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Abstract

Let G ⊂ GL3(C) be the group of type 1
r (1, a, r−a) with a coprime to r. For such G,

the quotient variety X = C3/G is not Gorenstein and has a terminal singularity. The

singular variety X has the economic resolution which is “close to being crepant”. In

this paper, we prove that the economic resolution of the quotient variety X = C3/G

is isomorphic to the birational component of a moduli space of θ-stable McKay

quiver representations for a suitable GIT parameter θ. Moreover, we conjecture

that the moduli space of θ-stable McKay quiver representations is irreducible, and

prove this for a = 2 and in a number of special examples.
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Chapter 1

Introduction

The motivation of this work stems from the philosophy of the McKay correspondence,

which says that if a finite group G acts on a variety M , then the crepant resolutions

of the quotient variety M/G have information about the G-equivariant geometry of

M [30].

Let G be a finite subgroup of GLn(C). A G-equivariant coherent sheaf F
on Cn is called a G-constellation if its global sections H0(F) are isomorphic to the

regular representation C[G] of G as a G-module. In particular, the structure sheaf

of a G-invariant subscheme Z ⊂ Cn with H0(OZ) isomorphic to C[G] as a G-module,

which is called a G-cluster, is a G-constellation.

For a finite group G ⊂ SL2(C), Ito and Nakamura [14] introduced G-HilbC2

which is the fine moduli space parametrising G-clusters and proved that G-HilbC2

is the minimal resolution of C2/G. In the celebrated paper [1], Bridgeland, King and

Reid proved that for a finite subgroup of SL3(C), G-HilbC3 is a crepant resolution of

the quotient variety C3/G. Also Craw and Ishii [2] showed that in the case of a finite

abelian group G ⊂ SL3(C), any projective crepant resolution can be realised as the

fine moduli space of θ-stable G-constellations for a suitable stability parameter θ.

For a finite abelian group G ⊂ GLn(C) and a generic GIT parameter θ ∈ Θ,

Craw, Maclagan and Thomas [4] showed that the moduli space Mθ of θ-stable

G-constellations has a unique irreducible component Yθ which contains the torus

T := (C×)n/G. So the irreducible component is birational to the quotient variety

Cn/G. The component Yθ is called the birational component1 of Mθ.

On the other hand, it is known [23,29] that a 3-fold cyclic quotient singularity

X = C3/G has terminal singularities if and only if G is of type 1
r (1, a, r − a) with

a coprime to r, which means that G is the subgroup generated by the diagonal

1This component is also called the coherent component.
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matrix diag(ε, εa, εr−a) where ε is a primitive rth root of unity.. In this case, X

has a preferred toric resolution, called the economic resolution. For the group G of

type 1
r (1, a, r − a), G-HilbC3 is smooth and isomorphic to the economic resolution

of X if and only if a = 1 or r − 1 as shown in [17]. K ↪edzierski [16] proved that

there exists a Weyl chamber C in Θ such that the normalization of the birational

component Yθ of the moduli space of θ-stable G-constellations is isomorphic to the

economic resolution Y of X = C3/G. To show this, he found a suitable family

over the economic resolution Y and a chamber C such that G-constellations in the

family are θ-stable for θ ∈ C. His original description of stability parameters is a set

of inequalities, but one can show that his stability parameters form an open Weyl

chamber and this is easy to describe using the Ar−1 root system.

Main results

Let G ⊂ GL3(C) be the finite subgroup of type 1
r (1, a, r − a) with a coprime to r,

i.e. G is the subgroup generated by the diagonal matrix diag(ε, εa, εr−a) where ε is

a primitive rth root of unity. The quotient variety X = C3/G is not Gorenstein

and has terminal singularities. Moreover, the singular variety X = C3/G has no

crepant resolution. However, there exist economic resolutions which are close to

being crepant (see Section 5.7 in [29]). The economic resolution can be obtained by

a toric method, which is called weighted blowups.

In this paper, we prove that the economic resolution Y is isomorphic to an

irreducible component of the moduli space of G-equivariant sheaves on C3. More

precisely, we have the following theorem.

Theorem 1.0.1 (Corollary 4.3.2). Let G ⊂ GL3(C) be the finite subgroup of type
1
r (1, a, r − a) with a coprime to r. The economic resolution Y of X = C3/G is

isomorphic to the birational component Yθ of the moduli space Mθ of θ-stable G-

constellations for a suitable parameter θ.

To prove this, we introduce generalized G-graphs and round down functions.

A generalized G-graph Γ is a generalized version of Nakamura’s G-graph in [26]. A

G-graph corresponds to a torus invariant G-constellation. We define a toric affine

open set U(Γ) associated to a G-graph Γ and a family of G-constellations over U(Γ).

These give us a local chart of the moduli space of θ-stable McKay quiver represen-

tations for suitable parameter θ. On the other hand, the round down functions are

related to weighted blowups. For each step of the weighted blowups, we define three

round down functions, that are maps between monomial lattices. The round down

2



functions are used for finding admissible G-graphs, which define the universal family

over the economic resolution Y .

Moreover, we prove that our stability parameters form an open Weyl cham-

ber, which coincides with the chamber in [16]. With Section 5.1, we can see that

the chamber is a full chamber in the GIT stability parameter space.

Layout of this thesis

In Chapter 2, we define (generalized) G-graphs and we review standard results on

moduli spaces of G-constellations. Using certain G-graphs, we describe the bira-

tional component of the moduli space of θ-stable G-constellations. Chapter 3 ex-

plains how to obtain the economic resolutions using toric methods and defines round

down functions. The round down functions will play a big role in finding admissible

G-graphs. Chapter 4 contains our main theorem. In Section 4.1, we explain the way

to find a set of admissible G-graphs in a recursive way using round down functions.

In Section 4.2, we prove that the admissible G-graphs in Section 4.1 are θ-stable

for parameters θ in a suitable chamber. Moreover, we prove that the GIT param-

eters form an open Weyl chamber. In Section 4.3, we state the main theorem and

conjectures. Chapter 5 contains further results. Section 5.1 presents a description

of θ-stable torus invariant A-constellations for A of type 1
r (1, r − 1) if θ is in an

open Weyl chamber of Ar−1. Section 5.2 investigates the chamber structure of GIT

stability parameters. Section 5.3 proves that the moduli space of θ-stable McKay

quiver representations is irreducible if a = 2.
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Chapter 2

G-graphs and G-constellations

This section introduces a (generalized) G-graph which is a generalized version of

Nakamura’s G-graphs from [26]. As Nakamura’s G-graphs are associated with

torus invariant G-clusters, our G-graphs are associated with torus invariant G-

constellations. If a G-graph Γ satisfies a certain condition, then we call the G-graph

a G-iraffe. For each G-iraffe Γ, we define a toric affine open set U(Γ) and a family

over the open set U(Γ).

In this section, we restrict ourselves to the case where a group G is a finite

cyclic group in GL3(C). It is possible to generalize part of the argument to include

general small abelian groups in GLn(C) for any dimension n. However, we prefer to

focus on this case where we can avoid the difficulty of notation.

2.1 Moduli of quiver representations

In this section, we briefly review the construction of moduli spaces of quiver repre-

sentations introduced in [18].

2.1.1 Quivers and their representations

A quiver Q is a directed graph with a set of vertices I = Q0 and a set of arrows Q1.

For an arrow a ∈ Q1, let h(a) (resp. t(a)) denote the head (resp. tail) of the arrow a:

t(a)
a−→ h(a).

One can define the path algebra of a quiver Q to be the C-algebra whose basis is

nontrivial paths in Q and trivial paths corresponding to the vertices of Q and whose

multiplication is given by the concatenation of two paths.
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A representation of a quiver Q is a collection of C-vector spaces Vi for each

vertex i ∈ I and linear maps Vi → Vj for each arrow from i to j. For a representation

V , the I-tuple (dimC Vi)i∈I ∈ ZI≥0 is called the dimension vector of V and is denoted

by dim (V ). A representation
(
(Ui), (ξ

′
a)
)

of a quiver Q is called a subrepresentation

of a representation
(
(Vi), (ξa)

)
if (Ui) is an I-graded subspace of (Vi) such that

ξa(Ut(a)) ⊂ Uh(a) for all a ∈ Q1 and (ξ′a) is the restriction of (ξa) to (Ui).

It is well known that the abelian category of representations of a quiver Q is

equivalent to the category of finitely generated left modules of the path algebra of

Q.

Let us fix a dimension vector v = (vi)i∈I . Let Rep(Q,v) denote the repre-

sentation space of Q with dimension vector v:

Rep(Q,v) =
⊕
a∈Q1

Hom(Vt(a), Vh(a)) =
⊕
a:i→j

Hom(Cvi ,Cvj ),

which is an affine space. Note that the reductive group GL(v) :=
∏
i∈I GLvi acts

on Rep(Q,v) via change of basis.

One can see that

Rep(Q,v) −→ Rep(Q,v) // GL(v) := SpecC[Rep(Q,v)]GL(v)

is a categorical quotient and that Rep(Q,v) // GL(v) is an affine variety.

Remark 2.1.1. Geometric points of Rep(Q,v) // GL(v) correspond to GL(v)-orbits

of semisimple representations of Q whose dimension is v. �

2.1.2 Background: Geometric Invariant Theory

In this section, we present results from standard Geometric Invariant Theory (GIT),

cf. [24].

Definition 2.1.2. Let G be a reductive group acting on an affine variety X. A

surjective morphism ψ : X → Y is a good quotient if:

(i) ψ is constant on G-orbits.

(ii) the natural map OY (U) → ψ∗OX(U) induces OY (U) = (ψ∗OX)G(U) for any

open set U ⊂ Y .

(iii) ψ(W ) is closed in Y for any G-invariant closed set W ⊂ X.

(iv) ψ(W1) ∩ ψ(W2) = ∅ for two disjoint G-invariant closed sets W1,W2 of X.
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Moreover, if Y is an orbit space, then ψ : X → Y is called a geometric quotient.

Consider an affine algebraic variety X with a reductive group G acting on it.

Given a character χ : G→ C×, f ∈ C[X] is called a χ semi-invariant function if

f(g · x) = χ(g)f(x) x ∈ X, ∀g ∈ G.

Let C[X]χn denote the C-vector space of all χn semi-invariant functions. One defines

the semistable locus as

Xss(χ) :=
{
x ∈ X

∣∣ ∃n ≥ 1, f ∈ C[X]χn such that f(x) 6= 0
}

and the stable locus as

Xs(χ) :=
{
x ∈ Xss(χ)

∣∣ G · x is closed in Xss(χ), the stabiliser Gx is finite
}
.

The quasiprojective variety

X //χG := Proj
(⊕
n≥0

C[X]χn
)

is called a GIT quotient corresponding to χ. In particular, if the character χ = 0,

i.e. θ is trivial, then C[X]χn = C[X]G for all n so we have

X //0G = SpecC[X]G

which is an affine variety. Thus we have a canonical projective morphism

X //χG→ SpecC[X]G.

Remark 2.1.3. Let G be a reductive group acting on an affine variety X. Fix a

character χ of G. For each positive integer d, define the dth Veronese subalgebra of⊕
n≥0 C[X]χn to be ⊕

n≥0

C[X]χdn .

One can show that the inclusion of the subalgebra induces an isomorphism of alge-

braic varieties

X //χG
∼→ X //χd G.

Thus any positive multiple of a character χ gives the same GIT quotient as χ. �

As is well known by GIT (see Theorem 1.10 in [24]), the quasiprojective
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variety X //χG is a categorical quotient Xss(χ) by G.

Theorem 2.1.4 (Geometric Invariant Theory). Let G be a reductive group acting

on an affine variety X and χ a character of G. Then:

(i) π : Xss(χ)→ X //χG is a good quotient of Xss(χ) by G.

(ii) there exists an open subset Y of X //χG such that Y is a geometric quotient

of Xs(χ) by G, i.e. an orbit space.

(iii) the GIT quotient X //χG is projective over the affine variety SpecC[X]G.

Remark 2.1.5. Assume that Xs(χ) = Xss(χ). Let π : X //χG→ Xs(χ)/G be the

GIT quotient. Then π is a geometric quotient. Let U be a G-invariant affine open

set in Xss(χ). Then

π|U : U → π(U)

is a good quotient and π(U) = SpecC[U ]G is an open set of Xs(χ)/G. �

2.1.3 Moduli spaces of quiver representations

This section explains a notion of stability on quiver representations introduced by

King [18]. His main result is that the notion of stability on quiver representations

and the notion of GIT stability are equivalent and that we can construct a fine

moduli space of quiver representations in a certain case.

An element θ ∈ QI can be thought as a group homomorphism from the

Grothendieck group of representations of Q to Q defined by

θ(V ) :=
∑
i∈I

θi dimC Vi = θ · v

where V is a representation of Q with dimension vector v.

Definition 2.1.6. Let V be a v-dimensional representation of a quiver Q. For a

parameter θ ∈ QI satisfying θ · v = 0, we say that:

(i) V is θ-semistable if θ(W ) ≥ 0 for any subrepresentation W of V .

(ii) V is θ-stable if θ(W ) > 0 for any nonzero proper subrepresentation W of V .

(iii) θ is generic if every θ-semistable representation is θ-stable.
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The parameter θ ∈ QI plays the same role as χ does in Section 2.1.2. The

character χθ defined by

χθ(g) :=
∏
i∈I

det(gi)
θi

for g = (gi) ∈ GL(v) vanishes on the diagonal matrices C× ∈ GL(v) if and only if

θ · v = 0.

King [18] shows that a representation V ∈ Rep(Q,v) is θ-semistable (resp. θ-

stable) if and only if the corresponding point V ∈ Rep(Q,v) is χθ-semistable (resp.

χθ-stable). Moreover:

Theorem 2.1.7 (King [18]). Let v be a dimension vector. Assume a parameter

θ ∈ QI satisfies θ · v = 0.

(i) The quasiprojective variety

Mθ(Q,v) := Proj

⊕
n≥0

C[Rep(Q,v)]χnθ


is a coarse moduli space of θ-semistable v-dimensional representations of Q

up to S-equivalence.

(ii) If θ is generic, Mθ(Q,v) is a fine moduli space of θ-stable v-dimensional

representations of Q.

(iii) The variety Mθ(Q,v) is projective over SpecC[Rep(Q,v)]GL(v).

Remark 2.1.8. By Luna’s Étale Slice Theorem, if θ is generic, then the quotient

map

π : Reps(Q,v)→Mθ(Q,v)

is a principal GL(v)/C×-bundle. �

2.2 McKay quiver and G-constellations

Let G ⊂ GL3(C) be the finite group of type 1
r (α1, α2, α3), i.e. G is the subgroup

generated by the diagonal matrix diag(εα1 , εα2 , εα3) where ε is a primitive rth root

of unity. Let ρi be the irreducible representation of G whose weight is i. Since G

is abelian, every irreducible representation is one-dimensional and the number of

irreducible representations is equal to the order of G. We can identify I := Irr(G)
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with Z/rZ. Note that the inclusion G ⊂ GL3(C) induces a natural representation

of G on C3, which can be decomposed as

ρα1 ⊕ ρα2 ⊕ ρα3 .

2.2.1 McKay quiver representations

Definition 2.2.1. (McKay quiver) The McKay quiver of G is the quiver whose

vertex set is the set I of irreducible representations of G and the number of arrows

from ρi to ρj is the dimension of HomG(ρj , (ρα1 ⊕ ρα2 ⊕ ρα3)⊗ ρi).

Since G has r irreducible representations, the McKay quiver of G has r

vertices ρ0, . . . , ρr−1. For two irreducible G-representations ρi and ρj ,

HomG

(
ρj , (ρα1 ⊕ ρα2 ⊕ ρα3)⊗ ρi)

)
= HomG(ρj ,

⊕3

k=1
ραk ⊗ ρi)

=

3⊕
k=1

HomG(ρj , ρi+αk),

and by Schur’s lemma

dim HomG(ρj , ρi+αk) =

1 if j = i+ αk mod r,

0 otherwise.

Thus the McKay quiver has 3r arrows. Let xi, yi, zi denote the arrow from ρi to

ρi+α1 , ρi+α2 , ρi+α3 , respectively. We are interested in the McKay quiver with the

following commutation relations:
xiyi+α1 − yixi+α2 ,

xizi+α1 − zixi+α3 ,

yizi+α2 − ziyi+α3 .

(2.2.2)

Definition 2.2.3. A McKay quiver representation is a representation of the McKay

quiver of dimension (1, . . . , 1) with the relations (2.2.2), i.e. it is a collection of one-

dimensional C-vector spaces Vi for each ρi ∈ G∨, and a collection of linear maps

from Vi to Vj assigned to each arrow from ρi to ρj which satisfy the commutation

relations (2.2.2).

Example 2.2.4. Let G ⊂ GL3(C) be the finite group of type 1
12(1, 5, 7), i.e. r = 12

and a = 5. The set of irreducible representations of G is {ρi
∣∣ 0 ≤ i ≤ 11} and the

9



induced representation is isomorphic to ρ1 ⊕ ρ5 ⊕ ρ7. The McKay quiver of G has

12 vertices and 36 arrows.

After fixing a basis on the vector spaces attached to vertices, the McKay

quiver representations are in 1-to-1 correspondence with points of the closed sub-

scheme of the affine space

C3r = SpecC[x0, . . . , xr−1, y0, . . . , yr−1, z0, . . . , zr−1]

defined by the commutation relations (2.2.2). �

Let RepG denote the McKay quiver representation space of G. Note that

its coordinate ring is

C[RepG] = C
[
xi, yi, zi

∣∣ 0 ≤ i < r
] /
IG

where IG is the ideal generated by the quadrics in (2.2.2).

Let δ = (1, . . . , 1) ∈ ZI≥0. The reductive group GL(δ) :=
∏
i∈I C× = (C×)r

acts on RepG via change of basis. Note that GL(δ)-orbits are in 1-to-1 correspon-

dence with isomorphism classes of the McKay quiver representations.

Consider the algebraic torus T = (C×)3 acting on RepG by

(t1, t2, t3) · (xi, yi, zi) = (t1xi, t2yi, t3zi).

One can see that T-action commutes with GL(δ)-action.

We define the GIT parameter space Θ to be

Θ :=
{
θ ∈ QI

∣∣ θ · δ = 0
}
.

By Theorem 2.1.7, we know that:

(i) the quasiprojective scheme

Mθ := Proj

⊕
n≥0

C[RepG]χnθ


is a coarse moduli space of θ-semistable McKay quiver representations up to

S-equivalence.

(ii) if θ is generic, Mθ is a fine moduli space of θ-stable McKay quiver represen-

tations of Q.
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(iii) Mθ is projective over SpecC[RepG]GL(δ).

Remark 2.2.5. The affine scheme SpecC[RepG]GL(δ) contains the quotient variety

C3/G as a closed subvariety (see Remark A.0.2). �

2.2.2 G-constellations

Definition 2.2.6. A G-constellation on C3 is a G-equivariant coherent sheaf F on

C3, which is isomorphic to the regular representation C[G] of G as a G-module.

Remark 2.2.7. Note that by definition, any G-constellation F is isomorphic to⊕
iCρi as a vector space. �

The representation ring R(G) of G is
⊕

ρ∈G∨ Z · ρ. Define the GIT stability

parameter space

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣ θ (C[G]) = 0
}

=
{
θ = (θi) ∈ Qr

∣∣Σi∈Iθ
i = 0

}
.

Definition 2.2.8. For a stability parameter θ ∈ Θ, we say that:

(i) a G-constellation F is θ-semistable if θ(G) ≥ 0 for any nonzero proper sub-

module G ⊂ F .

(ii) a G-constellation F is θ-stable if θ(G) > 0 for any nonzero proper submodule

G ⊂ F .

(iii) θ is generic if every θ-semistable object is θ-stable.

Remark 2.2.9. It is known that the language of G-constellations is the same as the

language of the McKay quiver representations. Thus we can construct the moduli

spaces of G-constellations by Geometric Invariant Theory as in Section 2.1. �

LetMθ denote the moduli space of θ-stable G-constellations. Ito and Naka-

jima [13] showed that G-HilbC3 is isomorphic to Mθ if θ is in the following set:

Θ+ :=
{
θ ∈ Θ

∣∣ θ (ρ) > 0 for nontrivial ρ 6= ρ0

}
. (2.2.10)

Lemma 2.2.11. Let Z be a free G-orbit in C3. Then OZ is a G-constellation

supported on the free G-orbit Z. Conversely, if a G-constellation F is supported on

a free G-orbit Z ⊂ C3, then F is isomorphic to OZ as a G-constellation.
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Proof. For the first statement, one can refer to [14].

To prove the second statement, let F be a G-constellation whose support is

a free G-orbit Z.

Then F has no nonzero proper submodules. Indeed, for a nonzero submodule

G of F , the support of G is a G-invariant nonempty subset of the free G-orbit Z. As

Z is a free G-orbit, the support of G is Z. Since Fx is 1-dimensional for any x ∈ Z,

it follows that Gx = Fx and hence G = F .

Consider ψ : C[x, y, z] → F defined by f 7→ f ∗ e0 where e0 is a basis of

Cρ0. As F has no nonzero proper submodules, ψ is surjective. From the fact

that the support of F is Z, it follows that IZ is in the kernel of ψ. Since both

OZ = C[x, y, z]/IZ and F ∼= C[x, y, z]/ ker(ψ) are G-constellations, it follows that

OZ ∼= F as dimCOZ = dimCF .

Let Z be a G-orbit in the algebraic torus T := (C×)3 ⊂ C3. Then H0(OZ) is

isomorphic to C[G], thus it is a G-constellation. Moreover, since Z is a free G-orbit,

OZ has no nonzero proper submodules. Hence it follows that OZ is θ-stable for any

parameter θ and that the torus T := (C×)3/G is the fine moduli space of θ-stable

G-constellations whose support are in the algebraic torus T. Thus for any parameter

θ, there exists a natural embedding of the torus T := (C×)3/G into Mθ.

Remark 2.2.12. The existence of the natural embedding of the torus T := (C×)3/G

into Mθ can be proved by Luna’s Étale Slice Theorem as is standard in the theory

of moduli spaces of sheaves (e.g. see Theorem 4.5.1 in [12]). �

Craw, Maclagan and Thomas [4] proved the following theorem.

Theorem 2.2.13 (Craw, Maclagan and Thomas [4]). Let θ ∈ Θ be generic. Then

Mθ has a unique irreducible component Yθ which contains the torus T := (C×)n/G.

Moreover Yθ satisfies the following properties:

(i) Yθ is a not-necessarily-normal toric variety which is birational to the quotient

variety C3/G.

(ii) Yθ is projective over the quotient variety C3/G.

Yθ
� �

irr.
//

��

Mθ

��
C3/G �

�

closed
//M0
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Remark 2.2.14. We call the unique irreducible component Yθ ofMθ the birational

component. For generic θ ∈ Θ, Craw, Maclagan and Thomas [4] constructed the

birational component Yθ as GIT quotient of a reduced irreducible affine scheme by

an algebraic torus. From this, it follows that Yθ is irreducible and reduced. �

Remark 2.2.15. Since the algebraic torus T acts on C3, T acts on the moduli

space Mθ naturally. Fixed points of the T-action play a crucial role in the study

of the moduli space Mθ. Note that this T-action is the same as the T-action in

Section 2.2.1. �

2.3 Abelian group actions and toric geometry

Let G ⊂ GL3(C) be the finite subgroup of type 1
r (α1, α2, α3)., i.e. G is the subgroup

generated by the diagonal matrix diag(εα1 , εα2 , εα3) where ε is a primitive rth root

of unity. The group G acts naturally on S := C[x, y, z]. Define the lattice

L = Z3 + Z · 1

r
(α1, α2, α3)

which is an overlattice of L = Z3 of finite index. Let {e1, e2, e3} be the standard

basis of Z3. Set M = HomZ(L,Z) and M = HomZ(L,Z). The dual lattices M

and M can be identified with Laurent monomials and G-invariant Laurent mono-

mials, respectively. The embedding of G into the torus (C×)3 ⊂ GL3(C) induces a

surjective homomorphism

wt: M −→ G∨

where G∨ := Hom(G,C×) is the character group of G. Note that M is the kernel of

the map wt.

Remark 2.3.1. There are two isomorphisms of abelian groups L/Z3 → G and

M/M → G∨. �

Let M≥0 denote genuine monomials in M , i.e.

M≥0 =
{
xm1ym2zm3 ∈M

∣∣m1,m2,m3 ≥ 0
}
.

For a set A ⊂ C[x±, y±, z±], let 〈A〉 denote the C[x, y, z]-submodule of C[x±, y±, z±]

generated by A.

Let σ+ be the cone in LR := L⊗Z R generated by e1, e2, e3, i.e.

σ+ := Cone(e1, e2, e3).
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For the cone σ+ and the lattice L, we define a corresponding affine toric variety

Uσ+ := SpecC[σ∨+ ∩M ].

Note that Uσ+ is the quotient variety X = C3/G = SpecC[x, y, z]G as M is the

G-invariant Laurent monomials.

Remark 2.3.2. As is usual in toric geometry, the affine toric variety of the cone

σ+ with the lattice L is

C3 = SpecC[x, y, z] = SpecC[σ∨+ ∩M ].

The quotient map C3 → X is induced by the inclusion L ⊂ L. �

Let � be the unit cube in LR = L⊗ R = R3, i.e.

� :=
{

(u1, u2, u3) ∈ R3
∣∣ 0 ≤ ui < 1

}
.

Since L = Z3 + Z · 1
r (α1, α2, α3), one can see that � contains r − 1 lattice points

vi = 1
r (iα1, iα2, iα3)

for 1 ≤ i < r where ¯ denotes the residue modulo r. In the case of type 1
r (1, a, r−a),

these lattice points lie on the plane y + z = 1 and they are all the nonzero lattice

points in � except e1, e2, e3.

2.4 Generalized G-graphs

Definition 2.4.1. A (generalized) G-graph Γ is a subset of Laurent monomials in

C[x±, y±, z±] satisfying:

(i) 1 ∈ Γ.

(ii) wt: Γ → G∨ is bijective, i.e. for each weight ρ ∈ G∨, there exists a unique

Laurent monomial mρ ∈ Γ whose weight is ρ.

(iii) if m · n ·mρ ∈ Γ for mρ ∈ Γ and m,n ∈M≥0, then n ·mρ ∈ Γ.

(iv) Γ is connected in the sense that for any element mρ, there is a (fractional)

path from mρ to 1 whose steps consist of multiplying or dividing by one of

x, y, z in Γ.
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For any Laurent monomial m ∈ M , let wtΓ(m) denote the unique element

mρ in Γ whose weight is wt(m).

Remark 2.4.2. Nakamura’s G-graphs Γ in [26] are G-graphs in this sense because

if a monomial m · n is in Γ for two monomials m,n ∈ M≥0, then m is in Γ. The

main difference between Nakamura’s definition and ours is that we allow elements

to be Laurent monomials, not just genuine monomials. �

Example 2.4.3. Let G be the group of type 1
7(1, 3, 4). Then

Γ1 =
{

1, y, y2, z, zy ,
z2

y ,
z2

y2

}
,

Γ2 =
{

1, z, y, y2, y
2

z ,
y3

z ,
y3

z2

}
are G-graphs. In Γ1, wtΓ1(x) = z

y and wtΓ1(y3) = z2

y2 . �

As is defined in [26], for a generalized G-graph Γ = {mρ}, define S(Γ) to

be the subsemigroup of M generated by
m ·mρ

wtΓ(m ·mρ)
for all m ∈ M≥0, mρ ∈ Γ.

Define a cone σ(Γ) in LR = R3 as follows:

σ(Γ) = S(Γ)∨

=

{
u ∈ LR

∣∣∣∣ 〈u,
m ·mρ

wtΓ(m ·mρ)

〉
≥ 0 ∀mρ ∈ Γ, m ∈M≥0

}
.

Observe that:

(i)
(
M≥0 ∩M

)
⊂ S(Γ),

(ii) σ(Γ) ⊂ σ+,

(iii) S(Γ) ⊂
(
σ(Γ)∨ ∩M

)
.

Lemma 2.4.4. Let Γ be a G-graph. Define

B(Γ) :=
{

f ·mρ

∣∣mρ ∈ Γ, f ∈ {x, y, z}
}
\Γ.

Then the semigroup S(Γ) is generated as a semigroup by b
wtΓ(b) for all b ∈ B(Γ).

In particular, S(Γ) is finitely generated as a semigroup.

Proof. Let S be the subsemigroup of M generated by b
wtΓ(b) for all b ∈ B(Γ) as a

semigroup. Clearly, S ⊂ S(Γ). For the inverse inclusion, it is enough to show that

the generators of S(Γ) are in S.
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An arbitrary generator of S(Γ) is of the form
m·mρ

wtΓ(m·mρ) for some m ∈M≥0,

mρ ∈ Γ. We may assume that m ·mρ 6∈ Γ. In particular, m 6= 1. Since m has

positive degree, there exists f ∈ {x, y, z} such that f divides m, i.e. m
f ∈ M≥0 and

deg(mf ) < deg(m). Let mρ′ denote wtΓ(mf ·mρ). Note that

wtΓ(f ·mρ′) = wtΓ(f · m
f
·mρ) = wtΓ(m ·mρ).

Thus

m ·mρ

wtΓ(m ·mρ)
=

m
f ·mρ

wtΓ(mf ·mρ)
·
f · wtΓ(mf ·mρ)

wtΓ(m ·mρ)

=
m
f ·mρ

wtΓ(mf ·mρ)
·

f ·mρ′

wtΓ(f ·mρ′)
.

By induction on the degree of monomial m, the assertion is proved.

The set B(Γ) in the lemma above is called the Border bases of Γ. As B(Γ) is finite,

we have seen that S(Γ) is finitely generated as a semigroup. Thus we can define an

affine toric variety associated to the semigroup S(Γ). Define two affine toric open

sets:

U(Γ) := SpecC[S(Γ)],

Uν(Γ) := SpecC[σ∨(Γ) ∩M ].

Note that Uν(Γ) is the normalization of U(Γ) and that the torus SpecC[M ] of U(Γ)

is isomorphic to (C×)3/G.

Craw, Maclagan and Thomas [5] showed that there exists a torus invariant G-

cluster which does not lie over the birational component Yθ. The following definition

is implicit in [5].

Definition 2.4.5. A generalized G-graph Γ is called a G-iraffe if the open set U(Γ)

has a torus fixed point.

Remark 2.4.6. As is standard in toric geometry, note that U(Γ) has a torus fixed

point if and only if S(Γ)∩(S(Γ))−1 = {1}. The open set U(Γ) does not need to have

a torus fixed point. In other words, the cone σ(Γ) is not necessarily a 3-dimensional

cone. For counterexamples, see Appendix B. �

Example 2.4.7. Consider the G-graphs in Example 2.4.3. The semigroup S(Γ1) is
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generated by y5

z2 ,
z3

y4 ,
xy
z , from Lemma 2.4.4. From this, we have

σ(Γ1) =
{

u ∈ R3
∣∣∣〈u,m〉 ≥ 0, for all m ∈ {y

5

z2 ,
z3

y4 ,
xy
z }
}
,

= Cone
(

(1, 0, 0), 1
7(3, 2, 5), 1

7(1, 3, 4)
)
.

Similarly, we can see that

σ(Γ2) =
{

u ∈ R3
∣∣∣〈u,m〉 ≥ 0, for all m ∈ {y

4

z3 ,
z4

y3 ,
xz2

y3 }
}
,

= Cone
(

(1, 0, 0), 1
7(1, 3, 4), 1

7(6, 4, 3)
)
.

One can see that S(Γ1) = σ(Γ1)∨ ∩M and S(Γ2) = σ(Γ2)∨ ∩M . Thus the two

G-graphs Γ1, Γ2 are G-iraffes. Note that the two toric varieties U(Γ1) and U(Γ2)

are smooth. �

2.5 G-graphs and local charts

Let Γ be a G-graph. Define

C(Γ) := 〈Γ〉/〈B(Γ)〉.

The module C(Γ) is a torus invariantG-constellation. Note that C(Γ) can be realised

as follows: C(Γ) is the C-vector space with a basis Γ whose G-action is induced by

the G-action on C[x, y, z] and whose C[x, y, z]-action is given by

m ∗mρ =

m ·mρ if m ·mρ ∈ Γ,

0 if m ·mρ 6∈ Γ,

for a monomial m ∈M≥0 and mρ ∈ Γ.

Any submodule G of C(Γ) is determined by a subset A ⊂ Γ, which forms a

C-basis of G. We give a combinatorial description of submodules of C(Γ).

Lemma 2.5.1. Let A be a subset of Γ. The following are equivalent.

(i) The set A forms a C-basis of a submodule of C(Γ).

(ii) If mρ ∈ A and f ∈ {x, y, z}, then f ·mρ ∈ Γ implies f ·mρ ∈ A.

Example 2.5.2. From Example 2.4.3, recall the G-graph

Γ = {1, y, y2, z, zy ,
z2

y ,
z2

y2 },
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where G is of type 1
7(1, 3, 4). For the element y + y2 + z

y in C(Γ),

y ∗ (y + y2 + z
y ) = y2 + 0 + z = y2 + z ∈ C(Γ).

Let G be the submodule of C(Γ) generated by the vector space Cρ1 at the vertex

ρ1. Then one can see that the set A = {z, zy ,
z2

y } satisfies the condition (ii) in the

lemma above. Indeed, A is a C-basis of G. �

Let p be a point in U(Γ). Then there exists the evaluation map

evp : S(Γ)→ (C,×),

which is a semigroup homomorphism.

To assign a G-constellation C(Γ)p to the point p of U(Γ), firstly consider the

C-vector space with basis Γ whose G-action is induced by the G-action on C[x, y, z].

Endow it with the following C[x, y, z]-action,

m ∗mρ := evp

(
m ·mρ

wtΓ(m ·mρ)

)
wtΓ(m ·mρ), (2.5.3)

for a monomial m ∈M≥0 and an element mρ in Γ, where evp denotes the evaluation

map at p. One can check that this action is well-defined by the following:

evp

(
m′ ·m ·mρ

wtΓ(m′ ·m ·mρ)

)
= evp

(
m′ · wtΓ(m ·mρ)

wtΓ(m′ ·m ·mρ)

)
· evp

(
m ·mρ

wtΓ(m ·mρ)

)
,

for monomials m,m′ ∈M≥0 and an element mρ in Γ.

Lemma 2.5.4. With the notation as above, we have the following:

(i) C(Γ)p is a G-constellation for any p ∈ U(Γ).

(ii) For any p, Γ is a C-basis of C(Γ)p.

(iii) C(Γ)p 6∼= C(Γ)q, if p and q are different points in U(Γ).

(iv) Let Z ⊂ T = (C×)3 be a free G-orbit and p the corresponding point in the

torus SpecC[M ] of U(Γ). Then C(Γ)p ∼= OZ as G-constellations.

(v) If Γ is a G-iraffe and p is the torus fixed point of U(Γ), then C(Γ)p ∼= C(Γ).

Proof. From the definition of C(Γ)p, the assertions (i), (ii) and (v) follow immedi-

ately. The assertion (iii) follows from the fact that points on the affine toric variety

U(Γ) are in 1-to-1 correspondence with semigroup homomorphisms from S(Γ) to C.
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It remains to show (iv). Let Z ⊂ T = (C×)3 be a free G-orbit and p the

corresponding point in SpecC[M ] ⊂ U(Γ). Define a G-equivariant C[x, y, z]-module

homomorphism

C[x, y, z]→ C(Γ)p, given by f 7→ f ∗ 1.

One can check that the morphism is surjective and that its kernel is equal to the

ideal of Z. This proves (iv).

This is a family of McKay quiver representations in the following sense of [18].

Definition 2.5.5. A family of representations of a quiver Q with relations over

a scheme B is a representation of Q with relations in the category of locally free

sheaves over B.

Definition 2.5.6. A G-graph is said to be θ-stable if the G-constellation C(Γ) is

θ-stable.

Proposition 2.5.7. Let Γ be a G-iraffe, that is, U(Γ) has a torus fixed point. Let Yθ

be the birational component in Mθ. For a generic θ, assume that C(Γ) is θ-stable.

Then C(Γ)p is θ-stable for any p ∈ U(Γ). Thus there exists an open immersion

U(Γ) = SpecC[S(Γ)] �
� // Yθ ⊂Mθ.

Proof. Let us assume that the G-constellation C(Γ) is θ-stable. Let p be an arbitrary

point in U(Γ) and G a submodule of C(Γ)p. By the definition of C(Γ)p, there is

a submodule G′ of C(Γ) whose support is the same as G. Since C(Γ) is θ-stable,

θ(G) = θ(G′) > 0, and thus C(Γ)p is θ-stable.

Now we introduce deformation theory of the G-constellation inMθ. Deform-

ing C(Γ) involves 3r parameters
{
xρ, yρ, zρ

∣∣ ρ ∈ G∨}
x ∗mρ = xρ wtΓ(x ·mρ),

y ∗mρ = yρ wtΓ(y ·mρ),

z ∗mρ = zρ wtΓ(z ·mρ),

such that the following quadrics vanish:
xρywt(x·mρ) − yρxwt(y·mρ),

xρzwt(x·mρ) − zρxwt(z·mρ),

yρzwt(y·mρ) − zρywt(y·mρ).

(2.5.8)
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Since Γ is a C-basis, for f ∈ {x, y, z}, fρ = 1 if wtΓ(f ·mρ) = f ·mρ. Define a subset

of the 3r parameters

Λ(Γ) :=
{
fρ
∣∣wtΓ(f ·mρ) = f ·mρ, fρ ∈ {xρ, yρ, zρ}

}
.

Define an affine scheme D(Γ) whose coordinate ring is

C
[
xρ, yρ, zρ

∣∣ ρ ∈ G∨] /IΓ

where IΓ =
〈

the quadrics in (2.5.8), f − 1
∣∣ f ∈ Λ(Γ)

〉
.

By King’s GIT [18], the affine scheme D(Γ) is an open set of Mθ which

contains the point corresponding to C(Γ). More precisely, for a θ-stable G-graph Γ,

we have an affine open set ŨΓ in the McKay quiver representation space RepG, which

is defined by fρ to be nonzero for all fρ ∈ Λ(Γ). Note that ŨΓ is GL(δ)-invariant

and that any point in ŨΓ is θ-stable. Since the quotient map RepsG → Mθ is a

geometric quotient, by GIT (see Remark 2.1.5), it follows that

ŨΓ // GL(δ) = SpecC[ŨΓ]GL(δ)

is an open set inMθ. On the other hand, after changing basis, we can set fρ ∈ Λ(Γ)

to be 1 for all fρ ∈ Λ(Γ). One can see that D(Γ) is isomorphic to SpecC[ŨΓ]GL(δ).2

Note that there is a C-algebra epimorphism from C[D(Γ)] to C[S(Γ)] defined

by

fρ 7→
f ·mρ

wtΓ(f ·mρ)
,

for fρ ∈ {xρ, yρ, zρ}. It follows that U(Γ) is a closed subscheme of D(Γ).

As Craw, Maclagan, and Thomas [4] proved that the birational component

Yθ is a unique irreducible component ofMθ containing torus T which is isomorphic

to (C×)3/G as an algebraic group, Yθ ∩D(Γ) is a unique irreducible component of

D(Γ) which contains the torus T . Note that Yθ∩D(Γ) is reduced by Remark 2.2.14.

We now prove that the morphism U(Γ) → D(Γ) ⊂ Mθ induces an isomor-

phism from the torus SpecC[M ] onto the torus T of Yθ. In other words, U(Γ) con-

tains the torus T of Yθ. Let ψ denote the restriction of the morphism to SpecC[M ].

First note that T represents G-constellations whose support is in T = (C×)3. Let p

2First, see that C[ŨΓ] = RepG[Λ(Γ)−1]. Note that GL(δ)-invariants in C[ŨΓ] are generated by
cycles with inverting the arrows in Λ(Γ). Assume that a is the linear map corresponding to an
arrow from ρ to ρ′. For ρ, ρ′, there exists an undirected path pa in Λ(Γ)∪Λ(Γ)−1 from ρ to ρ′, that
is unique up to the commutation relations. This means that ap−1

a is GL(δ)-invariants. From this,

one can show that there exists an algebra isomorphism between C[D(Γ)] to C[ŨΓ]GL(δ) defined by
a 7→ ap−1

a .
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be a point in the torus SpecC[M ] ⊂ U(Γ) with the corresponding free G-orbit Z. By

Lemma 2.5.4, the G-constellation C(Γ)p over p is isomorphic to OZ . Thus ψ maps

SpecC[M ] into T . On the other hand, Lemma 2.2.11 shows that any G-constellation

whose support is a free G-orbit Z in T is isomorphic to OZ . From this, it follows

that ψ is a bijective morphism between the two tori. As ψ is a group homomorphism

by the construction of C(Γ)p, ψ is an isomorphism between SpecC[M ] and T .

Remember that U(Γ) is reduced and irreducible as it is defined by an affine

semigroup algebra C[S(Γ)]. Note that U(Γ) is in the component Yθ ∩D(Γ) because

U(Γ) is a closed subset of D(Γ) containing T . Since both are of the same dimension,

U(Γ) is equal to Yθ ∩ D(Γ). Thus there exists an open immersion from U(Γ) to

Yθ.

2.6 G-iraffes and torus fixed points in Yθ

In this section, we present a 1-to-1 correspondence between the set of torus fixed

points in Yθ and the set of θ-stable G-iraffes.

For a genuine monomial m ∈ M≥0, let m(ρ) denote the linear map corre-

sponding to the path induced by m in the McKay quiver from the vertex ρ. In

other words, m(ρ) is the linear map induced by the action of the monomial m on

the vector space Cρ.

An undirected path in the McKay quiver is a path in the underlying graph

of the McKay quiver. For a G-constellation F , an undirected path in the McKay

quiver is said to be defined if the linear maps corresponding to the opposite-directed

arrows in the path are nonzero in F .

Definition 2.6.1. A defined undirected path in the McKay quiver is of type m for a

Laurent monomial m ∈M where m is the Laurent monomial obtained by forgetting

outgoing vertices, i.e. remembering just the directions.

Example 2.6.2. Let G be the group of type 1
7(1, 3, 4). Consider the G-graph

Γ = {1, y, y2, z, zy ,
z2

y ,
z2

y2 }.
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The torus invariant G-constellation C(Γ) has the following configurations:

ρ2
y // ρ5

ρ1
y //

z

OO

ρ4

ρ0
y //

z

OO

ρ3
y // ρ6

z2

y2

y // z2

y

z
y

y //

z

OO

z

1
y //

z

OO

y
y // y2

where the marked arrows are nonzero and the others are all zero. The path from 1

to y2 is induced by y2 at ρ0, whose type is y2. The undirected path from ρ2 to ρ4

is a defined undirected path of type y2

z because the path consists of nonzero linear

maps:

ρ2
y //ρ5 ρ1

zoo y //ρ4.

However, the following undirected path of the same type y2

z from ρ2 to ρ4

ρ2
y //ρ5

y //ρ1 ρ4
zoo

is not defined because the third arrow is zero in C(Γ); the second arrow is also zero,

but the arrow is not opposite-directed in the path. �

Remark 2.6.3. Let p be a nonzero path induced by a genuine monomial m ∈M≥0

from ρi. If q is a path induced by a genuine monomial n ∈ M≥0 from ρi with the

condition that n divides m, then the path q is nonzero. �

Lemma 2.6.4. Let F be a torus invariant G-constellation. Then there are no

defined nonzero (undirected) cycles of type m with m 6= 1.

Proof. For a contradiction, suppose that there is a nonzero defined cycle of type

m 6= 1. Then m is a G-invariant Laurent monomial.

We may assume that the cycle is a cycle around ρ0 of type m = xm1ym2zm3 .

A point (t1, t2, t3) ∈ T = (C×)3 acts on the cycle by a scalar multiplication of

t1
m1t2

m2t3
m3 . Since m 6= 1, we can find an element t = (t1, t2, t3) ∈ T such that

t1
m1t2

m2t3
m3 6= 1. Thus one can see t∗(F) is not isomorphic to F as every element

g = (gi) ∈ GL(δ) acts on the cycle trivially. Therefore F is not torus invariant.

In Section 2.5, we proved that if Γ is a θ-stable G-iraffe, then C(Γ) is a

torus invariant G-constellation over Yθ and the corresponding point is fixed by its
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algebraic torus. Two different G-iraffes Γ, Γ′ give non-isomorphic G-constellations

C(Γ), C(Γ′). Moreover, we now prove that for any torus fixed point p ∈ Yθ, the

corresponding G-constellation is isomorphic to C(Γ) for some G-iraffe Γ.

Let p be a torus fixed point in Yθ. There exists a one parameter subgroup

λu : C× −→ T ⊂ Yθ

with limt→0 λ
u(t) = p. Since Yθ is the fine moduli space of θ-stable G-constellations,

we have a family U of θ-stable G-constellations over A1
C with the following property:

for nonzero s ∈ A1
C and the point q := λu(s), the G-constellation Us over s is

isomorphic to OZ where Z is the free G-orbit in T corresponding to the point q. In

particular, the support of the G-constellation Us is in the torus T = (C×)3 ⊂ C3.

Let F be the θ-stable G-constellation over 0 ∈ A1. Let us define a subset Γ

of Laurent monomials to be

Γ =
{
m ∈M

∣∣∃ a defined nonzero undirected path in F of type m from ρ0

}
.

Firstly, we prove that Γ is a G-graph. Clearly, Γ contains 1. Since θ is generic and

F is θ-stable, there exists a nonzero undirected defined path from ρ0 to ρ so there is

a Laurent monomial mρ in Γ for each ρ ∈ G∨. The Laurent monomial mρ is unique:

suppose there exists a defined path of type nρ from ρ0 to ρ, and then there exists a

defined cycle of type
mρ

nρ
at ρ0, which implies nρ = mρ by Lemma 2.6.4. It remains

to show the condition (c) of Definition 2.4.1. We need the following lemma:

Lemma 2.6.5. With the notation as above, let p and q be two defined (undirected)

paths of the same type m from ρ to ρ′ for some Laurent monomial m ∈ M . Then,

in F ,

p ∗ eρ = q ∗ eρ

where eρ is a basis of Cρ.

Proof. Firstly, note that if m is a genuine monomial, then the assertion follows from

the C[x, y, z]-module structure.

Let m be a Laurent monomial. There exists a genuine monomial n ∈ M≥0

so that n ·m is a genuine monomial with n nonzero on λu(C×). Since two linear

maps n ∗ p and n ∗ q are of type m · n, we have

n(ρ′) ∗ p ∗ eρ = n(ρ′) ∗ q ∗ eρ. (2.6.6)

Since the linear map n(ρ′) is nonzero in the G-constellation Us for nonzero s ∈ A1,
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from (2.6.6), it follows that p ∗ eρ = q ∗ eρ in the G-constellation Us for nonzero

s ∈ A1. This proves the assertion by flatness of the family U .

To show that Γ satisfies the condition (c) of Definition 2.4.1, suppose that

m · n ·mρ ∈ Γ for mρ ∈ Γ and m,n ∈ M≥0. We need to show that n ·mρ ∈ Γ.

By the definition of Γ, there exist nonzero (undirected) paths p of type m · n ·mρ

and q of type mρ. By Lemma 2.6.5, it follows that the defined undirected path

m(ρ′′) ∗ n(ρ′) ∗ q is nonzero as it is of the same type as p. This implies that the

defined undirected path n(ρ′) ∗ q is nonzero. Thus n ·mρ ∈ Γ.

Proposition 2.6.7. Let G ⊂ GL3(C) be the finite cyclic group of type 1
r (α1, α2, α3).

For a generic parameter θ, there is a 1-to-1 correspondence between the set of torus

fixed points in the birational component Yθ and the set of θ-stable G-iraffes.

Proof. From the argument above, we have shown that there exists a G-graph Γ for

each torus fixed point p. Using Lemma 2.6.5, one can show that C(Γ) is actually

isomorphic to F as a G-constellation by checking that C[x, y, z]-module structures

are the same. In particular, C(Γ) lies over p ∈ Yθ, and hence U(Γ) contains the

torus fixed point p. Thus Γ is a G-iraffe.

Let Γ be a θ-stable G-iraffe. By Proposition 2.5.7 and Lemma 2.5.4, we can

see that C(Γ) lies over Yθ for a G-graph Γ if Γ is a G-iraffe. Thus we have a torus

fixed point p representing the isomorphism class of C(Γ).

Corollary 2.6.8. Let Γ be a G-graph. Then C(Γ) lies over the birational component

Yθ if and only if Γ is a G-iraffe.

Theorem 2.6.9. Let G ⊂ GL3(C) be a finite diagonal group and θ a generic GIT

parameter for G-constellations. Assume that G is the set of all θ-stable G-iraffes.

(i) The birational component Yθ ofMθ is isomorphic to the not-necessarily-normal

toric variety
⋃

Γ∈G U(Γ).

(ii) The normalization of Yθ is isomorphic to the normal toric variety whose toric

fan consists of the full dimensional cones σ(Γ) for Γ ∈ G and their faces.

Proof. Let G ⊂ GL3(C) be the finite subgroup of type 1
r (α1, α2, α3). Consider the

lattice

L = Z3 + Z · 1

r
(α1, α2, α3).

Let Yθ be the birational component of the moduli space of θ-stable G-

constellations and Y ν
θ the normalization of Yθ. Let Y denote the not-necessarily-

normal toric variety
⋃

Γ∈G U(Γ). Define the fan Σ in LR whose full dimensional
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cones are σ(Γ) for Γ ∈ G. Note that the corresponding toric variety Y ν := XΣ is

the normalization of Y .

Since Y ν
θ is a normal toric variety, it is covered by toric affine open sets Ui

with the torus fixed point pi in Ui. Let qi be the image of pi under the normalization.

As each qi is a torus fixed point, it follows from Proposition 2.6.7 that there is a

(unique) G-iraffe Γi ∈ G with C(Γi) isomorphic to the G-constellation represented

by qi.

By Proposition 2.5.7, for each G-iraffe Γ ∈ G, there is an open immersion of

U(Γ) into Yθ. Thus we have an open immersion ψ : Y → Yθ and the image ψ(Y )

contains all torus fixed points of Yθ.

The induced morphism ψν : Y ν → Y ν
θ is an open embedding of normal toric

varieties. Note that the numbers of full dimensional cones are the same. Thus the

morphism ψν should be an isomorphism. This proves (ii).

To show (i), suppose that Yθ \ ψ(Y ) is nonempty so it contains a torus orbit

O of dimension d ≥ 1. Since the normalization morphism is torus equivariant and

surjective, there exists a torus orbit O′ in Y ν
θ = Y ν of dimension d which is mapped

to the torus orbit O. At the same time, from the fact that Y ν is the normalization

of Y and that the normalization morphism is finite, it follows that the image of O′

is a torus orbit of dimension d, so the image is O. Thus O is in ψ(Y ), which is a

contradiction.

Corollary 2.6.10. With notation as Theorem 2.6.9, Yθ is a normal toric variety if

and only if S(Γ) = σ(Γ)∨ ∩M for all Γ ∈ G.

25



Chapter 3

Weighted blowups and economic

resolutions

Let G ⊂ GL3(C) be the finite subgroup of type 1
r (1, a, r − a) with a coprime to

r, i.e. G is the subgroup generated by the diagonal matrix diag(ε, εa, εr−a) where

ε is a primitive rth root of unity. The quotient variety X = C3/G has terminal

singularities and has no crepant resolution. However, there exist a special kind of

toric resolutions, which can be obtained by a sequence of weighted blowups. In

this section, we review the notion of toric weighted blowups and define round down

functions which are used for finding admissible G-iraffes.

3.1 Background: Birational geometry

In this section, we collect various facts from birational geometry. Most of these are

taken from [22,28,29].

Definition 3.1.1. Let X be a normal quasiprojective variety.

(i) A Weil divisor D on X is said to be Q-Cartier if the Weil divisor rD is Cartier

for some integer r ≥ 1.

(ii) The variety X is said to be Q-factorial if every Weil divisor on X is Q-Cartier.

Definition 3.1.2. Let X be a normal quasiprojective variety. We say that X

has terminal singularities (resp. canonical singularities) if it satisfies the following

conditions:

(i) the canonical divisor KX is Q-Cartier.
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(ii) if ϕ : Y → X is a resolution with Ei prime exceptional divisors such that

KY ∼Q ϕ
∗(KX) +

∑
aiEi,

then ai > 0 (resp. ≥ 0) for all i.

In the definition above, ai is called the discrepancy of Ei. A crepant resolution

ϕ of X is a resolution with all discrepancies zero. In particular, X is canonical.

Remark 3.1.3. If a variety X has terminal singularities, then its singular locus has

codimension ≥ 3. In particular, terminal singularities in dimension 2 are smooth

and terminal singularities in dimension 3 are isolated (see Corollary 4.6.6 of [22]). �

Remark 3.1.4. For a smooth variety X, let ϕ : Y → X be a projective birational

morphism with Y normal. Then the discrepancy of every prime exceptional divisor

is ≥ 1. �

Example 3.1.5. Let X be a smooth surface. Suppose that ϕ : Y → X is the blow

up of a point in X with exceptional divisor E ∼= P1. It is well known that the self

intersection number of E is E2 = −1. Assume that the discrepancy of E is a, i.e

KY = ϕ∗(KX) + aE.

By adjunction, we get

−2 = deg(KP1) = (KY + E) · E = (a+ 1)E2 = −a− 1.

It follows that a = 1. �

Remark 3.1.6. In the surface case, it is well known (see Corollary 4.6.16 in [22])

that a canonical singularity is analytically isomorphic to a quotient singularity C2/G

with a finite group G ⊂ SL2(C).

Let G be a finite subgroup of SL2(C) and X the quotient variety C2/G.

Suppose that ϕ : Y → X is the minimal resolution of X. The following are well

known (see e.g. Section 4.6 in [22]):

(i) the exceptional locus Exc(ϕ) of ϕ is a tree of (-2)-curves.

(ii) the dual graph of the exceptional curves is a Dynkin diagram of ADE type.

The type of the group G ⊂ SL2(C) is the type of the Dynkin diagram in (ii). �
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Example 3.1.7. Consider the finite subgroup G in GL2(C) of type 1
r (1, 1). The

invariant ring in C[x, y] is

C[x, y]G = C
[
xr, xr−1y, . . . , xyr−1, yr

]
which is the coordinate ring of the quotient variety X = C2/G.

The surface X has a resolution ϕ : Y → X with exceptional divisor E ∼= P1

satisfying OE(−E) ∼= OP1(r). By the adjunction formula, we have OE(KY + E) =

KP1 = OP1(−2), and hence

KY = ϕ∗(KX)− r−2
r E.

Thus the quotient X is not canonical if r ≥ 3. �

The following proposition is well known (see e.g. Theorem 11.1.1 in [22]).

Proposition 3.1.8. Let X be a Q-factorial variety. Suppose ϕ : Y → X is a reso-

lution of X.

(i) The exceptional locus of ϕ has pure codimension 1, i.e. Exc(ϕ) is a divisor.

(ii) If X has only terminal singularities, then X does not admit nontrivial crepant

resolutions.

Birational geometry of toric varieties

Let L be a lattice of rank n and M the dual lattice of L. As in Section 2.3, M can

be considered as the monomial lattice.

Let σ be a cone in L⊗ZR. Fix a primitive element v ∈ L∩σ. The barycentric

subdivision σ[v] of σ at v is the minimal fan containing all cones Cone(τ, v) where τ

varies over all subcones of σ with v 6∈ τ .

The barycentric subdivision induces a toric morphism

Xσ[v] −→ Uσ.

The following proposition is well known in toric geometry (see e.g. [29]).

Proposition 3.1.9. Let Σ := σ[v] be the barycentric subdivision of a cone σ at v.

(i) The barycentric subdivision induces a projective toric morphism

XΣ −→ Uσ.
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(ii) The set of 1-dimensional cones of Σ consists of the 1-dimensional cones of σ

and Cone(v).

(iii) The torus invariant prime divisor Dv corresponding to the 1-dimensional cone

Cone(v) is a Q-Cartier divisor on XΣ.

Example 3.1.10. Let L be the standard lattice Z3 ⊂ R3 with the standard basis

e1, e2, e3. Consider the cone σ = Cone(e1, e2, e2 + e3, e1 + e3). Set v1 := e1, v2 := e2,

v3 := e1 + e2 + e3 and let Σi denote the barycentric subdivision of σ at vi.

Note that the variety corresponding to σ is the quadric cone xz − yt = 0

in C4, which is singular at the origin. It is easy to see that the varieties XΣi are

smooth, so the birational morphisms XΣi −→ Uσ are resolutions of X.

The birational morphism induced by the subdivision at v3 is the blow up of

the origin with exceptional divisor E = P1 × P1. However, the birational morphism

induced by the subdivision at v1 does not introduce a new divisor, i.e. the exceptional

locus is of codimension ≥ 2. More precisely, the exceptional locus is P1. One can

see that there exists a morphism XΣ3 → XΣ1 which induces a projection of E onto

one factor of P1 × P1.

XΣ3

|| ""||

��

XΣ1

""

// XΣ2

||
Uσ

P1 × P1

{{ ##{{

��

P1

##

// P1

{{
{pt}

Figure 3.1.1: Atiyah flop

Note that the birational map from XΣ1 to XΣ2 is an isomorphism outside

of codimension 2. This is the simplest example of a flop, which was introduced by

Atiyah. �

Proposition 3.1.11 (Reid [29]). Let X := Uσ be the affine toric variety corre-

sponding to a n-dimensional cone σ. Assume that KX is Q-Cartier. Let Y be the

corresponding toric variety of the barycentric subdivision of σ at v and ϕ : Y −→ X

the induced toric morphism. Suppose v is an interior lattice point in σ. Then

KY = ϕ∗(KX) + (〈x1x2 · · ·xn, v〉 − 1)Dv,

i.e. the discrepancy of the exceptional divisor Dv is 〈x1x2 . . . xn, v〉 − 1.
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Proof. Let σ = Cone(v1, v2, . . . , vk) be a cone in L with vi primitive vectors and

Di the torus invariant prime divisor corresponding to vi. Consider the holomorphic

n-form on the torus

s =
dx1

x1
∧ dx2

x2
· · · ∧ dxn

xn
,

which can be extended to a rational n-form on X so that it has simple poles along

all torus invariant prime divisors on X. Thus

KX +
∑

Di ∼Q 0.

In particular,

KY +
∑

ϕ−1(Di) +Dv ∼Q ϕ
∗
(
KX +

∑
Di

)
.

As ϕ∗(s) has a pole of order 〈x1x2 · · ·xn, v〉 along the new divisor Dv,

ϕ∗
(
KX +

∑
Di

)
∼Q

∑
ϕ−1(Di) + 〈x1x2 · · ·xn, v〉Dv,

which proves the assertion.

Example 3.1.12. Define the lattice L = Z3 + Z · 1
r (1, a, r− a) with a coprime to r

and M = HomZ(L,Z) the dual lattice. Let {e1, e2, e3} be the standard basis of Z3

and σ+ the cone in LR generated by e1, e2, e3. Set vi := 1
r (i, ai, r − ai) ∈ L for each

1 ≤ i ≤ r − 1.

Let Ei be the torus invariant prime divisor corresponding to vi. It can be

calculated from Proposition 3.1.11 that the discrepancy of Ei is

i

r
+
ai

r
+
r − ai
r
− 1 =

i

r
.

Note that the subdivision at v1 gives the smallest discrepancy 1
r and that any dis-

crepancy of Ei is less than 1. �

Theorem 3.1.13 (Reid [28]). Let X be the toric variety corresponding to a fan Σ

with a lattice L and the dual lattice M . Then X has only terminal singularities

(resp. canonical singularities) if and only if any cone σ ∈ Σ satisfies the conditions

(i) and (ii) (resp. (i) and (iii)):

(i) there exists an element m ∈MQ such that 〈m, u〉 = 1 for any primitive vector

u of σ.

(ii) there are no other lattice points in the set
{
u ∈ σ

∣∣〈m, u〉 ≤ 1
}

except vertices.
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(iii) there are no other lattice points in the set
{
u ∈ σ

∣∣〈m, u〉 < 1
}

except the ori-

gin.

Remark 3.1.14. Let G ⊂ GL3(C) be the finite subgroup of type 1
r (α1, α2, α3)

and L = Z3 + Z · 1
r (α1, α2, α3). From Theorem 3.1.13, it follows that the quotient

singularity C3/G has only terminal singularities if and only if there are no nonzero

lattice points of L lie on and below the plane x + y + z = 1 other than e1, e2, e3.

In a similar way, one can see that the quotient singularity C3/G has only canonical

singularities if and only if there are no nonzero lattice points of L lie below the plane

x+ y + z = 1. �

Example 3.1.15. Define the lattice L = Z3 + Z · 1
r (1, a, r− a) with a coprime to r

and M = HomZ(L,Z) the dual lattice. Let {e1, e2, e3} be the standard basis of Z3

and σ+ the cone in LR generated by e1, e2, e3.

We now show that the toric variety X := Uσ+ has only terminal singularities.

Consider m = xyz ∈MQ. Note that m satisfies the condition (i) in Theorem 3.1.13.

Note that {
u ∈ σ

∣∣〈m, u〉 ≤ 1} = {0, e1, e2, e3

}
so it follows that X has only terminal singularities.

In addition, since all quotient singularities are Q-factorial, X does not admit

crepant resolutions by Proposition 3.1.8. �

In the example above, we have seen that the quotient singularity X = C3/G

has terminal singularities if G is the group of type 1
r (1, a, r − a) with a coprime to

r. Moreover the following theorem says that there is essentially only one case.

Theorem 3.1.16 (Morrison and Stevens [23]). A 3-fold cyclic quotient singularity

X = C3/G has terminal singularities if and only if G ⊂ GL3(C) is the subgroup of

type 1
r (1, a, r − a) with a coprime to r.

3.2 Weighted blowups and round down functions

Define the lattice L = Z3 +Z · 1
r (1, a, r− a) and set L = Z3 ⊂ L. Consider two dual

lattices M = HomZ(L,Z) and M = HomZ(L,Z). Note that a (Laurent) monomial

m ∈M is invariant under G if and only if m is in M . Let {e1, e2, e3} be the standard

basis of Z3 and σ+ the cone in LR generated by e1, e2, e3. Then SpecC[σ∨+ ∩M ] is

the quotient variety X = C3/G. Set v = 1
r (1, a, r−a) ∈ L, which corresponds to the
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exceptional divisor of the smallest discrepancy (see Example 3.1.12). Define three

cones

σ1 = Cone(v, e2, e3), σ2 = Cone(e1, v, e3), σ3 = Cone(e1, e2, v),

and define Σ to be the fan consisting of the three cones σ1, σ2, σ3 and their faces.

The fan Σ is the barycentric subdivision of σ+ at v. Let Y1 be the toric variety

corresponding to the fan Σ together with the lattice L. Define ϕ : Y1 → X to be

the induced toric morphism, which is called the weighted blowup of X with weight

(1, a, r − a).

�
��

�
��

σ2

e3

hhh
hhhh

hhh
hhhh

hhh
h

e2

σ3

v = 1
r (1, a, r − a)

↑ e1

σ1

Figure 3.2.1: Weighted blowup of weight (1, a, r − a)

Let us consider the sublattice L2 of L generated by e1, v, e3 and let us define

M2 := HomZ(L2,Z) with dual basis

ξ2 := xy−
1
a , η2 := y

r
a , ζ2 := y

a−r
a z.

The lattice inclusion L2 ↪→ L induces a toric morphism

ϕ : SpecC[σ∨2 ∩M2]→ U2 := SpecC[σ∨2 ∩M ].

Since C[σ∨2 ∩M2] ∼= C[ξ2, η2, ζ2] and the group G2 := L/L2 is of type 1
a(1,−r, r − a)

with eigencoordinates ξ2, η2, ζ2, the open subset U2 has a quotient singularity of type
1
a(1,−r, r − a). Note that for xm1ym2zm3 ∈M≥0,

ϕ∗(xm1ym2zm3) = ξm1
2 η

1
r
m1+a

r
m2+ r−a

r
m3

2 ζm3
2 .

Similarly, consider the sublattice L3 of L generated by e1, e2, v. Define the
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lattice M3 := HomZ(L3,Z) with basis

ξ3 := xz−
1

r−a , η3 := yz
−a
r−a , ζ3 := z

r
r−a .

The open set U3 = SpecC[ξ3, η3, ζ3] has a singularity of type 1
r−a(1, a, r − 2a) with

eigencoordinates ξ3, η3, ζ3 with G2 := L/L3.

Lastly, consider the sublattice L1 of L generated by v, e2, e3. Let us define

M1 := HomZ(L1,Z) with dual basis

ξ1 := x
1
r , η1 := x−

a
r y, ζ1 := x−

r−a
r z.

Since {v, e2, e3} forms a Z-basis of L, i.e. G1 = L/L1 is the trivial group, the open

set U1 = SpecC[ξ1, η1, ζ1] is smooth.

Example 3.2.1. Let G be the group of type 1
7(1, 3, 4) as in Example 2.4.3. The fan

of the weighted blowup of weight (1, 3, 4) is shown in Figure 3.2.2.

��
��

��
��XXXXXXXXXX

e3 e2

↑ e1

v = 1
7(1, 3, 4)

·261

·325

·452

·516

·643

σ2 σ3

Figure 3.2.2: Weighted blowup of weight (1, 3, 4)

Let U2 be the affine toric variety corresponding to the cone σ2 on the left

side of v = 1
7(1, 3, 4). Note that U2 has a quotient singularity of type 1

3(1, 2, 1) with

eigencoordinates xy−
1
3 , y

7
3 , y−

4
3 z.

Let U3 be the affine toric variety corresponding to the cone σ3 on the left

side of v = 1
7(1, 3, 4). Note that U3 has a quotient singularity of type 1

3(1, 2, 1) with

eigencoordinates xz−
1
4 , yz−

3
4 , z

7
4 .
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On the other hand, e2, e3, v form a Z-basis of L, so that the affine toric variety

corresponding to the cone generated by v, e2, e3 is smooth. �

Definition 3.2.2 (Round down functions). With the notation above, the left round

down function φ2 : M → M2 of the weighted blowup with weight (1, a, r − a) is

defined by

φ2(xm1ym2zm3) = ξm1
2 η

b 1
r
m1+a

r
m2+ r−a

r
m3c

2 ζm3
2 .

where b c is the floor function. In a similar manner, the right round down function

φ3 : M →M3 of the weighted blowup with weight (1, a, r − a) is defined by

φ3(xm1ym2zm3) = ξm1
3 ηm2

3 ζ
b 1
r
m1+a

r
m2+ r−a

r
m3c

3 ,

and the central round down function φ1 : M → M1 of the weighted blowup with

weight (1, a, r − a) by

φ1(xm1ym2zm3) = ξ
b 1
r
m1+a

r
m2+ r−a

r
m3c

1 ηm2
1 ζm3

1 .

Remark 3.2.3. Let φk be a round down function of the weighted blowup with

weight (1, a, r − a) as above for k = 1, 2, 3. For m ∈M and n ∈M , we have

φk(m · n) = φk(m) · n,

because Mk contains M as the lattice of Gk-invariant monomials, especially, n is in

Mk. Thus the weight of φk(m · n) and the weight of φk(m) are the same in terms

of the Gk-action. �

Remark 3.2.4. Davis, Logvinenko, and Reid [8] introduce a related construction

in a more general setting. �

Lemma 3.2.5. Let φk be a round down function of the weighted blowup with weight

(1, a, r− a) as above for k = 1, 2, 3. Let m ∈M be a Laurent monomial of weight j.

Then we have the following:

(i) φ2(y ·m) = φ2(m), when 0 ≤ j < r − a.

(ii) φ3(z ·m) = φ3(m), when 0 ≤ j < a.

(iii) φ1(x ·m) = φ1(m), when 0 ≤ j < r − 1.
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Proof. Let m = xm1ym2zm3 be a Laurent monomial of weight j. To prove (i),

assume that 0 ≤ j < r − a. This means that

0 ≤ 1

r
m1 +

a

r
m2 +

r − a
r

m3 − b
1

r
m1 +

a

r
m2 +

r − a
r

m3c <
r − a
r

.

Thus φ2(y ·m) = φ2(xm1ym2+1zm3) = φ2(xm1ym2zm3).

The assertions (ii) and (iii) can be proved similarly.

3.3 Economic resolutions

For each 0 ≤ i ≤ r, let vi := 1
r (i, ai, r − ai) be a lattice point in L. The quotient

variety X = C3/G has a certain toric resolution which was introduced by Danilov [7]

(see [29]).

Definition 3.3.1. For the group G ⊂ GL3(C) of type 1
r (1, a, r − a), the economic

resolution of C3/G is the toric variety obtained by the consecutive weighted blowups

v1, v2, . . . , vr−1 from the quotient variety X = C3/G.

Let ϕ : Y → X = C3/G be the economic resolution. For each 1 ≤ i < r, let

Ei denote the exceptional divisor of ϕ corresponding to the lattice point vi. From

toric geometry, we have the following proposition (see Example 3.1.12).

Proposition 3.3.2. With the notation as above, the economic resolution Y has the

following properties:

(i) Y is smooth and projective over X.

(ii) KY = ϕ∗(KX) +
∑

1≤i<r
i
rEi. In particular, each discrepancy is 0 < i

r < 1.

Remark 3.3.3. From the fan of Y , we can see that Y can be covered by three open

sets U2, U3 and U1, which are the unions of the affine toric varieties corresponding to

the cones on the left side of, the right side of, and below the vector v = 1
r (1, a, r−a),

respectively. Note that U2 and U3 are isomorphic to the economic resolutions for

the singularity of 1
a(1,−r, r − a), of 1

r−a(1, a,−r), respectively. �

Example 3.3.4. Let G be the group of type 1
7(1, 3, 4) as in Example 2.4.3. The fan

of the economic resolution of the quotient variety is shown in Figure 3.3.1.

Let U2 be the toric variety corresponding to the fan consisting of the cones

on the left side of v = 1
7(1, 3, 4). Note that U2 is the economic resolution of the

quotient 1
3(1, 2, 1) which is G2-HilbC3, where G2 is of type 1

3(1, 2, 1).
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452

516

643

σ1
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Figure 3.3.1: Fan of the economic resolution for 1
7(1, 3, 4)

Let U3 be the toric variety corresponding to the fan consisting of the cones

on the right side of v = 1
7(1, 3, 4). Note that U3 is the economic resolution of the

quotient 1
4(1, 3, 1) which is G3-HilbC3, where G3 is of type 1

4(1, 3, 1). �

3.4 Elephants for the economic resolution

Let G ⊂ GL3(C) be the group of type 1
r (1, a, r − a). Consider the quotient variety

X = C3/G.

Let D be the hyperplane section of X defined by x = 0, i.e. the Weil divisor

defined by x = 0. One can see that

KX +D ∼Q 0

from the proof of Proposition 3.1.11. Thus D is an element3 of the anticanonical

system |−KX |. Moreover, D is isomorphic to the quotient C2 by the group of type
1
r (a,−a) so D has an Ar−1 singularity.

Consider the economic resolution ϕ : Y → X = C3/G. Let S be the strict

transform of D. Then one can show that S is an element of the anticanonical system

3Elements of the anticanonical system of a variety X are called elephants of X.
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|−KY | and that we have the following diagram:

S �
� //

��

Y

��
D �
� // X,

where the vertical morphism S → D is the minimal resolution of D.

It is well known [1, 19] that the minimal resolution of Ar−1 singularities is

isomorphic to the moduli space of θ-stable A-constellations for a generic parameter

θ where A ⊂ SL2(C) is the group of type 1
r (1,−1). Moreover, the chamber structure

of the GIT stability parameter space for A-constellations coincides with the Weyl

chamber structure of type Ar−1 (see Section 5.1). We expect that the morphism

Y → X might have a modular description as moduli spaces of G-constellations (see

Section 5.2).
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Chapter 4

Moduli interpretations of

economic resolutions

This chapter contains our main theorem. Section 4.1 explains how to find an ad-

missible set G of G-iraffes. To find G-iraffes, we use the round down functions

introduced in Section 3.2. Section 4.4 describes the universal families over the bi-

rational component Yθ using G-iraffes. In Section 4.2, we show that there exists a

stability parameter θ such that G-iraffes in G are θ-stable.

4.1 How to find admissible G-iraffes

4.1.1 G-iraffes for 1
r
(1, r − 1, 1)

Let G be the finite subgroup in GL3(C) of 1
r (1, r − 1, 1) type, i.e. a = 1 or r − 1.

K ↪edzierski [15] proved that for G ⊂ GL3(C) of type 1
r (1, r − 1, 1), G-HilbC3 is

isomorphic to the economic resolution of the quotient variety C3/G.

Theorem 4.1.1 (K ↪edzierski [15]). Let G ⊂ GL3(C) be the finite subgroup of type
1
r (1, a, r − a) with a = 1 or r − 1. Then G-HilbC3 is isomorphic to the economic

resolution of the quotient variety C3/G. In particular, G-HilbC3 is nonsingular and

irreducible.

For each 0 ≤ i ≤ r, set vi = 1
r (i, r− i, i). Note that v0 = e2 and vr = e3. The

fan corresponding to G-HilbC3 consists of the following 2r − 1 maximal cones and

their faces:

σi = Cone(e1, vi−1, vi) for 1 ≤ i ≤ r,

σr+i = Cone(e3, vi−1, vi) for 1 ≤ i ≤ r − 1.
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Each maximal cone has a corresponding (Nakamura’s) G-graph:

Γi = {1, y, y2, . . . , yi−1, z, z2, . . . , zr−i} for 1 ≤ i ≤ r,

Γr+i = {1, y, y2, . . . , yi−1, x, x2, . . . , xr−i} for 1 ≤ i ≤ r − 1,

with S(Γj) = σ∨j ∩ M for 1 ≤ j ≤ 2r − 1. From the fact that each cone σj is

3-dimensional, it is immediate that these G-graphs are G-iraffes.

Example 4.1.2. Let G be the finite group of type 1
2(1, 1, 1). Set v = 1

2(1, 1, 1).

Note that the economic resolution Y of X = C3/G is the weighted blowup of X

with weight (1, 1, 1). Then the maximal cones of Y are

σ1 = Cone(e1, e2, v), σ2 = Cone(e1, v, e3), σ3 = Cone(e3, e2, v),

and the corresponding G-iraffes Γi to σi are

Γ1 = {1, z}, Γ2 = {1, y}, Γ3 = {1, x}.

Let us consider the left round down function φ2, the right round down function φ3

and the central round down function φ1 corresponding to the weighted blowup with

weight (1, 1, 1). Then

Γ1 =
{
m ∈M

∣∣φ1(m) = 1
}
,

Γ2 =
{
m ∈M

∣∣φ2(m) = 1
}
,

Γ3 =
{
m ∈M

∣∣φ3(m) = 1
}
.

�

Example 4.1.3. Let G be the finite group of type 1
3(1, 2, 1) with the coordinates

ξ, η, ζ. Set v1 = 1
3(1, 2, 1) and v2 = 1

3(2, 1, 2). Recall that the economic resolution Y

of X = C3/G can be obtained by the sequence of the weighted blowups:

Y
ϕ2−→ Y1

ϕ1−→ X,

where ϕ1 is the weighted blowup with weight (1, 2, 1) and ϕ2 is the toric morphism

induced by the weighted blowup with weight (2, 1, 2). The fan corresponding to Y

consists of the following five maximal cones and their faces:

σ1 = Cone(e1, e2, v1), σ2 = Cone(e1, v1, v2), σ3 = Cone(e1, v2, e3),

σ4 = Cone(e3, e2, v1), σ5 = Cone(e3, v1, v2).
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The following

Γ1 = {1, ζ, ζ2}, Γ2 = {1, η, ζ}, Γ3 = {1, η, η2},

Γ4 = {1, ξ, ξ2}, Γ5 = {1, ξ, η}.

are their corresponding G-iraffes. �

4.1.2 G-iraffes for 1
r
(1, a, r − a)

In this section, we assign a G-iraffe Γσ for each full dimensional cone σ in the fan

of Y with S(Γσ) = σ∨ ∩M
Let X be the quotient variety C3/G where G ⊂ GL3(C) is the finite subgroup

of type 1
r (1, a, r−a) with a coprime to r. Let ϕ : Y → X be the economic resolution

of X. Then Y can be covered by U2, U3 and U1, which are the unions of the affine

toric varieties corresponding to the cones on the left side of, the right side of, and

below the vector v = 1
r (1, a, r − a), respectively.

Assume σ is a full dimensional cone in the fan of Y . We have three cases:

(1) the cone σ is below the vector v.

(2) the cone σ is on the left side of the vector v.

(3) the cone σ is on the right side of the vector v.

Case (1) the cone σ is below the vector v. This means that the toric cone σ

is smooth and that the toric affine open set Uσ is equal to U1. Then consider the

central round down function φ1 of the weighted blowup with weight (1, a, r − a).

Now, for m = xm1ym2zm3 ∈M

φ1(m) = 1 if and only if m2 = m3 = 0 and 0 ≤ m1

r
< 1.

Thus the set Γ := φ−1
1 (1) = {1, x, x2, . . . , xr−1} is a G-graph with S(Γ) = σ∨ ∩M .

Since the corresponding cone σ(Γ) of Γ is equal to σ, Γ is a G-iraffe.

Case (2) the cone σ is on the left side of v. Consider the left round down

function φ2. From the fan of the economic resolution, it follows that U2 is isomorphic

to the economic resolution Y2 for the group G2 = 1
a(1,−r, r) with eigencoordinates

ξ, η, ζ. There exists a unique full dimensional cone σ′ in the fan of Y2 corresponding

to σ.
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Lemma 4.1.4. Let σ be a full dimensional cone in the toric fan of Y on the left

side of the lattice v and σ′ the corresponding full dimensional cone in the fan of Y2,

where Y2 is the economic resolution for the group G2 = 1
a(1,−r, r). Assume that

there exists a G2-graph Γ′ such that S(Γ′) = (σ′)∨ ∩M . Define a set

Γ :=
{
m ∈M

∣∣φ2(m) ∈ Γ′
}
.

Then Γ is a G-graph.

Proof. Firstly note that 1 ∈ Γ since φ2(1) = 1 ∈ Γ′. To show that Γ satisfies the

second condition in Definition 2.4.1, let ρ ∈ G∨ be an irreducible representation of G.

We have to show that there exists a unique monomial of weight ρ in Γ. Then there

exists a positive integer i such that the weight of xi is ρ. Consider the monomial

φ2(xj) in M2 and its weight χ in terms of the G2-action. Since Γ′ is a G2-graph,

there exists a unique element kχ whose weight is the same as the weight of φ2(xj).

Then
( kχ
φ2(xj)

)
is in the G2-invariant monomial lattice M , so it is in the monomial

lattice M . From Remark 3.2.3, it follows that

φ2 : xj ·
( kχ
φ2(xj)

)
7−→ kχ,

i.e. xj ·
(

kχ
φ2(xj)

)
is in Γ. To show uniqueness, assume that two Laurent monomials

m,n of the same weights are mapped into Γ′. From the fact that the weights of

φ2(m) and φ2(n) are equal, it follows that φ2(m) = φ2(n). From Remark 3.2.3,

φ2(m) = φ2

(
n · m

n

)
= φ2(n) · m

n
,

and hence m = n.

Lastly, to show Γ is connected, let m = xm1ym2zm3 ∈ M be an arbitrary

element in Γ, i.e. kχ := φ2(m) ∈ Γ′. Consider the following six cases:

(A) Suppose ξ · kχ is in Γ′, but ξ · kχ 6= φ2(x ·m). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 ≥
⌊

1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
+
r − 1

r
.

From this equation, it is easy to show that φ2(my ) = kχ and φ2(x · my ) = ξ ·kχ.

Hence, we can see that there is a path from m to x · m
y in Γ and that

φ2(x · my ) = ξ · kχ.
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(B) Suppose
kχ
ξ is in Γ′, but

kχ
ξ 6= φ2(mx ). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
1

r
<

⌊
1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.

From this equation, it is easy to see that φ2(y ·m) = kχ and φ2(y·mx ) =
kχ
ξ .

Hence, there is a path from m to y·m
x in Γ and φ2(y·mx ) =

kχ
ξ .

(C) Suppose η · kχ is in Γ′, but η · kχ 6= φ2(y ·m). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
r − a
r

<

⌊
1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.

From this, it is easy to show that there exists a positive integer k0 such that

φ2(yk · m) = φ2(m) = kχ for all 0 ≤ k ≤ k0 and φ2(yk0+1 · m) = η · kχ.

Hence, we can see that there is a path from m to yk0+1 ·m in Γ and we get

φ2

(
yk0+1 ·m

)
= η · kχ.

(D) Suppose
kχ
η is in Γ′, but

kχ
η 6= φ2(my ). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
a

r
≥
⌊

1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.

From this, it is easy to see that there exists a positive integer k0 such that

φ2(m
yk

) = φ2(m) = kχ for all 0 ≤ k ≤ k0 and φ2

(
m

yk0+1

)
=

kχ
η . Hence, there is

a path from m to m
yk0+1 in Γ and φ2

(
m

yk0+1

)
=

kχ
η .

(E) Suppose ζ · kχ is in Γ′, but ζ · kχ 6= φ2(z ·m). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
a

r
≥
⌊

1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.

From this, it is easy to see that there exists a positive integer k0
4 such that

φ2(m
yk

) = φ2(m) = kχ for all 0 ≤ k ≤ k0 and φ2

(
m

yk0+1

)
6= kχ. Moreover,

φ2(z · m
yk0

) = ζ · kχ. Hence, there is a path from m to z · m
yk0

in Γ and

4This integer k0 is the maximal integer satisfying

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
a

r
k ≥

⌊
1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.
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φ2(z · m
yk0

) = ζ · kχ.

(F) Suppose
kχ
ζ is in Γ′, but

kχ
ζ 6= φ2(mz ). This means that

1

r
m1 +

a

r
m2 +

r − a
r

m3 −
r − a
r

<

⌊
1

r
m1 +

a

r
m2 +

r − a
r

m3

⌋
.

From this, it is easy to see that there exists a positive integer k0 such that

φ2(yk ·m) = φ2(m) = kχ for all 0 ≤ k ≤ k0 and φ2

(
yk0+1 ·m

)
6= kχ. Moreover,

φ2(y
k0 ·m
z ) =

kχ
ζ . From this, it follows that there is a path from m to yk0 ·m

z in

Γ and that φ2(y
k0 ·m
z ) =

kχ
ζ .

In proving Lemma 4.1.4, we have also proved the following lemma.

Lemma 4.1.5. With the notation as above, for a monomial g ∈ {ξ, η, ζ} of degree

1 and any kχ ∈ Γ′, there exist a monomial f ∈ {x, y, z} of degree 1 and an element

mρ ∈ Γ such that

φ2(f ·mρ) = g · kχ

with φ2(mρ) = kχ.

From Remark 3.2.3, it follows that

wtΓ′
(
φ2(m ·mρ)

)
= φ2

(
wtΓ(m ·mρ)

)
,

as they are elements in Γ′ of the same weight.

Remark 4.1.6. By Lemma 3.2.5, it can be seen that if a Laurent monomial mρ of

weight j is in Γ with 0 ≤ j < r − a, then y ·mρ is in Γ. �

Proposition 4.1.7. With notation and assumptions as for Lemma 4.1.4, for the

G-graph Γ, we have S(Γ) = S(Γ′). In particular, Γ is a G-iraffe with S(Γ) = σ∨∩M .

Proof. Note that S(Γ) is generated by
m·mρ

wtΓ(m·mρ) for m ∈M≥0 and mρ ∈ Γ. Let m

be a genuine monomial in M≥0 and mρ an element in Γ. From the definition of Γ, it

follows that φ2(mρ) is in Γ′, which is denoted by kχ ∈ Γ′. Set k to be
φ2(m·mρ)
φ2(mρ) . It

follows that k is a genuine monomial in ξ, η, ζ from the definition of the left round

down function. Since
m·mρ

wtΓ(m·mρ) is G-invariant, from Remark 3.2.3, we have

m ·mρ

wtΓ(m ·mρ)
=

φ2(m ·mρ)

φ2

(
wtΓ(m ·mρ)

) =

φ2(m·mρ)
φ2(mρ) · φ2(mρ)

φ2

(
wtΓ(m ·mρ)

) =
k · kχ

wtΓ′(k · kχ)
,
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so we prove S(Γ) ⊂ S(Γ′). For the reverse inclusion, let
g·kχ

wtΓ′ (g·kχ) be a generator of

S(Γ′) with g ∈ {ξ, η, ζ}. It is sufficient to show that this generator is in S(Γ). From

Lemma 4.1.5, we can find m ∈ M≥0 and mρ ∈ Γ satisfying φ2(m ·mρ) = g · kχ.

Note that wtΓ′(g · kχ) = φ2

(
wtΓ(m ·mρ)

)
. Thus we have

g · kχ
wtΓ′(g · kχ)

=
φ2(m ·mρ)

wtΓ′
(
φ2(m ·mρ)

) =
φ2(m ·mρ)

φ2

(
wtΓ(m ·mρ)

) =
m ·mρ

wtΓ(m ·mρ)
,

and we proved the proposition.

Case (3) the cone σ is on the right side of v. We can get a similar result.

Corollary 4.1.8. Let G ⊂ GL3(C) be the finite subgroup of type 1
r (1, a, r−a) with a

coprime to r. Let Σmax be the set of 3-dimensional cones in the fan of the economic

resolution Y of X = C3/G. Then there exists a set G of G-iraffes such that there is

a bijective map Σmax → G sending σ to Γσ satisfying S(Γσ) = σ∨∩M . In particular,

U(Γ) is smooth for Γ ∈ G.

Proof. From Section 4.1.1, note that the assertion holds when a = 1 or r − 1. We

use induction on r and a.

Let Σmax be the set of 3-dimensional cones in the fan of the economic reso-

lution Y of X = C3/G and σ an arbitrary element of Σmax. Then σ is either on the

left side of the lattice v = 1
r (1, a, r − a), the right side of v, or below v.

For the case where σ is below v, define

Γσ := {1, x, x2, . . . , xr−2, xr−1}.

Then we have seen that Γσ is a G-iraffe with S(Γσ) = σ∨ ∩M .

If the cone σ is on the left side of v, then we have a unique 3-dimensional

cone σ′ in the fan of the economic resolution of 1
a(1,−r, r) where ¯ denotes the

residue modulo a. Note that −r is strictly less than a. Using induction and Propo-

sition 4.1.7, we prove that there exists a G-iraffe Γσ satisfying S(Γσ) = σ∨ ∩M .

The case where the cone σ is on the right side of v can be proved similarly.

Remark 4.1.9. Let Γ be a G-iraffe in G and Γ′ the corresponding Gk-graph i.e. Γ′ =

φk(Γ) with the round down function φk with coordinates ξ, η, ζ. As in Section 2.5,

note that we have the affine set D(Γ) containing C(Γ) whose coordinate ring is

C
[
xρ, yρ, zρ

∣∣ ρ ∈ G∨] /IΓ
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where IΓ =
〈

the quadrics in (2.5.8), f − 1
∣∣ f ∈ Λ(Γ)

〉
. Let D(Γ′) be the affine open

set D(Γ′) containing C(Γ′). Similarly, the coordinate ring of D(Γ′) is

C
[
ξχ, ηχ, ζχ

∣∣χ ∈ G∨k ] /IΓ′

where IΓ′ =
〈

the quadrics in (2.5.8), g − 1
∣∣g ∈ Λ(Γ′)

〉
.

Consider the following algebra homomorphism ψ from C
[
xρ, yρ, zρ

∣∣ ρ ∈ G∨]
to the coordinate ring of D(Γ′):

ψ : C
[
xρ, yρ, zρ

∣∣ ρ ∈ G∨]→ C[D(Γ′)] given by fρ 7→ g(χ),

where fρ ∈ {xρ, yρ, zρ}, g =
φk(f ·mρ)
φk(mρ) , χ = φk(ρ), mρ is a unique element of weight ρ

in Γ and g(χ) denotes the linear map induced by the action of the monomial g on

the vertex χ of the McKay quiver of Gk. From Lemma 4.1.5, it follows that ψ is

surjective as the algebra C[D(Γ′)] is generated by arrows in {ξχ, ηχ, ζχ
∣∣χ ∈ G∨k }.

We now prove that kerφ = IΓ which implies that D(Γ) and D(Γ′) are iso-

morphic. To see that ψ(fρ) = ψ(1) for any fρ ∈ Λ(Γ), first note that fρ ∈ Λ(Γ) if

and only if φk
(
f ·mρ

)
∈ Γ′ as Γ = φ−1

k (Γ′). It follows that ψ(fρ)− 1 ∈ IΓ′ for each

fρ ∈ Λ(Γ). To show that the quadrics induced by commutation relations are in the

kernel, one should check that:

ψ
(
fρ
)
ψ
(
f ′ρ′
)

= ψ
(
f ′ρ
)
ψ
(
fρ′′
)

where fρ, fρ′′ , f
′
ρ, f
′
ρ′ ∈ {xρ, yρ, zρ} with wt(f ·mρ) = ρ′ and wt(f ′ ·mρ) = ρ′′. Since

both ψ
(
fρ
)
ψ
(
f ′ρ′
)
, ψ
(
f ′ρ
)
ψ
(
fρ′′
)

are the linear maps on the vertex φk(ρ), it is enough

to show that

φk
(
f ·mρ

)
φk
(
mρ

) · φk(f ′ ·mρ′
)

φk
(
mρ′

) =
φk
(
f ′ ·mρ

)
φk
(
mρ

) ·
φk
(
f ·mρ′′

)
φk
(
mρ′′

) .

This can be shown as we have

φk
(
f ·mρ

)
= φk

(
mρ′

)
· f ·mρ

mρ′
,

φk
(
f ′ ·mρ

)
= φk

(
mρ′′

)
· f
′·mρ

mρ′′
, and

φk
(
f ′ ·mρ′

)
= φk

(
f ·mρ′′

)
· f
′·mρ′
f ·mρ′′

,

(4.1.10)

from Remark 3.2.3. This shows that IΓ ⊂ kerψ.

For the opposite inclusion, assume that ψ(fρ) ∈ Λ(Γ′) for fρ ∈ {xρ, yρ, zρ},
which means that φk(f ·mρ) ∈ Γ′. By the definition of Γ, this implies that f ·mρ ∈ Γ

so fρ ∈ Λ(Γ). To show that any quadric coming from the commutation relations in
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Γ′ is in the image of quadrics for Γ, assume that

gχ · g′χ′ − g′χ · gχ′′

is a quadric in IΓ′ , i.e. gχ,g
′
χ′ ,g

′
χ,gχ′′ ∈ {ξχ, ηχ, ζχ

∣∣χ ∈ G∨k } with wt(g · kχ) = χ′

and wt(g′ · kχ) = χ′′. From Lemma 4.1.5, there exist f , f ′ ∈ {x, y, z} such that

g =
φk(f ·mρ)

φk(mρ)
, g′ =

φk(f
′ ·mρ′)

φk(mρ′)
,

with ρ′ = wt(f · mρ) and φk(mρ′) = kχ′ . Thus ψ(fρ) = gχ and ψ(f ′ρ′) = gχ′ .

Moreover, from the equations (4.1.10), we can show that g′χ · gχ′′ = ψ(f ′ρ)ψ(fρ′′).

Thus we have

gχ · g′χ′ − g′χ · gχ′′ = ψ(fρ)ψ(f ′ρ)− ψ(f ′ρ)ψ(fρ′′).

Therefore the quadric gχ · g′χ′ − g′χ · gχ′′ is the image of the quadric fρ · f ′ρ − f ′ρ · fρ′′ .
This proves that kerψ = IΓ.

Consider the induced isomorphism between the coordinate rings of D(Γ) and

D(Γ′). Then we have the following commutative diagrams:

U(Γ′) �
�

closed
//

∼=
��

D(Γ′)

∼=
��

U(Γ) �
�

closed
// D(Γ),

C[D(Γ)]

∼=
��

surj.
// // C[S(Γ)]

∼=
��

C[D(Γ′)]
surj.
// // C[S(Γ′)].

If a = 1 or r− 1, then U(Γ) = D(Γ) for Γ ∈ G as the economic resolution is G-Hilb

which is irreducible by K ↪edzierski [15] (see Theorem 4.1.1). By induction on a and

r, we can prove that U(Γ) = D(Γ) ∼= C3 for Γ ∈ G. �

Example 4.1.11. Let G be the group of type 1
7(1, 3, 4) as in Example 2.4.3. The

fan of the economic resolution of the quotient variety is shown in Figure 3.3.1.

Let us define the following cones:

σ1 := Cone
(
(1, 0, 0), 1

7(1, 3, 4), 1
7(3, 2, 5)

)
,

σ2 := Cone
(
(1, 0, 0), 1

7(6, 4, 3), 1
7(1, 3, 4)

)
.

We now calculate G-graphs associated to the cones σ1 and σ2. Note that the left

side of the fan is the economic resolution of the quotient variety 1
3(1, 2, 1) which is

G2-HilbC3, where G2 is of type 1
3(1, 2, 1). Call the eigencoordinates ξ, η, ζ. Let σ′1

be the cone in the fan of G2-HilbC3 which corresponds to σ1. Observe that the
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e3 e2e3 e2e3 e2

↑ e1 ↑ e1 ↑ e1

σ′1

σ1 σ2

σ′2

1
3(1, 2, 1) 1

7(1, 3, 1) 1
4(1, 3, 1)

1
3(1, 2, 1) 1

7(1, 3, 1) 1
4(1, 3, 1)

Figure 4.1.1: Recursion process for 1
7(1, 3, 4)

corresponding G2-graph Γ′1 is

Γ′1 =
{

1, ζ, ζ2
}
,

and that the left round down function φ2 is

φ2(xm1ym2zm3) = ξm1ηb
1
7
m1+ 3

7
m2+ 4

7
m3cζm3 .

Thus G-graph Γ1 corresponding to σ1 is

Γ1
def
=
{
xm1ym2zm3 ∈M

∣∣φ2(xm1ym2zm3) ∈ Γ′1
}

=
{

1, y, y2, z, zy ,
z2

y ,
z2

y2

}
.

For the cone σ2, note that the right side of the fan is the economic resolution

of the quotient variety 1
4(1, 3, 1) which is G3-HilbC3, where G3 is of type 1

4(1, 3, 1).

Call the eigencoordinates α, β, γ. Let σ′2 be the cone in the fan of G2-HilbC3 which

corresponds to σ2. Observe that the corresponding G3-graph Γ′2 is

Γ′2 =
{

1, β, β2, β3
}
,

and that the right round down function φ3 is

φ3(xm1ym2zm3) = αm1βm2γb
1
7
m1+ 3

7
m2+ 4

7
m3c.
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Thus the G-graph Γ2 corresponding to σ2 is

Γ2
def
=
{
xm1ym2zm3 ∈M

∣∣φ2(xm1ym2zm3) ∈ Γ′2
}

=
{

1, z, y, y2, y
2

z ,
y3

z1 ,
y3

z2

}
.

From Example 2.4.7, σ(Γ1) = σ1 and σ(Γ2) = σ2. �

4.2 A chamber in the stability parameter space

This section proves that there exists a chamber C such that the admissible G-iraffes

in Section 4.1 are θ-stable for θ ∈ C. In addition, we prove that the chamber C

coincides with the cone K ↪edzierski found and that the chamber is an open Weyl

chamber. Moreover, it turns out that this chamber is a full chamber, i.e. the facets

of C form actually walls (see Section 5.2).

4.2.1 Admissible chambers

Let G ⊂ GL3(C) be the finite subgroup of type 1
r (1, a, r − a) with a coprime to r.

We may assume 2a < r. Let G2 and G3 be the groups of type 1
a(1,−r, r) and of

type 1
r−a(1, r,−r), respectively. Note that for k = 2 or 3, the round down function

φk induces a surjection φk : G∨ → G∨k as is shown in the proof of Lemma 4.1.4.

The stability parameter space for Gk-constellations is

Θk =
{
θ ∈ HomZ

(
R(Gk),Q

) ∣∣ θ(C[Gk]
)

= 0
}

where R(Gk) is the representation ring of Gk, i.e. R(Gk) =
⊕

χ∈G∨k
Zχ. Let us

assume that there exists a stability parameter θ(k) ∈ Θk such that the admissible

Gk-graphs are θ(k)-stable. Take a GIT parameter θP ∈ Θ satisfying the following

system of linear equations:
θ(2)(χ) =

∑
φ2(ρ)=χ

θP (ρ) for all χ ∈ G∨2 ,

θ(3)(χ′) =
∑

φ3(ρ)=χ′
θP (ρ) for all χ′ ∈ G∨3 .

(4.2.1)

48



Let us define a GIT parameter ϑ ∈ Θ to be

ϑ(ρ) =


−1 if 0 ≤ wt(ρ) < a ,

1 if r − a ≤ wt(ρ) < r,

0 otherwise.

(4.2.2)

Note that
∑

φk(ρ)=χ

ϑ(ρ) = 0 for any χ ∈ G∨k 5. For a sufficiently large natural number

m, set

θ := θP +mϑ. (4.2.3)

We claim that the admissible G-iraffes are θ-stable.

Example 4.2.4. Let G be the group of type 1
7(1, 3, 4) as in Example 4.1.11. For

each 0 ≤ i ≤ 6, let ρi denote the irreducible representation of G whose weight is

i. We saw that the left side of the fan is G2-HilbC3, where G2 is of type 1
3(1, 2, 1)

and that the right side of the fan is G3-HilbC3, where G3 is of type 1
3(1, 2, 1). Let

{χ0, χ1, χ2} and {χ′0, χ′1, χ′2, χ′3} be sets of characters of G2 and G3, respectively.

Let us take corresponding GIT parameters θ(2), θ(3) as follows:

θ(2) = (−2, 1, 1), θ(3) = (−3, 1, 1, 1).

We have the following system of linear equations:

−2 = θP (ρ0) + θP (ρ3) + θP (ρ6),

1 = θP (ρ1) + θP (ρ4),

1 = θP (ρ2) + θP (ρ5),

−3 = θP (ρ0) + θP (ρ4),

1 = θP (ρ1) + θP (ρ5),

1 = θP (ρ2) + θP (ρ6),

1 = θP (ρ3),

Take a partial solution θP as:

θP = (−1, 3, 3, 1,−2,−2,−2).

Define ϑ = (−1,−1,−1, 0, 1, 1, 1). Set θ = θP + mϑ for a large m. Consider the

following G-iraffe

Γ =
{

1, y, y2, z, zy ,
z2

y ,
z2

y2

}
.

5One can see that if any θ ∈ Θ satisfies that
∑
φk(ρ)=χ θ(ρ) = 0 for any χ ∈ G∨k and k = 2, 3,

then θ must be a constant multiple of ϑ. This also explains the existence of a solution θP for (4.2.1).
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First, let F be the submodule of C(Γ) whose basis is A = {z, zy ,
z2

y }. Note

that

φ−1
2

(
φ2(A)

)
=
{
z, zy ,

z2

y ,
z2

y2

}
) A,

and ϑ(F) > 0. Thus θ(F) is positive for a large enough m. More precisely,

θ(F) = 3−m+ (−2 +m) + (−2 +m) = m− 1

is positive if m > 1.

Second, consider the submodule G of C(Γ) whose basis is B = { zy ,
z2

y }. Note

that ϑ(G) = 0 and that φ−1
2

(
φ2(B)

)
= B. In this case, φ2(B) gives a submodule G′

of C(Γ′) with

θ(2)(G′) = θ(G).

Since C(Γ′) is θ(2)-stable, we can see that θ(2)(G′) = θ(G) is positive. �

Lemma 4.2.5. Let θ be the parameter as is in (4.2.3). For the set G in Corol-

lary 4.1.8, if Γ is in G, then Γ is θ-stable.

Proof. Let Γ be a G-iraffe in G and σ the corresponding cone to Γ. We have three

cases as in Section 4.1.2:

(1) the cone σ is below the vector v.

(2) the cone σ is on the left side of the vector v.

(3) the cone σ is on the right side of the vector v.

In Case (1), we have only one G-iraffe

Γ = {1, x, x2, . . . , xr−2, xr−1}.

By Lemma 2.5.1, any nonzero proper submodule G of C(Γ) is given by the set

A = {xj , xj+1, . . . , xr−2, xr−1}

for some 1 ≤ j ≤ r− 1. Since m is sufficiently large, it follows that θ(G) > 0 so Γ is

θ-stable.

We now prove the result in Case (2).

Let Γ be a G-iraffe with corresponding G2-graph Γ′. Let G be a submodule of

C(Γ) whose C-basis is A ⊂ Γ. Remark 4.1.6 and Lemma 2.5.1 imply that if mρ ∈ A
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for 0 ≤ wt(mρ) < a, then φ−1
2

(
φ2(mρ)

)
⊂ A. Thus ϑ(G) ≥ 0 from the definition of

ϑ.

If ϑ(G) > 0, then since m is sufficiently large, it follows that θ(G) > 0.

Let us assume that ϑ(G) = 0. First we show that A = φ−1
2

(
φ2(A)

)
as

follows. Suppose that A ( φ−1
2

(
φ2(A)

)
. Then there exists mρ in φ−1

2

(
φ2(A)

)
\ A

with 0 ≤ wt(mρ) < a. To show that θ(G) is positive, we prove that φ2(A) gives

a submodule G′ of C(Γ′) and that θ(G) = θ(2)(G′). Since θ satisfies the system

of linear equations (4.2.1), it suffices to show that φ2(A) gives a submodule G′ of

C(Γ′). Recall ξ, η, ζ are the coordinates of C3 with respect to the action of G2. By

Lemma 2.5.1, it is enough to show that if g · φ2(mρ) ∈ Γ′ for any g ∈ {ξ, η, ζ} and

mρ ∈ A, then g · φ2(mρ) in φ2(A). Suppose g · φ2(mρ) ∈ Γ′ for some mρ ∈ A. By

Lemma 4.1.5, there exists mρ′ such that

φ2(f ·mρ′) = g · φ2(mρ)

with φ2(mρ′) = φ2(mρ) for some f ∈ {x, y, z}. In particular, f ·mρ′ ∈ Γ = φ−1
2 (Γ′).

Since A = φ−1
2

(
φ2(A)

)
, we have mρ′ ∈ A, which implies f ·mρ′ ∈ A as A is a C-basis

of G. Thus g · φ2(mρ) is in φ2(A).

4.2.2 Root system in Ar−1

We review well known facts on the Ar−1 root system. Let I := Irr(G) be identified

with Z/rZ. As is well known, the following three are in 1-to-1 correspondence:

(1) Sets of simple roots ∆.

(2) Open Weyl Chambers C.

(3) Elements of Sr :=
{
ω
∣∣ ω is a permutation of I

}
.

Let
{
εi
∣∣ i ∈ I} be an orthonormal basis of Qr, i.e. 〈εi, εj〉 = δij . Note that

the indices are in I = Z/rZ. Define

Φ :=
{
εi − εj

∣∣ i, j ∈ I, i 6= j
}
.

Let h∗ be the subspace of Qr generated by Φ. Elements in Φ are called roots. For

each nonzero i ∈ I, set αi = εi − εi−a. For any root α, one can see that 〈α, α〉 = 2.

Note that

〈αi, αj〉 =


2 if i = j,

−1 if |i− j| = a,

0 otherwise.
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This is the root system of Ar−1 and the Weyl group of this root system is the group

generated by simple reflections

si : α 7→ α− 〈α, αi〉
〈αi, αi〉

αi.

It is easy to see that

si(εk − εl) = εωi(k) − εωi(l),

where ωi is the (adjacent) transposition in Sr

ωi(j) =


i+ a if j = i,

i if j = i+ a,

j otherwise.

Thus the Weyl group can be thought as the group of permutations of I.

Here, we consider roots as dimension vectors:

(i) αi is the dimension vector of the vertex ρi;

(ii) the dimension vector of the trivial representation ρ0 is −
∑

i 6=0 αi.

As h∗ is generated by the roots αi’s, the stability parameter space Θ can be identified

with the dual space of h∗. Let ω be a permutation of I. As is customary (see

e.g. [11]), define a set of simple roots and an open Weyl chamber associated to ω:

∆(ω) :=
{
εω(i) − εω(i−a) ∈ Φ

∣∣ i ∈ I, i 6= 0
}
,

C(ω) :=
{
θ ∈ (h∗)∗

∣∣ θ(εω(i) − εω(i−a)

)
> 0 ∀i ∈ I, i 6= 0

}
.

In particular, for the identity permutation of I, the corresponding simple roots ∆+

and Weyl chamber C+ are

∆+ =
{
εi − εi−a ∈ Φ

∣∣ i ∈ I, i 6= 0} = {αi
∣∣ i ∈ I, i 6= 0

}
,

C+ =
{
θ ∈ (h∗)∗

∣∣ θ(αi) > 0 ∀i ∈ I, i 6= 0
}
,

which is the cone Θ+ for G-Hilb in (2.2.10).

A chamber in stability parameter space. For each i ∈ I, let ρi denote the

irreducible representation of G of weight i. Note that each root α can be considered

as the support of a submodule of a G-constellation. In other words, αi corresponds

to the dimension vector of ρi. Thus in general root α =
∑

i niαi is the dimension
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vector of the representation ⊕niρi. Abusing notation, let α =
∑

i niαi also denote

the corresponding representation ⊕niρi.
Let ∆ be a set of simple roots. Define a subset C of Θ associated to ∆ as

C := C(∆) :=
{
θ ∈ Θ

∣∣ θ(α) > 0 ∀α ∈ ∆
}
.

At this moment, C(∆) is not necessarily a chamber in Θ because C(∆) may contain

nongeneric elements.

4.2.3 Admissible sets of simple roots

In this section, we define the admissible set of simple roots ∆a for the group of type
1
r (1, a, r − a). The Weyl chamber Ca corresponding to the admissible set of simple

roots is equal to the GIT stability parameter cone in [16].

Remark 4.2.6. K ↪edzierski [16] described a cone of GIT parameters with a set of

inequalities. One can easily see that this can be described using the root system

Ar−1. He conjectured the cone is a full chamber. In Section 5.2, we prove that the

conjecture is true. �

Firstly, we consider the case of 1
r (1, r− 1, 1). Secondly, we define the admis-

sible set of simple roots for 1
r (1, a, r − a) using a recursion process.

The case of 1
r (1, r − 1, 1). From Theorem 4.1.1, we know that the economic

resolution of the quotient variety X = C3/G is isomorphic to G-HilbC3 where G is

of type 1
r (1, r− 1, 1). Thus in this case, the G-iraffes are just Nakamura’s G-graphs

which are θ-stable for θ ∈ Θ+, where

Θ+ :=
{
θ ∈ Θ

∣∣ θ (ρ) > 0 for ρ 6= ρ0

}
.

In terms of the root system, θ(αi) > 0 for nonzero i ∈ I. Note that αi = εi − εi+1.

Thus the corresponding set of simple roots is

∆ =
{
εi − εi+1 ∈ Φ

∣∣ i ∈ I, i 6= 0
}

= {ε1 − ε2, ε2 − ε3, . . . , εr−1 − ε0} .

Example 4.2.7. Consider the group of type 1
3(1, 2, 1). Let

{
εLj
∣∣ j = 0, 1, 2

}
be the

standard basis of Q3. Then the corresponding set of simple roots ∆L is

∆L =
{
εL1 − εL2 , εL2 − εL0

}
.
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On the other hand, for the group of type 1
4(1, 3, 1), let

{
εRk
∣∣ k = 0, 1, 2, 3

}
be

the standard basis of Q4. Then

∆R = {εR1 − εR2 , εR2 − εR3 , εR3 − εR0 }

is the corresponding set of simple roots for type 1
4(1, 3, 1). �

The case of 1
r (1, a, r − a). Let G be the group of type 1

r (1, a, r − a). Let us

assume that for 1
a(1,−r, r) and 1

r−a(1, a,−r) we have sets of simple roots ∆L and

∆R, respectively. Note that ∆L is a set of simple roots in Aa−1 and ∆R is a set of

simple roots in Ar−a−1. As in Section 4.2.2, let

{
εLl
∣∣ l = 0, 1, . . . , a− 1}, {εRk

∣∣ k = 0, 1, . . . , r − a− 1
}

be the standard basis of Qa and Qr−a, respectively. From the two sets of simple

roots ∆L and ∆R, we construct a set ∆ of simple roots in Ar−1 as follows. Firstly,

as in Section 4.2.2, let the standard basis
{
εi
∣∣ i ∈ I} of Qr be identified with the

union of the two sets

{
εLl
∣∣ l = 0, 1, . . . , a− 1} and {εRk

∣∣ k = 0, 1, . . . , r − a− 1
}

using the following identification:

εLl = εi with i ≡ l mod a, r − a ≤ i < r,

εRk = εi with i ≡ k mod (r−a), 0 ≤ i < r − a.
(4.2.8)

Secondly, with this identification, define a set ∆ of simple roots

∆ = ∆L ∪ {εb r
a
ca − ε(r−2a)−b r−2a

r−a c(r−a)} ∪∆R. (4.2.9)

Note that ∆ is actually a set of simple roots in Ar−1.

Remark 4.2.10. Note that if εLl − εLk is a positive sum of simple roots in ∆L, then

the corresponding root of Ar−1 is also a positive sum of simple roots in ∆. Moreover,

εLl − εRk can be written as a positive sum of simple roots in ∆: note that εb r
a
ca is

identified with a vector εL and that ε(r−2a)−b r−2a
r−a c(r−a) is identified with a vector

εR; since we add the root εb r
a
ca− ε(r−2a)−b r−2a

r−a c(r−a) to ∆, εLl − εRk is a positive sum

of simple roots in ∆. �
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Definition 4.2.11. With the notation as above, we call the set ∆ of simple roots

the admissible set of simple roots for G = 1
r (1, a, r − a), which is denoted by ∆a.

For the admissible set of simple roots, define

Ca :=
{
θ ∈ Θ

∣∣ θ(α) > 0 ∀α ∈ ∆a

}
with considering roots α =

∑
i niαi as corresponding representations ⊕niρi. We call

Ca the admissible Weyl chamber for G = 1
r (1, a, r − a).

As is stated in Section 4.2.2, note that a set of simple roots ∆a is determined

by and determines a permutation of I = Z/rZ. Indeed,

∆a =
{
εω(i) − εω(i−a)

∣∣ i ∈ I, i 6= 0
}

for a unique permutation ω : I → I.

Let {θi}r−1
i=1 be the dual basis of the GIT parameter space Θ with respect to

{αi}r−1
i=1 , i.e. θi(αj) = δij . Set θ0 = −

∑r−1
i=1 θi. As is standard, we can present the

rays of the Weyl chamber Ca using this basis and the permutation ω: the rays are

generated by the following vectors

i−1∑
j=0

(
θω(ja)+a − θω(ja)

)
(4.2.12)

for i = 1, 2, . . . , r− 1. Thus any θ ∈ Ca is a positive linear sum of the vectors above

in (4.2.12).

Proposition 4.2.13. Assume that a < r−a. Let θ be an element in the admissible

chamber Ca. Then θ(αi) is negative if and only if 0 ≤ i < a. Therefore any θ-stable

G-constellation is generated by ρ0, ρ1, . . . , ρa−1.

Proof. Let θ ∈ Ca. Recall that any root can be written as a sum of simple roots and

that elements in ∆a are positive on θ.

Suppose that 0 ≤ i < a. From the identification (4.2.8), one can see that εi

is identified with εRk for some l and that εi−a is identified with εLl for some l. By

Remark 4.2.10, the root αi = εi − εi−a = εRk − εLl is a negative sum of simple roots

in ∆a.

Suppose that r − a ≤ i < r. Consider the root αi = εi − εi−a. From the

identification (4.2.8), one can see that εi is identified with εLk for some l and that

εi−a is identified with εRl for some l. Thus αi = εLk − εRl is a positive sum of simple

roots in ∆a by Remark 4.2.10.
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Consider the case where a ≤ i < r − a. The root αi = εi − εi−a is a sum of

simple roots in ∆R. A recursive argument yields that αi is a positive sum of simple

roots in ∆R. Thus αi is a positive sum of simple roots in ∆a by Remark 4.2.10.

To prove the last statement, let F be a θ-stable G-constellation. Consider

the submodule G of F generated by ρ0, ρ1, . . . , ρa−1. If G 6= F , then θ(G) < 0.

Therefore we have G = F .

Example 4.2.14. Let G be the group of type 1
7(1, 3, 4). From the fan of the

economic resolution of this case (see Example 3.3.4), the left and right sides are

the economic resolutions of singularities of 1
3(1, 2, 1) and 1

4(1, 3, 1), respectively. By

Example 4.2.7, we have two sets

∆L = {εL1 − εL2 , εL2 − εL0 } and ∆R = {εR1 − εR2 , εR2 − εR3 , εR3 − εR0 }.

As in the construction (4.2.9), the admissible set of simple roots is

∆a = {ε4 − ε5, ε5 − ε6, ε6 − ε1, ε1 − ε2, ε2 − ε3, ε3 − ε0},

where the underlined root is the added root as in (4.2.9). In terms of αi = εi− εi−a,

∆a = {α4 + α1, α5 + α2,−α1 − α5 − α2, α1 + α5, α2 + α6, α3}.

Thus the set of parameters θ ∈ Θ satisfying

θ(ρ4 ⊕ ρ1) > 0, θ(ρ5 ⊕ ρ2) > 0, θ(ρ1 ⊕ ρ5 ⊕ ρ2) < 0,

θ(ρ1 ⊕ ρ5) > 0, θ(ρ2 ⊕ ρ6) > 0, θ(ρ3) > 0

is the admissible Weyl chamber Ca where ρi is the irreducible representation of G

of weight i.

The corresponding permutation ω is

ω =

(
0 3 6 2 5 1 4

0 3 2 1 6 5 4

)

i.e. ω(0) = 0, ω(3) = 3, ω(6) = 2, etc, as the fundamental set of simple roots is

∆+ = {ε4 − ε1, ε1 − ε5, ε5 − ε2, ε2 − ε6, ε6 − ε3, ε3 − ε0} .
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The rays of the Weyl chamber Ca are the row vectors of the matrix

−1 0 0 1 0 0 0

−1 0 0 0 0 0 1

−1 0 −1 0 0 1 1

−1 −1 −1 0 1 1 1

−1 −1 0 0 1 1 0

−1 0 0 0 1 0 0


with the basis {θi}. Note that for any θ ∈ Ca, θ(αi) is negative if and only if

0 ≤ i < 3. �

4.2.4 An open Weyl chamber

In this section, we prove that the stability parameters described in Section 4.2.1

form an open Weyl chamber. It follows that our stability parameters are the same

as K ↪edzierski’s in [16].

Let G ⊂ GL3(C) be the finite subgroup of type 1
r (1, a, r− a) with a coprime

to r. We may assume 2a < r. Let G2 and G3 be the groups of type 1
a(1,−r, r) and of

type 1
r−a(1, r,−r), respectively. To use recursion steps, assume that the admissible

set of simple roots ∆L and ∆R give the full chambers CL and CR. Let ∆a be the

admissible set of simple roots and Ca the admissible Weyl chamber for 1
r (1, a, r−a).

We prove that Ca is a full chamber such that the admissible G-iraffes are

θ-stable for θ ∈ Ca by the following three steps.

Step 1 Firstly, we prove that for any θ ∈ Ca, there exist θ(2) ∈ CL and θ(3) ∈ CR

such that θ is a partial solution of the system of linear equations (4.2.1). Let θ be

in Ca. Let us define θ(2), θ(3) to be
θ(2)(χ) =

∑
φ2(ρ)=χ

θP (ρ) for all χ ∈ G∨2 ,

θ(3)(χ′) =
∑

φ3(ρ)=χ′
θP (ρ) for all χ′ ∈ G∨3 .

It suffices to show that θ(2) ∈ CL and θ(3) ∈ CR. Let χl be a character of G2 whose

weight is l. Then

φ−1
2 (χl) =

{
ρi ∈ G∨

∣∣ 0 ≤ i < r, i ≡ l mod a
}
,
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by the definition of the left round down function. In terms of roots, the dimension

vector of ⊕φ2(ρ)=χlρ is ∑
0≤i<r,

i≡l mod a

αi =
∑

0≤i<r,
i≡l mod a

(εi − εi−a) = αLl .

Note that θ is positive on ∆a. In particular θ is positive on the roots coming from

∆L. From this, it follows that θ(2) is in CL. For θ(3), we can prove the assertion in

a similar way.

Step 2 Secondly, we prove that the vector ϑ in (4.2.2) is a ray of the chamber Ca.

From this, it follows that any θ ∈ Ca can be written as the form (4.2.3) so admissible

G-iraffes are θ-stable.

Let ϑ be the vector in (4.2.2). As is well known, ϑ is a ray of the Weyl

chamber Ca associated to the set of simple root ∆a if and only if there exists a

unique simple root α in ∆a such that ϑ(α) is positive and ϑ is zero on the other

simple roots in ∆a. A simple observation shows that ϑ is zero on the sets ∆L and

∆R with the identification (4.2.9). It remains to show that ϑ(α) is positive for

α = εb r
a
ca − ε(r−2a)−b r−2a

r−a c(r−a) = εb r
a
ca − εr−2a

=
∑

ρi∈φ−1
2 (A)

αi + αr−a.

for a subset A of G∨. Since ϑ(A) = 0 and ϑ(αr−a) = 1, we have ϑ(α) = 1.

Step 3 Lastly, we prove that the chamber is a full chamber. By Step 1 and Step 2,

we prove that the Weyl chamber Ca is a cone in Θ such that the admissible G-iraffes

are θ-stable for θ ∈ Ca. From considering the torus invariant G-constellations which

x acts trivially on, i.e. G-iraffes corresponding to the toric cones containing e1,

it follows that any wall of Ca is an actual wall in Θ. Therefore the admissible

Weyl chamber Ca is a full chamber in the stability parameter space Θ. For further

discussion, see Section 5.2.

We have proved the following proposition:

Proposition 4.2.15. For the set G of G-iraffes in Corollary 4.1.8, there exists

an open Weyl chamber Ca ⊂ Θ such that Γ is θ-stable if Γ ∈ G and θ ∈ Ca.

Furthermore, the chamber Ca is a full chamber in Θ.

From Step 3, we make the following conjecture:
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Conjecture 4.2.16. The chamber structure of the GIT stability parameter space Θ

of G-constellations coincides with the Weyl chamber structure of Ar−1.

4.3 Main theorem

Theorem 4.3.1 (Main Theorem). Let G ⊂ GL3(C) be the finite subgroup of type
1
r (1, a, r − a) with a coprime to r. Let Σmax be the set of 3-dimensional cones in

the fan of the economic resolution Y of X = C3/G. Then there exist a set G of

G-iraffes and θ ∈ Θ such that:

(i) there exists a bijective map Σmax → G sending σ to Γσ with S(Γσ) = σ∨ ∩M .

(ii) every Γσ is θ-stable if Γσ ∈ G.

Thus Y is isomorphic to
⋃

Γ∈G U(Γ). In particular, U(Γ) is smooth for any Γ ∈ G.

Proof. Corollary 4.1.8 shows that there exists a set G of G-iraffes satisfying the con-

dition (i). For the set G, Lemma 4.2.5 shows that there exists a stability parameter

θ satisfying the condition (ii).

Corollary 4.3.2. With the notation as Theorem 4.3.1, the economic resolution Y

is isomorphic to the birational component Yθ of the moduli space Mθ of θ-stable

G-constellations.

Proof. The main theorem proves that the economic resolution Y is isomorphic to⋃
Γ∈G U(Γ). From Proposition 2.5.7, there exists an open immersion from Y to Yθ.

This open immersion is a closed embedding because both Y and Yθ are projective

over X. Since both Y and Yθ are 3-dimensional and irreducible, this embedding is

an isomorphism.

Y ∼=
⋃

Γ∈G U(Γ)

proper
&&

� � // Yθ

proj.

��
X

By the construction of this family, we have seen that elements in Γ form a

C-basis of the G-constellation over p ∈ U(Γ).

Conjecture 4.3.3. The moduli space Mθ is irreducible. In particular, any θ-stable

G-graph Γ is in the set G in Theorem 4.3.1.
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If this conjecture holds, then the moduli space Mθ is isomorphic to the

economic resolution. From Remark 4.1.9, it is enough to show that torus invariant

θ-stable G-constellations corresponding to Γ ∈ G are all of θ-stable torus invariant

G-constellation. In the case G = 1
2k+1(1, 2, 2k − 1), we can prove that Conjecture

4.3.3 is true soMθ is isomorphic to the economic resolution for θ ∈ Ca. We hope to

establish this more generally in future work.

Remark 4.3.4. Let G ⊂ GL3(C) be the group of type 1
r (1, a, r−a) and A ⊂ SL2(C)

the group of type 1
r (a, r − a).

K ↪edzierski [16] describes a Weyl chamber C ⊂ Θ such that the normalization

of Yθ is isomorphic to the economic resolution Y of X = C3/G for θ ∈ C. In his

description, he did not use the root system Ar−1, but a set of inequalities, however

his description is essentially the same as using the root system.

His tactic in [16] is using the anticanonical system described in Section 3.4

(See also Section 5.2):

S �
� //

��

Y

��
D �
� // X.

More precisely, the elephant S given by x = 0 in Y is the minimal resolution of D,

where D is the divisor given by x = 0 in X = C3/G. By the 2-dimensional McKay

correspondence, S is isomorphic to the moduli space of θ-stable A-constellations and

there is the universal family

U =
⊕
i∈I
Ui

over S. He constructed line bundles Li on Y such that Li |S ∼= Ui for each i ∈ I.

He proved that the collection of the line bundles is a gnat family [20] and that the

family induces a bijective morphism from Y to Yθ. �

4.4 Universal families

In the previous sections, we assigned a θ-stable G-graph Γσ to each full dimensional

cone σ of the fan of the economic resolution Y of X = C3/G, where G is of type
1
r (1, a, r − a) with a coprime to r. This section describes the universal family over

the economic resolution Y .

Let ρ be an irreducible representation of G. From the data (σ,Γσ), for each

full dimensional cone σ, there exists a unique Laurent monomial mσ ∈ Γσ whose

weight is ρ. The data {mσ} is called the canonical data of ρ.
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Remark 4.4.1. This canonical data gives a line bundle, which is called the universal

family over Yθ = G-HilbC3 if a = 1 or r − 1. �

Proposition 4.4.2. Let ρ be a fixed irreducible representation of G. The canonical

data {mσ} of ρ gives a line bundle Lρ on Y satisfying Lρ|Uσ ∼= OUσ(div m−1
ρ ). In

other words, Lρ is the line bundle corresponding to the Cartier divisor Dρ defined

by Dρ|Uσ = div m−1
ρ |Uσ for all σ.

Proof. From general toric geometry (see e.g. Section 4.2 in [3]), it suffices to show

that mσ
mσ′

vanishes on the intersection σ∩σ′ for any two adjacent cones σ, σ′. Suppose

that the intersection is the cone generated by u1,u2 ∈ L and then it should be shown

that 〈ui, mσ
mσ′
〉 is zero for i = 1, 2. Set mσ = xm1ym2zm3 and mσ′ = xm

′
1ym

′
2zm

′
3 .

There are four cases:

(1) Both σ and σ′ are cones in either the left side or the right side.

(2) One of them is the cone on the central side and the other is the cone on the

central side of the left side.

(3) One of them is the cone on the central side and the other is the cone on the

central side on the right side.

(4) One of them is the most right cone of the left side and the other is the most

left cone of the right side.

�
��

```
```

`

�
�
��

�
�

@@

@
�
�
��

Case (1)

σ

σ′

��
�

```
```

`

Case (2)

σ

σ′

�
�
�
�
�
�

B
B
B
BB

��
�

```
```

`B
B
B
BB







σ σ′

Case (4)

Figure 4.4.1: Four cases for two full dimensional cones in the fan of Y

Case (1) Assume that the cones are on the left side. Let φ2 be the left round

down function of the weighted blowup with weight (1, a, r−a). Since the weights of

mσ and mσ′ are equal to ρ, we have mσ
mσ′

= φ2( mσ
mσ′

). By induction on r, it follows

that 〈ui, mσ
mσ′
〉 = 0.
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Case (2) Assume that σ is the cone on the central side and that σ′ is the cone on

the central side of the left side. Note that the G-graph for σ is {1, x, x2, . . . , xr−1}
and that the G-graph for σ′ is

{
m ∈M

∣∣φ2(m) ∈ {1, ξ, . . . , ξa−1}
}
.

Thus, with the fact that both mσ and mσ′ have the same weights,

mσ = xm1 for some 0 ≤ m1 < r,

mσ′ = xm
′
1ym

′
2 for some 0 ≤ m′1 < a with m′1 + am′2 = m1.

Since σ ∩ σ′ = Cone
(

(0, 0, 1), 1
r (1, a, r − a)

)
, the Laurent monomial mσ

mσ′
vanishes

on the intersection.

Case (3) Case (3) is similar to Case (2).

Case (4) Assume that σ is the most right cone in the left side and that σ′ is

the most left cone in the right side. Note that σ ∩ σ′ is the cone generated by

(1, 0, 0), 1
r (1, a, r − a). Similarly to Case (2), note that

mσ = ym2zm3 , mσ′ = ym
′
2zm

′
3

with am2 + (r − a)m3 = am′2 + (r − a)m′3. Hence it follows that mσ
mσ′

vanishes on

the intersection.

Remark 4.4.3. For the trivial representation ρ0, 1 is in every G-graph and hence

the line bundle for the trivial representation is OY . The direct sum of all such line

bundles

L =
⊕
ρ∈G∨

Lρ

is a gnat family in the sense of [20], which is the same family in [16]. �

Example 4.4.4. Let G be the group of type 1
7(1, 3, 4) as in Example 2.4.3. Let ρ

be the irreducible representation of G with weight 1. Consider the line bundle Lρ
as in Proposition 4.4.2. In Figure 4.4.2, the monomial in a maximal cone σ is the

unique element in Γσ whose weight is 1. �
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Figure 4.4.2: Elements of weight 1 in Γσ for 1
7(1, 3, 4)

4.5 Example: type 1
12(1, 7, 5)

In this section, as a concrete example, we calculate the set of G-iraffes and the

admissible set of simple roots ∆a for the group G of type 1
12(1, 7, 5).

Let G be the finite group of type 1
12(1, 7, 5) with eigencoordinates x, y, z and

L the lattice L = Z3 + Z · 1
12(1, 7, 5). Let X denote the quotient variety C3/G and

Y the economic resolution of X. The toric fan Σ of Y is shown in Figure 4.5.1.

To use the recursion process as in Section 4.1, we need to investigate the

cases of type 1
7(1, 2, 5) and of type 1

5(1, 2, 3). Let G2 be the group of type 1
7(1, 2, 5)

with eigencoordinates ξ2, η2, ζ2 and G3 be the group of type 1
5(1, 2, 3) with eigenco-

ordinates ξ3, η3, ζ3. Consider the toric fans Σ2 and Σ3 of the economic resolutions

for the type 1
7(1, 2, 5) and the type 1

5(1, 2, 3), respectively.

4.5.1 G-iraffes

We now calculate G-iraffes corresponding to two full dimensional cones in Σ:

σ4 = Cone
(

1
12(12, 0, 0), 1

12(3, 9, 3), 1
12(8, 8, 4)

)
,

τ3 = Cone
(

1
12(1, 7, 5), 1

12(3, 9, 3), 1
12(8, 8, 4)

)
.
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τ5
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τ9

τ10

τ0

↑ e1

Figure 4.5.1: Toric fan of the economic resolution for 1
12(1, 7, 5)

Note that the cones σ4, τ3 are on the right side of the lowest vector v = 1
12(1, 7, 5).

Their corresponding cones σ′4, τ
′
3 in Σ3 to σ4, τ3, respectively are

σ′4 = Cone
(

1
5(5, 0, 0), 1

5(1, 2, 3), 1
5(1, 1, 4)

)
, (4.5.1)

τ ′3 = Cone
(

1
5(0, 0, 5), 1

5(1, 2, 3), 1
5(1, 1, 4)

)
. (4.5.2)

Observe that the cones σ′4, τ
′
3 are on the left side of Σ3. To use the recursion,

let G32 be the group of type 1
2(1, 1, 1) with eigencoordinates ξ32, η32, ζ32. Let Σ32

denote the fan of the economic resolution of the quotient C2/G32. In Σ32, there
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Figure 4.5.2: Recursion process for 1
12(1, 7, 5)

exist two cones σ′′4 , τ
′′
3 corresponding to σ′4, τ

′
3, respectively:

σ′′4 = Cone
(

1
2(2, 0, 0), 1

2(0, 2, 0), 1
2(1, 1, 1)

)
,

τ ′′3 = Cone
(

1
2(0, 0, 2), 1

2(0, 2, 0), 1
2(1, 1, 1)

)
.

As is in Example 4.1.2, the G32-graphs Γ′′4 and Γ′′3 corresponding to σ′′4 , τ
′′
3

are
Γ′′4 =

{
1, ζ23

}
,

Γ′′3 =
{

1, ξ23

}
.

Using the left round down function φ32 for 1
5(1, 2, 3)

φ32 : ξa3η
b
3ζ
c
3 7→ ξa32η

ba+2b+3c
5

c
32 ζc32,

we can see that the corresponding G3-graphs Γ′4 and Γ′3 corresponding to σ′4, τ
′
3 are

Γ′4
def
= φ−1

32 (Γ′′4) =
{

1, η3, η
2
3, ζ3,

ζ3
η3

}
,

Γ′3
def
= φ−1

32 (Γ′′2) =
{

1, η3, η
2
3, ξ3, ξ3η3

}
.

To get the corresponding G-iraffes Γ4, Γ3 to σ4, τ3, respectively, we use the right

round function φ3 for 1
12(1, 7, 5):

φ3 : xaybzc 7→ ξa3η
b
3ζ
ba+7b+5c

12
c

3 .
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We get

Γ4
def
= φ−1

3 (Γ′4) =
{

1, y, yz ,
y2

z ,
y2

z2 , z, z
2, z3, z4, z

4

y ,
z5

y ,
z6

y

}
,

Γ3
def
= φ−1

3 (Γ′2) =
{

1, x, xz, xz2, xy, xyz , y,
y
z ,

y2

z ,
y2

z2 , z, z
2
}
.

Let us consider the following two cones:

σ9 = Cone
(

1
12(12, 0, 0), 1

12(9, 3, 9), 1
12(4, 4, 8)

)
,

τ7 = Cone
(

1
12(2, 2, 10), 1

12(9, 3, 9), 1
12(4, 4, 8)

)
.

Observe that the cones σ9, τ7 are on the left side of v. The corresponding cones σ′9,

τ ′7 in Σ2 to σ9, τ7, respectively are

σ′9 = Cone
(

1
7(12, 0, 0), 1

7(5, 3, 4), 1
7(2, 4, 3)

)
,

τ ′7 = Cone
(

1
7(1, 2, 5), 1

7(5, 3, 4), 1
7(2, 4, 3)

)
.

Note that the cones σ′9, τ ′7 are on the right side of the fan Σ and that the right side

is equal to the fan Σ3 of the economic resolution for 1
5(1, 2, 3). Moreover, the cones

in Σ3 corresponding to σ′9, τ ′7 are σ′4, τ ′2, respectively in (4.5.1). Thus we have the

corresponding G23-graphs Γ′′9, Γ′′7 are:

Γ′′9 =
{

1, η23, η
2
23, ζ23,

ζ23

η23

}
,

Γ′′7 =
{

1, ξ23, ξ23η23, η23, η
2
23

}
,

where G23 is the group of type 1
5(1, 2, 3) with eigencoordinates ξ23, η23, ζ23. Using

the right round down function φ23 for 1
7(1, 2, 5)

φ23 : ξa2η
b
2ζ
c
2 7→ ξa23η

b
23ζ
ba+2b+5c

7
c

23 ,

we can calculate the corresponding G2-graphs to σ′9, τ
′
7:

Γ′9
def
= φ−1

23 (Γ′′9) =
{

1, η2, η
2
2, ζ2, ζ

2
2 ,

ζ2
2
η2
,
ζ3
2
η2

}
,

Γ′7
def
= φ−1

23 (Γ′′7) =
{

1, ξ2, ξ2η2, ξ2ζ2, η2, η
2
2, ζ2, ζ

2
2

}
.

Lastly, from the left round down function φ2 for 1
12(1, 7, 5)

φ2 : xaybzc 7→ ξa2η
ba+7b+5c

12
c

2 ζc2,
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it follows that the G-iraffes Γ9,Γ7 corresponding to σ9, τ7 are:

Γ9 =
{

1, y, y2, y3, y4, y5, z, z2, z
2

y ,
z2

y2 ,
z2

y3 ,
z3

y3

}
,

Γ7 =
{

1, x, xy, xy2, xy3, xz, y, y2, y3, y4, y5, z
}
.

For each 0 ≤ i ≤ 12, let vi denote the lattice point 1
12(7i, i, 12−i) in L. For the

cones σ in Figure 4.5.1 on page 64, Table 4.5.1 on page 69 shows the corresponding

G-iraffe Γσ.

4.5.2 Admissible set of simple roots

Now we calculate the admissible set of simple roots for 1
12(1, 7, 5). Since for the group

of type 1
r (1, r−1, 1), the economic resolution is G-Hilb, note that the admissible sets

of simple roots for 1
2(1, 1, 1) and 1

3(1, 2, 1) are {ε1−ε0}, {ε1−ε2, ε2−ε0}, respectively.

By the identification (4.2.8), that the admissible sets of simple roots for 1
5(1, 2, 3) is

{ε3 − ε4, ε4 − ε1, ε1 − ε2, ε2 − ε0},

where the underlined root is the added root as in (4.2.9). Similarly, the admissible

sets of simple roots for 1
7(1, 2, 5) is

{ε5 − ε6, ε6 − ε3, ε3 − ε4, ε4 − ε1, ε1 − ε2, ε2 − ε0}.

Lastly, the admissible set of simple roots for 1
12(1, 7, 5) is{

ε5 − ε6, ε6 − ε10, ε10 − ε11, ε11 − ε8, ε8 − ε9, ε9 − ε7,

ε7 − ε3, ε3 − ε4, ε4 − ε1, ε1 − ε2, ε2 − ε0

}
.

Note that the corresponding permutation ω is

ω =

(
0 7 2 9 4 11 6 1 8 3 10 5

0 2 1 4 3 7 9 8 11 10 6 5

)
,

as the fundamental set of simple roots is

∆+ =

{
ε5 − ε10, ε10 − ε3, ε3 − ε8, ε8 − ε1, ε1 − ε6, ε6 − ε11,

ε11 − ε4, ε4 − ε9, ε9 − ε2, ε2 − ε7, ε7 − ε0

}
.

67



With the dual basis {θi} with respect to {αi}, the row vectors of the following matrix

is the rays of the admissible Weyl chamber Ca:

−1 0 0 0 0 0 0 1 0 0 0 0

−1 0 −1 0 0 0 0 1 0 1 0 0

−1 −1 −1 0 0 0 0 1 1 1 0 0

−1 −1 −1 0 −1 0 0 1 1 1 0 1

−1 −1 −1 −1 −1 0 0 1 1 1 1 1

−1 −1 0 −1 −1 0 0 0 1 1 1 1

−1 −1 0 −1 0 0 0 0 1 0 1 1

−1 −1 0 0 0 0 0 0 0 0 1 1

−1 −1 0 0 0 0 1 0 0 0 1 0

−1 −1 0 0 0 1 1 0 0 0 0 0

−1 0 0 0 0 1 0 0 0 0 0 0



.
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Cone Generators G-iraffes Γσ
Coordinates
on Uσ

σ1 e1, e2, v11 1, z, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11 x
z5 ,

y
z11 , z

12

σ2 e1, v10, v11 1, y, yz , z, z
2, z3, z4, z5, z6, z7, z8, z9 x

z5 ,
y2

z10 ,
z11

y

σ3 e1, v9, v10 1, y, yz ,
y2

z ,
y2

z2 ,
y2

z3 ,
y2

z4 ,
y2

z5 , z, z
2, z3, z4 xz5

y2 ,
y3

z9 ,
z10

y2

σ4 e1, v8, v9 1, y, yz ,
y2

z ,
y2

z2 , z, z
2, z3, z4, z

4

y ,
z5

y ,
z6

y

xy
z4 ,

y4

z8 ,
z9

y3

σ5 e1, v7, v8 1, y, yz ,
y2

z ,
y2

z2 ,
y3

z2 ,
y3

z3 ,
y3

z4 ,
y4

z4 ,
y4

z5 , z, z
2 xz4

y3 ,
y5

z7 ,
z8

y4

σ6 e1, v6, v7 1, y, z, z2, z
2

y ,
z3

y ,
z3

y2 ,
z4

y2 ,
z5

y2 ,
z5

y3 ,
z6

y3 ,
z6

y4

xy2

z3 ,
y6

z6 ,
z7

y5

σ7 e1, v5, v6 1, y, y2, y3, z, z2, z
2

y ,
z3

y ,
z3

y2 ,
z4

y2 ,
z5

y2 ,
z5

y3

xy2

z3 ,
y7

z5 ,
z6

y6

σ8 e1, v4, v5 1, y, y2, y3, y4, y5, y
5

z ,
y5

z2 ,
y6

z2 , z, z
2, z

2

y
xz2

y5 ,
y8

z4 ,
z5

y7

σ9 e1, v3, v4 1, y, y2, y3, y4, y5, z, z2, z
2

y ,
z2

y2 ,
z2

y3 ,
z3

y3

xy3

z2 ,
y9

z3 ,
z4

y8

σ10 e1, v2, v3 1, y, y2, y3, y4, y5, y6, y
6

z ,
y7

z ,
y8

z ,
y9

z , z
xz
y6 ,

y10

z2 ,
z3

y9

σ11 e1, v1, v2 1, y, y2, y3, y4, y5, y6, z, zy ,
z
y2 ,

z
y3 ,

z
y4

xy4

z ,
y11

z1 ,
z2

y10

σ12 e1, e3, v1 1, y, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 x
y7 , y

12, z
y11

τ1 e2, v9, v11 1, x, xz, xz2, xz3, xz4, x2, x2z, z, z2, z3, z4 x3

z3 ,
y
x2z

, z
5

x

τ2 v9, v10, v11 1, x, z, xz, z2, xz2, z3, xz3, z4, xz4, y, yz
x2z
y ,

y2

xz5 ,
z5

x

τ3 v7, v8, v9 1, x, xy, xyz , xz, xz
2, y, yz ,

y2

z ,
y2

z2 , z, z
2 x2z

y ,
y3

xz4 ,
z4

xy

τ4 e2, v7, v9 1, x, x2, x3, x4, xz, xz2, x2z, x3z, x4z, z, z2 x5

z ,
y
x2z

, z
3

x3

τ5 v4, v6, v7 1, x, xy, xz, xz2, xz
2

y , x
2, x2y, y, z, z2, z

2

y

x3y
z2 ,

y2

x2 ,
z3

xy

τ6 v4, v5, v6 1, x, xy, xz, xz2, xz
2

y , y, y
2, y3, z, z2, z

2

y
x2

y2 ,
y5

xz2 ,
z3

xy2

τ7 v2, v3, v4 1, x, xy, xy2, xy3, xz, y, y2, y3, y4, y5, z
x2

y2 ,
y6

xz ,
z2

xy3

τ8 v2, v4, v7 1, x, xy, xz, x2, x2y, x3, x3y, x4, x4y, y, z
x5

z ,
y2

x2 ,
z2

x3y

τ9 e3, v1, v2 1, x, xy, xy2, xy3, xy4, y, y2, y3, y4, y5, y6 x2

y2 ,
y7

x ,
z
xy4

τ10 e3, v2, v7 1, x, xy, x2, x2y, x3, x3y, x4, x4y, x5, x6, y
x7

y ,
y2

x2 ,
z
x5

τ0 e2, e3, v7 1, x, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11 x12, y
x7 ,

z
x5

Table 4.5.1: G-iraffes for G = 1
12(1, 7, 5)
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Chapter 5

Further discussion

5.1 Torus invariant G-constellations for type 1
r(1,−1)

For a finite subgroup of G ⊂ SL2(C), it is well known that the GIT stability param-

eter space of G-constellations has the same chamber structure as the Weyl chamber

structure for the root system corresponding to the type of the groupG (see [6,19,31]).

In this section, we describe explicitly torus invariant G-constellations for each cham-

ber of the GIT stability parameter space where the group G is of type 1
r (1,−1).

5.1.1 Chambers of GIT stability parameter spaces

Let G ⊂ SL2(C) be the finite group of type 1
r (1,−1) with coordinates y, z. Set

T = (C×)2. Let ρi be the irreducible representation of G whose weight is i. We can

identify I := Irr(G) with Z/rZ.

Let
{
εi
∣∣ i ∈ I} be an orthonormal basis of Qr, i.e. 〈εi, εj〉 = δij . Define

Φ :=
{
εi − εj

∣∣ i, j ∈ I, i 6= j
}
.

Let h∗ be the subspace of Qr generated Φ. Elements in Φ are called roots. For each

nonzero i ∈ I, set αi = εi − εi−1. Set Sr :=
{
ω
∣∣ ω is a permutation of I

}
.

The stability parameter space Θ can be identified with the dual space of h∗

by considering roots as dimension vectors. Note that ∆+ =
{
αi
∣∣ i ∈ I, i 6= 0

}
is a

set of simple roots and the corresponding Weyl chamber C+ is

C+ =
{
θ ∈ Θ

∣∣ θ(α) > 0 ∀α ∈ ∆+

}
=
{
θ ∈ Θ

∣∣ θ(ρi) > 0 ∀ρi 6= ρ0

}
,

which is the chamber Θ+ for G-HilbC2 in (2.2.10). Let {θi}r−1
i=1 be the dual basis
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of the GIT parameter space Θ with respect to {αi}r−1
i=1 , i.e. θi(αj) = δij . Using the

basis {εi} with the standard inner product, we can write:

θi = −
i−1∑
j=0

εj

for 1 ≤ i ≤ r−1. Set θ0 = −
∑r−1

i=1 θi. As is standard, we can present the rays of the

Weyl chamber C(ω) using this basis and the permutation ω: the rays are generated

by the following vectors
i−1∑
j=0

(
θω(j)+1 − θω(j)

)
(5.1.1)

for i = 1, 2, . . . , r− 1, which is the dual basis with respect to the set of simple roots

∆(ω).

5.1.2 Lacings for each chamber

On the other hand, any torus invariant (connected) G-constellation is given by

a lacing. The following definition originates from the idea in calculations due to

Nolla [27] and Reid.

Definition 5.1.2. A lacing Λ for G = 1
r (1,−1) consists of two subsets (Λy,Λz) of

Irr(G) ∼= Z/rZ such that:

(i) |Λy|+ |Λz| = r + 1 where |·| is the cardinality of the set.

(ii) if i 6∈ Λy for i ∈ I, then i+ 1 ∈ Λz.

(iii) if i 6∈ Λz for i ∈ I, then i− 1 ∈ Λy.

For a generic θ ∈ Θ, a lacing Λ is said to be θ-stable if the G-constellation corre-

sponding to Λ is θ-stable.

Proposition 5.1.3. Let G be the finite group of type 1
r (1,−1). Let θ be a generic

parameter in Θ. There exists a 1-to-1 correspondence between the set of isomorphism

classes of θ-stable torus invariant G-constellations and the set of θ-stable lacings.

Proof. Let F be a θ-stable torus invariant G-constellation. Define Λ = (Λy,Λz) to

be
Λy :=

{
i ∈ I

∣∣ y ∗ ei = 0
}
,

Λz :=
{
i ∈ I

∣∣ z ∗ ei = 0
}
,

where yi (resp. zi) is the y-action (resp. z-action) on the basis of Ceρi . Then Λ is

a lacing. Indeed, as the monomial yz is G-invariant, it gives a cycle around each
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vertex, so yizi+1 must be zero by Lemma 2.6.4, i.e. one of yi and zi+1 must be zero.

Thus the condition (ii) in Definition 5.1.2 is satisfied. For the condition (i), note

that as F is θ-stable, it is connected, and so we need at least r − 1 nonzero arrows.

This shows that Λ is a lacing.

For the converse, let Λ = (Λy,Λz) be a lacing. We define a G-constellation F
as follows: the G-constellation F is ⊕i∈ICei as a C-vector space where ei is a basis

of Cρi, whose C[y, z]-module structure is given by:

y ∗ ei =

ei+1 if i 6∈ Λy,

0 if i ∈ Λy,

z ∗ ei =

ei−1 if i 6∈ Λz,

0 if i ∈ Λz.

AsG-invariant monomials yr, yz, zr act trivially on each vertex, F is a torus invariant

G-constellation.

Remark 5.1.4. For those familiar with McKay quivers, the set Λy is the index set

for vanishing yi and the set Λz is the index set for vanishing zi. The corresponding

G-constellation does not have any (undirected) cycle so it is a torus invariant G-

constellation by Lemma 2.6.4. �

Lemma 5.1.5. Let Λ = (Λy,Λz) be a lacing and θ ∈ Θ generic. Then Λ is θ-stable

if and only if θ(εk − εl−1) ≥ 0, for any k ∈ Λy and l ∈ Λz.

This Lemma can be proved by the same method as the proof of Lemma 8.3.

in [16].

Proof. Let θ be a generic parameter and Λ = (Λy,Λz) a lacing. Let F denote the G-

constellation corresponding to Λ. Suppose that Λ is θ-stable and that k ∈ Λy, l ∈ Λz.

Since yk and zl are zero linear maps in F , V is a submodule of F if the support of

V is {l, l + 1, . . . , k}. Remember that αi = εi − εi−1 is the dimension vector of the

vertex i. Note that

θ(V ) = θ(εl − εl−1) + θ(εl+1 − εl) . . .+ θ(εk − εk−1)

= θ(εk − εl−1).

As Λ is θ-stable, we have θ(εk − εl−1) ≥ 0.

Suppose that θ(εk − εl−1) ≥ 0, for any k ∈ Λy and l ∈ Λz. As is discussed

above, this implies that θ(V ) ≥ 0 for any submodule V supported on {l, l+1, . . . , k}
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for some l, k ∈ I. As any submodule of F can be decomposed as a direct sum

of submodules supported on {l, l + 1, . . . , k} for some l, k ∈ I, the assertion is

proved.

Let ω be an element in Sr, C(ω) the Weyl chamber corresponding to ω, and

∆(ω) the set of simple roots, that is,

∆(ω) :=
{
εω(i) − εω(i−1) ∈ Φ

∣∣ i ∈ I, i 6= 0
}
,

C(ω) :=
{
θ ∈ Θ

∣∣ θ(α) > 0 ∀α ∈ ∆(ω)
}
.

SinceMθ is irreducible for θ ∈ C(ω) by [1,19], the number of θ-stable lacings should

be r. We prove the following proposition by explicit calculations.

Proposition 5.1.6. Let ω be an element in Sr, C(ω) the Weyl chamber correspond-

ing to ω as above. Let θ be in the chamber C(ω). Then there exist exactly r θ-stable

lacings. They are Λj = (Λyj ,Λ
z
j ) for each 1 ≤ j ≤ r where

Λyj = {ω(j − 1), ω(j) . . . , ω(r − 1)} ,
Λzj = {ω(0) + 1, ω(1) + 1 . . . , ω(j − 1) + 1} .

(5.1.7)

Proof. Let I = Irr(G) where G is the group of type 1
r (1,−1). First, from the

definition of the chamber C(ω), note that θ
(
εω(i) − εω(j)

)
≥ 0 if and only if i ≥ j.

By Lemma 5.1.5, our Λj is θ-stable. It is enough to show that they are all

θ-stable lacings.

Let Λ = (Λy,Λz) be a θ-stable lacing.

Suppose ω(0) is in Λy. By Lemma 5.1.5, only ω(0) + 1 can be in Λz as

θ(εω(0)−εω(k)) < 0 for any nonzero k ∈ I. From the condition (ii) in Definition 5.1.2,

it follows that Λy = I. The number of elements in Λy must be one, so Λz =

{ω(0) + 1}. Therefore Λ = Λ1.

Suppose that j is the minimum such that ω(j−1) is in Λy. From the fact that

θ(εω(j−1)−εω(k)) < 0 for k ≥ j, it follows that only ω(0)+1, ω(1)+1, . . . , ω(j−1)+1

can be in Λz, by Lemma 5.1.5. Hence

| Λy |≤ r − j + 1 and | Λz |≤ j.

Since | Λy | + | Λz |= r + 1, we have

Λy = {ω(j − 1), ω(j) . . . , ω(r − 1)} ,

Λz = {ω(0) + 1, ω(1) + 1 . . . , ω(j − 1) + 1} ,

73



i.e. Λ = Λj .

Observe that when we move from Λj to Λj+1, we add ω(j) + 1 to Λz and

remove ω(j − 1) from Λy.

Remark 5.1.8. Each Λj corresponds to a torus fixed point in Mθ. �

We now describe a local chart of Mθ containing the G-constellation corre-

sponding to a θ-stable lacing Λ. Assume that θ is generic in the Weyl chamber C(ω)

for a permutation ω ∈ Sr.
Let Λ = Λj = (Λyj ,Λ

z
j ) be the θ-stable lacing in Proposition 5.1.6:

Λyj = {ω(j − 1), ω(j) . . . , ω(r − 1)} ,
Λzj = {ω(0) + 1, ω(1) + 1 . . . , ω(j − 1) + 1} .

As is described above, Λ encodes which linear maps (or y, z-actions) vanish. After

changing basis, setting yi = 1 if i 6∈ Λy,

zi = 1 if i 6∈ Λz,

gives a local chart Sj of Mθ. Set coordinates ηj , ζj to beηj = yω(j−1),

ζj = zω(j−1)+1.
(5.1.9)

From the commutation relations, it follows that

y0z1 = y1z2 = . . . = yr−1z0 = ηjζj .

Note that for each i 6= ω(j − 1) either i 6∈ Λy or i + 1 6∈ Λz. This means that for

each i 6= ω(j − 1) either yi or zi+1 is set to be 1. Thuszi = ηjζj if yi = 1, i.e. i 6∈ Λy,

yi = ηjζj if zi+1 = 1, i.e. i+ 1 6∈ Λz.

Therefore the affine open set Sj of Mθ is isomorphic to C2 with the coordinates

ηj , ζj .
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We have commutative diagrams when ηj 6= 0 and ζj+1 6= 0:

Λj : Ceω(j)

1

��

ηjζj
-- Ceω(j)+1

ηj

��

1

mm Ceω(j−1)

ηj

��

ηj --
Ceω(j−1)+1

1

��

ζj

mm

Λj+1 : Ceω(j)

ηj+1
-- Ceω(j)+1

ζj+1

mm Ceω(j−1)

1 --
Ceω(j−1)+1

ηj+1ζj+1

mm

where the going right (resp. going left) arrows are y-actions (resp. z-actions) and

the going down arrows mean changing basis. From this diagram, one can see that

the gluing of two affine pieces Sj and Sj+1 is given by

Sj \ (ηj = 0) −→ Sj+1 \ (ζj+1 = 0)

(ηj , ζj) 7−→ (η2
j ζj , η

−1
j ).

Observe that there is a divisor Ej ∼= P1 in Sj ∪Sj+1, which is the coordinate

axis of ηj = ζ−1
j+1. Note that the divisor Ej is given by ζj = 0 in Sj and it is given

by ηj+1 = 0 in Sj+1. Since ηj+1 = η2
j ζj , the divisor Ej is a (-2)-curve.

Let S be the union of Sj ’s with the gluing above. As the Λj ’s are all possible

lacings, ∪Sj forms an affine open cover of Mθ and hence S is isomorphic to Mθ.

We saw that S contains (-2)-curves E1, . . . , Er−1.

The following theorem is called the McKay correspondence (see [1, 19]).

Theorem 5.1.10 (the McKay correspondence). Let G be the group of type 1
r (1,−1).

For any generic parameter θ, the moduli space Mθ is the minimal resolution of

C2/G.

5.1.3 Universal families and intersection numbers

By [18], if θ ∈ C(ω), then Mθ is the fine moduli space of θ-stable G-constellations.

Thus the moduli spaceMθ would have the universal family L which can be decom-

posed as

L =
⊕

ρi∈Irr(G)

Li ⊗ ρi.

Each direct summand Li is a locally free sheaf of rank one. We call Li the tauto-

logical line bundle of ρi.
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Let L be the lattice

L = Z2 + Z · 1

r
(1,−1).

For each 0 ≤ i ≤ r, let vi denote the lattice point

vi =
1

r
(i, r − i)

of L. For each 1 ≤ j ≤ r, define σj to be the cone

σj := Cone(vj−1, vj).

Let Σ be the fan consisting of the σj ’s and their faces. Note that the associated

toric variety XΣ is smooth and that XΣ is the minimal resolution of the quotient

variety X = C2/G.

Let Ei denote the irreducible exceptional divisor corresponding to the ray

generated by vi for 1 ≤ i ≤ r − 1. Then the [Ei]’s form a basis of the homology

group H2(XΣ,Z), i.e.

H2(XΣ,Z) =
⊕

1≤i≤r−1

Z[Ei].

It is well known that if the stability parameter θ is in Θ+, the first Chern classes

c1(Li) of the tautological line bundles Li form the dual basis to [Ei] [10].

For a generic GIT parameter θ ∈ Θ, from GIT, it is known that

Lθ :=
⊗
i∈I
Lθ(ρi)i

is relatively ample over the variety X =M0 = C2/G.

We now show this with an explicit calculation without GIT.

Let ω be a permutation and C(ω) the corresponding (open) Weyl chamber.

As we did in (5.1.1), let wi be the rays of C(ω) which form the dual basis to the

simple roots ∆(ω), i.e.

wi =
i−1∑
j=0

(
θω(j)+1 − θω(j)

)
for i = 1, 2, . . . , r − 1, where {θi}r−1

i=1 is the dual basis with respect to {αi}r−1
i=1 .

Proposition 5.1.11. With the notation as above, let Lk be the tautological line
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bundle of ρk. Define the line bundle

Fi :=
⊗
k∈I
Lwi(ρk)
k .

for any i = 1, 2, . . . , r − 1. Then c1

(
Fi
)
· Ej = δij , i.e. {Fi}r−1

i=1 is the dual basis

to {[Ei]}. Therefore, the (fractional) line bundle Lθ is relatively ample over X =

M0 = C2/G for any generic parameter θ ∈ C(ω).

Proof. Let Λj be the jth lacing and Γj the corresponding G-iraffe. As in (5.1.9), the

following two parameters play as the coordinates of the affine open set Sj = U(Γj):ηj = yω(j−1),

ζj = zω(j−1)+1.

Consider F1 = Lω(0)+1⊗L−1
ω(0). By the construction, the lacing Λ1 = (Λy1,Λ

z
1)

is

Λy1 = {ω(0), ω(1), . . . , ω(r − 1)} ,

Λz1 = {ω(0) + 1} .

Observe that Λyj does not contain ω(0) for j > 1. Note that the line bundle F1

corresponds to the linear map

yω(0) : ρω(0) → ρω(0)+1.

From the lacings, one can see that

yω(0) =

η1 if j = 1,

1 otherwise

on each open set Sj . Since the divisor Ej is the coordinate axis of ηj , one can see

that

c1(F1) · Ej =

1 if j = 1,

0 otherwise.

Alternatively, one can show this in terms of G-iraffes. By construction of the corre-

sponding G-iraffes, F1 is the line bundle defined by zr−1 on the open set S1 and F1

is the line bundle defined by y on the open set Sj for j > 1. Since the exceptional

divisor Ej ∼= P1 is defined by the ratio [zr−j : yj ], we have the same result.
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Since wi+1 −wi = θω(i)+1 − θω(i),

Fi+1 ⊗F−1
i = Lω(i)+1 ⊗ L−1

ω(i).

If we show that

c1

(
Lω(i)+1 ⊗ L−1

ω(i)

)
· Ej =


1 if j = i+ 1,

−1 if j = i,

0 otherwise,

(5.1.12)

then it follows that c1

(
Fi
)
· Ej = δij from induction on i.

Fix i such that 1 < i < r. Consider Fi = Lω(i)+1 ⊗ L−1
ω(i), which corresponds

to the linear map yω(i). Note that

yω(i) =


ηjζj if j ≤ i,

ηi+1 if j = i+ 1,

1 j > i+ 1,

on each open set Sj . Since the divisor Ej is the coordinate axis of ηj , from the

fact that ηjζj = ηj+1ζj+1 and calculations of transition functions, the claim (5.1.12)

follows. Alternatively, one can show this in terms of G-iraffes. By construction of

corresponding G-iraffes, one can see that Fi is the line bundle defined by z−1 on the

open set Sj for j ≤ i, that Fi is defined by zr−i

yi−1 on the open set Si, and that Fi is

define by y on the open set Sj for j > i+ 1. Since the exceptional divisor Ej ∼= P1

is defined by the ratio [zr−j : yj ], we have proved the claim.

The relative ampleness of Lθ follows from the fact that θ is a strictly positive

linear combination of wi’s.

5.1.4 Example: type 1
7
(1, 6)

This section calculates lacings for the finite group G of type 1
7(1, 6) with a fixed

Weyl chamber of A6. These lacings give an affine cover of the moduli space of θ-

stable G-constellations. In addition, we present the intersection matrix between the

universal family of the moduli space and the exceptional divisors.

Let G ⊂ SL2(C) be the finite group of type 1
7(1,−1). Its McKay quiver is

shown in Figure 5.1.1.

In Figure 5.1.1, the number i denotes the vertex corresponding to ρi and the

upper (resp. lower) curved arrows correspond to y-actions (resp. z-actions).

78



0
��

66 6 66
vv

5 66
vv

4 66
vv

3 66
vv

2 66
vv

1OO
vv

Figure 5.1.1: McKay quiver for G of type 1
7(1, 6)

Let ω be the permutation of I := {0, 1, . . . , 5, 6} given by

ω =

(
0 1 2 3 4 5 6

0 1 3 5 2 4 6

)
.

Note that the corresponding set of simple roots is

∆(ω) = {ε1 − ε0, ε3 − ε1, ε5 − ε3, ε2 − ε5, ε4 − ε2, ε6 − ε4}

= {α1, α2 + α3, α4 + α5,−α3 − α4 − α5, α3 + α4, α5 + α6} ,

and that we have a Weyl chamber C(ω) corresponding to ω, which forms a chamber

in the GIT stability parameter space of G-constellations.

According to Proposition 5.1.6, we have 7 lacings which give the following 7

torus invariant G-constellations:

Λ1 : 0
1

66 6
1

66 5
1

66 4
1

66 3
1

66 2
1

66 1

Λ2 : 0

1 ��

1

66 6
1

66 5
1

66 4
1

66 3
1

66 2 1

Λ3 : 0

1

��

1

66 6
1

66 5
1

66 4 3
1

66 2 1
1
vv

Λ4 : 0

1

��

1

66 6 5
1

66 4 3
1

66
1
vv

2 1
1
vv

Λ5 : 0

1

��

1

66 6 5
1
vv

1

66 4 3
1
vv

2 1
1
vv

Λ6 : 0

1

��

1

66 6 5
1
vv

4 3
1
vv

2
1
vv

1
1
vv

Λ7 : 0

1

��
6 5

1
vv

4
1
vv

3
1
vv

2
1
vv

1
1
vv
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where marked linear maps are set to be 1.

Observe that the difference between Λj and Λj+1 is: we have one more

nonzero y-arrow and we have one less nonzero z-arrow. We call this process “cutting

and adding laces”.

As is described above, these lacings give local charts. For example, consider

Λ4 and set two linear maps as the coordinatesη = y5,

ζ = z6.

One can see that the point (η, ζ) ∈ C2 corresponds to the following G-constellation:

0

1

��

1

66 6
ηζ

66

ηζ
vv

5
1

66

ηζ
vv

4
ηζ

66

ηζ
vv

3
ηζ

66
1
vv

2
ηζ

66

ηζ
vv

1
1
vv

ηζ

OO

where (η, ζ) = (0, 0) corresponds to the torus invariant G-constellation defined by

Λ4.

For each Λj , there exists a unique G-iraffe Γj (see Proposition 2.6.7):

Γ1 =
{

1, z, z2, z3, z4, z5, z6
}
,

Γ2 =
{

1, z, z2, z3, z4, z5, y
}
,

Γ3 =
{

1, z, z2, z3, y2

z , y
2, y

}
,

Γ4 =
{

1, z, y3

z2 ,
y3

z ,
y2

z , y
2, y

}
,

Γ5 =
{

1, z, z
y ,

z2

y ,
z2

y2 , y
2, y

}
,

Γ6 =
{

1, z, z
y , y4, y3, y2, y

}
,

Γ7 =
{

1, y6, y5, y4, y3, y2, y
}
.

With the lattice L = Z2 + Z · 1
7(1,−1), one can show that each G-iraffe Γj satisfies

U(Γj) = SpecC[S(Γj)] = D(Γj) = Uσj , where the toric cone σj ⊂ LR is

σj = Cone
(

1
7(j − 1, r − j + 1), 1

7(j, r − j)
)
.

Moreover, the (-2)-curve Ej is the corresponding divisor to the ray vj := 1
7(j, r− j).

Let Li be the tautological line bundle of ρi, which is a direct summand of

the universal family
⊕

i∈I Li. As is stated in Section 4.4, over the toric affine open
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set U(Γj), the line bundle Li is defined by the element of weight i in Γj .

We calculate the intersection number c1(Li) · Ej . For example, consider

c1(L5) and note that

c1(L5) · Ej =



0 if j = 1,

0 if j = 2,

1 if j = 3,

−1 if j = 4,

0 if j = 5,

1 if j = 6.

The intersection matrix (c1(Li) · Ej)i,j is

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 −1 1 0

0 0 1 −1 1 0

0 0 1 −1 0 1

0 0 0 0 0 1


,

whose inverse matrix is 

1 0 0 0 0 0

0 1 0 0 0 0

0 1 −1 1 0 0

0 1 −1 1 −1 1

0 0 0 1 −1 1

0 0 0 0 0 1


. (5.1.13)

On the other hand, by (5.1.1), the open Weyl chamber C(ω) associated to

the permutation ω is the cone generated by the row vectors of the following matrix:

−1 1 0 0 0 0 0

−1 0 1 0 0 0 0

−1 0 1 −1 1 0 0

−1 0 1 −1 1 −1 1

−1 0 0 0 1 −1 1

−1 0 0 0 0 0 1


with the basis {θi}. One can see that the submatrix obtained by deleting the first
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column is the same as the matrix (5.1.13).

5.2 Chamber structures and elephants

Let G ⊂ GL3(C) be the group of type 1
r (b, 1,−1) with b coprime to r, which is the

same group as the group of type 1
r (1, a, r− a) but taking another primitive rth root

of unity. In this section, we investigate the chamber structure of the GIT parameter

space of G-constellations.

Let ρi be the irreducible representation of G whose weight is i. We can

identify I := Irr(G) with Z/rZ.

Recall the McKay quiver of G is the quiver whose vertex set is I with the 3r

following arrows:

xi : i→ i+ b,

yi : i→ i+ 1,

zi : i→ i− 1,

for each i ∈ I. The representation of the McKay quiver of G with commutation rela-

tions is the representation of the McKay quiver whose dimension vector is (1, . . . , 1)

satisfying the following relations:
xiyi+b = yixi+1,

xizi+b = zixi−1,

yizi+1 = ziyi−1.

Let A ⊂ SL2(C) be of type 1
r (1,−1) with coordinates y, z. The McKay quiver

of A is the quiver whose vertex set is I with the 2r following arrows:

yi : i→ i+ 1,

zi : i→ i− 1,

for each i ∈ I. The representation of the McKay quiver of A with commutation rela-

tions is the representation of the McKay quiver whose dimension vector is (1, . . . , 1)

satisfying the following relations:

yizi+1 = ziyi−1 for all i ∈ I.

Note that the GIT parameter space Θ of G-constellations can be identified

with

Θ =
{
θ = (θi) ∈ Qr

∣∣∣∑ θi = 0
}
,
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which is also the GIT parameter space of A-constellations. Furthermore, we have

the following proposition.

Proposition 5.2.1. Let G ⊂ GL3(C) be the finite subgroup of type 1
r (b, 1,−1) and

A ⊂ SL2(C) the finite subgroup of type 1
r (1,−1). Then the chamber structure of

the GIT parameter space of G-constellations is finer than, or equal to, that of A-

constellations.

Proof. It suffices to show that a wall of the GIT parameter space of A-constellations

is also a wall of the GIT parameter space of G-constellations.

Let θ be a stability parameter on a wall of the GIT parameter space of A-

constellations. This means that there exists a θ-semistable A-constellation F such

that it is not θ-stable, i.e. there exists a C[y, z]-submodule G with θ(G) = 0.

Note that we have a natural identification between A-constellations and G-

constellations whose x-action is zero. Thus F can be thought of as a G-constellation

and G is a C[x, y, z]-submodule of F with θ(G) = 0. As it is easy to see that F is

θ-semistable G-constellation, it proves that θ is also on a wall of the GIT parameter

space of G-constellations.

Note that the chamber structure of GIT parameter space of A-constellations

is the same as the Weyl chamber structure of Ar−1.

Conjecture 5.2.2. The chamber structure of the GIT stability parameter space Θ

of G-constellations coincides with the Weyl chamber structure of Ar−1.

Let θ be a generic element of the GIT parameter space of G-constellations.

By Proposition 5.2.1, θ is generic in the GIT parameter space of A-constellations so

there exists an open Weyl chamber C such that θ ∈ C. Let ω be the corresponding

element in Sr as in Section 5.1.

Let us consider the space of G-constellations RepG and the space of A-

constellations RepA. Consider the reductive group

GL(δ) :=
∏
i∈I

C×

acting on RepG and RepA via change of basis. The moduli space Mθ of θ-stable

G-constellations is

Mθ = Proj

⊕
n≥0

C[RepG]χnθ

 .

Let RepsG be the θ-stable locus in RepG and RepsA the θ-stable locus

in RepA. We can identify RepA with the closed subvariety of RepG defined by
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x0 = · · · = xr−1 = 0 and RepsA with the closed subvariety S̃θ of RepsG defined by

x0 = · · · = xr−1 = 0.

Since S̃θ is a GL(δ)-invariant closed set, andMθ is a geometric quotient, the

inclusion S̃θ ⊂ RepsG induces an inclusion Sθ ⊂Mθ

S̃θ
� � //

��

RepsG

��
Sθ
� � //Mθ

where Sθ is the closed subvariety of Mθ parametrising G-constellations on which x

acts trivially. Note that the variety Sθ is isomorphic to the moduli space of θ-stable

A-constellations.

Remark 5.2.3. By Proposition 5.1.6, Sθ has r torus invariant points which repre-

sent torus invariant θ-stable G-constellations. �

Let D be the hyperplane section of C3/G defined by x = 0. Then D is

isomorphic to C2/A and has an Ar−1 singularity as in Section 3.4. Since M0 is

isomorphic to C3/G by Proposition A.0.1, we have the following diagram

Sθ
� �

codim.1
//

��

Yθ
� �

irr.
//

��

Mθ

��
D �
�

codim.1
// C3/G M0

where the vertical morphisms are the canonical projective morphisms induced by

GIT quotients. As is known (see e.g. [1]), the morphism Sθ → D is the minimal

resolution of D.

5.3 Irreducibility for type 1
2k+1(1, 2, 2k − 1)

In this section, we prove Conjecture 4.3.3 for the group of type 1
2k+1(1, 2, 2k − 1)

with a parameter θ in the admissible GIT chamber Ca ⊂ Θ. This can be proved by

finding all θ-stable torus invariant G-constellations for θ ∈ Ca.

Throughout this section, let G ⊂ GL3(C) be the finite subgroup of type
1

2k+1(k + 1, 1, 2k), which is the same type as the type of 1
2k+1(1, 2, 2k − 1). Thus

r = 2k + 1, a = 2, and set b := k + 1.

Warning 5.3.1. Throughout this section, we consider the finite subgroup of type
1

2k+1(k + 1, 1, 2k) so that the weight of y is 1 and that the weight of z is 2k. The
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results in previous sections can be easily transferred to this notation. �

5.3.1 G-iraffes

In this section, we present all G-iraffes using the method in Section 4.1.

Consider the lattice L = Z3 + Z · 1
r (1, 2, r − 2). For each 0 ≤ i ≤ r, let vi be

the lattice point 1
r (ib, i, r − i). Consider the toric fan Σ of the economic resolution

Y of X = C3/G. In the fan Σ, we have the following 2r − 1 full dimensional cones:
σi = Cone(e1, vr−i+1, vr−i) for 1 ≤ i ≤ r,

σ4i = Cone(v2i−1, v2i−2, v2i) for 1 ≤ i ≤ k,

σ5i = Cone(e2, v2i−2, v2i) for 1 ≤ i ≤ k.

Proposition 5.3.2. With the notation as above, let Γl, Γ4i , and Γ5i be the G-iraffes

corresponding to the cones σl, σ
4
i , and σ5i , respectively. Then the following hold:

(i) Γ1 =
{

1, z, z2, . . . , z2k
}

.

(ii) Γl =

{
1, z, . . . , zk−i, y, . . . , yi−1, yi

yi+1

zk−i
, yi+1

zk−i−1 , . . . , y
i+1, y

i+2

zk−i
, . . . , y

l−1

zk−i

}
, if l = 2i+ 1 is odd.

(iii) Γl =

 1, z, . . . , zk−i, y, . . . , yi−1, yi

zk−i+1

yi−1 , z
k−i+1

yi−2 , . . . , zk−i+1, z
k−i+2

yi−1 , . . . , z
2k−2i+1

yi−1

, if l = 2i is even.

(iv) Γ4i =

{
1, z, . . . , zi−1, y, . . . , yk−i−1, yk−i

x, xz, . . . , xzi−1, xy, . . . , xyk−i−1

}
.

(v) Γ5i =

{
1, z, . . . , zi−1, x2, . . . , x2k−2i+1, x2k−2i+2

x, xz, . . . , xzi−1

}
.

Proof. For k = 1, G-iraffes are in Example 4.1.3. Using round down functions,

induction on k proves the assertion.

Remark 5.3.3. Note that the G-iraffes Γ4i and Γ5i are Nakamura’s G-graphs. �

5.3.2 The admissible chamber

In this section, we explicitly express the admissible chamber for the group G of type
1

2k+1(k + 1, 1, 2k).
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Let

{
εLl
∣∣ l = 0, 1}, {εRk

∣∣ k = 0, 1, . . . , 2k − 2
}

be the standard basis of Q2 and Q2k−1, respectively. Assume that ∆L and ∆R are

the admissible set of simple roots for type 1
2(1, 1, 1) and 1

2k−1(k, 1, 2k − 3). Let the

standard basis
{
εi
∣∣ i ∈ I} of Q2k+1 be identified with the union of the two sets

{
εLl
∣∣ l = 0, 1} and {εRk

∣∣ k = 0, 1, . . . , 2k − 2
}

using the following identification:

εLl = εi with i =
⌈
r(l+1)

2

⌉
− 1, for r − 2 ≤ i < r,

εRj = εi with i =
⌊
rj
r−a

⌋
, for 0 ≤ i < r − 2.

(5.3.4)

With this identification, the admissible set ∆ of simple roots is

∆ = ∆L ∪ {εb r
2
c − εr−d r

r−2
e} ∪∆R. (5.3.5)

Remember that the root αi = εi− εi−1 is considered as the dimension vector for the

vertex i of the McKay quiver representations.

Proposition 5.3.6. For the group of type 1
2k+1(k + 1, 1, 2k), the admissible set ∆a

of simple roots is

∆a = {ε2k − εk, εk − ε2k−1, ε2k−1 − εk−1, . . . , εk+1 − ε1, ε1 − ε0}

and the corresponding permutation ω is

ω =

(
0 1 2 3 4 . . . 2k − 2 2k − 1 2k

0 1 k + 1 2 k + 2 . . . 2k − 1 k 2k

)
, (5.3.7)

i.e.

ω(l) =


0 if l = 0,

l+1
2 if l is odd,

k + l
2 otherwise,

for l ∈ I = {0, 1, 2, . . . , 2k − 1, 2k}.

Proof. We use induction on k. If k = 1, then the admissible set of simple roots is
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{ε2 − ε1, ε1 − ε0}. Suppose that the assertion is true for k − 1. Then

∆L = {εL1 − εL0 },

∆R = {ε2k−2 − εk−1, εk−1 − ε2k−3, . . . , εk − ε1, ε1 − ε0}.

From (5.3.4) and (5.3.5), it follows that the admissible set of simple roots is

∆a = {ε2k − εk, εk − ε2k−1, ε2k−1 − εk−1, . . . , εk+1 − ε1, ε1 − ε0} .

Comparing this with the fundamental set of simple roots

∆+ = {ε2k − ε2k−1, ε2k−1 − ε2k−2, . . . , εk+1 − ε1, ε1 − ε0} ,

we can see that the corresponding permutation ω is

ω =

(
0 1 2 3 4 . . . 2k − 2 2k − 1 2k

0 1 k + 1 2 k + 2 . . . 2k − 1 k 2k

)
.

Remark 5.3.8. Note that the ith ray of the admissible chamber is

i−1∑
j=0

(
θω(j)+1 − θω(j)

)
, (5.3.9)

where {θi}r−1
i=1 is the dual basis with respect to {αi}r−1

i=1 . �

5.3.3 Torus invariant G-constellations

Let θ be a generic parameter in the admissible chamber Ca. Let F be a θ-stable

torus invariant G-constellation. Let xi, yi, zi denote the action of x, y, z on the vector

space Cρi, respectively.

Recall Lemma 2.6.4 says that if F is a torus invariant G-constellation, then

there is no defined (undirected) cycle of type m with m 6= 1.

Remark 5.3.10. Since yz is a G-invariant monomial, any path induced by yz in

any torus invariant G-constellation F is zero. In other words, if yi is nonzero in F ,

then zi+1 is zero; if zi is nonzero in F , then yi−1 is zero. �

We have two cases: (1) x0 = 0: (2) x0 6= 0.
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Case x0 = 0.

Assume that x0 = 0, i.e. x acts on Cρ0 trivially. In this case, if we prove that xi = 0

for all i, then it follows that the G-constellation F is in the list of Proposition 5.3.2

from the discussion in Section 5.1. We now prove that we have at most r θ-stable

torus invariant G-constellations.

1st case: Suppose that y0 = 0. From (5.3.9), note that the first ray of the

admissible chamber is

0∑
j=0

(
θω(j)+1 − θω(j)

)
= θ1 − θ0,

which means that there exists a nonzero path from ρ0 to ρ1 in F . However, since

x0 = y0 = 0, the only possible nonzero path from ρ0 to ρ1 is induced by z2k. Thus

for each ρi, we have a nonzero path from ρ0 to ρi induced by z2k−i. From this

and Remark 2.6.3, it follows that xi = yi = 0 in F for all i. Therefore F is the

G-constellation corresponding to Γ1 in the list of Proposition 5.3.2.

2nd case: Suppose that y0 6= 0 and y1 = 0. From (5.3.9), note that the

second ray of the admissible chamber is

1∑
j=0

(
θω(j)+1 − θω(j)

)
= θ1 − θ0 + θ2 − θ1 = θ2 − θ0,

which means that there exists a nonzero path p from ρ0 to ρ2 in F . Suppose that

the path p is induced by a monomial m = xαyβzγ . From x0 = 0, it follows that

α = 0. By Remark 5.3.10, one can see that either β or γ is zero. In fact, if γ = 0,

then the path p is induced by y2 so p = y0y1 is nonzero, which contradicts the

assumption y1 = 0. Thus p is induced by z2k−1. Then F is the G-constellation

corresponding to Γ2 in the list of Proposition 5.3.2.

(l + 1)th case: Suppose that yω(0), yω(1), . . . , yω(l−1) 6= 0 and yω(l) = 0 for

2 ≤ l ≤ 2k−2. From x0 = 0 and y0 6= 0, we have x1 = 0 because y0x1 = x0yk+1 = 0.

From (5.3.9), note that the (l + 1)th ray of the admissible chamber is

l∑
j=0

(
θω(j)+1 − θω(j)

)
= θω(l)+1 + θω(l−1)+1 − θk+1 − θ0.

We have two cases: (A) l is odd: (B) l is even:
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Case (A) 3 ≤ l is odd. In this case, ω(l) = l+1
2 and ω(l − 1) = k + l−1

2 .

Thus we have y l+1
2

= 0 and yk+1 6= 0 so zk+2 = 0. The (l+1)th ray of the admissible

chamber is

θ1+ l+1
2

+ θk+ l+1
2
− θk+1 − θ0.

This means that there are two nonzero paths p, q such that either (1) one is from

ρ0 to ρk+ l+1
2

and the other one is from ρk+1 to ρ1+ l+1
2

, or (2) one is from ρk+1 to

ρk+ l+1
2

and the other one is from ρ0 to ρ1+ l+1
2

. One can show that (2) cannot happen

as follows: suppose p is the nonzero path from ρ0 to ρ1+ l+1
2

, which is induced by a

monomial xαyβzγ with α = 0 due to x0 = 0; if p is induced by yβ, then it contradicts

the assumption that y l+1
2

= 0; if p is induced by zγ , then it contradicts the fact that

zk+2 = 0 since l+1
2 < k. Let p be the nonzero path from ρ0 to ρk+ l+1

2
. Since x0 = 0

and y l+1
2

= 0, we know that p is induced by zγ . One can see that

γ = 2k + 1−
(
k + l+1

2

)
= k + 1− l+1

2 .

Let q be the nonzero path from ρk+1 to ρ1+ l+1
2

, which is induced by a monomial

xαyβzγ . Firstly, since y l+1
2

= 0, we have β = 0; otherwise, from the following

diagram

k + 1
xαyβ−1zγ // l+1

2

y //1 + l+1
2 ,

it contradicts the assumption that q is nonzero. Secondly, since x1 = 0, we have

α ≤ 1. If α = 1, then it follows that γ = 0 from the fact that z1 = 0 so any path

induced by xz from ρk+1 is zero. Therefore we get that the path q is induced by

zγ . One can check that if any xi 6= 0, then there exists a defined (undirected) cycle

of type m with m 6= 1. Thus xi = 0 for all i, and therefore F is the G-constellation

corresponding to Γl+1 in the list of Proposition 5.3.2.

Case (B) 2 ≤ l ≤ 2k−2 is even. In this case, ω(l) = k+ l
2 and ω(l−1) = l

2 .

Thus we have yk+ l
2

= 0 and yk+1 6= 0 so zk+2 = 0. The (l+1)th ray of the admissible

chamber is

θk+1+ l
2

+ θ1+ l
2
− θk+1 − θ0.

This means that there are two nonzero paths p, q such that either (i) one is from

ρ0 to ρk+1+ l
2

and the other one is from ρk+1 to ρ1+ l
2
, or (ii) one is from ρk+1 to

ρk+1+ l
2

and the other one is from ρ0 to ρ1+ l
2
. One can show that (ii) cannot happen

as follows: suppose p is the nonzero path from ρk+1 to ρk+1+ l
2
, which is induced by

a monomial xαyβzγ with α ≤ 1 due to x1 = 0; if α = 1, then γ = 0 because z1 = 0

so the path induced by xz from ρk+1 is zero; if p is induced by yβ or xyβ, then it
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contradicts the assumption that yk+ l
2

= 0; if p is induced by zγ , then it contradicts

the fact that z1 = 0. Let p be the nonzero path from ρ0 to ρk+1+ l
2
. We know that

p is induced by zγ as x0 = 0 and yk+ l
2

= 0. One can see that

γ = 2k + 1−
(
k + 1 + l

2

)
= k − l

2 .

Let q be the nonzero path from ρk+1 to ρ1+ l
2
, which is induced by a monomial

xαyβzγ . Firstly, note that α ≤ 1 because x1 = 0. For a contradiction, suppose that

α = 1. Then we have γ = 0 since z1 = 0 so that any path induced by xz from ρk+1

is zero. Note that β < l
2 because yk+ l

2
= 0. Thus xyβ cannot induce a nonzero path

from ρk+1 to ρ1+ l
2
. Therefore, α = 0 and we can see that the path q is induced by

zγ with γ = k − l
2 . One can check that if any xi 6= 0, then there exists a defined

(undirected) cycle of type m with m 6= 1. Thus xi = 0 for all i, and therefore F is

the G-constellation corresponding to Γl+1 in the list of Proposition 5.3.2.

2kth case: Suppose that yω(0), yω(1), . . . , yω(2k−2) 6= 0 and yω(2k−1) = 0.

Note that 2kth ray of the admissible chamber is

2k−1∑
j=0

(
θω(j)+1 − θω(j)

)
= θ2k − θ0,

which means that there exists a nonzero path p from ρ0 to ρ2k in F . Since x0 = 0

and yω(2k−1) = 0, the path p is induced by the monomial z. One can see that F is

the G-constellation corresponding to Γ2k in the list of Proposition 5.3.2.

(2k + 1)th case: Suppose that yω(0), yω(1), . . . , yω(2k) 6= 0. Then F is the

G-constellation corresponding to Γ2k+1 in the list of Proposition 5.3.2.

Case x0 6= 0.

Since F is generated by ρ0 and ρk+1 by Proposition 4.2.13, if x0 6= 0, then F is

generated by ρ0. Assume that x0 6= 0. Then F is a torus invariant G-cluster, i.e. F
is given by a monomial ideal I. The monomials which are not in I form Nakamura’s

G-graph. In Appendix C, we find all Nakamura’s G-graphs Γ under the assumption

x0 6= 0, i.e x ∈ Γ; this also completes the irreducibility of the moduli space Mθ.

Since F is generated by ρ0, for each ρi, there exists a nonzero path from ρ0

to ρi. Moreover, we have three simple observations: (i) the path yk+1 from ρ0 to

ρk+1 is zero; otherwise there is a nonzero defined cycle of type x
yk+1 around ρ0 as
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the following diagram:

ρ0
x //ρk+1 ρ0 :

yk+1
oo

(ii) any path induced by x2z is zero because x2z is a G-invariant monomial: (iii)

if y0 6= 0, then xk+1 is zero; otherwise there is a nonzero defined cycle of type x2

y

around ρ0 as the following diagram:

ρ0
x //ρk+1

x //ρ1 ρ0.
yoo

1st case: Suppose that z0 = 0. Note that there exist nonzero paths p from

ρ0 to ρ2k and q from ρ0 to ρk. We have two possible cases: (A) y0 = 0: (B) y0 6= 0:

Case (A) y0 = 0. Since y0 = z0 = 0, the path q is induced by x2k.

Therefore one can see that F is the G-constellation corresponding to Γ51 in the list

of Proposition 5.3.2.

Case (B) y0 6= 0. Observe that xk+1 = 0. Assume that the path p is

induced by xαyβzγ . Since z0 = 0 and xk+1 = 0, one can see that α ≤ 1, γ = 0,

and β ≤ k. From considering the weight of monomials, it follows that the only one

possible solution is xyk−1. In a similar way, the only one possible solution for q is

yk. One can see that F is the G-constellation corresponding to Γ41 in the list of

Proposition 5.3.2.

2nd case: Suppose that z0 6= 0 and z2k = 0. Thus the path induced by z2

from ρ0 is zero. We have two possible cases: (A) y0 = 0: (B) y0 6= 0:

Case (A) y0 = 0. Note that there exists a nonzero path q from ρ0 to ρk.

Assume that the nonzero path q is induced by xαyβzγ . Note that β = 0 because

y0 = 0. From the fact that any path induced by z2 or x2z is zero, it follows that γ ≤ 1

and that the only one possible solution is x2k−1. Therefore F is the G-constellation

corresponding to Γ52 in the list of Proposition 5.3.2.

Case (B) y0 6= 0. Observe that xk+1 = 0 and that there exists a nonzero

path p from ρ0 to ρ2k−1. Assume that the path p is induced by xαyβzγ . Since

α ≤ 1 and γ ≤ 1, the only solution is xyk−2. Note that the (2k − 1)th ray of the

admissible chamber is

θk+1+ 2k−2
2

+ θ1+ 2k−2
2
− θk+1 − θ0 = θ2k + θk − θk+1 − θ0,

91



which means that there is a nonzero path from ρk+1 to ρk or ρ2k. One can show

that there are no nonzero paths from ρk+1 to ρ2k as follows: otherwise, since we

have a nonzero path induced by z from ρ0 to ρ2k, we have a nonzero defined cycle

around ρ0 as the following diagram:

ρ0
x //ρk+1

nonzero //ρ2k ρ0.
zoo

Thus we have a nonzero path q induced by xα
′
yβ
′
zγ
′
from ρk+1 to ρk. Since xk+1 = 0

and β′ ≤ k, it follows that α′ = 0 so the only possible solution is z. For a nonzero

path from ρ0 to ρk−1, one can see that the path is induced by yk−1. Therefore F is

the G-constellation corresponding to Γ42 in the list of Proposition 5.3.2.

(l + 1)th case: Suppose that z0, z2k, . . . , z2k+2−l 6= 0 and z2k+1−l = 0 for

2 ≤ l ≤ k − 1. Note that the (2k + 1− 2l)th ray of the admissible chamber is

θk+1+ 2k−2l
2

+ θ1+ 2k−2l
2
− θk+1 − θ0 = θ2k+1−l + θk+1−l − θk+1 − θ0,

which means that there is a nonzero path from ρk+1 to ρk+1−l or ρ2k+1−l. One can

show that there are no nonzero paths from ρk+1 to ρ2k+1−l as follows: since we have

a nonzero path induced by zl from ρ0 to ρ2k+1−l, if so, we have a nonzero defined

cycle around ρ0 as the following diagram:

ρ0
x //ρk+1

nonzero //ρ2k+1−l ρ0.
zloo

Let q be a nonzero path from ρk+1 to ρk+1−l induced by xα
′
yβ
′
zγ
′
. It follows that

the only possible solution is zl from the fact that x2z is G-invariant and that β′ ≤ k.

Let p be a nonzero path from ρ0 to ρ2k−l induced by xαyβzγ . We have two possible

cases: (A) y0 = 0: (B) y0 6= 0:

Case (A) y0 = 0. Since y0 = 0, we have β = 0 and hence the only possible

solution is x2k−2l by the fact that x2z is G-invariant. One can see that F is the

G-constellation corresponding to Γ5l+1 in the list of Proposition 5.3.2.

Case (B) y0 6= 0. Note that in this case xk+1 = 0 so α ≤ 1. Since γ ≤ l,

the only solution is xyk−l−1. For a nonzero path from ρ0 to ρk−l, one can see that

the path is induced by yk−l. Therefore F is the G-constellation corresponding to

Γ4l+1 in the list of Proposition 5.3.2.

Throughout this section, we have proved the following theorem.
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Theorem 5.3.11. Let G ⊂ GL3(C) be the group of type 1
2k+1(k + 1, 1, 2k) and θ

a generic parameter in the admissible chamber Ca. Then we have at most 2k + 1

torus invariant G-constellations. Therefore, the moduli space Mθ of θ-stable G-

constellations is irreducible and isomorphic to the economic resolution of X = C3/G.

Proof. By Section 5.3.1, we already know that there exist 2k + 1 θ-stable G-iraffes.

Thus we have at least 2k+1 torus invariant G-constellations lying over the birational

component. From Remark 4.1.9, it follows that Yθ =Mθ.

5.4 Irreducibility for type 1
12(1, 7, 5)

In this section, we show that for the group of type 1
12(1, 7, 5) ∼ 1

12(7, 1, 11), the mod-

uli spaceMθ is irreducible by finding all θ-stable torus invariant G-constellations for

GIT parameter θ ∈ Ca. As is in the previous section, we use 1
r (b, 1, r − 1) notation.

Let G ⊂ GL3(C) be the finite subgroup of type 1
12(7, 1, 11). One can see that

G-invariants monomials are generated by

x12, x5y, x3y3, xy5, y12, x7z, x2z2, xz7, z12.

Table 5.4.1 presents the monomials of weight i.

Weight Monomials

1 x7, y, x2z, xz6, z11

2 x2, y2, xz5, z10

3 x9, x2y, y3, x4z, xz4, z9

4 x4, x2y2, y4, xz3, z8

5 x11, x4y, x2y3, y5, x6z, xz2, z7

6 x6, x4y2, x2y4, y6, xz, z6

7 x, y7, z5

8 x8, xy, y8, x3z, z4

9 x3, xy2, y9, z3

10 x10, x3y, xy3, y10, x5z, z2

11 x5, x3y2, xy4, y11, z

Table 5.4.1: Monomials of weight i for G = 1
12(7, 1, 11)

The list of G-iraffes is in Table 4.5.1. In this section, we prove that θ-stable

torus invariant G-constellations are all induced by G-iraffes.

We recall the admissible Weyl chamber for the group of type 1
12(7, 1, 11) (see
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Section 4.5.2). The admissible set of simple roots is

∆a =

{
ε11 − ε6, ε6 − ε10, ε10 − ε5, ε5 − ε8, ε8 − ε3, ε3 − ε1,

ε1 − ε9, ε9 − ε4, ε8 − ε7, ε7 − ε2, ε2 − ε0

}
,

and the corresponding permutation ω is

ω =

(
0 1 2 3 4 5 6 7 8 9 10 11

0 2 7 4 9 1 3 8 5 10 6 11

)
.

From this, the rays of the admissible chamber Ca are the row vectors of the following

matrix: 

−1 1 0 0 0 0 0 0 0 0 0 0

−1 1 −1 1 0 0 0 0 0 0 0 0

−1 1 −1 1 0 0 0 −1 1 0 0 0

−1 1 −1 1 −1 1 0 −1 1 0 0 0

−1 1 −1 1 −1 1 0 −1 1 −1 1 0

−1 0 0 1 −1 1 0 −1 1 −1 1 0

−1 0 0 0 0 1 0 −1 1 −1 1 0

−1 0 0 0 0 1 0 −1 0 0 1 0

−1 0 0 0 0 0 1 −1 0 0 1 0

−1 0 0 0 0 0 1 −1 0 0 0 1

−1 0 0 0 0 0 0 0 0 0 0 1



. (5.4.1)

Let F be a θ-stable torus invariant G-constellation. Recall that for a genuine

monomial m, m(i) denotes the linear map corresponding to the path from ρi induced

by m.

We have two cases: (I) x0 = 0: (II) x0 6= 0.

Case (I) x0 = 0.

Let l be the smallest integer such that the linear map yω(l) is zero. For each l, the

torus invariant G-constellation F corresponds to the G-iraffe of σl+1 in Table 4.5.1.

As an example, we consider the case where l = 0, 3, 7, 11. For the other cases,

one can show the assertion by considering (l+ 1)th row vector of the matrix (5.4.1)

in a similar manner.

Case l = 0. This means that y0 = 0. Since the first row of the matrix is θ1 − θ0,

there exists a nonzero path from ρ0 to ρ1; otherwise, the submodule of F generated

by ρ0 is negative with respect to the first row. From the assumption that x0 = y0 =
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0, the path is induced by z11 because the x,y-actions at ρ0 are zero. One can see

that F is given by the G-iraffe corresponding to σ1 in Table 4.5.1.

Case l = 3. This means that y0, y2, y7 6= 0 and that y4 = 0. Since the fourth row

of the matrix (5.4.1) is

θ8 + θ5 + θ3 + θ1 − θ7 − θ4 − θ2 − θ0,

there exists a nonzero path p from ρ4 to one of ρ1, ρ3, ρ5 or ρ8; otherwise, F has

a submodule which is negative with respect to the vector above. Firstly, note that

x1 = 0 by y0x1 = x0y7 and that z1 = z3 = 0, by y0, y2 6= 0; otherwise, F has a

nonzero cycle around ρ2 induced by yz. From this, it follows that any paths from

ρ4 induced by y, x4, x3z, z2 are zero: indeed, one can see that an arrow of each path

is zero;

y4 = x4x11x6x1 = x4x11x6z1 = z4z3 = 0.

From Table 5.4.1, the nonzero path p is induced by x3 or z.

For a contradiction, suppose that z4 = 0. Then p is induced by x3, so x4x11x6

is nonzero. Thus z0 is zero; otherwise, it contradicts that z0x11 = x0z7 = 0. Then

nonzero paths from ρ0 to ρ5 or ρ8 cannot exist. Thus there exists a nonzero path

from ρ2 to ρ5 or ρ8. By considering all possible monomials of suitable weights, it

contradicts the fact that any paths from ρ2 induced by x6, x2y, y3, xz, z2 are zero.

Considering the row vector above, we know that there exists a nonzero path

from ρ2 to ρ1, which is induced by x5 or z. For a contradiction, suppose that the

path is induced by x5. Since x2x9x4x11x6 is nonzero, it follows that x2x9z4 = z2x1x8

is nonzero, which contradicts that x1 = 0. Thus z2 is nonzero and x5 is zero.

Consider the vertex ρ7. We have a nonzero path q from ρ7 to ρ5 because

there are no nonzero paths from ρ0 to ρ5. Note that any paths from ρ7 induced

by x3y, y10, z5, x7 are zero. Moreover, paths induced by x2z are zero; otherwise, we

have the following nontrivial undirected cycle around ρ7:

ρ7
y //ρ8 ρ7.

x2zoo

Thus q is induced by z2.

Lastly, one can see that we have a nonzero path from ρ0 to ρ8 induced by z4.

Therefore, F is given by the G-iraffe corresponding to σ4 in Table 4.5.1.
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Case l = 7. Thus we have that y0, y2, y7, y4, y9, y1, y3 6= 0 and that y8 = 0. Then

x0 = x1 = x2 = x3 = x4 = 0. Consider the eighth row vector of the matrix (5.4.1):

θ10 + θ5 − θ7 − θ0.

Then there exists a nonzero path p from ρ7 to one of ρ5 or ρ10. As any paths from

ρ7 induced by x2, y2, z3 are zero, one can see that p is induced by z2. Moreover, we

have the nonzero path induced by z2 from ρ0 to ρ10. Therefore, F is given by the

G-iraffe corresponding to σ8 in Table 4.5.1.

Case l = 11. As by the assumption we have that y11 induces a nonzero path from

ρ0 to ρ11, F is given by the G-iraffe corresponding to σ12 in Table 4.5.1.

Case (II) x0 6= 0.

As x0 6= 0, the paths induced by y7, z5 from ρ0 to ρ7 are zero. Considering the first

and the last row vectors of the matrix (5.4.1), we know that there exist a nonzero

path from ρ0 to ρ1 and a nonzero path from ρ0 to ρ11. The former can be induced

by x7, y, x2z and the latter can be induced by x5, x3y2, xy4, z. We have the following

five cases:

(1) x0 6= 0 and x7 = 0.

(2) x0, x7 6= 0 and x2 = 0.

(3) x0, x7, x2 6= 0 and x6 = 0.

(4) x0, x7, x2, x6 6= 0 and x1 = 0.

(5) x0, x7, x2, x6, x1 6= 0.

Case (1) x0 6= 0 and x7 = 0.

Since the path x2
(0) induced by x2 from ρ0 is x0x7, it is zero. As we have a nonzero

path ρ0 to ρ1, y0 is nonzero.

We have the following five cases (1-A)-(1-E):

(1-A) y2 = 0.

(1-B) y2 6= 0 and y4 = 0.

(1-C) y2, y4 6= 0 and y3 = 0.
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(1-D) y2, y4, y3 6= 0 and y5 = 0.

(1-E) y2, y4, y3, y5 6= 0 and y6 = 0.

All of (1-A),(1-B),(1-C),(1-D),and (1-E) give G-constellations corresponding to the

G-iraffes corresponding to τ2, τ3, τ6, τ7, and τ9, respectively.

As examples, we investigate Case (1-B) and Case (1-D).

Case (1-B) y2 6= 0 and y4 = 0. By the assumption, we have that any paths

from ρ0 induced by x2, y5, z5 are zero. Note that any paths from ρ0 induced by

xy4 are zero; otherwise, the submodule generated by ρ4 is supported on ρ4, ρ10 as

y4, z4, y10, z10, x10 are zero, so it is negative with respect to the fourth row of the

matrix (5.4.1). Considering the eleventh row vector, we know that z0 is nonzero.

Furthermore, as θ(ρ4) is negative, the path induced by y4 from ρ0 is zero.

Considering the eighth row vector θ5 + θ10− θ7− θ0, we have a nonzero path

from ρ7 to ρ10 or ρ5. The monomials that can induce a path from ρ7 to ρ10 are

x9, x2y, y3, x4z, xz4, z9,

which induce zero paths at ρ7. The only possible solutions are the nonzero paths

from ρ7 induced by z2, y3. If z2
(7) is zero, then we have a nonzero path from ρ0 to

ρ5. This implies that xz2
(0) is nonzero, which contradicts to that z2

(7) is zero. Thus

z2
(7) is nonzero, and z7, z6, z11 are nonzero. From this, we know that the path xy3

(0)

is zero because xy3 is of the same weight as z2, which induces nonzero path from

ρ0.

Consider the third row vector θ1 + θ3 + θ8 − θ7 − θ2 − θ0. Suppose that y7 is

zero. Then it follows that x1 is zero and that there exist no nonzero paths from ρ0 or

ρ7 to ρ8. Thus the nonzero path induced by z4 from ρ7 is nonzero. As x7 is zero, x3

is zero. Moreover, we have a nonzero path from ρ2 to ρ8, which can be induced by

x6, x4y2, x2y4, y6, xz, z6. Note that paths induced by x6, x4y2, x2y4, y6, xz, z6 from

ρ2 are zero because:

x2x9x4x11x6x1 = y2x3 = y2y3y4 = z2x1 = z2z1 = 0,

which is a contradiction. Thus y7 is nonzero. Furthermore, as θ(ρ9) is negative, the

path xy2
(0) is zero because x2y2

(0) and xy3
(0) are zero. In addition, from the fact that

θ(ρ4), θ(ρ9) are negative, it follows that z3
(0) is zero.

Note that z4 is nonzero; otherwise, there are no nonzero arrows from ρ4 so

the vertex simple Cρ4 is a submodule of F with θ(ρ4) < 0. As z4, x10 are nonzero
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and x8, y4 are zero, we have x9, y9 are zero, and hence z9 6= 0 because θ(ρ9) < 0.

Similarly, as y9 is zero, from that

y2x3 = x2y9, z4x3 = x4z11,

we have x3 = x4 = 0. We know that z2 or x2 is nonzero, by considering the fourth

row vector θ1 + θ3 + θ5 + θ8− θ7− θ4− θ2− θ0. As z9, x1 are nonzero, it follows that

both z2, x2 are nonzero from the fact that x2z9 = z2x1.

One can see that F corresponds to the G-iraffe of τ3 in Table 4.5.1.

Case (1-D) y2, y4, y3 6= 0 and y5 = 0. As x0 6= 0, y5 = 0, x7 = 0, the paths

x2
(0), y

5
(0), z

5
(0) from ρ0 are zero. Considering the tenth row vector θ6 +θ11−θ7−θ0 of

the matrix (5.4.1), we know that there exists a nonzero path from one of ρ0 or ρ7 to

ρ6. In both cases, F contains a nonzero path from one of ρ0 to ρ6 as x0 is nonzero.

The monomials which can induce the nonzero path are x6, x4y2, x2y4, y6, xz, z6. Note

that only xz can induce a nonzero path as the paths x2
(0), y

5
(0), z

5
(0) are zero. In

addition, one can see that x6 is zero; otherwise, x0x7z7 = x0z7x6 is nonzero, which

contradicts x7 = 0.

Consider the sixth row vector of the matrix (5.4.1):

θ3 + θ5 + θ8 + θ10 − θ9 − θ7 − θ4 − θ0.

Thus F has a nonzero path coming to ρ3 from one of ρ0, ρ4, ρ7, ρ9. Considering

all possible monomials at each vertex, one can see that we have only one possible

nonzero path induced by y3 from ρ0; for example, x5, x3y2, xy4, y11, z can induce a

path from ρ4 to ρ3; the paths from ρ4 induced by x5, y2, z are zero because x6, y5, z4

are zero. From the fact that y3, y4 are nonzero, it follows that the path y5
(0) is

nonzero.

We now show y3
(7) is nonzero. Note that there are no nonzero paths ρ7 to ρ5;

otherwise, we have the following nonzero cycle:

ρ0
x //ρ7

nonzero //ρ5 ρ0.
y5

oo

Consider the eighth row vector of the matrix (5.4.1):

θ10 + θ5 − θ7 − θ0.

Thus F contains a nonzero path from ρ7 to ρ10. The monomials which can induce
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the path are the monomials of weight 3:

x9, x2y, y3, x4z, xz4, z9.

Note that as xz2 is of the same weight as y5, the fact that y5
(0) is nonzero implies

that xz2
(0) is zero. Thus the nonzero path from ρ7 to ρ10 is induced by y3. One can

see that F is the torus invariant G-constellation associated with the G-iraffe of τ7

in Table 4.5.1.

Case (2) x0, x7 6= 0 and x2 = 0.

We have the following two cases: (2-A) y0 = 0: (2-B) y0 6= 0. These cases (2-A) and

(2-B) give G-constellations corresponding to τ1 and τ5 in Table 4.5.1, respectively.

Here we show that there is a G-iraffe giving F for Case (2-B).

Case (2-B) y0 6= 0. As x2
0 = x0x7 is nonzero, y1 = 0. One can see that the

monomials x3, y2, x2z, z5 induce zero paths from ρ0 and that there are no nonzero

paths from ρ2 to ρ1: otherwise we have a nonzero cycle. Firstly, z0 is nonzero by the

eleventh row vector of the matrix (5.4.1). Secondly, considering the 3rd row vector

θ1 + θ+θ8 − θ7 − θ2 − θ0

of the matrix (5.4.1), we can see that there exists a nonzero path from ρ2 to one of

ρ1, ρ3,ρ8. One can show that any paths from ρ2 induced by monomials of weight 6

are zero because x2 = z2 = y2y3 = 0. Thus we have a nonzero path from ρ2 to ρ3.

The monomial y only can induce a nonzero path from ρ2 to ρ3. From this, we have

that x1, y7, x8, y2 are nonzero and that x3 is zero, so the paths z4
(0) and xz4

(0) are

zero. From this, by the negativeness of θ(ρ4) and θ(ρ9), we can see that the paths

z3
(0) and xz3

(0) are zero. Indeed, if xz3
(0) is nonzero, then we can see that Cρ4 is a

submodule of F . By a similar reason, we can see that the paths z3
(0) is zero.

Consider the eighth row vector of the matrix (5.4.1):

θ10 + θ5 − θ7 − θ0.

There exists a nonzero path going to ρ5 from one of ρ0, ρ7. In both cases, we have

a nonzero path from ρ0 to ρ7 as x0 is a nonzero arrow from ρ0 to ρ7. Among the

monomials of weight 5, the monomial xz2 only can induce a nonzero path from ρ0.

In particular, z11, x10 are nonzero.

As x4z11 = z4x3 = 0, we have that x4 = 0. Since θ(ρ9) is negative, at
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least one of x9, y9, z9 is nonzero, which implies that x9 is nonzero; if x9 = 0, then

y9 = z9 = 0 because x9z4 = z9x8 and x9y4 = y9x10.

Let us consider the fifth row vector

θ1 + θ3 + θ5 + θ8 + θ10 − θ9 − θ7 − θ4 − θ2 − θ0.

As there exist no nonzero paths from ρ2 to any of ρ1, ρ5, ρ8, ρ10, there exists a nonzero

path p from ρ4 to one of ρ1, ρ5, ρ8, ρ10. Note that z2
(4), y

2
(4) are zero as z3 = 0 and

y5 = 0, respectively. The following monomials can induce p:

x3, xy2, y9, z3, x7, y, x2z, xz6, z11, x4, x2y2, y4, xz3, z8, x6, x4y2, x2y4, y6, xz, z6.

The monomial y only can induce the nonzero path p, so y4 is nonzero. From the

fact that x9y4 = y9x10, it follows that y9 is nonzero. In addition, if z4 is nonzero,

then we have the following nonzero cycle:

ρ4
z //ρ3 ρ7

z2
//xyoo ρ5 ρ4.

yoo

Case (3) x0, x7, x2 6= 0 and x6 = 0.

We have the following two cases: (3-A) y0 = 0: (3-B) y0 6= 0. In these cases, in a

similar way to Case (2), it can be proved that (3-A) and (3-B) give G-constellations

corresponding to τ4 and τ8 in Table 4.5.1, respectively.

Case (4) x0, x7, x2, x6 6= 0 and x1 = 0.

In a similar manner to Case (2), we can show that this case corresponds to the cone

τ10 in Table 4.5.1.

Case (5) x0, x7, x2, x6, x1 6= 0.

In a similar way as above, one can show that this case corresponds to the cone τ0

in Table 4.5.1.

Conclusion.

We have seen that for the finite group G of type 1
12(7, 1, 11) and a parameter θ

in the admissible chamber C, there exist exactly 23 θ-stable torus invariant G-

constellations. By Remark 4.1.9, we have shown that Mθ is irreducible, so Mθ

is isomorphic to the economic resolution of C3/G.
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Appendix A

M0 is irreducible for

G = 1
r(1, a, r − a)

Let G be the finite subgroup of GL3(C) of type 1
r (1, a, r − a) and X the quotient

space C3/G. Consider the moduli space M0 of 0-semistable G-constellations for

0 = (0, . . . , 0). By definition,

M0 = SpecC[RepG]GL(δ)

parametrises 0-semistable G-constellations up to S-equivalence. Note that every

G-constellation is 0-semistable.

Recall that m(i) denotes the linear map induced by the action of a genuine

monomial m ∈M≥0 on the vector space Cρi.

Proposition A.0.1. Let F be a G-constellation for the finite group G of type
1
r (1, a, r − a). We have the following:

(i) F is 0-stable if and only if it is isomorphic to OZ for a free G-orbit Z in C3.

(ii) if F is not 0-stable, then F is S-equivalent to
⊕

ρO0 ⊗ ρ, where O0 is the

skyscraper sheaf at the origin (0, 0, 0). Therefore all strictly 0-semistable G-

constellations collapse to a point in the moduli space.

Moreover, the moduli space M0 is isomorphic to X = C3/G.

Proof. If F is 0-stable, then F has no nonzero proper submodules, which means

that F is simple. Let eρ be a basis of Cρ. Then the submodule generated by eρ is

equal to F . This means that there exists a nonzero path from ρ to ρ′ for any other

ρ′.
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From this, if F is 0-stable, it follows that there exists a nonzero cycle passing

through every vertex. Then F is supported on a free G-orbit Z in C3, and hence F
is isomorphic to OZ by Lemma 2.2.11. This proves (i).

For (ii), assume that F is not 0-stable so there are no nonzero cycles passing

through all vertices; otherwise, there are no nonzero proper submodules, which

implies that F is 0-stable. Firstly, note that F should be supported on the origin

as G acts freely outside of the origin.

We claim that there are no nonzero cycles; suppose that there is a nonzero

cycle around ρ0 and write the nontrivial monomial m = xm1ym2zm3 corresponding

to the cycle, so that m(0) is nonzero. Assume that m1 ≥ 1 so that the cycle must

pass through the vertex ρ1 = wt(x). Since

m(0) = x0 ·
(m

x

)
(1)

by the commutation relations, the linear map
(
m
x

)
(1)

induced by the monomial m
x

at ρ1 is nonzero. Thus the linear map induced by m at ρ1

m(1) =
(m

x

)
(1)
· x0

is nonzero. Thus we know that there exists a nonzero path from ρ0 to ρ1 and that

m(1) is nonzero. Since 1 is coprime to r, we can get a nonzero cycle induced by

xr which is nonzero. For the other cases, e.g. m2 ≥ 1, we can find a nonzero cycle

similarly.

Since F contains no nonzero cycles, there exists a vertex ρk such that the

linear map induced by any nontrivial path to ρk is zero. Write F1 = ⊕i 6=kVi, which

is a submodule of F . Then F/F1 is a vertex simple and is isomorphic to O0 ⊗ ρk.
Since F1 does not have nonzero cycles, it follows that F is S-equivalent to

⊕
ρO0⊗ρ

from induction on the dimension of F .

To prove (iii), firstly note that from the classical invariant theory, the set of

cycles induced by genuine monomials

{
m(i)

∣∣m ∈M≥0, i ∈ I
}

generates the coordinate ring C[RepG]GL(δ) of M0.

We define an algebra homomorphism ψ from C[RepG]GL(δ) to C[x, y, z]G by

ψ : C[RepG]GL(δ) → C[x, y, z]G, m(0) 7→m.
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The algebra homomorphism ψ is clearly surjective. To prove the injectivity, it

suffices to show that m(i) = m(0) in C[RepG]GL(δ) for all i ∈ I if m ∈ M≥0.

Assume that m = (m1,m2,m3) ∈M≥0 with m1 ≥ 1. Then the cycle must pass the

vertex ρ1 = wt(x). Since

m(0) = x0 ·
(m

x

)
(1)

=
(m

x

)
(1)
· x0 = m(1),

it is proved that m(i) = m(0) for all i ∈ I by the fact that 1 is coprime to r. For

the other cases (e.g. m2 ≥ 1), we can prove the assertion similarly as a is coprime

to r.

Remark A.0.2. In the proof of the proposition above, we also proved that the

quotient variety C3/G can be embedded intoM0 as a closed subvariety for any finite

abelian subgroup G ⊂ GL3(C), because there exists an algebra homomorphism

C[RepG]GL(δ) → C[x, y, z]G,

which is surjective. �

103



Appendix B

Example: G-graphs which are

not G-iraffes

In [26] Nakamura assumed that U(Γ) has a torus fixed point for any Nakamura’s

G-graph Γ i.e. every G-graph in his sense is a G-iraffe. His assumption implies

that every torus invariant G-cluster lies over the birational component of G-Hilb.

However, Craw, Maclagan and Thomas [5] showed that there exists a torus invariant

G-cluster which is not over the birational component.

Example B.0.1 (Craw, Maclagan and Thomas [5]). Let G ⊂ GL3(C) be the group

of type 1
14(1, 9, 11). Note that G is isomorphic to 1

7(1, 2, 4)× 1
2(1, 1, 1). Consider the

monomial ideal

I = 〈y2z, xz2, xy2, x2y, yz2, x2z, x4, y4, z4〉

and the corresponding Nakamura’s G-graph

Γ = {1, x, x2, x3, y, y2, y3, z, z2, z3, xy, xz, yz, xyz}.

Craw, Maclagan and Thomas [5] showed that this ideal does not lie over the bira-

tional component using Gröbner basis techniques.

We show this by proving the G-graph Γ is not a G-iraffe. One can see that

S(Γ) is generated as a subsemigroup in M by xy2

z3 ,
yz2

x3 ,
x2z
y3 ,

y2z
x . The cone σ(Γ) is the

cone generated by 1
14(7, 7, 7) so it is not a full dimensional cone. Thus U(Γ) does

not have a torus fixed point. Therefore the G-cluster C(Γ) = C[x, y, z]/I does not

lie over the birational component. �

Remark B.0.2. Craw, Maclagan, and Thomas [5] provided an equivalent condition

using Gröbner bases for a monomial ideal to be over the birational component. In
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the terms of G-iraffes, the condition is equivalent for Nakamura’s G-graph to be a

G-iraffe. �

Example B.0.3 (Reid). Let G ⊂ SL4(C) be the group of type 1
30(1, 6, 10, 13) with

coordinates x, y, z, t. Consider the monomial ideal

I =

〈
x6, x3y, x3t, x2z, x2t2, xy2, xyt, xzt, xt3,

y5, y4z, y3t, y2zt, yz2, yt2, z3, z2t, zt2, t4

〉

and the corresponding Nakamura’s G-graph

Γ =


1, x, x2, x3, x4, x5, y, y2, y3, y4, z, z2,

t, t2, t3, xy, x2y, xz, xz2, xt, x2t, xt2,

yz, y2z, y3z, yt, y2t, zt, xyz, yzt

 .

Note that y2zt
x5 ,

x3y
t3
, x

2t2

y3z
are in the semigroup S(Γ) and

y2zt

x5
· x

3y

t3
· x

2t2

y3z
= 1.

Thus y2zt
x5 ∈ S(Γ) ∩ (S(Γ))−1 6= {1}. Thus U(Γ) does not have a torus fixed point.

Therefore the G-cluster C(Γ) = C[x, y, z, t]/I does not lie over the birational com-

ponent. �

Remark B.0.4. Reid used the ideal in Example B.0.3 to provide a case where

G-Hilb has a 5-dimensional component even if G is a subgroup of GL4(C). �
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Appendix C

Nakamura’s G-graphs for type
1

2k+1(k + 1, 1, 2k)

Let G ⊂ GL3(C) be the group of type 1
2k+1(k + 1, 1, 2k) and θ a generic parameter

in the admissible chamber Ca (see Section 5.3.2).

Since any θ-stable G-constellation is generated by ρ0 and ρk+1, if x0 6= 0, i.e.

x ∗ eρ0 is nonzero, then any θ-stable G-constellation is generated by ρ0, so it is a

G-cluster. Thus we have a 1-to-1 correspondence between the set

{θ-stable torus invariant G-constellations with x0 6= 0}

and the set

{Nakamura’s G-graphs Γ containing x}.

In this section, we classify all Nakamura’s G-graphs containing x. By doing that,

we prove that the number of θ-stable torus invariant G-constellations with x0 6= 0

is 2k.

Lemma C.0.1. Let G ⊂ GL3(C) be the group of type 1
2k+1(k + 1, 1, 2k) and θ

a generic parameter in the admissible chamber Ca. Assume that Γ is a G-graph

containing x. Then Γ has the following properties:

(i) yk+1, zk 6∈ Γ.

(ii) yz, x2z 6∈ Γ.

(iii) x2 6∈ Γ, if y ∈ Γ.

Furthermore, if Γ is θ-stable, then zl ∈ Γ for 1 ≤ l ≤ k implies that xzl ∈ Γ.
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Proof. The assertion (i)-(iii) are straightforward from the definition of G-graphs.

Suppose that Γ is θ-stable and that Γ contains zl for 1 ≤ l ≤ k. Note that

by Section 5.3.2 the (2k + 1− 2l)th ray of the admissible chamber is

θ2k+1−l + θk+1−l − θk+1 − θ0,

which implies that there is a nonzero path from ρk+1 to ρk+1−l or ρ2k+1−l. Remember

that the existence of a nonzero path from ρi to ρj is equivalent to the condition that

mρi divides mρj where mρi , mρj are the corresponding monomials in Γ. Since zl

is of weight 2k + 1 − l, zl is the monomial of weight 2k + 1 − l in Γ and x is the

monomial of weight k + 1 in Γ, there are no nonzero paths from ρk+1 to ρ2k+1−l.

Thus there exists a nonzero path from ρk+1 to ρk+1−l.

Assume m = xαyβzγ is a unique monomial of weight k + 1 − l in Γ. Since

x divides m, we get α ≥ 1. Note that yk+1 6∈ Γ from Lemma C.0.1 implies β ≤ k.

Since xα−1yβzγ is a genuine monomial of weight 2k+ 1− l, it follows that m = xzl.

Therefore, m = xzl is in Γ.

Proposition C.0.2. Let G be the group of type 1
2k+1(k + 1, 1, 2k) and θ a generic

parameter in the admissible chamber Ca. Assume that Γ is a θ-stable G-graph con-

taining x. Then Γ is equal to either Γ4l or Γ5l in the list of Proposition 5.3.2 for

some 1 ≤ l ≤ k.

Proof. Let Γ be a θ-stable G-graph containing x. From Lemma C.0.1, there exists l

with 1 ≤ l ≤ k such that 1, z, z2, . . . , zl−1 ∈ Γ and zl 6∈ Γ. The G-graph Γ contains

the monomials x, xz, xz2, . . . , xzl−1 and xzl 6∈ Γ by Lemma C.0.1.

We have two cases: (A) y ∈ Γ: (B) y 6∈ Γ:

Case (A) y ∈ Γ. Since Γ has 2k + 1 monomials and x2z 6∈ Γ, Γ is Γ5l , i.e.

Γ =


1 x x2 x3 . . . x2k−2l x2k−2l+1 x2k−2l+2

z xz

. . . . . .

zl−1 xzl−1

 .

Case (B) y 6∈ Γ. Since x2 has the same weight as y, we have x2 6∈ Γ.

Consider a unique monomial m = xαyβzγ in Γ of weight 2k − l + 1. From the fact

that α ≤ 1 and γ < l, one can show that α = 1 and γ = 0. The monomial xαyβzγ

is of weight k − l and it is in Γ, so one can see that m = xyk−l. Furthermore, one
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can show that Γ contains yk−l+1. Thus Γ is Γ4l , i.e.

Γ =



yk−l+1

yk−l xyk−l

. . . . . .

y xy

1 x

z xz

. . . . . .

zl−1 xzl−1



.

Therefore the assertion is proved.
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