

warwick.ac.uk/lib-publications

Original citation:
Berger, Daniel S., Gland, Philipp, Singla, Sahil and Ciucu, Florin. (2014) Exact analysis of TTL
cache networks. Performance Evaluation, Volume 79 . pp. 2-23.
Permanent WRAP URL:
http://wrap.warwick.ac.uk/63887

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/63887
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Exact Analysis of TTL Cache Networks

Daniel S. Bergera, Philipp Glandb, Sahil Singlac, Florin Ciucud

aDistributed Computer Systems Lab, University of Kaiserslautern
bInstitute for Mathematics, Technical University Berlin

cSchool of Computer Science, Carnegie Mellon University
dComputer Science Department, University of Warwick

Abstract

TTL caching models have recently regained significant research interest due to their connection to popular
caching policies such as LRU. This paper advances the state-of-the-art analysis of TTL-based cache networks
by developing two exact methods with orthogonal generality and computational complexity. The first
method generalizes existing results for line networks under renewal requests to the broad class of caching
policies whereby evictions are driven by stopping times; in addition to classical policies used in DNS and
web caching, our stopping time model captures an emerging new policy implemented in SDN switches and
Amazon web services. The second method further generalizes these results to feedforward networks with
Markov arrival process (MAP) requests. MAPs are particularly suitable for non-line networks because they
are closed not only under superposition and splitting, as known, but also under caching operations with
phase-type (PH) TTL distributions. The crucial benefit of the two closure properties is that they jointly
enable the first exact analysis of TTL feedforward cache networks in great generality. Moreover, numerical
results highlight that existing Poisson approximations in binary-tree topologies are subject to relative errors
as large as 30%, depending on the tree depth.

Keywords: Cache Networks, TTL Caches, Markov Arrival Process

1. Introduction

Time-to-Live (TTL) caches decouple the eviction mechanisms amongst objects by associating each object
with a timer. When a timer expires, the corresponding object is evicted from the cache. This seemingly
simple scheme explicitly guarantees (weak) consistency, for which reason it has been widely deployed in
DNS and web caching. What has recently however made TTL analytical models quite popular is a subtle
mapping between capacity-driven (e.g., Least-Recently-Used (LRU)) and TTL-based caching policies. This
mapping was firstly established through a remarkably accurate approximation by Che et al. [14] for the
popular LRU policy, which was recently theoretically justified and extended to FIFO (first-in-first-out) and
RND (random eviction) policies (Fricker et al. [24]), and further confirmed to hold for broader arrival models
(Bianchi et al. [8]), and even in networks with several replication strategies (Martina et al. [37]). Moreover,
Fofack et al. [15] independently argued that TTL caches capture the properties of LRU, FIFO, and RND
policies, and, remarkably, presented the first exact analysis for a line of TTL caches. While the analysis of
TTL caches is arguably simpler and more general than the analysis of capacity-driven policies, the exact
analysis of TTL networks in general has remained an open problem.

When considering a cache network (including TTL-based), there are two inherent network operations
which complicate the analysis: input-output and superposition. Given a caching node serving a request
(point) process for some object (i.e., the input), the corresponding miss process is a sample of the request
process at those points when the object is absent from the cache. The exact characterization of the output
process is challenging: for instance, the convenient and often assumed memorylessness property of request
processes is generally not retained by the corresponding miss process due to the TTL’s inherent filtering
effect. The superposition operation occurs when merging miss processes from upstream caches into a new
input process. Since convenient statistical properties of the input processes (e.g., the renewal property)

Preprint submitted to Performance Evaluation June 28, 2014

are altered through superposition, the analytical tractability of input-output operations in cache networks
subject to superposition (e.g., trees) is conceivably more complex than in the case of line networks.

In this paper we provide the first exact analysis of caching (feedforward) networks by jointly addressing
broad classes of request models, TTL distributions, and caching policies. The request processes are either
renewals or Markov arrival processes (MAPs); the latter are dense in a suitable class of point processes
and generalize, in particular, the more popular Markov-modulated Poisson processes. The TTLs follow
general distributions including phase-type (PH), which are dense within the set of probability distributions
on [0,∞). Moreover, we consider an abstract model for TTL caching policies, whereby cache evictions are
driven by stopping times, and which captures in particular three popular policies. The ‘R’ policy regenerates
the TTLs at every object’s request and maps to the LRU policy. The ‘Σ’ policy regenerates the TTLs only
at those requests resulting in cache misses and maps to FIFO and RND policies. Besides ‘R’ and ‘Σ’, which
have already been studied, our stopping time model covers an emerging new policy, called ‘min(Σ,R)’,
which combines the key features of Σ and R, i.e., weak consistency guarantee and efficient utilization of
cache space (i.e., both high hit ratio and low cache occupancy), respectively; this policy has been recently
implemented in both SDN switches and Amazon web services.

We structure our results in two parts. First we generalize the recent results from Fofack et al. [15, 16]
which cover line networks, renewals requests, general TTL distributions, and the ‘R’ and ‘Σ’ policies, by
additionally covering the emerging ‘min(Σ,R)’ policy. The key analytical contribution is a unified method
to recursively characterize input-output operations. This method is based on a suitable change of measure
technique using martingales to derive the Laplace transform of a stopped sum, whereby the sum’s stopping
time characterizes the caching policy. Leveraging certain martingale properties to extend from deterministic
to stopping times, we are able to systematically analyze the three caching policies and conceivably many
others1. The proposed method suffers however from the same limitation as [15, 16]: since renewals are not
closed under superposition, unless Poisson, only lines of caches can be (exactly) analyzed.

To address the annoying limitation of renewals’ lack of superposition closure, the second part of the
paper advocates MAPs to model request processes. The motivation to use MAPs is fairly straightforward
since MAPs are known to be closed under superposition. What is remarkable, however, is that we are able
to prove that MAPs are also closed under the input-output operation when the TTLs are described by PH
distributions, for all the three ‘R’, ‘Σ’, and ‘min(Σ,R)’ policies. In other words, miss processes are also
MAPs and trees of cache nodes can be iteratively analyzed. As a side remark, MAPs are also closed under
a splitting operation, enabling thus the analysis of feedforward networks.

The two proposed methods advance the state-of-the-art analysis of TTL cache networks by providing
the first exact results covering broad request models, caching policies, and network topologies. The second
method in particular has the key feature of enabling the first (exact) analysis of feedforward networks and
is thus conceivably more general than the first one. However, there is a fundamental tradeoff between the
two, which is driven by the state explosion of MAPs under the superposition and input-output operations.
Therefore, while the first method is computationally fast but restricted to line networks, the second has a
much wider applicability but suffers from a high computational complexity, i.e., exponential in the number
of caches. However, for our numerical results, we employ appropriate numerical methods which leverage the
sparse nature of MAPs’ matrices.

The rest of the paper is organized as follows. In Section 2 we summarize the cache models and discuss
related work. In Section 3 we list model definitions and key objectives for the analysis. In Section 4 we
present the change of measure technique to address lines of caches with renewal requests. In Section 5
we consider more general networks with MAP requests. We provide numerical results in Section 6 and
conclusions in Section 7. All proofs and further examples of MAP input-output constructions are given in
the Appendix.

1This apparently heavy technical machinery is employed to solve the difficult problem of deriving the Laplace transform of
a stopped random walk (i.e., X1 + X2 + · · · + Xτ , where τ is a stopping time depending on Xi’s); currently, higher moments
for such stopped sums are only known in terms of bounds (see Gut [28], p. 22).

2

2. Cache Models and Related Work

Caching is implemented in many computer and communication systems, such as CPUs, databases, or
content distribution networks. Consequently, the performance of caching systems has been extensively
studied through many analytical models and techniques, some of which being discussed next.

Caching policies can roughly be divided into two groups: capacity-driven and TTL-based (see Rizzo
and Vicisano [42]). In the former, objects’ evictions are driven by the arrivals of uncached objects and the
capacity constraint. In the latter, objects’ evictions are determined by individual timers. When compared,
TTL-based cache models are typically easier to analyze because the caching behavior of different objects is
decoupled and can be thus represented in terms of independent point processes.

In this paper we address the following three TTL-based caching policies, which differ in the behavior of
the TTLs’ resets and eviction times:

1. Policy R: The TTL is reset with every request and an object is evicted upon the TTL’s expiration.

2. Policy Σ: The TTL is reset only at the times of unsuccessful requests and an object is evicted upon
the TTL’s expiration.

3. Policy min(Σ,R): Two TTLs are reset in parallel according to the R and Σ policies, respectively, and
an object is evicted upon the expiration of either of them.

The R policy is particularly efficient in managing cache space: unpopular objects are quickly evicted
from the cache, whereas popular object can dwell for much longer due to frequent TLL renewals. While
R yields a high hit ratio, it suffers however from the lack of consistency guarantees, especially in the case
of popular objects. In relationship to capacity-driven policies, R is the TTL-based correspondent of LRU
caches (Che et al. [14] and Fricker et al. [24]). The general renewal formulation (both arrivals and TTLs are
random variables) is due to Fofack et al. [15].

Unlike R, the Σ model achieves weak consistency guarantees for objects undergoing updates at their
origin [7], at the expense of a lower hit ratio. That is because TTLs bound the lifetime of outdated objects,
but also unnecessarily preserve copies of unpopular objects. Σ corresponds to FIFO and RND (see, e.g.,
Fricker et al. [24]) and has recently been studied in the context of DNS by Fofack et al. [16]. As expected,
the differences between R and Σ carry over to their capacity-driven correspondents (see Martina et al. [37]).

Finally, the min(Σ,R) policy enables a tradeoff between the weak consistency guarantee of Σ and the
hit ratio efficiency of R. The lifetime of possibly outdated popular objects is upper bounded by the Σ
TTL; in turn, unpopular objects are quickly removed when the R TTL expires. Unlike R and Σ, the
min(Σ,R) policy has not yet been formalized, although related implementations exist. A recent example
is the flow eviction mechanism in the flow table of software defined networking (SDN) switches. In the
popular OpenFlow switch specification [2], the “switch flow expiry mechanism” is defined by associating an
“idle timeout” (R TTL) and a “hard timeout” (Σ TTL) with each flow in the table. Other examples can be
found in Amazon ElastiCache’s mechanism to achieve a good memory tradeoff [3], and the Squid web cache
which uses a local “Storage LRU Expiration Age” (R TTL) and a Σ TTL that is set by content owners [1]2.

Early analytical models addressed capacity-driven single caches, which, contrary to their implementation
simplicity, proved to be difficult to analyze. Some of the classic works (e.g., King [33] and Gelenbe [27]) pro-
vided exact results for LRU, FIFO, and RND policies. However, these results were argued to be intractable
by Fagin and Price [23], Dan and Towsley [21], and Jelenkovic [30], who proposed instead accurate and
computationally fast approximations.

With respect to the second group, namely TTL-based caches, the first analytical model for a single Σ
cache under renewal arrivals and deterministic TTLs was given by Jung et al. [32] who derived the steady-
state hit probability. Under the same assumptions, Bahat and Makowski [7] extended this result to the
case of non-zero delays between the origin server and the cache, and derived the hit probability for those
requests which are consistent with documents undergoing updates. For single R and Σ caches (for the latter

2There are conceivably many compound caching policies that can be described by our general stopping time model; in
addition to the more ‘classical’ R and Σ, the study of the min(Σ,R) model is motivated by its recent applicability.

3

in parallel to our work), Fofack et al. [15, 16] obtained the exact hit probability and other caching metrics
for renewal arrivals.

Concerning the analysis of cache networks, Rosenzweig et al. [44] applied the approximation scheme
from [21] to networks of LRU caches (at the expense however of errors in the number of misses of up to
16% in certain torus networks). It is worth pointing out that the authors also proposed a Markov chain
methodology, enabling the derivation of the inter-miss times at an LRU cache in terms of a PH distribution,
and which can be regarded as a precursor of our general MAP methodology. In another recent work,
Psaras et al. [41] proposed a Markov chain approximation for LRU caches which can then be linked together
to form tree networks by assuming each cache’s miss process to be Poisson. Under a similar approximation
scheme (i.e., each cache’s request process is Poisson) Gallo et al. [26] considered homogeneous tree networks
under the RND policy.

A connection between the two domains of capacity-driven and TTL-based policies was established by
the characteristic time model first introduced by Che et al. [14] for a simple two-level LRU cache network.
This characteristic time model was recently refined by Fofack et al. [17] by ingeniously leveraging Little’s
law to relate the cache occupancy to the hit ratio. With the strong case made by Fricker et al. [25, 24] on
its wide applicability, this mapping has recently gained significant popularity. In particular, its impressive
accuracy and generality was confirmed by Bianchi et al. [8], Martina et al. [37], and Roberts and Sbihi [43],
and parallel extensions to several other caching policies and replication strategies have also been proposed.

The success of the characteristic time model is due to a subtle mapping from the domain of capacity-
driven caches to the domain of TTL-based caches. In the case of LRU, the key idea is to couple the cache
capacity with the durations that objects spent in a cache under the condition that no further arrivals occur
(i.e., R). By assuming these (random) durations (called the characteristic time) as deterministic and equal
for every object, the LRU model reduces to a TTL model [14, 24] that is easier to analyze.

To analyze TTL cache networks (e.g., as arising from the characteristic time model for a capacity-driven
policy), Martina et al. [37] rely on Poisson approximations of the output processes (for both R and Σ
caches) and report accurate results. Moreover, Fofack et al. [15, 16] derived the first exact results for a line
of R and Σ caches under renewal requests and analyzed tree networks by relying on a seemingly accurate
renewal approximation of the superposed processes; more general topologies have been recently addressed
in Fofack et al. [17] using a renewal approximation of superposed processes based on moments matching.

Unlike these works, which assume an independent cache behavior, another set of works considered hier-
archies of caches where the layers are synchronized by an aging mechanism: the TTL values at child caches
are set to coincide with the remaining TTLs of parent caches. In this way, Cohen and Kaplan [19] were able
to derive the miss rate for a two-level hierarchy, and Cohen et al. [18] extended this result to heterogeneous
parent nodes. Remarkably, by ingeniously leveraging the system’s property that misses occur synchronously,
Hou et al. [29] were able to analyze trees of caches under Poisson arrivals at the leaf caches.

3. Roadmap

In this section we state the key objectives for analyzing lines of caches and feedforward networks. First
we give some general definitions concerning some arbitrary node in a cache network.

Definition 1 (Arrival/Input Process).
For each object, the arrival process is represented as a point (counting) process N(t). The corresponding

inter-arrival process is denoted by {Xt}t≥1.

When analyzing a cache network, one needs to characterize the miss/output process relating two con-
secutive caches. We give the definition in the renewal case.

Definition 2 (Miss/Output Process).
Let the inter-request times and TTLs to some caching node be given by the two independent renewal processes
{Xt}t≥1 and {Tt}t≥1. The corresponding miss process is also a renewal process with the same distribution
as the stopped sum

Sτ := X1 + · · ·+Xτ , (1)

4

where τ is a stopping time defined separately for each caching (TTL) policy:

Policy R : τ := min{t : Xt > Tt} (2)

Policy Σ : τ := min{t :

t∑
s=1

Xs > T1} (3)

Policy min(Σ,R) : τ := min{min{t :

t∑
s=1

Xs > TΣ
1 },min{t : Xt > TRt }} . (4)

For the last policy, TΣ
1 and TRt are independent renewal processes.

The corresponding definition for request processes other than renewal, such as MAPs, can be stated
similarly and is omitted for brevity.

As a side remark, the structure of the first two stopping times justifies the notation for the caching
policies by R and Σ: the former has a renewal structure (whence the letter R), whereas the latter has a
sum structure (whence the letter Σ). We incorporate this notation in the whole notation of a caching node,
by borrowing from Kendall’s notation in queueing theory.

Notation 1 (Caching Node).
Depending on the TTL policy, a caching node is denoted as either one of the following triplets G-G-R, G-G-Σ,
or G-G-min(R,Σ), where the two G’s stand for the generic distributions of the inter-arrival times and the
TTLs, respectively.

As an example, a cache with exponentially distributed inter-arrival and TTL times, and implementing
the R policy, is denoted by M -M -R. Some other distributions used in this paper are the deterministic (D)
case, the exponential (M), and the phase-type (PH) distribution.

Cache performance is commonly measured in terms of hit/miss probabilities, which indicate the improve-
ment in link utilization when using a cache.

Definition 3 (Hit/Miss Probability).
Consider an arbitrary cache with arrival process N(t) and miss process M(t), for some fixed object. The

hit and miss probabilities are defined as

H := lim
t→∞

(
1− M(t)

N(t)

)
and M := lim

t→∞

M(t)

N(t)
,

respectively, subject to convergence.

Another relevant metric is the cache occupancy which defines the average amount of storage required by
an object, and also establishes a connection between capacity-driven and TTL-based cache models through
a suitable set of parameters. For example, the connection between an LRU cache’s capacity and the corre-
sponding TTL-R model is established by equalizing the LRU cache’s capacity with the summation of the
occupancies π(o) of the objects o in the TTL cache (as used in [14, 24, 8, 37, 43])

C =
∑
o∈P

π(o) =
∑
o∈P

E
[
1{o in cache}

]
, (5)

where P represents the objects’ population.

Definition 4 (Cache Occupancy).
Let C(t) be a random binary process representing whether the object is in the cache or not at time t. The

cache occupancy, omitting the object’s index, is defined as

π := lim
t→∞

∫ t
0
C(s)ds

t
,

subject to convergence.

5

We next briefly introduce the key objectives for analyzing lines and feedforward networks.

3.1. Lines of Caches with Renewal Arrivals

C2 ν

C1 µ

λ

Figure 1: A line of two caches

Consider the simplified line network with two nodes from Figure 1.
At the first node, requests for some object arrive according to a renewal
process {Xt}t≥1. If the object is in the cache at the time of a request, then
the request is successful and the object is fetched. Otherwise, for every
unsuccessful request at some node, the object is recursively requested at
the next node in the line. Once the object is successfully found at some
downstream node, it is (instantaneously) transferred to all upstream nodes.
For the model’s completeness we assume that the last node always has a
copy of the object. Moreover, all the nodes implement either R, Σ, or
min(Σ,R), and for the sake of generality different nodes can implement
different policies.

We address a single node with a given arrival/input process and TTL distribution. For this setting our
objective is to derive the Laplace transform of the corresponding miss/output process, i.e., of the stopped
random walk Sτ from Eq. (1):

L(Sτ) := E
[
e−ω(X1+X2+···+Xτ)

]
, (6)

for some ω > 0.
This technique can be iteratively applied along an entire line of caches using numerical methods (as in

Fofack et al. [15, 16]); numerical methods are not necessary in the case of exponential TTLs. We emphasize
that, unlike [15, 16] which are restricted toR and Σ, our method additionally covers the emerging min(Σ,R).

3.2. Feedforward Networks with MAP Arrivals

C3 µ3

C1 µ1

λ1

C2 µ2

λ2

Figure 2: A tree of caches

The previous technique suffers from the major limitation that cache
requests must be a renewal process and thus it does not apply to more
general topologies subject to a superposition operation. Indeed, consider
the simple tree topology from Figure 2 in which the inter-request times
at the leaf caches are exp(λ1) (exponential) and exp(λ2), and the corre-
sponding TTLs are exp(µ1) and exp(µ2), respectively; all the processes
are statistically independent. The inter-miss times at the leaf caches are
renewal processes with hypo(λ1, µ1) (hypoexponential) and hypo(λ2, µ2)
distributions. The superposition of the two renewal processes is not a re-
newal process, which means that the technique targeting lines of caches
does not apply at the root cache (the superposition of renewal processes
is a renewal process if and only if the superposed processes are Poisson).

Let us now recall the two main analytical operations which must be accounted for when analyzing trees
of caches:

1. input-output : the characterization of the inter-miss process from the inter-request process.

2. superposition: the characterization of a single inter-request process from multiple ones (e.g., at the
root cache from Figure 2).

Unlike the input-output operation which will be shown in Section 4 to be tractable (yet subject to
recursions and also the evaluation of convolutions in the case of Σ and min(Σ,R) caches), the superposition
operation is conceivably the bottleneck due to the lack of closure of renewal processes. To circumvent this
apparent difficulty, the natural generalization of renewal processes are Markov arrival process (MAPs), which
are known to be closed under superposition (and also splitting). The remaining objective is to additionally
show that MAPs are also closed under the input-output operation of caches (see Section 5).

We point out that the idea of using MAPs has been efficiently used in the past to model systems with
non-renewal behavior, e.g., single queues with non-renewal arrivals (Lucantoni et al. [36]) or closed queueing
networks with non-renewal workloads (Casale et al. [13]); for an excellent related survey see Asmussen [4].

6

4. Lines of Caches

In this section we propose a unified method to analyze lines of G-G-R, G-G-Σ, and G-G-min(Σ,R)
caches. First we instantiate the caching metrics from Definitions 3 and 4 for the renewal case.

Lemma 1 (Hit/Miss Probabilities (proof in Appendix 8.1)).
For G-G-R, G-G-Σ, and G-G-min(R,Σ) caches, the hit and miss probabilities from Definition 3 are

H =
E [τ]− 1

E [τ]
and M =

1

E [τ]
. (7)

In particular, for G-G-R, it holds H = P (X ≤ T) and M = P (X > T) .

The expression of the miss probability for the G-G-Σ cache is the same as in Jung et al. [32]. Unlike
in the G-G-R case, E[τ] for the other two policies cannot be generally given in closed-form due to the
underlying convolution in the definition of τ from Eqs. (3)-(4); it is, however, often straightforward to derive
E[τ] for particular distributions of {Xt}t≥1 and {Tt}t≥1.

Lemma 2 (Cache Occupancy (proof in Appendix 8.2)).
For the G-G-R, G-G-Σ, and G-G-min(Σ,R) caches, the cache occupancies from Definition 4 are

πR =
E [min{X,T}]

E [X]
, πΣ =

E [T]

E [Sτ]
, πmin(Σ,R) =

E
[
min{

∑τ
s=1 min{Xs, T

R
s }, TΣ

1 }
]

E [Sτ]
.

The expression for G-G-R is the same as the one given by Fofack et al. [15] (written therein in the

equivalent form πR = E
[∫X

0
P(T > t)dt

]
/E [X]). Note that the last expectation depends on the stopping

time τ from Eq. (4), whose mass function is later provided in Corollary 3; moreover, to compute the cache
occupancy, a decoupling argument like the one we provide for the transforms of the inter-miss times is
needed to avoid the implicit correlations amongst the stopping time, the inter-arrival times, and the TTLs
(for all R, Σ, and min(Σ,R)).

The key problem to compute caching metrics at the downstream nodes in a line of caches is to recursively
characterize the inter-miss time Sτ defined in Eq. (1). The expression of Sτ , as well as those of the above
caching metrics, suggests following a martingale based technique to characterize Sτ . This (rough) idea is
driven by the fact that stopping times—which are at the core of the very definition of Sτ—preserve certain
martingale results, e.g., if Lt is a martingale and τ is a bounded stopping time then E [Lτ] = E [L1], which is
a particular case of the optional stopping theorem. Note however that caching stopping times are generally
not necessarily bounded, and thus a technical probability framework is needed. For instance, the stopping
times from Eqs. (2)-(4) are under realistic assumptions almost surely finite but may be unbounded.

Next we demonstrate the effectiveness of relying on martingale techniques to derive an elegant and unified
analysis of G-G-R, G-G-Σ, and G-G-min(Σ,R) caches. To this end, we first provide a closed-form result
(in most of the cases) for the Laplace transform L(Sτ) of the stopped random sum Sτ . This result will be
instrumental to the analysis of the R, Σ, and min(Σ,R) policies.

4.1. The Laplace Transform L(Sτ) of a Stopped Sum

Consider the two independent renewal processes {Xt}t≥1 and {Tt}t≥1 on a joint probability space
(Ω,F ,P) (e.g., as in Definition 2). Denote the corresponding distribution functions by F (x) andG(x), and as-
sume the existence of corresponding densities f(x) and g(x), respectively. Let Ft = σ((X1, T1), . . . , (Xt, Tt)),
F = (F , {Ft}t≥1) denote the filtration associated with Sτ , and let (Ω,F,P) denote the corresponding filtered
probability space. When clear from the context the time indexes are suppressed.

Next we provide a closed-form expression for the Laplace transform L(Sτ) of the stopped sum Sτ from
Eq. (6). Recall from Eqs. (2)-(4) that τ is a stopping time with respect to the filtration Ft. One may remark
that, due to the intrinsic dependencies amongst Xt’s and the stopping time τ , the analysis of the stopped
sum Sτ is conceivably quite involved even for stopping times w.r.t. the filtration F ′t = σ(X1, X2, . . . , Xt). In

7

fact, unlike the first moment which is relatively easily obtained as Wald’s equation, i.e., E [Sτ] = E[τ]E[X1]
(under the additional condition that E[τ] < ∞), higher moments, however, are typically only known in
terms of bounds (see Gut [28], p. 22).

Despite the apparent technical difficulties, we will next show that L(Sτ), for stopping times τ w.r.t.
Ft, can be derived in a rather straightforward manner. The key idea is to construct a suitable new filtered
probability space (Ω,F, P̃), whereby the new probability measure P̃ decouples the dependencies amongst Xt’s
and τ . Informally, the key idea to compute L(Sτ) in closed-form is to offshore the underlying derivations
to the new (Ω,F, P̃) space.

This technique is known as change of measure. The change of measure itself (e.g., from P to P̃) is
performed as such measures in the original space (e.g., P(A) for A ∈ F) can be obtained in terms of the new
(changed) measure in a much simpler manner. An example of an application of this technique is in rare events
simulations, whereby rare events become more likely to occur under the new (changed) measure, or more
precisely under the new (changed) density, guaranteeing thus faster convergence speeds than Monte-Carlo
simulations (see Pham [40]). Another application is in pricing risks in incomplete markets, by constructing
a new risk-neutral probability measure (see Cox et al. [20]). Such risk-neutral measures have also been
constructed in financial models, in order to simplify a model with drift into one with constant expectation
and allowing thus the application of the Girsanov theorem to describe the process dynamics (see Musiela
and Rutkowski [38]). Another application is an elegant proof for Cramér’s theorem in large deviation theory
(see Dembo and Zeitouni [22], p. 27).

To perform the intended change of measure, we extend the measure construction for a filtration F ′t =
σ(X1, X2, . . . , Xt) (see Asmussen [5], p. 358) to the product filtration Ft = σ((X1, T1), . . . , (Xt, Tt)). While
the extension proceeds mutatis mutandis, mainly due to the independence between (Xt)t≥1 and (Tt)t≥1, the
key to our construction is to only tilt the distribution F (x) of Xt while preserving the distribution G(x) of
Tt; for this reason, we refer to our change of measure as a fractional change of measure.

Definition 5 (Fractional Change of Measure).
For any t ≥ 1 and F ∈ Ft define the tilted probability measure P̃t as

P̃t(F) := E [Lt1F] , (8)

where Lt is the Wald’s martingale w.r.t. the filtered space (Ω, (F , {F ′t}t≥1),P), defined for some ω > 0 as

Lt :=
e−ωSt

L(X)t
. (9)

The tilted measures P̃t, which are by construction restricted to Ft, uniquely extend to a probability
measure P̃ on F which is Kolmogorov consistent, i.e., P̃(F) = P̃t(F) = E [Lt1F] for all F ∈ Ft. The proof
follows the proof of Proposition 3.1 from [5], with the observation that Lt is also a martingale w.r.t. the
product filtered space (Ω,F,P) due to the independence between (Xt)t≥1 and (Tt)t≥1.

Besides enabling the construction of the consistent probability measure P̃ (mainly using the fact that Lt’s
are martingales with E [Lt] = 1), there are two technical reasons behind the fractional change of measure
from Definition 5. On one hand, Lt corresponds to the Radon-Nikodym density of the Kolmogorov extended

measure P̃ (in addition to that of Pt as well) w.r.t. P, i.e., Lt = dP̃
dP on (Ω,Ft) for all t ≥ 1. This allows the

computation of integrals w.r.t. P̃ according to the integration rule∫
A

Y dP̃ =

∫
A

Y LtdP ∀A ∈ Ft

for Ft-measurable Y , under the condition that Y Lt is integrable w.r.t. P (see Billingsley [9], Theorem 16.11).
In particular, one has in terms of expectations

Ẽ[Y] = E[Y Lt] , (10)

where Ẽ[·] is the expectation w.r.t. P̃.

8

On the other hand, the particular expression of Lt from Eq. (9) lends itself, by plugging in above
Y := L(X)t and cancelling out terms, to

E
[
e−ωSt

]
= Ẽ

[
L(X)t

]
∀t ≥ 1 .

While this result is seemingly trivial, since the expectation Ẽ can be dropped due to the non-randomness
of L(X), it does capture the expression of the sought (final) result when t is replaced by a stopping time τ
w.r.t. Ft (the proof follows similarly by applying Theorem 3.2 from Asmussen [5]).

Theorem 1 (Laplace Transform of Sτ (proof in Appendix 8.3)).
For an (a.s.) finite stopping time τ , the Laplace transform of the stopped sum Sτ from Eq. (1) is given by

L(Sτ) = Ẽ [L(X)τ] . (11)

Note that this result is a manifestation of the earlier stated motivation that ‘stopping times preserve
martingale properties’, justifying thus our overall martingale framework to analyze the inter-miss times Sτ .
The proof proceeds along the same lines as in [5] with the main difference of working on an extended product
filtration. Theorem 1 herein is thus a simple extension of Theorem 3.2 from [5].

4.2. The Renewal Laplace Transform of Inter-Miss Times

Here we apply Theorem 1 to derive the particular transforms of the inter-miss times for our cache
models. We remark that the results for the G-G-R and G-G-Σ caching models have previously been obtained
separately in [15] and [16], respectively. Besides allowing to address practical composite cache policies (we
consider G-G-min(R,Σ) as an example, here), our results allow the uniform analysis of G-G-R and G-G-Σ
caching models.

In order to apply Theorem 1, note that the stopped sum Sτ from Definition 2 corresponds to the inter-
miss time of a particular caching policy, which is given in terms of the stopping times τ from Eqs. (2)-(4).
The crucial aspect is that the transform L(X) is computed w.r.t. the original probability measure P. What
remains to compute is τ ’s pmf under the changed measure P̃. In other words, the computations for L(X)
and the pmf of τ under P̃ are entirely decoupled, circumventing thus the dependencies within Sτ .

To facilitate the auxiliary calculus under P̃ we next give the following technical result whose proof is
immediate from the definitions by using Fubini’s theorem.

Proposition 1 (proof in Appendix 8.4). On the new probability space (Ω,F , P̃), the random variables Xt

and Tt have the following distribution functions for all t ≥ 1 and x ≥ 0

F̃ (x) := P̃ (Xt ≤ x) =
E
[
e−ωXt1{Xt≤x}

]
L(X)

G̃(x) := P̃ (Tt ≤ x) = G(x) .

The corresponding densities are f̃(x) := dF̃ (x) = e−ωxf(x)
L(X) and g̃(x) := dG̃(x) = g(x), respectively. More-

over, Xt and Tt remain independent under P̃.

Using the integration rules from Proposition 1, it is now straightforward to compute the transform of
the inter-miss time for the R model.

Corollary 1 (G-G-R (proof in Appendix 8.5)). 3

Let τ as in Eq. (2). If ψ(ω) := E
[
e−ωX1{X≤T}

]
< 1 for some ω > 0, then the Laplace transform of the

inter-miss time in the G-G-R model is given by

L(Sτ) =
L(X)− ψ(ω)

1− ψ(ω)
. (12)

3This result was previously obtained by Fofack et al. [15].

9

To derive Corollary 1, it is sufficient to derive the probability mass function of τ under P̃, which follows
a simple geometric structure and is immediate from Proposition 1.

Corollary 2 (G-G-Σ (proof in Appendix 8.5)). 4

Let τ as in Eq. (3). Then for some ω > 0 the Laplace transform of the inter-miss time in the G-G-Σ model
is given by

L(Sτ) =
∑
t≥1

φ(ω)tE
[
F̃ t−1(T) − F̃ t(T)

]
(13)

where F̃ t is the distribution of the t-fold convolution of X in the tilted probability space (Ω,F , P̃).

Unlike the G-G-R model, the G-G-Σ model is more tedious to analyze due to the expression of the
stopping time τ from Eq. (3). In particular, to account for the sum in the expression of τ , a convolution
density is required. The result for the G-G-min(R,Σ) cache model is notationally complex, and therefore is
also stated in the Appendix, in Section 8.8.

These corollaries conclude the analysis of lines of renewal caches; numerical results will be provided in
Section 6.

5. Feedforward Cache Networks

In this section we prove that MAPs are remarkably suitable to model inter-request processes in a feed-
forward cache network, to the point that the associated superposition and input-output operations are quite
straightforward.

MAPs generalize Poisson processes by allowing the inter-arrival times to be dependent and also to belong
to the broad class of phase-type (PH) distributions (to be defined later). MAPs have been motivated in
particular by the need to mitigate the modelling restrictions imposed by the exponential distribution. From
an analytical perspective, MAPs are quite attractive not only due to their versatility (MAPs are in fact
dense in a large class of point processes, see Asmussen and Koole [6]), but also due to their tractability. Let
us next give a common definition of MAPs.

Definition 6 (Markov Arrival Process (MAP)). A Markov arrival process is defined as a pair of matrices
(D0,D1) with equal dimensions, or as a joint Markov process (J(t), N(t)). The matrix Q := D0 + D1 is
the generator of a background Markov process J(t). The matrix D0 is non-singular and a subintensity5,
and contains the rates of the so-called hidden transitions which govern the change of J(t) only. In turn, the
matrix D1 contains the (positive) rates of the so-called active transitions which govern the change of both
J(t) and a counting process N(t), i.e., if J(t−) = i and a transition (i, j) from D1 occurs at time t, then
J(t) = j and N(t) = N(t−) + 1.

With abuse of notation we denote a MAP as M = (D0,D1). For the sake of familiarizing with MAPs, let
us represent a two-state Markov Modulated Poisson Process (MMPP), described in terms of a background
Markov process J(t) with two states (see Figure 3); depending on the state, arrivals can occur (and contribute
to a counting process N(t)) at rates λ1 and λ2.

1 2

a, 0

0, λ1

b, 0

0, λ2

Figure 3: MAP representation of a MMPP; the transitions’ components are hidden and active, respectively (e.g., in ‘0, λ1’, 0
is hidden and λ1 is active), and competing with each other. Each active transition increments N(t) by one unit.

4This result appeared in a parallel work by Fofack et al. [16]; in Appendix 8.7 we show the equivalence to our expression.
5A subintensity matrix S is similar to a stochastic matrix, except that rows sum to a non-positive value; formally, Sii < 0,

Sij ≥ 0 for i 6= j, and
∑m
j=1 Sij ≤ 0 ∀i ∈ {1, . . . ,m}.

10

The corresponding MAP is given by the hidden and active transition matrices

D0 =

(
−a− λ1 a

b −b− λ2

)
, D1 =

(
λ1 0
0 λ2

)
, where D0 + D1 =

(
−a a
b −b

)
is the generator of J(t).

For an excellent introduction to Markov Arrival Processes we refer to Casale [12].

5.1. MAPs for Two Simple Cache Networks

To introduce the main ideas of constructing MAPs for the input-output and superposition operations,
we briefly present two simple examples of cache networks; the general results will be presented thereafter.
For further more complex examples see Appendix 10.

5.1.1. Input-Output

We first illustrate the input-output operation in a line-network scenario as in Section 4. Let the network
from Figure 1 consist of two Σ caching nodes C1 and C2; requests arrive at C1 as a Poisson process with
rate λ, and the TTLs are exp(µ) and exp(ν), respectively. At node C1, the arrivals can be represented as a
Poisson process N(t), which is itself an elementary single-state MAP M1 defined in terms of

D0 = (−λ), D1 = (λ) ,

and a background Markov process with generator Q = (0). See Figure 4.(a) for its graphical representation.

0, λ

(a) M1

C1

C1

µ, 0 0, λ

(b) M2

C1C2

C1C2

C1C2

C1C2

µ, 0

ν, 0

λ, 0

ν, 0

0, λ

µ, 0

(c) M3

Figure 4: M1 corresponds to the arriving Poisson MAP at cache C1 in Figure 1, M2 to the output of C1, and M3 to the output
of C2

To construct the arrival MAP M2 at C2, capturing the inter-miss times at C1, the basic idea is to
duplicate the states of M1 and suitably construct the hidden and active transitions. The new states (see
Figure 4.(b)) are denoted by C1 (with the interpretation ‘object is not in the cache’) and C1 (with the
interpretation ‘object is in the cache’). While in state C1, an arrival to C1 triggers a miss—whence the
active transition λ (i.e., the second component of ‘0, λ’) to C1. While in state C1, the TTL may expire and
hence the hidden transition µ to C1. It is important to remark that external requests while in C1 result
in hits and thus do not affect the MAP. Note also that the constructed MAP recovers that the inter-miss
times (i.e., the time between two active transitions) are hypo(λ, µ) (which is immediate from Theorem 1).
In matrix form, M2 can also be represented as

D′0 =

(
−λ 0
µ −µ

)
and D′1 =

(
0 λ
0 0

)
.

Applying the same idea, we construct M3 by duplicating the states of M2 (see Figure 4.(c)). The four
new states have the interpretations ‘object is in none of the caches’ (state C1C2), ‘object is in only one cache’

11

(states C1C2 and C1C2), and ‘object is in both caches’ (state C1C2). There are two important observations
to make: one is that there is a single active transition (i.e., ‘0, λ’) from C1C2 to C1C2. The other is that
while in C1C2, a request at C1 does not result in an active transition because the object is already in
C2—and no miss at C2 can occur—whence the hidden transition ‘λ, 0’. The remaining transitions are all
hidden, capturing all possible TTLs’ expirations depending on the states. In matrix form, M ′′ can also be
represented as

D′′0 =

−λ 0 0 0
µ −µ 0 0
ν 0 −λ− ν λ
0 ν µ −µ− ν

 ,

and D′′1 contains only zeros except for λ on position (1, 4).

5.1.2. Superposition

Consider now the tree topology from Figure 2. Applying the previous ideas, we can immediately construct
the (independent) MAPs M1 and M2 corresponding to the inter-miss times at the caches C1 and C2,
respectively (see Figures 5.(a)-(b)).

C1

C1

µ1, 0 0, λ1

(a) M1

C2

C2

µ2, 0 0, λ2

(b) M2

C1C2 C1C2

C1C2 C1C2

µ2, 0

µ1, 0

0, λ2

0, λ1 µ1, 0

µ2, 0

0, λ1

0, λ2

(c) M3

Figure 5: The MAPs M1, M2, and M3 corresponding to the inter-miss times at caches C1 and C2 from Figure 2, and their
superposition

The construction of the superposition of M1 and M2, denoted by M3, proceeds by forming the Cartesian
product of the sets of states of M1 and M2; the resulting states have the same interpretation as in the
previous subsection, e.g., C1C2 stands for ‘object in cache C1 and not in cache C2’. Moreover, the formation
of the hidden and active transitions proceeds as before. For instance, while in state C1C2 two transitions
are possible: an active one (i.e., ‘0, λ2’) corresponding to an arrival at C2, and a hidden one (i.e., ‘µ1, 0’)
corresponding to the TTL expiration.

Furthermore, one can construct the MAP corresponding to the inter-miss times at cache C3 (in Figure 2)
following the ideas so far. As the resulting number of states is eight (i.e., from doubling the states of M3),
we omit the graphical depictions. We can remark however that both the input-output and superposition
operations result in an exponential increase of the number of MAP states; this fact will be elaborated more
precisely later.

5.2. General Results

We now present the general results for constructing MAPs in feedforward networks of R, Σ, and
min(Σ,R) caches. As we previously mentioned, the MAP framework allows TTLs to belong to the broad
class of PH distributions, which we define next.

Definition 7 (Phase-Type Distribution). Let S be a m×m subintensity, S0 := −S1, and π be a stochastic
m-vector (note the abuse of notation for π). Define a Markov process with generator

P :=

(
0 0
S0 S

)
,

which extends S by an absorbing state 0 and exit transitions from every state in S to 0. A PH distribution
(of order m), denoted as T = (S, π), is defined as the time until absorption in state 0 of the Markov process
generated by P , and which starts in any of the states {1, . . . ,m} according to π.

12

We remark that we chose the less standard notation with the 0 vector on the first row instead of the
last; this choice will permit expressing the input-output cache operation in a convenient manner.

Next we summarize the known result of MAPs’ superposition and then present our main results on the
input-output cache operation involving MAP requests and PH TTLs.

5.2.1. Superposition

First we briefly review the superposition of MAPs, for which we need to introduce the Kronecker sum
⊕ and product ⊗ operators for matrices.

If A and B are m×m and n× n matrices then

A⊗B :=

 a11B · · · a1mB
...

. . .
...

an1B · · · ammB

 and A⊕B := A⊗ In + Im ⊗B ,

where A = (ai,j) and Ik is the k×k identity matrix (note: the operator ⊕ is simplified for the case of square
matrices).

Theorem 2 (MAP Superposition (proof due to [36])). If the MAPs M1, . . . ,Mn are represented in terms
of the matrices (D1

0,D
1
1), . . . , (Dn

0 ,D
n
1), then their superposition M is also a MAP given by

D0 = D1
0 ⊕ · · · ⊕Dn

0 and D1 = D1
1 ⊕ · · · ⊕Dn

1 .

With abuse of notation we use the same operator ⊕ for the MAPs’ superposition, i.e.,

M = M1 ⊕ · · · ⊕Mn .

Consider for example M3 = M1 ⊕M2 for the MAPs from Figure 5, and in particular the corresponding
matrices of hidden transitions

D1
0 =

(
−λ1 0
µ1 −µ1

)
, D2

0 =

(
−λ2 0
µ2 −µ2

)
.

Then the Kronecker sum D1
0 ⊕D2

0 can be written as
−λ1 0 0 0

0 −λ1 0 0
µ1 0 −µ1 0
0 µ1 0 −µ1

+

−λ2 0 0 0
µ2 −µ2 0 0
0 0 −λ2 0
0 0 µ2 −µ2

 .

It is instructive to observe that the state-space of the Kronecker sum corresponds to the Cartesian product
of the state spaces of M1 and M2 in lexicographical order, and which retains the Markovian properties of
the (independent) superposed MAPs. Every state in M1 corresponds to a block of 2 (i.e., the dimensionality
of M2) states in M1 ⊕M2; moreover, every state within such a block corresponds to a state in M2. For the
MAP M3 from Figure 5.(c), the corresponding states are, in order, C1C2, C1C2, C1C2, and C1C2.

5.2.2. Input-Output: Σ, R, and min(Σ,R) Caches

Let M be the MAP of cache requests and T be the TTL’s PH distribution. We now prove that the
input/miss process M ′, denoted formally using the notation M ′ := M � T is also a MAP, for all Σ, R, and
min(Σ,R) caches. Note that, unlike in Section 4 where the R model was simpler than the Σ model, the
opposite holds for MAPs for which reason we start with Σ.

13

Theorem 3 (MAP -PH-Σ Cache (proof in Appendix 9.1)). Consider a Σ-cache where requests arrive
according to a MAP M = (D0,D1). The TTLs are iid with a PH-distribution T and generator P; also, M
and T are independent. Then M ′ := M � T is a MAP with

D′0 = (P⊕D0) +

0 0 . . . 0

0 D1
. . .

...
...

. . . 0
0 . . . 0 D1

 and D′1 =

0 π1D1 π2D1 . . . πmD1

0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

 ,

where the 0 vectors have dimension n × n. If M has n states and T has m transient and one absorbing
states, then D′0 and D′1 are n(m+ 1)× n(m+ 1) matrices.

Constructing the output for a R cache follows along the same lines except that the state of the TTL is
reset with each arrival while the object is in the cache. This difference is modelled explicitly in the second
term of D′0 in the following theorem.

Theorem 4 (MAP -PH-R Cache (proof in Appendix 9.1)). Under the same conditions as in Theorem 3,
but for a R cache, M ′ := M � T is a MAP with

D′0 = (P⊕D0) +

0 0 0 . . . 0
0 π1D1 π2D1 . . . πmD1

...
...

... . . .
...

0 π1D1 π2D1 . . . πmD1

 and D′1 =

0 π1D1 π2D1 . . . πmD1

0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

 ,

where the 0 vectors have dimension n × n. If M has n states and T has m transient and one absorbing
states, then D′0 and D′1 are n(m+ 1)× n(m+ 1) matrices.

Finally, the case of a min(Σ,R) cache exploits the known property that PH-distributions are closed
under the minimum operator [10]):

Lemma 3 (Minimum of two PH-distributions). Let T1 = (S1, π1) of order m, and T2 = (S2, π2) of order
q be two PH distributions. Then min(T1, T2) is a PH distribution of order mq, and given by (S, π) where

S = S1 ⊕ S2 and π = π1 ⊗ π2 .

The construction of the min(Σ,R) output next follows by leveraging the property that the minimum of the
two stopping times corresponding to Σ and R, respectively, carries over to the TTLs’ PH representations.
In fact, given the minimum PH distribution from Lemma 3, the construction of the new matrix D′0 is
comparable to the one from Theorem 4, and follows by repeating its construction for the second term of D′0.

Theorem 5 (MAP -PH-min(Σ,R) Cache (proof in Appendix 9.1)). Consider a min(Σ,R) cache where
requests arrive according to a MAP M = (D0,D1). The two TTLs are iid with PH distributions TΣ and
TR for Σ and R, respectively. Arrivals and both TTLs are independent. If P denotes the generator of the
PH distribution min(TΣ, TR) with corresponding initial vector π = πΣ ⊗ πR (see Lemma 3, where πΣ and
πR are the initial vectors of TΣ and TR, respectively), then M ′ := M �min(TΣ, TR) is a MAP with

D′0 = (P⊕D0) +

0n×n 0n×nq 0n×nq . . . 0n×nq
0nq×n Ω 0nq×nq . . . 0nq×nq

0nq×nq Ω
...

...
...

. . .
. . . 0nq×nq

0nq×n 0nq×nq . . . Ω

 ,D′1 =

0n×n π1D1 π2D1 . . . πmqD1

0n×n 0n×n 0n×n
...

...
...

0n×n 0n×n 0n×n

and Ω =

π
R

1D1 . . . πRqD1

...
...

πR1D1 . . . πRqD1

 ,

where the 0a×b vectors have dimension a × b and Ω has
dimension (nq × nq), if M has n states, TΣ has m tran-
sient states, and TR has q transient states. D′0 and D′1 are
n(mq + 1)× n(mq + 1) matrices.

14

We make the important observation that because the order of T1 and T2 from Lemma 3 matters for the
order of the states in the Markov chain of the corresponding minimum, the order of min(TΣ, TR) cannot be
interchanged without changing the structure of D′0.

The previous results (Theorems 3, 4, and 5) immediately extend to feedforward cache networks by using
the closure of MAPs under thinning (see Nielsen [39] and Appendix 11). Also, we state the following
immediate result, which follows from Proposition 5 in [4] and gives the caching metrics for a MAP model.

Lemma 4 (Steady-State Metrics for a MAP Cache). For the R, Σ, and min(Σ,R) caching policies, if the
input process is an n-state MAP M = (D0,D1), with steady-state probability vector p = (p1, . . . pn), and
the output process is an n′-state MAP M ′ = (D′0,D

′
1), with steady-state vector p′ = (p′1, . . . , p

′
n′), the miss

and hit probabilities, and the cache occupancy are given by

M =
p′D′11′

pD11
, H = 1−M, π =

n′∑
i=1

p′i 1{state i ∈ IN}

where 1 and 1′ are all-ones vectors of dimensions n× 1 and n′ × 1, respectively, and IN was defined in the
proof of Theorem 3 (Appendix 9.1).

Finally, we point out a key drawback of the superposition and the input-output operations for MAPs,
i.e., the state-spaces of the involved MAPs increase multiplicatively in the number of caches and the number
of states of the TTLs’ PH distribution, respectively (cf. Theorems 2-5).

Lemma 5 (Scaling of State Space). Assume a complete binary tree of height h with 2h−1 arriving n-state
MAPs. All nodes implement either R or Σ caches, with an m-state PH-distribution for the TTLs. Then,

for a fixed object, the state space size for the exact analysis of the miss process scales as n2hm2(2h−1).

The proof follows by induction; in the case of min(Σ,R) caches, the space complexity is even higher.

6. Numerical Results

In this section we first highlight a fundamental advantage of the min(Σ,R) policy, relative to R and Σ.
Then we illustrate the numerical inaccuracy of Poisson approximations in tree networks.

First we consider objects of different popularities (the 1st, 10th-, 100th-, and 1000th under a Zipf(0.85)
popularity law) in a line network of R, Σ, and min(Σ,R) caches. Using Eq. (5) (as in [14, 24, 8, 37, 43]) we
provision each cache with 100 objects (out of 1000 in total), under Poisson arrivals with rate 1 at the first
cache and Erlang(2) distributed TTLs with implicit parameters. An ideal policy would cache the 100 most
popular objects at the first cache [35] and thus would not need to cache them again at any downstream
cache. Figure 6 (left) shows that the R model behaves the closest to the ideal case since the most popular
object’s cache occupancy is reduced from almost 1 (at cache 1) to less than 0.4 (at cache 2). In contrast,
the Σ model needs to frequently cache the same object in both caches and performs suboptimally due to the
significant change of the cache occupancy at the second cache. The crucial insight concerning min(Σ,R) is
that it significantly improves the occupancy of Σ at the second cache, while also qualitatively improving the
consistency of R, at the expense of only a slight decrease in the cumulative hit ratio (as shown in Figure 6
(right)). While this fundamental advantage is pronounced for only few popular objects, we point out that
the top 5 popular objects account for almost 20% of the overall traffic (due to the Zipf Law).

Next we investigate the accuracy of the popular Poisson approximation of miss processes in cache net-
works [14, 31, 34, 44, 41, 37, 43, 26, 37]. Figure 7 shows the relative error in the hit ratio of the Pois-
son approximation, relative to exact MAP results. We consider a standard binary tree scenario (as in
[14, 44, 37, 16, 17, 15]) with four levels (15 nodes in total) and 1000 objects. Popular objects experience a
16−32% error at the fourth level, and the error reaches 35−37% for unpopular objects. Since these substan-
tial errors can occur in medium-sized networks, which occur, e.g., when sizing overlay cache networks [46],
we conclude that the Poisson approximation may be highly misleading.

For the results presented here we used the iterative Bi-CGSTAB [47, 45] method with an ILUTH pre-
conditioner as implemented with the Nsolve tool [11]. This allows for numerical accuracy in the order of
1e− 15 and evaluates the tree within 3s for any particular TTL parameter.

15

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
cache # in line

cu
m

ul
at

iv
e

hi
t r

at
io

model
R

Σ
min(Σ R),

object rank # 1

object rank # 100

object rank # 1000

object rank # 10

Figure 6: The cache occupancy (left) and cumulative hit ratio (right). For top popular objects, min(Σ,R) reconciles the cache
occupancies of R with Σ at the downstream caches (see left), while improving the consistency of R, and without significantly
sacrificing the hit ratio (see right).

Figure 7: Relative error in the hit ratio of the Poisson approximation for a binary tree under three configurations (TTL-rate
factors 0.1, 1, and 10) and four objects sampled from the popularity distribution.

7. Conclusion

In this paper we have provided the first exact analysis of TTL cache networks in great generality.
We have developed two main methods covering three common TTL caching policies: R, Σ, and min(Σ,R)
which are employed in practical implementations. With the first method we have generalized existing results
available for lines of R and Σ caches with renewal requests, by additionally accounting for the emerging
min(Σ,R) policy which combines the benefits of R and Σ. The key idea was to conveniently formalize the
three TTL caching policies by a stopped-sum representation, whose transform could thereafter be computed
using a change of measure technique. To address the lack of closure of renewals under superposition (and
hence the inherent limitation to line networks), our second method proposed to use the versatile class of
MAPs to model cache non-renewal requests. The key contribution was to show that MAPs are closed
under the input-output operation of all three caching policies, whereby TTLs follow PH distributions. This
property was instrumental for the first exact analysis of feedforward TTL cache networks. While the method
addressing MAPs has a much broader applicability, it suffers however from an exponential increase in the
space complexity that numerical techniques can partly overcome. Overall, our results unequivocally and
precisely capture the exact behavior of TTL caching networks, whereas existing Poisson approximations can
be very misleading.

Acknowledgments

We thank Peter Buchholz from the University of Dortmund for his help and guidance in using the
Nsolve tool to derive the numerical results presented in Section 6. We are also particularly grateful for the
anonymous reviewers’ helpful comments. This work was partially funded by the DFG grant Ci 195/1-1 and
by the European Union under the EIT ICT Labs project SmartUC.

16

Appendix

8. Proofs from Section 4

8.1. Proof of Lemma 1

Let tn denote the point process of the unsuccessful request times (i.e., the miss times) for n ≥ 1 and
t0 = 0. Using the renewal property of {Xt}t≥1 and {Tt}t≥1, and the strong law of large numbers, we have

lim
n→∞

M(tn)

N(tn)
= lim
n→∞

n

τ1 + · · ·+ τn
=

1

E[τ]
,

where τi denotes the stationary sequence of stopping times, as defined in Eqs. (2) and (3), but starting from
t ≥ ti−1 in the usual renewal sense. Moreover, since for t ∈ (ti−1, ti]

M(ti)− 1

N(ti)
<
M(t)

N(t)
≤ M(ti−1) + 1

N(ti−1)
,

the limit limt→∞
M(t)
N(t) exists and Eq. (7) is proven. The particular expression for G-G-R cache follows

directly from the geometric distribution of τ . �

8.2. Proof of Lemma 2

In the case of G-G-R, denote the point process tn of the request times, i.e., tn =
∑n
i=1Xi. Using the

renewal property of {Xt}t≥1 and {Tt}t≥1, and the strong law of large numbers, we have

lim
n→∞

∫ tn
0
C(s)ds

tn
= lim
n→∞

∑n
i=1 min{Xi, Ti}∑n

i=1Xi
=
E [min{X,T}]

E[X]
.

In the case of G-G-Σ, we use the same embedding tn as in the proof of Lemma 1 such that

lim
n→∞

∫ tn
0
C(s)ds

tn
= lim
n→∞

∑n
i=1 Ti∑n
i=1 Sτi

=
E [T]

E [Sτ]
,

where Sτi := Xτi−1+1 + · · ·+Xτi−1+τi .
In both cases, the extensions of the limits to the whole line follows by a bounding argument as in the

proof of Lemma 1. The proof for G-G-min(Σ,R) follows using the same embedding points as for G-G-Σ.�

8.3. Proof of Theorem 1

Fix T ≥ 0 and choose Y := L(X)τ1{τ≤T} which is FT measurable. Applying the integration rule from
Eq. (10) and the properties of conditional expectation we get

Ẽ
[
L(X)τ1{τ≤T}

]
= E

[
L(X)τ1{τ≤T}LT

]
= E

[
E
[
L(X)τ1{τ≤T}LT | Fτ

]]
= E

[
L(X)τ1{τ≤T}E [LT | Fτ]

]
= E

[
e−ωSτ 1{τ≤T}

]
.

In the last line we used the martingale property of LT , i.e., E [LT | Fτ] = Lτ . From the monotonicity of
1{τ≤T} in T , the proof is complete by applying Lebesgue’s dominated convergence theorem (see Theorem 16.4
in Billingsley [9]). �

17

8.4. Proof of Proposition 1

Fix t ≥ 1 and x ≥ 0. The distribution F̃ (x) follows immediately from the integration rule from Eq. (10):

P̃ (Xt ≤ x) =

∫
e−ωXt

L(X)
1{Xt≤x}dPXt ,

where PXt is the projection of P on σ(Xt). In turn, for T̃ (x), we have similarly

P̃ (Tt ≤ x) =

∫
ΩXt×{Tt≤x}

e−ωXt

L(X)
dPXt × PTt

=

∫
Tt≤x

∫
ΩXt

e−ωXt

L(X)
dPXtdPTt

=

∫
Tt≤x

dPTt = FT (x) ,

where ΩXt denotes the (projected) sample space corresponding to Xt. In the first line we used the indepen-
dence of Xt and Tt, i.e., the random vector (Xt, Tt) has the product measure dPXt × PTt , where PXt and
PTt are the projections of P on σ(Xt) and σ(Tt), respectively. In the second line we used Fubini’s theorem.

Lastly, consider B1 ∈ σ(Xt) and B2 ∈ σ(Tt). Using again the independence of Xt and Tt (under P) and
Fubini’s theorem we get

P̃ (Xt ∈ B1, Tt ∈ B2) =

∫
e−ωXt

L(X)
1{Xt∈B1,Tt∈B2}dP

=

∫
ΩXt

e−ωXt

L(X)
1{Xt∈B1}dPXt

∫
Tt∈B2

dPTt

= P̃ (Xt ∈ B1) P̃ (Tt ∈ B2) ,

which completes the proof. �

8.5. Proof of Corollary 1

Using the integration rule from Eq. (10) we first compute

P̃(X ≤ T) = Ẽ
[
1{X≤T}

]
=

E
[
1{X≤T}e

−ωX]
E [e−ωX]

=
ψ(ω)

L(X)
,

such that the pmf of τ is

P̃(τ = t) = P̃(X ≤ T)t−1
(

1− P̃(X ≤ T)
)

=

(
ψ(ω)

L(X)

)t−1 (
1− ψ(ω)

L(X)

)
.

Finally, applying Theorem 1 and manipulating progression series yields

E
[
e−ωSτ

]
= Ẽ [L(X)τ]

=

∞∑
t=1

L(X)t
(
ψ(ω)

L(X)

)t−1 (
1− ψ(ω)

L(X)

)
=
L(X)− ψ(ω)

1− ψ(ω)
,

which completes the proof. �

18

8.6. Proof of Corollary 2

We first need to introduce the distribution convolution of St, for all t ≥ 1, in the new space (Ω,F , P̃).
These are given for all x ≥ 0 by by F̃ 1(x) := F̃ (x) as in Proposition 1 and then recursively for t > 1 by the
convolutions

F̃ t(x) =

∫ x

0

F̃ t−1(x− y)dF̃ (y) ,

where F̃ 0(x) = 0 for x < 0 and F̃ 0(x) = 1 for x ≥ 0. Assume also the existence of the corresponding
densities f̃ t.

We use the pmf of τ in the tilted space P̃(τ = t) = P̃(St > T, St−1 ≤ T), condition on T , and then on
St−1 = X1 + · · ·+Xt−1 and finally recall from Proposition 1 that g̃(x) = g(x). This gives:

E
[
e−ωSτ

]
= Ẽ [L(X)τ] =

∞∑
t=1

L(X)tP̃(τ = t)

=

∞∑
t=1

L(X)t
∫ ∞

0

P̃(St > x, St−1 ≤ x) g̃(x) dx

=

∞∑
t=1

L(X)t
∫ ∞

0

∫ x

0

(1− F̃ (x− y)) f̃ t−1(y) dy g(x) dx

=

∞∑
t=1

L(X)t
∫ ∞

0

(
F̃ t−1(x) − F̃ t(x)

)
g(x) dx . (14)

�

8.7. Equivalence to the expression in Fofack et al. [16]

We continue with the expression from Eq. (14) (which is in the form as stated in Corollary 2) and show
how to derive the result by Fofack et al.

E
[
e−ωSτ

]
=

∞∑
t=1

L(X)t
∫ ∞

0

(
E
[
e−ωSt−11{St−1≤x}

]
L(X)t−1

−
E
[
e−ωSt1{St≤x}

]
L(X)t

)
g(x) dx

=

∞∑
t=1

∫ ∞
0

L(X)E
[
e−ωSt−11{St−1≤x}

]
g(x) dx−

∞∑
t=1

∫ ∞
0

E
[
e−ωSt1{St≤x}

]
g(x) dx (15)

We start by considering the first term, in which we use Fubini’s theorem to exchange the order of the
integrals in the second step

∞∑
t=1

∫ ∞
0

E
[
e−ωSt1{St≤x}

]
g(x) dx =

∞∑
t=1

∫ ∞
0

∫ ∞
0

e−ωy1{y≤x}f
t(y)g(x) dy dx

=

∞∑
t=1

∫ ∞
0

e−ωy(1−G(y))f t(y) dy

= Φ(ω) ,

19

where Φ(ω) :=
∑∞
t=1

∫∞
0
e−ωyf t(y)(1−G(y))dy. We similarly proceed for the second term:

∞∑
t=1

∫ ∞
0

E
[
e−ωSt−11{St−1≤x}

]
g(x) dx =

∞∑
t=1

∫ ∞
0

∫ ∞
0

e−ωy1{y≤x}f
t−1(y)g(x) dy dx

=

∞∑
t=0

∫ ∞
0

∫ ∞
0

e−ωy1{y≤x}f
t(y)g(x) dy dx

=

∞∑
t=0

∫ ∞
0

e−ωyf t(y)(1−G(y)) dy

=

∫ ∞
0

e−ωyf0(y)(1−G(y)) dy + Φ(ω)

= 1 + Φ(ω) . (because f0(y) = 1{y=0})

Finally, we substitute the two terms back into Eq. (15) and obtain the same expression as in Proposition 2
from [16]: E

[
e−ωSτ

]
= L(X)(1 + Φ(ω))− Φ(ω). �

8.8. Corollary for the G-G-min(R,Σ) case

Corollary 3 (G-G-min(R,Σ)).
Let τ as in Eq. (4), g(·) the density of TΣ, H(·) the distribution of TR, and ψ(ω) as in Corollary 1. Then,

for some ω > 0 the Laplace transform of the inter-miss time in the G-G-min(R,Σ) model is given by

L(Sτ) = Φ1(ω)(2L(X1)− ψ(ω)) + Φ2(ω) ,

where Φ1(ω) :=
∑
t≥1

∫∞
0

E
[
e−ωSt1{St≤k}

∏t
i=1(1−H(Xi))

]
g(k)dk and

Φ2(ω) :=
∑
t≥1

∫∞
0

E
[
e−ωSt1{St≤k}

∏t−1
i=1(1−H(Xi))

]
g(k)dk.

Proof. The proof follows along the same lines as the one in Appendix 8.6, using the tilted pmf of τ

P̃(τ = t) =P̃(∀i<tXi ≤ TRi , Xt > TRt , St−1 ≤ TΣ
1 , St > TΣ

1)

+P̃(∀i<tXi ≤ TRi , Xt > TRt , St ≤ TΣ
1) + P̃(∀i≤tXi ≤ TRi , St−1 ≤ TΣ

1 , St > TΣ
1) .

An explicit solution follows by conditioning on TΣ
1 , then on X1 . . . Xt, and finally on TR1 . . . TRt :

E
[
e−ω Sτ

]
=
∑
t≥1

(
2

∫ ∞
0

E

[
e−ω St−11{St−1≤k}

t−1∏
i=1

(1−H(Xi))

]
(L(Xt)− ψ(ω))g(k)dk

−
∫ ∞

0

E

[
e−ω St1{St≤k}

t−1∏
i=1

(1−H(Xi))H(Xt)

]
g(k)dk

+

∫ ∞
0

E
[
e−ω St−11{St−1≤k}

] t−1∏
i=1

(1−H(Xi))ψ(ω)− E

[
e−ω St1{St≤k}

t∏
i=1

(1−H(Xi))

]
g(k)dk

)
.

Rewriting with Φ1 and Φ2 leads to the term used in the Corollary. �

9. Proofs from Section 5

9.1. Proof of Theorem 3

First, it is easy to check that M ′ is a MAP according to Definition 6. The state space of M ′ is the
Cartesian product of the state spaces of T and M (thus the term P ⊕D0 in the expression of D′0). Note
that, for technical reasons, the order of T and M in the Cartesian product is the opposite to the order in

20

M � T . The Cartesian product accounts for all the combinations of states from T and M . In particular,
every state in T corresponds to a block of n states in M ′ (e.g., the first n rows and columns in D′0 and D′1),
each corresponding to a state in M (recall the example after Theorem 2); moreover, block i corresponds to
the states (i− 1)n+ j ∀j = 1, . . . , n.

Next, to prove that M ′ models the miss process, we divide the m+ 1 blocks of M ′ into two groups: OUT
and IN. The OUT group accounts for the situation when the object is ‘out of the cache’ and corresponds
to the absorbing state of T , i.e., when the TTL is expired. While in any of the OUT states (corresponding
to a position (i, j) in D′0 and D′1 with 1 ≤ i ≤ n and 1 ≤ j ≤ n(m+ 1)), there are both hidden transitions
(only due to the second Kronecker product in P ⊕D0; the first product does not contribute because the
current state of T is absorbing according to our representation of P from Definition 7) and active transitions
(see the first block of rows in D′1). An active transition regenerates the phase of the TTL according to the
stationary distribution π and consequently M ′ jumps to an IN block.

The IN group accounts for the situation when the object is ‘in the cache’, and each block within corre-
sponds to one of the phases of T . While in any of the IN states (corresponding to a position (i, j) in D′0
and D′1 with (n + 1) ≤ i ≤ n(m + 1) and 1 ≤ j ≤ n(m + 1)) there are only hidden transitions. Some are
given by the entries of P⊕D0, and thus modelling the joint evolution of M and T . Importantly, we remark
that since M ′ is within an IN group, the active transitions from D1 become passive; this is expressed in the
second term of D′0. Moreover, the time between any two consecutive such transformed passive transitions
corresponds to an element Xs from the definition of the stopping time of a Σ-cache (recall Eq. (3)). Finally,
M ′ eventually jumps to the OUT block when an exit transition from T occurs.

Note that the proof implicitly uses the fact that the superposition of independent MAPs retains the
underlying Markovian properties. �

9.2. Proof of Theorem 4

The proof is identical to the previous one, except for accounting for the difference between Σ and R
caches (see Eq. (3) vs. Eq. (2)). Concretely, while in the states of the IN group, an active transition becomes
passive (as in the Σ case), but it also resets the phase of the TTL according to the probability vector π. �

9.3. Proof of Theorem 5

The eviction event for the minimum of the two stopping times as defined in Eq. (4) translates into either
reaching the accepting state of TΣ, or reaching the accepting state of TR without an intermittent arrival.
The minimum distribution of TΣ and TR captures this behavior up to the resetting of TR upon arrivals.
As mentioned in the proof of Theorem 4, an arrival resets TR back to its initial state defined by its initial
vector πR; however, the state of TΣ is preserved. By Lemma 3 (and the underlying Kronecker sum), the
states in min(Σ,R) are lexicographically ordered with the states of Σ followed by the states of R. According
to this order and because the reset behavior only changes the state of TR, an arrivals’ effect remains local
to each diagonal block Ω. Each Ω corresponds to the R reset matrix, as defined in the second term of D′0
in Theorem 4. �

10. Examples for Caches with PH TTLs

The purpose of this section is to build on the intuitive idea of IN and OUT sets of states, which occured
in the proofs in Section 9. The examples given here address more complex MAPs as they arrive from caches
having TTLs of phase type.

We will give examples for the application of each of the Theorems 3, 4, and 5. For all three cache models
(Σ, R, min(Σ,R)), we assume an MMPP request model denoted by M , in the following reproduction of
Figure 3:

1 2

a, 0

0, λ1

b, 0

0, λ2

21

10.1. Σ Cache Model

We assume the following TTL T (in Markov chain representation and which starts in state 1 with
probability one).

1 2 0
µ1 µ2

The output MAP is constructed by replicating the MMPP’s states for each state of the TTL and adjusting
for the inherent cache property, that no misses occur while the object is in the cache. This basic idea is
reflected in taking the Cartesian product of T and M and subsequently making all of D1’s transitions passive
(cf. definition of D′0 in Theorem 3). We denote each state by (TiCj), where i represents the active state of
the TTL and j is the active state of the MMPP request process.

T0C1 T0C2

T1C1 T1C2

T2C1 T2C2

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

0, λ1
0, λ2

µ1, 0 µ1, 0

µ2, 0 µ2, 0

IN states

Note that we do not draw self-loops unless they are active transitions (i.e., the entries D′0ii are not
drawn, whereas an entry D′1ii is drawn, as in the MMPP example). While the cache is in the IN state,
further arrivals do not change the state of the cache. Thus, there are no transitions with λ1 or λ2 in the IN
part of the resulting cache.

10.2. R Cache Model

Similarly to the Σ case we consider the MMPP arrival process M and the following TTL T (in Markov
chain representation and which starts in state 1 with probability one):

1 2 0
ν1 ν2

Constructing the output MAP for the R case bears a subtle difference from the Σ case. The basic idea
is again to replicate the MMPP’s states for each state of the TTL but then we have to accommodate for
the R resetting behavior of this cache model: every arrival while the object is in the cache resets the TTL’s
state according to its initial vector.

Recalling the notations from Theorem 4, this idea is reflected by taking the Cartesian product of T and
M and subsequently adjusting for the “resetting behavior”, i.e., by making D1’s transitions passive and
resetting T ’s state. We again denote each state by (TiCj), where i represents the active state of the TTL
and j is the active state of the MMPP request process.

22

T0C1 T0C2

T1C1 T1C2

T2C1 T2C2

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

0, λ1
0, λ2

λ1, 0 λ2, 0

ν1, 0 ν1, 0

ν2, 0 ν2, 0

IN states

The difference to the Σ output MAP are additional edges (T2C1 → T1C1) and (T2C2 → T1C2), which
model the inherent reset behavior of each arrival in the R model. Also note that if there was a greater
number of TTL states and a non-trivial initial probability vector π for T , then the passive transitions ‘λ1, 0’
and ‘λ2, 0’ for each state of T would be directed to the initial states according to π and independently of
T ’s current state. This is represented by the second term of D′0 in Theorem 4 by repeating the row with
πiD1 for each state of the TTL.

Finally, we turn to the min(Σ,R) cache model which is more complicated due to the higher number of
states involved.

10.3. min(Σ,R) Cache Model

Consider the same MMPP arrival process M with the following TTL representations. For the Σ part of
the model, the TTL is called TΣ:

1 2 0
µ1 µ2

In turn, for the R part of the model, the TTL is called TR:

1 2 0
ν1 ν2

The corresponding output for a min(Σ,R) cache follows by constructing the PH minimum for min(TΣ, TR)
which has four transient states and one absorbing state: (TΣ

1 T
R
1), (TΣ

2 T
R
1), (TΣ

1 T
R
2), (TΣ

2 T
R
2), and (TΣ

0 T
R
0).

Then, we replicate the MMPP’s states for each state of min(TΣ, TR) and link this Cartesian product
construction with the reset behavior of the R model. As pointed out in the proof of Theorem 5, the resetting
behavior of R has to preserve the state of TΣ. This behavior is represented in the following output MAP by
the two ‘λ1, 0’ and the two ‘λ2, 0’ transitions. We denote each state by (TΣ

i T
R
j Ck), where i represents the

active state of the Σ-TTL, j the active state of the R-TTL, and k the active state of the MMPP request
process.

23

TΣ
0 T

R
0 C1 TΣ

0 T
R
0 C2

TΣ
1 T

R
1 C1 TΣ

1 T
R
1 C2

TΣ
2 T

R
1 C1 TΣ

2 T
R
1 C2

TΣ
1 T

R
2 C1 TΣ

1 T
R
2 C2

TΣ
2 T

R
2 C1 TΣ

2 T
R
2 C2

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

0, λ1

0, λ2

λ1, 0 λ2, 0

λ1, 0 λ2, 0

µ1, 0 µ1, 0

ν1, 0 ν1, 0

ν1, 0 ν1, 0
µ1, 0 µ1, 0

µ2, 0 µ2, 0

ν2, 0 ν2, 0

µ2 + ν2, 0 µ2 + ν2, 0

11. Probabilistic Splitting of Arrivals

. . .

[p1. . . pn]

M

Figure 8: n-fold split of M

Apart from the superposition and the input-output operations, a third operation is called splitting and
allows to split the MAP of an input (output) process, as shown in Figure 8. This works as an inverse
operation of the superposition operator and allows to model the behavior of a cache feedforward network.

24

A common splitting operation is when the process is split accordingly to some fixed probabilities. Such
a construction allows to capture the behavior of an idealized load balancer.

Lemma 6 (Splitting). Assume a MAP M = (D0,D1) is split into n sub processes according to a stochastic
n-vector p. The resulting processes are characterized by the MAPs Mi = (Di

0,D
i
1), where

Di
0 = D0 + (1− pi)D1 and Di

1 = piD1 , for 1 ≤ i ≤ n .

Proof. This is an extension of the known result that a single MAP is closed under thinning [39].

We point out that an input process represented as a MAP can be split in different ways of which many
can be captured by a thinning operation. As further examples, the MAP arrival model is also closed under
splitting requests according to their origin, or more generally, when the splitting decisions can be described
by a Markov process. Besides accounting for splitting operations, our results can be further extended to
account for various cache replication strategies as considered in Martina et al. [37].

References

[1] Squid Web Cache FAQ. http://wiki.squid-cache.org/SquidFaq/InnerWorkings. acc. 2014-04-05.
[2] OpenFlow Switch Specification 1.4.0, October 2013.
[3] Amazon Web Service. Amazon ElastiCache User Guide, API version 2013-06-15 edition.
[4] S. Asmussen. Matrix-analytic models and their analysis. Scandinavian Journal of Statistics, 27(2):193–226, June 2000.
[5] S. Asmussen. Applied probability and queues, volume 2. Springer, 2003.
[6] S. Asmussen and G. Koole. Marked point processes as limits of Markovian arrival streams. Journal of Applied Probability,

30(2):365–372, June 1993.
[7] O. Bahat and A. M. Makowski. Measuring consistency in TTL-based caches. Performance Evaluation, 62(1):439–455,

2005.
[8] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi. Check before storing: what is the performance price of content

integrity verification in LRU caching? ACM SIGCOMM Computer Communication Review, 43(3):59–67, 2013.
[9] P. Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.

[10] L. Breuer and D. Baum. An introduction to queueing theory and matrix-analytic methods. Springer, 2005.
[11] P. Buchholz. The Nsolve Program. Technical report, University of Dortmund, 2010. http://ls4-www.cs.tu-dortmund.

de/download/buchholz/struct-matrix-market.html acc. 2014-04-05.
[12] G. Casale. Tutorial: Building accurate workload models using markovian arrival processes. In Proceedings of ACM

SIGMETRICS, pages 357–358, 2011. available http://www.sigmetrics.org/sigmetrics2011/tutorials/tutorial1.pdf.
[13] G. Casale, N. Mi, and E. Smirni. Bound analysis of closed queueing networks with workload burstiness. In Proceedings of

ACM SIGMETRICS, pages 13–24, 2008.
[14] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: Modeling, design and experimental results. IEEE

Journal on Selected Areas in Communications, 20(7):1305–1314, 2002.
[15] N. Choungmo Fofack, P. Nain, G. Neglia, and D. Towsley. Performance evaluation of hierarchical TTL-based cache

networks. Computer Networks, 65:212–231, 2014.
[16] N. E. Choungmo Fofack and S. Alouf. Modeling modern DNS caches. In Proceedings of IEEE VALUETOOLS, 2013.
[17] N. E. Choungmo Fofack, D. Towsley, M. Badov, M. Dehghan, and D. L. Goeckel. An approximate analysis of heteroge-

neous and general cache networks. Rapport de recherche RR-8516, INRIA, Apr. 2014. available http://hal.inria.fr/hal-
00975339/PDF/RR-8516.pdf.

[18] E. Cohen, E. Halperin, and H. Kaplan. Performance aspects of distributed caches using TTL-based consistency. In
Automata, Languages and Programming, pages 744–756. Springer, 2001.

[19] E. Cohen and H. Kaplan. Aging through cascaded caches: Performance issues in the distribution of web content. In
Proceedings of ACM SIGCOMM, pages 41–53, 2001.

[20] S. H. Cox, Y. Lin, and S. Wang. Multivariate exponential tilting and pricing implications for mortality securitization.
Journal of Risk and Insurance, 73(4):719–736, 2006.

[21] A. Dan and D. Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. In Proceedings of
ACM SIGMETRICS, pages 143–152, 1990.

[22] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 2nd edition, 1998.
[23] R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SIAM Journal

on Computing, 7(3):288–297, 1978.
[24] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approximation for LRU cache performance. In Proceedings

of ITC, pages 1–8, 2012.
[25] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on caching performance in a content-centric network.

In IEEE NOMEN Workshop on Emerging Design Choices in Name-Oriented Networking, pages 310–315, 2012.
[26] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy. Performance evaluation of the random replacement

policy for networks of caches. In Proceedings of ACM SIGMETRICS/ PERFORMANCE, pages 395–396, 2012.

25

[27] E. Gelenbe. A unified approach to the evaluation of a class of replacement algorithms. IEEE Transactions on Computers,
100(6):611–618, 1973.

[28] A. Gut. Stopped Random Walks: Limit Theorems and Applications. Springer, 2009.
[29] Y. T. Hou, J. Pan, B. Li, and S. S. Panwar. On expiration-based hierarchical caching systems. IEEE Journal on Selected

Areas in Communications, 22(1):134–150, 2004.
[30] P. R. Jelenkovic. Asymptotic approximation of the move-to-front search cost distribution and least-recently used caching

fault probabilities. The Annals of Applied Probability, 9(2):430–464, 1999.
[31] P. R. Jelenković and X. Kang. Characterizing the miss sequence of the LRU cache. ACM SIGMETRICS Performance

Evaluation Review, 36(2):119–121, 2008.
[32] J. Jung, A. W. Berger, and H. Balakrishnan. Modeling TTL-based internet caches. In Proceedings of IEEE INFOCOM,

pages 417–426, 2003.
[33] W. F. King III. Analysis of demand paging algorithms. In IFIP Congress (1), pages 485–490, 1971.
[34] N. Laoutaris, H. Che, and I. Stavrakakis. The LCD interconnection of LRU caches and its analysis. Performance

Evaluation, 63(7):609–634, 2006.
[35] Z. Liu, P. Nain, N. Niclausse, and D. Towsley. Static caching of web servers. In Proceedings of SPIE, pages 179–190, 1997.
[36] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F. Neuts. A single-server queue with server vacations and a class of

non-renewal arrival processes. Advances in Applied Probability, 22(3):676–705, Sept. 1990.
[37] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the performance analysis of caching systems. In

Proceedings of IEEE INFOCOM, 2014.
[38] M. Musiela and M. Rutkowski. Martingale methods in financial modelling. Springer, 2005.
[39] B. F. Nielsen. Note on the Markovian arrival process. 1998. http://www2.imm.dtu.dk/courses/04441/map.pdf.
[40] H. Pham. Some methods and applications of large deviations in finance and insurance. In Paris-Princeton Lecture Notes

in Mathematical Finance. Springer, 2007.
[41] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou. Modelling and evaluation of CCN-caching trees. In

Proceedings of NETWORKING, pages 78–91. Springer, 2011.
[42] L. Rizzo and L. Vicisano. Replacement policies for a proxy cache. IEEE/ACM Transactions on Networking (ToN),

8(2):158–170, 2000.
[43] J. Roberts and N. Sbihi. Exploring the memory-bandwidth tradeoff in an information-centric network. In Proceedings of

25th International Teletraffic Congress, pages 1–9, 2013.
[44] E. J. Rosensweig, J. F. Kurose, and D. F. Towsley. Approximate models for general cache networks. In Proceedings of

IEEE INFOCOM, 2010.
[45] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2 edition, 2003.
[46] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain. Overlay networks: An akamai perspective. In Pathan,

Sitaraman, and Robinson, editors, Advanced Content Delivery, Streaming, and Cloud Services. John Wiley & Sons, 2014.
[47] H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear systems. SIAM Journal on scientific and Statistical Computing, 13(2):631–644, 1992.

26

