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Abstract

Let G C GL3(C) be the group of type %(1, a,r—a) with a coprime to r. For such G,
the quotient variety X = C3/G is not Gorenstein and has a terminal singularity. The
singular variety X has the economic resolution which is “close to being crepant”. In
this paper, we prove that the economic resolution of the quotient variety X = C3/G
is isomorphic to the birational component of a moduli space of #-stable McKay
quiver representations for a suitable GIT parameter . Moreover, we conjecture
that the moduli space of 8-stable McKay quiver representations is irreducible, and

prove this for a = 2 and in a number of special examples.



Chapter 1

Introduction

The motivation of this work stems from the philosophy of the McKay correspondence,
which says that if a finite group G acts on a variety M, then the crepant resolutions
of the quotient variety M /G have information about the G-equivariant geometry of
M [30].

Let G be a finite subgroup of GL,(C). A G-equivariant coherent sheaf F
on C™ is called a G-constellation if its global sections H°(F) are isomorphic to the
regular representation C[G] of G as a G-module. In particular, the structure sheaf
of a G-invariant subscheme Z C C" with H(Oy) isomorphic to C[G] as a G-module,
which is called a G-cluster, is a G-constellation.

For a finite group G' C SLo(C), Ito and Nakamura [14] introduced G-Hilb C?
which is the fine moduli space parametrising G-clusters and proved that G-Hilb C?
is the minimal resolution of C2/G. In the celebrated paper [1], Bridgeland, King and
Reid proved that for a finite subgroup of SL3(C), G-Hilb C? is a crepant resolution of
the quotient variety C?/G. Also Craw and Ishii [2] showed that in the case of a finite
abelian group G C SL3(C), any projective crepant resolution can be realised as the
fine moduli space of #-stable G-constellations for a suitable stability parameter 6.

For a finite abelian group G C GL,(C) and a generic GIT parameter 6 € ©,
Craw, Maclagan and Thomas [4] showed that the moduli space My of #-stable
G-constellations has a unique irreducible component Yy which contains the torus
T := (C*)"/G. So the irreducible component is birational to the quotient variety
C"/G. The component Yy is called the birational componenﬂ of My.

On the other hand, it is known [23])29] that a 3-fold cyclic quotient singularity
X =C?/G has terminal singularities if and only if G is of type %(1, a,r — a) with

a coprime to r, which means that G is the subgroup generated by the diagonal

!This component is also called the coherent component.



"7%) where € is a primitive rth root of unity.. In this case, X

matrix diag(e, e, e
has a preferred toric resolution, called the economic resolution. For the group G of
type %(17 a,” — a), G-Hilb C? is smooth and isomorphic to the economic resolution
of X if and only if @ = 1 or r — 1 as shown in [17]. Kedzierski [16] proved that
there exists a Weyl chamber € in © such that the normalization of the birational
component Yy of the moduli space of #-stable GG-constellations is isomorphic to the
economic resolution Y of X = C3/G. To show this, he found a suitable family
over the economic resolution Y and a chamber € such that G-constellations in the
family are #-stable for # € €. His original description of stability parameters is a set
of inequalities, but one can show that his stability parameters form an open Weyl

chamber and this is easy to describe using the A,_1 root system.

Main results

Let G C GL3(C) be the finite subgroup of type %(l,a,r — a) with a coprime to r,
i.e. G is the subgroup generated by the diagonal matrix diag(e, €%, €" =) where € is
a primitive rth root of unity. The quotient variety X = C3/G is not Gorenstein
and has terminal singularities. Moreover, the singular variety X = C3/G has no
crepant resolution. However, there exist economic resolutions which are close to
being crepant (see Section 5.7 in [29]). The economic resolution can be obtained by
a toric method, which is called weighted blowups.

In this paper, we prove that the economic resolution Y is isomorphic to an
irreducible component of the moduli space of G-equivariant sheaves on C3. More

precisely, we have the following theorem.

Theorem 1.0.1 (Corollary 4.3.2). Let G C GL3(C) be the finite subgroup of type
1(1,a,7 — a) with a coprime to r. The economic resolution Y of X = C3/G is
isomorphic to the birational component Yy of the moduli space My of 0-stable G-

constellations for a suitable parameter 6.

To prove this, we introduce generalized G-graphs and round down functions.
A generalized G-graph T is a generalized version of Nakamura’s G-graph in [26]. A
G-graph corresponds to a torus invariant G-constellation. We define a toric affine
open set U(T") associated to a G-graph I" and a family of G-constellations over U (T").
These give us a local chart of the moduli space of #-stable McKay quiver represen-
tations for suitable parameter . On the other hand, the round down functions are
related to weighted blowups. For each step of the weighted blowups, we define three

round down functions, that are maps between monomial lattices. The round down



functions are used for finding admissible G-graphs, which define the universal family
over the economic resolution Y.

Moreover, we prove that our stability parameters form an open Weyl cham-
ber, which coincides with the chamber in |[16]. With Section we can see that

the chamber is a full chamber in the GIT stability parameter space.

Layout of this thesis

In Chapter 2, we define (generalized) G-graphs and we review standard results on
moduli spaces of G-constellations. Using certain G-graphs, we describe the bira-
tional component of the moduli space of #-stable GG-constellations. Chapter [3| ex-
plains how to obtain the economic resolutions using toric methods and defines round
down functions. The round down functions will play a big role in finding admissible
G-graphs. Chapter [f] contains our main theorem. In Section[4.I] we explain the way
to find a set of admissible G-graphs in a recursive way using round down functions.
In Section [£.2] we prove that the admissible G-graphs in Section [.1] are 6-stable
for parameters 6 in a suitable chamber. Moreover, we prove that the GIT param-
eters form an open Weyl chamber. In Section [£.3] we state the main theorem and
conjectures. Chapter [5| contains further results. Section [5.1] presents a description
of O-stable torus invariant A-constellations for A of type (1,7 — 1) if # is in an
open Weyl chamber of A,_1. Section investigates the chamber structure of GIT
stability parameters. Section [5.3| proves that the moduli space of f-stable McKay

quiver representations is irreducible if a = 2.



Chapter 2
G-graphs and G-constellations

This section introduces a (generalized) G-graph which is a generalized version of
Nakamura’s G-graphs from [26]. As Nakamura’s G-graphs are associated with
torus invariant G-clusters, our G-graphs are associated with torus invariant G-
constellations. If a G-graph I satisfies a certain condition, then we call the G-graph
a G-iraffe. For each G-iraffe I', we define a toric affine open set U(I") and a family
over the open set U(T").

In this section, we restrict ourselves to the case where a group G is a finite
cyclic group in GL3(C). It is possible to generalize part of the argument to include
general small abelian groups in GL,,(C) for any dimension n. However, we prefer to

focus on this case where we can avoid the difficulty of notation.

2.1 Moduli of quiver representations

In this section, we briefly review the construction of moduli spaces of quiver repre-
sentations introduced in [18].
2.1.1 Quivers and their representations

A quiver (Q is a directed graph with a set of vertices I = Qg and a set of arrows Q1.

For an arrow a € Q1, let h(a) (resp. t(a)) denote the head (resp. tail) of the arrow a:
t(a) % h(a).

One can define the path algebra of a quiver Q to be the C-algebra whose basis is
nontrivial paths in ) and trivial paths corresponding to the vertices of Q and whose

multiplication is given by the concatenation of two paths.



A representation of a quiver @) is a collection of C-vector spaces V; for each
vertex i € I and linear maps V; — V; for each arrow from i to j. For a representation
V, the I-tuple (dimg¢ V;)ier € ZL,, is called the dimension vector of V and is denoted
by dim (V). A representation ((Ui), (f(’l)) of a quiver @ is called a subrepresentation
of a representation ((V;), (&) if (U;) is an I-graded subspace of (V;) such that
§a(Ui(a)) C Un(q) for all @ € Q1 and (&) is the restriction of (&,) to (U).

It is well known that the abelian category of representations of a quiver @) is
equivalent to the category of finitely generated left modules of the path algebra of
Q.

Let us fix a dimension vector v = (v;);e;. Let Rep(Q,v) denote the repre-

sentation space of ) with dimension vector v:

Rep(vi) = @ Hom(‘/t(a)u Vh(a)) = @ H0m<(cviacvj)7

ac@Qq aii—j

which is an affine space. Note that the reductive group GL(v) := [[..; GL,, acts

el
on Rep(Q, v) via change of basis.

One can see that
Rep(Q,v) — Rep(Q, v) / GL(v) := Spec C[Rep(Q, v)] )

is a categorical quotient and that Rep(Q,v) / GL(v) is an affine variety.

Remark 2.1.1. Geometric points of Rep(Q, v) / GL(v) correspond to GL(v)-orbits

of semisimple representations of () whose dimension is v. ¢

2.1.2 Background: Geometric Invariant Theory

In this section, we present results from standard Geometric Invariant Theory (GIT),
cf. [24].

Definition 2.1.2. Let G be a reductive group acting on an affine variety X. A

surjective morphism ¢: X — Y is a good quotient if:
(i) % is constant on G-orbits.

(ii) the natural map Oy (U) — 1. Ox (U) induces Oy (U) = (¢.Ox)%(U) for any
openset U CY.

(iii) (W) is closed in Y for any G-invariant closed set W C X.

(iv) Y(W1) Ny(Wa) = O for two disjoint G-invariant closed sets Wy, Wa of X.



Moreover, if Y is an orbit space, then ¢: X — Y is called a geometric quotient.

Consider an affine algebraic variety X with a reductive group G acting on it.

Given a character y: G — C*, f € C[X] is called a x semi-invariant function if

flg-x)=x(9)f(z) z€X, VgeQq.

Let C[X],» denote the C-vector space of all x" semi-invariant functions. One defines

the semistable locus as
X*(x) :={x € X|3n>1, f € C[X]y» such that f(z)# 0}
and the stable locus as
X°(x) :=={z € X**(x)| G- is closed in X**(x), the stabiliser G, is finite} .

The quasiprojective variety

X/, G = Proj (P C[X]\»)

n>0

is called a GIT quotient corresponding to x. In particular, if the character x = 0,
i.e. 0 is trivial, then C[X]y» = C[X]% for all n so we have

X /, G = SpecC[X ]
which is an affine variety. Thus we have a canonical projective morphism
X/, G— Spec C[X]“.

Remark 2.1.3. Let G be a reductive group acting on an affine variety X. Fix a

character x of G. For each positive integer d, define the dth Veronese subalgebra of

®nzoc[X]x" to be
P Clx] .

n>0

One can show that the inclusion of the subalgebra induces an isomorphism of alge-
braic varieties

X //X G—> X //Xd dG.
Thus any positive multiple of a character y gives the same GIT quotient as y. ¢

As is well known by GIT (see Theorem 1.10 in [24]), the quasiprojective



variety X // G 1s a categorical quotient X *(x) by G.

Theorem 2.1.4 (Geometric Invariant Theory). Let G be a reductive group acting

on an affine variety X and x a character of G. Then:
(i) m: X**(x) = X [, G is a good quotient of X**(x) by G.

(ii) there exists an open subset Y ofX//XG such that'Y is a geometric quotient
of X°(x) by G, i.e. an orbit space.

(iii) the GIT quotient X //x G is projective over the affine variety Spec C[X]C.

Remark 2.1.5. Assume that X°(x) = X*(x). Let 7: X /| G — X*(x)/G be the
GIT quotient. Then 7 is a geometric quotient. Let U be a G-invariant affine open
set in X*%(x). Then

mly: U — w(U)

is a good quotient and 7(U) = Spec C[U]® is an open set of X*(x)/G. ¢

2.1.3 Moduli spaces of quiver representations

This section explains a notion of stability on quiver representations introduced by
King [18]. His main result is that the notion of stability on quiver representations
and the notion of GIT stability are equivalent and that we can construct a fine
moduli space of quiver representations in a certain case.

An element # € Q! can be thought as a group homomorphism from the

Grothendieck group of representations of @) to Q defined by

O(V):=) 6;idimgV;=0-v
el

where V' is a representation of () with dimension vector v.

Definition 2.1.6. Let V be a v-dimensional representation of a quiver ). For a

parameter § € Q! satisfying 6 - v = 0, we say that:
(i) V is @-semistable if (W) > 0 for any subrepresentation W of V.
(ii) V is O-stable if (W) > 0 for any nonzero proper subrepresentation W of V.

(iii) 0 is generic if every f-semistable representation is f-stable.



The parameter § € Q! plays the same role as x does in Section The
character yy defined by

xo(9) = [ ] det(g:)”
el
for g = (¢;) € GL(v) vanishes on the diagonal matrices C* € GL(v) if and only if
0-v=0.
King 18] shows that a representation V' € Rep(Q, v) is #-semistable (resp. 6-
stable) if and only if the corresponding point V' € Rep(Q, v) is xp-semistable (resp.
Xo-stable). Moreover:

Theorem 2.1.7 (King [18]). Let v be a dimension vector. Assume a parameter
0 € Q' satisfies §-v =0.

(i) The quasiprojective variety

My(Q,v) :=Proj | @D C[Rep(Q, v)lyz

n>0

is a coarse moduli space of 0-semistable v-dimensional representations of @

up to S-equivalence.

(ii) If 0 is generic, My(Q,v) is a fine moduli space of 0-stable v-dimensional

representations of Q.
(iii) The variety Mg(Q,V) is projective over Spec C[Rep(Q, v)]SH¥),

Remark 2.1.8. By Luna’s Etale Slice Theorem, if 0 is generic, then the quotient
map

m: Rep®(Q,v) = My(Q,Vv)

is a principal GL(v)/C*-bundle. ¢

2.2 McKay quiver and G-constellations

Let G C GL3(C) be the finite group of type 2(ai,as,a3), i.e. G is the subgroup
generated by the diagonal matrix diag(e®!, €*2,€*3) where € is a primitive rth root
of unity. Let p; be the irreducible representation of G whose weight is i. Since G
is abelian, every irreducible representation is one-dimensional and the number of

irreducible representations is equal to the order of G. We can identify I := Irr(G)



with Z/rZ. Note that the inclusion G C GL3(C) induces a natural representation

of G on C3?, which can be decomposed as
Par D Pas D Pas-

2.2.1 McKay quiver representations

Definition 2.2.1. (McKay quiver) The McKay quiver of G is the quiver whose
vertex set is the set I of irreducible representations of G and the number of arrows

from p; to p; is the dimension of Homg(pj, (pa; ® Pas @ Pas) & pi)-

Since G has r irreducible representations, the McKay quiver of G has r

vertices pg, ..., pr—1. For two irreducible G-representations p; and p;,
3
Homg (pja (qu D Pay D pa3) ® pz)) = HOInG(Pj» @kzl Pay, @ pl)

3
- @ HOIHG(pj, Pi—l—ak)a
k=1

and by Schur’s lemma

. 1 ifj=i4+ o modr,
dim Homg (p;, pirray,) =
0 otherwise.
Thus the McKay quiver has 3r arrows. Let x;,y;, z; denote the arrow from p; to
Pitayrs Pitass Pitas, respectively. We are interested in the McKay quiver with the

following commutation relations:

-:Uiyi+a1 - yixi—l-aga
TiZi+a1 — Rilitass (2.2.2)

YiZi+as — ZilYi+asz-

Definition 2.2.3. A McKay quiver representation is a representation of the McKay
quiver of dimension (1,...,1) with the relations (2.2.2)), i.e. it is a collection of one-
dimensional C-vector spaces V; for each p; € GV, and a collection of linear maps

from V; to Vj assigned to each arrow from p; to p; which satisfy the commutation

relations ([2.2.2)).

Example 2.2.4. Let G C GL3(C) be the finite group of type 1—12(1, 5,7),1ie.r=12
and a = 5. The set of irreducible representations of G is {p; ’ 0 <4 <11} and the



induced representation is isomorphic to p; @ ps ® p7. The McKay quiver of G has
12 vertices and 36 arrows.

After fixing a basis on the vector spaces attached to vertices, the McKay
quiver representations are in 1-to-1 correspondence with points of the closed sub-

scheme of the affine space

CST = Spec (C[.Z'(), s Lp—1,Y0y - - - s Yr—1,5205 - - - ,Zr_l]
defined by the commutation relations ([2.2.2)). ¢

Let Rep G denote the McKay quiver representation space of G. Note that

its coordinate ring is
C[RepG] = Clzi, i, i | 0<i<r]/Ig

where I is the ideal generated by the quadrics in (2.2.2)).

Let 6 = (1,...,1) € ZL. The reductive group GL(0) := [[;c;C* = (C*)"
acts on Rep G via change of b_asis. Note that GL(d)-orbits are in 1-to-1 correspon-
dence with isomorphism classes of the McKay quiver representations.

Consider the algebraic torus T = (C*)? acting on Rep G by
(t1, b2, t3) - (@, yis i) = (14, tayi, t32i).

One can see that T-action commutes with GL(J)-action.
We define the GIT parameter space © to be

©:={0ecQ'|o-5=0}.
By Theorem we know that:
(i) the quasiprojective scheme
M@ = Proj @C[Rep G]XZ
n>0

is a coarse moduli space of #-semistable McKay quiver representations up to

S-equivalence.

(ii) if @ is generic, My is a fine moduli space of #-stable McKay quiver represen-
tations of Q.

10



(iif) My is projective over Spec C[Rep G|,

Remark 2.2.5. The affine scheme Spec C[Rep G]GL(‘;) contains the quotient variety
C3/G as a closed subvariety (see Remark [A.0.2). ¢

2.2.2 (-constellations

Definition 2.2.6. A G-constellation on C? is a G-equivariant coherent sheaf F on

C3, which is isomorphic to the regular representation C[G] of G as a G-module.

Remark 2.2.7. Note that by definition, any G-constellation F is isomorphic to
D, Cp; as a vector space. ¢

The representation ring R(G) of G is @ ,cqv Z - p- Define the GIT stability

parameter space
© = {0 € Homz(R(G),Q) | 6 (C[G]) = 0}
={0=(0") € Q" | Sicst’ =0} .
Definition 2.2.8. For a stability parameter € O, we say that:

(i) a G-constellation F is 0-semistable if §(G) > 0 for any nonzero proper sub-
module G C F.

(ii) a G-constellation F is 6-stable if §(G) > 0 for any nonzero proper submodule
GCF.

(iii) 0 is generic if every #-semistable object is #-stable.

Remark 2.2.9. It is known that the language of G-constellations is the same as the
language of the McKay quiver representations. Thus we can construct the moduli

spaces of G-constellations by Geometric Invariant Theory as in Section ¢

Let My denote the moduli space of #-stable G-constellations. Ito and Naka-
jima [13] showed that G-Hilb C? is isomorphic to My if @ is in the following set:

©1 :={0€0O|0(p) > 0 for nontrivial p # po} . (2.2.10)

Lemma 2.2.11. Let Z be a free G-orbit in C3>. Then Oy is a G-constellation
supported on the free G-orbit Z. Conversely, if a G-constellation F is supported on
a free G-orbit Z C C3, then F is isomorphic to Oy as a G-constellation.

11



Proof. For the first statement, one can refer to [14].

To prove the second statement, let F be a G-constellation whose support is
a free G-orbit Z.

Then F has no nonzero proper submodules. Indeed, for a nonzero submodule
G of F, the support of G is a G-invariant nonempty subset of the free G-orbit Z. As
Z is a free G-orbit, the support of G is Z. Since F, is 1-dimensional for any = € Z,
it follows that G, = F, and hence G = F.

Consider ¢: Clx,y,z] — F defined by f — f * ey where ¢y is a basis of
Cpo. As F has no nonzero proper submodules, 1 is surjective. From the fact
that the support of F is Z, it follows that Iy is in the kernel of 1. Since both
Oz = Clz,y,z]/Iz and F = Clz,y, 2]/ ker(¢)) are G-constellations, it follows that
Oy =2 F as dimc Oz = dimc¢ F. O

Let Z be a G-orbit in the algebraic torus T := (C*)? C C3. Then HY(Oy) is
isomorphic to C[G], thus it is a G-constellation. Moreover, since Z is a free G-orbit,
Oz has no nonzero proper submodules. Hence it follows that Oy is 6-stable for any
parameter 6 and that the torus T := (C*)3/G is the fine moduli space of #-stable
G-constellations whose support are in the algebraic torus T. Thus for any parameter
6, there exists a natural embedding of the torus T := (C*)3/G into M.

Remark 2.2.12. The existence of the natural embedding of the torus 7" := (C*)3/G
into My can be proved by Luna’s Etale Slice Theorem as is standard in the theory

of moduli spaces of sheaves (e.g. see Theorem 4.5.1 in [12]). ¢

Craw, Maclagan and Thomas [4] proved the following theorem.

Theorem 2.2.13 (Craw, Maclagan and Thomas [4]). Let 6§ € © be generic. Then
My has a unique irreducible component Yy which contains the torus T := (C*)"/G.

Moreover Yy satisfies the following properties:

(i) Yy is a not-necessarily-normal toric variety which is birational to the quotient
variety C3/G.

(ii) Yy is projective over the quotient variety C?/G.

Yg irr M 0

L

C3/G—= M

closed
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Remark 2.2.14. We call the unique irreducible component Yy of My the birational
component. For generic § € ©, Craw, Maclagan and Thomas [4] constructed the
birational component Yy as GIT quotient of a reduced irreducible affine scheme by

an algebraic torus. From this, it follows that Yj is irreducible and reduced. ¢

Remark 2.2.15. Since the algebraic torus T acts on C3, T acts on the moduli
space My naturally. Fixed points of the T-action play a crucial role in the study
of the moduli space My. Note that this T-action is the same as the T-action in
Section [2.2.1 ¢

2.3 Abelian group actions and toric geometry

Let G C GL3(C) be the finite subgroup of type %(al, ag,a3)., i.e. G is the subgroup
generated by the diagonal matrix diag(e®!, €2, €e*3) where € is a primitive rth root

of unity. The group G acts naturally on S := C[z,y, z]. Define the lattice
3 1
L=7Z"+7- *(&1,&2,&3)
r

which is an overlattice of L = Z3 of finite index. Let {e1, e, e3} be the standard
basis of Z3. Set M = Homgz(L,Z) and M = Homg(L,Z). The dual lattices M
and M can be identified with Laurent monomials and G-invariant Laurent mono-
mials, respectively. The embedding of G into the torus (C*)? € GL3(C) induces a
surjective homomorphism

wt: M — GV

where GV := Hom(G, C*) is the character group of G. Note that M is the kernel of

the map wt.

Remark 2.3.1. There are two isomorphisms of abelian groups L/Z3 — G and
M/M — GV. ¢

Let M>( denote genuine monomials in M, i.e.
Mzo = {xmlym22m3 eM ‘ mi, ma, M3 > O}.

For aset A C C[z*,y*, 2], let (A) denote the C[z, y, z]-submodule of C[zT, y*, zF]
generated by A.
Let o4 be the cone in Ly := L ®z R generated by eq, e, e3, i.e.

o4 := Cone(eq, €2, €3).

13



For the cone o and the lattice L, we define a corresponding affine toric variety
Uy, := SpecCloy N M].

Note that U,, is the quotient variety X = C3/G = SpecClz, y, 2] as M is the

G-invariant Laurent monomials.

Remark 2.3.2. As is usual in toric geometry, the affine toric variety of the cone
o, with the lattice L is

C? = SpecClz,y, 2] = Spec (C[ouvr N M].
The quotient map C* — X is induced by the inclusion L C L. ¢

Let O be the unit cube in Lg = L ® R = R3, i.e.
.= {(ul,uQ,u;),) S R? ‘ 0<uy; < 1} .

Since L=7%+7Z- %(al, a9, a3), one can see that [J contains r — 1 lattice points

V; = %(ial, ’L'Oég, iO[g)

for 1 <1 < r where ~ denotes the residue modulo r. In the case of type %(1, a,r—a),
these lattice points lie on the plane y + z = 1 and they are all the nonzero lattice

points in [ except eq, e, 3.

2.4 Generalized G-graphs

Definition 2.4.1. A (generalized) G-graph T" is a subset of Laurent monomials in

Clz™T, y*, 2T satisfying:
(i) 1eT.

(ii) wt: ' — GV is bijective, i.e. for each weight p € GV, there exists a unique

Laurent monomial m, € I' whose weight is p.
(iii) f m-n-m, €T form, € I’ and m,n € Mo, then n-m, € T

(iv) T is connected in the sense that for any element m,, there is a (fractional)
path from m, to 1 whose steps consist of multiplying or dividing by one of

x,y,zin I

14



For any Laurent monomial m € M, let wtr(m) denote the unique element

m, in I' whose weight is wt(m).

Remark 2.4.2. Nakamura’s G-graphs I' in [26] are G-graphs in this sense because
if a monomial m - n is in I' for two monomials m,n € MZO, then m is in I". The
main difference between Nakamura’s definition and ours is that we allow elements

to be Laurent monomials, not just genuine monomials. ¢
Example 2.4.3. Let G be the group of type %(l, 3,4). Then
_ 2 ,z 22 22
Fl - {Lyay 2 Yy 2}7
4)
22
z

are G-graphs. In I'1, wtp, (z) = 5 and wtr, (y3) = e ¢

<

Iy = {1727972%2, %7 %

[V

As is defined in [26], for a generalized G-graph I' = {m,}, define S(I") to
be the subsemigroup of M generated by e for all m € Mxo, m, € I.
wtr(m - m,) =
Define a cone o (') in Lg = R3 as follows:

:{UELR

<um'mp>zo vmper,meMzo}.

"wtr(m - m,)
Observe that:

(i) (Mxon M) c S(D),

(i) o(I) € o4,

(iii) S(I') c (a<r)v N M).
Lemma 2.4.4. Let I' be a G-graph. Define

B(T) := {f .m,|m, €T, fe {m,y,z}}\F.

Then the semigroup S(I') is generated as a semigroup by ﬁ(b) for all b € B(T).
In particular, S(T') is finitely generated as a semigroup.

Proof. Let S be the subsemigroup of M generated by ﬁ(b) for all b € B(T') as a
semigroup. Clearly, S C S(I'). For the inverse inclusion, it is enough to show that

the generators of S(I') are in S.

15



An arbitrary generator of S(I') is of the form #m;’np) for some m € M>o,
m, € I'' We may assume that m -m, ¢ I'. In particular, m # 1. Since m has
positive degree, there exists f € {z,y, z} such that f divides m, i.e. # € M>( and
deg(#) < deg(m). Let m, denote wtr('f - m,). Note that

wtp(f - my) = wtp(f - = - m,) = wtp(m - m,).

f
Thus
m-m, T om, f-wtr(%f -mp)
wtr(m-m,)  wtr(f -m,)  wtp(m-m,)
S f-m,
Wtr(% mp) Wtr(f mp/)
By induction on the degree of monomial m, the assertion is proved. O

The set B(I") in the lemma above is called the Border bases of I'. As B(T") is finite,
we have seen that S(T') is finitely generated as a semigroup. Thus we can define an
affine toric variety associated to the semigroup S(I'). Define two affine toric open

sets:

U(T) := SpecC[S(I')],
U"(T) := SpecC[o¥(T") N M].

Note that U”(I") is the normalization of U(I") and that the torus Spec C[M] of U(I")
is isomorphic to (C*)3/G.

Craw, Maclagan and Thomas [5] showed that there exists a torus invariant G-
cluster which does not lie over the birational component Yy. The following definition

is implicit in [5].

Definition 2.4.5. A generalized G-graph I' is called a G-iraffe if the open set U(T")

has a torus fixed point.

Remark 2.4.6. As is standard in toric geometry, note that U(I") has a torus fixed
point if and only if S(I')N(S(I'))~! = {1}. The open set U(T") does not need to have
a torus fixed point. In other words, the cone o(I") is not necessarily a 3-dimensional

cone. For counterexamples, see Appendix ¢

Example 2.4.7. Consider the G-graphs in Example The semigroup S(I'y) is
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Fad) “ from Lemma [2.4.4 From this, we have

generated by g—z ,

<

o(ly) = {u cR3 ’(u, m) >0, for allm € {i’—z, ;—z, %}},

— Cone ((1,0,0), 1(3,2,5), 1(1,3,4)).
Similarly, we can see that

U(F2):{UER3‘<U,D’I>ZO, for al]me{ﬁ 24 x2? }’

239 y737 y73
— Cone ((1,0,0), 1(1,3,4),1(6,4, 3)).
One can see that S(I'1) = ¢(I'1)Y N M and S(I'y) = o(T'2)¥ N M. Thus the two

G-graphs I'j, T'y are G-iraffes. Note that the two toric varieties U(I';) and U(T'2)

are smooth. ¢

2.5 (G-graphs and local charts

Let I' be a G-graph. Define

The module C(T") is a torus invariant G-constellation. Note that C(I") can be realised
as follows: C(I") is the C-vector space with a basis I' whose G-action is induced by

the G-action on Clz, y, z] and whose C|z, y, z]-action is given by

m-m, ifm-m,ecl,

m*m, =
0 ifm-m, ¢T,

for a monomial m € M>q and m, €I
Any submodule G of C(I') is determined by a subset A C I', which forms a

C-basis of G. We give a combinatorial description of submodules of C(I).
Lemma 2.5.1. Let A be a subset of I'. The following are equivalent.

(i) The set A forms a C-basis of a submodule of C(T).

(i) If m, € A and f € {x,y, 2}, then £-m, € I" implies f-m, € A.
Example 2.5.2. From Example recall the G-graph

_ 2 z 22 22
F_ {17?47?4 727§7?7y72}7
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where G is of type %(1, 3,4). For the element y + y? + > in (),
yr(y+y*+2) =y +0+z=y"+z€C().

Let G be the submodule of C(I") generated by the vector space Cp; at the vertex
p1- Then one can see that the set A = {z, %, %} satisfies the condition (ii) in the
lemma above. Indeed, A is a C-basis of G. ¢

Let p be a point in U(T"). Then there exists the evaluation map
evp: S(I') = (C, x),

which is a semigroup homomorphism.

To assign a G-constellation C(I'),, to the point p of U(I"), firstly consider the
C-vector space with basis I' whose G-action is induced by the G-action on C|x, y, z].
Endow it with the following C[z, y, z]-action,

m-my )) wtp(m - m,), (2.5.3)

m+m,:=ev, | ———
P p(wtr(m-mp

for a monomial m € Mzo and an element m, in I', where ev,, denotes the evaluation

map at p. One can check that this action is well-defined by the following;:
m’-m-m, m’ - wtr(m - m,) m-m,
evy - =ev, ; cevy | ———— |,
wtr(m’ - m - m,) wtr(m’ - m-m,) wtr(m - my)

for monomials m, m’ € Mzo and an element m, in I'.

Lemma 2.5.4. With the notation as above, we have the following:
(i) C(I')p is a G-constellation for any p € U(T).
(it) For any p, I' is a C-basis of C(I')p,.

(1it) C(I'), 2 C(I)q, if p and q are different points in U(T).

(iv) Let Z C T = (C*)3 be a free G-orbit and p the corresponding point in the
torus Spec C[M] of U(I"). Then C(I'), = Oz as G-constellations.

(v) IfT' is a G-iraffe and p is the torus fized point of U(T"), then C(I"), = C(I).

Proof. From the definition of C(I'),, the assertions (i), (ii) and (v) follow immedi-
ately. The assertion (iii) follows from the fact that points on the affine toric variety

U(T) are in 1-to-1 correspondence with semigroup homomorphisms from S(I") to C.
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It remains to show (iv). Let Z C T = (C*)3 be a free G-orbit and p the
corresponding point in Spec C[M] C U(I"). Define a G-equivariant C[z, y, z]-module

homomorphism
Clz,y,z] = C(I),, given by f— f 1.

One can check that the morphism is surjective and that its kernel is equal to the
ideal of Z. This proves (iv). O

This is a family of McKay quiver representations in the following sense of [18§].

Definition 2.5.5. A family of representations of a quiver QQ with relations over
a scheme B is a representation of () with relations in the category of locally free

sheaves over B.

Definition 2.5.6. A G-graph is said to be #-stable if the G-constellation C(I") is
f-stable.

Proposition 2.5.7. Let I" be a G-iraffe, that is, U(T") has a torus fized point. Let Yy
be the birational component in My. For a generic 6, assume that C(I") is 6-stable.

Then C(I'), is -stable for any p € U(I"). Thus there exists an open immersion
U(T') = SpecC[S(T")] —— Yy C M.

Proof. Let us assume that the G-constellation C(I") is §-stable. Let p be an arbitrary
point in U(I') and G a submodule of C(I'),. By the definition of C(I'),, there is
a submodule G’ of C(T') whose support is the same as G. Since C(T") is 6-stable,
6(G) = 6(G') > 0, and thus C(T'), is f-stable.

Now we introduce deformation theory of the G-constellation in My. Deform-

ing C(T') involves 3r parameters {z,,,,2, | p € GV}
rxm, =z, wtr(z-m)),
yxmy =y, wir(y - m,),

zxm, =z, wtr(z - m,),

such that the following quadrics vanish:

LopYwt(z-m,) — YpLwt(y-m,)>
(2.5.8)

LpRwt(z-my) — ZpTwt(zmy)>

YpRwt(y-m,) — ZpYwt(y-m,)-
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Since I' is a C-basis, for f € {z,y, 2}, f, = 1 if wtp(f - m,) = f-m,. Define a subset

of the 3r parameters
AD) == {f, | wtr(f - m,) =f-m,, £, € {z,,yp,2,}}
Define an affine scheme D(I') whose coordinate ring is

C [xp,yp,zp ‘ pE Gv} /IF

where It = ( the quadrics in (2.5.8), f —1|f € A(T)).

By King’s GIT [18], the affine scheme D(I") is an open set of My which
contains the point corresponding to C'(I'). More precisely, for a §-stable G-graph T',
we have an affine open set (71: in the McKay quiver representation space Rep G, which
is defined by f, to be nonzero for all f, € A(I'). Note that Ur is GL(9)-invariant
and that any point in 61: is O-stable. Since the quotient map Rep® G — My is a
geometric quotient, by GIT (see Remark , it follows that

f]; /) GL(6) = Spec (C[[f];]GL(fS)

is an open set in My. On the other hand, after changing basis, we can set f, € A(I")

to be 1 for all f, € A(I"). One can see that D(I") is isomorphic to Spec (C[(/JVF]GL(‘S)
Note that there is a C-algebra epimorphism from C[D(I")] to C[S(I")] defined

by

f-m,

T
P wtp(f - my)’

for £, € {z,,yp,2,}. It follows that U(I") is a closed subscheme of D(T").

As Craw, Maclagan, and Thomas [4] proved that the birational component
Yy is a unique irreducible component of My containing torus 1" which is isomorphic
o (C*)3/G as an algebraic group, Yy N D(I') is a unique irreducible component of
D(I") which contains the torus 7. Note that Yy N D(I") is reduced by Remark

We now prove that the morphism U(T") — D(I") € My induces an isomor-
phism from the torus Spec C[M] onto the torus T' of Yy. In other words, U(T") con-
tains the torus 7" of Yy. Let ¢ denote the restriction of the morphism to Spec C[M].
First note that 7" represents G-constellations whose support is in T = (C*)3. Let p

First, see that (C[f];} = Rep G[A(T")!]. Note that GL(6)-invariants in (C[UN'F] are generated by
cycles with inverting the arrows in A(T"). Assume that @ is the linear map corresponding to an
arrow from p to p’. For p, p/, there exists an undirected path p, in A(T) UA(I') ™! from p to p/, that
is unique up to the commutation relations. This means that ap, ! is GL()-invariants. From this,
one can show that there exists an algebra isomorphism between C[D(I")] to C[(};]GL(‘S) defined by
ar apg L
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be a point in the torus Spec C[M] C U(I") with the corresponding free G-orbit Z. By
Lemma the G-constellation C(I"), over p is isomorphic to Oz. Thus ¢ maps
Spec C[M] into T'. On the other hand, Lemma shows that any G-constellation
whose support is a free G-orbit Z in T is isomorphic to Oz. From this, it follows
that 1 is a bijective morphism between the two tori. As ) is a group homomorphism
by the construction of C(I"),, ¢ is an isomorphism between Spec C[M] and T
Remember that U(I") is reduced and irreducible as it is defined by an affine
semigroup algebra C[S(I")]. Note that U(T") is in the component Yy N D(I") because
U(T) is a closed subset of D(I") containing T'. Since both are of the same dimension,
U(T) is equal to Yy N D(I"). Thus there exists an open immersion from U(I") to
Yy. O

2.6 G-iraffes and torus fixed points in Yj

In this section, we present a 1-to-1 correspondence between the set of torus fixed
points in Yy and the set of #-stable G-iraffes.

For a genuine monomial m € M, let m,) denote the linear map corre-
sponding to the path induced by m in the McKay quiver from the vertex p. In
other words, m(, is the linear map induced by the action of the monomial m on
the vector space Cp.

An undirected path in the McKay quiver is a path in the underlying graph
of the McKay quiver. For a G-constellation F, an undirected path in the McKay
quiver is said to be defined if the linear maps corresponding to the opposite-directed

arrows in the path are nonzero in F.

Definition 2.6.1. A defined undirected path in the McKay quiver is of type m for a
Laurent monomial m € M where m is the Laurent monomial obtained by forgetting

outgoing vertices, i.e. remembering just the directions.

Example 2.6.2. Let G be the group of type %(1, 3,4). Consider the G-graph

2 2

={lyy"2%%, 5}
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The torus invariant G-constellation C'(I') has the following configurations:

Y 22 Y 22
P2 ——=pP5 =z
Y
P1—> P4 po Y
y

Yy Yy
po —— P3 ——> P6

where the marked arrows are nonzero and the others are all zero. The path from 1
to y? is induced by y? at pg, whose type is 2. The undirected path from ps to p4
is a defined undirected path of type % because the path consists of nonzero linear
maps:

Yy z Yy
P2 P5 £1 P4-

However, the following undirected path of the same type % from po to py

Yy Yy z
P2 P5 p1 P4

is not defined because the third arrow is zero in C'(I'); the second arrow is also zero,

but the arrow is not opposite-directed in the path. ¢

Remark 2.6.3. Let p be a nonzero path induced by a genuine monomial m € Mzo
from p;. If q is a path induced by a genuine monomial n € M>( from p; with the

condition that n divides m, then the path q is nonzero. ¢

Lemma 2.6.4. Let F be a torus invariant G-constellation. Then there are no

defined nonzero (undirected) cycles of type m with m # 1.

Proof. For a contradiction, suppose that there is a nonzero defined cycle of type

m # 1. Then m is a G-invariant Laurent monomial.

We may assume that the cycle is a cycle around pg of type m = z"1y"22™M3.
A point (t1,t2,t3) € T = (C*)3 acts on the cycle by a scalar multiplication of
t1™ta2t3™3. Since m # 1, we can find an element t = (t1,t2,%3) € T such that
t1™to"2t3™3 =£ 1. Thus one can see t*(F) is not isomorphic to F as every element

g = (gi) € GL(0) acts on the cycle trivially. Therefore F is not torus invariant. [

In Section we proved that if ' is a #-stable G-iraffe, then C(T") is a

torus invariant G-constellation over Yy and the corresponding point is fixed by its
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algebraic torus. Two different G-iraffes ', T give non-isomorphic G-constellations
C(T"), C(I'"). Moreover, we now prove that for any torus fixed point p € Yy, the
corresponding G-constellation is isomorphic to C(I") for some G-iraffe I'.

Let p be a torus fixed point in Yy. There exists a one parameter subgroup
A C — T CYy

with limy_,0 A*(t) = p. Since Yj is the fine moduli space of f-stable G-constellations,
we have a family U of 6-stable GG-constellations over A(lc with the following property:
for nonzero s € Al and the point ¢ := A\“(s), the G-constellation U, over s is
isomorphic to Oz where Z is the free G-orbit in T corresponding to the point ¢. In
particular, the support of the G-constellation U is in the torus T = (C*)3 c C3.
Let F be the f-stable G-constellation over 0 € A!. Let us define a subset I’

of Laurent monomials to be
I'= {m € M‘ 3 a defined nonzero undirected path in F of type m from po}.

Firstly, we prove that I' is a G-graph. Clearly, I" contains 1. Since 6 is generic and
F is f-stable, there exists a nonzero undirected defined path from pg to p so there is
a Laurent monomial m, in I" for each p € G¥. The Laurent monomial m, is unique:
suppose there exists a defined path of type n, from pg to p, and then there exists a
defined cycle of type I:—[f at po, which implies n, = m, by Lemma It remains
to show the condition (c) of Definition [2.4.1] We need the following lemma:

Lemma 2.6.5. With the notation as above, let p and q be two defined (undirected)
paths of the same type m from p to p' for some Laurent monomial m € M. Then,
mn F,

p*xe,=qxe,

where e, is a basis of Cp.

Proof. Firstly, note that if m is a genuine monomial, then the assertion follows from
the C[z,y, z]-module structure.

Let m be a Laurent monomial. There exists a genuine monomial n € M
so that n - m is a genuine monomial with n nonzero on A*(C*). Since two linear

maps n * p and n * q are of type m - n, we have
N * P * €y =Ny * Q%€ (2.6.6)
Since the linear map n(, is nonzero in the G-constellation U for nonzero s € Al
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from ([2.6.6)), it follows that p * e, = q * e, in the G-constellation U, for nonzero
s € A'. This proves the assertion by flatness of the family U. O

To show that I" satisfies the condition (c¢) of Definition m suppose that
m-n-m, €' form, € I and m,n € M>o. We need to show that n-m, € T.
By the definition of I', there exist nonzero (undirected) paths p of type m-n-m,
and q of type m,. By Lemma it follows that the defined undirected path
m ) * N,y * q is nonzero as it is of the same type as p. This implies that the

defined undirected path n(, * q is nonzero. Thus n-m, € I'.

Proposition 2.6.7. Let G C GL3(C) be the finite cyclic group of type (a1, az, a3).
For a generic parameter 6, there is a 1-to-1 correspondence between the set of torus

fixed points in the birational component Yy and the set of 0-stable G-iraffes.

Proof. From the argument above, we have shown that there exists a G-graph I" for
each torus fixed point p. Using Lemma one can show that C(T') is actually
isomorphic to F as a G-constellation by checking that Clz,y, z]-module structures
are the same. In particular, C(T") lies over p € Yp, and hence U(I") contains the
torus fixed point p. Thus I' is a G-iraffe.

Let I' be a #-stable G-iraffe. By Proposition and Lemma [2.5.4] we can
see that C(I") lies over Yy for a G-graph I' if I' is a G-iraffe. Thus we have a torus
fixed point p representing the isomorphism class of C(T"). O

Corollary 2.6.8. LetI' be a G-graph. Then C(I') lies over the birational component
Yy if and only if I is a G-iraffe.

Theorem 2.6.9. Let G C GL3(C) be a finite diagonal group and 0 a generic GIT

parameter for G-constellations. Assume that & is the set of all 0-stable G-iraffes.

(i) The birational component Yy of My is isomorphic to the not-necessarily-normal
toric variety (Jpeg U ().

(i) The normalization of Yy is isomorphic to the normal toric variety whose toric

fan consists of the full dimensional cones o(I") for T' € & and their faces.

Proof. Let G C GL3(C) be the finite subgroup of type %(al, ag,asz). Consider the
lattice

1
L=73 + 7 - ;(0117012,0[3).

Let Yy be the birational component of the moduli space of 6-stable G-
constellations and Yy” the normalization of Yy. Let Y denote the not-necessarily-

normal toric variety (Jpcg U(I'). Define the fan ¥ in Lr whose full dimensional
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cones are o(I') for I' € &. Note that the corresponding toric variety Y := Xy is
the normalization of Y.

Since Yy’ is a normal toric variety, it is covered by toric affine open sets U;
with the torus fixed point p; in U;. Let g; be the image of p; under the normalization.
As each ¢; is a torus fixed point, it follows from Proposition that there is a
(unique) G-iraffe I'; € & with C(T';) isomorphic to the G-constellation represented
by ;.

By Proposition for each G-iraffe I' € &, there is an open immersion of
U(T) into Yp. Thus we have an open immersion ¢: ¥ — Yy and the image 9 (Y)
contains all torus fixed points of Yjy.

The induced morphism ¢": Y” — Y is an open embedding of normal toric
varieties. Note that the numbers of full dimensional cones are the same. Thus the
morphism 9" should be an isomorphism. This proves (ii).

To show (i), suppose that Yy \ ¢(Y") is nonempty so it contains a torus orbit
O of dimension d > 1. Since the normalization morphism is torus equivariant and
surjective, there exists a torus orbit O in Y = Y” of dimension d which is mapped
to the torus orbit O. At the same time, from the fact that Y" is the normalization
of Y and that the normalization morphism is finite, it follows that the image of O’
is a torus orbit of dimension d, so the image is O. Thus O is in ¥(Y’), which is a

contradiction. O

Corollary 2.6.10. With notation as Theorem[2.6.9, Yy is a normal toric variety if
and only if S(T) = o(T)V N M for allT € &.
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Chapter 3

Weighted blowups and economic

resolutions

Let G C GL3(C) be the finite subgroup of type 1(1,a,r — a) with a coprime to

T

7‘7(1)

r, i.e. G is the subgroup generated by the diagonal matrix diag(e,€?, € where

€ is a primitive 7th root of unity. The quotient variety X = C3/G has terminal
singularities and has no crepant resolution. However, there exist a special kind of
toric resolutions, which can be obtained by a sequence of weighted blowups. In
this section, we review the notion of toric weighted blowups and define round down

functions which are used for finding admissible G-iraffes.

3.1 Background: Birational geometry

In this section, we collect various facts from birational geometry. Most of these are
taken from [22,28,29].

Definition 3.1.1. Let X be a normal quasiprojective variety.

(i) A Weil divisor D on X is said to be Q-Cartier if the Weil divisor rD is Cartier

for some integer r > 1.
(ii) The variety X is said to be Q-factorial if every Weil divisor on X is Q-Cartier.

Definition 3.1.2. Let X be a normal quasiprojective variety. We say that X
has terminal singularities (resp. canonical singularities) if it satisfies the following

conditions:

(i) the canonical divisor Kx is Q-Cartier.
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(ii) if ¢: Y — X is a resolution with F; prime exceptional divisors such that
Ky ~q ¢*(Ex) + Y _ a:E;,

then a; > 0 (resp. > 0) for all 4.

In the definition above, a; is called the discrepancy of E;. A crepant resolution

 of X is a resolution with all discrepancies zero. In particular, X is canonical.

Remark 3.1.3. If a variety X has terminal singularities, then its singular locus has
codimension > 3. In particular, terminal singularities in dimension 2 are smooth

and terminal singularities in dimension 3 are isolated (see Corollary 4.6.6 of [22]).

Remark 3.1.4. For a smooth variety X, let ¢: Y — X be a projective birational
morphism with Y normal. Then the discrepancy of every prime exceptional divisor
is > 1. ¢

Example 3.1.5. Let X be a smooth surface. Suppose that ¢: Y — X is the blow
up of a point in X with exceptional divisor E =2 P'. It is well known that the self

intersection number of F is E? = —1. Assume that the discrepancy of F is a, i.e
Ky = ¢*(Kx)+ aFE.
By adjunction, we get
—2=deg(Kp1) = (Ky + E)-E = (a4 1)E? = —a — 1.

It follows that a = 1. ¢

Remark 3.1.6. In the surface case, it is well known (see Corollary 4.6.16 in [22])
that a canonical singularity is analytically isomorphic to a quotient singularity C? /G
with a finite group G C SLy(C).

Let G be a finite subgroup of SLy(C) and X the quotient variety C?/G.
Suppose that ¢: Y — X is the minimal resolution of X. The following are well
known (see e.g. Section 4.6 in [22]):

(i) the exceptional locus Exc(p) of ¢ is a tree of (-2)-curves.
(ii) the dual graph of the exceptional curves is a Dynkin diagram of ADE type.

The type of the group G C SLy(C) is the type of the Dynkin diagram in (ii). ¢
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Example 3.1.7. Consider the finite subgroup G in GLy(C) of type %(1, 1). The

invariant ring in Clx, y] is
(C[l', y]G =C [xrv xr—ly’ s 7$yr_17 yr]

which is the coordinate ring of the quotient variety X = C?/G.

The surface X has a resolution ¢: Y — X with exceptional divisor F = P!
satisfying Op(—F) = Op1(r). By the adjunction formula, we have Og(Ky + E) =
Kp1 = Op1(—2), and hence

Ky = ¢*(Kx) — “2E.

T

Thus the quotient X is not canonical if » > 3. ¢

The following proposition is well known (see e.g. Theorem 11.1.1 in [22]).

Proposition 3.1.8. Let X be a Q-factorial variety. Suppose ¢: Y — X is a reso-
lution of X.

(i) The exceptional locus of ¢ has pure codimension 1, i.e. Exc(yp) is a divisor.

(ii) If X has only terminal singularities, then X does not admit nontrivial crepant

resolutions.

Birational geometry of toric varieties

Let L be a lattice of rank n and M the dual lattice of L. As in Section M can
be considered as the monomial lattice.

Let 0 be a cone in LRz R. Fix a primitive element v € LNo. The barycentric
subdivision o[v] of o at v is the minimal fan containing all cones Cone(r,v) where 7
varies over all subcones of o with v & .

The barycentric subdivision induces a toric morphism
XU[U] — U,.

The following proposition is well known in toric geometry (see e.g. [29]).
Proposition 3.1.9. Let ¥ := o[v] be the barycentric subdivision of a cone o at v.

(i) The barycentric subdivision induces a projective toric morphism
XE — Ug.
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(i) The set of 1-dimensional cones of ¥ consists of the 1-dimensional cones of o

and Cone(v).

(iii) The torus invariant prime divisor D, corresponding to the 1-dimensional cone

Cone(v) is a Q-Cartier divisor on Xx.

Example 3.1.10. Let L be the standard lattice Z3 C R? with the standard basis
e1, ez, eg. Consider the cone o = Cone(ey, e, €2+ €3, €1 +e€3). Set vy := e, vy := €3,
vs := e1 + eg + e3 and let X; denote the barycentric subdivision of o at v;.

Note that the variety corresponding to o is the quadric cone zz — yt = 0
in C*, which is singular at the origin. It is easy to see that the varieties Xy, are
smooth, so the birational morphisms Xy, — U, are resolutions of X.

The birational morphism induced by the subdivision at vs is the blow up of
the origin with exceptional divisor E = P! x P!. However, the birational morphism
induced by the subdivision at v; does not introduce a new divisor, i.e. the exceptional
locus is of codimension > 2. More precisely, the exceptional locus is P'. One can
see that there exists a morphism Xy, — Xy, which induces a projection of E onto

one factor of P! x PL.

X P! x P!
Xgl/ \:XEQ P! / \) P!
\ U / \{pt}/

Figure 3.1.1: Atiyah flop

Note that the birational map from Xy, to Xy, is an isomorphism outside

of codimension 2. This is the simplest example of a flop, which was introduced by
Atiyah. ¢

Proposition 3.1.11 (Reid [29]). Let X := U, be the affine toric variety corre-
sponding to a n-dimensional cone o. Assume that Kx is Q-Cartier. Let Y be the
corresponding toric variety of the barycentric subdivision of o at v and p: Y — X

the induced toric morphism. Suppose v is an interior lattice point in o. Then
Ky = ¢"(Kx) + ((x132 - @n, v) — 1) Dy,
i.e. the discrepancy of the exceptional divisor D, is (x1x3...%n,v) — 1.
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Proof. Let 0 = Cone(vy,vs,...,v;) be a cone in L with v; primitive vectors and
D; the torus invariant prime divisor corresponding to v;. Consider the holomorphic
n-form on the torus
dr, dxo dx,
§=— N2 N
I xI9 In
which can be extended to a rational n-form on X so that it has simple poles along

all torus invariant prime divisors on X. Thus

KX+ZD1' ~Q 0.

In particular,
Ky + ZSO_l(Dz') + D, ~qg ¢* <KX + ZDz) .

As ¢*(s) has a pole of order (z1x9 - x,,v) along the new divisor D,,

" <KX + ZDi) ~g )¢ (Di) + (wiwa -2, 0) Dy,
which proves the assertion. ]

Example 3.1.12. Define the lattice L =73+ 7Z - %(1, a,r — a) with a coprime to r
and M = Homgz(L,Z) the dual lattice. Let {e1, e, e3} be the standard basis of Z3
and o the cone in Ly generated by eq, ea, e3. Set v; := %(i,a, r —ai) € L for each
1< <r—1.

Let E; be the torus invariant prime divisor corresponding to v;. It can be
calculated from Proposition that the discrepancy of F; is

1 ar r—ai 7
+—+ —1=-.
T r r r

Note that the subdivision at v; gives the smallest discrepancy % and that any dis-

crepancy of FE; is less than 1. ¢

Theorem 3.1.13 (Reid [28]). Let X be the toric variety corresponding to a fan 3
with a lattice L and the dual lattice M. Then X has only terminal singularities

(resp. canonical singularities) if and only if any cone o € ¥ satisfies the conditions

(i) and (ii) (resp. (i) and (iii)):

(i) there exists an element m € Mg such that (m,u) = 1 for any primitive vector

u of 0.

(it) there are no other lattice points in the set {u € o ‘(m, u) < 1} except vertices.
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(iii) there are no other lattice points in the set {u € o }(m, u) < 1} except the ori-
gin.
Remark 3.1.14. Let G C GL3(C) be the finite subgroup of type %(041,042,0(3)
and L =73+ 7- %(041,042,043). From Theorem it follows that the quotient
singularity C3/G has only terminal singularities if and only if there are no nonzero
lattice points of L lie on and below the plane x + y + z = 1 other than ey, es, es.
In a similar way, one can see that the quotient singularity C3/G has only canonical
singularities if and only if there are no nonzero lattice points of L lie below the plane

r+y+z=1. ¢

Example 3.1.15. Define the lattice L =73+ 7Z - %(1, a,r — a) with a coprime to r
and M = Homgz(L,Z) the dual lattice. Let {e1, e, e3} be the standard basis of Z3
and oy the cone in Ly generated by ey, e2, e3.

We now show that the toric variety X := U, has only terminal singularities.
Consider m = zyz € Mg. Note that m satisfies the condition (i) in Theorem [3.1.13]
Note that

{ueo ‘(m,u> <1} ={0,e1,e2,€3}

so it follows that X has only terminal singularities.
In addition, since all quotient singularities are Q-factorial, X does not admit

crepant resolutions by Proposition (3.1.8 ¢

In the example above, we have seen that the quotient singularity X = C3/G
has terminal singularities if G is the group of type %(1, a,r — a) with a coprime to

r. Moreover the following theorem says that there is essentially only one case.

Theorem 3.1.16 (Morrison and Stevens [23]). A 3-fold cyclic quotient singularity
X = C3/G has terminal singularities if and only if G C GL3(C) is the subgroup of

type %(1, a,r — a) with a coprime to r.

3.2 Weighted blowups and round down functions

Define the lattice L = Z3+ Z- 1(1,a,r —a) and set L = Z* C L. Consider two dual
lattices M = Homgz(L,Z) and M = Homgy(L,Z). Note that a (Laurent) monomial
m € M is invariant under G if and only if m is in M. Let {e1, e2, e3} be the standard
basis of Z3 and o the cone in Ly generated by eq, ez, e3. Then Spec CloY N M] is
the quotient variety X = C3/G. Set v = %(1, a,r—a) € L, which corresponds to the
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exceptional divisor of the smallest discrepancy (see Example [3.1.12)). Define three

cones
o1 = Cone(v, e9,e3), o9 = Cone(ey,v,e3), o3 = Cone(e,ez,v),

and define ¥ to be the fan consisting of the three cones o1, 09,03 and their faces.
The fan X is the barycentric subdivision of o4 at v. Let Y7 be the toric variety
corresponding to the fan 3 together with the lattice L. Define ¢: Y7 — X to be
the induced toric morphism, which is called the weighted blowup of X with weight

(1,a,7 —a).

092 03

v:%(l,a,r—a)

01

€3 €9

Figure 3.2.1: Weighted blowup of weight (1,a,r — a)

Let us consider the sublattice Lo of L generated by e, v, e3 and let us define
My := Homy,(L2, Z) with dual basis

1 a—r

Soi=wy o, mi=ye, (Qi=y e 2.

The lattice inclusion Ly — L induces a toric morphism
¢: SpecCloy N Ms] — Us := Spec Cloy N M].

Since Cloy N My] = C[€2, 12, (2] and the group Gy := L/ Ly is of type é(l,jr,r —a)
with eigencoordinates &2, 72, (2, the open subset Us has a quotient singularity of type
é(l,jr, 7 —a). Note that for z™1y™22™3 € M,

1 a r—a
My M2 M3) — ¢ R S S U P P

e (x™y"™ 2 5 2

Similarly, consider the sublattice L3 of L generated by e, ez, v. Define the
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lattice M3 := Homy (L3, Z) with basis

1 —a T

§3i=wz me, mgi=yzroe, (3i=zroe.

The open set Us = Spec C[¢3, 73, (3] has a singularity of type —-(1,@,7 — 2a) with
eigencoordinates 3,13, (3 with Gy := L/Ls.

Lastly, consider the sublattice L of L generated by v, ez, es. Let us define
M := Homgy/(Ly,Z) with dual basis

1

1 rT—a

_a _r—a
51 =xr, m:=x ry, Cl = roz.

Since {v, e9, e3} forms a Z-basis of L, i.e. Gy = L/L; is the trivial group, the open
set Uy = Spec C[€1,m1, (1] is smooth.

Example 3.2.1. Let G be the group of type %(1, 3,4) as in Example The fan
of the weighted blowup of weight (1,3, 4) is shown in Figure

Tel
lop) o3
-643
-516
-452
-325

261

U =1(1,3,4

€3 €2

Figure 3.2.2: Weighted blowup of weight (1,3,4)

Let Uy be the affine toric variety corresponding to the cone oy on the left
side of v = %(1, 3,4). Note that Us has a quotient singularity of type %(1, 2,1) with
eigencoordinates :cyfé , y%, yfé z.

Let Us be the affine toric variety corresponding to the cone o3 on the left
side of v = %(17 3,4). Note tghat Us has a quotient singularity of type %(1, 2,1) with

. . 1 3 1
eigencoordinates rz~4,yz 4, 24.
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On the other hand, eq, e3, v form a Z-basis of L, so that the affine toric variety

corresponding to the cone generated by v, es, e3 is smooth. ¢

Definition 3.2.2 (Round down functions). With the notation above, the left round
down function ¢o: M — My of the weighted blowup with weight (1,a,r — a) is
defined by

1 a r—a
mi,m2 . m3\ __ ¢Mi L7m1+7m2+ m3J ms3
Pa(a™ Y22 ) = &5y " ’ 2

where | | is the floor function. In a similar manner, the right round down function
¢3: M — M3 of the weighted blowup with weight (1,a,r — a) is defined by

1 a r—a
=mi+-ma+ m3
qbg(l‘mlmeZmS) _ ;nlnglz :\;T r r J7

and the central round down function ¢1: M — M of the weighted blowup with
weight (1,a,r — a) by

r—a

1 a
L+ Smat ,
p1(zy"22"3) = 1LTm1+Tm2 " mSJUTQCI”“.

Remark 3.2.3. Let ¢; be a round down function of the weighted blowup with
weight (1,a,r — a) as above for k =1,2,3. For m € M and n € M, we have

dr(m - n) = ¢x(m) - n,

because M}, contains M as the lattice of GGj-invariant monomials, especially, n is in
M. Thus the weight of ¢ (m - n) and the weight of ¢;(m) are the same in terms
of the Gp-action. ¢

Remark 3.2.4. Davis, Logvinenko, and Reid [8] introduce a related construction

in a more general setting. ¢

Lemma 3.2.5. Let ¢ be a round down function of the weighted blowup with weight
(1,a,7 —a) as above for k =1,2,3. Let m € M be a Laurent monomial of weight j.

Then we have the following:
(i) ¢2(y-m) = ¢o(m), when 0 < j <r—a.
(ii) ¢3(z-m) = ¢3(m), when 0 < j < a.

(i1i) ¢1(x-m) = ¢1(m), when 0 < j <r—1.
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Proof. Let m = x"'y"2z™3 be a Laurent monomial of weight j. To prove (i),

assume that 0 < 7 < r — a. This means that

1 a r—a 1 a r—a r—a
0<-mi+-—mg+ m3 — [~my + —mg + m3| <
T T T r
Thus Gy - ) = Ga(a™ y"H27) = ga(aye)
The assertions (ii) and (iii) can be proved similarly. O

3.3 Economic resolutions

For each 0 < ¢ < r, let v; := %(i,a,r — at) be a lattice point in L. The quotient
variety X = C3/G has a certain toric resolution which was introduced by Danilov [7]
(see 29]).

Definition 3.3.1. For the group G C GL3(C) of type %(l,a,r — a), the economic
resolution of C3/G is the toric variety obtained by the consecutive weighted blowups

v1,V2,...,U,_1 from the quotient variety X = C3/G.

Let ¢: Y — X = C3/G be the economic resolution. For each 1 <i < r, let
E; denote the exceptional divisor of ¢ corresponding to the lattice point v;. From
toric geometry, we have the following proposition (see Example [3.1.12)).

Proposition 3.3.2. With the notation as above, the economic resolution Y has the

following properties:
(i) Y is smooth and projective over X.
(it) Ky = ¢*(Kx) + Y 1<;<r LE;. In particular, each discrepancy is 0 < L < 1.

Remark 3.3.3. From the fan of Y, we can see that Y can be covered by three open
sets Uy, Us and Uy, which are the unions of the affine toric varieties corresponding to
the cones on the left side of, the right side of, and below the vector v = %(17 a,r—a),
respectively. Note that Uy and Us are isomorphic to the economic resolutions for

the singularity of %(1,—77“, r—a), of fla(l,d, —r), respectively. ¢

Example 3.3.4. Let GG be the group of type %(1, 3,4) as in Example The fan
of the economic resolution of the quotient variety is shown in Figure [3.3.1

Let Us be the toric variety corresponding to the fan consisting of the cones
on the left side of v = %(1,3,4). Note that Uy is the economic resolution of the
quotient %(1, 2,1) which is Go-Hilb C3, where G35 is of type %(17 2,1).
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o1 02
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€3 €2

Figure 3.3.1: Fan of the economic resolution for %(1, 3,4)

Let Us be the toric variety corresponding to the fan consisting of the cones
on the right side of v = 1(1,3,4). Note that Us is the economic resolution of the
quotient i(l, 3,1) which is G3-Hilb C3, where G3 is of type %(1, 3,1). ¢

3.4 Elephants for the economic resolution

Let G C GL3(C) be the group of type %(1, a,r — a). Consider the quotient variety
X =C3/G.

Let D be the hyperplane section of X defined by z = 0, i.e. the Weil divisor
defined by « = 0. One can see that

Kx—i-DNQO

from the proof of Proposition |3.1.11] Thus D is an elementﬂ of the anticanonical
system |—Kx/|. Moreover, D is isomorphic to the quotient C? by the group of type
1(a,—a) so D has an A,_; singularity.

Consider the economic resolution ¢: Y — X = C3/G. Let S be the strict

transform of D. Then one can show that .S is an element of the anticanonical system

3Elements of the anticanonical system of a variety X are called elephants of X.

36



|- Ky| and that we have the following diagram:
G, v

I

where the vertical morphism S — D is the minimal resolution of D.

 »

)

It is well known [1},/19] that the minimal resolution of A,_; singularities is
isomorphic to the moduli space of #-stable A-constellations for a generic parameter
0 where A C SLy(C) is the group of type %(1, —1). Moreover, the chamber structure
of the GIT stability parameter space for A-constellations coincides with the Weyl
chamber structure of type A,_; (see Section . We expect that the morphism

Y — X might have a modular description as moduli spaces of G-constellations (see

Section .
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Chapter 4

Moduli interpretations of

economic resolutions

This chapter contains our main theorem. Section explains how to find an ad-
missible set & of G-iraffes. To find G-iraffes, we use the round down functions
introduced in Section B.2l Section [£.4] describes the universal families over the bi-
rational component Yy using G-iraffes. In Section we show that there exists a
stability parameter 6 such that G-iraffes in & are f-stable.

4.1 How to find admissible G-iraffes

4.1.1 G-iraffes for 1(1,r —1,1)

Let G be the finite subgroup in GL3(C) of %(1,1" —1,1) type, i.e. a = L or r — 1.
Kedzierski [15] proved that for G C GL3(C) of type (1,7 — 1,1), G-HilbC? is

r

isomorphic to the economic resolution of the quotient variety C3/G.

Theorem 4.1.1 (Kedzierski [15]). Let G C GL3(C) be the finite subgroup of type
%(1,@,7“ —a) witha =1 orr —1. Then G-HilbC? is isomorphic to the economic
resolution of the quotient variety C3/G. In particular, G-Hilb C? is nonsingular and

irreducible.

For each 0 < i <r, set v; = %(z’,r—i, i). Note that vg = e3 and v, = e3. The
fan corresponding to G-Hilb C3 consists of the following 2r — 1 maximal cones and

their faces:

o; = Cone(e1, vi—1,v;) forl1 <i<r,

or+i = Cone(es, v;—1,v;) for1 <i<r-—1.
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Each maximal cone has a corresponding (Nakamura’s) G-graph:

Dy = {1y, 0% ...,y 225 27" for1<i<r,
Dopi = {1y, 0% ..,y L 2?27 for1<i<r—1,

with S(T';) = of N M for 1 < j < 2r — 1. From the fact that each cone o; is

3-dimensional, it is immediate that these G-graphs are G-iraffes.

Example 4.1.2. Let G be the finite group of type %(1,1,1). Set v = %(1,1,1).
Note that the economic resolution Y of X = C3/G is the weighted blowup of X

with weight (1,1,1). Then the maximal cones of Y are
o1 = Cone(ey, ea,v), o9 = Cone(e,v,e3), o3 = Cone(es,es,v),
and the corresponding G-iraffes I'; to o; are
I ={1,z}, Iy ={1,y}, I's ={1,z}.

Let us consider the left round down function ¢, the right round down function ¢3
and the central round down function ¢, corresponding to the weighted blowup with
weight (1,1,1). Then
I''={me M| (m)=1}
Iy ={me M |¢y(m) =1},
1}

¢

Example 4.1.3. Let G be the finite group of type %(1, 2,1) with the coordinates
&,n,C. Set vy = %(1, 2,1) and vy = %(2, 1,2). Recall that the economic resolution Y
of X = C3/G can be obtained by the sequence of the weighted blowups:

Y 21 25X,

where ¢; is the weighted blowup with weight (1,2,1) and ¢5 is the toric morphism
induced by the weighted blowup with weight (2,1,2). The fan corresponding to Y

consists of the following five maximal cones and their faces:

o1 = Cone(ey, ea,v1), o9 = Cone(ey,v1,v2), o3 = Cone(ey,vy,es),

o4 = Cone(es, ea,v1), o5 = Cone(es,v1,v2).
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The following

I = {]-aCa C2}, Iy = {177% C}? I3 = {1a7777]2}’
Iy = {1a€7£2}7 I's = {175577}

are their corresponding G-iraffes. ¢

4.1.2 G-iraffes for 1(1,a,7 — a)

In this section, we assign a G-iraffe I', for each full dimensional cone ¢ in the fan
of Y with S(T,) =" N M

Let X be the quotient variety C3/G where G C GL3(C) is the finite subgroup
of type %(1, a,r —a) with a coprime to r. Let ¢: Y — X be the economic resolution
of X. Then Y can be covered by Us, Us and U;, which are the unions of the affine
toric varieties corresponding to the cones on the left side of, the right side of, and
below the vector v = %(1, a,r — a), respectively.

Assume o is a full dimensional cone in the fan of Y. We have three cases:
(1) the cone o is below the vector v.
(2) the cone o is on the left side of the vector v.

(3) the cone o is on the right side of the vector v.

Case (1) the cone o is below the vector v. This means that the toric cone o
is smooth and that the toric affine open set U, is equal to U;. Then consider the
central round down function ¢; of the weighted blowup with weight (1,a,r — a).

Now, for m = x™y™22™3 ¢ M
¢1(m) =1 if and only if ma=mz=0and 0 < & < 1.
T

Thus the set T := ¢; (1) = {1,2,22,...,2""'} is a G-graph with S(T') = ¢¥ N M.

Since the corresponding cone o(I") of T is equal to o, I is a G-iraffe.

Case (2) the cone o is on the left side of v. Consider the left round down
function ¢o. From the fan of the economic resolution, it follows that Us is isomorphic
to the economic resolution Ys for the group Ga = %(1, —r,r) with eigencoordinates
&,m, C. There exists a unique full dimensional cone ¢’ in the fan of Y5 corresponding

to o.
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Lemma 4.1.4. Let o be a full dimensional cone in the toric fan of Y on the left
side of the lattice v and o’ the corresponding full dimensional cone in the fan of Ys,
where Yy is the economic resolution for the group Go = (1, —r,r). Assume that

a

there exists a Go-graph T” such that S(T') = (¢/)Y N M. Define a set
I':={meM|¢(m) eI}

Then I' is a G-graph.

Proof. Firstly note that 1 € T since ¢2(1) = 1 € I'. To show that I" satisfies the
second condition in Definition let p € GV be an irreducible representation of G.
We have to show that there exists a unique monomial of weight p in I'. Then there
exists a positive integer i such that the weight of 2’ is p. Consider the monomial
#2(27) in My and its weight y in terms of the Gy-action. Since I' is a Gao-graph,
there exists a unique element k, whose weight is the same as the weight of ¢o (7).
Then (kix

P2 (z7)
lattice M. From Remark it follows that

) is in the Ga-invariant monomial lattice M, so it is in the monomial

Bo: - (d);;j)) — ky,

ie. al- (%) is in I". To show uniqueness, assume that two Laurent monomials
m, n of the same weights are mapped into IV. From the fact that the weights of
¢2(m) and ¢2(n) are equal, it follows that ¢o(m) = ¢2(n). From Remark

m

da(m) = 62 (n- =) = da(n) - =,

n

and hence m = n.
Lastly, to show I' is connected, let m = 2™ y™22™3 € M be an arbitrary

element in T, i.e. ky := ¢o(m) € I'". Consider the following six cases:
(A) Suppose € -k, is in I, but £ - ky # ¢2(x - m). This means that

1 a r—a
—mp + —mg +
r T

1 a r—a r—1
m3 > |—=mi+ —mo+ ——mg3z| + .
r r r r
From this equation, it is easy to show that ¢2(%) =k, and ¢y(x- %) =¢-ky.

Hence, we can see that there is a path from m to z - % in I' and that
boe- ™) = €Ky
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(B) Suppose 1% is in T, but 1% # ¢2(). This means that

1 a rT—a 1 1 a r—a
—-mp + —mg + mg—— < |-mp+ —mg+ ms| .
T T T T T T T

From this equation, it is easy to see that ¢o(y - m) = k, and ¢o(47) = kg—x
kx

Hence, there is a path from m to £ in T' and ¢2(*]*) = 3

(C) Suppose 1 -k, is in IV, but 1 - ky # ¢2(y - m). This means that

1 a r—a r—a 1 a r—a
—m1 + —mg + ms — < |-m1+ —m2+ ms| .
r r r r r r r

From this, it is easy to show that there exists a positive integer kg such that
¢2(y* - m) = ¢o(m) = k, for all 0 < k < kg and ¢2(y*o*! - m) = n - k,.
Hence, we can see that there is a path from m to y**! . m in I" and we get
b2 (yko+1 . m) =7- kX'

(D) Suppose 1%‘ is in T, but %X # ¢2(%). This means that

1 a r—a
-mi + —mg +
T r

a 1 a rT—a
m3—— 2> |-mq+ —mag+ m3| .
T T T T

From this, it is easy to see that there exists a positive integer ky such that

k .
gbg(ymk) = ¢o(m) =k, for all 0 <k < ko and ¢2 (—ykg}rl) = 7" Hence, there is
a path from m to miH in I and ¢9 (yTH:”) = kTX

(E) Suppose ¢ - ky is in I, but ¢ - ky # ¢2(z - m). This means that

1 a r—a a 1 a r—a
-mi1 + —mso + mg— — > *ml—i-;mg—i- . ms| .

T T T T r

From this, it is easy to see that there exists a positive integer k:(ﬁ such that
(bg(y%) = ¢o(m) = k, for all 0 < k < kg and ¢» (yk()%) # k,. Moreover,

¢a(z - y%) = ( - k,. Hence, there is a path from m to z - y% in I' and

4This integer ko is the maximal integer satisfying

r—a

1 a a 1 a r—a
—mi + —meo + ms— —k>|-mi1+ —ms+ ms| .
r r r r r r
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do(z- 1) = (- ky.

(F) Suppose kg is in I, but X & # $2(2). This means that

1 a T—a r—a
—-mij + —mg + ms3 —
T r r T

1 a r—a
< |-m1+ —m2+ ms| .
r r r

From this, it is easy to see that there exists a positive integer kg such that
$2(y*-m) = ¢y(m) =k, for all 0 < k < ko and 6o (kaH-m) +# k. Moreover,

¢a (¥ yto- =) = X. From this, it follows that there is a path from m to Y~ in
T and that ¢2(y’“°z'm) =3

In proving Lemma [£.1.4] we have also proved the following lemma.

Lemma 4.1.5. With the notation as above, for a monomial g € {£,n,(} of degree
1 and any ky, € I, there exist a monomial £ € {x,y,z} of degree 1 and an element
m, € I" such that

d2(f -my) =g - ky
with ¢p2(m,) = k.
From Remark it follows that

wtr (gbg(m . mp)) = gbg(wtp(m : mp)),

as they are elements in IV of the same weight.

Remark 4.1.6. By Lemma it can be seen that if a Laurent monomial m, of
weight j is in I' with 0 < j <r —a, then y - m, isin I. ¢

Proposition 4.1.7. With notation and assumptions as for Lemma [{.1.]), for the
G-graph T, we have S(T') = S(I"). In particular, T is a G-iraffe with S(T') = aVNM.

Proof. Note that S(I") is generated by
be a genuine monomial in M >0 and m, an element in I". From the definition of I, it

follows that ¢2(my)) is in I", which is denoted by k, € I'". Set k to be %nfpl)”) It

follows that k is a genuine monomial in &, 7, ( from the definition of the left round
is G-invariant, from Remark we have

form€M>0 and m, € I'. Let m

Wtr‘(l’l’l m 0)

. . m-m
down function. Since ——2—
wtr(m-m,)

m-m,  ¢(m-m)) B %'fﬁﬂmp) k -k,

wtr(m - m,) ¢2(wtr(m - m,)) B ¢2(wtr(m - m,)) ~ wipr (k- ky)’
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g-ky
wtrs (g-ky)
S(I) with g € {&,n,C}. Tt is sufficient to show that this generator is in S(T'). From

Lemma we can find m € M>( and m, € T satisfying ¢2(m - m,) = g - k,.
Note that wtr (g - ky) = ¢2( wtr(m - m,)). Thus we have

so we prove S(I') C S(I"). For the reverse inclusion, let be a generator of

gk, ¢2(m - m,) _ ¢2(m-m)) _ m-m,

wir(g-ky)  wtpr (g2(m-my))  do(wtp(m-m,))  wir(m-mp)’

and we proved the proposition. O

Case (3) the cone o is on the right side of v. We can get a similar result.

Corollary 4.1.8. Let G C GL3(C) be the finite subgroup of type %(1, a,r—a) with a
coprime to r. Let Yimax be the set of 3-dimensional cones in the fan of the economic
resolution Y of X = C3/G. Then there exists a set & of G-iraffes such that there is
a bijective map Smax — & sending o to Ty, satisfying S(T'y) = oVNM. In particular,
U(T) is smooth forT' € &.

Proof. From Section note that the assertion holds when a = 1 or r — 1. We
use induction on r and a.

Let ¥1.x be the set of 3-dimensional cones in the fan of the economic reso-
lution Y of X = C3 /G and o an arbitrary element of ¥,,c. Then o is either on the
left side of the lattice v = %(1, a,r — a), the right side of v, or below v.

For the case where o is below v, define
N 2 r—2 _r—1
Iy :={1l,x,2%,....,2" % 2" " }.

Then we have seen that T, is a G-iraffe with S(I'y) = ¢V N M.

If the cone o is on the left side of v, then we have a unique 3-dimensional
cone ¢’ in the fan of the economic resolution of 2(1,=r,7) where ~ denotes the
residue modulo a. Note that —r is strictly less than a. Using induction and Propo-
sition we prove that there exists a G-iraffe I', satisfying S(I'y) = oV N M.

The case where the cone o is on the right side of v can be proved similarly. [

Remark 4.1.9. Let I be a G-iraffe in & and I'' the corresponding G-graph i.e. IV =
¢r(I') with the round down function ¢ with coordinates &, 7,(. As in Section

note that we have the affine set D(I") containing C(I') whose coordinate ring is

C [2p,Yp» 2 ‘ peG’] /I
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where It = ( the quadrics in (2.5.8), f — 1|f € A(T')). Let D(I") be the affine open
set D(I") containing C(I"). Similarly, the coordinate ring of D(I”) is

C [£X777X’CX ‘ X € G\k/] /IF’

where It = < the quadrics in (2.5.8), g — 1 ‘ ge A(F’)>.
Consider the following algebra homomorphism v from C [a:p, Yps Zp | pE GV]
to the coordinate ring of D(I"):

¥: C 20, Yp, 2p | p€G'] = C[D(I")] given by £, = g(,),

where f, € {,,9,,2,}, 8 = ¢£k(f;:’3), X = ¢r(p), m, is a unique element of weight p

in I" and g(,) denotes the linear map induced by the action of the monomial g on
the vertex y of the McKay quiver of Gy. From Lemma [£.1.5 it follows that 1) is
surjective as the algebra C[D(I")] is generated by arrows in {&, 1y, ¢y ‘ x € G/}

We now prove that ker ¢ = It which implies that D(I") and D(I"”) are iso-
morphic. To see that ¢(f,) = ¢ (1) for any f, € A(T'), first note that f, € A(T) if
and only if ¢y (f - m,) € I” as T = ¢, }(I"). It follows that 1(f,) — 1 € I for each
f, € A(T"). To show that the quadrics induced by commutation relations are in the
kernel, one should check that:

Y (fp)¢ (f/;’) =Y (f;)w (fp”)

where fp,fpu,fl’),fg, € {2z, Yp, 2o} with wt(f - m,) = p' and wt(f’ - m,) = p”. Since
both w(fp)w(fé,), w(f;)w(fpu) are the linear maps on the vertex ¢r(p), it is enough

to show that

& (£ - my) Pk (f- m,) _ Dk (- m,) Pk (f-mp)
Pr (mp) Pk (mp’) Pk (mp) Pk (mp”)

This can be shown as we have

or(f-m,) =gp(my) 122,

p

¢k (f’ . mp) = gbk(mpu) . fl;nj/p’ and (4110)
op(f'-my) = ¢p(f-my

Pf,
~mp/

" T 3
f m,

~—

from Remark This shows that It C ker 1.
For the opposite inclusion, assume that ¢ (f,) € A(IV) for £, € {x,,v,, 2,},
which means that ¢ (f-m,) € I". By the definition of T, this implies that f-m, € T

so f, € A(T"). To show that any quadric coming from the commutation relations in
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I is in the image of quadrics for I', assume that
/ /
8x "8y — 8y 8x”

is a quadric in Iy, i.e. gx,g;(,,g;(,gxu e {& v, G ‘ x € G} with wt(g - ky) = X’
and wt(g’ - k,) = x”. From Lemma there exist f,f € {z,y, 2} such that

_altm) ol my)
¢k(mp) ’ ¢k(mp’)

with o/ = wt(f - m,) and ¢x(m,) = k. Thus ¢(f,) = gy and ¥(f),) = gy

Moreover, from the equations (4.1.10]), we can show that g} - gy = ¥(f)¥(f,").
Thus we have

By By — 8y - 8y = V(E)U(£) — »(E£)Y(En).

Therefore the quadric g, - g;(, — g}, - 8y is the image of the quadric f, - f, —f/, - f,.
This proves that kery = Ip.
Consider the induced isomorphism between the coordinate rings of D(I") and

D(I"). Then we have the following commutative diagrams:

U)o T') CID() —= [j(rn
U)o D), CD()] = CIS(T)

Ifa=1orr—1, then UT') = D(T') for I' € & as the economic resolution is G-Hilb
which is irreducible by Kedzierski |15] (see Theorem [4.1.1)). By induction on a and
r, we can prove that U(T) = D(I') 2 C3 for T € &. ¢

Example 4.1.11. Let G be the group of type %(1, 3,4) as in Example The
fan of the economic resolution of the quotient variety is shown in Figure [3.3.1

Let us define the following cones:

o1 := Cone ((1,0,0), 2(1,3,4), 1(3,2,5))

oy := Cone ((1,0,0), 2(6,4,3), 1(1,3,4)) .
We now calculate G-graphs associated to the cones o1 and o3. Note that the left
side of the fan is the economic resolution of the quotient variety %(1, 2,1) which is

G-Hilb C3, where G is of type %(1, 2,1). Call the eigencoordinates &, 7,¢. Let o}
be the cone in the fan of Go-Hilb C? which corresponds to oq. Observe that the
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01|02

n | 1
3(1727 7 3 1) 1(1,3, )

es es es es es es

3(1,2,1) 1(1,3,1) 1(1,3,1)

Figure 4.1.1: Recursion process for 1(1,3,4)

corresponding Ga-graph I'} is
I ={1¢¢,
and that the left round down function ¢q is
Go(a™y™22m3) = gl gmatmal gma,
Thus G-graph I'y corresponding to o7 is
I, def {mmlym22m3 € M} Go(x™y™22"3) € F'l}

2

= {17y7y2127§7%>§7}'

N

For the cone o9, note that the right side of the fan is the economic resolution
of the quotient variety i(l, 3,1) which is G3-Hilb C3, where G3 is of type %(17 3,1).
Call the eigencoordinates «, 3,7. Let o) be the cone in the fan of G5-Hilb C? which
corresponds to oz. Observe that the corresponding Gs-graph I, is

FIQ = {175752753}7
and that the right round down function ¢3 is

p3 (M y™22m3) = oM g2 lrmitimatima)
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Thus the G-graph I's corresponding to o3 is
I def {xmlym22m3 € M} Go(x™y™22"3) € F'Q}
2 3 3
={1,2z,y,9* L, & 51

From Example o(I'1) = o1 and o(I'y) = o9. ¢

4.2 A chamber in the stability parameter space

This section proves that there exists a chamber € such that the admissible G-iraffes
in Section are f-stable for § € €. In addition, we prove that the chamber €
coincides with the cone Kedzierski found and that the chamber is an open Weyl
chamber. Moreover, it turns out that this chamber is a full chamber, i.e. the facets
of € form actually walls (see Section [5.2)).

4.2.1 Admissible chambers

Let G C GL3(C) be the finite subgroup of type (1,a,r — a) with a coprime to 7.

p
We may assume 2a < r. Let G2 and G3 be the groups of type %(1,—77", 7) and of
type Tia(l,F, —r), respectively. Note that for k = 2 or 3, the round down function

¢r, induces a surjection ¢p: G¥ — G)/ as is shown in the proof of Lemma

The stability parameter space for Gg-constellations is

O = {9 € Homy, (R(Gk),Q) ‘Q(C[Gk]) = 0}

where R(Gy) is the representation ring of Gg, i.e. R(Gy) = GBXEGX Zx. Let us
assume that there exists a stability parameter 0%) € ©;, such that the admissible
Gj-graphs are 0()_stable. Take a GIT parameter 0p € © satisfying the following

system of linear equations:

62 (x)= S 0p(p) for all x € GY,

B2(p)=x (4.2.1)
9(3)(X’) = > 0Op(p) forall y €GY.

¢3(p)=x'
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Let us define a GIT parameter ¥ € © to be

-1 ifo<wt(p) <a,
d(p) =491 ifr—a<wtp) <r, (4.2.2)

0 otherwise.

Note that Y. 9(p) = 0 for any x € G} ﬂ For a sufficiently large natural number

o (p)=x
m, set

0 := 0p +mo. (4.2.3)

We claim that the admissible G-iraffes are 6-stable.
Example 4.2.4. Let G be the group of type %(1,3,4) as in Example 4.1.11] For

each 0 < ¢ < 6, let p; denote the irreducible representation of G whose weight is
i. We saw that the left side of the fan is Go-Hilb C?, where Gy is of type %(1, 2,1)
and that the right side of the fan is G3-Hilb C3, where G35 is of type %(1, 2,1). Let
{x0, X1, x2} and {x0, X1, X5, X5} be sets of characters of Gy and G3, respectively.

Let us take corresponding GIT parameters 62, 03) as follows:

0@ = (-2,1,1), 6% =(-3,1,1,1).

1 = 0p(p1) +0p(pa),

— —
Il Il
> >
g g
) )
= N
+ 4+ +
> >
g g
O~ N N~~~
) )
ot ot
— — — — — ~—

—_
I
>
T
RS
N
+
>
T
)
=)

Take a partial solution 0p as:

0p = (—1,3,3,1,-2,-2,—2).

Define ¢ = (—1,—-1,-1,0,1,1,1). Set 8 = 0p + md for a large m. Consider the
following G-iraffe

I'= {17y7y2727 gu %7 Zé}

®One can see that if any § € © satisfies that Z¢k(ﬂ>:X 0(p) = 0 for any x € G and k = 2,3,
then 0 must be a constant multiple of ©J. This also explains the existence of a solution 0p for (4.2.1]).
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First, let F be the submodule of C(I') whose basis is A = {z, £, %} Note
that

22
7y7

M

¢y (92(4)) = {z,

and ¥(F) > 0. Thus 6(F) is positive for a large enough m. More precisely,

p24,

< [w
S

O(F)=3-m+(-2+m)+(-2+m)=m-—1

is positive if m > 1.
Second, consider the submodule G of C'(I") whose basis is B = {iv %} Note
that ¥(G) = 0 and that ¢2_1(¢2(B)) = B. In this case, ¢2(B) gives a submodule G’
of C(I') with
0) (") = 6(G).

Since C(I") is §(®)-stable, we can see that #)(G') = 6(G) is positive. ¢
Lemma 4.2.5. Let 0 be the parameter as is in . For the set & in Corol-
lary if T is in &, then T is 6-stable.

Proof. Let I be a G-iraffe in & and o the corresponding cone to I'. We have three
cases as in Section [4.1.2

(1) the cone o is below the vector v.
(2) the cone o is on the left side of the vector v.
(3) the cone o is on the right side of the vector v.

In Case (1), we have only one G-iraffe
I ={l,z,2. .. ,2" 22"}
By Lemma [2.5.1] any nonzero proper submodule G of C(I") is given by the set
A= {2 o7 2" 2 2"

for some 1 < j <r —1. Since m is sufficiently large, it follows that 6(G) > 0 so I' is
f-stable.

We now prove the result in Case (2).

Let I be a G-iraffe with corresponding Gs-graph I''. Let G be a submodule of
C(I') whose C-basis is A C I'. Remark and Lemma [2.5.1]imply that if m, € A

50



for 0 < wt(m,) < a, then ¢; ' (¢2(m,)) C A. Thus ¥(G) > 0 from the definition of
.

If 9(G) > 0, then since m is sufficiently large, it follows that 8(G) > 0.

Let us assume that ¥(G) = 0. First we show that A = ¢;'(¢2(4)) as
follows. Suppose that A C ¢5 ' (¢2(A)). Then there exists m, in ¢2_1(¢2(A)) \ A
with 0 < wt(m,) < a. To show that 6(G) is positive, we prove that ¢s(A) gives
a submodule G’ of C(I") and that #(G) = 6P (G'). Since @ satisfies the system
of linear equations , it suffices to show that ¢3(A) gives a submodule G’ of
C(I"). Recall &,7,¢ are the coordinates of C? with respect to the action of Ga. By
Lemma [2.5.1] it is enough to show that if g - ¢2(m,) € I" for any g € {£,7,(} and
m, € A, then g ¢2(m,) in ¢2(A). Suppose g - ¢2(m,) € I for some m, € A. By
Lemma there exists m, such that

¢2(f ' mp’) =g d’?(mp)

with ¢o(m,) = ¢2(m,) for some f € {z,y,2}. In particular, f-m, € T' = ¢, 1(I").
Since A = ¢ ' (¢2(A)), we have my € A, which implies f-m, € A as A is a C-basis
of G. Thus g - ¢2(m,) is in ¢o(A). O

4.2.2 Root system in A,_;

We review well known facts on the A,_; root system. Let I := Irr(G) be identified

with Z/rZ. As is well known, the following three are in 1-to-1 correspondence:
(1) Sets of simple roots A.
(2) Open Weyl Chambers €.
(3) Elements of S, := {w } w is a permutation of I}.
Let {5i ’z c I} be an orthonormal basis of Q", i.e. (e;,€;) = d;;. Note that

the indices are in I = Z/rZ. Define

b= {Ei—e’fj

ijeli#j}.

Let h* be the subspace of Q" generated by ®. Elements in ® are called roots. For
each nonzero i € I, set a; = €; — g;_4. For any root «, one can see that (a, o) = 2.
Note that
2 if i =3,
(i, aj) =< —1 if [i — j| = a,

0 otherwise.
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This is the root system of A,_; and the Weyl group of this root system is the group

generated by simple reflections

It is easy to see that

si(ex — &) = Cwi(k) — Ew;(l)s

where w; is the (adjacent) transposition in S,

i+a ifj=i,
wi(j) =4 if j=i+a,
J otherwise.

Thus the Weyl group can be thought as the group of permutations of 1.

Here, we consider roots as dimension vectors:
(i) «; is the dimension vector of the vertex p;;
(ii) the dimension vector of the trivial representation pg is — 3, . .

As h* is generated by the roots «;’s, the stability parameter space © can be identified
with the dual space of h*. Let w be a permutation of I. As is customary (see

e.g. [11]), define a set of simple roots and an open Weyl chamber associated to w:

A(w) == {eyi) — Ewli—a) € ®|i € 1,i#0},
C(w) := {9 € (h*)* | Q(Ew(i) - 5w(i—a)) >0 Viel,i# 0}.

In particular, for the identity permutation of I, the corresponding simple roots A

and Weyl chamber € are

Ay={ei—eiac®|icli#0} ={a;|icl,i#0},
¢ ={0e () |0(a;) >0 Viel,i#0},

which is the cone ©4 for G-Hilb in (2.2.10)).

A chamber in stability parameter space. For each ¢ € I, let p; denote the
irreducible representation of GG of weight i. Note that each root a can be considered
as the support of a submodule of a G-constellation. In other words, «; corresponds

to the dimension vector of p;. Thus in general root a = ), njc; is the dimension
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vector of the representation @©n;p;. Abusing notation, let & = ). n;c; also denote
the corresponding representation &n;p;.

Let A be a set of simple roots. Define a subset € of © associated to A as
C:=¢(A):={0cO|0(a) >0 YaecA}.

At this moment, €(A) is not necessarily a chamber in © because €(A) may contain

nongeneric elements.

4.2.3 Admissible sets of simple roots

In this section, we define the admissible set of simple roots A, for the group of type
%(1, a,” — a). The Weyl chamber €, corresponding to the admissible set of simple

roots is equal to the GIT stability parameter cone in [16].

Remark 4.2.6. Kedzierski [16] described a cone of GIT parameters with a set of
inequalities. One can easily see that this can be described using the root system
A,_1. He conjectured the cone is a full chamber. In Section we prove that the

conjecture is true. ¢

Firstly, we consider the case of %(1, r —1,1). Secondly, we define the admis-

sible set of simple roots for %(1, a,T — a) using a recursion process.

The case of (1,7 — 1,1). From Theorem we know that the economic
resolution of the quotient variety X = C3/G is isomorphic to G-Hilb C3 where G is
of type %(1, r —1,1). Thus in this case, the G-iraffes are just Nakamura’s G-graphs
which are f-stable for 6 € O, where

Oy = {9€@|9(p)>0forp7$p0}.

In terms of the root system, 6(a;) > 0 for nonzero i € I. Note that a; = &; — €j41.

Thus the corresponding set of simple roots is

A={e—ciy1€®|icli#0}

= {81 *62,62*63,...,8r,1*60}.

Example 4.2.7. Consider the group of type %(1, 2,1). Let {6][’ |j =0,1, 2} be the

standard basis of Q3. Then the corresponding set of simple roots A is
Al = {elL — el el —55}.
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On the other hand, for the group of type i(l, 3,1), let {ekR ‘ k=01, 2,3} be
the standard basis of Q*. Then

R_yfR__R_R__R_R__R
A" ={el' —e3,ey — 5,65 — €

is the corresponding set of simple roots for type i(l, 3,1). ¢

1(1,a,7 — a). Let us

The case of %(1,@,7’ —a). Let G be the group of type
assume that for 1(1,=7,7) and —1-(1,@, —r) we have sets of simple roots AL and
AR respectively. Note that AL is a set of simple roots in A,_; and A is a set of
simple roots in A,_,_1. As in Section let

{ef'|l=0,1,...,a—1}, {ef|k=0,1,....r—a—1}

be the standard basis of Q% and Q"~%, respectively. From the two sets of simple

roots AL and AR, we construct a set A of simple roots in A,_; as follows. Firstly,
as in Section let the standard basis {5i ’z el } of Q" be identified with the

union of the two sets
{z-:lL‘l:O,l,...,a—l} and {gkR‘k:O,l,...,r—a—l}

using the following identification:

elL =¢g; with¢=1[ mod a, r—a<i<r,
. (4.2.8)
el =g withi=k mod (r—a), 0<i<r—a.
Secondly, with this identification, define a set A of simple roots
L R
A = A U {ELEJG’ - 6(7"*261)*[:12;](7”*0)} U A . (42.9)

Note that A is actually a set of simple roots in A,_1.

Remark 4.2.10. Note that if 5lL — 5£ is a positive sum of simple roots in A, then
the corresponding root of A,_1 is also a positive sum of simple roots in A. Moreover,
elL — €kR can be written as a positive sum of simple roots in A: note that €1 ]a is
identified with a vector £ and that €(r—2a)— | =24 | (r—a) is identified with a vector
el since we add the root €12 ]a = E(r—2a)— | =22 | (r—a) to A, ElL — skR is a positive sum

of simple roots in A. ¢
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Definition 4.2.11. With the notation as above, we call the set A of simple roots
the admissible set of simple roots for G = %(1,(1,7" — a), which is denoted by A,.

For the admissible set of simple roots, define
€, :={0€0|0(a) >0 VaecA,}

with considering roots av = ), n;cy as corresponding representations &n;p;. We call
¢, the admissible Weyl chamber for G = %(1, a,”r —a).

As is stated in Section [£.2.2] note that a set of simple roots A, is determined
by and determines a permutation of I = Z/rZ. Indeed,

A, = {Ew(i) — €w(i—a) }Z €li# O}

for a unique permutation w: I — I.

Let {91}::_11 be the dual basis of the GIT parameter space © with respect to
{a;}iZ], ice. 0i(ay) = 6ij. Set g = — Z:;ll 0;. As is standard, we can present the
rays of the Weyl chamber €, using this basis and the permutation w: the rays are

generated by the following vectors

1
(Outjarra = Ouija)) (4.2.12)

7

I
o

J

fori=1,2,...,r—1. Thus any 0 € €, is a positive linear sum of the vectors above

in (1.2.12).

Proposition 4.2.13. Assume that a < r—a. Let 0 be an element in the admissible
chamber €,. Then 0(cy;) is negative if and only if 0 < i < a. Therefore any 0-stable

G-constellation is generated by po, p1,- - Pa—1-

Proof. Let 0 € €,. Recall that any root can be written as a sum of simple roots and
that elements in A, are positive on 6.

Suppose that 0 < ¢ < a. From the identification , one can see that ¢;
is identified with akR for some [ and that ¢;_, is identified with 5{4 for some [. By
Remark 4.2.10} the root a; = ¢; —€j_q = ekR — f-:lL is a negative sum of simple roots
in A,.

Suppose that r — a < ¢ < r. Consider the root o; = ¢; — €;_,. From the
identification , one can see that ¢; is identified with Eé’ for some [ and that
€i—q 1s 1dentified with sf“ for some [. Thus «; = 5,% — ElR is a positive sum of simple

roots in A, by Remark [4.2.10
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Consider the case where a < i < r — a. The root a; = ¢; — g;_, is a sum of
simple roots in A®. A recursive argument yields that o is a positive sum of simple
roots in Af. Thus «; is a positive sum of simple roots in A, by Remark

To prove the last statement, let F be a #-stable G-constellation. Consider
the submodule G of F generated by po,p1,...,pa—1. If G # F, then 6(G) < 0.
Therefore we have G = F. O

Example 4.2.14. Let G be the group of type %(1,3,4). From the fan of the
economic resolution of this case (see Example , the left and right sides are
the economic resolutions of singularities of %(1, 2,1) and %(1, 3, 1), respectively. By
Example [£.2.7] we have two sets

AL = (b — b el —elyand AR = (et — R B ol it
As in the construction , the admissible set of simple roots is
Ay ={e4 — 5,65 —€6,66 —€1,61 — €2,62 — €3,€3 — €0},
where the underlined root is the added root as in . In terms of a; = €; —€;_q,
Ay ={ay+ ar, a5 + ag, —a; — a5 — ag, a1 + as, as + o, a3}
Thus the set of parameters 6 € © satisfying

0(pa @ p1) >0, 0(ps®p2) >0, O(p1©psDp2) <O,
0(p1 @ p5) >0, O(p2 @ ps) > 0, 0(ps) >0

is the admissible Weyl chamber €, where p; is the irreducible representation of G
of weight 7.

The corresponding permutation w is

0 3 6 25 14
w =
032165 4
ie. w(0) =0, w(3) =3, w(6) =2, etc, as the fundamental set of simple roots is

Ay ={eq —e1,61 —€5,65 —€2,62 — 6,66 — €3,63 — €0} -
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The rays of the Weyl chamber €, are the row vectors of the matrix

-1 0 010O0O0
-1 0 00001
-1 0 -1 00 11
-1 -1 -1 01 1 1
-1 -1 0110
-1 0 0100

with the basis {;}. Note that for any 6 € €,, 6(«;) is negative if and only if
0<i<3. ¢

4.2.4 An open Weyl chamber

In this section, we prove that the stability parameters described in Section
form an open Weyl chamber. It follows that our stability parameters are the same
as Kedzierski’s in [16].

Let G € GL3(C) be the finite subgroup of type %(17 a,r — a) with a coprime
to r. We may assume 2a < r. Let G2 and Gz be the groups of type %(1,—77“, 7) and of
type Tia(l,?, —r), respectively. To use recursion steps, assume that the admissible
set of simple roots ALY and A give the full chambers ¢¥ and ¢®. Let A, be the

admissible set of simple roots and €, the admissible Weyl chamber for %(1, a,r—a).

We prove that &€, is a full chamber such that the admissible G-iraffes are
f-stable for 6 € €, by the following three steps.

Step 1 Firstly, we prove that for any 6 € €,, there exist #2) € ¢L and 63 ¢ ¢f
such that 6 is a partial solution of the system of linear equations (4.2.1]). Let 6 be
in €,. Let us define 8, 63 to be

02 (x)= Y 0p(p) forall x €GY,
p2(p)=x

08 (x)= 3. Op(p) forall X' €GY.
é3(p)=x'

It suffices to show that #() € ¢& and ®) e ¢, Let y; be a character of G whose
weight is [. Then

¢ (x)) ={pi € G¥|0<i<r i=1 moda},
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by the definition of the left round down function. In terms of roots, the dimension

vector of Gy, (p)=y, P 18

Z oy = Z (81' — Eifa) = OélL.

0<i<r, 0<i<r,
i=l mod a 1=l mod a

Note that 6 is positive on A,. In particular 6 is positive on the roots coming from
AL From this, it follows that ) is in ¢L. For #®), we can prove the assertion in

a similar way.

Step 2 Secondly, we prove that the vector 9 in is a ray of the chamber &,.
From this, it follows that any § € €, can be written as the form so admissible
G-iraffes are f-stable.

Let ¢ be the vector in . As is well known, 9 is a ray of the Weyl
chamber €, associated to the set of simple root A, if and only if there exists a
unique simple root a in A, such that J(«) is positive and ¥ is zero on the other
simple roots in A,. A simple observation shows that ¥ is zero on the sets A” and
AR with the identification . It remains to show that ¥(«) is positive for

@ T Elgla T S(r—20) | 222 (r—a) T Elfla T Er—2a

r—a

= Z o+ Qg

pi€dy ' (A)

for a subset A of GV. Since ¥(A) = 0 and J(a,—,) = 1, we have J(a) = 1.

Step 3 Lastly, we prove that the chamber is a full chamber. By Step 1 and Step 2,
we prove that the Weyl chamber €, is a cone in © such that the admissible G-iraffes
are f-stable for § € €,. From considering the torus invariant G-constellations which
x acts trivially on, i.e. G-iraffes corresponding to the toric cones containing e,
it follows that any wall of €, is an actual wall in ©. Therefore the admissible
Weyl chamber €, is a full chamber in the stability parameter space ©. For further

discussion, see Section [5.2]

We have proved the following proposition:

Proposition 4.2.15. For the set & of G-iraffes in Corollary there exists
an open Weyl chamber €, C © such that I' is 0-stable if ' € & and 0 € €,.

Furthermore, the chamber €, is a full chamber in ©.

From Step 3, we make the following conjecture:
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Conjecture 4.2.16. The chamber structure of the GIT stability parameter space ©

of G-constellations coincides with the Weyl chamber structure of A._q.

4.3 Main theorem

Theorem 4.3.1 (Main Theorem). Let G C GL3(C) be the finite subgroup of type
%(1,@,7“ — a) with a coprime to r. Let Xax be the set of 3-dimensional cones in
the fan of the economic resolution Y of X = C3/G. Then there exist a set & of
G-iraffes and 6 € © such that:

(1) there exists a bijective map Ymax — & sending o to Ty with S(T'y) = o¥ N M.
(ii) every L'y is O-stable if 'y € &.
Thus Y is isomorphic to Upeg U(T). In particular, U(T) is smooth for any T’ € &.

Proof. Corollary shows that there exists a set & of G-iraffes satisfying the con-
dition (i). For the set &, Lemma shows that there exists a stability parameter
0 satisfying the condition (ii). O

Corollary 4.3.2. With the notation as Theorem [{.3.1], the economic resolution Y
1s 1somorphic to the birational component Yy of the moduli space My of 0-stable

G -constellations.

Proof. The main theorem proves that the economic resolution Y is isomorphic to
Ureg U(I'). From Proposition there exists an open immersion from Y to Yj.
This open immersion is a closed embedding because both Y and Yy are projective
over X. Since both Y and Yy are 3-dimensional and irreducible, this embedding is
an isomorphism.

Y = UFE@ Ul)——=Yy

M lpro.].

X
O

By the construction of this family, we have seen that elements in I' form a
C-basis of the G-constellation over p € U(T").

Conjecture 4.3.3. The moduli space My is irreducible. In particular, any 0-stable
G-graph I is in the set & in Theorem [4.5. 1)
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If this conjecture holds, then the moduli space My is isomorphic to the
economic resolution. From Remark it is enough to show that torus invariant

f-stable G-constellations corresponding to I' € & are all of #-stable torus invariant

1
2k+1

[4.3.3]is true so My is isomorphic to the economic resolution for § € €,. We hope to

G-constellation. In the case G = (1,2,2k — 1), we can prove that Conjecture

establish this more generally in future work.

Remark 4.3.4. Let G C GL3(C) be the group of type 1(1,a,7—a) and A C SLy(C)
the group of type %(a, r—a).

Kedzierski [16] describes a Weyl chamber € C O such that the normalization
of Yy is isomorphic to the economic resolution Y of X = C3/G for § € €. In his
description, he did not use the root system A,_1, but a set of inequalities, however
his description is essentially the same as using the root system.

His tactic in [16] is using the anticanonical system described in Section
(See also Section [5.2):

SC——Y

b

More precisely, the elephant S given by x = 0 in Y is the minimal resolution of D,
where D is the divisor given by z = 0 in X = C3/G. By the 2-dimensional McKay

correspondence, S is isomorphic to the moduli space of #-stable A-constellations and

u:@ui

el

there is the universal family

over S. He constructed line bundles £; on Y such that £;|g = U; for each i € I.
He proved that the collection of the line bundles is a gnat family [20] and that the

family induces a bijective morphism from Y to Yj. ¢

4.4 Universal families

In the previous sections, we assigned a #-stable G-graph I', to each full dimensional
cone o of the fan of the economic resolution Y of X = C3/G, where G is of type
%(1, a,” — a) with a coprime to r. This section describes the universal family over
the economic resolution Y.

Let p be an irreducible representation of G. From the data (o,I'5), for each
full dimensional cone o, there exists a unique Laurent monomial m, € I', whose

weight is p. The data {m,} is called the canonical data of p.
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Remark 4.4.1. This canonical data gives a line bundle, which is called the universal
family over Yy = G-HilbC3 if a = 1 or  — 1. ¢

Proposition 4.4.2. Let p be a fized irreducible representation of G. The canonical
data {m,} of p gives a line bundle L, on'Y satisfying L,|v, = Oy, (div m;l). In
other words, L, is the line bundle corresponding to the Cartier divisor D, defined

by D,ly, = div m;l\UU for all o.

Proof. From general toric geometry (see e.g. Section 4.2 in [3]), it suffices to show

that = vanishes on the intersection oNo’ for any two adjacent cones o, o’. Suppose

CV/

that the intersection is the cone generated by u;, us € L and then it should be shown

. . / / !
that (u;, ;7= is zero for i = 1,2. Set m, = x"1y™22"™ and my = z™y™22™s.
o

There are four cases:
(1) Both o and ¢’ are cones in either the left side or the right side.

(2) One of them is the cone on the central side and the other is the cone on the
central side of the left side.

(3) One of them is the cone on the central side and the other is the cone on the

central side on the right side.

(4) One of them is the most right cone of the left side and the other is the most
left cone of the right side.

b

Case (1) Case (2) Case (4)

Figure 4.4.1: Four cases for two full dimensional cones in the fan of YV

Case (1) Assume that the cones are on the left side. Let ¢2 be the left round
down function of the weighted blowup with weight (1, a,r —a). Since the weights of

mey
m

m, and m, are equal to p, we have ;2= = ¢(;3<). By induction on r, it follows

that (u;, 2=) = 0.

m,/
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Case (2) Assume that o is the cone on the central side and that ¢’ is the cone on
the central side of the left side. Note that the G-graph for o is {1,x,2%, ... 2" "1}
and that the G-graph for ¢’ is

{m € M‘qﬁg(m) € {1,5,...,5“71}}.

Thus, with the fact that both m, and m,s have the same weights,

mi

m, =2 for some 0 < mq1 <7,

/ / .
m, =z"y" for some 0 <m) <a with m}+ amb=m.

Since o N o’ = Cone ((O,O7 1), %(1,@,7‘ — a)), the Laurent monomial ;2< vanishes

on the intersection.
Case (3) Case (3) is similar to Case (2).

Case (4) Assume that o is the most right cone in the left side and that o’ is
the most left cone in the right side. Note that o N ¢’ is the cone generated by
(1,0,0), 2(1,a,7 — a). Similarly to Case (2), note that

/

!
mo ms _.mL._m
2" Mg =y 228

m,; =y

with ama + (r — a)ms = amj + (r — a)mj. Hence it follows that ;2= vanishes on

o

the intersection. O

Remark 4.4.3. For the trivial representation pg, 1 is in every G-graph and hence

the line bundle for the trivial representation is Oy . The direct sum of all such line

bundles
L= @ Ly
peEGY
is a gnat family in the sense of [20], which is the same family in |16]. ¢

Example 4.4.4. Let G be the group of type %(1,3,4) as in Example m Let p
be the irreducible representation of G with weight 1. Consider the line bundle £,
as in Proposition In Figure the monomial in a maximal cone o is the

unique element in I', whose weight is 1. ¢
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Figure 4.4.2: Elements of weight 1 in I, for %(1, 3,4)

4.5 Example: type —(1 7,5)

In this section, as a concrete example, we calculate the set of G-iraffes and the
admissible set of simple roots A, for the group G of type 7 (1 7,5).

Let G be the finite group of type ﬁ(l, 7,5) with eigencoordinates z,y, z and
L the lattice L = Z3 + Z- %(1, 7,5). Let X denote the quotient variety C3/G and

Y the economic resolution of X. The toric fan ¥ of Y is shown in Figure 4.5.1

To use the recursion process as in Section we need to investigate the
cases of type (1 2,5) and of type 5(1 2,3). Let G’g be the group of type (1 2,5)
with eigencoordinates &, 79, (o and G5 be the group of type (1 2,3) with eigenco-
ordinates £3,7m3, (3. Consider the toric fans s and X3 of the economic resolutions
for the type (1,2,5) and the type (1 2,3), respectively.

4.5.1 (G-iraffes

We now calculate G-iraffes corresponding to two full dimensional cones in X:

o4 = Cone (3(12 0,0), 1(3,9,3), L (8,8, 4))
73 = Cone (1—12(1 7,5), 5(3,9,3), (8,8, ))
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T 710
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Figure 4.5.1: Toric fan of the economic resolution for - (1,7,5)

Note that the cones o4, 73 are on the right side of the lowest vector v = %(17 7,5).

Their corresponding cones o, 74 in X3 to 04, 73, respectively are
o = Cone (%(5,0,0), 1(1,2,3), L1, 1,4)), (4.5.1)

7, = Cone (%(o, 0,5),1(1,2,3), (1, 1,4)). (4.5.2)

Observe that the cones oy, 74 are on the left side of ¥3. To use the recursion,
let GG32 be the group of type %(1, 1,1) with eigencoordinates £32, 732, (32. Let X539

denote the fan of the economic resolution of the quotient C2/Gz. In Y35, there
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7 /

T4

es €9 es () es3 €2
(1,1,1) 1(1,2,3) +(1,7,5)

Figure 4.5.2: Recursion process for 15(1,7,5)

exist two cones o, 74 corresponding to o/, 75, respectively:

O'Z = Cone (%(27 0,0), %(07 2,0), %(1’ 1, 1))7
1 1
2 2

74 = Cone (%(O, 0,2),

As is in Example the Gsg-graphs I'j and I'j corresponding to o, 74
are

FZ = {17 C23}7
Iy = {17523}-
Using the left round down function ¢s for 1(1,2,3)

L a+2l57+3cJ

P32 E4MBCS — Eamsy (325

we can see that the corresponding Gs-graphs I'j and I'; corresponding to o/, 74 are

def _
vy on ) = {1 G S
def  _
ry Con ) = {1 w0 &, Goms
To get the corresponding G-iraffes 'y, I's to o4, 73, respectively, we use the right
round function ¢ for -5 (1,7,5):

. .a, b_c a, b La+71b2+5cJ
P31 xy’z" = EynaQy :
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We get
Iy def b3 ( h) = {l,y, g %, Z—z,z,zQ,z?’,z‘l, %, %, %
I's dﬁfgb?) (T%) {1{[}1‘2 x> :Uy,z,y,%,%,%;,z zQ}.
Let us consider the following two cones:
o9 = Cone (£(12,0,0), £(9,3,9), $5(4,4,8) ).
77 = Cone ($5(2,2,10), 5(9,3,9), 5(4,4,8)).

Observe that the cones og, 77 are on the left side of v. The corresponding cones oy,

T4 in ¥ to o9, 77, respectively are
— Cone (%(12, 0,0), 1(5,3,4), %(2,4,3)),
= Cone< (1,2,5), %(5,3,4),%(2,4,3)).

Note that the cones 0§, 74 are on the right side of the fan 3 and that the right side
is equal to the fan Y3 of the economic resolution for %(1, 2,3). Moreover, the cones
in 33 corresponding to of, 74 are o}, 75, respectively in (4.5.1). Thus we have the
corresponding Gaz-graphs I'g, I'/ are:

Ty = {1, 123, M3, (23, gii}
7= {1, §23, €23723, 1123, 7753}’

where (a3 is the group of type %(1, 2,3) with eigencoordinates £23, 123, C23. Using
the right round down function ¢93 for %(1, 2,5)

L a+2b+ocJ

b23: E3M3C5 > E53mbaCas ;
we can calculate the corresponding Go-graphs to of, 7

def : &
Ty = ¢oy () = {1’ M, 13, G20 G2 %22’ 7%}’

def
/
F?

- ¢23 (FH) = {17 52? 527727 §2<27 72, 77%7 <27 C22}

Lastly, from the left round down function ¢- for 1—12(1, 7,5)

La+7b+5c

$o: 2’2 = &y ',
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it follows that the G-iraffes I'g, I'7 corresponding to og, 77 are:

_ 2.3 .4 .5 2 22 22 22 28
FQ—{17y7y7yayay7Z727?7y727y737y73 ’

I, = {1,ﬂf,ﬂ:y7wy27wy3,1’z7y7y27y3,y4,y5,2}-

For each 0 < ¢ < 12, let v; denote the lattice point %(%, i,12—i) in L. For the
cones o in Figure [4.5.1) on page Table on page [69| shows the corresponding
G-iraffe I',.

4.5.2 Admissible set of simple roots

Now we calculate the admissible set of simple roots for 1—12 (1,7,5). Since for the group
of type %(1, r—1,1), the economic resolution is G-Hilb, note that the admissible sets
of simple roots for 3(1,1,1) and $(1,2,1) are {e1—eo}, {e1—€2,22—¢e0}, respectively.
By the identification , that the admissible sets of simple roots for %(1, 2,3) is

{es — €4, ea— €1, €1 — €2, €2 — €0},

where the underlined root is the added root as in (4.2.9)). Similarly, the admissible

sets of simple roots for %(1, 2,5) is
{85 — &6, €6 —E3, €3 — &4, €4 — €1, €1 —E2, €2 — 80}'
Lastly, the admissible set of simple roots for %(1, 7,5) is

€5 — €6, €6 — €10, €10 — €11, €11 — €8, €8 — &9, €9 — €7,
€7 —E3, €3 — €4, €4 — &1, €1 —E2, €2 — &)

Note that the corresponding permutation w is

0729 411 61 8 3 10 5
02143 7 9811 10 6 5/

as the fundamental set of simple roots is

A, — €5 — €10, €10 — €3, €3 — &8, €8 — €1, €1 — &6, €6 — €11,
+ — .
€11 — €4, €4 — €9, €9 — €2, €2 — €7, €7 — &0
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With the dual basis {6;} with respect to {a;}, the row vectors of the following matrix

is the rays of the admissible Weyl chamber &,:

0001O0O0O00QO0

0001O0T1TUO0QO0

0
0
0
0
-1
-1
-1

-1
-1
-1
-1

00011100
-1 0011101

-1
-1
-1
-1
-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1

-1 0011111

-1 0001111

0
0

000O0O1O0T1T1

00 0O0O0O0T11

0
0
0
0

0010O0O0T10Q0
011000O0O00O0
01 00O0O0O00QO0

0
0
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Coordinates

Cone | Generators G-iraffes I',,
on U,
01 €1, €2, V11 1’Z’z2’z3’z4725’26’27’28729’2107211 %72%7212
02 €1, 710, V11 1’y’%72;722723’24’25726,27728729 z£5’zyT20’Zyi
g3 €1, V9, V10 1aya%7%a§a§7§7%72722723724 %’g’%
04 €1, Vs, V9 1,y,%,%,%§,2,22,23,24,%,%,% %’g’gj%
05 €1, 07, V8 Ly, Y, j,f‘;—i,g—i,g—i,g—i,g—i,g—;‘,z,z2 %,§7§
06 €1, Ve, U7 1 ' Y5 % Z2 % %7%7%7%7%7%?% %’%’;ﬁé
a7 €1, Vs, Ve 1yy y ZZ2§ %7;%7;%,;72?;% xzij’%’z%
o8 €1,V4, V5 1,y’y27y3ay4ay57%?ga£52’227§ %’Zé’§
g9 €1, V3, V4 1ay,y27y3ay4ay532az a%>§v§%v§% 2%3’27:’33%
g10 €1, V2,03 17y7y2vy37y4ay5ay67ga%agang %’%’%
g11 €1, V1, V2 1ay7y2ay35y47y57y6vzaivyévy%vy% #’Z#’;%
o2 | er,es v Ly y? oyt o8 yT % 0 w0yt | Sy
I ea, v, v11 | 1, x2, 2%, 223, w24, 2%, 122, 2, 22, 23, 24 %p&%
T V9, V10, V11 1,1:,27:1:,2,22,x22,z3,x23,24,$24,y,% %Z,T;>§
T3 v7, Vg, Vg Lx,xy,%7:132,5622,1;,;,7,;2,2,,22 %,%7%
T4 €a, U7, Vg 1,2, 22, 23, 2%, 2,222, 222,232, 2% 2, 2, 22 %5,&7;%
T Vg, Vg, U7 1z, 2y, oz, 222, & 7 z2, 2%y, y, 2 2,% %a%>%
T6 Vg, Vs, Vg 1,z, 2y, x2, 222, zz? =Yy ,y3,z,22,§ Z—i,f—;,;—;
7 V2, U3, U4 1,x,xy,xy2,$y3,xz,y,yQ,y3,y4,y5,z %’%GZ’:UZ*;
T8 V9, V4, V7 1,x,J:y,:l:Z,xQ,ny,lB,x3y,x4,x4y,y,z %57%27%
) es,v,v2 | La,ay,ay?, ayd, oyt y, 2 v3 vt o0 o0 %%ﬁ
T10 es, U2, U7 1z, zy, 22, 2%y, 23, 23y, «*, 2y, 25, 25,y %77%271%
T0 €92, €3,U7 ].,.’E,$2,$3,x4,x5,$6,$7,x8,$9,{1:10,.’1}'11 x127%;xi5

Table 4.5.1: G-iraffes for G = £(1,7,5)
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Chapter 5

Further discussion

5.1 Torus invariant G-constellations for type (1, 1)

For a finite subgroup of G C SLy(C), it is well known that the GIT stability param-
eter space of G-constellations has the same chamber structure as the Weyl chamber
structure for the root system corresponding to the type of the group G (see [6,19,31]).
In this section, we describe explicitly torus invariant G-constellations for each cham-

ber of the GIT stability parameter space where the group G is of type %(1, —1).

5.1.1 Chambers of GIT stability parameter spaces

Let G C SLg(C) be the finite group of type %(1, —1) with coordinates y,z. Set
T = (C*)2. Let p; be the irreducible representation of G' whose weight is i. We can
identify I := Irr(G) with Z/rZ.

Let {EZ‘ ‘ 1€ I} be an orthonormal basis of Q", i.e. (g;,€5) = d;;. Define

b= {Ei—e’fj

ijeli#j}.

Let h* be the subspace of Q" generated ®. Elements in ® are called roots. For each
nonzero i € I, set o; = &; — g;_1. Set S, := {w ‘ w is a permutation of I}.

The stability parameter space © can be identified with the dual space of h*
by considering roots as dimension vectors. Note that AL = {ai ’z el,i# 0} is a

set of simple roots and the corresponding Weyl chamber € is

¢, ={ecO|f(a)>0 VaecA,}
={0€0|0(p) >0 Ypi#po},

which is the chamber ©, for G-HilbC? in ([2.2.10). Let {01}:;11 be the dual basis
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of the GIT parameter space © with respect to {a;}/_], i.e. 6;(cj) = §;;. Using the

basis {&;} with the standard inner product, we can write:
i—1
== 5
j=0

for1 <i<r—1. Set by =— Z:;ll ;. As is standard, we can present the rays of the
Weyl chamber €(w) using this basis and the permutation w: the rays are generated

by the following vectors
i—1

Z w(i)+1 ~ b)) (5.1.1)
=0
fori=1,2,...,r — 1, which is the dual basis with respect to the set of simple roots

A(w).

5.1.2 Lacings for each chamber

On the other hand, any torus invariant (connected) G-constellation is given by
a lacing. The following definition originates from the idea in calculations due to
Nolla [27] and Reid.

Definition 5.1.2. A lacing A for G = (1, —1) consists of two subsets (AY, A?) of
Irr(G) = Z/rZ such that:

(i) |AY| 4+ |A?| =r + 1 where |-| is the cardinality of the set.
(i) if ¢ € AY for i € I, then i + 1 € A%
(iii) if ¢ ¢ A* for i € I, then i — 1 € AY.

For a generic 6 € O, a lacing A is said to be @-stable if the G-constellation corre-

sponding to A is #-stable.

Proposition 5.1.3. Let G be the finite group of type %(1, —1). Let 0 be a generic
parameter in ©. There exists a 1-to-1 correspondence between the set of isomorphism

classes of 0-stable torus invariant G-constellations and the set of 0-stable lacings.

Proof. Let F be a f-stable torus invariant G-constellation. Define A = (AY, A?) to
be

AY = {iEI’y*eZ-:O},

A ={iel|zxe =0},
where y; (resp. z;) is the y-action (resp. z-action) on the basis of Ce,,. Then A is

a lacing. Indeed, as the monomial yz is G-invariant, it gives a cycle around each
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vertex, so ¥;z;+1 must be zero by Lemma[2.6.4] i.e. one of y; and z; 11 must be zero.
Thus the condition (ii) in Definition is satisfied. For the condition (i), note
that as F is -stable, it is connected, and so we need at least » — 1 nonzero arrows.
This shows that A is a lacing.

For the converse, let A = (AY, A?) be a lacing. We define a G-constellation F
as follows: the G-constellation F is ®;c;Ce; as a C-vector space where ¢; is a basis

of Cp;, whose Cly, z]-module structure is given by:

eit1 if i gAY,

yxep =
0 if i e AY,
€1 ifig/\z,
zZ*xe =
0 ifi e A%

As G-invariant monomials 4", yz, 2" act trivially on each vertex, F is a torus invariant

G-constellation. O

Remark 5.1.4. For those familiar with McKay quivers, the set AY is the index set
for vanishing y; and the set A* is the index set for vanishing z;. The corresponding
G-constellation does not have any (undirected) cycle so it is a torus invariant G-

constellation by Lemma [2.6.4 )

Lemma 5.1.5. Let A = (AY, A?) be a lacing and 6 € © generic. Then A is 0-stable
if and only if 0(e, —e1—1) >0, for any k € AY and | € A*.

This Lemma can be proved by the same method as the proof of Lemma 8.3.
in [16].

Proof. Let 0 be a generic parameter and A = (AY, A?) a lacing. Let F denote the G-
constellation corresponding to A. Suppose that A is f-stable and that k € AY,] € A~
Since yr and z; are zero linear maps in F, V is a submodule of F if the support of
Vis {l,l+1,...,k}. Remember that o; = ¢; — £;_1 is the dimension vector of the
vertex ¢. Note that

H(V) = (6[ — 5171) + 9(61+1 — 81) oot 9<5k — 6]671)

As A is #-stable, we have 0(e, —e;_1) > 0.
Suppose that (e, — ;1) > 0, for any £k € AY and [ € A*. As is discussed
above, this implies that 8(V') > 0 for any submodule V' supported on {l,l+1,... k}
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for some [,k € I. As any submodule of F can be decomposed as a direct sum
of submodules supported on {l,I + 1,...,k} for some I,k € I, the assertion is

proved. ]

Let w be an element in S,, €(w) the Weyl chamber corresponding to w, and

A(w) the set of simple roots, that is,

Aw) = {5w(i) —€u(i-1) € 0] |Z el,i+# 0} ,
Cw):={lcO|f(a)>0 VaecAw)}.

Since My is irreducible for 6 € €(w) by [1,/19], the number of #-stable lacings should

be r. We prove the following proposition by explicit calculations.

Proposition 5.1.6. Let w be an element in S,, €(w) the Weyl chamber correspond-
ing to w as above. Let 6 be in the chamber €(w). Then there exist exactly r 0-stable
lacings. They are Aj = (A?,Ai) for each 1 < j < r where

AV = {wlj = 1),w() - swlr = 1},

, (5.1.7)
A ={w0)+Lw@l)+1...,w(—1)+1}.

Proof. Let I = Trr(G) where G is the group of type %(1,—1). First, from the
definition of the chamber €(w), note that 9(5w(i) — 5w(j)) > 0 if and only if ¢ > j.

By Lemma, our A; is f-stable. It is enough to show that they are all
f-stable lacings.

Let A = (AY, A#) be a #-stable lacing.

Suppose w(0) is in AY. By Lemma only w(0) + 1 can be in A* as
0(€w(0) —Ew(k)) < 0 for any nonzero k € I. From the condition (ii) in Deﬁnition
it follows that AY = I. The number of elements in AY must be one, so A* =
{w(0) + 1}. Therefore A = A;.

Suppose that j is the minimum such that w(j—1) is in AY. From the fact that
0(€w(j—1) —Ew(r)) < 0 for k > j, it follows that only w(0)+1,w(1)+1,...,w(j—1)+1
can be in A*, by Lemma Hence

|[AY|<r—j+1 and |A®[<].
Since | AY | + | A |=r + 1, we have

A ={w(j—1),w(j)...,w(r—1)},
A = {w(0)+1L,w@)+1...,w(j—1)+1},
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ie. A = Aj. O

Observe that when we move from A; to Aji1, we add w(j) + 1 to A* and

remove w(j — 1) from AY.

Remark 5.1.8. Each A; corresponds to a torus fixed point in M. ¢

We now describe a local chart of My containing the G-constellation corre-
sponding to a f-stable lacing A. Assume that 6 is generic in the Weyl chamber €(w)
for a permutation w € S..

Let A = Aj = (A%, A%) be the f-stable lacing in Proposition

A ={w(i - 1),w(j)...w(r—1)},

A ={w(0)+1Lwl)+1... ,w(G—1)+1}.

As is described above, A encodes which linear maps (or y, z-actions) vanish. After
changing basis, setting

y=1 ifig AY,

zi=1 ifid& A7,

gives a local chart S; of My. Set coordinates 7;, (; to be

T = G-y (5.1.9)

G = Rw(j—1)+1-
From the commutation relations, it follows that
Y021 = Y122 = ... = Yr—120 = 1;(;-

Note that for each i # w(j — 1) either i ¢ AY or i + 1 ¢ A*. This means that for
each i # w(j — 1) either y; or z;41 is set to be 1. Thus

zi=mn¢ ify; =1, 1le. i&AY,
yi =G if zip =1, 1le i+ 1 € A%

Therefore the affine open set S; of My is isomorphic to C? with the coordinates

UINGSE
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We have commutative diagrams when 7; # 0 and (j4+1 # 0:

UIS; M5
Aj: Cew) — Cewgy+ Cewj-1) . Cew(i-1)+1
J
1 1j Ui 1
Nj+1 1
Ajpr: Ceuy o~ Ceonn Cewgon ~ Ceuin

G+t Nj+1G5+1

where the going right (resp. going left) arrows are y-actions (resp. z-actions) and
the going down arrows mean changing basis. From this diagram, one can see that

the gluing of two affine pieces S; and S is given by

Si\(mj=0) — Sjt1\ ((+1=0)
i, ¢G)  — (G,

Observe that there is a divisor E; 2 P! in S; U Sj41, which is the coordinate
-1

j+1°
by 1j+1 =0 in Sjq1. Since 141 = 77?(]-, the divisor Ej is a (-2)-curve.

axis of n; = Note that the divisor F; is given by ¢; = 0 in S; and it is given

Let S be the union of S;’s with the gluing above. As the A;’s are all possible
lacings, US; forms an affine open cover of My and hence S is isomorphic to M.
We saw that S contains (-2)-curves Ey, ..., E,._;.

The following theorem is called the McKay correspondence (see |1/19]).

Theorem 5.1.10 (the McKay correspondence). Let G be the group of type %(1, -1).
For any generic parameter 8, the moduli space My is the minimal resolution of

C2/G.

5.1.3 Universal families and intersection numbers

By [18], if # € €(w), then My is the fine moduli space of #-stable G-constellations.

Thus the moduli space My would have the universal family £ which can be decom-

L= @ L; @ p;.

pi€lrr(G)

posed as

Each direct summand L; is a locally free sheaf of rank one. We call £; the tauto-

logical line bundle of p;.
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Let L be the lattice
2 ].
L=7"+7--(1,-1).
r

For each 0 < i < r, let v; denote the lattice point

1. .
v; = ;(z,r—z)

of L. For each 1 < j <, define o; to be the cone
oj := Cone(vj_1, vj).

Let X be the fan consisting of the o;’s and their faces. Note that the associated
toric variety X is smooth and that Xs is the minimal resolution of the quotient
variety X = C%/G.

Let E; denote the irreducible exceptional divisor corresponding to the ray
generated by v; for 1 < i < r — 1. Then the [E;]’s form a basis of the homology
group Ho (X5, 7Z), i.e.

H (X5, Z)= @ Z[E).
1<i<r—1
It is well known that if the stability parameter 8 is in O, the first Chern classes
c1(L;) of the tautological line bundles £; form the dual basis to [E;] [10].
For a generic GIT parameter 8 € ©, from GIT, it is known that

Lo = ®£?(Pi)

i€l

is relatively ample over the variety X = My = C?/G.

We now show this with an explicit calculation without GIT.

Let w be a permutation and €(w) the corresponding (open) Weyl chamber.
As we did in (5.1.1)), let w; be the rays of ¢(w) which form the dual basis to the

simple roots A(w), i.e.

i—1
Wi = Z (i1 — b))
j=0
for i =1,2,...,r — 1, where {6;}/~! is the dual basis with respect to {a;}/_;.

Proposition 5.1.11. With the notation as above, let Ly be the tautological line
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bundle of pr. Define the line bundle

Fi = ®£Zvi(/7k)'
kel
foranyi=1,2,...,r — 1. Then ¢ (.7:1) - Ej = 45, i.e. {]—]}:;11 s the dual basis
to {[E;]}. Therefore, the (fractional) line bundle Lgy is relatively ample over X =
Moy = C?/G for any generic parameter 0 € €(w).

Proof. Let Aj be the jth lacing and I'; the corresponding G-iraffe. As in (5.1.9)), the

following two parameters play as the coordinates of the affine open set S; = U(I';):

N = Yu(i-1)

G = Zw(j—1)+1-

Consider F1 = L,,0)+1 ®L’;(10). By the construction, the lacing A; = (AY, A%)

is

A ={w(0),w(1),...,w(r—1)},
A} = {w(0) +1}.

Observe that A? does not contain w(0) for j > 1. Note that the line bundle F;

corresponds to the linear map

Yw(0)* Pw(0) 7 Puw(0)+1-

From the lacings, one can see that

m ifj =1,

Yw(0) =
1  otherwise

on each open set §;. Since the divisor F; is the coordinate axis of n;, one can see

that
1 ifj=1,
C1 (fl) . Ej =
0 otherwise.
Alternatively, one can show this in terms of G-iraffes. By construction of the corre-
sponding G-iraffes, 7 is the line bundle defined by 2"~! on the open set S and F;
is the line bundle defined by y on the open set S; for j > 1. Since the exceptional

divisor E; = P! is defined by the ratio 2"/ : y/], we have the same result.
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Since Wit] — W; = Qw(i)+1 - gw(i)v

Fir1 @ Fh = Loy ® L

If we show that

1 ifj=i+1,
e (Lo © L) - Ej =14 -1 ifj=4, (5.1.12)

0 otherwise,

then it follows that ¢; (.7:1) - F; = 6;5 from induction on 1.
Fix i such that 1 < <r. Consider F; = L,,(;41 ® [,;(li), which corresponds

to the linear map y,, ;). Note that

niG g <i,
Yol(i) = § i1 ifj=i4+1,
1 i1,

on each open set S;. Since the divisor Ej; is the coordinate axis of 7;, from the
fact that 7;¢; = 1j4+1¢;+1 and calculations of transition functions, the claim
follows. Alternatively, one can show this in terms of G-iraffes. By construction of
corresponding G-iraffes, one can see that F; is the line bundle defined by z~! on the
open set S; for j < i, that F; is defined by % on the open set S;, and that F; is
define by y on the open set S; for j > ¢ + 1. Since the exceptional divisor E; = P!
is defined by the ratio [2"77 : 7], we have proved the claim.

The relative ampleness of Ly follows from the fact that 0 is a strictly positive

linear combination of w;’s. O

5.1.4 Example: type %(1,6)

This section calculates lacings for the finite group G of type %(1,6) with a fixed
Weyl chamber of Ag. These lacings give an affine cover of the moduli space of -
stable G-constellations. In addition, we present the intersection matrix between the
universal family of the moduli space and the exceptional divisors.

Let G C SLy(C) be the finite group of type %(1, —1). Its McKay quiver is
shown in Figure[5.1.1

In Figure the number 7 denotes the vertex corresponding to p; and the

upper (resp. lower) curved arrows correspond to y-actions (resp. z-actions).
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(//\ P PN PN PN K\\/
L J

Figure 5.1.1: McKay quiver for G of type %(1, 6)

Let w be the permutation of I :={0,1,...,5,6} given by

01 2 3 45 6
w = .
01 35 2 46
Note that the corresponding set of simple roots is

A(w) ={e1 —€0,63 — €1,65 — €3,62 — 5,64 — €2,66 — €4}

={o, 0+ a3, a4 + a5, —a3 — o —as, 03 + ag, a5 + o},

and that we have a Weyl chamber €(w) corresponding to w, which forms a chamber
in the GIT stability parameter space of G-constellations.
According to Proposition [5.1.6] we have 7 lacings which give the following 7

torus invariant G-constellations:

As 0 6 5 4 3_ 2 1
1 1 1 1 1 1
e 1 3
Ay 0 6 5 _4_ _3_ 2 1
1 1 17 1 1
d R
As: 0 _6_ _5_ _4 32 1
1 1 11 1
( 1 1Y
P Z e P Z e
Ay : 0_ 6 5. 4 3. 2 1
1 1 1 1
o L N
As 0_ 6 5. 4 3 2 1
1 1 1
o R
Ag 0__ _6 5 4 3 2 1
1 1
R
A~ 0 3 5 4 3 2 1
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where marked linear maps are set to be 1.

Observe that the difference between A7 and A*! is: we have one more
nonzero y-arrow and we have one less nonzero z-arrow. We call this process “cutting
and adding laces”.

As is described above, these lacings give local charts. For example, consider

A4 and set two linear maps as the coordinates

n = Ys,

C = Z6-

One can see that the point (1, () € C? corresponds to the following G-constellation:

n¢

where (n,() = (0,0) corresponds to the torus invariant G-constellation defined by
Ay.
For each Aj, there exists a unique G-iraffe I'; (see Proposition [2.6.7):

_ 2 .3 4 5 6
Fl—{l, z,z,z,z,z,z},

Ty :{1, z, 22, 23, 24, 25, y},
I's :{1, z, 22, 23, %, y2, y},
ry={1 = % L L%y
Ts ={1, 2z, 2, 2, 5 42 4},
e ={1, 2 2, v v* v v},
Iz ={1, 4% ¢° " o* v v}

With the lattice L = Z*+Z- (1, —1), one can show that each G-iraffe T'; satisfies
U(T;) = Spec C[S(T'j)] = D(I'j) = Us,, where the toric cone o; C L is

oj = Cone (%(] —-1,r—j+1), %(jﬂ“ —j))-
Moreover, the (-2)-curve Ej is the corresponding divisor to the ray v; := %(j, r—7j).

Let £; be the tautological line bundle of p;, which is a direct summand of
the universal family €,_; £;. As is stated in Section over the toric affine open
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set U(I';), the line bundle £; is defined by the element of weight ¢ in T';.
We calculate the intersection number c¢i(£;) - E;. For example, consider
c1(Ls) and note that

(

0 if j =1,
0 if j =2,
1 if j = 3,
01(55)‘Ej:
-1 if j =4,
0 if j =5,
\1 if j =6.
The intersection matrix (c1(L;) - Ej)q; is
1 0 0 0 0 0
010 0 0 0
010 -1 10
001 -110]|
001 -1 0 1
0 0 O 0 0 1
whose inverse matrix is
1 0 0 0 0
01 0 0 O
01 -1 1 0 0
(5.1.13)
01 -1 1 -1 1
0 0 01 -1 1
0 0 0 0 0 1

On the other hand, by (5.1.1), the open Weyl chamber €(w) associated to

the permutation w is the cone generated by the row vectors of the following matrix:

-1 10 0 00
-1 0 1 0 00
-1 01 -1 1 0O
-1 01 -1 1 -1 1
-1 00 01 -1 1
-1 00 00 01

with the basis {6;}. One can see that the submatrix obtained by deleting the first
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column is the same as the matrix (5.1.13)).

5.2 Chamber structures and elephants

Let G € GL3(C) be the group of type %(b, 1,—1) with b coprime to r, which is the
same group as the group of type %(1, a,r — a) but taking another primitive rth root
of unity. In this section, we investigate the chamber structure of the GIT parameter
space of G-constellations.
Let p; be the irreducible representation of G whose weight is i. We can
identify I := Irr(G) with Z/rZ.
Recall the McKay quiver of GG is the quiver whose vertex set is I with the 3r
following arrows:
Titt—1+0b,
Yit 1 —> 1+ 1,
Zitt— 14— 1,
for each ¢ € I. The representation of the McKay quiver of G with commutation rela-
tions is the representation of the McKay quiver whose dimension vector is (1,...,1)

satisfying the following relations:

TiYi+b = YiTi+1,
LiZi4b = ZiXi—1,
YiZi+1l = ZiYi—1-

Let A C SLy(C) be of type %(1, —1) with coordinates y, z. The McKay quiver

of A is the quiver whose vertex set is I with the 2r following arrows:

Yitt— 1+ 1,
zitt— 11— 1,

for each ¢ € I. The representation of the McKay quiver of A with commutation rela-
tions is the representation of the McKay quiver whose dimension vector is (1,...,1)

satisfying the following relations:
YiZit1 = ZiYi—1 for all i € I.
Note that the GIT parameter space © of G-constellations can be identified

with
}:m:o}

@:{ezwﬁeQr
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which is also the GIT parameter space of A-constellations. Furthermore, we have

the following proposition.

Proposition 5.2.1. Let G C GL3(C) be the finite subgroup of type %(b, 1,—1) and
A C SLa(C) the finite subgroup of type %(1,—1). Then the chamber structure of
the GIT parameter space of G-constellations is finer than, or equal to, that of A-

constellations.

Proof. Tt suffices to show that a wall of the GIT parameter space of A-constellations
is also a wall of the GIT parameter space of G-constellations.

Let 6 be a stability parameter on a wall of the GIT parameter space of A-
constellations. This means that there exists a #-semistable A-constellation F such
that it is not f-stable, i.e. there exists a C[y, z]-submodule G with 6(G) = 0.

Note that we have a natural identification between A-constellations and G-
constellations whose z-action is zero. Thus F can be thought of as a G-constellation
and G is a C[z,y, z]-submodule of F with 6(G) = 0. As it is easy to see that F is
f-semistable G-constellation, it proves that 6 is also on a wall of the GIT parameter

space of G-constellations. O

Note that the chamber structure of GIT parameter space of A-constellations

is the same as the Weyl chamber structure of A,_;.

Conjecture 5.2.2. The chamber structure of the GIT stability parameter space ©

of G-constellations coincides with the Weyl chamber structure of A,_1.

Let 6 be a generic element of the GIT parameter space of G-constellations.
By Proposition 0 is generic in the GIT parameter space of A-constellations so
there exists an open Weyl chamber € such that 8 € €. Let w be the corresponding
element in S, as in Section 5.1

Let us consider the space of G-constellations Rep G and the space of A-

constellations Rep A. Consider the reductive group
GL(%) =[] C*
el
acting on Rep G and Rep A via change of basis. The moduli space My of #-stable
G-constellations is
My = Proj @ C[Rep G]Xg
n>0

Let Rep® G be the f-stable locus in Rep G and Rep® A the #-stable locus
in Rep A. We can identify Rep A with the closed subvariety of Rep G defined by
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xg=---=x,—1 = 0 and Rep® A with the closed subvariety :S’; of Rep® G defined by
woz"-:.%rfl:().
Since :S’\; is a GL(J)-invariant closed set, and My is a geometric quotient, the

inclusion §§ C Rep® GG induces an inclusion Sy C My

:S’\; C—— Rep®’ G

L

Sp —— My

where Sy is the closed subvariety of My parametrising G-constellations on which x
acts trivially. Note that the variety Sy is isomorphic to the moduli space of #-stable

A-constellations.

Remark 5.2.3. By Proposition Sy has r torus invariant points which repre-

sent torus invariant #-stable G-constellations. ¢

Let D be the hyperplane section of C3/G defined by # = 0. Then D is
isomorphic to C2/A and has an A,_; singularity as in Section Since My is
isomorphic to C3/G by Proposition we have the following diagram

Sp € Yo My

\L codim.1 l irr. l

DC = C3/G—— M,

codim.1

where the vertical morphisms are the canonical projective morphisms induced by
GIT quotients. As is known (see e.g. [1]), the morphism Sy — D is the minimal

resolution of D.

5.3 Irreducibility for type 1,2,2k —1)

m(

In this section, we prove Conjecture 3| for the group of type m(l, 2,2k — 1)
with a parameter 8 in the admissible GIT chamber €, C ©. This can be proved by
finding all f-stable torus invariant G-constellations for 6 € &,.

Throughout this section, let G C GL3(C) be the finite subgroup of type
2k+1 (k + 1,1,2k), which is the same type as the type of 2k+1(1,2,2k —1). Thus
r=2k+1,a=2,and set b:=k+ 1.

Warning 5.3.1. Throughout this section, we consider the finite subgroup of type

2k+1 (k+ 1,1,2k) so that the weight of y is 1 and that the weight of z is 2k. The
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results in previous sections can be easily transferred to this notation. ¢

5.3.1 (G-iraffes

In this section, we present all G-iraffes using the method in Section (1]

Consider the lattice L = Z3 + Z - %(1, 2,7 —2). For each 0 < i <, let v; be
the lattice point 1 (ib, i, — ). Consider the toric fan ¥ of the economic resolution
Y of X = C3/G. In the fan ¥, we have the following 2r — 1 full dimensional cones:

o; = Cone(er, Vy—jt1,vr—;) for 1 <i<r,
b = Cone(ve;_1,v2i—2,v9;) for1<i <k,

7

aiv = Cone(eg, v2;—2, V2;) for 1 <i<k.

Proposition 5.3.2. With the notation as above, let ', T2, and Fiv be the G-iraffes

7 7

corresponding to the cones oy, O'Z-A, and O'ZV, respectively. Then the following hold:
; — 2 2k
(i) Ty ={1,2,2%,..., 2%}
17Z7"’72k_i7y7"'7y1:_17yi
(ii) T = {yiﬂ it - St [ if l=2i+1 is odd.
Zkfiazkfifl)"wy ) gk—iy S k—id
i o
1725"'72 Zayw"ayl ’yz 3 L.
(Z’L’L) I = SRl k—itl k—itl oh—it2 S2k—2i41 (7 if | = 2i is even.
g1 0 g2 0 ® I
i—1 k—i—1 k—i
X N 17 Z, RN 2! ) Y, R ) ! ’ Yy !
(iv) Ty = , ) .
x, xz, ..., x27 wxy, ..., xyFTiol
o 1, 2, ..., ATl g2 gkl 2k-2i42
(v) I} = i1
r, xz, ..., x2’

Proof. For k = 1, G-iraffes are in Example [£.1.3] Using round down functions,

induction on k proves the assertion. ]

Remark 5.3.3. Note that the G-iraffes FZ-A and Fiv are Nakamura’s G-graphs. ¢

5.3.2 The admissible chamber
In this section, we explicitly express the admissible chamber for the group G of type

s (k+1,1,2k).
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Let
{el'|l=0,1}, {eff|k=0,1,...,2k—2}

be the standard basis of Q? and Q% ~1!, respectively. Assume that A” and Af are
the admissible set of simple roots for type %(1, 1,1) and Tl—l(k’ 1,2k — 3). Let the
standard basis {ei ‘ 1el } of Q%1 be identified with the union of the two sets

{elL}l:(),l} and {skR}k:O,l,...,Qk—Z}

using the following identification:

€ZL =g Withi:[r(ql)-‘—l, forr —2<i<n,

; (5.3.4)
R —e withi= L] for 0 <i<r—2.
With this identification, the admissible set A of simple roots is
— AL _ v R
A=A U{&L%J ET,[T72]}UA . (5.3.5)

Remember that the root a; = ¢; — ;1 is considered as the dimension vector for the

vertex ¢ of the McKay quiver representations.

Proposition 5.3.6. For the group of type ﬁ(k +1,1,2k), the admissible set A,

of simple roots is
Ay = {e2k — €k, Ek — E2k—1,E2k—1 — Ek—1,- -+, Ekt1 — €1,€1 — €0}

and the corresponding permutation w is

0 1 2 3 4 o 2k—2 2k—1 2k
w= , (5.3.7)
01 k+1 2 kE+2 ... 2k-1 k 2k
1.€.
0 if 1 =0,

w(l)=q 5L ifl s odd,
k—i—% otherwise,

forleI=1{01,2,...,2k—1,2k}.

Proof. We use induction on k. If £ = 1, then the admissible set of simple roots is
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{e9 —€1,€1 — €0 }. Suppose that the assertion is true for kK — 1. Then

Af ={ef &g}

R
A" = {egp_9 —€p—1,Ek—1 — €2k—3,---,Ek — E1,E1 — €0}

From (5.3.4) and (/5.3.5)), it follows that the admissible set of simple roots is

Ay = {eok — €k €k — E2k—1,E2k—1 — Ek—1, -+, Ek+1 — €1,61 — €0} -
Comparing this with the fundamental set of simple roots
Ay = {eak — €2k—1,E2k—1 — E2k—25- - -, Ek+1 — E1,€1 — €0},

we can see that the corresponding permutation w is

0 1 2 3 4 o 262 2k—1 2k —
w = .
01 k+1 2 k+2 ... 2k—1 k 2k
Remark 5.3.8. Note that the ith ray of the admissible chamber is
i—1
(Ouiy1 = 0 (5.3.9)
j=0
where {0;}/—] is the dual basis with respect to {a;}/—{. ¢

5.3.3 Torus invariant (G-constellations

Let 6 be a generic parameter in the admissible chamber €,. Let F be a #-stable
torus invariant G-constellation. Let x;, y;, 2; denote the action of z, y, z on the vector
space Cp;, respectively.

Recall Lemma says that if F is a torus invariant G-constellation, then
there is no defined (undirected) cycle of type m with m # 1.

Remark 5.3.10. Since yz is a G-invariant monomial, any path induced by yz in
any torus invariant G-constellation F is zero. In other words, if y; is nonzero in F,

then z;41 is zero; if z; is nonzero in F, then y;_; is zero. )

We have two cases: (1) g = 0: (2) z¢ # 0.
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Case zg = 0.

Assume that zg = 0, i.e. = acts on Cpg trivially. In this case, if we prove that z; =0
for all ¢, then it follows that the G-constellation F is in the list of Proposition [5.3.2
from the discussion in Section [5.1] We now prove that we have at most r 6-stable

torus invariant G-constellations.

1st case: Suppose that yop = 0. From (5.3.9)), note that the first ray of the

admissible chamber is

0

Z w(g)+ w(J)) = 01 — 0o,

Jj=0

which means that there exists a nonzero path from pg to p; in F. However, since
xo = yo = 0, the only possible nonzero path from pg to p; is induced by z2*. Thus
for each p;, we have a nonzero path from py to p; induced by z?*7*. From this
and Remark [2.6.3] it follows that x; = y; = 0 in F for all i. Therefore F is the

G-constellation corresponding to I'y in the list of Proposition [5.3.2

2nd case: Suppose that yg # 0 and y; = 0. From (5.3.9), note that the

second ray of the admissible chamber is

1

Z w()+1 — Ous)) = 01 — 00 + 02 — 01 = 62 — 6o,
7=0

which means that there exists a nonzero path p from pg to po in F. Suppose that
the path p is induced by a monomial m = z%y%27. From zy = 0, it follows that
a = 0. By Remark one can see that either 8 or 7 is zero. In fact, if v = 0,
then the path p is induced by y? so p = yoy1 is nonzero, which contradicts the
assumption y; = 0. Thus p is induced by z?*~!1. Then F is the G-constellation
corresponding to I'y in the list of Proposition [5.3.2}

(I +1)th case: Suppose that Y. (o), Yw(1)s - - > Yw(—1) 7 0 and gy, = 0 for
2 <1 <2k—2. From 9 = 0 and yg # 0, we have x1 = 0 because ypx1 = xoyg+1 = 0.
From (5.3.9), note that the (I + 1)th ray of the admissible chamber is

l

Z D41 = 0u(i) = Ou@+1 T Ooa—1)+1 — Oks1 — bo.
7=0

We have two cases: (A) [ is odd: (B) [ is even:
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Case (A) 3 <[ is odd. In this case, w(l) = &' and w(l — 1) = k + 5.
Thus we have y111 = 0 and yg11 # 080 zx12 = 0. The (I41)th ray of the admissible
2
chamber is

91+l+71 + 9k+l+T1 — Ok4+1 — 0o.

This means that there are two nonzero paths p, q such that either (1) one is from
po to Prylst and the other one is from pyy1 to PryigLs OF (2) one is from pgi1 to
Prey 11 and the other one is from pg to p; e One can show that (2) cannot happen
as follows: suppose p is the nonzero path from pg to p, 11, which is induced by a
monomial 2%y®27 with o = 0 due to zo = 0; if p is induced by 3?, then it contradicts
the assumption that yir1 = 0; if p is induced by 27, then it contradicts the fact that
2k4+2 = 0 since % < k:.2 Let p be the nonzero path from pg to pk+z+?1. Since xg =0

and yi11 = 0, we know that p is induced by z7. One can see that
2
I+1 I+1
y=2k+1—(k+%) =k+1- 4

Let q be the nonzero path from pji1 to p; i1, which is induced by a monomial
2

x®yP27. Firstly, since yiu1 = 0, we have 8 = 0; otherwise, from the following
2
diagram
T T S W G G 5

it contradicts the assumption that q is nonzero. Secondly, since x; = 0, we have
a < 1. If =1, then it follows that v = 0 from the fact that z; = 0 so any path
induced by xz from pgy1 is zero. Therefore we get that the path q is induced by
27. One can check that if any x; # 0, then there exists a defined (undirected) cycle
of type m with m # 1. Thus x; = 0 for all 7, and therefore F is the G-constellation
corresponding to I';41 in the list of Proposition [5.3.2]

Case (B) 2 <1< 2k-2iseven. Inthiscase,w(l) =k+%andw(-1)= 1.
Thus we have y, . 1 = 0 and yp41 # 050 242 = 0. The (I+1)th ray of the admissible
2
chamber is

0k+1+% + 91+% — Ok1 = o.

This means that there are two nonzero paths p, q such that either (i) one is from
po to Pry1vl and the other one is from pgy1 to Pryls O (ii) one is from pgi1 to
Pri1yl and the other one is from pg to Pryl- One can show that (ii) cannot happen
as follows: suppose p is the nonzero path from py11 to p,_ Ly which is induced by
a monomial z%y%27 with o < 1 due to z; = 0; if & = 1, then « = 0 because z; = 0

so the path induced by zz from pj; is zero; if p is induced by y? or xy?, then it
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contradicts the assumption that y, .+ = 0; if p is induced by 27, then it contradicts
2
the fact that z; = 0. Let p be the nonzero path from pgy to Pry1sl- We know that
2

p is induced by 27 as x9 = 0 and y, 1 = 0. One can see that
2
vy=2k+1-(k+1+%5)=k—1L

Let q be the nonzero path from pyi1 to p; +1s which is induced by a monomial
x%yP27. Firstly, note that o < 1 because x; = 0. For a contradiction, suppose that
a = 1. Then we have v = 0 since z; = 0 so that any path induced by zz from py11
is zero. Note that f < % because y; L= 0. Thus zy® cannot induce a nonzero path
from pgy1 to Pryt Therefore, @ = 0 and we can see that the path q is induced by
27 with v = k — % One can check that if any z; # 0, then there exists a defined
(undirected) cycle of type m with m # 1. Thus x; = 0 for all 4, and therefore F is
the G-constellation corresponding to ;11 in the list of Proposition [5.3.2

2kth case: Suppose that Y, (o), Yu(1)s-- - Yuek—2) # 0 and y,or—1) = 0.
Note that 2kth ray of the admissible chamber is

2k—1

Y (Buter = Ouisy) = b2 — o,
7=0

which means that there exists a nonzero path p from pg to por in F. Since xg =0
and y,(2x—1) = 0, the path p is induced by the monomial z. One can see that F is
the G-constellation corresponding to I'gx in the list of Proposition [5.3.2

(2k + 1)th case: Suppose that Y, (o), Yw(1)s- - > Yw(2k) 7 0. Then F is the
G-constellation corresponding to I'gx41 in the list of Proposition [5.3.2

Case xg # 0.

Since F is generated by pg and pxi1 by Proposition if xg # 0, then F is
generated by pg. Assume that xg # 0. Then F is a torus invariant G-cluster, i.e. F
is given by a monomial ideal I. The monomials which are not in I form Nakamura’s
G-graph. In Appendix [C| we find all Nakamura’s G-graphs I' under the assumption
xo # 0, i.e x € I'; this also completes the irreducibility of the moduli space My.
Since F is generated by pg, for each p;, there exists a nonzero path from pg
to p;. Moreover, we have three simple observations: (i) the path y**! from pg to

PL+1 1S zero; otherwise there is a nonzero defined cycle of type y,ﬂ% around pg as
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the following diagram:
" k41
PO—Pk+1=<=—P0 *

(ii) any path induced by x2z is zero because x2z is a G-invariant monomial: (iii)
if yg # 0, then z41 is zero; otherwise there is a nonzero defined cycle of type 2—2

around pg as the following diagram:

x T Yy
Po Pk+1 P1 Po-

1st case: Suppose that zgp = 0. Note that there exist nonzero paths p from

po to por and g from pg to pr. We have two possible cases: (A) yo = 0: (B) yo # 0:

Case (A) yo = 0. Since yo = 29 = 0, the path q is induced by z%*.
Therefore one can see that F is the G-constellation corresponding to Flv in the list

of Proposition [5.3.2

Case (B) yo # 0. Observe that xp, 1 = 0. Assume that the path p is
induced by z*y%27. Since zg = 0 and zp1; = 0, one can see that o < 1, v = 0,
and § < k. From considering the weight of monomials, it follows that the only one
possible solution is zy*~!. In a similar way, the only one possible solution for q is

y¥. One can see that F is the G-constellation corresponding to I’ IA in the list of

Proposition [5.3.2]

2nd case: Suppose that zp # 0 and 29, = 0. Thus the path induced by 22
from pg is zero. We have two possible cases: (A) yo = 0: (B) yo # 0O:

Case (A) yo = 0. Note that there exists a nonzero path q from pg to py.
Assume that the nonzero path q is induced by z*y°z7. Note that 8 = 0 because

yo = 0. From the fact that any path induced by 22 or 22

z is zero, it follows that v < 1
and that the only one possible solution is 22*~1. Therefore F is the G-constellation

corresponding to I'y in the list of Proposition

Case (B) yo # 0. Observe that x;41 = 0 and that there exists a nonzero
path p from pg to pop_1. Assume that the path p is induced by z®yP2z7. Since
o < 1 and v < 1, the only solution is 2*~2. Note that the (2k — 1)th ray of the

admissible chamber is

Opryznz2 +0y k0 — Opp1 — b = o + 0 — Orr1 — o,
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which means that there is a nonzero path from pgy1 to pg or pox. One can show
that there are no nonzero paths from pyx1q to por as follows: otherwise, since we
have a nonzero path induced by z from pg to por, we have a nonzero defined cycle
around pg as the following diagram:

nonzero z

Po . Pk+1 P2k Po-

Thus we have a nonzero path q induced by 2z y% 27" from Pk+1 to pi. Since 241 =0
and 3 < k, it follows that o/ = 0 so the only possible solution is z. For a nonzero
path from pg to pi_1, one can see that the path is induced by y*~!. Therefore F is
the G-constellation corresponding to I‘2A in the list of Proposition m

(I + 1)th case: Suppose that zg, 2ok, ..., 20121 # 0 and 29511 = 0 for
2 <1<k —1. Note that the (2k + 1 — 2{)th ray of the admissible chamber is

O 2nza + 0y 2o — O — 00 = a1t + O1-1 — Ori1 — bo,

which means that there is a nonzero path from pgy1 to ppi1-; or pori1-;. One can
show that there are no nonzero paths from pgy1 to pagy1-; as follows: since we have
a nonzero path induced by z' from py to popy1_i, if so, we have a nonzero defined
cycle around pg as the following diagram:

X nonzero Zl
Po Pk+1 Pk+1—1<~—p0-

Let q be a nonzero path from pgy1 to pri1—; induced by xa/yﬁ/zvl. It follows that
the only possible solution is z! from the fact that 2z is G-invariant and that 5’ < k.
Let p be a nonzero path from pg to pax_; induced by z®y®27. We have two possible
cases: (A) yo =0: (B) yo # O:

Case (A) yo = 0. Since yp = 0, we have 8 = 0 and hence the only possible
solution is 2%72! by the fact that 22z is G-invariant. One can see that F is the
G-constellation corresponding to FlV_H in the list of Proposition m

Case (B) yo # 0. Note that in this case z541 = 0 so a < 1. Since v <[,
the only solution is xyk*lfl. For a nonzero path from pg to px_;, one can see that

the path is induced by 3*~!. Therefore F is the G-constellation corresponding to

T lﬁl in the list of Proposition m

Throughout this section, we have proved the following theorem.
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Theorem 5.3.11. Let G C GL3(C) be the group of type ﬁ(k +1,1,2k) and 6
a generic parameter in the admissible chamber €,. Then we have at most 2k + 1
torus tnvariant G-constellations. Therefore, the moduli space My of 0-stable G-

constellations is irreducible and isomorphic to the economic resolution of X = C3/G.

Proof. By Section we already know that there exist 2k 4 1 #-stable G-iraffes.
Thus we have at least 2k+1 torus invariant G-constellations lying over the birational
component. From Remark it follows that Yy = M. O

5.4 Irreducibility for type é(l, 7,5)

In this section, we show that for the group of type 1—12(1, 7,5) ~ 1—12(7, 1,11), the mod-
uli space My is irreducible by finding all #-stable torus invariant G-constellations for
GIT parameter 6§ € €,. As is in the previous section, we use %(b, 1,7 — 1) notation.

Let G C GL3(C) be the finite subgroup of type £(7,1,11). One can see that

G-invariants monomials are generated by

12 5 3,3 5 .12 7 2.2 7 12
ro, Y,y Yy Y T, Z,r2,xe 2.

Table presents the monomials of weight 1.

Weight Monomials

'y, alz, 128, 21

."L‘Q,yQ,iL'ZS, le

$9, x2y, y3, .T4Z, .%'24, Zg

4 2,2 4 3 .8
Ty Yy, T2,z

1T ,4 2,3 ,5 .6 27
Ty, Y, Y R, T, 2
6 4,2 .2, 4,6 6
r,ry,r'y,y,rz,2

7.5
T,y ,z

8 8 .3 4
r—,xY,Yy ,T "2,z

3 2 .9 3
x7xy’yvz
0 .3 3,10 5 2
xz 7$y7xy 7y 7'Z Z7Z

5 ..3,2 4 11
r,ry,ry Yy ,z

[

O 0| || U | WD

—_
@)

—_
—_

Table 5.4.1: Monomials of weight i for G = 1—12(77 1,11)

The list of G-iraffes is in Table In this section, we prove that #-stable
torus invariant G-constellations are all induced by G-iraffes.

We recall the admissible Weyl chamber for the group of type %(7, 1,11) (see
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Section [4.5.2). The admissible set of simple roots is

A — €11 — €6, €6 — €10, €10 — €5, €5 — €8, €8 — €3, €3 — €1,

a — Y
€1 — €9, €9 — &4, €8 —E7, E7T — €2, €2 — &0

and the corresponding permutation w is

(012345678 9 10 11
“\o 274 9138%5 10 6 11/

From this, the rays of the admissible chamber €, are the row vectors of the following

matrix:
-1 1 00 00O OO O0OO0OTO
-1 1 -1 1 000 00 00O
-1 1 -1 1 000 —-11 0 0 0
-11 -11 -1 1 0 -1 1 0 0 0
-1 -1 1 -110 -1 1 -1 1 0
-10 01 -110 -11 -110 (5.4.1)
-1 0 00O 010 -11 -11020
-10 00 010 -10 010
-1 0 00O OO0O1 -10 010
-10 00 O0OO01 -10 001
-1 0 00 O0OO0OO0O OO O0O01

Let F be a 6-stable torus invariant G-constellation. Recall that for a genuine
monomial m, m;) denotes the linear map corresponding to the path from p; induced
by m.

We have two cases: (I) g = 0: (II) zo # 0.

Case (I) 2o = 0.

Let [ be the smallest integer such that the linear map y,, ) is zero. For each [, the
torus invariant G-constellation F corresponds to the G-iraffe of ;11 in Table

As an example, we consider the case where [ = 0,3,7,11. For the other cases,
one can show the assertion by considering (I 4+ 1)th row vector of the matrix (5.4.1])

in a similar manner.
Case | = 0. This means that yo = 0. Since the first row of the matrix is #; — 6y,

there exists a nonzero path from pg to p1; otherwise, the submodule of F generated

by pg is negative with respect to the first row. From the assumption that o = yg =
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0, the path is induced by z!! because the x,y-actions at py are zero. One can see
that F is given by the G-iraffe corresponding to oy in Table

Case [ = 3. This means that yg, y2,y7 # 0 and that y4 = 0. Since the fourth row
of the matrix (5.4.1)) is

O+ 05 + 03+ 01 — 07 — 04 — 02 — B9,

there exists a nonzero path p from p4 to one of p1, ps, p5 or pg; otherwise, F has
a submodule which is negative with respect to the vector above. Firstly, note that
x1 = 0 by yoxr1 = xoyr and that z1 = z3 = 0, by yg,y2 # 0; otherwise, F has a
nonzero cycle around ps2 induced by yz. From this, it follows that any paths from
p4 induced by y, 2, 232, 22 are zero: indeed, one can see that an arrow of each path
is zero;

Y4 = T4T11%621 = T4r11%621 = 2423 = 0.

From Table the nonzero path p is induced by 3 or z.

For a contradiction, suppose that z4 = 0. Then p is induced by 23, so z421176
is nonzero. Thus zg is zero; otherwise, it contradicts that zgxi11 = xgz7 = 0. Then
nonzero paths from pg to ps or pg cannot exist. Thus there exists a nonzero path
from p2 to ps or pg. By considering all possible monomials of suitable weights, it
contradicts the fact that any paths from ps induced by z%, 22y, 43, 22, 22 are zero.

Considering the row vector above, we know that there exists a nonzero path
from ps to p1, which is induced by z° or z. For a contradiction, suppose that the
path is induced by x®. Since xoxgxsx11T6 is nonzero, it follows that xoxgzy = 202128
is nonzero, which contradicts that x; = 0. Thus 25 is nonzero and z° is zero.

Consider the vertex py. We have a nonzero path q from p7 to ps because
there are no nonzero paths from pg to ps. Note that any paths from p7 induced

7

by 23y, 40, 25, 27 are zero. Moreover, paths induced by 22z are zero; otherwise, we

have the following nontrivial undirected cycle around p7:

Yy 2z
Pr——=pP8~—pP7-

Thus q is induced by 2.
Lastly, one can see that we have a nonzero path from pg to pg induced by z*.
Therefore, F is given by the G-iraffe corresponding to o4 in Table
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Case | = 7. Thus we have that yo, y2, y7, ¥4, Y9, 1, y3 # 0 and that ys = 0. Then
xg =21 = x3 = x3 = x4 = 0. Consider the eighth row vector of the matrix (5.4.1):

010 + 05 — 07 — b;.

Then there exists a nonzero path p from p7 to one of p5 or p1g. As any paths from
p7 induced by z2,y?, 23 are zero, one can see that p is induced by z2. Moreover, we
have the nonzero path induced by 22 from pgy to p19. Therefore, F is given by the
G-iraffe corresponding to og in Table

Case | = 11. As by the assumption we have that y'! induces a nonzero path from
po to p11, F is given by the G-iraffe corresponding to o152 in Table

Case (II) zy # 0.

As xy # 0, the paths induced by y”, 2% from pg to p7 are zero. Considering the first
and the last row vectors of the matrix (5.4.1)), we know that there exist a nonzero

path from pg to p; and a nonzero path from pg to py1. The former can be induced

5

by &7, y, 22z and the latter can be induced by z°, 23y?, zy*, z. We have the following

five cases:
(1) o # 0 and z7 = 0.
(2) zo,27 # 0 and z2 = 0.
(3) xg,x7,22 # 0 and xg = 0.
(4) xg,x7, 22,26 # 0 and 1 = 0.
(5) zo,x7,z2, 26,21 # 0.

Case (1) zy # 0 and z7 = 0.

Since the path a:%o) induced by 2 from pg is zox7, it is zero. As we have a nonzero
path pg to p1, yo is nonzero.
We have the following five cases (1-A)-(1-E):

(I—A) Y2 = 0.
(1-B) y2 # 0 and y4 = 0.

(1-C) y2,y4 # 0 and y3 = 0.
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(1-D) y2,v4,y3 # 0 and y5 = 0.

(1-E) y2,v4,y3,y5 # 0 and yg = 0.

All of (1-A),(1-B),(1-C),(1-D),and (1-E) give G-constellations corresponding to the
G-iraffes corresponding to ™, 73, 76, 77, and 19, respectively.

As examples, we investigate Case (1-B) and Case (1-D).

Case (1-B) y2 # 0 and y4 = 0. By the assumption, we have that any paths
from po induced by 22, 4%, 2° are zero. Note that any paths from pg induced by
xy* are zero; otherwise, the submodule generated by p4 is supported on p4, p1o as
Y4, 24, Y10, 210, T10 are zero, so it is negative with respect to the fourth row of the
matrix . Considering the eleventh row vector, we know that zp is nonzero.
Furthermore, as 6(p4) is negative, the path induced by y* from pq is zero.
Considering the eighth row vector 05 + 019 — 07 — 0y, we have a nonzero path

from p7 to p1p or ps. The monomials that can induce a path from p7 to pig are

9 .2 3 .4 4 9
r,ryy,rzrz,z,

which induce zero paths at p7. The only possible solutions are the nonzero paths

from p7 induced by 22, y3. If 2(27) is zero, then we have a nonzero path from pg to

2 2
(0 (7

2(27) is nonzero, and z7, zg, 211 are nonzero. From this, we know that the path xy?o)

p5. This implies that xz ) is nonzero, which contradicts to that z ) is zero. Thus

is zero because xy? is of the same weight as z2, which induces nonzero path from
P0-

Consider the third row vector 61 + 03 4+ 0g — 07 — 03 — 6. Suppose that y7 is
zero. Then it follows that x1 is zero and that there exist no nonzero paths from pg or
p7 to ps. Thus the nonzero path induced by 2% from p7 is nonzero. As x7 is zero, x3
is zero. Moreover, we have a nonzero path from py to pg, which can be induced by

6 6

28, xty?, 2%yt 48, 22, 25. Note that paths induced by x0, x%y?, 2%y*, 5, x2, 25 from

p2 are zero because:
T2TYT4T11T6L1 = Y23 = Y2Ysya = 2ow1 = 2221 = 0,

which is a contradiction. Thus y; is nonzero. Furthermore, as 6(py) is negative, the
path :cy(QO) is zero because xgy(QO) and :cy?o) are zero. In addition, from the fact that
0(p4),0(py) are negative, it follows that Z?o) is zero.

Note that z4 is nonzero; otherwise, there are no nonzero arrows from py4 so

the vertex simple Cpy is a submodule of F with 0(ps) < 0. As z4, 219 are nonzero
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and zg,y4 are zero, we have xg,yg are zero, and hence zg # 0 because 6(pg) < 0.

Similarly, as yg is zero, from that
Y23 = T2Y9, 24X3 = L4211,

we have x3 = x4 = 0. We know that z9 or xo is nonzero, by considering the fourth
row vector 61 + 03+ 05 + 0g — 07 — 04 — 05 — 0y. As zg, x1 are nonzero, it follows that
both zs, z9 are nonzero from the fact that zsz9 = z971.

One can see that F corresponds to the G-iraffe of 73 in Table

Case (1-D) y2,ys,y3 # 0 and y5 = 0. As 29 # 0,y5 = 0,27 = 0, the paths
:c%o), y(50), 2(50) from pg are zero. Considering the tenth row vector g + 611 — 67 — 69 of
the matrix (5.4.1), we know that there exists a nonzero path from one of pg or p7 to
pe- In both cases, F contains a nonzero path from one of pg to pg as xg is nonzero.

6 2ty? 2%yt yb, x2, 25. Note

The monomials which can induce the nonzero path are x
that only zz can induce a nonzero path as the paths x?o),yf’o),zf’o) are zero. In
addition, one can see that xg is zero; otherwise, xogx727 = xgz7xe is nonzero, which
contradicts z7 = 0.

Consider the sixth row vector of the matrix (5.4.1)):
O3 + 05 + 0s + 019 — 09 — 67 — 04 — Oy.

Thus F has a nonzero path coming to ps from one of py, p4, p7, p9. Considering
all possible monomials at each vertex, one can see that we have only one possible
nonzero path induced by 32 from pg; for example, 2°, 23y%, 2y*, y'!, z can induce a
path from p4 to ps; the paths from p4 induced by x°,y?, z are zero because xg, ys, 24
are zero. From the fact that ys,ys are nonzero, it follows that the path y(50) is
nonzero.

We now show y?7) is nonzero. Note that there are no nonzero paths p7 to ps;

otherwise, we have the following nonzero cycle:

T nonzero Yy

Po p7 Ps Po-

Consider the eighth row vector of the matrix (5.4.1)):
B0 + 05 — 07 — Bg.

Thus F contains a nonzero path from p7 to p1g. The monomials which can induce

98



the path are the monomials of weight 3:

2%, 22y, 3, atz, w2t 20
Note that as xz? is of the same weight as v°, the fact that y?o) is nonzero implies
that :pz(QO) is zero. Thus the nonzero path from p7 to pig is induced by y3. One can

see that F is the torus invariant G-constellation associated with the G-iraffe of 77

in Table [4.5.11

Case (2) xp,z7 # 0 and x5 = 0.

We have the following two cases: (2-A) yo = 0: (2-B) yo # 0. These cases (2-A) and
(2-B) give G-constellations corresponding to 7; and 75 in Table respectively.
Here we show that there is a G-iraffe giving F for Case (2-B).

Case (2-B) yo # 0. As 22 = xoz7 is nonzero, y; = 0. One can see that the

22, 2° induce zero paths from pg and that there are no nonzero

monomials 23, y2, x
paths from ps to p1: otherwise we have a nonzero cycle. Firstly, zg is nonzero by the

eleventh row vector of the matrix (5.4.1)). Secondly, considering the 3rd row vector
0 + 040s — 07 — 02 — 0o

of the matrix , we can see that there exists a nonzero path from ps to one of
P1, p3,ps. One can show that any paths from ps induced by monomials of weight 6
are zero because x9 = 29 = yoy3 = 0. Thus we have a nonzero path from ps to ps.
The monomial y only can induce a nonzero path from ps2 to p3. From this, we have
that x1,y7,xs,y2 are nonzero and that x3 is zero, so the paths Z?o) and aczélo) are
zero. From this, by the negativeness of 6(p4) and 6(pg), we can see that the paths
Z?o) and $z?0) are zero. Indeed, if a:zf’o) is nonzero, then we can see that Cp, is a
submodule of F. By a similar reason, we can see that the paths z?o) is zero.

Consider the eighth row vector of the matrix (5.4.1)):
010 + 05 — 67 — 6.

There exists a nonzero path going to ps from one of pg, p7. In both cases, we have
a nonzero path from py to p7 as zg is a nonzero arrow from pg to p7. Among the
monomials of weight 5, the monomial 222 only can induce a nonzero path from pq.
In particular, 211, x19 are nonzero.

As x42z11 = z4x3 = 0, we have that x4 = 0. Since 0(pg) is negative, at
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least one of xg, yg, 29 is nonzero, which implies that xg is nonzero; if x9 = 0, then
Y9 = 29 = 0 because x9z4 = zgxg and xgys = Y9x1Q-

Let us consider the fifth row vector
01+ 03+ 605+ 0s + 019 — 09 — 07 — 04 — O3 — 6.

As there exist no nonzero paths from ps to any of p1, ps, ps, p10, there exists a nonzero
path p from p4 to one of p1, ps, ps, p1o0. Note that 2(24),3/(24) are zero as zz = 0 and

ys = 0, respectively. The following monomials can induce p:

3 6 11 4

2.9 .3 .7 2 2,2 4 3 .8
XY Y,z T Y, T 2,Xz 2 T, T Y ,Y ,rz",2

9 $67 x4y27 $2y47 y6’ xz? ZG'
The monomial y only can induce the nonzero path p, so y4 is nonzero. From the
fact that xoys = y9x10, it follows that yg is nonzero. In addition, if z4 is nonzero,
then we have the following nonzero cycle:

z Yy 22 Yy

P4 p3 p7 Ps pa.

Case (3) xg, 27,29 # 0 and zg = 0.

We have the following two cases: (3-A) yo = 0: (3-B) yo # 0. In these cases, in a
similar way to Case (2), it can be proved that (3-A) and (3-B) give G-constellations
corresponding to 74 and 7y in Table respectively.

Case (4) x, 27, 29,26 # 0 and z; = 0.

In a similar manner to Case (2), we can show that this case corresponds to the cone
T10 in Table |4.5.1]

Case (5) xg, 7, T9, x6, 21 # 0.

In a similar way as above, one can show that this case corresponds to the cone 7y
in Table [£5.1]

Conclusion.

We have seen that for the finite group G of type 1—12(7, 1,11) and a parameter 6
in the admissible chamber €, there exist exactly 23 6-stable torus invariant G-
constellations. By Remark we have shown that My is irreducible, so My

is isomorphic to the economic resolution of C3/G.

100



Appendix A

M, is irreducible for
G = %(l,a,r — a)

Let G be the finite subgroup of GL3(C) of type %(1, a,r — a) and X the quotient
space C3/G. Consider the moduli space My of 0-semistable G-constellations for

0=(0,...,0). By definition,
My = Spec C[Rep G]5L)

parametrises 0-semistable G-constellations up to S-equivalence. Note that every
G-constellation is 0-semistable.
Recall that m;) denotes the linear map induced by the action of a genuine

monomial m € Hzo on the vector space Cp;.

Proposition A.0.1. Let F be a G-constellation for the finite group G of type
1(1,a,7 — a). We have the following:

(i) F is 0-stable if and only if it is isomorphic to Oy for a free G-orbit Z in C3.

(it) if F is not O-stable, then F is S-equivalent to @, 00 ® p, where Oy is the
skyscraper sheaf at the origin (0,0,0). Therefore all strictly 0-semistable G-

constellations collapse to a point in the moduli space.
Moreover, the moduli space My is isomorphic to X = C3/G.

Proof. If F is 0-stable, then F has no nonzero proper submodules, which means
that F is simple. Let e, be a basis of Cp. Then the submodule generated by e, is

equal to F. This means that there exists a nonzero path from p to p’ for any other
/

0.
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From this, if F is O-stable, it follows that there exists a nonzero cycle passing
through every vertex. Then F is supported on a free G-orbit Z in C3, and hence F
is isomorphic to Oz by Lemma This proves (i).

For (ii), assume that F is not O-stable so there are no nonzero cycles passing
through all vertices; otherwise, there are no nonzero proper submodules, which
implies that F is 0-stable. Firstly, note that F should be supported on the origin
as GG acts freely outside of the origin.

We claim that there are no nonzero cycles; suppose that there is a nonzero
cycle around pg and write the nontrivial monomial m = z™1¢4™22™3 corresponding
to the cycle, so that m g is nonzero. Assume that m; > 1 so that the cycle must

pass through the vertex p; = wt(z). Since

mg) = Zo - (%)(1)

by the commutation relations, the linear map (%) () induced by the monomial Z*

at pp is nonzero. Thus the linear map induced by m at p;

m

= (2),

is nonzero. Thus we know that there exists a nonzero path from pg to p; and that
m,q is nonzero. Since 1 is coprime to r, we can get a nonzero cycle induced by
" which is nonzero. For the other cases, e.g. mo > 1, we can find a nonzero cycle
similarly.

Since F contains no nonzero cycles, there exists a vertex p such that the
linear map induced by any nontrivial path to pj is zero. Write F1 = @, V;, which
is a submodule of F. Then F/Fj is a vertex simple and is isomorphic to Oy ® p.
Since F; does not have nonzero cycles, it follows that F is S-equivalent to € o Oo®p
from induction on the dimension of F.

To prove (iii), firstly note that from the classical invariant theory, the set of

cycles induced by genuine monomials
{m(z) } m c Mzg,i S I}

generates the coordinate ring C[Rep G]S™®) of M.
We define an algebra homomorphism ¢ from C[Rep G]¢“() to Clz,y, 2] by

1 : C[Rep G]GL(J) — C[:E,y,z]c, mg) — m.
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The algebra homomorphism 1 is clearly surjective. To prove the injectivity, it
suffices to show that mg; = m(y in C[Rep G]GL(‘S) for all i € I if m € Mxo.
Assume that m = (my, mg2, m3) € M > with m; > 1. Then the cycle must pass the

vertex p; = wt(x). Since

mg) = o - (%)m = (%)(1) "o = My,

it is proved that m;) = m) for all 7 € I by the fact that 1 is coprime to r. For
the other cases (e.g. m2 > 1), we can prove the assertion similarly as a is coprime
to 7. O

Remark A.0.2. In the proof of the proposition above, we also proved that the
quotient variety C3/G can be embedded into M as a closed subvariety for any finite

abelian subgroup G C GL3(C), because there exists an algebra homomorphism
C[Rep G]M®) = Clz, y, 2],

which is surjective. ¢
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Appendix B

Example: G-graphs which are

not G-iraffes

In [26] Nakamura assumed that U(I') has a torus fixed point for any Nakamura’s
G-graph T i.e. every G-graph in his sense is a G-iraffe. His assumption implies
that every torus invariant G-cluster lies over the birational component of G-Hilb.
However, Craw, Maclagan and Thomas [5] showed that there exists a torus invariant

G-cluster which is not over the birational component.

Example B.0.1 (Craw, Maclagan and Thomas [5]). Let G C GL3(C) be the group
of type 1—14(1, 9,11). Note that G is isomorphic to %(1, 2,4) x %(1, 1,1). Consider the
monomial ideal

— a2 2 .2 2 2.2, .4 4 4
I_<y Z,$Z 7'1‘:1/ ?x y??JZ 7:[; Z?'CB 7y ?Z>

and the corresponding Nakamura’s G-graph
F = {17 x? x27 x37 y7 y27 y37 z? 227 23? xy? xz? yz7 xyz}'

Craw, Maclagan and Thomas [5] showed that this ideal does not lie over the bira-
tional component using Grobner basis techniques.
We show this by proving the G-graph I' is not a G-iraffe. One can see that

2 2 2 2
Ty® Yz xcz Yz 1
et v it ['he cone o(I') is the

S(T) is generated as a subsemigroup in M by
cone generated by £(7,7,7) so it is not a full dimensional cone. Thus U(T') does
not have a torus fixed point. Therefore the G-cluster C(I") = Clx, y, z]/I does not

lie over the birational component. ¢

Remark B.0.2. Craw, Maclagan, and Thomas [5] provided an equivalent condition

using Grobner bases for a monomial ideal to be over the birational component. In
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the terms of G-iraffes, the condition is equivalent for Nakamura’s G-graph to be a
G-iraffe. ¢

Example B.0.3 (Reid). Let G C SL4(C) be the group of type 35(1,6,10,13) with

coordinates x,y, z,t. Consider the monomial ideal

j x6,$3y,x3t,x2z,x2t2,xy2,;1:yt,ajzt,xt3,
yo ytz ity et 22 yt?, 2P, 22 22t

and the corresponding Nakamura’s G-graph

2 .3 .4 .5 2,3 .4 2
173:7‘%‘ s LY, Y Y Y 52,27,

=<t 2,83, xy, 22y, w2, w22, ot, 2%t, xt?,
yz,y°2, Y% 2, yt, y?t, 2t vy, yat

2 3
Note that ngt, =, % are in the semigroup S(I") and

Thus yigt € S(T) N (S(T))~! # {1}. Thus U(T') does not have a torus fixed point.
Therefore the G-cluster C(I') = Clz, y, 2,t]/I does not lie over the birational com-
ponent. ¢

Remark B.0.4. Reid used the ideal in Example to provide a case where
G-Hilb has a 5-dimensional component even if G is a subgroup of GL4(C). ¢
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Appendix C

Nakamura’s G-graphs for type

sk + 1,1, 2k)

Let G € GL3(C) be the group of type Tlﬂ(k +1,1,2k) and € a generic parameter
in the admissible chamber €, (see Section [5.3.2)).

Since any #-stable G-constellation is generated by pg and py11, if zg # 0, i.e.
T * ey, is nonzero, then any f-stable G-constellation is generated by pg, so it is a

G-cluster. Thus we have a 1-to-1 correspondence between the set
{0-stable torus invariant G-constellations with zo # 0}

and the set
{Nakamura’s G-graphs I' containing x}.

In this section, we classify all Nakamura’s G-graphs containing x. By doing that,
we prove that the number of #-stable torus invariant G-constellations with xg # 0
is 2k.

Lemma C.0.1. Let G C GL3(C) be the group of type Tlﬂ(k + 1,1,2k) and 6
a generic parameter in the admissible chamber €,. Assume that T is a G-graph

containing x. Then I has the following properties:
(i) y*+1, 2k ¢ T.
(ii) yz, 2%z ¢ T.

(iii) x> ¢ T, ify € T.

Furthermore, if T is O-stable, then 2! € T for 1 <1 < k implies that z2' € T.
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Proof. The assertion (i)-(iii) are straightforward from the definition of G-graphs.
Suppose that I' is #-stable and that I' contains 2! for 1 < I < k. Note that
by Section the (2k + 1 — 2[)th ray of the admissible chamber is

Ooky1—1 + Opp1—1 — Opr1 — Oo,

which implies that there is a nonzero path from py11 to pgr1-; or por11—;. Remember
that the existence of a nonzero path from p; to p; is equivalent to the condition that
m,, divides m,, where m,,, m, are the corresponding monomials in I'. Since 2
is of weight 2k + 1 — I, 2% is the monomial of weight 2k +1 — [ in T’ and z is the
monomial of weight k& 4+ 1 in I'; there are no nonzero paths from pgi1 to pogy1-.
Thus there exists a nonzero path from pg11 to pgy1—i-

Assume m = z%y27 is a unique monomial of weight k + 1 — [ in I'. Since
z divides m, we get o > 1. Note that y**! ¢ T' from Lemma implies 8 < k.
Since 2% 1y#27 is a genuine monomial of weight 2k + 1 — I, it follows that m = x2'.

Therefore, m = zz! is in T. ]

Proposition C.0.2. Let G be the group of type ﬁ(lﬁ +1,1,2k) and 0 a generic
parameter in the admissible chamber €,. Assume that I' is a 0-stable G-graph con-
taining x. Then I is equal to either FZA or Flv in the list of Proposition for

some 1 <[] <k.

Proof. Let T be a 6-stable G-graph containing z. From Lemma [C.0.1], there exists !
with 1 < < k such that 1,2z, 22,...,2"1 € " and 2! ¢ I'. The G-graph I' contains
the monomials x, zz,z22,..., 2271 and z2! ¢ T by Lemmam

We have two cases: (A)y eI (B)y &It

Case (A) y € I. Since I has 2k + 1 monomials and 2?2 ¢ T, T is I}/, i.e.

1 T 33‘2 1’3 x2k72l $2k72l+1 x2k72l+2
z rz

I =
Zl—l le_l

Case (B) y ¢ I'. Since 22 has the same weight as y, we have 2% ¢ T.
Consider a unique monomial m = z%y?27 in T' of weight 2k — [ + 1. From the fact
that o < 1 and v < [, one can show that o = 1 and v = 0. The monomial z®y?z7

is of weight k£ — [ and it is in T, so one can see that m = zy*~!. Furthermore, one
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can show that I' contains y*~'+1. Thus T is FZA, ie.

k—1+1
y +
k—1 k—1
Y Ty
T
r— Y Y
1 T
z Tz
A1 -1

Therefore the assertion is proved.
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