	22	(R)-12 ${ }^{\text {i }}$	$53^{\text {c }}$
4	8	Cyclohexyl	24	(R)-13 ${ }^{\text {i }}$	$35^{\text {f }}$
5	9	Phenyl	24	(-)-14	$48^{\text {e }}$

a. $[\mathrm{SM}]=2 \mathrm{M}$ in FA/TEA; b. $[\mathrm{SM}]=1 \mathrm{M}$ in FA/TEA; c; determined by chiral GC; d. determined by chiral GC of the acetate derivative; e . determined by chiral HPLC; f. determined by chiral HPLC of the acetate derivative; g. completion of reaction confirmed by ${ }^{1} \mathrm{H}$ NMR; h. config. confirmed by lit. optical rotation reference; i. config. assigned by analogy.

The n-alkyl derivatives, methyl ketone 5 and n-butyl ketone 6 were reduced in highest enantioselectivity; 83% and 76 \% ee respectively (entries 1 and 2). The secondary alkyl ketones, isopropyl ketone 7 and cyclohexyl ketone $\mathbf{8}$ were reduced in 53% and 35% ee respectively (entries 3 and 4). In each case the products were assigned the R configuration, in analogy with related compounds. The reduction of pyridyl phenyl ketone $\mathbf{9}$ resulted in formation of $\mathbf{1 4}^{22}$ in 48% ee.

Following the ketone ATH results, pyridyl methyl ketone 5 was chosen for the large scale synthesis of diastereomers 16a and 16b, due to its relatively higher enantioselectivity during ATH. A racemic reduction of 5 was achieved with NaBH_{4}, resulting in formation of alcohol $\mathbf{1 0}$ in quantitative yield (Scheme 7). Alcohol 10 readily underwent alkylation with benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile at $80^{\circ} \mathrm{C}$ for 24 h to give the racemic pyridone 15 in 63% yield. The hydrogenation of pyridone 15 was carried out with PtO_{2} in methanol under 5 bar of hydrogen (Scheme 7) and diastereomers (in order of elution) (\pm)-16a and $(\pm)-\mathbf{1 6 b}$ were obtained.

Scheme 7. Synthesis of diastereomers 16a and 16b.
Conveniently, (\pm)-16a provided crystals which were analysed by X-ray diffraction to confirm its structure (Figure 4) ${ }^{11}$ which may be described as syn with respect to the relative positions of the two adjacent hydrogen atoms. Hence, (\pm)-16b may be assigned as the anti isomer.

Figure 4. a. X-ray structure of $\mathbf{1 6 a}$; b. corresponding schematic structure of $(\pm) \mathbf{- 1 6 a}$.

The ATH of ketone 5 on a larger scale (1.0 g) gave pyridine $(R)-\mathbf{1 0}$ in 95% yield and 78% ee. Pyridine $(R)-\mathbf{1 0}$ readily underwent alkylation with benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile at $80^{\circ} \mathrm{C}$ for 24 h to give the pyridone $(R)-\mathbf{1 5}$ in 71% yield (Scheme 8) however the sample suffered from loss of enantiopurity, and the ee was determined to be 45%. Repeating the experiment in the absence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ resulted in formation of $(R)-15$ in 63% yield. The ee of this sample was not directly determined, but following reduction in the next step it was found to be unchanged at 78% ee.

Scheme 8. Asymmetric synthesis of $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$.
Hydrogenation of pyridine $\mathbf{1 5}$ with PtO_{2} resulted in formation of alcohols $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$, however a relatively higher level of hydrogenolysis occurred (Scheme 8). Following purification, 16a and 16b were isolated in 20% and 32% yield respectfully, alongside lactam 32. The diastereopurities were 100% for 16a; and 72% for 16b respectively and the ee of both products was 78%.

In a related investigation, the ATH of 5-acetyluracil $\mathbf{3 3}$ and N-benzyl 5-acetyluracil 34 was investigated to enable comparison with the heterocyclic methyl ketones described above. 5-Acetyluracil was benzylated by treatment with NaH in DMF.

Following recrystallisation from methanol, N-benzyl-5acetyluracil, $\mathbf{3 4}$ was obtained in 39% yield as crystalline white needles; an X-ray diffraction study confirmed that alkylation had occurred exclusively on $N(7 \mathrm{~A})$ (Figure 5). ${ }^{11}$

Figure 5. X-ray crystal structure of $\mathbf{3 4}$.
The ATH of $\mathbf{3 3}$ was carried out with the catalyst $(R, R)-19$ (Table 6). Following a reaction time of 17 h at room temperature, 34 underwent 100% conversion to inseparable diastereomers 35 in a ratio of $3.1: 1$ (entry 1 ; relative/absolute configurations and ees were not determined).

Table 6. ATH of $\mathbf{3 3}$ and $\mathbf{3 4}$.

$\begin{aligned} & 33 \mathrm{R}=\mathrm{H} \\ & 34 \mathrm{R}=\mathrm{Bn} \end{aligned}$		$\xrightarrow[45^{\circ} \mathrm{C}, 20 \mathrm{~h}]{2 \mathrm{~mol} \% \text { RutethTsDPEN }}$					
$\begin{gathered} \text { Ent- } \\ \text { ry } \end{gathered}$	Ketone ${ }^{\text {a }}$	cat.	$\begin{gathered} \mathrm{mol} \\ \% \end{gathered}$	Conv. $/ \%^{b}$	d.r. ${ }^{\text {b }}$	Ee a / \% ${ }^{\text {c }}$	Ee b $/ \% \mathrm{c}$
1	33	(R, R)-19	2	100	3.1:1	N/D	N/D
2	34	36	6	100	1:1	N/A	N/A
3	34	(R, R)-20	6	100	$1.3: 1^{\text {d }}$	55	36
4	34	(R, R)-19	0.8	100	$4: 1^{\text {d }}$	92	33
5	34	(S, S)-19	0.8	100	$4: 1^{\text {d }}$	86	49

a. $[\mathrm{SM}]=2 \mathrm{M}, \mathrm{b}$. determined by ${ }^{1} \mathrm{H}$ NMR (the configurations were not determined and has been included for illustration purposes only); c. determined by chiral HPLC; d. the same major diastereomer was identified by ${ }^{1} \mathrm{H}$ NMR in these reactions; N/D: not determined; N/A: not applicable.

The ATH of the benzylated derivative $\mathbf{3 4}$ was carried out with (R, R) - and $(S, S)-\mathbf{1 9},(R, R)-\mathbf{2 0}$ and racemic TH catalyst, [(p-cymene) $\left.\mathrm{Ru}\left(\mathrm{TsCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right) \mathrm{Cl}\right] 3$ 36, the latter being used at a higher loading ($6 \mathrm{~mol} \%$) to achieve full conversion within 20 h . As the diastereoisomeric ratio was determined in each case by ${ }^{1} \mathrm{H}$ NMR, it was possible to assign the chiral HPLC peaks to the correct pairs of enantiomers. This enabled the ee of each diastereosiomer of 37 to be determined. The use of catalyst $(R, R)-\mathbf{1 9}$ resulted in the formation of 37 in a 4:1 diastereoisomeric ratio in 92% and 33% ee respectively (entry 4) whilst the use of catalyst $(S, S)-19$ gave similar results (entry 5). The relative configuration of the diastereoisomers of $\mathbf{3 7}$ was not determined. The catalyst-dependent ee in each reduction
suggests that conjugate reduction occurs first, resulting in formation of enol intermediate $\mathbf{3 8}$ which would tautomerise to give racemic ketone 39. The subsequent ketone reduction of ketone $\mathbf{3 9}$ may then proceed via a (dynamic)kinetic resolution. ${ }^{23}$

In conclusion, in this paper a series of pyridine-based heterocycles have been prepared and their selective reductions examined with a range of catalysts. The new methodology provides access to potentially valuable building blocks for the synthesis of saturated heterocyclic targets.

Experimental Section

General information. All reactions unless otherwise stated were run under an atmosphere of nitrogen in glassware (round bottomed flasks or Schlenk tubes). Room temperature refers to ambient room temperature $\left(20-22^{\circ} \mathrm{C}\right)$, and $0{ }^{\circ} \mathrm{C}$ refers to an ice slush bath. Heated experiments were conducted using thermostatically controlled oil baths. Reactions were monitored by thin layer chromatography (TLC) using aluminium backed silica gel 60 (F254) plates, visualised using UV254 nm and PMA, potassium permanganate and ninhydrin dips as appropriate. Flash column chromatography was carried out routinely using 60 A silica gel (Fluorochem). NMR spectra were recorded on Bruker DPX-300 (300 MHz), DPX-400 (400 MHz), DRX$500(500 \mathrm{MHz})$, AV III -600 (600 MHz) and AV II-700 $(700 \mathrm{MHz})$ instruments. Chemical shifts are reported in δ units, parts per million. ${ }^{1} \mathrm{H}$ NMR spectra run in CDCl_{3} are downfield from TMS; ${ }^{1} \mathrm{H}$ NMR spectra run in solvents other than CDCl_{3}, and all ${ }^{13} \mathrm{C}$ NMR spectra are referenced to the solvent signal. Coupling constants (J) are measured in Hertz. IR spectra were recorded on a Nicolet Model Avatar 320 FTIR fitted with a Specac golden gate single reflection diamond attenuated total reflection top plate. Mass spectra were recorded on a Bruker Esquire2000 (ESI) mass spectrometer. Determinations of ee were measured by HPLC or GC using Chiralcel columns supplied by Daicel. Optical rotations were measured on an AA-1000 polarimeter. Hydrogen gas (99.995 \% minimum) was supplied by BOC. Hydrogenations were carried out in a Parr bench-top hydrogenator (0.3 L).

1-Benzyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid, $3 \boldsymbol{a} .{ }^{24}$ Under nitrogen, a solution of 6-hydroxynicotinic acid $(2.10 \mathrm{~g}, 15.07 \mathrm{mmol})$ and potassium hydroxide (2.96 g , 52.74 mmol) in water (3.59 mL) and methanol (17.94 mL) was stirred at $70^{\circ} \mathrm{C}$ for 5 min before benzyl bromide (3.58 $\mathrm{mL}, 5.15 \mathrm{~g}, 30.13 \mathrm{mmol}$) was added. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 90 min before the reaction was cooled to room temperature concentrated under reduced pressure. The resulting residue was diluted with water (10 mL) and washed diethyl ether ($2 \times 10 \mathrm{~mL}$). The aqueous phase was
acidified to pH 1 with $\mathrm{HCl}(2 \mathrm{M})$ and the resulting white precipitate was washed with water and dried under reduced pressure to give the crude product $(2.68 \mathrm{~g})$ as a white solid. A portion of the crude product (0.290 g) was purified by preparative reverse phase HPLC (Phenomenex Gemini-NX axia Prep C_{18} OBD column, 5μ silica, 50 mm diameter, 150 mm length), using decreasingly polar mixtures of water (containing 0.1% formic acid) and MeCN as eluents. Following concentration under reduced pressure, product, 3a ($0.210 \mathrm{~g}, 0.916 \mathrm{mmol}$) was obtained as a white powder; Mp 210-214 ${ }^{\circ} \mathrm{C}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 230.0807$. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{3}$ requires $\mathrm{M}, 230.0812$); $v_{\text {max }} 3325,1708,1638$, 1568, 1539, 1497, 727, $692 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $12.86(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 8.56\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 7.80(1 \mathrm{H}, \mathrm{dd}$, $\left.J 9.5,2.5, \mathrm{H}_{2}\right), 7.39-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.46(1 \mathrm{H}, \mathrm{d}, J$ 9.5, H_{1}), $5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}(101 \mathrm{MHz}, \mathrm{DMSO}) 165.2$, 161.5, 149.3, 138.9, 136.8, 128.6, 127.7, 127.7, 118.9, 109.6, 51.5; m / z (ESI) $229.9\left(\mathrm{M}^{+}-1\right)$.

Methyl 6-methoxynicotinate, 2b. ${ }^{25}$ A suspension of 6methoxynicotinic acid $\mathbf{2 a}(2.90 \mathrm{~g}, 18.94 \mathrm{mmol})$ in methanol (28.0 mL) and sulfuric acid ($16 \mathrm{M}, 1.1 \mathrm{~mL}, 20.64 \mathrm{mmol}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 16 h before the mixture was allowed to cool. The mixture was neutralised by careful addition of sodium bicarbonate. Following concentration under reduced pressure, water (20 mL) and aqueous sodium bicarbonate $(10 \mathrm{~mL})$ were added. Following extraction with DCM (3 x 50 mL), the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the product $\mathbf{2 b}(2.480 \mathrm{~g}, 14.84 \mathrm{mmol}, 72 \%)$ as a white powder; (Found: C, 57.11; H, 5.36; N, 8.30. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires C, $57.48 ; \mathrm{H}, 5.43 ; \mathrm{N}, 8.38 \%$); $v_{\max } 2954,1720$, $1603,1568,1604,1496,783,730 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.83\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right), 8.14\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}_{2}\right), 6.76(1 \mathrm{H}$, $\left.\mathrm{d}, J 8.7, \mathrm{H}_{1}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 167.0, 150.2, 143.4, 139.9, 119.8, 110.8, 54.1, 52.2; $\delta_{\mathrm{C}}(101 \mathrm{MHz}, \mathrm{DMSO}) 162.1,141.3,132.5$, 119.7, 118.9, 59.7 (two peaks); m / z (ESI) $168.1\left(\mathrm{M}^{+}+1\right)$.

Methyl 1-benzyl-6-oxo-1,6-dihydropyridine-3-carboxylate, 3b. ${ }^{26}$ A mixture of benzyl bromide ($4.40 \mathrm{~mL}, 6.34 \mathrm{~g}, 37.05$ $\mathrm{mmol})$, methyl 6-methoxynicotinate $2 \mathrm{~b}(3.00 \mathrm{~g}, 17.96$ $\mathrm{mmol})$ and potassium carbonate ($4.96 \mathrm{~g}, 35.89 \mathrm{mmol}$) in dry acetonitrile (72 mL) was stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . The mixture was filtered and concentrated under reduced pressure and purified by column chromatography (ethyl acetate - hexane 1:1) to give product 3b ($1.25 \mathrm{~g}, 5.14$ $\mathrm{mmol}, 29 \%$ yield) as a yellow oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.18\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}_{3}\right), 7.83\left(1 \mathrm{H}, \mathrm{dd}, J 9.6,2.4, \mathrm{H}_{2}\right), 7.40-$ $7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.58\left(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{H}_{1}\right), 5.17(2 \mathrm{H}, \mathrm{s}$, CH_{2}), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.6, 162.3, 142.6, 138.4, 135.5, 129.0, 128.3, 128.1, 119.9, 109.9, 52.7, 52.0.
(6-Methoxypyridin-3-yl)methanol, 2c. ${ }^{27}$ Under nitrogen, a suspension of lithium aluminum hydride solution in THF ($1 \mathrm{M}, 6.58 \mathrm{~mL}, 6.58 \mathrm{mmol}$) in THF (3.39 mL) was stirred at $0^{\circ} \mathrm{C}$ for 5 min . Methyl 6-methoxynicotinate $\mathbf{2 b}(1.0 \mathrm{~g}, 5.98$ mmol) was added portionwise and the mixture was stirred for 10 m . The suspension was allowed to warm to room temperature and stirred for 2 h before the solution was
cooled to $0{ }^{\circ} \mathrm{C}$. The suspension was carefully quenched with water $(0.04 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.04 \mathrm{~mL})$ followed by water $(0.12 \mathrm{~mL})$. The resulting precipitate was filtered with celite and washed with ethyl acetate. The filtrate was concentrated under reduced pressure to give product 2c ($0.690 \mathrm{~g}, 4.96 \mathrm{mmol}, 83 \%$ yield) as a yellow oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 140.0711 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2}$ requires M , 140.0706); $v_{\text {max }} 3298,2945,1608,1573,1492 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz, DMSO) $8.07\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right), 7.64\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}_{2}\right), 6.77$ $\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}_{1}\right), 5.11(1 \mathrm{H}, \mathrm{t}, J 5.6, \mathrm{OH}), 4.43(2 \mathrm{H}, \mathrm{d}, J$ $\left.5.6, \mathrm{H}_{4}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(101 \mathrm{MHz}, \mathrm{DMSO}) 162.7$, $144.00,138.3,130.6,109.9,60.2,52.9 ; \mathrm{m} / \mathrm{z}$ (ESI) 139.8 $\left(\mathrm{M}^{+}+1\right)$.

1-Benzyl-5-(hydroxymethyl)pyridin-2(1H)-one, 3c. ${ }^{28}$ A mixture of benzyl bromide ($0.56 \mathrm{~mL}, 0.81 \mathrm{~g}, 4.71 \mathrm{mmol}$), 6-methoxypyridin-3-yl)methanol 2c ($1.00 \mathrm{~g}, 7.19 \mathrm{mmol}$) and potassium carbonate $(1.30 \mathrm{~g}, 9.40 \mathrm{mmol})$ in dry acetonitrile (17 mL) was stirred at $60^{\circ} \mathrm{C}$ for 18 h . The mixture was filtered, concentrated under reduced pressure and purified by column chromatography (methanol - ethyl acetate 5 : 95), to give product $\mathbf{3 c}(0.500 \mathrm{~g}, 2.32 \mathrm{mmol}, 32$ $\%$ yield) as a yellow oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.18$ $\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H, \mathrm{H}_{3}, \mathrm{H}_{1}\right), 6.50\left(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}_{2}\right), 5.03(2 \mathrm{H}, \mathrm{s}$, PhCH_{2}), 4.33 ($2 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{H}_{4}$), $4.00-3.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.3,140.1,136.1,135.1,128.8$, 128.0, 127.9, 120.6, 120.1, 61.3, 52.0. The O-benzylation product was not isolated from the reaction mixture. An nOe ${ }^{1} \mathrm{H}$ NMR experiment supported the structural assignment: irradiation of the $\mathrm{CH}_{2} \mathrm{Ph}$ protons (5.03 ppm) resulted in the excitation of proton H_{3} only.

General procedure A - alkene hydrogenation with hydrogen balloons. Under nitrogen, the alkene (1.00 mmol) was loaded into a round bottomed flask containing a magnetic stirrer and the specified solvent was added. The heterogeneous catalyst (at the specified catalytic loading) was carefully added before the flask was evacuated with hydrogen and a balloon of hydrogen was attached. The solution was stirred vigorously for the specified time and temperature before the catalyst was removed by filtration with celite. Following solvent removal under reduced pressure the product was obtained, following purified by column chromatography (where applicable).

General procedure B - alkene hydrogenation in a hydrogenator. The alkene (1 mmol) and catalyst (at the specified catalytic loading) were added to a small glass hydrogenation vial. A suba seal was attached and the contents were flushed with nitrogen for 10 min before the dry solvent (as specified) was added. The suba seal was removed and the vial was quickly placed into the hydrogenation apparatus. The hydrogenator was filled with hydrogen to the appropriate pressure before the pressure was nearly completely released. The hydrogenator was then filled again with hydrogen and the pressure was released. This fill release cycle carried out for a total of 3 times to ensure the vessel was sufficiently charged with hydrogen at the stated pressure. A magnetic stirrer box was placed under the hydrogenator to enable stirring for the specified time before the hydrogen was carefully released and the
apparatus was disassembled. Following concentration under reduced pressure, the product was obtained, following purified by column chromatography (where applicable).

General procedure for the ATH of ketones. Under nitrogen, FA/TEA (5:2, concentration w/r to ketone as specified) was added to a mixture of the ketone (1 mmol) and $[\mathrm{Ru}($ tethTsDPEN)Cl] 19 ($1 \mathrm{~mol} \%$). The solution was left stirring at $45{ }^{\circ} \mathrm{C}$ for the specified time before the product was obtained, following removal of the catalyst (the reaction mixture directly through a plug of silica gel using ethyl acetate - petroleum ether (1:1) as eluent). Conversion was primarily determined by ${ }^{1} \mathrm{H}$ NMR. Ee was determined by chiral GC or HPLC via direct analysis, or alternatively indirectly via acetate derivatisation of the product.

General procedure for the preparation of acetate derivatives. Where required, acetate derivatives of alcohols were prepared using the following general procedure; a solution of acetic anhydride (1 drop), alcohol (10 mg) and DMAP (1 mg) in DCM (1 mL) was stirred at room temperature for 18 h . Following concentration under reduced pressure, the product was obtained following purification by column chromatography and used directly in GC or HPLC analysis.

General procedure for the formation of racemic standards: reduction of ketones with NaBH_{4}. Racemic standards were prepared (unless otherwise specified) via reduction with NaBH_{4}, using the following procedure: Under nitrogen, NaBH_{4} (1.1 mmol) was added to a solution of the ketone (1 mmol) in methanol and the solution was stirred at room temperature until the reaction reached completion. Saturated aqueous hydrogen carbonate was then added. Following extraction with DCM (3 x 5 mL) the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by column chromatography (ethyl acetate - petroleum ether $1: 1$), to give the product. The sample was directly used as a racemic standard for chiral GC or HPLC analysis. In some cases this was not appropriate. Instead, two samples of the alcohol formed from opposite isomers of the catalyst were combined.

1-Benzyl-6-oxopiperidine-3-carboxylic acid, (\pm)-4a. ${ }^{29}$ This compound was prepared following the general procedure for alkene hydrogenation, using 1-benzyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid, 3a $(30 \mathrm{mg}, 0.131$ mmol) and palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 13 \mathrm{mg}, 1.22 \mathrm{x}$ $10^{-2} \mathrm{mmol}$) in methanol (1 mL), following a reaction time of 20 h , at room temperature and 25 bar. Following concentration under reduced pressure, (\pm)-4a($30 \mathrm{mg}, 0.129$ $\mathrm{mmol}, 99 \%$ yield) was obtained as a colourless oil. $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.40(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 7.28-7.10(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{C} H_{2}\right), 4.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7, \mathrm{CH}_{2}\right)$, $3.47-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 2.75-2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 2.56$ (1 $\left.\mathrm{H}, \mathrm{dt}, J 17.9,4.5, \mathrm{H}_{1 \mathrm{~A}}\right), 2.42\left(1 \mathrm{H}, \mathrm{dt}, J 17.9,6.5, \mathrm{H}_{1 \mathrm{~B}}\right), 2.11$ - $1.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~A}}\right), 1.98-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~B}}\right) ; \delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 176.9, 170.4, 136.1, 128.6, 128.1, 127.6, 50.6, 48.0, 38.8, 31.5, 25.5.

Methyl 1-benzyl-6-oxopiperidine-3-carboxylate, (\pm)-4b. ${ }^{29}$ This compound was prepared following the general procedure for alkene hydrogenation, using methyl 1-benzyl-6-oxo-1,6-dihydropyridine-3-carboxylate, 3b (100 $\mathrm{mg}, 0.411 \mathrm{mmol}$) and palladium on carbon ($5 \% \mathrm{w} / \mathrm{w}, 88$ $\left.\mathrm{mg}, 4.13 \times 10^{-2} \mathrm{mmol}\right)$ in methanol (1 mL) following a reaction time of 1 d , at $40^{\circ} \mathrm{C}$ under a balloon of hydrogen. Following solvent removal and purification by column chromatography (ethyl acetate - hexane $9: 1$), the product $(\pm)-\mathbf{4 b}(30 \mathrm{mg}, 0.121 \mathrm{mmol}, 29 \%$ yield) was obtained as colourless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30-7.14(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}\right)$, $3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.42-3.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right)$, 2.78-2.65 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 2.54\left(1 \mathrm{H}, \mathrm{dt}, J 17.8,5.3, \mathrm{H}_{1 \mathrm{~A}}\right), 2.47-2.35(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{1 \mathrm{~B}}\right), 2.13-2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~A}}\right), 2.00-1.89(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2 \mathrm{~B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.5,168.8,136.7,128.5$, 128.0, 127.4, 52.1, 50.1, 47.9, 39.0, 30.7, 23.9; Enantiomeric separation was achieved by HPLC analysis (Chiralpak IA, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexane : IPA $85: 15$, 1 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}$, $13.3 \mathrm{~min}, 14.9 \mathrm{~min}$.).

1-Benzyl-3-hydroxymethyl 6-oxopiperidine, (\pm)-4c. ${ }^{30}$ This compound was prepared following the general procedure for alkene hydrogenation, using 1-benzyl-5-(hydroxymethyl)pyridin-2(1H)-one 3c (30 mg, 0.139 mmol) and platinum oxide ($3 \mathrm{mg}, 1.32 \times 10^{-2} \mathrm{mmol}$) in methanol (1 mL), following a reaction time of 18 h at room temperature under 5 bar of hydrogen. Following concentration under reduced pressure, $(\pm)-4 \mathbf{c}(20 \mathrm{mg}, 0.091$ mmol, 66% yield) was obtained as an oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.37-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.64-3.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4 \mathrm{~A}}\right), 3.53-3.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4 \mathrm{~B}}\right)$, $3.32(1$ H, ddd, J 12.1, 5.1, 1.8, H ${ }_{5 \mathrm{~A}}$), 3.02 (1 H , dd, $J 12.1,10.0$, $\left.\mathrm{H}_{5 \mathrm{~B}}\right), 2.57\left(1 \mathrm{H}, \mathrm{ddd}, J 17.8,6.3,3.5, \mathrm{H}_{1 \mathrm{~A}}\right), 2.44(1 \mathrm{H}$, ddd, J 17.8, 11.1, 6.5, H1B), 2.11-1.97 (1 H, m, H3), $1.94-1.85$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~A}}\right), 1.53\left(1 \mathrm{H}\right.$, dtd, $\left.J 13.1,11.1,6.3, \mathrm{H}_{2 \mathrm{~B}}\right)$. A signal attributable to OH was not observed; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 170.0, 136.9, 128.5, 127.9, 127.3, 64.3, 50.3, 49.78, 36.3, 31.2, 23.8.

1-Benzyl-5-methylpiperidin-2-one, (\pm)-21. This compound was prepared following the general procedure for alkene hydrogenation, using 1-benzyl-5-(hydroxymethyl)pyridin$2(1 \mathrm{H})$-one 3 c ($30 \mathrm{mg}, 0.139 \mathrm{mmol}$) and palladium on barium sulfate ($5 \% \mathrm{w} / \mathrm{w}, 30 \mathrm{mg}, 1.41 \times 10^{-2} \mathrm{mmol}$) in methanol (1 mL), following a reaction time of 18 h at room temperature and 5 bar of hydrogen. Following concentration under reduced pressure and purification by column chromatography (ethyl acetate - hexane 8:2), (\pm)21 ($20 \mathrm{mg}, 0.098 \mathrm{mmol}, 71 \%$ yield) was obtained as an oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 226.1203 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}$ requires M , 226.1202); $v_{\max } 2955,2926,1619,1493 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.22 - 7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 4.67 ($1 \mathrm{H}, \mathrm{d}, J$ 14.6, CH_{2}), $4.50\left(1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}\right), 3.16(1 \mathrm{H}$, ddd, J $\left.12.0,5.1,2.0, \mathrm{H}_{4 \mathrm{~A}}\right), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J 12.0,10.4, \mathrm{H}_{4 \mathrm{~B}}\right), 2.55$ (1 H , ddd, $J 17.7,6.0,3.0, \mathrm{H}_{1 \mathrm{~A}}$), 2.44 (1 H , ddd, $J 17.7$, $\left.11.5,6.3, \mathrm{H}_{1 \mathrm{~B}}\right), 1.88-1.99\left(1 \mathrm{H}, \mathrm{m}_{3} \mathrm{H}_{3}\right), 1.84(1 \mathrm{H}$, dddd, J 13.2, 6.3, 3.0, 2.0, $\mathrm{H}_{2 \mathrm{~A}}$), 1.47 (1 H, dtd, $J 13.2,11.5,6.0$, $\left.\mathrm{H}_{2 \mathrm{~B}}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}_{5}\right) \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8$, $137.3,129.0,128.6,127.3,60.3,54.2,31.7,29.5,29.0$, 18.6; m/z (ESI) $203.8\left(\mathrm{M}^{+}+1\right)$.

1-((6-Methoxypyridin-3-yl)methyl)piperidine-2,6-dione, 2d. Under nitrogen, a solution of triphenylphosphine $(6.73 \mathrm{~g}$, 25.66 mmol), (6-methoxypyridin-3-yl)methanol 2 c (3.50 g , $25.17 \mathrm{mmol})$ and glutarimide ($2.90 \mathrm{~g}, 25.64 \mathrm{mmol}$) in THF (75 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . A solution of diisopropyl azodicarboxylate $(4.99 \mathrm{~mL}, 5.19 \mathrm{~g}, 25.66$ mmol) in THF (50 mL) was added dropwise over 1 h at 0 ${ }^{\circ} \mathrm{C}$ and the solution was allowed to warm to room temperature and stirred for 18 h . Following concentration under reduced pressure and purification by column chromatography (ethyl acetate - hexane 1:1), product 2d ($3.03 \mathrm{~g}, 12.94 \mathrm{mmol}, 50 \%$ yield) was obtained as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 235.10750$. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{M}, 235.10772$); $v_{\text {max }}$ 2966, 1716, $1666,1607,1572,1491,1171 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.22\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 7.63\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5, \mathrm{H}_{2}\right), 6.67$ (1 H, d, J 8.5, H1), $4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.65\left(4 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{H}_{5}\right), 1.92\left(2 \mathrm{H}\right.$, quin, $\left.J 6.7, \mathrm{H}_{6}\right) ; \delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{DMSO}$) 172.7, 162.7, 146.2, 139.0, 126.2, 110.0, 53.00, 52.9, 32.0, 16.4; m/z (ESI) $234.97\left(\mathrm{M}^{+}+1\right)$.

1-[(1-Benzyl-6-oxo-1,6-dihydropyridin-3-

yl)methyl]piperidine-2,6-dione, 3d. Under nitrogen, a mixture of benzyl bromide ($1.02 \mathrm{~mL}, 1.47 \mathrm{~g}, 8.59 \mathrm{mmol}$), 1-((6-methoxypyridin-3-yl)methyl)piperidine-2,6-dione, 2d $(1.82 \mathrm{~g}, 7.77 \mathrm{mmol})$ and potassium carbonate $(2.15 \mathrm{~g}, 15.56$ mmol) in dry acetonitrile (31 mL) was stirred at $80^{\circ} \mathrm{C}$ for 24 h before the solution was filtred. The resulting filtrate was concentrated under reduced pressure followed by recrystallisation (ethanol), to give product $3 \mathbf{d}(1.42 \mathrm{~g}, 4.58$ $\mathrm{mmol}, 59 \%$ yield) as a white powder; $\mathrm{Mp} 154-156{ }^{\circ} \mathrm{C}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 333.1205 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires M, 333.1210); $v_{\max }$ 2926, 1722, 1666, 1601, 1537, 1496, $1134,730,699 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49-7.41$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{H}_{2}, \mathrm{H}_{3}$), $7.37-7.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.52 ($1 \mathrm{H}, \mathrm{d}, J$ 9.3, H_{1}), $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.64(4 \mathrm{H}, \mathrm{t}$, $\left.J 6.4, \mathrm{H}_{5}\right), 1.93$ (2 H , quin, $J 6.4, \mathrm{H}_{6}$); $\delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 172.4, 161.9, 141.5, 138.6, 136.2, 128.7, 128.1, $127.9,120.6,115.4,52.0,39.2,32.6,16.9 ; \mathrm{m} / \mathrm{z}$ (ESI) 333.1 $\left(\mathrm{M}^{+}+23\right)$. Further recrystallisation (EtOH) provided crystals of sufficient quality for X-diffraction, enabling confirmation of the structure. ${ }^{11}$

1-[(1-Benzyl-6-oxopiperidin-3-yl)methyl]piperidine-2,6-

 dione, $(\pm)-\mathbf{4 d}$. This compound was prepared following the general procedure for alkene hydrogenation, using 1-[(1-benzyl-6-oxo-1,6-dihydropyridin-3-yl)-methyl]-piperidine-2,6-dione, 3d ($1.14 \mathrm{~g}, 3.68 \mathrm{mmol}$) and platinum oxide (42 $\mathrm{mg}, 0.185 \mathrm{mmol}$) following a reaction time of 20 h , at 30 ${ }^{\circ} \mathrm{C}$. Following concentration under reduced pressure, product (\pm)-4d ($1.10 \mathrm{~g}, 3.50 \mathrm{mmol}, 95 \%$ yield) was obtained as colourless oil, following column chromatography (methanol - ethyl acetate 2:8); (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 337.1522 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires M , 337.1523); $v_{\max } 2929,1722,1668,1634,1492,1134 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.73(1 \mathrm{H}$, d, $\left.J 14.6, \mathrm{CH}_{2}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}\right), 3.77(1 \mathrm{H}, \mathrm{dd}, J$ $\left.12.4,7.3, \mathrm{H}_{5 \mathrm{~A}}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J 12.4,7.5, \mathrm{H}_{5 \mathrm{~B}}\right) 3.11(1 \mathrm{H}$, ddd, $\left.J 11.0,5.0,1.3, \mathrm{H}_{4 \mathrm{~A}}\right), 2.98\left(1 \mathrm{H}, \mathrm{t}, J 11.0, \mathrm{H}_{4 \mathrm{~B}}\right), 2.63(4$ $\left.\mathrm{H}, \mathrm{t}, J 6.6, \mathrm{H}_{6}\right), 2.58\left(1 \mathrm{H}\right.$, ddd, $\left.J 18.0,5.8,3, \mathrm{H}_{1 \mathrm{~A}}\right), 2.39$ (1 H , ddd, $\left.J 18.0,11.5,6.2, \mathrm{H}_{1 \mathrm{~B}}\right), 2.20-2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right)$,1.89 (2 H , quin, $J 6.6, \mathrm{H}_{7}$), 1.53 (2 H , dtd, $J 13.1,11.5,6.2$, $\left.\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.3,169.0,136.5,128.1$, $127.5,126.9,50.1,49.7,41.1,32.8,32.3,30.7,24.8,16.57$; m / z (ESI) $337.1\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Enantiomeric separation was achieved by HPLC analysis (Chiralpak IB, 4.6 mm x 250 mm , hexane : IPA $80: 20,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 38.1$ $\min , 41.0 \mathrm{~min}$).

1-Benzyl-5-[(2-hydroxy-6-oxopiperidin-1-
y l)methyl]piperidin-2-one, (\pm)-22. Under nitrogen, a solution of cerium chloride heptahydrate ($574 \mathrm{mg}, 1.54$ mmol) and 1-[(1-benzyl-6-oxopiperidin-3-yl)methyl]piperidine-2,6-dione, $(\pm)-4 d \quad(484 \mathrm{mg}, \quad 1.54$ $\mathrm{mmol})$ in dry methanol (3.85 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . Sodium borohydride $(118 \mathrm{mg}, 3.12 \mathrm{mmol})$ was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h before saturated aqueous sodium hydrocarbonate (5 mL) was added. Following extraction with DCM ($3 \times 10 \mathrm{~mL}$), the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by column chromatography (methanol - ethyl acetate $5: 95$), to give an impure sample containing what was characterised to be the inseparable diastereomers (\pm)-22 ($343 \mathrm{mg}, 1.08 \mathrm{mmol}, 70 \%$ yield). Data obtained for the mixture of diastereomers is as follows: (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 339.1683 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires $\mathrm{M}, 339.1679$); $v_{\max } 3303,2926,1613 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.79-4.33(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}, \mathrm{H}_{6}$), 3.65-3.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~A}}$), 3.29-3.04 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{5 \mathrm{~B}}, \mathrm{H}_{4 \mathrm{~A}}\right), 3.03-2.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4 \mathrm{~B}}\right), 2.61-2.10(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{1}, \mathrm{H}_{9}, \mathrm{H}_{3}\right), 2.10-1.42\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}, \mathrm{H}_{8}, \mathrm{H}_{7}\right) ; \delta_{\mathrm{C}}(101 \mathrm{MHz}$, CDCl_{3}) 171.0, 170.9, 169.8, 169.8, 141.56, 137.2, 136.5, 136.4, 128.6, 128.4, 128.4, 127.8, 127.7, 127.6, 127.6, $127.3,127.2,119.9,79.9,79.8,78.8,61.4,50.5,50.5,50.1$, 50.1, 46.6, 41.4, 32.8, 32.7, 32.1, 31.6, 30.8, 30.7, 30.6, $25.0,24.8,15.5,15.5 ; \mathrm{m} / \mathrm{z}$ (ESI) $339.1\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

1-[(1-Benzyl-6-oxopiperidin-3-yl)methyl]-3,4-
dihydropyridin-2(1H)-one, (\pm)-23. Under nitrogen, a solution of 1-benzyl-5-[(2-hydroxy-6-oxopiperidin-1-yl)methyl]piperidin-2-one, (\pm)-22 ($240 \mathrm{mg}, 0.759 \mathrm{mmol}$) in dry DCM (19 mL) was stirred at $-10{ }^{\circ} \mathrm{C}$ for 10 min . Titanium chloride ($92 \mu \mathrm{~L}, 159 \mathrm{mg}, 0.839 \mathrm{mmol}$) was added and the solution was stirred at $-10{ }^{\circ} \mathrm{C}$ for 10 min before DIPEA ($147 \mu \mathrm{~L}, 109 \mathrm{mg}, 0.844 \mathrm{mmol}$) was added. The solution was allowed to warm to $0^{\circ} \mathrm{C}$ and left stirring for 4 h before saturated aqueous ammonium chloride (5 mL) was added. Following extraction with DCM ($3 \times 10 \mathrm{~mL}$), the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give product (\pm)-23 $(203 \mathrm{mg}$, $0.681 \mathrm{mmol}, 90 \%$ yield) as an oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}$, 299.1743. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 299.1754$); $v_{\text {max }}$ 2926, 1616, 1494, 734, $701 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.21-$ $7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.85\left(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}_{9}\right), 5.10(1 \mathrm{H}, \mathrm{dt}, J$ $\left.7.7,4.1, \mathrm{H}_{8}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{CH}_{2}\right), 4.49(1 \mathrm{H}, \mathrm{d}, J$ 14.7, CH_{2}), $3.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 3.18(1 \mathrm{H}$, ddd, $J 12.0,4.9$, $1.5, \mathrm{H}_{5 \mathrm{~A}}$), $2.95\left(1 \mathrm{H}, \mathrm{dd}, J 12.0,9.8, \mathrm{H}_{5 \mathrm{~B}}\right), 2.58(1 \mathrm{H}, \mathrm{ddd}, J$ $\left.18.0,6.0,3.8, \mathrm{H}_{1 \mathrm{~A}}\right), 2.47\left(2 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{H}_{6}\right), 2.43(1 \mathrm{H}, \mathrm{ddd}$, J 18.0, 11.3, 6.8, $\mathrm{H}_{1 \mathrm{~B}}$), $2.23-2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}\right), 2.13-2.21$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 1.85-1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~A}}\right), 1.50-1.58(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2 \mathrm{~B}}\right) ; \delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.6,169.4,137.0,130.0$,
128.6, 128.1, 127.4, 106.5, 50.2, 50.1, 48.7, 31.3, 31.0, 30.9, 25.1, 20.2; m/z (ESI) $299.2\left(\mathrm{M}^{+}+1\right)$.

The selenoxide oxidation - elimination of enamide (\pm)-23, yielding $\quad(\pm)$-1-((1-benzyl-6-oxopiperidin-3-yl)methyl)pyridin-2(1H)-one, (\pm)-4e. ${ }^{7,8}$ Under nitrogen, LDA (1.5 M solution in THF, $70 \mu \mathrm{~L}, 0.105 \mathrm{mmol}$) was added to a solution of 1-[(1-benzyl-6-oxopiperidin-3-yl)methyl]-3,4-dihydropyridin-2(1H)-one, (\pm)-23 (15 mg , $0.050 \mathrm{mmol})$ in freshly distilled THF (0.7 mL) and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . A solution of phenyl selenyl chloride ($9.6 \mathrm{mg}, 0.050 \mathrm{mmol}$) in freshly distilled THF (1.0 mL) was added and the solution was stirred at $78^{\circ} \mathrm{C}$ for 45 min before saturated ammonium chloride was added and the solution was allowed to warm to room temperature. Following extraction with ethyl acetate (3×5 $\mathrm{mL})$, the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the intermediate product $(25 \mathrm{mg})$. A solution of the intermediate product (25 mg) in THF : methanol : $\mathrm{H}_{2} \mathrm{O}$ 18:6:2 $(1 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(37 \mathrm{mg}, 0.173 \mathrm{mmol})$ was stirred at room temperature for 24 h before water was added and the solution was concentrated under reduced pressure. Following extraction with ethyl acetate (3 x 5 mL), the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a sample containing an inseparable mixture of the product $(\pm)-\mathbf{4 e}$, and a side product (10 mg , yield not calculated due to mixture) as a colourless oil, as determined by ${ }^{1} \mathrm{H}$ NMR and an unidentified product. This data was in accordance with the characterisation data for $4 \mathbf{e}$ which has previously been reported. ${ }^{7,8}$

5-Chloromethyl-2-methoxypyridine, 24. ${ }^{31}$ Under nitrogen, thionyl chloride ($2.05 \mathrm{~mL}, 3.34 \mathrm{~g}, 28.09 \mathrm{mmol}$) was added to a solution of (6-methoxy-pyridin-3-yl)methanol 2c (3.56 $\mathrm{g}, 25.60 \mathrm{mmol})$ in dry toluene (10.6 mL) and the solution was stirred at room temperature for 1 h before $\mathrm{NaOH}(2 \mathrm{M}$, 10 mL) was added. The solution was stirred for 10 min before extraction with toluene ($2 \times 20 \mathrm{~mL}$). The organic extracts were washed water and concentrated under reduced pressure to give the product 24 ($3.85 \mathrm{~g}, 24.52$ $\mathrm{mmol}, 96 \%$ yield) as a yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.15\left(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{H}_{3}\right), 7.62\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.7, \mathrm{H}_{2}\right), 6.75$ $\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}_{1}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.6, 146.7, 139.2, 126.1, 111.3, 53.6, 43.3.

1-((6-methoxypyridin-3-yl)methyl)pyridin-2(1H)-one $\quad 2 e$ and 2-methoxy-5-((pyridin-2-yloxy)methyl)pyridine, 25. Under nitrogen, a mixture of 5-chloromethyl-2methoxypyridine $24(0.342 \mathrm{~g}, \quad 2.18 \mathrm{mmol})$, 2hydroxypyridine ($0.413 \mathrm{~g}, 4.34 \mathrm{mmol}$) and potassium carbonate $(0.601 \mathrm{~g}, 4.35 \mathrm{mmol})$ in toluene $(22 \mathrm{~mL})$ was stirred at $115{ }^{\circ} \mathrm{C}$ for 1 d , before the solution was allowed to cool. Following filtration, the filtrate was concentrated under reduced pressure and purified by column chromatography (ethyl acetate), to give the O-substituted product 25 ($58 \mathrm{mg}, 0.268 \mathrm{mmol}, 12 \%$ yield) as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 216.0891$. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, 216.0899); $v_{\max } 2946,1610,1596,1571,1495,1285$,
$1025,829,780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.27(1 \mathrm{H}, \mathrm{d}, J$ $\left.2.3, \mathrm{H}_{5}\right), 8.17\left(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}_{3}\right), 7.70(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5$, $\left.\mathrm{H}_{2}\right), 7.55-7.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}\right), 6.88\left(1 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{H}_{6}\right), 6.76$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}, \mathrm{H}_{8}$), $5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; δ_{C} ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.0, 163.4, 147.0, 146.6, 139.2, 138.6, 125.6, 117.3, 111.4, 111.0, 65.0, 53.6; m/z (ESI) $215.97\left(\mathrm{M}^{+}+1\right)$. Increasing the polarity of the eluent (methanol - ethyl acetate 5:95) gave the N-substituted product, 2e $(0.299 \mathrm{~g}, 1.384 \mathrm{mmol}, 63 \%$ yield) as a colourless oil; (found (ESI): M^{+}, 216.0887. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 216.0899$); $v_{\max } 3018,2976,2943,2852,1657$, $1587,1568,1490 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{d}$, J 2.5, H ${ }_{3}$), $7.63(1 \mathrm{H}$, dd, J 8.7, 2.5, H1), $7.34-7.25(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{8}\right), 6.72\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}_{2}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J 9.2$, $\left.1.2, \mathrm{H}_{5}\right), 6.15\left(1 \mathrm{H}, \mathrm{td}, J 6.8,1.5, \mathrm{H}_{7}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right)$, 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 164.0, 163.4, 147.0, 146.6, 139.2, 138.6, 125.6, 117.3, 111.4, 111.0, 65.0, $53.6 ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 163.1,161.4,146.7,140.1$, 139.2, 138.8, 126.1, 119.8, 110.4, 105.6, 53.1, 48.4; m/z (ESI) $215.97\left(\mathrm{M}^{+}+1\right)$.

1-Benzyl-5-[(2-oxopyridin-1(2H)-yl)methyl]pyridin-2(1H)one, 3e. Under nitrogen, a mixture of benzyl bromide (1.60 $\mathrm{mL}, \quad 2.30 \mathrm{~mL}, \quad 13.53 \mathrm{mmol})$, 1-((6-methoxypyridin-3-yl)methyl)pyridin-2(1H)-one, $2 \mathrm{e}(1.45 \mathrm{~g}, 6.71 \mathrm{mmol})$ and potassium carbonate $(1.85 \mathrm{~g}, 13.39 \mathrm{mmol})$ in dry acetonitrile (27 mL) was stirred $80^{\circ} \mathrm{C}$ for 24 h before the solution was allowed to cool. Following filtration, the resulting filtrate was concentrated under reduced pressure and recrystallised (ethanol), to give product $\mathbf{3 e}(1.00 \mathrm{~g}, 3.42$ $\mathrm{mmol}, 51 \%$ yield) as a white powder; $140-142{ }^{\circ} \mathrm{C}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 315.1102 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}$ requires M , 315.1104); $v_{\max } 3034,2972,1714$ (CO), 1666, 1649, 1595, $1568,1493,788,723,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45$ (1 H, d, J 2.5, H3), 7.37-7.27 (7 H, m, ArH, H6, H2), 7.23 ($1 \mathrm{H}, \mathrm{dd}, J 6.8,2.0, \mathrm{H}_{8}$), $6.58\left(2 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{H}_{1}, \mathrm{H}_{5}\right), 6.16(1$ $\left.\mathrm{H}, \mathrm{td}, J 6.8,1.4, \mathrm{H}_{7}\right), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.4,161.8,146.3,139.9,139.7$, 137.5, 136.6, 135.9, 128.7, 127.9, 121.2, 121.1, 114.5, 106.6, 52.0, 49.2; m/z (ESI) $293.1\left(\mathrm{M}^{+}+1\right), 315.1\left(\mathrm{M}^{+}+\right.$ 23). Further recrystallisation (EtOH) provided crystals of sufficient quality for X -diffraction, enabling confirmation of the structure. ${ }^{11}$

1-((1-Benzyl-6-oxopiperidin-3-yl)methyl)piperidin-2-one,

 $(\pm)-26 .{ }^{8}$ It was prepared following the general procedure for alkene hydrogenation, using 1-benzyl-5-[(2-oxopyridin$1(2 H)$-yl)methyl]pyridin- $2(1 \mathrm{H})$-one, 3e $(0.644 \mathrm{~g}, 2.20$ mmol) and platinum oxide ($25 \mathrm{mg}, 0.110 \mathrm{mmol}$) following a reaction time of 20 h , at $30^{\circ} \mathrm{C}$. Following concentration under reduced pressure and purification by column chromatography (ethyl acetate - methanol 95:5), product (\pm)-26 ($497 \mathrm{mg}, 1.66 \mathrm{mmol}, 75 \%$ yield) was obtained as an oil. The data matched that previously reported. ${ }^{8}$Synthesis of (1-benzyl-3-(piperidin-1-ylmethyl)piperidine) 1 ($R=$ Bn).1-Benzyl-3-(piperidin-1-ylmethyl)piperidine, $\quad(\pm$)-1 $(R=B n)$. Under nitrogen, triethyl-silane $(1.41 \mathrm{~mL}, 8.79$ $\mathrm{mmol})$ was added to a solution of 1-((1-benzyl-6-oxopiperidin-3-yl)methyl)piperidin-2-one, (\pm)-26 (377 mg , 1.256 mmol) and triruthenium dodecacarbonyl (16 mg ,
$\left.2.50 \times 10^{-2} \mathrm{mmol}\right)$ in dry toluene $(2.5 \mathrm{~mL})$ and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 18 h . The solution was concentrated under reduced pressure and purified by column chromatography (ethyl acetate - hexane triethylamine 10:90:1) to give product (\pm)-1 ($\mathrm{R}=\mathrm{Bn}$) (194 $\mathrm{mg}, 0.713 \mathrm{mmol}, 57 \%$ yield) as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 273.2323$. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2}$ requires $\mathrm{M}, 273.2325$); $v_{\max }$ 2928, 2849, 2793, 2754, 1493, 1153, $1098 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.33-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.57(1 \mathrm{H}, \mathrm{d}$, J 13.2, CH_{2}), $3.40\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2}\right), 2.90(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.1, \mathrm{H}_{5 \mathrm{~A}}\right), 2.76\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}_{1 \mathrm{~A}}\right), 2.37-2.21(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{7}\right), 2.13-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right), 1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1 \mathrm{~B}}\right), 1.87-$ $1.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 1.74\left(1 \mathrm{H}, \mathrm{dq}, J 13.0,3.4, \mathrm{H}_{3 \mathrm{~A}}\right), 1.71-$ $1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~B}}\right), 1.62\left(1 \mathrm{H}\right.$, dquin, $\left.J 13.0,3.4, \mathrm{H}_{2 \mathrm{~A}}\right), 1.58$ - $1.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8}, \mathrm{H}_{2 \mathrm{~B}}\right), 1.43-1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{9}\right), 0.89(1$ $\mathrm{H}, \mathrm{qd}, J 13.0,3.4, \mathrm{H}_{3 \mathrm{~B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.6,129.2$, 128.1, 126.8, 63.8, 63.6, 59.4, 55.1, 54.1, 33.6, 29.8, 25.9, 25.1, 24.5; m/z (ESI) $273.0\left(\mathrm{M}^{+}+1\right)$. The assignments of these proton signals were supported by ${ }^{13} \mathrm{C}$ HMQC and COSY correlation NMR experiments.

1-(Piperidin-3-ylmethyl)piperidine, $\quad(\pm)-1 \quad(\mathrm{R}=\mathrm{H})$. This compound was prepared following the general procedure for alkene hydrogenation, using 1-benzyl-3-(piperidin-1ylmethyl)piperidine $(\pm)-\mathbf{1}(\mathrm{R}=\mathrm{Bn})(22 \mathrm{mg}, 0.081 \mathrm{mmol})$ and palladium hydroxide on carbon ($20 \% \mathrm{w} / \mathrm{w}, 6 \mathrm{mg}, 8.55$ $\times 10^{-3} \mathrm{mmol}$) following a reaction time of 18 h , at room temperature. Following filtration with celite, the resulting filtrate was passed through an Isolute-XL SCX amine scavenger resin and the resin was washed with DCM (3×1 mL). The free amine was liberated by passing a solution of approx. $2 \% \mathrm{NH}_{4} \mathrm{OH}$ in methanol through the resin, followed by washing with DCM ($3 \times 1 \mathrm{~mL}$). Following concentration under reduced pressure, product $(\pm)-\mathbf{1}(\mathrm{R}=\mathrm{H})$ (20 mg , contains solvent) was obtained as colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}$, 183.1857. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{2}$ requires M , 183.1856); $v_{\max } 3400,2927,2848,2795,2758,1546,1116$, $778 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.14(1 \mathrm{H}, \mathrm{dd}, J 11.9,1.5$, $\left.\mathrm{H}_{1 \mathrm{~A}}\right), 3.01\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{H}_{5 \mathrm{~A}}\right), 2.54(1 \mathrm{H}, \mathrm{td}, J 11.8,2.8$, $\mathrm{H}_{5 \mathrm{~B}}$), 2.19-2.43 (5 H, m, H7, H ${ }_{1 \mathrm{~B}}$), 2.09 (1 H , dd, J 12.3, $8.1, \mathrm{H}_{6 \mathrm{~A}}$), $2.05\left(1 \mathrm{H}, \mathrm{dd}, J 12.3,6.2, \mathrm{H}_{6 \mathrm{~B}}\right), 1.81(1 \mathrm{H}, \mathrm{dq}, J$ $12.7,3.5, \mathrm{H}_{3 \mathrm{~A}}$), $1.67-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 1.64(1 \mathrm{H}$, dquin, J $12.8,3.5, \mathrm{H}_{2 \mathrm{~A}}$), $1.54\left(4 \mathrm{H}\right.$, quin, $\left.J 6.4, \mathrm{H}_{8}\right), 1.46(1 \mathrm{H}, \mathrm{qt}, J$ $\left.12.8,3.5, \mathrm{H}_{2 \mathrm{~B}}\right), 1.42-1.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{9}\right), 1.01(1 \mathrm{H}, \mathrm{qd}, J$ $\left.12.8,3.5, \mathrm{H}_{3 \mathrm{~B}}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 63.9,55.2,52.0$, $47.2,34.6,30.3,26.4,26.0,24.6 ; m / z$ (ESI) $182.9\left(\mathrm{M}^{+}+1\right)$.

N,6-Dimethoxy-N-methylpyridine-3-carboxamide, 28. Under nitrogen, a solution of methyl 6-methoxynicotinate 2b ($3.00 \mathrm{~g}, 17.96 \mathrm{mmol}$) and N, O-dimethylhydroxylamine hydrochloride ($5.36 \mathrm{~g}, 54.95 \mathrm{mmol}$) in THF (40 mL) was stirred at $-40{ }^{\circ} \mathrm{C}$ for 10 min . Isopropyl magnesium chloride (2 M solution in THF, $26 \mathrm{~mL}, 52.00 \mathrm{mmol}$) was added dropwise over 15 min and the reaction was stirred at $-40{ }^{\circ} \mathrm{C}$ for 90 min before aqueous acetic acid ($20 \%, 20$ mL) was added. This solution was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$) and the organic extracts were set aside. The remaining aqueous phase was then basified with saturated aqueous sodium hydrocarbonate and extracted with DCM ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ followed by concentration under
reduced pressure and purified by column chromatography (petroleum ether - ethylacetate 9:1), to give the product 28 ($2.38 \mathrm{~g}, 12.14 \mathrm{mmol}, 68 \%$ yield) as a colourless oil; (found (ESI): $\mathrm{M}+\mathrm{Na}, 219.0740 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires M , 219.0740); $v_{\text {max }} 3501,2971,1635,1600,1566,1495,1092$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.65\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 7.99(1$ H , dd, $J 8.7,2.5, \mathrm{H}_{2}$), $6.76\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}_{1}\right), 3.99(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 3.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 167.3,165.3,148.2,139.3,122.7,110.1,61.0,53.7$, 33.3; m/z (ESI) $196.8\left(\mathrm{M}^{+}+1\right)$.

1-(6-Methoxypyridin-3-yl)ethanone, 5. ${ }^{32}$ Under nitrogen, a solution of $N, 6$-dimethoxy- N-methylpyridine-3carboxamide 28 ($3.66 \mathrm{~g}, 18.67 \mathrm{mmol}$) in THF (64 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 m . Methyl magnesium bromide (3 M solution in THF, $6.42 \mathrm{~mL}, 19.26 \mathrm{mmol}$) was added dropwise over 5 min and the solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to warm to room temperature and stirred for 1 d before the solution was concentrated under reduced pressure and $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$ was added. Following extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$), the organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by column chromatography (petroleum ether - ethyl acetate 2:8), to give product $5(1.73 \mathrm{~g}, 11.48 \mathrm{mmol}, 61 \%$ yield) as a colourless solid; Mp $60-64{ }^{\circ} \mathrm{C}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}$, 174.0525. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NNaO}_{2}$ requires $\mathrm{M}, 174.0525$); $v_{\text {max }} 3068$, 2990, 2958, 2861, 1671, 1597, 1562, 1494, 1292, 1277, $1259,1142 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.78(1 \mathrm{H}, \mathrm{dd}, J$ $\left.2.5,0.6, \mathrm{H}_{3}\right), 8.14\left(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.5, \mathrm{H}_{2}\right), 6.79(1 \mathrm{H}, \mathrm{dd}, J$ $8.8,0.6, \mathrm{H}_{1}$), $4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 2.71-2.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right) ; \delta_{\mathrm{C}}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 195.6, 166.8, 149.4, 138.1, 127.0, 111.1, 54.0, 26.3; m/z (ESI) $152.1\left(\mathrm{M}^{+}+1\right)$.

5-Acetyl-1-benzylpyridin-2(1H)-one, 27.33 A mixture of benzyl bromide $(0.43 \mathrm{~mL}, 0.62 \mathrm{~g}, 3.62 \mathrm{mmol})$, $1-(6-$ methoxypyridin-3-yl)ethanone $5(0.500 \mathrm{~g}, 3.31 \mathrm{mmol})$ and potassium carbonate $(0.914 \mathrm{~g}, 6.61 \mathrm{mmol})$ in dry acetonitrile (17 mL) was stirred at $80^{\circ} \mathrm{C}$ for 2 d before the mixture was allowed to cool to room temperature. Following filtration, concentrated under reduced pressure and purification by column chromatography (ethyl acetate hexane $8: 2$), the product $27(0.395 \mathrm{~g}, 1.74 \mathrm{mmol}, 48 \%$ yield) was obtained as a colourless oil; (found (ESI): $\mathrm{M}^{+}+$ $\mathrm{Na}, 250.0837 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NNaO}_{2}$ requires $\mathrm{M}, 250.0838$); $v_{\text {max }}$ $3063,1640,1542,1496,732,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.10\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 7.85(1 \mathrm{H}, \mathrm{dd}, J 9.6,2.5$, $\left.\mathrm{H}_{2}\right), 7.42-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.60\left(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{H}_{1}\right)$, $5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 193.0, 162.3, 142.1, 137.6, 135.3, 129.1, 128.5 128.1, 120.1, 118.0, 52.7, 25.7; m / z (ESI) $227.8\left(\mathrm{M}^{+}+1\right), 249.8$ $\left(\mathrm{M}^{+}+23\right)$.

1-(4-Methoxyphenyl)pentan-1-one, 6. Under nitrogen, nbutyl magnesium bromide (2 M solution in THF, 0.77 mL , 1.54 mmol) was added to a solution of $N, 6$-Dimethoxy- N -methylpyridine-3-carboxamide, $27(200 \mathrm{mg}, 1.02 \mathrm{mmol})$ in THF (1.15 mL) and the solution was stirred at room temperature for 18 h before $\mathrm{HCl}(2 \mathrm{M}, 3 \mathrm{~mL})$ was added. Following extraction with DCM ($3 \times 5 \mathrm{~mL}$), the organic extracts were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$,
concentrated under reduced pressure and purified by column chromatography (petroleum ether - ethyl acetate 1:9), to give product $6(107 \mathrm{mg}, 0.554 \mathrm{mmol}, 54 \%$ yield) as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 194.1172$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}$ requires $\mathrm{M}, 194.1176$); $v_{\text {max }}$ 2955, 2872, 1678, 1593, 1562, 1493, 1291, 1261, 1014, $837 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.79\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}_{3}\right), 8.14(1 \mathrm{H}, \mathrm{dd}, J 8.7$, $2.4, \mathrm{H}_{1}$), 6.79 ($1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}_{2}$), $4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right), 2.91$ (2 $\left.\mathrm{H}, \mathrm{t}, J 7.7, \mathrm{H}_{4}\right), 1.72\left(2 \mathrm{H}\right.$, quin, $\left.J 7.7, \mathrm{H}_{5}\right), 1.40(2 \mathrm{H}, \mathrm{sxt}, J$ $\left.7.7, \mathrm{H}_{6}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{H}_{7}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 198.2, 166.6, 148.9, 138.1, 126.7, 111.1, 54.0, 38.2, 26.5, 22.4, 13.8; m / z (ESI) $193.9\left(\mathrm{M}^{+}+1\right)$.

1-(6-Methoxypyridin-3-yl)-2-methylpropan-1-one, 7. Under nitrogen, isopropyl magnesium bromide (2 M solution in THF, $0.77 \mathrm{~mL}, 1.54 \mathrm{mmol}$) was added to a solution of $N, 6-$ dimethoxy- N-methylpyridine-3-carboxamide, 28 (200 mg , $1.02 \mathrm{mmol})$ in THF $(1.53 \mathrm{~mL})$ and the solution was stirred at room temperature for 18 h before the solution was concentrated under reduced pressure and $\mathrm{HCl}(2 \mathrm{M}, 5 \mathrm{~mL})$ was added. Following extraction with DCM ($5 \times 10 \mathrm{~mL}$), the organic extracts were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by column chromatography (petroleum ether - ethyl acetate 15:85), to give ketone 7 ($30 \mathrm{mg}, 0.168 \mathrm{mmol}, 16 \%$ yield) as an oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 180.1017 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}$ requires $\mathrm{M}, 180.1019$); $v_{\max } 2973,2944,1679,1601,1562$, $1493,1295,1232,1024,841 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.80\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 8.15\left(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.5, \mathrm{H}_{1}\right), 6.80$ $\left(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}_{2}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{6}\right), 3.46(1 \mathrm{H}, \mathrm{spt}, J 7.0$, $\left.\mathrm{H}_{4}\right), 1.22\left(6 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{H}_{5}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.2$, 166.6, 149.0, 138.6, 125.7, 111.2, 54.0, 35.4, 19.1; m/z (ESI) $180.1\left(\mathrm{M}^{+}+1\right)$.

Cyclohexyl(6-methoxypyridin-3-yl)methanone, 8. Under nitrogen, cyclohexyl magnesium bromide (1 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a solution of $N, 6-$ Dimethoxy- N-methylpyridine-3-carboxamide, 27 (200 mg , $1.02 \mathrm{mmol})$ in THF $(1.9 \mathrm{~mL})$ and the solution was stirred at room temperature for 5 m . The solution was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 2.5 h , before the solution was concentrated under reduced pressure and $\mathrm{HCl}(2 \mathrm{M}, 5 \mathrm{~mL})$ was added. Following extraction with DCM ($5 \times 10 \mathrm{~mL}$), the organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure and purified by column chromatography (petroleum ether - ethyl acetate 1:9), to give product $8(51 \mathrm{mg}, 0.233 \mathrm{mmol}, 23 \%$ yield) as an oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 220.1331 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires $\mathrm{M}, 220.1332$); $v_{\text {max }}$ 2926, 2853, 1677, 1600, 1565, $1494,1294,1252,1021,838 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.79\left(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{H}_{3}\right), 8.14\left(1 \mathrm{H}, \mathrm{dd}, J 8.8,2.2, \mathrm{H}_{2}\right), 6.79$ $\left(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}_{1}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.16(1 \mathrm{H}, \mathrm{tt}, J 11.3$, 3.3, H_{4}), 1.94-1.79 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}$), $1.60-1.18\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right.$ $\left.{ }_{7}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.5,166.5,148.9,138.5,125.7$, 111.1, 53.9, 45.7, 33.3, 29.3, 25.9; m/z (ESI) $219.9\left(\mathrm{M}^{+}+1\right)$.
(6-Methoxypyridin-3-yl)(phenyl)methanone, 9.34 Under nitrogen, a solution of $N, 6$-dimethoxy- N-methylpyridine-3carboxamide, $28(100 \mathrm{mg}, 0.510 \mathrm{mmol})$ in THF $\left(0.96 \mathrm{~cm}^{3}\right)$ was cooled to $0{ }^{\circ} \mathrm{C}$ and left stirring for 5 min . Phenyl magnesium bromide (1 M solution in THF, $0.79 \mathrm{~mL}, 0.79$
mmol) was added dropwise over 5 min and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for the 3 h before the solution was concentrated under reduced pressure and $\mathrm{HCl}(2 \mathrm{M}, 5 \mathrm{~mL})$ was added. Following extraction with DCM ($3 \times 5 \mathrm{~mL}$), the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purification by column chromatography (petroleum ether - ethyl acetate 9:1), to give product 9 ($60 \mathrm{mg}, 0.282 \mathrm{mmol}, 55 \%$ yield) as a brown oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 214.0860 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires M, 214.0863); $v_{\text {max }} 2948,1651,1592,1492,1276,760,704$ cm^{-1}; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.62\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}_{3}\right), 8.10(1$ H, dd, J 8.9, 2.4, H2), 7.83-7.73 (2 H, m, H 4), 7.63-7.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}$), $7.54-7.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J 8.9$, H_{1}), $4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.6,166.5$, $150.8,140.0,137.5,132.5,129.7,128.4,126.9,126.5$, 111.0, 54.0; m / z (ESI) $214.1\left(\mathrm{M}^{+}+1\right)$.
(S)-1-(6-Methoxypyridin-3-yl)ethanol, (S)-10. ${ }^{35}$ This compound was prepared following the general procedure for ketone transfer hydrogenation, using 1-(6-methoxypyridin-3-yl)ethanone, $\mathbf{5}(30 \mathrm{mg}, 0.199 \mathrm{mmol})$ and $\operatorname{Ru}(S, S)$ teth-TsDPEN ($1.2 \mathrm{mg}, 1.93 \times 10^{-3} \mathrm{mmol}$) in FA/TEA ($199 \mu \mathrm{~L}, 1 \mathrm{M}$), following a reaction time of 22 h . Following concentrated under reduced pressure purification by column chromatography (ethyl acetate - hexane 1:1), product (S)-10 ($21 \mathrm{mg}, 0.137 \mathrm{mmol}, 69 \%$ yield) was obtained as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{15}-42.4\left(c 1.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ 82% ee. $\mathrm{Lit}^{35}[\alpha]_{\mathrm{D}}{ }^{23}+33.7\left(c 2.70, \mathrm{CHCl}_{3}\right) 98.0 \%$ ee (R)); (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 154.0861 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires M , 154.0863); $v_{\text {max }} 3300,2972,1607,1574,1492,1281,1024$, $761,724 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO) $8.09(1 \mathrm{H}, \mathrm{d}, J 2.5$, H_{3}), $7.66\left(1 \mathrm{H}\right.$, dd, $\left.J 8.5,2.5, \mathrm{H}_{2}\right), 6.76\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}_{1}\right)$, $5.12(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{OH}), 4.76-4.65(1 \mathrm{H}, \mathrm{qd}, J 6.5,4.5$, H_{4}), $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}(101$ MHz , DMSO) 162.6, 143.7, 136.6, 135.3, 109.8, 65.6, 52.9, 25.4; m/z (ESI) $154.0\left(\mathrm{M}^{+}+1\right), 176.0\left(\mathrm{M}^{+}+23\right)$. Enantiomeric separation was determined by GC analysis of the acetate derivative: (CP - ChiraSil - DEX CB 25 m x $0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, gas: $\mathrm{He}, \mathrm{T}=170^{\circ} \mathrm{C}, \mathrm{P}=18 \mathrm{psi} \mathrm{He}$, $\operatorname{det}=250{ }^{\circ} \mathrm{C}$, inj $=220^{\circ} \mathrm{C}, S$ (major) isomer 3.82 min ., R (minor) isomer 3.95 min .) 82% ee (S). The configuration was primarily assigned by comparison the reported optical rotation. This was also in agreement with that expected from the theoretical model.
(R)-1-(6-Methoxypyridin-3-yl)pentan-1-ol, (R)-11. This compound was prepared following the general procedure for ketone transfer hydrogenation, using 1-(4-methoxyphenyl)pentan-1-one, $6(30 \mathrm{mg}, 0.155 \mathrm{mmol})$ and $\mathrm{Ru}(R, R)$ teth-TsDPEN ($1.0 \mathrm{mg}, 1.61 \times 10^{-3} \mathrm{mmol}$) in FA/TEA ($78 \mu \mathrm{~L}, 2 \mathrm{M}$), following a reaction time of 20 h . Following concentration under reduced pressure and purification by column chromatography (ethyl acetate hexane $1: 1)$, product $(R)-\mathbf{1 1}(15 \mathrm{mg}, 0.077 \mathrm{mmol}, 50 \%$ yield) was obtained as colourless oil; $[\alpha]_{\mathrm{D}} 22+28.5(c 0.61$ in CHCl_{3}) 76 \% ee; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 196.1329$. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires $\mathrm{M}, 196.1332$); $v_{\text {max }} 3339$, 2931, 2859, $1607,1573,1491,1460,1283,1026,831,762 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.09\left(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{H}_{3}\right), 7.61(1 \mathrm{H}, \mathrm{dd}, J$ 8.7, 2.3, H_{2}), $6.75\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}_{1}\right), 4.64(1 \mathrm{H}, \mathrm{td}, J 6.7$, $\left.3.2, \mathrm{H}_{4}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90-1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~A}}, \mathrm{OH}\right)$,
1.78-1.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~B}}$), $1.47-1.17$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6-7}$), $0.93-$ $0.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.8,144.7$, 136.6, 132.8, 110.9, 72.1, 53.4, 38.4, 27.9, 22.5, 13.9; m/z (ESI) $195.9 \quad\left(\mathrm{M}^{+}+1\right)$. Enantiomeric separation was determined by GC analysis for the acetate derivative: (CP ChiraSil - DEX CB $25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, gas: He , T $=140^{\circ} \mathrm{C}, \mathrm{P}=18$ psi He, det $=220^{\circ} \mathrm{C}$, inj $=220^{\circ} \mathrm{C}$, major isomer 21.30 min., minor isomer 22.33 min .) 76% ee (R). The absolute configuration was assigned by analogy with the expected outcome of the theoretical model.
(R)-1-(6-Methoxypyridin-3-yl)-2-methylpropan-1-ol, (R)12. This compound was prepared following the general procedure for ketone transfer hydrogenation, using 1-(6-methoxypyridin-3-yl)-2-methylpropan-1-one, 7 (11.3 mg , $\left.6.31 \times 10^{-2} \mathrm{mmol}\right), \mathrm{Ru}(R, R)$ teth-TsDPEN ($0.4 \mathrm{mg}, 6.45 \mathrm{x}$ $10^{-4} \mathrm{mmol}$) in FA/TEA ($32 \mu \mathrm{~L}, 2 \mathrm{M}$), following a reaction time of 22 h . Following concentrated under reduced pressure and purification by column chromatography (ethyl acetate - hexane $1: 1)$, product $(R) \mathbf{- 1 2}(6.9 \mathrm{mg}, 0.038 \mathrm{mmol}$, 60% yield) was obtained as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{21}+23.2$ ($c 0.35$ in CHCl_{3}) $53 \% \mathrm{ee}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 182.1176$. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2}$ requires M, 182.1176); $v_{\max } 3398$, 2961, 1609, $1575,1493,1128,1027 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.05(1$ H, d, J 2.4, H3), 7.57 (1 H, dd, J 8.6, 2.4, H2), $6.74(1 \mathrm{H}, \mathrm{d}$, $J 8.6, \mathrm{H}_{1}$), 4.34 ($1 \mathrm{H}, \mathrm{d}, ~ J 6.9, \mathrm{H}_{4}$), 3.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}$), 1.94 (1 H, oct, $J 6.9, \mathrm{H}_{5}$), $1.02\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}_{6}\right), 0.79(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.9, \mathrm{H}_{7}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.9,150.2,145.2,137.00$, 110.5, 77.7, 53.4, 35.2, 18.7, 18.4; m/z (ESI) 181.9 (${ }^{+}$ +1); Enantiomeric separation was determined by GC analysis (CP - ChiraSil - DEX CB $25 \mathrm{~m} x 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$, gas: $\mathrm{He}, \mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{P}=18 \mathrm{psi} \mathrm{He}$, det $=220^{\circ} \mathrm{C}$, inj $=$ $220^{\circ} \mathrm{C}$, major isomer 21.54 min ., minor isomer 22.56 min .) 53 \% ee (R). The absolute configuration was assigned by analogy with the expected outcome of the theoretical model.
(R)-Cyclohexyl(6-methoxypyridin-3-yl)methanol, (R)-13. This compound was prepared following the general procedure for ketone transfer hydrogenation, using cyclohexyl(6-methoxypyridin-3-yl)methanone 8 (26 mg , $0.119 \mathrm{mmol})$ and $\mathrm{Ru}(R, R)$ teth-TsDPEN ($0.7 \mathrm{mg}, 1.13 \times 10^{-}$ ${ }^{3} \mathrm{mmol}$) in FA/TEA ($58 ~ \mu \mathrm{~L}, 2 \mathrm{M}$), following a reaction time of 24 h . Following concentrated under reduced pressure and purification by column chromatography (ethyl acetate - hexane $1: 1)$, product $(R)-\mathbf{1 3}(27 \mathrm{mg}, 0.122 \mathrm{mmol})$ was obtained as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{21}+18.2(c 0.70$ in CHCl_{3}) 35% ee; (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 220.1490$. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $\mathrm{M}, 220.1489$); $v_{\text {max }} 3335$, 2922, 2850, $1606,1573,1492,1448,1284,1024,832,731 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.03\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}_{3}\right), 7.56(1 \mathrm{H}, \mathrm{dd}, J$ $\left.8.5,2.4, \mathrm{H}_{2}\right), 6.74\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}_{1}\right), 4.34(1 \mathrm{H}, \mathrm{dd}, J 7.3$, $\left.3.0, \mathrm{H}_{4}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.87(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 1.83-1.73$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 1.73-1.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right), 1.32-0.82(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{7-8}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.7,145.2,137.1,131.6$, 110.6, 76.7, 53.4, 44.7, 29.0, 26.3, 25.9; m/z (ESI) 220.1 $\left(\mathrm{M}^{+}+1\right)$. Enantiomeric separation was determined by HPLC analysis of the acetate derivative: (Chiralpak IA, 4.6 mm x 250 mm , hexane : IPA $98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=28^{\circ} \mathrm{C}, 13.0$ $\mathrm{min}, 17.2 \mathrm{~min}$.) 35% ee (R). The absolute configuration
was assigned by analogy with the expected outcome of the theoretical model.
(6-Methoxypyridin-3-yl)(phenyl)methanol, (-)-14. ${ }^{22}$ This compound was prepared following the general procedure for ketone transfer hydrogenation, using (6-methoxypyridin-3-yl)(phenyl)methanone, 9 ($15 \mathrm{mg}, 0.070$ mmol) and $\mathrm{Ru}(R, R)$ teth-TsDPEN ($0.4 \mathrm{mg}, 6.45 \times 10^{-4}$ mmol) in FA/TEA ($58 \mu \mathrm{~L}, 2 \mathrm{M}$), following a reaction time of 24 h . Following concentrated under reduced pressure and purification by column chromatography (ethyl acetate - petroleum ether $1: 1$), product (-)-14 ($10 \mathrm{mg}, 0.046 \mathrm{mmol}$, 66% yield) was obtained as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{20}-9.8$ (c0.365 in CHCl_{3}) 48% ee (lit. ${ }^{22}[\alpha]_{\mathrm{D}}{ }^{22}-26.2$ (c 0.26, CHCl_{3}) 96.0% ee); (found (ESI): $\mathrm{M}^{+}+\mathrm{H}, 216.1019$. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}$ requires $\mathrm{M}, 216.1019$); $v_{\max } 3340$, 2987, 2901, $1607,1573,1491,1452,1285,1026,733,700 \mathrm{~cm}^{-1}$; δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.13\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}_{3}\right), 7.54(1 \mathrm{H}, \mathrm{dd}, J$ 8.3, 2.5, H2), 7.32-7.38 (3 H, m, ArH), 7.26-7.30 (2 H , $\mathrm{m}, \mathrm{Ar} H), 6.70\left(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}_{1}\right), 5.81\left(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{H}_{4}\right)$, $3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.47(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 158.6, 145.1, 143.2, 137.4, 132.1, 128.6, 127.8, $126.3,110.9,73.8,53.5 ; m / z$ (ESI) 216.1 ($\mathrm{M}^{+}+1$), 238.1 $\left(\mathrm{M}^{+}+23\right)$. Enantiomeric separation was achieved by HPLC analysis (Chiralpak IC, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexane : IPA 90 : $10,1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}$, minor isomer 12.2 min , major isomer 14.9 min.$) 48 \%$ ee.

1-Benzyl-5-(1-hydroxyethyl)piperidin-2-one, (R)-15. This compound was prepared following the general procedure (C) for ketone transfer hydrogenation, using 5-acetyl-1-benzylpyridin-2(1H)-one, 27 ($45 \mathrm{mg}, 0.198 \mathrm{mmol}$) and $\operatorname{Ru}(R, R)$ teth-TsDPEN $\left(1.2 \mathrm{mg}, 1.93 \times 10^{-3} \mathrm{mmol}\right)$ in FA/TEA ($198 \mu \mathrm{~L}, 1 \mathrm{M}$), following a reaction time of 20 h . Following concentrated under reduced pressure and purification by column chromatography (ethyl acetate hexane 9:1), product $(R)-\mathbf{1 5}(17 \mathrm{mg}, 0.074 \mathrm{mmol}, 37 \%)$ was obtained as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+3.6$ (c 0.35 in CHCl_{3}) 42 \% ee; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 252.0995$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ requires $\mathrm{M}, 252.0995$); $v_{\text {max }} 3356$, 2970, 1661, 1578, 1542, 1497, 1042, 837, $698 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz,) 7.41-7.22 (7 H, m, ArH, H2, H3) $6.60(1 \mathrm{H}, \mathrm{d}, J$ 9.5, H_{1}), $5.05-5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.63\left(1 \mathrm{H}, \mathrm{q}, J 6.2, \mathrm{H}_{4}\right)$, 2.02-2.11 (1 H, bs, OH), $1.40\left(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{H}_{5}\right)$; $\delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.4, 138.3, 136.2, 133.7, 128.8, 128.0, $127.9,124.3,120.9,66.8,52.1,24.1 ; ~ m / z$ (ESI) 229.8 (M^{+} $+1)$. Enantiomeric separation was determined by HPLC analysis of the acetate derivative: (Chiralpak IC, 4.6 mm x 250 mm , hexane : IPA $80: 20,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, S$ (minor) isomer $41.0 \mathrm{~min}, R$ (major) isomer 44.3 min .) 42% ee. The configuration was determined by comparison of the optical rotation of a sample of $(R)-\mathbf{1 5}$, formed from $(R)-\mathbf{5}$.
(R)-1-(6-Methoxypyridin-3-yl)ethanol, $\quad(R)-\mathbf{1 0} .{ }^{35}$ This procedure was used for the large scale asymmetric reduction of 1-(6-methoxypyridin-3-yl)ethanone 5. Under nitrogen, FA/TEA (5:2, $9.93 \mathrm{~mL}, 1 \mathrm{M})$ was added to 1-(6-methoxypyridin-3-yl)ethanone, $5(1.00 \mathrm{~g}, 6.62 \mathrm{mmol})$. Dissolution was aided by gently heating the mixture at 45 ${ }^{\circ} \mathrm{C}$. The mixture was then allowed to cool to room temperature for $30 \mathrm{~min} . \mathrm{Ru}(R, R)$ teth-TsDPEN $(41.0 \mathrm{mg}$,
$6.61 \times 10^{-2} \mathrm{mmol}$) was added and the solution was left stirring at room temperature for 5 min . The mixture was heated to $45{ }^{\circ} \mathrm{C}$ and stirred for 24 h before saturated aqueous sodium hydrocarbonate (20 mL) was added. Following extraction with DCM ($3 \times 20 \mathrm{~mL}$), the solution was concentrated under reduced pressure and purified by column chromatography (petroleum ether - ethyl acetate 1:1), to give the product $(R)-\mathbf{1 0}(0.960 \mathrm{~g}, 6.27 \mathrm{mmol}, 95 \%$ yield) as a light red oil; $[\alpha]_{\mathrm{D}}{ }^{15}+27.8\left(c 0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right) 78$ $\%$ ee $\left(\right.$ lit. ${ }^{35}[\alpha]_{\mathrm{D}}+33.7$ (c $\left.2.70, \mathrm{CHCl}_{3}\right) 98.0 \%$ ee (R)); Enantiomeric separation was determined by GC analysis of the acetate derivative: (CP - ChiraSil - DEX CB 25 m x $0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, gas: $\mathrm{He}, \mathrm{T}=180^{\circ} \mathrm{C}, \mathrm{P}=18 \mathrm{psi} \mathrm{He}$, det $=250^{\circ} \mathrm{C}$, inj $=220^{\circ} \mathrm{C}, S$ (minor) isomer 3.23 min ., R (major) isomer 3.30 min.$) 78 \%$ ee. Full characterisation data was given in the previous section.

1-Benzyl-5-(1-hydroxyethyl)pyridin-2(1H)-one,(R)- 15. A solution of benzyl bromide ($0.77 \mathrm{~mL}, 1.12 \mathrm{~g}, 6.47 \mathrm{mmol}$) and (R)-1-(6-methoxypyridin-3-yl)ethanone 10 (78 \% ee, $0.910 \mathrm{~g}, 5.94 \mathrm{mmol}$) in dry acetonitrile (14 mL) was stirred at $80{ }^{\circ} \mathrm{C}$ for 16 d before the mixture was concentrated under reduced pressure and purified by column chromatography (ethyl acetate - petroleum ether $1: 1$ to 1:0), to give product (R)- $\mathbf{1 5}(0.852 \mathrm{~g}, 3.72 \mathrm{mmol}, 63 \%$ yield) as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{20}+15.4\left(c 1.40\right.$ in $\left.\mathrm{CHCl}_{3}\right) 78$ $\%$ ee (R).
(5R)-1-benzyl-5-[(1R)-1-hydroxyethyl]piperidin-2-one (R, R)-16b and (5S)-1-benzyl-5-[(1R)-1-hydroxyethyl]piperidin-2-one, (S, R) - $\mathbf{1 6 a}$. These compounds were prepared following the general procedure for alkene hydrogenation, using syn - 1-benzyl-5-(1-hydroxyethyl)pyridin-2(1H)-one, (R)-15 (78 \% ee, 0.810 g , 3.54 mmol) and platinum oxide ($40 \mathrm{mg}, 0.176 \mathrm{mmol}$) following a reaction time of 18 h , at room temperature and 5 bar of hydrogen. Following concentrated under reduced pressure and purification by column chromatography (1 to 3 \% methanol - DCM, slow gravity elution), two diastereomerically enriched samples of the isomers (R, R) $\mathbf{1 6 b}$ and (S, R)-16a were obtained: (S, R)-16a (100 \% syn as determined by GC) ($165 \mathrm{mg}, 0.708 \mathrm{mmol}, 20 \%$ yield) was obtained as a colourless oil which solidified upon standing; $110-112{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-30.1$ (c 0.75 in CHCl_{3}) $78 \% \mathrm{ee}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 256.1306 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ requires M, 256.1308); $v_{\text {max }} 3354,2955,1614,1496,1244,731,700$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.60$ ($1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}$), $4.56\left(1 \mathrm{H}, \mathrm{d}, J 14.6, \mathrm{CH}_{2}\right), 3.61(1 \mathrm{H}$, quin, $\left.J 6.4, \mathrm{H}_{5}\right), 3.40\left(1 \mathrm{H}\right.$, ddd, J 12.2, $\left.5.1,1.8, \mathrm{H}_{4 \mathrm{~A}}\right), 3.10$ (1 H , dd, $J 12.2,10.2, \mathrm{H}_{4 \mathrm{~B}}$), 2.54 (1 H , ddd, J 18.1, 5.5, 3.0, $\left.\mathrm{H}_{1 \mathrm{~A}}\right)$, $2.41\left(1 \mathrm{H}\right.$, ddd, J 18.1, 11.5, $\left.6.0, \mathrm{H}_{1 \mathrm{~B}}\right), 1.98(1 \mathrm{H}$, bs, $\mathrm{OH}), 1.87-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 1.60-1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right)$, $1.20\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}_{6}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.9,136.9$, 128.4, 127.8, 127.2, 68.9, 50.3, 49.4, 41.1, 31.3, 23.8, 21.1; m / z (ESI) $234.1\left(\mathrm{M}^{+}+1\right)$, $256.1\left(\mathrm{M}^{+}+23\right)$. Enantiomeric separation was determined by GC analysis: (CP - ChiraSil - DEX CB $25 \mathrm{mx} 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, gas: $\mathrm{H}, \mathrm{T}=185^{\circ} \mathrm{C}$, $\mathrm{P}=18$ psi H , det $=250^{\circ} \mathrm{C}$, inj $=220^{\circ} \mathrm{C},(S, R)$ (major) isomer $18.61 \mathrm{~min} .,(R, S)$ (minor) isomer 19.24 min .) 78% ee. A racemic sample of the diastereomer 16a was used as a racemic standard during chiral GC analysis.

Recrystallisation of a racemic sample of 16a (DCMhexane) provided crystals of sufficient quality to undergo X-ray diffraction. ${ }^{11}(R, R)$ - $\mathbf{1 6 b}$ (72% anti, as determined by GC) $(266 \mathrm{mg}, 1.14 \mathrm{mmol}, 32 \%$ yield) was obtained as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+11.0\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) 78 \%$ ee; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 256.1306 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ requires M, 256.1308); $v_{\text {max }} 3368,2967,2927,1612,1496,1260$, $736,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.22(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{CH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{CH}_{2}\right)$, 3.68 (1 H , quin, $J 5.8, \mathrm{H}_{5}$), 3.17 (1 H , ddd, $J 11.5,5.8,1.5$, $\mathrm{H}_{4 \mathrm{~A}}$), 3.07 ($1 \mathrm{H}, \mathrm{t}, J 11.5, \mathrm{H}_{4 \mathrm{~B}}$), 2.61 (1 H , ddd, J 17.9, 5.5, $\left.3.0, \mathrm{H}_{1 \mathrm{~A}}\right), 2.42\left(1 \mathrm{H}\right.$, ddd, $\left.J 17.9,11.8,6.0, \mathrm{H}_{1 \mathrm{~B}}\right), 1.79(1 \mathrm{H}$, dqd, J 11.5, 5.8, 3.1, H ${ }_{3}$), $1.66-1.53$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}$), 1.15 (3 $\left.\mathrm{H}, \mathrm{d}, J 5.8, \mathrm{H}_{6}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.9,137.1,128.6$, $128.0,127.4,68.6,50.3,49.2,40.9,31.5,22.4,21.0 ; \mathrm{m} / \mathrm{z}$ (ESI) $234.1\left(\mathrm{M}^{+}+1\right), 256.1\left(\mathrm{M}^{+}+23\right)$. Enantiomeric separation was determined by GC analysis: (CP - ChiraSil - DEX CB $25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, gas: $\mathrm{He}, \mathrm{T}=200$ ${ }^{\circ} \mathrm{C}, \mathrm{P}=18 \mathrm{psi} \mathrm{He}, \operatorname{det}=250^{\circ} \mathrm{C}$, inj $=220^{\circ} \mathrm{C},(S, R)($ minor $)$ isomer $24.70 \mathrm{~min} .,(R, S)$ (major) isomer $25.25 \mathrm{~min} .,(S, S)$ (minor) isomer 25.54 min., (R, R) (major) isomer 26.09 min.) 78% ee. De was determined by GC analysis of the crude reaction mixture with the chiral GC method stated above: 31% de.

The hydrogenolysis product 1-benzyl-5-ethylpiperidin-2one, 32 was also isolated from this reaction in variable yields. For the case of this experiment, 1-benzyl-5-ethylpiperidin-2-one ($110 \mathrm{mg}, 0.507 \mathrm{mmol}, 14 \%$ yield) was obtained as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}$, 240.1357. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}$ requires $\mathrm{M}, 240.1359$); $v_{\text {max }} 2959$, 2923, 2874, 1636, 1492, 737, $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.36-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.63(1 \mathrm{H}, \mathrm{d}, J 14.2$, $\left.\mathrm{CH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{CH}_{2}\right), 3.20(1 \mathrm{H}$, ddd, $J 12.0$, $\left.5.1,1.8, \mathrm{H}_{4 \mathrm{~A}}\right), 2.85\left(1 \mathrm{H}, \mathrm{dd}, J 12.0,10.3, \mathrm{H}_{4 \mathrm{~B}}\right), 2.56(1 \mathrm{H}$, ddd, $\left.J 17.8,5.8,3.3, \mathrm{H}_{1 \mathrm{~A}}\right), 2.42(1 \mathrm{H}$, ddd, $J 17.8,11.4,6.5$, $\left.\mathrm{H}_{1 \mathrm{~B}}\right), 1.97-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{~A}}\right), 1.75-1.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right)$, 1.43 (1 H , dtd, J 13.1, 11.4, 5.8, H2B), $1.34-1.25$ ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{5}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{H}_{6}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2$, $128.5,127.9,127.3,52.5,50.2,35.5,31.6,26.0,11.3 ; \mathrm{m} / \mathrm{z}$ (ESI) $240.0\left(\mathrm{M}^{+}+1\right)$.

5-Acetyl-1-benzylpyrimidine-2,4(1H,3H)-dione, $\quad 34 .{ }^{36}$ Under nitrogen, a suspension of 5 -acetyluracil (200 mg , 1.298 mmol) and $\mathrm{NaH}(60 \%$ in oil, $52 \mathrm{mg}, 1.300 \mathrm{mmol}$) in DMF (6.5 mL) was stired at room temperature for 90 m . A solution of benzyl bromide ($200.6 \mathrm{mg}, 1.173 \mathrm{mmol}$) in DMF (6.5 mL) was added dropwise over 30 min and the mixture was stirred at room temperature for 3 d . Following concentration under reduced pressure, purification by column chromatography (ethyl acetate - petroleum ether 1:1) and recrystallisation (methanol), product 34 (123 mg , $0.504 \mathrm{mmol}, 39 \%$ yield) was obtained as colourless needles; Mp 196-198 ${ }^{\circ} \mathrm{C}$; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 267.0740$. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires $\mathrm{M}, 267.0740$); $v_{\max } 3486$, 3408, $1724,1640,1599,1554,1510,1450, \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.63(1 \mathrm{H}, \mathrm{bs}, \mathrm{N} H), 8.26(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.44-7.30$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (151 MHz, DMSO- d_{6}) 193.5, 161.7, 151.5, 150.4, 136.2, 128.7, 127.9, 127.7, 111.8, 51.0, 30.3; m/z (ESI) $267.1\left(\mathrm{M}^{+}\right.$
$+\mathrm{Na})$. The crystals obtained were of sufficient quality for X-diffraction, enabling confirmation of the structure. ${ }^{11}$

5-(1-hydroxyethyl)dihydropyrimidine-2,4(1H,3H)-dione,
35. This compound was prepared following the general procedure for ketone transfer hydrogenation, using 5acetyluracil ($100 \mathrm{mg}, 0.641 \mathrm{mmol}$) and $\mathrm{Ru}(R, R)$ tethTsDPEN ($8.1 \mathrm{mg}, 1.31 \times 10^{-2} \mathrm{mmol}$) in neat FA/TEA (700 $\mu \mathrm{L}, 2 \mathrm{M})$. Following a reaction time of $17 \mathrm{~h}, \mathrm{DCM}(2 \mathrm{~mL})$ was added and the resulting suspension was cooled and filtered. The resulting powder was dried to give an inseparable mixture of the diastereomers (3.1:1, as determined by ${ }^{1} \mathrm{H}$ NMR) 35 (denoted here as a and b) (80 $\mathrm{mg}, 0.506 \mathrm{mmol}, 79 \%$ yield) as a dull yellow powder; (Found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 181.0588 . \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires M, 181.0584); Mp 226-230 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} 3400$, 3219, 3085, 1708, 1674, $1497 \mathrm{~cm}^{-1} ; \mathbf{3 5 a}: \delta_{\mathrm{H}}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 9.90$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{N} H$), $7.42(1 \mathrm{H}, \mathrm{bs}, \mathrm{N} H), 4.82(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{OH})$, 4.03 ($1 \mathrm{H}, \mathrm{sxt}, J 6.0, \mathrm{H}_{2}$), 3.32-3.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}$), 2.31 (1 $\left.\mathrm{H}, \mathrm{q}, 6.0, \mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}_{1}\right) ; \delta_{\mathrm{C}}(151 \mathrm{MHz}$, DMSO- d_{6}) 171.8, 153.5, 62.7, 46.8, 36.0, 21.8; 35b: δ_{H} (600 MHz , DMSO- d_{6}) 9.93 (1 H , bs, NH), 7.43 (1 H , bs, $\mathrm{NH}), 4.84-4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 4.10-4.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right)$, $3.32-3.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 2.57\left(1 \mathrm{H}, \mathrm{dt}, J 7.2,6.0, \mathrm{H}_{3}\right), 1.06$ ($3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}_{1}$); $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}\right.$, DMSO- d_{6}) 171.8, 153.5, 64.8, 45.8, 36.0, 19.2; m/z (ESI) $159.0\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

1-Benzyl-5-(1-hydroxyethyl)dihydropyrimidine-

$2,4(1 H, 3 H)$-dione, 37. This compound was prepared following the general procedure (C) for ketone transfer hydrogenation, using 5-acetyl-1-benzylpyrimidine$2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione $34(30 \mathrm{mg}, \quad 0.123 \mathrm{mmol})$ and $\mathrm{Ru}(R, R)$ teth-TsDPEN $\left(0.6 \mathrm{mg}, 9.67 \times 10^{-4} \mathrm{mmol}\right)$ following a reaction time of 20 h . Following concentration under reduced pressure and purification by column chromatography (ethyl acetate - petroleum ether 9:1), an inseparable mixture of diastereomers 37 (denoted here as a and b) ($3.48: 1$, as determined by ${ }^{1} \mathrm{H}$ NMR) ($23 \mathrm{mg}, 0.093$ $\mathrm{mmol}, 75 \%$ yield) was obtained as a colourless oil; (found (ESI): $\mathrm{M}^{+}+\mathrm{Na}, 271.1049 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ requires M , 271.1053); $v_{\max } 3400,3199,3066,2974,1670,1491 \mathrm{~cm}^{-1}$; m / z (ESI) $270.8\left(\mathrm{M}^{+}+23\right) ; \mathbf{3 7 a}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.22$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$), $7.41-7.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.67 ($1 \mathrm{H}, \mathrm{d}, J$ $\left.14.8, \mathrm{CH}_{2}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 14.8, \mathrm{CH}_{2}\right), 4.33(1 \mathrm{H}, \mathrm{sxt}, J 6.3$, $\left.\mathrm{H}_{2}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J 12.6,10.8, \mathrm{H}_{4 \mathrm{~A}}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 12.6$, $\left.6.1, \mathrm{H}_{4 \mathrm{~B}}\right), 2.66-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{H}_{1}\right)$; A resonance attributable to OH was not observed; $\delta_{\mathrm{C}}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 171.6, 152.7, 136.0, 128.8, 127.9, 128.0, 63.9, 50.6, 46.7, 41.7, 19.9. Enantiomeric separation was achieved by HPLC analysis (Chiralpak IA, $4.6 \mathrm{~mm} \times 250$ mm , hexane : IPA $90: 10,1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}$, minor isomer 72.6 min , major isomer 41.8 min .) 69% ee; 37b: δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.26(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 7.40-7.27(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 4.92(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{OH}), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 14.8, \mathrm{CH}_{2}\right)$, $4.57\left(1 \mathrm{H}, \mathrm{d}, J 14.8, \mathrm{CH}_{2}\right), 4.01\left(1 \mathrm{H}\right.$, quind, $J 6.6,1.8, \mathrm{H}_{2}$), 3.25-3.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}$), $2.66-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 1.14$ (3 $\mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}_{1}$); A resonance attributable to OH was not observed; $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 172.7, 152.6, 135.8, 128.9, 128.1, 127.9, 66.2, 50.5, 46.4, 43.4, 20.0; Enantiomeric separation was achieved by HPLC analysis (Chiralpak IA, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexane : IPA $90: 10,1 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30$
${ }^{\circ} \mathrm{C}$, minor isomer 46.0 min , major isomer 51.9 min .) 19% ee.

Acknowledgements

We thank the EPSRC and AstraZeneca for funding (to AAB) and the National Crystallographic Service (Southampton University) for collecting the diffraction data for compound $\mathbf{3 4} .{ }^{37}$ The data for the other structures ($\mathbf{3 d}, \mathbf{3 e}$ and 16a) was collected on an Oxford Diffraction Gemini instrument obtained through the Science City Project with support from Advantage West Midlands and part funded by the European Regional Development Fund. Johnson Matthey are thanked for supplying samples of commercially-available catalyst $\mathbf{1 9}$ used in this project. We thank Dr Reddys for the donation of a sample of the $\mathrm{Ru}(\mathrm{EtDuPHOS})$ complex 18. Dr Peter Quayle (University of Manchester) is thanked for useful discussions.

References

1. (a) Potter, R.; Horti, A. G.; Ravert, H. T.; Holt, D. P.; Finley, P.; Scheffel, U.; Dannais, R.F.; Wahl, R. L. Bioorg. Med. Chem. 2011, 19, 2368-2372. (b) Hernando, J. L. M.; Ontoria, J. M.; Malancona, S.; Attenni, B.; Fiore, F.; Bonelli, F.; Koch, U.; Di Marco, S.; Colarusso, S.; Ponzi, S.; Gennari, N.; Vignetti, S. E.; Ferreira, M. R. R.; Habermann, J.; Rowley, M.; Narjes, F. ChemMedChem 2009, 4, 1695-1713. (c) Stansfield, I.; Pompei, M.; Conte, I.; Ercolani, C.; Migliaccio, G.; Jairaj, M.; Giuliano, G.; Rowley, M.; F. Narjes, F. Bioorg. Med. Chem. Lett. 2007, 17, 5143-5149. (d) Madrid, P. B.; Polgar, W. E.; Toll, L.; Tanga, M. J. Bioorg. Med. Chem. Lett. 2007, 17, 3014-3017. (e) Hermet, J. A.; Porter, D. W.; Dearden, M. J.; Harrison, J. R.; Koplin, T.; O’Brien, P.; Parmene, J.; Tyurin, V.; Whitwood, A. C.; Gilday, J.; Smith, N. M. Org. Biomol. Chem. 2003, 1, 3977-3988. (f) Košak, U.; Brus, B.; Gobec, S. Terahedron Lett. 2014, 55, 2037-2039.
2. (a) Cid, J. M.; Duvey, G.; Cluzeau, P.; Nhem, V.; Macary, K.; Raux, A.; Poirier, N.; Muller, J.; Bolea, C.; Finn, T.; Poli, S.; Epping-Jordan, M.; Chamelot, E.; Derouet, F.; Girard, F.; Macdonald, G. J.; Vega, J. A.; de Lucas, A. I.; Matesanz, E.; Lavreysen, H.; Linares, M. L.; Oehlrich, D.; Oyarzábal, J.;Tresadern, G.; Trabanco, A. A.; Andrés, J. I.; Le Poul, E.; Imogai, H.; Lutjens, R.; Rocher J.-P. ACS Chemical Neuroscience 2010, 1, 788-795. (b) Sosnicki, J. G. Synlett 2009, 2508-2512. (c) Fink, D. M.; Effland, R. C. Synth. Commun. 1994, 24, 2793-2762. (d) Fang, W. P.; Shieh, P.; Shiao, M. J. Heterocycles 1986, 24, 1585-1588. (e) Guo, Z.X.; Cammidge, A. N.; McKillop, A.; Horwell, D. C., Tetrahedron Lett. 1999, 40, 6999-7002. (f) Pyridines and their benzo derivatives: structure, Johnson, C. D. Ed. McKillop, A. Comprehensive Heterocyclic Chemistry II (1996), 5, 1-35. (g) Taylor, E. C.; McKillop, A. U.S. (1977), US 4020073 A 19770426.
3. Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 4073.
4. Burk, M. J. Acc. Chem. Res. 2000, 33, 363.
5. (a) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem. Int. Ed. 1997, 36, 285-288. (b) Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69, 48854890. (c) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300-1308. (d) Hayes, A, M.; Morris, D. J.; Clarkson, G.; Wills, M. J. Am. Chem. Soc. 2005, 127, 7318 - 7319. (e) Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 2604-
6. (f) Jolley, K. E.; Zanotti-Gerosa A.; Hancock, F.; Dyke, A,; Grainger, D. M.; Medlock, J. A.; Nedden, H. G.;Le Paih, J. J. M.; Roseblade, S. J.; Seger, A.; Sivakumar, V.; Morris, D. J.; Wills, M. Adv. Synth. Catal. 2012, 354, 2545-2555. (g) Soni, R.; Collinson, J.-M.; Clarkson, G. J.; Wills, M. Org. Lett. 2011, 13, 4304-4307. (h) Fang, Z.; Wills, M. Org. Lett. 2014, 19, 374-377.
7. Kim, M.-H.; Park, Y.; Jeong, B.-S.; Park, H.-G.; Jew, S.-S. Org. Lett. 2010, 12, 2826-2829.
8. (a) Gray, D.; Gallagher, T. Angew. Chem. Int. Ed. 2006, 45, 2419-2423. (b) Botuha, C.; Galley, C. M. S.; Gallagher, T. Org. Biomol. Chem. 2004, 2, 1825-1826. (c) Hirschhauser, C.; Haseler, C. A.; Gallagher, T. Angew. Chem. Int. Ed. 2011, 50, 5162-5165.(d) Rouden, J.; Lasne, M.-C.; Blanchet, J.; Baudoux, J. Chem. Rev. 2014, 114, 712-778. (e) Stead, D.; O’Brien, P. Tetrahedron 2007, 63, 1885-1897.
9. Bisset, A. A.; Shiibashi, A.; Desmond, J. L.; Dishington, A.; Jones, T.; Clarkson, G. J.; Ikariya, T.; Wills, M. Chem. Commun. 2012, 48, 11978 - 11980.
10. Kumarasamy, E.; Jesuraj, J. L.; Omlid, J. N.; Ugrinov, A.; Sivaguru, J. Am. Chem. Soc. 2011, 133, 17106-17109.
11. (a) Kumara Swamy, K. C.; Bhuvan Kumar, N. N.; Balaraman, E.; Pavan Kumar, K. V. P. Chem. Rev. 2009, 109, 25512651. (b) Bardot, V.; Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Remuson, R. Heterocycles 1998, 48, 507518.
12. Full data on the X-ray crystallographic structures is available from the Cambridge Crystallographic Data Centre (CCDC). Compound 3d; CCDC 992395, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$, Unit Cell Parameters: a 8.60003(9) b 17.41730 (19) c 20.1379(3), Pbca. Compound 3e; CCDC 992396, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ Unit Cell Parameters: a $13.0964(3)$ b $7.73187(14)$ c 15.1103 (3) P21/n. Comppound 34; CCDC 992397, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ Unit Cell Parameters: a $9.680(3)$ b $23.711(7)$ c $10.025(4) \mathrm{P} 21 / \mathrm{n}$. Compound 16a; CCDC 992398, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ Unit Cell Parameters: a $10.7915(2)$ b 21.1078(5) c 5.64620 (18) Pna21.
13. (a) Raynor, S. A.; Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Bell, R. G.; Mantle, M. D. Chem. Commun. 2000, 1925-1926. (b) Blaser, H. -U.; Hönig, H.; Studer, M.; Wedemeyer-Exl, C. J. Mol. Catal. A: Chem. 1999, 139, 253-257. (c) Studer, M.; Wedemeyer-Exl, C.; Spindler, F.; Blaser, H. -U. Monatsh. Chem. 2000, 131, 1335-1343.
14. (a) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehmann, C. W. Angew. Chem. Int. Ed. 2004, 43, 2850-2852; (b) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966-8967.
15. Fehr, M. J.; Consiglio, G.; Scalone, M.; Schmid, R. J. Org. Chem. 1999, 64, 5768-5776.
16. Pereira, E.; de Fátima Alves, C.; Böckelmann, M. A.; Pilli, R. A. Tetrahedron Lett. 2005, 46, 2691-2693.
17. Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001, 42, 19451947.
18. Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 26552661.
19. (a) Danieli, B.; Lesma, G.; Passarella, D.; Silvani, A. Tetrahedron: Asymmetry 1996, 7, 345-348. (b) Rivera, J.; Jayasuriya, N.; Rane, D.; Keertikar, K.; Ferreira, J. A.; Chao, J.; Minor, K.; Guzi, T. Tetrahedron Lett. 2002, 43, 89178919. (c) Wirz, B.; Walther, W. Tetrahedron: Asymmetry 1992, 3, 1049-1054. (d) Magnus, P.; Thurston, L. S. J. Org. Chem. 1991, 56, 1166-1170.
20. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 38153818.
21. (a) Wu, J.; Ji, J. -X.; Guo, R.; Yeung, C. -H.; Chan, A. S. C. Chem. Eur. J. 2003, 9, 2963-2968. (b) Kwong, H.-L.; Lee, W.-S.; Lai, T.-S.; Wong, W.-T. Inorg. Chem. Commun.

1999, 2, 66-69. (c) Nordin, S. J. M.; Roth, P.; Tarnai, T.; Alonso, D. A.; Brandt, P.; Andersson, P. G. Chem. Eur. J. 2001, 7, 1431-1436. (d) Cheung, F. K.; Lin, C.; Minissi, F.; Lorente Crivillé, A.; Graham, M. A.; Fox, D. J.; Wills, M. Org. Lett. 2007, 9, 4659-4662. (e) Naik, A.; Maji, T.; Reiser, O. Chem. Commun. 2010, 46, 4475-4477.
21. Okano, K.; Murata, K.; Ikariya, T. Tetrahedron Lett. 2000, 41, 9277-9280.
22. Yamamoto, Y.; Kurihara, K.; Miyaura, N. Angew. Chem. Int. Ed. 2009, 48, 4414-4416.
23. (a) Mohar, B.; Valliex, A.; Desmurs, J.-R.; Felemez, M.; Wagner, A.; Mioskowski, C. Chem. Commun. 2001, 25722573. (b) Plantan, I.; Stephan, M.; Urleb, U.; Mohar, B. Tetrahedron Lett. 2009, 50, 2676-2677. (c) Limanto, J.; Krska, S. W.; Dorner, B. T.; Vazquez, E.; Yoshikawa, N.; Tan, L. Org. Lett. 2010, 12, 512-515. (d) Cartigny, D.; Püntener, K.; Ayad, T.; Scalone, M.; Ratovelomanana-Vidal, Org. Lett. 2010, 12, 3788-3791. (e) Liu, Z,; Schultz, C. S.; Sherwood, C. A.; Krska, S.; Dormer, P. G.; Desmond, R.; Lee, C.; Sherer, E. C.; Shpungin, J.; Cuff, J.; Xu, F. Tetrahedron Lett. 2011, 52, 1685-1688. (f) Ding, Z.; Yang, J.; Wang, T.; Shen, Z.; Zhang, Y. Chem. Commun. 2009, 571573.
24. Fujii, T.; Yoshifuji, S.; Tamai, A. Chem. Pharm. Bull. 1971, 19, 369-376.
25. (a) Dainter, R. S.; Suschitzky, H.; Wakefield, B. J.; Hughes, N.; Nelson, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 227233. (b) Dummel, R. J.; Mosher, H. S. J. Org. Chem. 1959, 24, 1007-1008.
26. Zhang, Y.; Loertscher, B. M.; Castle, S. L. Tetrahedron 2009, 65, 6584-6590.
27. Kozikowski, A. P.; Xia, Y.; Reddy, E. R.; Tuckmantel, W.; Hanin, I.; Tang, X. C. J. Org. Chem. 1991, 56, 4636-4645.
28. Mellor, B. J.; Murray, P. E.; Thomas, E. J. Tetrahedron 1998, 54, 243-256.
29. Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59, 3575-3584.
30. Lerchner, A.; Carreira, E. M. Chem. Eur. J. 2006, 12, 8208 8219.
31. Slowinski, F.; Ayad, O. B.; Vache, J.; Saady, M.; Leclerc, O.; Lochead, A. J. Org. Chem. 2011, 76, 8336-8346.
32. Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Heterocycl. Chem. 1998, 35, 717-724.
33. Anderson, A. G.; Berkelhammer, G. J. Am. Chem. Soc. 1958, 80, 992-999.
34. Rieke, R. D.; Suh, Y.; Kim, S. H. Tetrahedron Lett. 2005, 46, 5961-5964.
35. Stepanenko, V.; De Jesús, M.; Correa, W.; Guzmán, I.; Vázquez, C.; Ortiz, L.; Ortiz-Marciales, M. Tetrahedron: Asymmetry 2007, 18, 2738-2745.
36. Nair, V.; Chi, G.; Uchil, V. R. US. Patent 20060223834 (A1). Oct. 5th, 2006.
37. Coles, S. J.; Gale, P. A. Chem. Sci. 2012, 3, 683-689.

Supplementary Material

NMR spectra and chiral GC/HPLC spectra.

[^0]: * Corresponding author. Tel: (+44) 247652 3260; Fax: (+44) 247652 4112; E-mail: m.wills@ warwick.ac.uk.

