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Abstract

In this thesis we are to investigate two discrete interacting particle systems,

namely annihilating random walk and coalescing random walk. By mapping the annihi-

lating random walk to Glauber model and employing empty interval method respectively,

we prove there is a similar structure behind them albeit their apparent di�erences, that

is, they are both Pfa�an point process under a special initial condition.

Then we extend the result to investigate whether the Pfa�an property preserves

in the case of multi-time correlation function, which is called extended Pfa�an property.

And we also investigate the case which the initial condition is changed from independent

particles to another peculiar one-sided initial condition and proved it also preserved the

Pfa�an property.

v



Chapter 1

Introduction

In this thesis we are to investigate two important interacting particle system: annihilating

random walk (ARW) and coalescing random walk (CRW). We con�ne our attention to

one-dimensional case only at the moment.

In both systems there are particles moving to left or right on a discrete lattice at

some rate. Each site can hold at most one particle. When a particle move to an occupied

site, they annihilate each other in the case of ARW or merge into one particle in the case

of CRW. In our research the reaction rate is assumed to be in�nite.

Although their interactions seem quite di�erent, these two systems has been ob-

served to be related in some peculiar ways. For example, Arratia [16] proved the thinning

relation for the large time asymptotic of the particle density. And Brunet and ben-

Avraham[9] explained the precise meaning of similarity of the two systems in terms of

the hierarchies of multiple-pooint correlation functions. Basically the results show that

for nice enough initial conditions, if we remove half of the particles in CRW at random,

we can obtain an ARW.

Besides the similarity between themselves, these two systems have been observed

to be related to other interacting particle systems as well.

Annihilating random walk has been observed to be related to a dynamics Ising

model, which is called Glauber model, for a long time.

Ising model was developed as a model of statistical mechanics to explain ferro-

magnetic behaviour in matter. One of the remarkable results is that the system has no

phase change in 1D case but there is phase change in 2D case. Since then there were a

lot of generalisation of Ising model, such as XY model, Pott model.

As a model of equilibrium statistical mechanics, Ising model is very interesting

but one would like to study how a system approaches the equilibrium state. Glauber
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[8] developed the dynamic spin model and it was proved that the equilibrium state of a

1D Glauber model is exactly Ising model. After then, many people studied the model

and made other generalisations. For example, Godreche [13] [14] generalised the Glauber

model to the asymmetric case.

As both the Glauber model and annihilating random walk(ARW) are two-state

systems, people explored methods to study ARW by mapping it to the Glauber model.

One can de�ne an object called domain wall, which stays in the dual discrete space

between the spins, as follows.

If two neighbouring spins are of di�erent directions we say that they is a domain

wall between them. If the spins are of same direction we say there is no domain wall

between them. For example, consider the spin con�guration 1 1 -1. The corresponding

domain walls are 0 1. Now if the spin in the middle �ips to -1, the domain walls will

become 1 0. So the �ipping of the spins corresponds to the movement of domain walls.

If there is a spin con�guration 1 -1 1 and the middle spin �ips to 1, the corresponding

domain walls will change from 1 1 to 0 0. Therefore we can use the de�nition of domain

walls to establish a mapping from spin chain to ARW.

Schutz [15] studied the particle density of ARW using free fermionic representa-

tion, which is a powerful tool we also employed in this thesis. He investigated the time

dependence of particle density for product measure initial condition and step-function

initial condition and also the large time asymptotic behaviour. He also applied Arratia's

result to obtain the particle density for CRW, which was used to simulate the behaviour

of excitons.

On the other hand, coalescing random walk(CRW) is related to another interact-

ing particle system called voter model. In fact voter model is the dual process of CRW

and thus one has been used to study another. For example Bramson and Gri�eath [22]

studied the asymptotics for the particle density for voter model starting with one particle

at the origin and CRW with the whole Zd as initial condition. Another useful method

to study CRW, which we will employ in this thesis, is the empty interval probability

developed by Ben Avraham [9].

Although lots of studies have been done on the particle density of these interacting

particle systems, few have attempted to further study the particle correlation function.

Following the approach of Glauber, we can see that the particle correlation function is an

object of importance because the reduced probability can be expressed as a summation

of particle correlation. Therefore we would like to investigate its functional behaviour.

For some particle systems the particle correlation function is a determinant of ker-

nel functions which are thus called determinantal point processes [6]. Examples include
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particle correlation function of fermionic gas and joint distribution of eigenvalues of cer-

tain ensembles of random matrices. In the investigation of random matrices it turns out

there are other generalisations of determinantal point processes. One of them is Pfa�an

point process in which the correlation is a Pfa�an (square root of a determinant of a

2n × 2n anti-symmetric matrix). For example, β = 1 and β = 4 polynomial ensembles

of random matrices are Pfa�an point processes.

As Pfa�an point process is more general than determinantal process, since a

determinant can always be expressed as a Pfa�an, people started to look for these

systems. Katori [12] demonstrated that a determinantal process starting from orthogonal

symmetry initial condition is a Pfa�an point process. Furthermore, recent researches

also showed that Ginibre enembles are related to Pfa�an point process[24] [3].

In this thesis, we are going to show that ARW and CRW are Pfa�an point process

under two initial conditions: maximal entrance law and one-sided function. We will also

consider some variations of the systems, including spontaneous creation of particles,

asymmetric cases and position-dependent random walks.

Another important result is that ARW and CRW possess extended Pfa�an prop-

erty, which means the multi-time correlation is also a Pfa�ain point process. We will

prove that in the case of the most general position-dependent random walk ARW and

CRW possess extended Pfa�an property under maximal entrance law.

1.1 Pfa�an

The determinant of an anti-symmetric matrix A, i.e. Ai,j = Aj,i, is a square of a

polynomial of the entries and therefore it is natural to de�ne the square root of the

determinant which is called Pfa�an.

The de�nition of Pfa�an is given below:

De�nition 1. Given a 2n × 2n skew-symmetric matrix A, the Pfa�an Pf (A) of A is

the square root of the determinant of A de�ned by

Pf (A) =
∑

σ∈
∑

2n

sgn (σ) ai1,j1ai2,j2 . . . ain,jn

where
∑

2n is the summation over all the permutations σ of {1, 2, . . . , 2n} given by

σ (2k − 1) = ik, σ (2k) = jk for k = 1, . . . , n. The permutations have to satisfy two

conditions: ik < jk for all k and i1 < i2 < · · · < in.
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For example, if A =

(
0 a

−a 0

)
, Pf(A) = a. If A =


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

, Pf(A) =

af − be+ cd.

A convenient way to manipulate Pfa�an to obtain useful identities is by using

superintegral. A good reference is [21].

A useful formula for the decomposition of Pfa�ans is the following:

Lemma 1. For two 2n× 2n matrices A and B [1],

Pf (A+B) =
∑
J

(−1)|J |/2(−1)s(J)Pf (A|J)Pf (B|Jc)

where the sum is over all subsets J ⊆ {1, 2, . . . , 2n} with an even number of terms; Jc =

{1, 2, . . . , 2n}\J ; s(J) =
∑

j∈J j (and s(∅) = 0); and where A|J means the submatrix

of A formed by the rows and columns indexed by elements of J (and the Pfa�an of the

empty matrix is taken to have value 1).

Another lemma we will use later is the following, the proof of which will not be

given here:

Lemma 2. For a skew-symmetric 2n× 2x matrix A,

Pf
(
AT
)

= (−1)n Pf (A) . (1.1)

1.2 Pfa�an point process

1.2.1 Point process

Albeit its name, in general a point process is not really a time dependent process. Here

we will only give a basic de�nition of point process. For details one can refer to the book

by Daley, D.J., Vere-Jones, D [5].

For a locally compact second countable Hausdor� space S, a point process is a

map ξ which maps a bounded subset A/inS to locally �nite counting measures and can

be written as :

ξ (A) =
N∑
i=1

δXi

where Xi are the random positions. If Xi 6= Xj whenever i 6= j, then we say that the

point process is simple.
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Therefore a point process can be viewed as putting particles randomly on a space

and hence at every time t a particle system can be regarded as a simple point process.

1.2.2 Pfa�an point process

Since in our research the particles are on a discrete lattice and the process is simple, our

correlation function at time t has a simple form:

ρnt (x1, . . . , xn) = Et

(
n∏
i=1

nxi

)

where nxi ∈ {0, 1} is the occupation number at stie xi.For the continuous case the

de�nition of correlation function can be a bit technical and the interested readers can

refer to Daley, D.J., Vere-Jones, D [5].

De�nition 2. A random point process is called Pfa�an if its point correlation functions

have a Pfa�an form[6], i.e.

ρn (x1, . . . , xn; t) = Pf (K (xi, xj))i,j=1,...,n , n ≥ 1

where K (x, y) =

(
K11(x, y) K12(x, y)

K21(x, y) K22(x, y)

)
is called the matrix kernel which is subject

to the constraint Kij(x, y) = −Kji(y, x) in order to make the 2n × 2n matrix skew-

symmetric.

The term K(xi, xj) can be thought of as the element Kij of a n × n matrix K

and is a 2× 2 matrix whose elements are functions of the positions xi, xj .
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Chapter 2

Glauber model and annihilating

random walk(ARW)

To investigate the system of annihilating random walk(ARW), my approach is to start

from studying the behaviour of Glauber model by employing the free Fermonic formula-

tion and then map to the system of annihilating random walk. The object in which we

are interested is the spin correlation function Et (
∏n
i=1 sxi), which can be derived from

the generating function Gt

(
~J
)
. We can thus �nd the generating function for ARW by

mapping this expression to that of ARW.

2.1 Glauber model

2.1.1 Introduction to Glauber model

On an in�nite discrete one-dimensional lattice Z, every site x is occupied by a spin

sx ∈ {−1,+1}. Every spin can �ip depending of the status of its nearest neighbours. In

other words, the transition rate ω of the spin sk at position k is

ω (sk−1, sk, sk+1) = 1 + γsk (sk−1 + sk+1) ,

where γ = −1
2 tanh

(
2J
kT

)
and J is the interaction between the spins and T is the tem-

perature. Therefore γ represents the �temperature" of the system. At zero temperature,

where γ = −1
2 , the spins tend to align with each other so the transition rate for spin sk

at position k should be zero when its neighbours are aligned with it and no spontaneous

�ipping will happen. In this chapter we only consider the case of zero temperature.

Let ~s denote the spin con�guration on the lattice, ideally we want to �nd the
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probability Pt (~s) that the spin con�guration is ~s. We have a master equation for this

probability:

∂tPt (~s) =
∑
k

[ω (sk−1,−sk, sk+1)P (. . . sk−1,−sk, sk+1 . . . )− ω (sk−1, sk, sk+1)P (~s)]

(2.1)

However, this probability contains more information than we actually need and is di�cult

to calculate. So instead we investigate the reduced probability Pt (sx1 , . . . , sxn), which

is the probability that the n spins sxi are in the con�guration {sx1 , . . . , sxn}. For the

convenience of calculation, we also con�ne our attention to a chain of N spins but we

can always make N large enough to contain all the n spins we are interested in.

We can obtain the reduced probability Pt (sx1 , . . . , sxn) from spin correlations

Et (sx1 · · · sxn). Consider the function 1
2

(
1 + sxis

′
xi

)
, where sxi , s

′
xi ∈ {−1, 1}. It can be

seen that

1

2

(
1 + sxis

′
xi

)
=

1 if sxi = s′xi

0 if sxi = −s′xi
.

Therefore we can expand the reduced probability Pt (sx1 , . . . , sxn) by

Pt (sx1 , . . . , sxn)

=
1

2n

∑
{~s′}

(
1 + sx1s

′
x1

)
· · ·
(
1 + sxns

′
xn

)
Pt

(
~s′
)

=
1

2n

1 +
n∑
i=1

sxi

∑
{~s′}

s′xiPt

(
~s′
)+

n∑
i,k=1
i 6=k

sxisxk

∑
{~s′}

s′xis
′
xk
Pt

(
~s′
)+ · · ·


=

1

2n

1 +

n∑
i=1

sxiEt (sxi) +

n∑
i,k=1
i 6=k

sxisxkEt (sxisxk) + · · ·


where the factor 1

2N
comes from the fact that we have N spins in the chain of spins ~s and

hence 2N spin con�gurations. Therefore, the reduced probability Pt (sx1 , . . . , sxn) can be

expanded as a summation of products of spins and spin correlations Et (sx1 · · · sxn)[8].

The spin correlation Et (sx1 · · · sxn) can be derived from the generating function

Gt

(
~J
)

= Et

(
e
~J ·~s
)

7



by

Et (sx1 · · · sxn) =

n∏
k=1

∂JkGt

(
~J
)
| ~J=0 .

In Glauber's original paper, he calculated only up to 2-point correlation function

by employing the technique of ordinary di�erential equation and involves summation

of Bessel functions. However, he mentioned an alternative method which regards the

reduced probability as a vector. We are going to follow this approach and introduce

the free Fermionic formulation, a computational technique borrowed from quantum �eld

theory, to calculate the generating function Gt

(
~J
)
.

2.1.2 Fermionic treatment of Glauber model

Firstly let us expresses the spins sxi as unit vectors in a Hilbert space and introduce

some useful linear operators.

Let |sk〉 be a ket vector which expresses the state of the spin at position k. De�ne

τ
(3)
k to be a linear operator such that

τ
(3)
k |sk〉 = sk|sk〉

where sk ∈ {±1} and also 〈sk| be a bra vector such that

〈sk|τ
(3)
k = 〈sk|sk.

To describe the entire spin con�guration we can construct a vector |~s〉:

|~s〉 =
N⊗
k=1

|sk〉.

We also need two useful operators: the raising operator τ+k and the lowering operator

τ−k ,

τ+k | − 1〉 = |1〉, τ+k |1〉 = 0

τ−k | − 1〉 = 0, τ−k |1〉 = | − 1〉

and also

〈−1|τ−k = 〈1|, 〈1|τ−k = 0

〈−1|τ+k = 0, 〈1|τ+k = 〈−1|.

8



Also, (
τ+k
)2

=
(
τ−k
)2

= 0. (2.2)

A special vector |~1〉 =
⊗

k |1k〉 is needed as well.

Now we can express the generating function Gt

(
~J
)
in terms of vectors and linear

operators:

Gt

(
~J
)

= 〈~1|e
∑
k τ

+
k e
∑
k Jkτ

(3)
k |Pt〉. (2.3)

where

|Pt〉 =
∑
~s

Pt (~s) |~s〉.

Now we can rewrite the master equation (2.1) in the vector notation:

∂t|Pt〉 =
∑
~s

∂tPt (~s) |~s〉

=
∑
k

(
τ
(1)
k − 1

)
ω
(
τ
(3)
k−1, τ

(3)
k , τ

(3)
k+1

)
|Pt〉 (2.4)

where τ
(1)
k is the spin-�ip operator and τ

(1)
k |sk〉 = | − sk〉. For brevity we can write (2.4)

in a more compact form:

∂t|Pt〉 = −L|Pt〉

where

L =
∑
k

(
1− τ (1)x

)
ω
(
τ
(3)
k−1, τ

(3)
k , τ

(3)
k+1

)
is the Liouvillian operator. We have a solution to this ODE:

|Pt〉 = e−Lt|P0〉. (2.5)

Combining equations (2.3) and (2.5) we have

Gt

(
~J
)

= 〈~1|e
∑
k τ

+
k e
∑
k Jkτ

(3)
k e−Lt|P0〉. (2.6)

|P0〉 is the initial condition of the chain of spins. In our work we consider the following

initial condition:

sk =

1 with probability p

−1 with probability 1− p

9



where all the spins sk have independent probability measure.

We can express this initial condition in terms of vector:

|P0〉 =

N∏
k=1

[p|sk = 1〉+ (1− p) |sk = −1〉]

=
N∏
k=1

[
p+ (1− p) τ−k

]
|~1〉

= e
∑
k

(
1−p
p
τ−k +ln(p)

)
|~1〉

where we have used the relationship (2.2). Therefore we can rewrite equation (2.6) as

Gt

(
~J
)

= 〈~1|e
∑
k τ

+
k e
∑
k Jkτ

(3)
k e−Lte

∑
k

(
1−p
p
τ−k +ln(p)

)
|~1〉. (2.7)

Suppose the chain of spins have zero magnetisation at time t = 0, then p = 1
2 .

Equation (2.7) becomes

Gt

(
~J
)

=
1

2N
〈~1|e

∑
k τ

+
k e
∑
k Jkτ

(3)
k e−Lte

∑
k τ
−
k |~1〉. (2.8)

To simplify equation (2.8) we have to simplify the Liouvillian operator L to

quadratic form in terms of τ
(2)
k and τ

(3)
k only, which enable us to transform the operators

τ
(2)
k and τ

(3)
k to fermionic operators using Wigner-Jordan transformation: annihilating

operator ψk and creating operators ψ†k such that the fermionic operators satisfy anti-

commutation relations:

{ψk, ψ†l } = δk,l

{ψk, ψl} = {ψ†k, ψ
†
l } = 0.

By the relation

τ (i)τ (j) = −iεi,j,kτ (k)

where i, j, k ∈ {1, 2, 3} and εi,j,k is the Levi-Civita symbol, the Liouvillian operator L

can be rewritten as

L =
∑
k

(
τ
(3)
k − iτ

(2)
k

)
·
(
τ
(3)
k + γ

(
τ
(3)
k−1 + τ

(3)
k+1

))
.
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Now we have to introduce Jordan-Wigner transformation. Firstly we de�ne

bk =
1

2

(
τ
(3)
k + iτ

(2)
k

)
(2.9)

b†k =
1

2

(
τ
(3)
k − iτ

(2)
k

)
. (2.10)

These new operators satisfy the following commutation relations at the same site:

b2k = b†k
2

= 0

{bk, b†k} = 1,

and these operators commute at di�erent sites:[
bk, b

†
l

]
= [bk, bl] = 0, k 6= l. (2.11)

Now by using these b operators we can de�ne creation operators ψk and annihilation

operators ψ†k:

ψk = eiπJk−1bk (2.12)

ψ†k = e−iπJk−1b†k (2.13)

where

Jk =
∑
p≤k

b†pbp (2.14)

Since we have equation (2.11) we get

[Jk, Jl] = 0 ∀k, l

and hence the anti-commutation relations of the ψ operators:

{ψk, ψ†l } = δk,l (2.15)

{ψk, ψl} = {ψ†k, ψ
†
l } = 0. (2.16)

Therefore the Liouvillian operator L can be expressed in terms of ψ operators as:

L = 2
∑
k

ψ†kψk + 2γ
∑
k

(
ψ†kψk−1 + ψ†kψk+1 − ψ†kψ

†
k−1 + ψ†kψ

†
k+1

)
. (2.17)

11



By de�ning the left vacuum state 〈0| by

〈0| = 1

2N/2
〈~1|e

∑
k τ

+
k

and the right vacuum state |0〉 by

1

2N/2
e
∑
k τ
−
k |~1〉 = |0〉,

the equation (2.8) can be rewritten as

Gt

(
~J
)

= 〈0|e
∑
k Jkτ

(3)
k e−Lt|0〉. (2.18)

By equations (2.9) and (2.10) we have

bk|0〉 = 0 = 〈0|b†k, ∀k (2.19)

and hence by the commutation relations (2.11) and the de�nition of ψ operators (2.12)

and (2.13) we get

ψk|0〉 = 0 = 〈0|ψ†k, ∀k. (2.20)

That is the reason why 〈0| and |0〉 are called left and right vacuum states respectively.

Futhermore, since every term in the Liouvillian operater L in (2.17) has a ψ† operater

on the left hand side, by (2.20) we have

〈0|eLt = 0. (2.21)

From (2.9) and (2.10) we know that τ
(3)
k = bk + b†k. Since from (2.11) we know

that bk and b
†
k commute at di�erent sites, we have

Gt( ~J) = 〈0|
∏
k

eJk(bk+b
†
k)e−Lt|0〉.

From (2.12) and (2.13) we have

bk = e−iπĴk−1ψk and b†k = eiπĴk−1ψk,

where Ĵk−1 =
∑

p≤k−1 ψ
†
pψp. So we can rewrite the Gt

(
~J
)
in terms of ψkand ψ

†
k, which

is

Gt( ~J) = 〈0|
∏
k

eJk(e
−iπĴk−1ψk+e

iπĴk−1ψ†k)e−Lt|0〉,

12



where the order in the product is∏
k

eJk(e
−iπĴk−1ψk+e

iπĴk−1ψ†k) = · · · eJ1(e−iπĴ0ψ1+eiπĴ0ψ
†
1)eJ2(e

−iπĴ1ψ2+eiπĴ1ψ
†
2) · · · ,

as the fermionic operators ψ and ψ† do not commute.

By the de�nition of Jk (2.14) and the properties of left vacuum state (2.19) and

(2.20) we know that 〈0|Ĵk = 0 and hence use the de�nition of exponential function of

operators, i.e.

eiπĴk−1 = 1 + iπĴk−1 +
(iπĴk−1)

2

2!
+ · · · ,

we have

Gt( ~J) = 〈0|
∏
k

eJk(ψ
†
k+ψk)e−Lt|0〉.

By de�ning ψ†k + ψk = Ŝk, we have

Gt( ~J) = 〈0|
∏
k

eJkŜke−Lt|0〉.

Since

Ŝ2
k =

(
ψ†k + ψk

)2
= ψ†2k + ψ2

k +
{
ψ†k, ψk

}
= 1,

we get

Et (sk1sk2 · · · skn) =

n∏
j=1

∂JxjGt(
~J) | ~J=0= 〈0|Ŝx1Ŝx2 · · · Ŝxne

−Lt|0〉 (2.22)

for positions xn ≥ xn−1 ≥ · · · ≥ x1.
By de�ning Ŝ(t) = eLtŜe−Lt we can rewrite (2.22) as

Et (sx1sx2 · · · sxn) = 〈0|Ŝx1(t)Ŝx2(t) · · · Ŝxn(t)|0〉.

By the anti-commutations (2.15) and (2.16) we can also rewrite (2.22) in terms of ψ

operators:

Et (sx1sx2 · · · sxn) = 〈0|ψx1ψx2 · · ·ψxne−Lt|0〉.

or

Et (sx1sx2 · · · sxn) = 〈0|ψx1(t)ψx2(t) · · ·ψxn(t)|0〉. (2.23)

where ψ(t) = eLtψe−Lt, for xn > xn−1 > · · · > x1.
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2.1.3 Investigate the property of fermionic operators ψ(t) and ψ†(t)

Since (2.23) gives the spin correlation we have to further investigate the property of the

operators ψk(t) and ψ
†
k(t). Firstly let us de�ne an in�nite dimensional vector of fermionic

operators:
~φ := (· · · , φ−2, φ−1, φ1, φ2, · · · ) =

(
· · · , ψ2, ψ1, ψ

†
1, ψ

†
2, · · ·

)
and

~φ (t) := eLt~φe−Lt.

Lemma 3. The fermionic operators consist of two parts: one part φ+k (t) annihilates the

left vacuum state 〈0| and another φ−k (t) annihilates the right vacuum state |0〉.

Proof As the Liouvillian operator L is quadratic in terms of fermionic operators,

it can be written in the bilinear form:

L = ~φTL~φ (2.24)

where L is an in�nite dimensional square matrix.

The commutation relations (2.15) and (2.16) can be combined as

{φk, φl} = δk+l (2.25)

and hence by direct calculation we can get

[L, φk] =
∑
m

(Lm,−k − L−k,m)φm. (2.26)

By introducing a matrix AdL we can rewrite (2.26) as

(
AdL

)
k,m

= Lm,−k − L−k,m. (2.27)

By (2.27) and Hadamard's lemma, we have

~φ(t) = eLt~φe−Lt = ~φ+
t

1!

[
L, ~φ

]
+
t2

2!

[
L,
[
L, ~φ

]]
+ · · · = eAdLt~φ

and we can denote (E(t))i,j =
(
eAdLt

)
i,j
. Therefore, a fermionic operator φk(t) consists

of two parts: one part φ+k (t) annihilates the left vacuum state 〈0| and another φ−k (t)

annihilates the right vacuum state |0〉:

φk(t) = φ+k (t) + φ−k (t)
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where

φ+k (t) =
∞∑
i=1

(E(t))k,i φi

φ−k (t) =
−∞∑
i=−1

(E(t))k,i φi.

Now that we know more about the property of ψ and ψ† operators we can prove

a useful lemma:

Lemma 4. {
ψ−i (t) , ψj (t)

}
= Et (sisj)

Proof Firstly let us consider E (sisj). From Lemma 3 we know that

Et (sisj) = 〈0|φi (t)φj (t) |0〉

=
∑

q>0,p<0

(E(t))i,p (E(t))i,q 〈0|φpφq|0〉.

where i, j < 0. By (2.25) and (2.20) we have

Et (sisj) =
∑

q>0,p<0

(E(t))i,p (E(t))i,q 〈0|δp+q − φqφp|0〉

=
∑
p<0

(E(t))i,p (E(t))j,−p

By de�nition of φ−i (t) and φj (t) and direct calculation we have

{
ψ−i (t) , ψj (t)

}
=

{
φ−i (t) , φj (t)

}
=

∑
p<0

(E(t))i,p (E(t))j,−p

= Et (sisj) .

2.1.4 Proof of the Pfa�an property of spin correlation

Having proved Lemma 3 we can use this result to prove the Pfa�an structure of spin

correlation function Et (sx1 · · · sxn). The following theorem is very useful in the following
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chapters because we can use it to prove the Pfa�an structure of ARW/CRW.

Theorem 5. The spin correlation Et (sx1 · · · sxn) is a Pfa�an of a matrix S of 2-point

functions, i.e.

Et (sx1 · · · sxn) = Pf (S) ,

where S is a skew-symmetric matrix

Si,j = (−1)χ(i<j)Et (sisj) ,

where χ is an indicator function.

Proof Firstly we notice that if n is an odd number the spin correlation function

Et (si1 · · · sin) is zero. This can be proved by observing Et (s) = 0 and induction.

Let us denote Ct (x1, · · · , xn) = Et (sx1 · · · sxn). By Lemma 3 we know that

ψx1(t) = ψ−x1(t) + ψ+
x1(t) and 〈0|ψ+

x1(t) = 0 and hence

Ct (x1, · · · , xn) = 〈0|ψx1(t) · · ·ψxn(t)|0〉 = 〈0|ψ−x1(t) · · ·ψxn(t)|0〉

where ψ−x1(t) =
∑∞

i=1 (E(t))x1,i ψi. By lemma 4 we can obtain

{ψ−x1(t), ψx2(t)} = Ct (x1, x2) .

Thus

ψ−x1(t)ψx2(t) = Ct (x1, x2)− ψx2(t)ψ−x1(t).

We keep permuting ψ−x1(t) to the right until it reaches the right vacuum state |0〉
and this gives

Ct (x1, · · · , xn) =

n∑
k=2

(−1)k (−1)χ(x1>xk)Ct (x1, xk)Ct (x2, · · · , xk−1, xk+1, · · · , xn)

which is the recursion expression of a Pfa�an.

2.2 Annihilating random walk

Annihilating random walk (ARW) is a system of n particles performing random walk

on a one-dimensional discrete lattice Z such that the probability of any particle walking

in the positive direction in a small duration of time δt is pδt while that in the negative

direction is (1− p) δt. When two of the particles coincide on a site, they annihilate each
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other and disappear from the system. In this section our ARW is considered to be a

symmetric one, i.e. p = 1/2 and the reaction time for the particles to merge together is

taken to be in�nitely fast.

In Glauber model, de�ne a domain wall at position k to be nk =
1−sksk+1

2 . We

can see that

nk =
1− sksk+1

2
=

1 if sk = −sk+1

0 if sk = sk+1

.

Therefore a domain wall can be regarded as a particle of ARW on a lattice isomorphic

to Z since if two domain walls meet each other the spins would align and hence the two

domain walls would annihilate each other.

Since for every spin si we have a corresponding operator Ŝi, we can also de�ne a

corresponding operator for a particle in ARW nk:

N̂k =
1− ŜkŜk+1

2
.

We can prove that this operator can give us the n-point correlation function of ARW.

Firstly let us de�ne what correlation function is for ARW.

De�nition 3. Particle density/n-point correlation function ρn (x1, . . . , xn; t) is the prob-

ability that all the positions xk are occupied at time t. In other words,

ρn (x1, . . . , xn; t) = Et

(
n∏
i=1

δ (xn)

)

where

δ (xi) =

{
1, if xi is occupied

0, otherwise.

Now we can prove that from the N̂ operator de�ned above we can get the n-point

correlation function of ARW. In the case of ARW we denote our n-point correlation

function as ρARWn .

Lemma 6.

ρARWn (x1, . . . , xn; t) = E

(
2n∏
k=1

nxk

)
= 〈0|

2n∏
k=1

N̂xke
−Lt|0〉
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Proof It can be shown directly by expanding and colleciting all the terms.

E

(
2n∏
k=1

nxk

)
=

1

22n
E

(
2n∏
k=1

(
1− sxksxk+1

))

=
1

22n
E

1−
2n∑
i=1

sxisxi+1 +
2n∑

i,k=1
i 6=k

sxisxi+1sxksxk+1 + · · · −
2n∏
i=1

sxisxi+1


=

1

22n
{1−

2n∑
i=1

〈0|ŜxiŜxi+1e
−Lt|0〉+

2n∑
i,k=1
i 6=k

〈0|ŜsiŜsi+1Ŝsk Ŝsk+1e
−Lt|0〉

+ · · · − 〈0|
2n∏
i=1

ŜxiŜxi+1e
−Lt|0〉}

=
1

22n
〈0|

2n∏
k=1

(
1− ŜxiŜxi+1

)
e−Lt|0〉

= 〈0|
2n∏
k=1

N̂xke
−Lt|0〉

Recall that Ŝk = ψk + ψ†k, therefore the Ŝ operators can also be decomposed in

the way Ŝ = Ŝ− + Ŝ+ such that 〈0|Ŝ− = 0 and Ŝ+|0〉 = 0. Next we are going to prove

a useful lemma between the Ŝ operators and the 2-point correlation function of spins.

Lemma 7. {
Ŝ−i , Ŝj

}
=
{
Ŝ−i (t) , Ŝj (t)

}
= Et (sisj) .

where Ŝ−i (t) = eLtŜ−i e
−Lt and Ŝj (t) = eLtŜje

−Lt.

Proof To prove the lemma we have to study the fermionic operators ψ and ψ†

and hence the Ŝ operator in the Fourier space.

By using Fourier transform we have

ψk =

∮
ε

dλλ−k

2πiλ
ψ(λ)

where ψ(λ) =
∑
n∈Z

λnψn. De�ne ψ(λ, t) = eLtψ(λ)e−Lt and by Hadamard's lemma we
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have (
ψ (λ, t)

ψ† (λ, t)

)
=

(
At (λ) Bt (λ)

0 Ct (λ)

)(
ψ (λ)

ψ† (λ)

)

whereAt (λ, t) = e−t(1+γ(λ
−1+λ)), Bt (λ, t) =

(
2γ
(
λ− λ−1

)) sinh(t(1+γ(λ−1+λ)))
1+γ(λ−1+λ)

and Ct (λ, t) =

et(1+γ(λ
−1+λ)).

Therefore, we have∮
ε

dλλ−k

2πiλ
e−Ltψ(λ, t)eLt

=

∮
ε

dλλ−k

2πiλ
e−Lt

[
At(λ)ψ(λ) +Bt(λ)ψ†(λ)

]
eLt.

So we can obtain

ψ−k (t) =

∮
ε

dλλ−k

2πiλ
At(λ)ψ(λ)

and

ψ+
k (t) =

∮
ε

dλλ−k

2πiλ
Bt(λ)ψ†(λ)

and notice that ψ−k (t) |0〉 = 0.

By a similar method we can obtain

ψ†k =

∮
ε

dλλ−k

2πiλ
ψ†(λ)

=

∮
ε

dλλ−k

2πiλ
e−Ltψ†(λ, t)eLt

=

∮
ε

dλλ−k

2πiλ
e−LtCt(λ)ψ†(λ)eLt.

Hence

ψ†k (t) =

∮
ε

dλλ−k

2πiλ
Ct(λ)ψ†(λ)

and

〈0|ψ†k (t) = 0.

Hence we know that

Ŝ−k (t) = ψ−k (t) .

19



Now we can preceed to the following:{
Ŝ−i (t) , Ŝj (t)

}
=

{
ψ−i (t) , ψj (t) + ψ†j (t)

}
=

{
ψ−i (t) , ψj (t)

}
+
{
ψ−i (t) , ψ†j (t)

}
.

By Lemma 4 the �rst term on the right hand side
{
ψ−i (t) , ψj (t)

}
is known to be

Et (sisj) for j > i. For j = i,
{
ψ−i , ψj

}
is equal to zero. So now we have to show

that
{
ψ−i (t) , ψ†j (t)

}
= 0 for j > i.

{
ψ−i (t) , ψ†j (t)

}
=

∮
ε

∮
ε

(
dλλ−i

2πiλ

)(
dµµ−j

2πiµ

)
At(λ)Ct(µ)

{
ψ(λ), ψ†(µ)

}
=

∮
ε

∮
ε

(
dλλ−i

2πiλ

)(
dµµ−j

2πiµ

)
At(λ)Ct(µ)δ(λµ)

=

∮
ε

(
dλλ−i

2πiλ

)
λjAt(λ)Ct(λ

−1).

Now let us investigate the exact form of the function At(λ) and Ct(λ
−1):

At(λ)Ct(λ
−1) = exp

{
−t
[
1 + γ

(
λ+ λ−1

)]}
exp

{
t
[
1 + γ

((
λ−1

)
+
(
λ−1

)−1)]}
= 1.

So
{
ψ
(−)
i , ψ†j

}
=
∮
ε
dλλj−i

2πiλ = 0 for j > i.

For j = i, it is obvious that
{
ψ
(−)
i , ψ†i

}
=
∮
ε
dλ
2πiλ = 1. So for i = j, the

anticommutator
{
Ŝ−i (t) , Ŝi (t)

}
= 1 = Et

(
s2i
)
, which coincide the de�nition of a spin

as a random variable.

Therefore, we can conclude that for j ≥ i,{
Ŝ−i (t) , Ŝj (t)

}
= Et (sisj) .

and hence {
Ŝ−i , Ŝj

}
= e−Lt

{
Ŝ−i (t) , Ŝj (t)

}
eLt = Et (sisj) .

Remark By the Fourier transform used in the above proof, we can obtain the
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integral form of 2-point function.

Et (sisj) =
{
ψ−i (t) , ψj (t)

}
=

∮
ε

∮
ε

(
dλλ−i

2πiλ

)(
dµµ−j

2πiµ

)
At(λ)Bt(µ)δ(λµ)

=

∮
ε

dµ

2πiµ
µj−iD(µ)

where

D(µ) = γ
(
µ− µ−1

) 1− e−2t(1+γ(µ−1+µ))

1 + γ (µ−1 + µ)

and j − i > 0.

2-point function at zero temperature The integral is ill-de�ned at zero tem-

perature γ = −1
2 because of the double-pole at µ = 1. However, we can let γ = −1

2 + ε,

where ε > 0, and then let ε tend to zero. Then

D(µ) =
µ2 − 1

(µ− 1)2 − ε

(
1− e−2tet(µ−1+µ)

)
.

Therefore the 2-point function at zero temperature γ = −1
2 becomes

Et (sisj) = 1− e−2t
∮

dµ

2πi

µ−(j−i) − µ(j−i)

1− µ
et(µ

−1+µ) (2.28)

where we have assumed j − i > 0.

Having Lemma 6 and Lemma 7 at our disposal, we can prove the n-point correla-

tion function of ARW has an interesting property in the special case that all the particle

are next to each other and n is an odd number:

Theorem 8. The 2m+1-point correlation function ρARWn (x1, . . . , x2m+1; t) of ARW can

be expressed as a Pfa�an of a (2m+ 2)× (2m+ 2) matrix, i.e.

ρARWn (x1, . . . , x2m+1; t) =
1

2m
Pf1≤k,l≤2m+2

(
(−1)χ(k>l) fk,l

)
,

where fk,l =
1−Et(sxksxl)

2 and xk = xk−1 + 1.

Proof To simplify the notations and for the convenience of the proof, let

sk = sxk and nk,l =
1− sksl

2
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and

C (k, l) = Et (sksl) .

ρARWn (x1, . . . , x2m+1; t)

= Et

(
2m+1∏
k=1

nk,k+1

)

= 〈0|
2m+1∏
k=1

N̂ke
−Lt|0〉

=
1

2
〈0|

2m+1∏
k=2

N̂ke
−Lt|0〉 − 1

2
〈0|Ŝ−1 Ŝ2

2m+1∏
k=2

N̂ke
−Lt|0〉

=
1

2
Et

(
2m+1∏
k=2

nk

)
− 1

2
〈0|
({
Ŝ−1 , Ŝ2

}
− Ŝ2Ŝ−1

) 2m+1∏
k=2

N̂ke
−Lt|0〉

=
(1− C (1, 2))

2
Et

(
2m+1∏
k=2

nk

)
+

1

2
〈0|Ŝ2

[
Ŝ−1 ,

2m+1∏
k=2

N̂k

]
e−Lt|0〉

= f1,2Et

(
2m+1∏
k=2

nk

)
+

1

2

2m+1∑
p=2

〈0|Ŝ2
p−1∏
k=2

N̂k

[
Ŝ−1 , N̂p

] 2m+1∏
q=p+1

N̂qe
−Lt|0〉

= f1,2Et

(
2m+1∏
k=2

nk

)

+
1

2

2m+1∑
p=2

〈0|Ŝ2
p−1∏
k=2

N̂k

(
C (1, p+ 1) Ŝp − C (1, p) Ŝp+1

)
2

2m+1∏
q=p+1

N̂qe
−Lt|0〉

= f1,2Et

(
2m+1∏
k=2

nk,k+1

)

+
1

2

2m+1∑
p=2

Et

s2 :

p−1∏
k=2

nk,k+1
(C (1, p+ 1) sp − C (1, p) sp+1)

2

2m+1∏
q=p+1

nq,q+1
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= f1,2Et

(
2m+1∏
k=2

nk,k+1

)

+
1

2

2m+1∑
p=2

Et

s2 p−1∏
k=2

nk,k+1
(sp − sp+1)

2

2m+1∏
q=p+1

nq,q+1


−1

2

2m+1∑
p=2

Et

s2 p−1∏
k=2

nk,k+1 (f1,p+1sp − f1,psp+1)

2m+1∏
q=p+1

nq,q+1



The second term, of which is order zero in fi,j , is zero. To show this we have to notice

two facts. Firstly,

sp − sp+1 = sp (1− spsp+1) = 2spnp,p+1.

And secondly,

s2

p−1∏
k=2

nk,k+1sp = (−1)p
p−1∏
k=2

nk,k+1

since the product is non-zero only when all nk are 1 and thus s2 = −s3 = s4 = · · · =

(−1)p sp. Using these two facts we have

1

22

2m+1∑
p=2

Et

s2 p−1∏
k=2

nk,k+1 (sp − sp+1)
2m+1∏
q=p+1

nq,q+1


=

1

2

2m+1∑
p=2

Et

s2 p−1∏
k=2

nk,k+1spnp.p+1

2m+1∏
q=p+1

nq,q+1


=

2m+1∑
p=2

(−1)p

 · Et(2m+1∏
k=2

nk,k+1

)
= 0

since
(∑2m+1

p=2 (−1)p
)

= 0 as there are even number of terms in the summation.
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Therefore,

Et

(
2m+1∏
k=1

nk,k+1

)

= f1,2Et

(
2m+1∏
k=2

nk,k+1

)

−1

2

2m+1∑
p=2

Et

s2 p−1∏
k=2

nk,k+1 (f1,p+1sp − f1,psp+1)
2m+1∏
q=p+1

nq,q+1


= f1,2Et

(
2m+1∏
k=2

nk,k+1

)
− 1

2
Et

s2 (f1,3s2 − f1,2s3)
2m+1∏
q=3

nq,q+1


−1

2
Et

(
s2 :

2m∏
k=2

nk,k+1 (f1,2m+2s2m+1 − f1,2m+1s2m+2)

)

−1

2

2m∑
p=3

Et

s2 p−1∏
k=2

nk,k+1 (f1,p+1sp − f1,psp+1)
2m+1∏
q=p+1

nq,q+1


=

1

2
f1,2Et

(
2m+1∏
k=3

nk,k+1

)
− 1

2
f1,3Et

2m+1∏
q=3

nq,q+1


−1

2
Et

(
s2

2m∏
k=2

nk,k+1 (f1,2m+2s2m+1 − f1,2m+1s2m+2)

)

−1

2

2m+1∑
p=4

f1,pEt

(
s2

p−2∏
k=2

nk,k+1sp−1

2m+1∏
q=p

nq,q+1

)

+
1

2

2m∑
p=3

f1,pEt

s2 p−1∏
k=2

nk,k+1sp+1

2m+1∏
q=p+1

nq,q+1
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=
1

2
f1,2Et

(
2m+1∏
k=3

nk,k+1

)
− 1

2
f1,3Et

2m+1∏
q=3

nq,q+1


−1

2
Et

(
s2

2m∏
k=2

nk,k+1 (f1,2m+2s2m+1 − f1,2m+1s2m+2)

)

−1

2
f1,2m+1Et

(
s2

2m−1∏
k=2

nk,k+1s2mn2m+1,2m+2

)

+
1

2
f1,3Et

s2n2,3s4 2m+1∏
q=4

nq,q+1


−1

2

2m∑
p=4

f1,pEt

s2 p−2∏
k=2

nk,k+1 (sp−1np,p+1 − np−1,psp+1)
2m+1∏
q=p+1

nq,q+1



There are six terms in the expression above and we can simplify them one by one. Firstly,

we can combine the second term and the �fth term as follows:

−1

2
f1,3Et

2m+1∏
q=3

nq,q+1

+
1

2
f1,3Et

s2n2,3s4 2m+1∏
q=4

nq,q+1

 = −1

2
f1,3Et

n2,4 2m+1∏
q=4

nq,q+1

 .

Secondly, we can combine the third and the fourth term as follows:

−1

2
Et

(
s2

2m∏
k=2

nk,k+1 (f1,2m+2s2m+1 − f1,2m+1s2m+2)

)

−1

2
f1,2m+1Et

(
s2

2m−1∏
k=2

nk,k+1s2mn2m+1,2m+2

)

=
1

2
f1,2m+2Et

(
2m∏
k=2

nk,k+1

)
− 1

2
f1,2m+1Et

(
2m−1∏
k=2

nk,k+1n2m,2m+2

)
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Thirdly, the sixth term can be changed as follows:

−1

2

2m∑
p=4

f1,pEt

s2 p−2∏
k=2

nk,k+1 (sp−1np,p+1 − np−1,psp+1)

2m+1∏
q=p+1

nq,q+1


= −1

2

2m∑
p=4

f1,pEt

s2 p−2∏
k=2

nk,k+1sp−1np−1,p+1

2m+1∏
q=p+1

nq,q+1


=

1

2

2m∑
p=4

(−1)p f1,pEt

p−2∏
k=2

nk,k+1np−1,p+1

2m+1∏
q=p+1

nq,q+1

 .

Finally, summing up all the contributions we get

Et

(
2m+1∏
k=1

nk,k+1

)
=

1

2

2m+2∑
p=2

(−1)p f1,pEt

p−2∏
k=2

nk,k+1np−1,p+1

2m+1∏
q=p+1

nq,q+1

 . (2.29)

It might not seem obvious that equation (2.29) shows the correlation function is a Pfa�an

but if we introduce the notation

A(2m+2) (x1, x2, . . . , x2m+2) = Et

(
2m+1∏
k=1

nk,k+1

)

then we can change (2.29) to the following form:

A(2m+2) (x1, x2, . . . , x2m+2) =
1

2

2m+2∑
k=2

(−1)k A(2m+1) (x2, x3, . . . , xk−1, xk+1, xk+2, . . . , x2m+2)

which coincides with the standard recursion relation between Pfa�ans except the extra

factor 1
2 . Therefore this proves the statement.

However, this property will not be used in the proof that ARW is a Pfa�an point

process in the next chapter but it gives the hint that the general n-point correlation

function might have a Pfa�an structure. We will see that in the following chapter.
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Chapter 3

Coalescing Random Walk and

Glauber Model

In this chapter we are going to investigate the relationship between CRW and Glauber

model by showing that an object called empty interval probability is identical to the spin

correlation in Glauber model. The particle correlation function for CRW can then be

derived from this object and will be shown in the next chapter.

Coalescing random walk (CRW) is a system of n particles performing independent

random walk on a one-dimensional discrete lattice Z + 0.5 such that the probability of

any particle walking in the positive direction in a small duration of time δt is pδt while

that in the negative direction is (1− p) δt. When two of the particles coincide on a site,

they merge into one particle and continue to perform random walk. In this thesis our

CRW is considered to be a symmetric one, i.e. p = 1/2 and the reaction rate for the

particles to merge together is taken to be in�nitely fast.

Let us de�ne empty interval probability:

De�nition 4. Let Ωxi,yi denotes the event that the positions {x∗ ∈ Z + 0.5 : xi < x∗ <

yi;xi, yi ∈ Z} are empty. The empty interval probability, denote by Pt [Ωx1,y1 ∩ · · · ∩ Ωxn,yn ],

is the probability that the positions {x∗ ∈ Z + 0.5 : xi < x∗ < yi;xi, yi ∈ Z} for all

i = 1, . . . , n are empty at time t.

For example, Pt [Ω1,3] is the probability that the positions x = {1.5, 2.5} are not
occupied by particles at time t. Also it is true that Pt [Ωx,x] = 1. The name �empty

interval� originates from the continuous case. We can de�ne our �empty interval� in our
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discrete case as

(x, y) := {x∗ ∈ Z + 0.5 : xi < x∗ < yi;xi, yi ∈ Z}. (3.1)

In the following section the word �interval� is understood as the empty interval de�ned

in (3.1).

Having the de�nition of empty interval probability, we want to prove the following

theorem:

Theorem 9. The probability Pt [Ωx1,y1 ∩ · · · ∩ Ωxn,yn ] and the spin correlation function

E (sx1sy1 · · · sxnsyn) both satisfy the heat equation and the same set of boundary conditions

and hence are identical equations by the uniqueness theorem of the heat equation, i.e.

Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = Et (sx1syn · · · sxnsyn)

if given the same initial condition

P0 (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = E0 (sx1syn · · · sxnsyn)

where x1 < y1 < x2 < y2 < · · · < xn < yn.

For example, if all the intervals (xi, yi) for i = 1, . . . , n are empty and sxi = syi = 1

for all i = 1, . . . , n then the initial conditions are the same, i.e.

P0 (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = E0 (sx1syn · · · sxnsyn) = 1.

Proof

To show this, we have to prove that both equations satisfy the heat equation and

the same set of boundary conditions and hence are identical equations by the uniqueness

of the heat equation.

3.1 Kinetic equation for empty interval probability

We want to derive the kinetic equation for the empty intervals. For a small time duration

δt, the only contribution to the change of the empty interval probability is from the

particles hopping in and out of the intervals at the edges.

Suppose now we have no particle in (x, y) but there is a particle at y+0.5 at time

t. We can express the probability of this event by the di�erence of two empty interval
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probabilities:

Pt (Ωx,y \ Ωx,y+1) = Pt (Ωx,y)− Pt (Ωx,y+1)

since Ωx,y ⊃ Ωx,y+1. Similarly if there is no particle in (x, y) but there is a particle at

x− 0.5 at time t. We can express the probability of this event by:

Pt (Ωx,y \ Ωx−1,y) = Pt (Ωx,y)− Pt (Ωx−1,y) .

Consider an interval (xi, yi) in n disjoint intervals (x1, y1) . . . (xn, yn). Let D be

the hopping rate per unit time. The increase in the probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn)

in a small duration of time δt is due to a particle hopping out of the interval at the left

boundary or of the right boundary, which are

[Pt (Ωx1,y1 ∪ · · · ∪ Ωxi+1,yi ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)]D (δt)

(3.2)

and

[Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi−1 ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)]D (δt)

(3.3)

respectively. In a similar fashion, the decrease in the probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn)

in δt due to a particles hopping in the interval at the left boundary or the right boundary

are

− [Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi−1,yi ∪ · · · ∪ Ωxn,yn)]D (δt)

(3.4)

and

− [Pt (Ωx1,y1 ∪ · · · ∪ Ωx,y ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi+1 ∪ · · · ∪ Ωxn,yn)]D (δt)

(3.5)

respectively.

For brevity we can denote

Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn)

by

Pt
(
x, y
)
.

Also we can denote the forward discrete derivative ∂+xi and backward discrete
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derivative ∂−xi by

∂+xiPt
(
x, y
)

= Pt (· · · ∪ Ωxi+1,yi ∪ . . . )− Pt (· · · ∪ Ωxi,yi ∪ . . . )

and

∂−xiPt
(
x, y
)

= Pt (· · · ∪ Ωxi,yi ∪ . . . )− Pt
(
· · · ∪ Ωxi−1,yi ∪ . . .

)
.

Summing up the contribution to the change in the probability Pt
(
x, y
)
in δt from

the interval (xi, yi) in equations (3.2), (3.3), (3.4) and (3.5) we get

[(
∂−xi∂

+
xi + ∂−yi∂

+
yi

)
Pt
(
x, y
)]
D (δt) . (3.6)

In conclusion, if we collect the contributions from all the intervals (xi, yi) for n = 1, . . . , n

we have

Pt+δt
(
x, y
)
− Pt

(
x, y
)

= D (δt)

n∑
i=1

[(
∂−xi∂

+
xi + ∂−yi∂

+
yi

)
Pt
(
x, y
)]

Equation (3.6) is the discrete Laplacian with respect to variables xi and yi of the

probability )Pt
(
x, y
)
times D (δt). Therefore, by considering the total contribution from

all the intervals we can get

∂tPt
(
x, y
)

= D∆Pt
(
x, y
)
∀t ≥ 0 (3.7)

for x1 < y1 < x2 < y2 < · · · < xn < yn and ∆ stands for the discrete Laplacian with

respect to all the boundary variables xi and yi, that is

∆ =
n∑
i=1

(
∂−xi∂

+
xi + ∂−yi∂

+
yi

)
. (3.8)

Now let us investigate the boundary conditions of the di�erential equation. Since

Pt [Ωx,x] = 1, we have

Pt
(
x, y
)

= Pt
(
x′, y′

)
if xi = yi (3.9)

where x′ = x \ {xi} and y′ = y \ {yi}.
For yi = xi+1, since {x∗ ∈ Z + 0.5 : xi < x∗ < yi} ∪ {x∗ ∈ Z + 0.5 : xi+1 < x∗ <
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yi+1} = {x∗ ∈ Z + 0.5 : xi < x∗ < yi+1}, we have

Pt
(
x, y
)

= Pt
(
x̃, ỹ
)
if yi = xi+1 (3.10)

where x̃ = x \ {xi+1} and ỹ = y \ {yi}.
At this point we have obtained the kinetic equation for empty interval and the

boundary conditions. We are going to investigate these equations for the equation of

spin correlation.

3.2 Kinetic equation for the spin correlation

Let ~s be a spin con�guration and D
[
1− sx(sx−1+sx+1)

2

]
be the �ipping rate of the spin sx

at position x . In a short duration of time δt, the change of the probability of ~s at time

t can only be due to a �ip of a single spin (otherwise, there would be δt2 contribution

which can be ignored).

Therefore,

Pt+δt (~s)− Pt (~s)

= −D (δt)
∑
x∈Z

[
1− sx (sx−1 + sx+1)

2

]
Pt (~s) +D (δt)

∑
x∈Z

[
1 +

sx (sx−1 + sx+1)

2

]
Pt ( ~σx) +O

(
δt2
)

where ~σx is the con�guration of spins di�ers from ~s only at x. Rewriting the above

equation we have

∂tPt (~s) = −D
∑
x∈Z

[
1− sx (sx−1 + sx+1)

2

]
Pt (~s) +D

∑
x∈Z

[
1 +

sx (sx−1 + sx+1)

2

]
Pt ( ~σx) .

(3.11)

Now consider 2n spins at the positions k1 < k2 < · · · < k2n. By using (3.11) we

can write the change of the spin correlation with respect to time as

∂tEt (sk1sk2 . . . sk2n)

=
∑
~s

∂tPt (~s) (sk1sk2 . . . sk2n)

= −
∑
~s

∑
x∈Z

D

[
1− sx (sx−1 + sx+1)

2

]
Pt (~s) (sk1sk2 . . . sk2n)

+
∑
~s

∑
x∈Z

D

[
1 +

sx (sx−1 + sx+1)

2

]
Pt ( ~σx) (sk1sk2 . . . sk2n) .
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If x 6∈ {k1, k2, . . . , k2n},

D
∑
~s

Pt (~s) (sk1sk2 . . . sk2n) = D
∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) .

Otherwise, if x ∈ {k1, k2, . . . , k2n},

−D
∑
~s

Pt (~s) (sk1sk2 . . . sk2n) = D
∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) .

Therefore,

−D
∑
x∈Z

∑
~s

Pt (~s) (sk1sk2 . . . sk2n)+D
∑
x∈Z

∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) = −4nDEt (sk1sk2 . . . sk2n) .

By similar argument, if x 6∈ {k1, k2 . . . , k2n},

∑
~s

D

[
sx (sx−1 + sx+1)

2

]
Pt (~s) (sk1sk2 . . . sk2n) = −

∑
~s

D

[
sx (sx−1 + sx+1)

2

]
Pt ( ~σx) (sk1sk2 . . . sk2n) .

Otherwise, if x ∈ {k1, k2, . . . , k2n},

∑
~s

D

[
sx (sx−1 + sx+1)

2

]
Pt (~s) (sk1sk2 . . . sk2n) =

∑
~s

D

[
sx (sx−1 + sx+1)

2

]
Pt ( ~σx) (sk1sk2 . . . sk2n)

because s2x = 1 for any x ∈ Z and thus there would be no s2x in the summation.

In summary,

∂tEt (sk1sk2 . . . sk2n)

= −4nDEt (sk1sk2 . . . sk2n) +D

2n∑
i=1

∑
~s

[ski (ski−1 + ski+1)]Pt (~s) (sk1sk2 . . . sk2n)

= −4nDEt (sk1sk2 . . . sk2n) +D

2n∑
i=1

∑
~s

Pt (~s)
(
sk1 . . . ski−1

(ski−1 + ski+1) ski+1
. . . sk2n

)
= D

2n∑
i=1

∑
~s

Pt (~s)
(
sk1 . . . ski−1

(ski−1 − 2ski + ski+1) ski+1
. . . sk2n

)
= D

2n∑
i=1

Et
(
sk1 . . . ski−1

(ski−1 − 2ski + ski+1) ski+1
. . . sk2n

)
= D∆Et (sk1sk2 . . . sk2n) (3.12)
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where ∆ is the discrete Laplacian de�ned in (3.6) with respect to all the 2n positions ki

and k1 < k2 < · · · < kn.

Since by the property of spins s2i = 1, we have the boundary condition

Et
(
sk1 . . . skiski+1

. . . sk2n
)

= Et
(
sk1 . . . ski−1

ski+2
. . . sk2n

)
if ki = ki+1. (3.13)

We can then set positions k2i+1 = xi and k2i = yi for i = 1, . . . , 2n. From

equations (3.7) and (3.12) we can see that both empty interval probability Pt
(
x, y
)
and

spin correlation Et (sk1sk2 . . . sk2n) satisfy the heat equation. Furthermore, by comparing

equations (3.9), (3.10) and (3.13) we can see that they satisfy the same boundary condi-

tions. Since we have assume both equations satisfy the same initial condition and thus

by uniqueness of the heat equation we have proved the two equations are identical.

3.3 Uniqueness of discrete heat equation in unbounded do-

main

Lemma 10. For a function u : Ω× [0,∞)→ R, the following∆u < ut in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where ∆ is the discrete Laplacian operator, ut is the derivative of u with respect to time

and Ω ⊂ Zn is a bounded domain.

Proof Firstly, assume u attains minimum on Ω × [0, T ] at (x∗, t∗). This can be

found since Ω is bounded and u is continuous with respect to time and there is a �nite

number of spatial grid points in Ω.

Now suppose u (x∗, t∗) < 0, otherwise the proof is done, then there are two cases

to consider.

Case one: t∗ 6= T , then ut (x∗, t∗) = 0 and ∆u (x∗, t∗) ≥ 0 which contradicts the

assumption ∆u < ut. Therefore u ≥ 0 in Ω̄× [0,∞).

Case two: t∗ = T , then ut (x∗, t∗) < 0 and ∆u (x∗, t∗) ≥ 0 which also contradicts

the assumption ∆u < ut. Therefore u ≥ 0 in Ω̄× [0,∞).
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Lemma 11. For a function u : Ω× [0,∞)→ R, the following∆u ≤ ut in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where ∆ is the discrete Laplacian operator, ut is the derivative of u with respect to time

and Ω ⊂ Zn is a bounded domain.

Proof De�ne

v = u+ εt,

where ε > 0. Then we have

vt = ut + ε ≥ ∆u+ ε > ∆u = ∆v.

By Lemma 10, we have

v ≥ 0 in Ω̄× [0,∞).

Since ε can be arbitrarily small, u ≥ 0 in Ω̄× [0,∞).

Lemma 12. For a bounded function u : Ω× [0,∞)→ R, the following∆u− ut ≤ −δ < 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where ∆ is the discrete Laplacian operator, ut is the derivative of u with respect to time,

δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof De�ne

v = u+ ε|x|2.

Then

∆v − vt = ∆u+ 2nε− ut < 0

34



if we choose ε small enough. In particular,

ε <
δ

2n
.

Hence

∆v < vt.

Since u is bounded, v ≥ 0 for large enough R such that |x|2 ≥ R. We can split

domain Ω into two parts: |x|2 ≥ R and |x|2 < R.

For |x|2 < R, we can use Lemma 10 to show that v ≥ 0.

For |x|2 ≥ R, |x|2 dominates and thus v ≥ 0.

In summary, v ≥ 0 in Ω̄×[0,∞) and hence u ≥ 0 in Ω̄×[0,∞) as ε is arbitrary.

Lemma 13. For a bounded function u : Ω× [0,∞)→ R, the following∆u− ut ≤ 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where ∆ is the discrete Laplacian operator, ut is the derivative of u with respect to time

and Ω ⊂ Zn is an unbounded domain.

Proof De�ne

v = u+ δt.

It can be seen that

∆v − vt = ∆u− ut − δ < 0.

By lemma 12 we know that

v ≥ 0 in Ω̄× [0,∞)

and since δ can be arbitrarily small we have

u ≥ 0 in Ω̄× [0,∞).

Now we can also have a counterpart of lemma 13:
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Lemma 14. For a bounded function u : Ω× [0,∞)→ R, the following∆u− ut ≥ 0 in Ω× [0,∞)

u ≤ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≤ 0 in Ω̄× [0,∞)

where ∆ is the discrete Laplacian operator, ut is the derivative of u with respect to time

and Ω ⊂ Zn is an unbounded domain.

Proof Substitute v = −u into lemma 13 then we can immediately get the result.

Lemma 13 and lemma 14 are the main tool we will use to prove the main theorem

in this session.

With lemma 13 and 14 at our disposal we can now prove the uniqueness of heat

equation for a bounded function u in an unbounded domain which is the main theorem

of this session.

Theorem 15. If a bounded function u : Ω× [0,∞)→ R satis�es the heat equation

∆u = ut in Ω× [0,∞)

and a boundary condition

u = f on ∂Ω× [0,∞) ∪ Ω× {0}

then u is unique.

Proof Suppose there are two bounded functions u and v which satistify heat

equation

∆u = ut in Ω× [0,∞)

and

∆v = vt in Ω× [0,∞)

and the same boundary condition

u = v = f on ∂Ω× [0,∞) ∪ Ω× {0}.

36



Then let w = u− v and we can see

∆w = wt in Ω× [0,∞)

and

w = 0 on ∂Ω× [0,∞) ∪ Ω× {0}.

By lemma 13 and 14 we have

w = 0 in Ω̄× [0,∞).

Therefore we have proved the uniqueness of u.

3.4 Pfa�an and heat equation

Previously we have obtained the kinetic equation of spin correlation. This suggests

another method to investigate the Pfa�an property of spin correlation. Firstly let us

investigate the general case of second order linear partial di�erential equation of Pfa�an.

Lemma 16. Suppose Pf (A) is a Pfa�an of a 2n × 2n matrix A whose entries are

functions of time and positions, i.e.

ai,j = (−1)χ(i<j)g (xi, xj ; t)

and satisfy the second order linear partial di�erential equation

∂tai,j =
[
bi∂

2
i + bj∂

2
j + ci∂i + cj∂j + f (xi) + f (xj)

]
ai,j

=

[
2n∑
l=1

bl∂
2
l +

2n∑
m=1

cm∂m + f (xi) + f (xj)

]
ai,j

where ∂i = ∂
∂xi

, bl and cm are functions of xi and f (xi) is a function of xi.

Then

∂tPf (A) =

[
2n∑
l=1

bl∂
2
l + cl∂l + f (xl)

]
Pf (A) .

Proof By the de�nition of Pfa�an it can be expressed as

Pf (A) =
1

2nn!

∑
σ∈S2n

sgn (σ)

n∏
i=1

aσ(2i−1),σ(2i) (t)
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where σ is the symmetric group and sgn (σ) is the signature of σ. Therefore,

∂tPf (A) =
1

2nn!

∑
σ∈S2n

sgn (σ)

n−1∑
j=0

 j∏
i=1

aσ(2i−1),σ(2i) (t)
(
∂taσ(2j−1),σ(2j) (t)

) n∏
i=j+2

aσ(2i−1),σ(2i) (t)


=

1

2nn!

∑
σ∈S2n

sgn (σ)

n−1∑
j=0

{
j∏
i=1

aσ(2i−1),σ(2i) (t)

[bσ(2i−1)∂
2
σ(2i−1) + bσ(2i)∂

2
σ(2i) +

cσ(2i−1)∂σ(2i−1) + cσ(2i)∂σ(2i) + f
(
xσ(2j−1)

)
+ f

(
xσ(2j)

)
]aσ(2j−1),σ(2j) (t)

n∏
i=j+2

aσ(2i−1),σ(2i) (t)}

=
1

2nn!

∑
σ∈S2n

sgn (σ)

[
2n∑
l=1

bl∂
2
l + cl∂l + f (xl)

](
n∏
i=1

aσ(2i−1),σ(2i) (t)

)

=

[
2n∑
l=1

bl∂
2
l + cl∂l + f (xl)

]
Pf (A)

Therefore, the Pfa�an of matrix A whose entries are of this particular form

satis�es the above second order linear partial di�erential equation.

Corollary 17. The Pfa�an Pf (A) of a 2n× 2n matrix A satis�es the heat equation

∆Pf (A) = ∂tPf (A)

if its entries are functions of time and positions, i.e.

ai,j = (−1)χ(i<j)g (xi, xj ; t)

and satisfy the heat equation

∆ai,j = ∂tai,j

where ∆ =
∑2n

i=1 ∂
2
i .

Proof Let bi = 1, ci = 0 and f (xi) = 0 for all i.
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Lemma 18. For a Pfa�an of a 2n× 2n anti-symmetric matrix A, denote

Pf (A) = Pf (x1, . . . , x2n)

where ai,j = (−1)χ(i>j) f (xi, xj) for some function f . If xi = xi+1, then

Pf (x1, . . . , x2n) = ai,i+1Pf (x1, . . . , xi−1, xi+2, . . . , x2n) .

where Pf (xi, . . . , xi−1, xi+2, . . . , x2n) is the Pfa�an of a (2n−2)×(2n−2) anti-symmetric

matrix obtained from A by removing the i-th and i+ 1-th rows and columns.

Proof By the de�nition of Pfa�an,

Pf (A) =
1

2nn!

∑
σ∈S2n

sgn (σ)

n∏
i=1

aσ(2i−1),σ(2i).

Consider one of the terms in the summation of the form

aσ(1),σ(2) · · · ai,σ(j) · · · ai+1,σ(k) · · · aσ(2n−1),σ(2n).

Suppose there are m a's between ai,σ(j) and ai+1,σ(k), then it takes 4m+ 3 transpositions

to obtain

aσ(1),σ(2) · · · ai+1,σ(j) · · · ai,σ(k) · · · aσ(2n−1),σ(2n)

and thus the sgn function of these two permutations will di�er by −1. If i = i+ 1 then

these two terms will cancel each other. The same reasoning applies to the terms of the

forms

aσ(1),σ(2) · · · ai,σ(j) · · · aσ(k),i · · · aσ(2n−1),σ(2n)

and

aσ(1),σ(2) · · · aσ(j),i · · · aσ(k),i · · · aσ(2n−1),σ(2n)

and

aσ(1),σ(2) · · · aσ(j),i · · · ai,σ(k) · · · aσ(2n−1),σ(2n).

They are all cancelled by their partners. Only the terms of the form

aσ(1),σ(2) · · · ai,i+1 · · · aσ(2n−1),σ(2n)
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remains and for each permutation σ there are 2n of them and therefore

Pf (A) =
2n

2nn!

∑
σ∈S2n−2

ai,i+1sgn (σ)

n−1∏
i=1

aσ(2i−1),σ(2i) = ai,i+1Pf (xi, . . . , xi−1, xi+2, . . . , x2n) .

Corollary 19. If ai,j = 1 for i = j, then

Pf (x1, . . . , x2n) = Pf (x1, . . . , xi−1, xi+2, . . . , x2n) .

The above corollaries can be used as an alternative proof that the spin correlation

function is Pfa�an. We just have to show that the boundary conditions and the initial

conditions of the correlation functions are the same as that of a particular Pfa�an.

Theorem 20. The spin correlation Et (x1, . . . , x2n) is a Pfa�an Pf (S) under the Bernoulli

initial condition

|sk〉 =
1√
2

(| ↓〉+ | ↑〉)

where S is a skew-symmetric matrix

Si,j = (−1)χ(i>j)Et (sisj) .

Proof By the resulf in session 3.2 and corollary 17 we know that the spin corre-

lation Et (x1 · · ·x2n) and the Pfa�an Pf (S) both satisfy the heat equation.

By corollary 19 and the fact that s2k = 1 we can see that the spin correlation

Et (x1 · · ·x2n) and the Pfa�an Pf (S) satisfy the same boundary condition.

Since Et=0 (sx1 · · · sx2n) = Et=0

(
sxisxj

)
= 0 for our initial condition, the spin

correlation Et (x1 · · ·x2n) and the Pfa�an Pf (S) satisfy the same initial condition.

The advantage of this approach is that it is easier to generalise to other initial

conditions and to the case of non-zero temperature.
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Chapter 4

Pfa�an point process

In this chapter we will show that the n-point correlations ρn (x1, . . . , xn) for ARW and

CRW have similar format, which can be expressed as a Pfa�an of a 2n× 2n matrix. A

random point process possessing this structure is called a Pfa�an point process. The

exact de�nition of Pfa�an and Pfa�an point process were given earlier in section 1.1

and 1.2

We consider CRW/ARW on a one-dimensional discrete lattice Zand are interested

in obtaining the exact equation of the correlation function in coalescing/annihilating

random walk.

By employing free fermionic operators and empty interval method in the annihi-

lating and coalescing cases respectively, it is found that the correlation functions possess

a Pfa�an property.

It is found that the kernel of the Pfa�an is written in terms of the two-point spin

correlation function E(sxisxj ) in equation (2.28), which only depends on the distance

between xi and xj . Let us recall the 2-point function has the form:

Et(sxisxj+k) = 1− e−2t
∮
Cε

dλ

2πi

λ−k − λk

1− λ
et(λ+λ

−1)

In the next two sections we will prove that ARW and CRW are Pfa�an point

processes by �nding the matrix kernel K(x, y).
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4.1 Annihilating case

Theorem 21. For an initial condition that every site has independent 1
2 probability being

occupied , the correlation function of ARW at zero temperature is Pfa�an:

ρARWn (x1, . . . , xn; t) =
Pf (I − S)

2n
=

Pf (K)

2n

where I is a 2n × 2n block diagonal matrix with n blocks of

(
0 1

−1 0

)
on the diagonal

and S is a 2n × 2n skew-symmetric matrix de�ned in Theorem 5. Therefore K has the

matrix kernels

K(x, y) =

(
Et (sxsy) Et (sxsy+1)

Et (sx+1sy) Et (sx+1sy+1)

)

above the diagonal; and

K(xi, xj) =

(
0 1− Et

(
sxisxj

)
−1 + Et

(
sxisxj

)
0

)

on the diagonal. The blocks below the diagonal can be obtained by the identity Kij(x, y) =

−Kji(y, x) .

Proof By using lemma 1, we can get

Pf (I − S) =
∑
J

(−1)|J |/2(−1)s(J)Pf (I|J)Pf
(
ST |Jc

)
.

We can observe that Pf (I|J) = 1 only if J = {. . . , 2j − 1, 2j, . . . , 2k − 1, 2k, . . . }, 1 ≤
j, k ≤ n. Otherwise Pf (I|J) = 0. Denote this type of subset of {1, 2, . . . , 2n} by J̃ . Also
we can observe that (−1)|J̃ |/2(−1)s(J̃) = 1 and ST = −S. Therefore,

Pf (I − S) =
∑
J̃

Pf
(
ST |J̃c

)
= 1 +

∑
J2

Pf
(
ST |J2

)
+
∑
J4

Pf
(
ST |J4

)
+ · · ·+ Pf

(
ST
)

where Jk is obtained by taking k pairs of adjacent columns and rows from the matrix

J , i.e. Jk = {. . . , 2i1 − 1, 2i1, . . . , 2i2 − 1, 2i2, . . . , 2ik − 1, 2ik, . . . }, 1 ≤ i1 ≤ · · · ≤ ik ≤ n

42



and by equation (1.1),

Pf (I − S) = 1−
∑
J2

Pf (S|J2) +
∑
J4

Pf (S|J4) + · · ·+ (−1)nPf (S) .

By Theorem 5,

Pf (I − S) = 1−
∑

1≤i≤n
Et (sxisxi+1) +

∑
1≤i<j≤n

Et
(
sxisxi+1sxjsxj+1

)
+ · · ·+ (−1)nEt

(
n∏
i=1

sxisxi+1

)

= Et

(
n∏
k=1

(1− sxksxk+1)

)

Since we can de�ne the domain wall of Glauber model to be our annihilating particles,

we have
1− sxksxk+1

2
= δ (xk) .

Therefore, we have

Pf (I − S) = 2nE

(
n∏
k=1

δ (xk)

)
= 2nρARWn (x1, . . . , xn; t) .

4.1.1 An alternative proof

Another way to prove single time correlation function of annihilating random walk is

Pfa�an point process under Bournoulli initial condition, i.e.

Theorem 22.

E

[
N∏
i=1

nzi

]
=

(
−1

2

)N
Pf [K (zi, zj)]

where

K (zi, zj) =

 c (zi, zj) c
(
zi, z

+
j

)
− c (zi, zj)

c
(
z+i , zj

)
− c (zi, zj) 2c (zi, zj)− c

(
z+i , zj

)
− c

(
zi, z

+
j

)
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for zi < zj, and

K (zi, zj) = −

(
c (zi, zj) c

(
z+i , zj

)
− c (zi, zj)

c
(
zi, z

+
j

)
− c (zi, zj) 2c (zi, zj)− c

(
z+i , zj

)
− c

(
zi, z

+
j

))

for zi > zj, and

K (zi, zj) =

(
0 c

(
zi, z

+
i

)
− 1

1− c
(
zi, z

+
i

)
0

)
for zi = zj, where

c (x, y) =


E (sxsy) if x < y

−E (sxsy) if x > y

1 otherwise

.

where x+ = x+ 1, under the initial condition that P (nzi = 1) = 1
2 for all i ∈ Z.

Proof By de�ning the discrete derivative

∂ξisξi = sξ+i
− sξi

we have

nzi =
1− sz+i szi

2
=
−1

2
szi

(
sz+i
− szi

)
=

(
−1

2

)
szi (∂ξisξi |ξi=zi)

where ξi ≥ zi.
Therefore,

E

[
N∏
i=1

nzi

]
=

(
−1

2

)N
E

[
N∏
i=1

szi∂ξisξi

]
|ξi=zi

=

(
−1

2

)N N∏
i=1

∂ξiE

[
N∏
i=1

szisξi

]
|ξi=zi

where z1 < ξ1 ≤ · · · ≤ zi < ξi ≤ zi+1 < · · · ≤ zn < ξn.

And we know that E
[∏N

i=1 szisξi

]
is a 2n× 2n anti-symmetric matrix which has

n2 2× 2 blocks Ki,j :

Ki,j =

(
c (zi, zj) c (zi, ξj)

c (ξi, zj) c (ξi, ξj)

)
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for i < j. By using Kj,i = − (Ki,j)
T we get Ki,jfor i > j and

Ki,i =

(
0 c (zi, ξi)

−c (zi, ξi) 0

)

for the ordering z1 < ξ1 ≤ · · · ≤ zi < ξi ≤ zi+1 < · · · ≤ zn < ξn.

For other orderings of zi, for example z1 < z2 < · · · < zn < zn−1, we know that it

involves even number of transpositions to go from z1 < ξ1 ≤ · · · ≤ zi < ξi ≤ zi+1 < · · · ≤
zn < ξn to z1 < ξ1 ≤ · · · ≤ zi < ξi ≤ zi+1 < · · · ≤ zn < ξn ≤ zn−1 < ξn−1 and therefore

the same anti-symmetric matrix can represent the spin correlation E
[∏N

i=1 szisξi

]
.

As we can see the derivatives only apply to the second column and second row of

the 2× 2 block, we have

∂ξi∂ξjKi,j =

 c (zi, zj) c
(
zi, ξ

+
j

)
− c (zi, ξj)

c
(
ξ+i , zj

)
− c (ξi, zj) 2c (ξi, ξj)− c

(
ξ+i , ξj

)
− c

(
ξi, ξ

+
j

)
where we set c (ξi + 1, ξj + 1) = c (ξi, ξj) since the initial condition has translational

symmetry.

By setting ξi = zi for all i we have thus proved the theorem.

Remark The kernel we got by using decoposition of Pfa�an matrices is

K (zi, zj) = −

(
c (zi, zj) c

(
zi, z

+
j

)
c
(
z+i , zj

)
c (zi, zj)

)

for zi < zj , and

K (zi, zj) = −

(
0 c

(
zi, z

+
i

)
− 1

1− c
(
zi, z

+
i

)
0

)
for zi = zj . It can be shown that

(
1 0

1 1

) c (zi, zj) c
(
zi, z

+
j

)
− c (zi, zj)

c
(
z+i , zj

)
− c (zi, zj) 2c (zi, zj)− c

(
z+i , zj

)
− c

(
zi, z

+
j

)(1 0

1 1

)

=

(
0 c

(
zi, z

+
i

)
− 1

1− c
(
zi, z

+
i

)
0

)
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and (
1 0

1 1

)(
0 c

(
zi, z

+
i

)
− 1

1− c
(
zi, z

+
i

)
0

)(
1 0

1 1

)

=

(
0 c

(
zi, z

+
i

)
− 1

1− c
(
zi, z

+
i

)
0

)

and also

det

(
1 0

1 1

)
= det

(
1 0

1 1

)
= 1

.

So the two representations of the Pfa�an kernels are equivalent to each other.

4.2 Coalescing case

To derive the n-point correlation function from the empty interval probability Pt
(
x, y
)

we have to use the technique of dual lattices again but here our de�nition is a bit di�erent

from the one in the previous chapter. We de�ne the particles on the lattice Z + 0.5 so

that the resulting equation will have a format similar to that of ARW.

De�nition 5. The empty interval probability, denote by Pt

[
Ωx−1 ,y

+
1
∩ · · · ∩ Ωx−n ,y

+
n

]
, is

the probability that the positions {x∗ ∈ Z : x−i < x∗ < y+i }, i = 1, . . . , n are empty at time

t, where Ωx−i ,y
+
i
denotes the event that the positions {x∗ ∈ Z : x−i < x∗ < y+i } are empty

and x−k and y+k denote xk − 0.5 and yk + 0.5 respectively.

For example, Pt
[
Ω1−,3+

]
is the probability that the positions x = {1, 2, 3} are not

occupied by particles at time t. And Pt
(
Ωx−,x+

)
stands for the probability that position

x is occupied, or in other words, the particle density of x, at time t. Also it is trivially

true that Pt [Ωx,x] = 1.

We will also need the following theorem, which is a special case of Theorem 9.

Theorem 23. The probability Pt [Ωx1,x1+1 ∩ · · · ∩ Ωxn,xn+1] and the spin correlation

function E (s1, s1 + 1, . . . , sn, sn + 1) both satisfy the heat equation and the same set of

boundary conditions and hence are identical equations by the uniqueness theorem of the

discrete heat equation, i.e.

Pt (Ωx1,x1+1 ∩ · · · ∩ Ωxn,xn+1) = Et (sx1sx1+1 . . . sxnsxn+1) .

We are now ready to calculate the correlation function ρCRWn (x1, . . . , xn; t).
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Theorem 24. For an initial condition such that every site is occupied, the correlation

function of CRW is Pfa�an:

ρCRWn (x1, . . . , xn; t) = 2nPf (I − S) = 2nPf (K)

where the de�nition of the matrices I, S and K are the same as before.

Proof The correlation function can be expressed by the probability

ρCRWn (x1, . . . , xn; t) = Pt

[(
Ω \ Ωx−1 ,x

+
1

)
∩ · · · ∩

(
Ω \ Ωx−n ,x

+
n

)]
,

where Ω is the whole probability space.

Since the probability of an event can be expressed by the expectation of an indi-

cator function of the event, we have

ρCRWn (x1, . . . , xn; t) = Et

(
I
[(

Ω \ Ωx−1 ,x
+
1

)
∩ · · · ∩

(
Ω \ Ωx−n ,x

+
n

)])
.

We can decompose the events in the indicator function by the following identities:

I (Ω \A) = 1− I (A) (4.1)

I (A ∩B) = I (A) I (B) . (4.2)

Therefore,

I
[(

Ω \ Ωx−1 ,x
+
1

)
∩ · · · ∩

(
Ω \ Ωx−n ,x

+
n

)]
=

n∏
i=1

I[Ω \ Ωx−i ,x
+
i

]

=

n∏
i=1

1− I[Ωx−i ,x
+
i

].

Therefore we have

ρCRWn (x1, . . . , xn; t) = Et

(
I
[(

Ω \ Ωx−1 ,x
+
1

)
∩ · · · ∩

(
Ω \ Ωx−n ,x

+
n

)])
= Et

(
n∏
i=1

1− I[Ωx−i ,x
+
i

]

)
.
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By (4.2),

Et

(
I
[
Ωx−i ,x

+
i

]
. . . I

[
Ωx−j ,x

+
j

])
= Et

(
I
[
Ωx−i ,x

+
i
∩ · · · ∩ Ωx−j ,x

+
j

])
= Pt

(
Ωx−i ,x

+
i
∩ · · · ∩ Ωx−j ,x

+
j

)
.

Therefore,

ρCRWn (x1, . . . , xn; t)

= Et

(
n∏
i=1

1− I
[
Ωx−i ,x

+
i

])

= 1−
n∑
i=1

Pt

[
Ωx−i ,x

+
i

]
+

∑
1≤i<j≤n

Pt

[
Ωx−i ,x

+
i ,x
−
j ,x

+
j

]
+ · · ·+ (−1)nPt

[
Ωx−1 ,x

+
1 ,...,x

−
n ,x

+
n

]
.

By the Theorem 23 we have

Pt

(
Ωx−i ,x

+
i
∩ · · · ∩ Ωx−j ,x

+
j

)
= Et

(
sx−i

sx+i
. . . sx−j

sx+j

)
.

Therefore,

ρCRWn (x1, . . . , xn; t)

= 1−
n∑
i=1

Et

(
sx−i

sx+i

)
+

∑
1≤i<j≤n

Et

(
sx−i

sx+i
sx−j

sx+j

)
+ · · ·+ (−1)nEt

(
sx−1

sx+1
. . . sx−n sx+n

)
.

Since Et

(
sx−1

sx+1
. . . sx−n sx+n

)
is a Pfa�an of two-point functions and the two-point func-

tions depends on the absolute value of the distances, we can shift all the coordintates by

0.5, i.e.

Et

(
sx−1

sx+1
. . . sx−n sx+n

)
= Et (sx1sx1+1 . . . sxnsxn+1) .
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Hence,

ρCRWn (x1, . . . , xn; t)

= 1−
n∑
i=1

Et (sxisxi+1) +
∑

1≤i<j≤n
Et
(
sxisxi+1sxjsxj+1

)
+ · · ·+ (−1)nEt (sx1sx1+1 . . . sxnsxn+1)

= Et

(
n∏
n=1

1− sxisxi+1

)

= 2nEt

(
n∏
k=1

δ (xk)

)
= Pf (I − S) .

Remark From Theorem 24 and Theorem 21 we can see that for our special initial

conditions the particle correlations of the two systems are related by

ρCRWn (x1, . . . , xn; t) = 2nρARWn (x1, . . . , xn; t) .

From now on we may refer to the initial conditions of ARW and CRW in this chapter as

maximal entrance law.
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Chapter 5

Generalisation of models

5.1 Spontaneous creation of pairs of particles in ARW

In the previous chapters we discussed the case in which the "temperature" of the Glauber

model is zero, which corresponds to the case in which the spins tend to align with their

neighbours. If we consider the case of non-zero �nite temperature, then there will be

spontaneous disalignment of spins and this corresponds to spontaneous creation of pair

of particles in ARW. Surprisingly, with this spontaneous creation of particles in the

system, the Pfa�an property is still preserved.

Firstly we will prove by fermionic representation.

5.1.1 Proof by fermionic representation

Theorem 25. For an initial condition that every site has independent 1
2 probability being

occupied , the correlation function of ARW at non-zero temperature is Pfa�an:

ρARWn (x1, . . . , xn; t) =
Pf (I − S)

2n
=

Pf (K)

2n

where I is a 2n × 2n block diagonal matrix with n blocks of

(
0 1

−1 0

)
on the diagonal

and S is a 2n× 2n skew-symmetric matrix with the matrix kernel

K(xi, xj) = (−1)χ(i>j)

(
Et
(
sxisxj

)
Et
(
sxisxj+1

)
Et
(
sxi+1sxj

)
Et
(
sxi+1sxj+1

))

= (−1)χ(i>j)

(
r|xi−xj | (t) r|xi−xj |+1 (t)

r|xi−xj |+1 (t) r|xi−xj | (t)

)
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for i 6= j;

K(xi, xj) =

(
0 1− Et

(
sxisxj

)
−1 + Et

(
sxisxj

)
0

)

=

(
0 1− r|xi−xj | (t)

−1 + r|xi−xj | (t) 0

)

for i = j.

Proof To investigate this case, we need to change the transition rate ω of the spin

sk at position k. In particular, γ is no longer assumed to be −12 . In fact, −12 ≤ γ ≤ 0.

But as we can see in equation (2.17) and in the derivation of (2.23), the assumption that

γ = −1
2 is not used and therefore the spin correlation (2.23) would remain the same form

and the only di�erence is that L and hence ψ (t) is di�erent.

Therefore, lemma 3 still holds as the new L is still quadratic in terms of ψ and

ψ† and hence lemma 4 still holds, which means the commutation structure of the ψ

operators is still preserved. The only di�erence is that the two point function in this case

is a new one at non-zero temperature. Thus the argument of Theorem 5 goes through

exactly as before, i.e. we still have

Et (sx1 · · · sxn) = Pf (S)

where S is a skew-symmetric matrix

Si,j = (−1)χ(i<j)Et (sisj) ,

where χ is an indicator function.

With this at our disposal we can replicate the proof of Theorem 21 exactly as

before and thus prove that at non-zero temperature ARW is also a Pfa�an point process.

5.1.2 Alternative approach

Kinetic equation of spin correlation at non-zero temperature

An alternative way to obtain the same result is to observe that the kinetic equation of spin

correlation at non-zero temperature will preserve Pfa�an. Thus the spin correlation is

still a Pfa�an at non-zero temperature and thus ARWwith immigration is also a Pfa�an.
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Lemma 26. For non-zero temperature the spin correlation Et (sk1 · · · sk2n) satis�es the

following kinetic equation:

∂tEt = [−2γD∆− 2D (2n) (1 + 2γ)]Et

where ∆ =
∑2n

i=1 ∂
−
ki
∂+ki , as de�ned before in (3.6).

Proof Following the proof of Theorem 9 in section 3.2 we can see

∂tPt (~s) = −D
∑
x∈Z

[1 + γsx (sx−1 + sx+1)]Pt (~s) +D
∑
x∈Z

[1− γsx (sx−1 + sx+1)]Pt ( ~σx) .

Therefore,

∂tEt (sk1sk2 . . . sk2n)

= −
∑
~s

∑
x∈Z

D [1 + γsx (sx−1 + sx+1)]Pt (~s) (sk1sk2 . . . sk2n)

+
∑
~s

∑
x∈Z

D [1− γsx (sx−1 + sx+1)]Pt ( ~σx) (sk1sk2 . . . sk2n) .

If x 6∈ {k1, k2, . . . , k2n},

D
∑
~s

Pt (~s) (sk1sk2 . . . sk2n) = D
∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) .

Otherwise, if x ∈ {k1, k2, . . . , k2n},

−D
∑
~s

Pt (~s) (sk1sk2 . . . sk2n) = D
∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) .

Therefore,

−D
∑
x∈Z

∑
~s

Pt (~s) (sk1sk2 . . . sk2n)+D
∑
x∈Z

∑
~s

Pt ( ~σx) (sk1sk2 . . . sk2n) = −4nDEt (sk1sk2 . . . sk2n) .

By similar argument, if x 6∈ {k1, k2 . . . , k2n},∑
~s

Dγsx (sx−1 + sx+1)Pt (~s) (sk1sk2 . . . sk2n) = −
∑
~s

Dγsx (sx−1 + sx+1)Pt ( ~σx) (sk1sk2 . . . sk2n) .
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Otherwise, if x ∈ {k1, k2, . . . , k2n},∑
~s

Dγsx (sx−1 + sx+1)Pt (~s) (sk1sk2 . . . sk2n) =
∑
~s

Dγsx (sx−1 + sx+1)Pt ( ~σx) (sk1sk2 . . . sk2n) .

Therefore,

∂tEt (sk1sk2 . . . sk2n)

= −4nDEt (sk1sk2 . . . sk2n)−D
2n∑
i=1

∑
~s

2γPt (~s)
(
sk1 . . . ski−1

(ski−1 + ski+1) ski+1
. . . sk2n

)
= D

2n∑
i=1

∑
~s

Pt (~s) (−2γ)
(
sk1 . . . ski−1

(ski−1 + ski+1) ski+1
. . . sk2n

)
− 2

(
sk1 . . . ski−1

skiski+1
. . . sk2n

)
= D

2n∑
i=1

∑
~s

Pt (~s) (−2)
{
sk1 . . . ski−1

[γ (ski−1 + ski+1) + ski ] ski+1
. . . sk2n

}
= D

2n∑
i=1

∑
~s

Pt (~s) (−2)
{
sk1 . . . ski−1

[γ (ski−1 + ski+1 − 2ski) + (1− 2γ) ski ] ski+1
. . . sk2n

}
= [−2γD∆− 2D (2n) (1 + 2γ)]Et (5.1)

By Lemma 16 the partial di�erential equation satis�ed by the spin correlation at

non-zero temperature will also be satis�ed by a Pfa�an. The boundary condition and

initial condition will remain the same as they are independent of the dynamics of the

system. For the spin system they depend only on the property that s2 = 1 and for the

Pfa�an they arise from the structure of the anti-symmetric matrix.

So if we can prove that the uniquness theorem of the new discrete partial di�er-

ential equation then we can prove the new spin correlation is a Pfa�an and hence ARW

with spontaneous creation of pairs of particles is a Pfa�an point process.

This will be shown below.

Uniqueness of the kinetic equation ∂tu = (A∆−B)u

This section imitates the proofs in section 3.3 to prove that the uniqueness of the bounded

equation u in an unbounded domain which satis�es the kinetic equation

∂tu = (A∆−B)u.
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Lemma 27. For a function u : Ω× [0,∞)→ R, the followingA∆u−Bu ≤ ut in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where A and B are positive real numbers, ∆ is the discrete Laplacian operator, ut is the

derivative of u with respect to time and Ω ⊂ Zn is a bounded domain.

Proof Firstly, assume that u attains minimum on Ω× [0, T ] at (x∗, t∗). This can

be found since Ω is bounded and u is continuous with respect to time and there is a �nite

number of spatial grid points in Ω.

Now suppose u (x∗, t∗) < 0, otherwise the proof is done

Since ut (x∗, t∗) ≤ 0, but ∆u (x∗, t∗) ≥ 0 and hence A∆u−Bu > 0, this leads to

the contradiction to the assumption that A∆u−Bu ≤ ut. Therefore u ≥ 0 in Ω̄× [0,∞).

Lemma 28. For a bounded function u : Ω× [0,∞)→ R, the followingA∆u−Bu− ut ≤ −δ < 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where A and B are positive real numbers, ∆ is the discrete Laplacian operator, ut is the

derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof De�ne

v = u+ ε|x|2.

Then

A∆v −Bv − vt = A∆u−Bu− ut + ε
(
2nA− |x|2

)
< 0

if we choose ε small enough. In particular,

ε <
δ

2nA
.
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Hence

A∆v −Bv < vt.

Since u is bounded, v ≥ 0 for large enough R such that |x|2 ≥ R. We can split

domain Ω into two parts: |x|2 ≥ R and |x|2 < R.

For |x|2 < R, we can use Lemma 27 to show that v ≥ 0.

For |x|2 ≥ R, |x|2 dominates and thus v ≥ 0.

In summary, v ≥ 0 in Ω̄×[0,∞) and hence u ≥ 0 in Ω̄×[0,∞) as ε is arbitrary.

Lemma 29. For a bounded function u : Ω× [0,∞)→ R, the followingA∆u−Bu− ut ≤ 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where A and B are positive real numbers, ∆ is the discrete Laplacian operator, ut is the

derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof De�ne

v = u+ δt.

It can be seen that

A∆v −Bv − vt = A∆u−Bu− ut − δ (1 +Bt) < 0.

By lemma 28 we know that

v ≥ 0 in Ω̄× [0,∞)

and since δ can be arbitrarily small we have

u ≥ 0 in Ω̄× [0,∞).

Lemma 30. For a bounded function u : Ω× [0,∞)→ R, the followingA∆u−Bu− ut ≥ 0 in Ω× [0,∞)

u ≤ 0 on ∂Ω× [0,∞) ∪ Ω× {0}
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implies

u ≤ 0 in Ω̄× [0,∞)

where A and B are positive real numbers, ∆ is the discrete Laplacian operator, ut is the

derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof Substitute v = −u into lemma 29 then we can immediately get the result.

With lemma 29 and 30 at our disposal we can now prove the uniqueness of the

kinetic equation ∂tu = (A∆−B)u for a bounded function u in an unbounded domain

which is the main theorem of this session.

Theorem 31. If a bounded function u : Ω× [0,∞)→ R satis�es the kinetic equation

∂tu = (A∆−B)u in Ω× [0,∞)

and a boundary condition

u = f on ∂Ω× [0,∞) ∪ Ω× {0}

then u is unique.

Proof Suppose there are two bounded functions u and v which satistify heat

equation

∆u = ut in Ω× [0,∞)

and

∆v = vt in Ω× [0,∞)

and the same boundary condition

u = v = f on ∂Ω× [0,∞) ∪ Ω× {0}.

Then let w = u− v and we can see

∆w = wt in Ω× [0,∞)

and

w = 0 on ∂Ω× [0,∞) ∪ Ω× {0}.

56



By lemma 29 and 30 we have

w = 0 in Ω̄× [0,∞).

Therefore we have proved the uniqueness of u.

5.1.3 The steady state of correlation function of ARW

As time goes by the number of particles in ARW decreses due to annihilation. But

now as we have introduced the creation of particles, there might be a balance between

annihilation and creation and hence a steady state might be obtained. In this section we

would like to investigate the form of the steady state.

Lemma 32. For a 2n× 2n skew-symmetric matrix A of the form

Ai,j = (−1)χ(i>j) η|xj−xi|

where xj > xi for j > i, denote

A = Ax1,...,x2n .

Then

Pf (Ax1,...,xk,...,x2n) = η
∑n
i=1(x2i−x2i−1) = η

∑2n
i=1(−1)

ixi .

Proof Before we proceed it is useful to know the following lemma:

Lemma 33.

Pf (A) =

2n∑
i=2

(−1)i a1iPf
(
A1̂̂i

)
where A1̂̂i is the matrix obtained from A with both �rst and i-th column and row removed.

We prove by induction. For n = 1 it is obvious since

Pf (x1, x2) = ηx2−x1 .
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Assume the statement is true for 2n− 2, then by lemma 33

Pf (Ax1,...,x2n) =

2n∑
i=2

(−1)i a1iPf
(
A1̂̂i

)
=

2n∑
i=2

(−1)i ηxi−x1Pf
(
Ax2,...,xi−1,xi+1,...,x2n

)
= η

∑n
i=1(x2i−x2i−1) +

2n∑
i=3

(−1)i ηxi−x1η
∑i−1
j=2(−1)

j−1xjη
∑2n
j=i+1(−1)

jxj .

Observe that the i-th term in the summation is

(−1)i ηxi−x1η
∑i−1
j=2(−1)

j−1xjη
∑2n
j=i+1(−1)

jxj = (−1)i η−x1ηxiη(−1)
i+1xi+1η

∑i−1
j=2(−1)

j−1xjη
∑2n
j=i+2(−1)

jxj

while the i+ 1-th term is

(−1)i+1 ηxi+1−x1η
∑i
j=2(−1)

j−1xjη
∑2n
j=i+2(−1)

jxj = (−1)i+1 η−x1ηxiη(−1)
i−1xi+1η

∑i−1
j=2(−1)

j−1xjη
∑2n
j=i+2(−1)

jxj .

So they cancel each other and therefore the summation is zero and hence the lemma is

proved by the principle of mathematical induction.

Theorem 34. The steady state of annihilating random walk is Bernoulli.

Proof From Glauber's paper, the steady state of two point function of spins is

Et→∞ (sksk+n) = ηn =

[
tanh

(
J

kT

)]n
.

Now consider the large-time correlation function for ARW

Et→∞

(
n∏
i=1

ni

)
=

1

2n
Et→∞

(
n∏
i=1

(1− sisi+1)

)

=
1

2n
{1−

n∑
i=1

Et→∞ (sisi+1) +

n∑
i<j

Et→∞ (sisi+1sjsj+1)

+ · · ·+ (−1)n Et→∞ (s1s1+1 · · · snsn+1)}.

Here we denote si+1 as the spin at xi + 1 for brevity of notation.

As we have shown in Theorem 5 that the spin correlation Et (sisi+1 · · · sjsj+1) is
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a Pfa�an of two-point functions at any time t given the initial condition, we have

Et→∞

(
n∏
i=1

ni

)
=

1

2n
{1−

n∑
i=1

η +
n∑
i<j

Pf
(
Axi,xi+1,xj ,xj+1

)
+ · · ·+ (−1)n Pf (Ax1,x1+1,...,xn,xn+1)}.

By lemma 5.1.3 we have

Et→∞

(
n∏
i=1

ni

)
=

1

2n
{1−

n∑
i=1

η +

n∑
i<j

η2 + · · ·+ (−1)n ηn}

=
1

2n
{1− nη +

(
n

2

)
η2 + · · ·+ (−1)n ηn}

=

[
1− η

2

]n
.

So the steady state of annihilating random walk is Bernoulli.

5.2 Spontaneous creation of particles in CRW

Although we can prove that ARW with immigration preserves the Pfa�an property, the

counterpart in CRW is not obvious.

In this section we will show that why CRW with spontaneous creation of particles

does not act like the counterpart of ARW and thus is unlikely to be a Pfa�an point

process.

We will derive the kinetic equation of empty interval probability for CRW with

immigration and that of the Pfa�an of empty interval probabilities of single intervals.

By observing the two kinetic equations are di�erent we can thus conclude that CRW

with immigration may not be a Pfa�an point process.

Lemma 35. In the case of CRW with immigration, the empty interval probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) =

Pt
(
x, y
)
satis�es the following kinetic equation:

∂tPt
(
x, y
)

= De∆Pt
(
x, y
)
− C

[
n∑
i=1

|yi − xi|

]
Pt
(
x, y
)
.

Proof The discussion from (3.2) to (3.6) is still valid but now we have to also

consider the e�ect of the spontaneous creation of particles. Also here we denote the rate
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of hopping of the particles by De. Now we assume that the probability that there will

be a spontaneous creation of a particle in an empty interval [xi, yi] in δt is proportional

to the width of the interval yi − xi, i.e.

C |yi − xi|P (Ωxi,yi)

where C is the rate of spontaneous creation of particles. Therefore,

Pt+δt
(
x, y
)
− Pt

(
x, y
)

= De (δt)
n∑
i=1

[(
∂−xi∂

+
xi + ∂−yi∂

+
yi

)]
Pt
(
x, y
)
−

[
n∑
i=1

|yi − xi|

]
C (δt)Pt

(
x, y
)
.

Therefore,

∂tPt
(
x, y
)

= De∆Pt
(
x, y
)
− C

[
n∑
i=1

|yi − xi|

]
Pt
(
x, y
)

where ∆ =
∑n

i=1

[(
∂−xi∂

+
xi + ∂−yi∂

+
yi

)]
.

Lemma 36. Empty interval probability for multiple intervals for CRW with immigration

is not a Pfa�an of empty interval probability for single intervals.

Proof Suppose empty interval probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = Pt
(
x, y
)
is

a Pfa�an Pf [Pt (zi, zj)] where zi is xi or yi.

We derive the kinetic equation of this Pfa�an now. By the de�nition of Pfa�an

we have

∂tPf
[
Pt
(
Ωzi,zj

)]
= ∂t

 ∑
σ∈S2n

sgn (σ)

n∏
i=1

Pt
(
Ωσ(2i−1),σ(2i)

)
where we have put the constraint that σ (2i− 1) < σ (2i) and σ (2i) < σ (2i+ 2).

Since

∂tPt
(
Ωσ(2i−1),σ(2i)

)
=
[
De

(
∆σ(2i−1) + ∆σ(2i)

)
− C |σ (2i)− σ (2i− 1)|

]
Pt
(
Ωσ(2i−1),σ(2i)

)
,
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we get

∂tPf
[
Pt
(
Ωzi,zj

)]
=

 ∑
σ∈S2n

sgn (σ)

De∆− C
n∑
j=1

|σ (2i)− σ (2i− 1)|

 n∏
i=1

Pt
(
Ωσ(2i−1),σ(2i)

)
= De∆Pf [Pt (zi, zj)]− C

∑
σ∈S2n

sgn (σ)

 n∑
j=1

|σ (2i)− σ (2i− 1)|

 n∏
i=1

Pt
(
Ωσ(2i−1),σ(2i)

)
.

As the term
∑n

j=1 |σ (2i)− σ (2i− 1)| is di�erent for every permutation σ, we cannot

collect the terms and we do not have a partial di�erential equation for such a Pfa�an.

Therefore the Pfa�an does not satisfy the kinetic equation for the empty interval

probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = Pt
(
x, y
)
and therefore cannot be it.

Since

ρCRWn (x1, . . . , xn) = 1−
n∑
i=1

Pt

[
Ωx−i ,x

+
i

]
+

∑
1≤i<j≤n

Pt

[
Ωx−i ,x

+
i ,x
−
j ,x

+
j

]
+ · · ·+ (−1)nPt

[
Ωx−1 ,x

+
1 ,...,x

−
n ,x

+
n

]
,

but the empty interval probabilities are not Pfa�an, the sum of the summations cannot

be combined to a single Pfa�an by Lemma 1. However, at this point we cannot prove

that the correlation function for CRW with immigration of particles cannot be a Pfa�an

of any functions.

5.3 Asymmetric ARW

In the previous discussion our transition rate of spins depends on both of the neighbouring

spins and the e�ect of them are weighted equally. Neither the left nor the right neighbour

has a larger e�ect over the other. This corresponds to symmetric ARW. In this section

we want to relax this restriction and investigate the case of asymmetric ARW. Therefore

we have to rede�ne our transition rate in Glauber model as

ω (sk−1, sk, sk+1) = 1 + sk

(
γ(−)sk−1 + γ(+)sk+1

)
= 1 + 2γsk ((p) sk−1 + (1− p) sk+1) .

where γ(−), γ(−) ∈ [−1, 0] and

γ(−) + γ(−) = 2γ.
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This is called the directed Ising model [13][14].

The parameters γ(−) and γ(−) represent the dependence of the spin sk on its

neighbours sk−1 and sk+1 respectively. For example, consider the spin con�guration

|sk−1sksk−1〉 = |+ +−〉.

The rate that sk will �ip from + to − is 1 + 2
(
γ(−) − γ(+)

)
. let us consider two extreme

cases. If γ(−) = 2γ and γ(+) = 0, then the rate is 1 + 2γ and the spin sk will have a

small chance to �ip since γ is negative. On the other hand, if γ(−) = 0 and γ(+) = 2γ,

then the rate is 1 − 2γ and the spin sk will have a bigger chance to �ip from + to −.
In terms of domain wall, the �rst case means the ARW at k is not likely to move to the

vacancy k− 1 while the second case means the ARW at k is very likely to move to k− 1.

Therefore γ(−) and γ(−) represent how asymmetric ARW is . The more negative γ(−) is,

the less likely an ARW will move to the negative direction. Similar argument goes for

γ(+).

In the following section I will prove that under maximal entrance law asymmetric

ARW still preserves the Pfa�an property by two approaches. Firstly let us consider the

Fermionic approach.

5.3.1 Fermionic representation

Lasym = 2
∑
k

ψ†k

(
ψk + γ(−)

(
ψk−1 − ψ†k−1

)
+ γ(+)

(
ψk+1 + ψ†k+1

))
Since Lasym is quadratic in fermions ψk and ψ†k, by Lemma 3 the new time-

dependent fermions ψk (t) = eLasymtψke
−Lasymt and ψ†k (t) = eLasymtψ†ke

−Lasymt can also

be written as a summation of ψk and ψ
†
k. Thus by Lemma 4 we can computer the anti-

commutator
{
ψ−i (t) , ψj (t)

}
= Et (sisj) and therefore by Theorem 5 we will also have

the Pfa�an property of spin correlation in this directed Ising model under the maximal

entrance law as initial condition.

As again we have the Pfa�an property of spin correlation, the proof of Theorem

21 will be exactly the same and therefore asymmetric ARW preserves its Pfa�an property

under the maximal entrance law.

5.3.2 Kinetic equation

By modifying the argument in Section 3.2 we can get
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∂tEt (sk1sk2 . . . sk2n)

= −4nDEt (sk1sk2 . . . sk2n)− 2D
2n∑
i=1

∑
~s

[
ski

(
γ(−)ski−1 + γ(+)ski+1

)]
Pt (~s) (sk1sk2 . . . sk2n)

= −4nDEt (sk1sk2 . . . sk2n)− 2D

2n∑
i=1

∑
~s

Pt (~s)
(
sk1 . . . ski−1

(
γ(−)ski−1 + γ(+)ski+1

)
ski+1

. . . sk2n

)
= D

2n∑
i=1

∑
~s

Pt (~s)
(
sk1 . . . ski−1

(
−2γ(−)ski−1 − 2ski − 2γ(+)ski+1

)
ski+1

. . . sk2n

)
= D

2n∑
i=1

Et

(
sk1 . . . ski−1

(
−2γ(−)ski−1 − 2ski − 2γ(+)ski+1

)
ski+1

. . . sk2n

)
.

De�ne ∂+x f(x) = f(x+ 1)− f(x), then we have

∂tEt (sk1sk2 . . . sk2n)

= D

2n∑
i=1

Et[sk1 . . . ski−1
(−2γ(+) (ski−1 − 2ski + ski+1)− 2

(
γ(−) − γ(+)

)
(ski+1 − ski)

−2
(
γ(−) + γ(+) + 1

)
ski)ski+1

. . . sk2n ]

=

[
−2Dγ(+)∆− 2

(
γ(−) − γ(+)

)
D

2n∑
i=1

∂+xi − 4nD
(
γ(−) + γ(+) + 1

)]
Et (sk1sk2 . . . sk2n) .

Thus we have a PDE of the form

∂tu (x) =

[
A∆−B + C

2n∑
i=1

∂xi

]
u (x)

or

∂tu (x) = D∆̃u (x) = D
2n∑
i=1

[au (xi + 1)− 2u (xi) + bu (xi − 1)] (5.2)

where a, b ∈ [0, 1] and a+ b = −4γ.

By Lemma 16 we can see that the new kinetic equation generated by the new

dynamics also has the form in Lemma 16 and therefore this new kinetic equation also

preserves Pfa�an. Hence the spin correlation in the directed Ising model also has the

Pfa�an structure.

Having this at our disposal we can go through the proof of Theorem 21 as before
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to prove the asymmetric ARW is a Pfa�an point process.

Notice that both proofs does not depend on the exactly temperature of the sys-

tem, which means for any value of γ ∈ [−1/2, 0] the proofs still hold. This means

that asymmetric ARW with spontaneous creation of particles also preserves its Pfa�an

property.

5.4 Asymmetric CRW

5.4.1 Kinetic equation of empty interval in asymmetric CRW

Although we cannot show that the general asymmetric CRW with immigration is a Pfaf-

�an point process, in this section we are going to prove the special case that asymmetric

CRW without immigration is also a Pfa�an point process.

We are going to calculate the kinetic equation of empty interval for asymmetric

CRW and then show that it is the same as that of directed Ising model. By the uniqueness

theorem in the following section we can then show that they are identical and use this

result to prove asymmetric CRW is a Pfa�an point process.

Suppose we have a asymmetric CRW particle. Let the rate of hopping to the left

be 2Dp and the rate of hopping to the right be 2D (1− p).
By imitating the equations (3.2), (3.3), (3.4) and (3.5), we get

[Pt (Ωx1,y1 ∪ · · · ∪ Ωxi+1,yi ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)] 2D (p) (δt)

and

[Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi−1 ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)] 2D (1− p) (δt)

which are the contribution from the interval (xi, yi) to the increase of the empty interval

probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) in the time duration δt. Similarly for the decrease

of the probability Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) we have

− [Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi−1,yi ∪ · · · ∪ Ωxn,yn)] 2D (1− p) (δt)

and

− [Pt (Ωx1,y1 ∪ · · · ∪ Ωx,y ∪ · · · ∪ Ωxn,yn)− Pt (Ωx1,y1 ∪ · · · ∪ Ωxi,yi+1 ∪ · · · ∪ Ωxn,yn)] 2D (p) (δt) .
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Summing up the contributions from all the intervals (xi, yi) we have

∂tPt
(
x, y
)

= D∆̃Pt
(
x, y
)

where ∆̃ =
∑n

i=1

(
∆̃xi + ∆̃yi

)
and

∆̃xif (xi) = 2pf (xi + 1)− 2f (xi) + 2 (1− p) f (xi − 1)

which is the same as (5.2) if we set a = 2p and b = 2 (1− p).
Since only the dynamics of the system is changed the initial conditions and the

boundary conditions remain the same as the symmetric case.

Now we only have to prove the uniqueness of the kinetic equation to show that

the empty interval probability is identical to the spin correlation.

5.4.2 Uniqueness of ∂tu = D∆̃u

We would like to obtain a uniqueness theorem for the PDE (5.2).

We will imitate the development in Section 5.1.2 to develop the uniqueness theo-

rem for this PDE.

Lemma 37. For a function u : Ω× [0,∞)→ R, the followingD∆̃u ≤ ut in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where D is a positive real number, ∆̃ is the discrete Laplacian operator de�ned in (5.2),

ut is the derivative of u with respect to time and Ω ⊂ Zn is a bounded domain.

Proof This lemma mirrors Lemma 27. Firstly, assume that u attains minimum

on D× [0, T ] at (x∗, t∗). This can be found since Ω is bounded and u is continuous with

respect to time and there are �nite number of spatial grid points in Ω.

Now suppose u (x∗, t∗) < 0, otherwise the proof is done.
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And

∆̃u (x∗, t∗)

≥ D
n∑
i=1

[−a|u (xi + 1) | − 2u (xi)− b|u (xi − 1) |]

≥ D
n∑
i=1

[−|u (xi + 1) | − 2u (xi)− |u (xi − 1) |]

≥ 0

as (x∗, t∗) is the minimum point. But by assumption ut (x∗, t∗) ≤ 0 and thus this leads

to the contradiction to the assumption that D∆̃u ≤ ut. Therefore u ≥ 0 in Ω̄× [0,∞).

Lemma 38. For a bounded function u : Ω× [0,∞)→ R, the followingD∆̃− ut ≤ −δ < 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where D is a positive real number, ∆̃ is the discrete Laplacian operator de�ned in (5.2),

ut is the derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof This lemma mirrors Lemma 29. De�ne

v = u+ ε|x|2.

Then

D∆̃v − vt = D∆̃u− ut + εD∆̃|x|2.

where

∆̃|x|2 = n (−4γ − 2) |x|2 + 2 (a− b)
n∑
i=1

xi + (−4γ)n.

If we choose a diameter R big enough such that

ε ≤ δ

D (2R+ 2n)

then D∆̃v − vt ≤ 0. Then by Lemma 37 we have v ≥ 0 inside |x|2 ≤ R2.
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We can choose R so big that the term ε|x|2 will dominate and thus v ≥ 0 for

|x|2 ≥ R2.

In summary, v ≥ 0 in Ω̄×[0,∞) and hence u ≥ 0 in Ω̄×[0,∞) as ε is arbitrary.

Lemma 39. For a bounded function u : Ω× [0,∞)→ R, the followingD∆̃u− ut ≤ 0 in Ω× [0,∞)

u ≥ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≥ 0 in Ω̄× [0,∞)

where D is a positive real number, ∆̃ is the discrete Laplacian operator de�ned in (5.2),

ut is the derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.

Proof This lemma mirrors Lemma 29 and the proof is almost exactly the same.

De�ne

v = u+ δt.

It can be seen that

D∆̃v − vt = D∆̃u− ut − δ (1 +Bt) < 0.

By lemma 38 we know that

v ≥ 0 in Ω̄× [0,∞)

and since δ can be arbitrarily small we have

u ≥ 0 in Ω̄× [0,∞).

Lemma 40. For a bounded function u : Ω× [0,∞)→ R, the followingD∆̃u− ut ≥ 0 in Ω× [0,∞)

u ≤ 0 on ∂Ω× [0,∞) ∪ Ω× {0}

implies

u ≤ 0 in Ω̄× [0,∞)

where D is a positive real number, ∆̃ is the discrete Laplacian operator de�ned in (5.2),

ut is the derivative of u with respect to time, δ > 0 and Ω ⊂ Zn is an unbounded domain.
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Proof This lemma mirrors Lemma 30.

Substitute v = −u into lemma 39 then we can immediately get the result.

Theorem 41. If a bounded function u : Ω× [0,∞)→ R satis�es the kinetic equation

∂tu = D∆̃u in Ω× [0,∞)

and a boundary condition

u = f on ∂Ω× [0,∞) ∪ Ω× {0}

then u is unique.

Proof This theorem mirrors Theorem 31 and the proof is almost exactly the

same. Suppose there are two bounded functions u and v which satistify heat equation

∆u = ut in Ω× [0,∞)

and

∆v = vt in Ω× [0,∞)

and the same boundary condition

u = v = f on ∂Ω× [0,∞) ∪ Ω× {0}.

Then let w = u− v and we can see

∆w = wt in Ω× [0,∞)

and

w = 0 on ∂Ω× [0,∞) ∪ Ω× {0}.

By lemma 39 and 40 we have

w = 0 in Ω̄× [0,∞).

Therefore we have proved the uniqueness of u.

Therefore by Theorem 41, Theorem 23 still holds for asymmetric case and can be

used to prove Theorem 24 for asymmetric case. So asymmetric CRW is also a Pfa�an

point process.
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5.5 Position-dependent random walk

In the previous sections we have generalised the ARW and CRW by introducing immigra-

tion and asymmetry. To further generalise the models, in this section we will investigate

ARW and CRW which have di�erent bias at di�erent position .

5.5.1 ARW

As before, we can investigate ARW via Glauber model. Once we can prove the spin

correlation in the new system is still a Pfa�an then we can prove the new ARW is also a

Pfa�an point process by the argument in Theorem 21. By generalising the �ipping rate

to

ω (sk−1, sk, sk+1) = 1 + sk

(
γ
(−)
k sk−1 + γ

(+)
k sk+1

)
we can thus study whether this more general ARW is still a Pfa�an point process.

As before, we can study the problem in two approaches. Firstly we will observe

the change in the Liouville operator L. The operator becomes

L = 2
∑
k

ψ†k

(
ψk + γ

(−)
k

(
ψk−1 − ψ†k−1

)
+ γ

(+)
k

(
ψk+1 + ψ†k+1

))
.

Thus it is still quadratic in fermions and therefore the spin correlation in the system is

still a Pfa�an. Therefore our more general ARW is still a Pfa�an point process by the

argument similar to those in the previous sections.

Next we can study the problem by observing the kinetic equation of the spin

correlation. By an argument similar to Lemma 26 we get

∂tEt (sk1sk2 . . . sk2n)

= D

2n∑
i=1

Et

(
sk1 . . . ski−1

(
−2γ

(−)
ki

ski−1 − 2ski − 2γ
(+)
ki

ski+1

)
ski+1

. . . sk2n

)
(5.3)

= D

2n∑
i=1

Et[sk1 . . . ski−1
(−2γ

(+)
ki

(ski−1 − 2ski + ski+1)− 2
(
γ
(−)
ki
− γ(+)

ki

)
(ski+1 − ski)

−2
(
γ
(−)
ki

+ γ
(+)
ki

+ 1
)
ski)ski+1

. . . sk2n ]

=

{
−2D

2n∑
i=1

[
γ
(+)
ki

∆ki +
(
γ
(−)
ki
− γ(+)

ki

)
∂+xi +

(
γ
(−)
ki

+ γ
(+)
ki

+ 1
)]}

Et (sk1sk2 . . . sk2n) ,

which is a partial di�erential equation of the form in Lemma 16.
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So the new dynamics of the system will preserve the Pfa�an property of the spin

correlation and therefore the new ARW is also a Pfa�an point process.

5.5.2 CRW

CRW is a bit less general but we can limit our interest to the case in which there is no

immigration of particles. To prove CRW with position-dependent bias is a Pfa�an point

process it su�ces to show that the empty interval probability in this new system is also

a Pfa�an as this is the only change in the proof of Theorem 24.

Let the particle at position xi have the hopping rate to the left 2Dpxi and the

hopping rate to the right 2D (1− pxi).
By imitating the argument in Section 5.4.1 we get the kinetic equation for the

empty interval probability in the new system

∂tPt
(
x, y
)

= D∆̃Pt
(
x, y
)

where ∆̃ =
∑n

i=1

(
∆̃xi + ∆̃yi

)
and

∆̃xif (xi) = 2pxif (xi + 1)− 2f (xi) + 2 (1− pxi) f (xi − 1) .

which is the same partial di�erential equation as equation (5.3) in the special case that

γk = 1
2

(
γ
(−)
k + γ

(+)
k

)
= −1

2 for all k.

Therefore our new empty interval probability in this more general system is also

a Pfa�an and thus CRW is a Pfa�an point process in this new system.

5.6 One-sided initial condition

5.6.1 ARW

In chapter 4 we proved that ARW and CRW are Pfa�an point processes under maximal

entrance law. In this section we will investigate the case in which the initial condition is

one-sided. In the case of Glauber model this means

|sk〉 =

| ↑〉 for k ≤ 0

1√
2

(| ↑〉+ | ↓〉) for k > 0.

We will consider the most general random walk we have discussed so far, which is the

position dependent random walk in Section 5.5.
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Lemma 42. Under the one-sided initial condition and at zero temperature the spin cor-

relation Et (sx1 · · · sx2n) is a Pfa�an.

Proof Here we use the approach described in section 3.4.

The only thing we have to prove is that the one-sided initial condition is a Pfa�an.

After this has been proved, by the uniqueness of discrete kinetic equation (5.3) and

Theorem 15 in section 3.3, the spin correlation is a Pfa�an.

Let xi < xj for i < j.

Case i: all the spins are on the left hand side of the origin, i.e. k ≤ 0 for all

k = 1, . . . , 2n.

Since the spin correlation is

Et=0 (sx1 · · · sx2n) = Et=0 (sx1) · · ·Et=0 (sx2n) = 1

and S is

Si,j = (−1)χ(i>j)Et=0 (sisj) = (−1)χ(i>j)1

and hence

Pf (S) = 1.

So the initial conditions agree.

Case ii: all the spins are on the right hand side of the origin, i.e. k > 0 for all

k = 1, . . . , 2n.

The spin correlation is

Et=0 (sx1 · · · sx2n) = Et=0 (sx1) · · ·Et=0 (sx2n) = 0

and S is

Si,j = (−1)χ(i>j)Et=0 (sisj) = 0

and hence Pf (S) = 0 and therefore the initial conditions agree.

Case iiii: some spins are on the right hand side of the origin, i.e. k > 0 for at

least one k ∈ {1, . . . , 2n}.
Suppose x2n > 0, then Et=0 (sx2n) = 0.Therefore

Et=0 (sx1 · · · sx2n) = Et=0 (sx1) · · ·Et=0 (sx2n) = 0

and since the 2n-th row of the matrix S will be zero as Et=0 (sxksx2n) = Et=0 (sxk)Et=0 (sx2n) =

0 and therefore Pf (S) = 0. So the initial conditions agree.
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Therefore by the uniquess of discrete heat equation the spin correlation is also a

Pfa�an under this initial condition.

With this lemma now we can prove that ARW under this new initial condition is

also a Pfa�an point process at zero temperature.

Theorem 43. For an initial condition that every site on the right hand side of the

origin has independent 1
2 probability being occupied and the left hand side of the origin

being empty, the correlation function of ARW at zero temperature is Pfa�an:

ρARWn (x1, . . . , xn; t) =
Pf (I − S)

2n
=

Pf (K)

2n

where I, S and K are the same as de�ned in Theorem 21 .

Proof The proof goes through nearly the same as that of Theorem 21. The only

di�erence is that we use Lemma 42 instead of Theorem 5 to change the Pfa�ans Pf (S|J2)

to spin correlations. The rest is just the same.

5.6.2 CRW

We will only prove that CRW without immigration preserves its Pfa�an property for the

new one-sided initial condition. The one-sided initial condition for CRW is a bit di�erent

from that of ARW because of the thinning relation [16]. To imitate Theorem 9 we can

show that:

Lemma 44. The probability Pt [Ωx1,y1 ∩ · · · ∩ Ωxn,yn ] and the spin correlation function

E (sx1sy1 · · · sxnsyn) are identical equations by the uniqueness theorem of the heat equa-

tion, i.e.

Pt (Ωx1,y1 ∩ · · · ∩ Ωxn,yn) = Et (sx1syn · · · sxnsyn)

if given the initial condition for the CRW:

Pt=0 (xk is occupied) =

1 for k > 0

0 for k ≤ 0

and the initial condition for the Glauber model:

|sk〉 =

| ↑〉 for k ≤ 0

1√
2

(| ↑〉+ | ↓〉) for k > 0
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where x1 < y1 < x2 < y2 < · · · < xn < yn.

Proof In Section 5.5.2 we have already shown that both functions satisfy the same

discrete kinetic equation and in Theorem 9 the same boundary condition. If we can show

that their initial conditions agree, then by uniqueness of discrete kinetic equation they

are identical functions.

In the proof of lemma 42 we know that Et=0 (sx1syn · · · sxnsyn) = 0 if any xk > 0

or yk > 0; otherwise Et=0 (sx1syn · · · sxnsyn) = 1 if all xk ≤ 0 and yk ≤ 0.

From the de�nition of empty interval probability we can see that

Pt [Ωx1,y1 ∩ · · · ∩ Ωxn,yn ] =

0 if xk, yk < 0 ∀k

1 otherwise.

Therefore the initial conditions agree and hence by the uniqueness of discrete heat equa-

tion the functions are identical.

With this lemma we are ready to prove the generalisation of Theorem 24.

Theorem 45. For an initial condition that

Pt=0 (xk is occupied) =

1 for k > 0

0 for k ≤ 0,

the correlation function of CRW is Pfa�an:

ρCRWn (x1, . . . , xn; t) = 2nPf (I − S) = 2nPf (K)

where the de�nition of the matrices I, S and K are the same as before.

Proof Instead of using Theorem 23 we use lemma 44. The rest of the proof is

just the same as that of Theorem 24.
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Chapter 6

Multi-time ARW as a Pfa�an Point

Process

We are interested in proving that the multi-time correlation function of ARW is also a

Pfa�an point process, i.e. we want to show

E

[
n∏
i=1

nti,zi

]
= Pf [K]

where K is a 2n× 2n anti-symmetric matrix which has a kernel of

K (x, y) =

(
K1,1 (x, y) K1,2 (x, y)

K2,1 (x, y) K2,2 (x, y)

)
(6.1)

and also satis�es the identity

Ki,j (x, y) = −Kj,i (y, x) , (6.2)

which is just another way of stating that K is an anti-symmetric matrix.

However, instead of proving it directly like we did in the previous chapters, we

prove it by considering a more general ARW-spin mixed correlation and by showing that

it is also a Pfa�an point process, i.e.

E

 n∏
i=1

nti,zi

2m∏
j=1

st,yj

 = Pf [K] .

where K has the kernel of (6.1) and satis�es the identity (6.2).
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We will �rstly investigate the multi-time spin correlation to show that it is a

Pfa�an of a matrix. Then we will consider the special case in which all the spins in the

earlier time slots are paired up and show that it is a Pfa�an point process. Using this

result as a jumping board we will show that the ARW-spin correlation is a Pfa�an point

process as ARW can be viewed as domain walls between pairs of spins.

6.1 Multi-time spin correlation

6.1.1 The kinetic equation

PDE for general multi-time spin correlation

We start with only two spins at two di�erent time slots and investigate the multi-

time spin correlation.

Two-point function

Suppose we have two spins sx1,t1 and sx2,t2 . Let

C2 (x1, t1;x2, t2) = E [sx1,t1sx2,t2 ] .

Lemma 46.

∂t2C2 (x1, t1;x2, t2) = [(−2γD) ∆2 + (−2D) (1 + 2γ)]C2 (x1, t1;x2, t2)

where ∆2 = ∂2x2 .

Proof Since

C2 (x1, t1;x2, t2) =
∑
~s,~s′

P
[
~st1 = ~s′, ~st2 = ~s

]
s′x1sx2 ,

where ~s and ~s′ are spin con�gurations and sx1 and s′x2 are the values of the spins at x1

and x2 in spin con�gurations ~s and ~s′ respectively. We have

∂t2C2 (x1, t1;x2, t2) =
∑
~s,~s′

∂t2P
[
~st1 = ~s′, ~st2 = ~s

]
s′x1sx2 .
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For the general case, we have

∂t2P
[
~st1 = ~s′, ~st2 = ~s

]
= −

∑
~s1

w (~s, ~s1)P
[
~st1 = ~s′, ~st2 = ~s

]
+
∑
~s2

w (~s2, ~s)P
[
~st1 = ~s′, ~st2 = ~s2

]
where w (~s, ~s1) and w (~s2, ~s) are the rate of the spin con�guration transiting from ~s to ~s1

and from ~s2 to ~s respectively. The rate of transition w is independent of time t because

the system is assumed to be a stationary Markov chain, which is a reasonable assumption

for a physical system.

The de�nition of w
(
~s, ~s′

)
for ~s 6= ~s′ is

w
(
~s, ~s′

)
= lim

δt→0

P
(
~st+δt = ~s′|~st = ~s

)
δt

.

For ~s = ~s′,

w (~s,~s) = lim
δt→0

P
(
~st+δt = ~s′|~st = ~s

)
− 1

δt

= −
∑
~̃σ 6=~s

w
(
~s, ~̃s
)
.

So in the following we only have to consider the case in which ~s 6= ~s′.

In the case of Glauber model, we have

w
(
~s, ~s′

)
=

D [1 + γsk (sk−1 + sk+1)] if ~s and ~s′ only di�er at one site k

0 if ~s and ~s′ di�er at more than one site.

where D is a positive constant and γ = tanh
(
2J
kT

)
.

So now we have

∂t2P
[
~st1 = ~s, ~st2 = ~s′

]
= −D

∑
x∈Z

[1 + γsx (sx−1 + sx+1)]P
[
~st1 = ~s′, ~st2 = ~s

]
+D

∑
x∈Z

[1− γsx (sx−1 + sx+1)]Fx

[
~st1 = ~s′, ~st2 = ~s

]

where D [1 + γsx (sx−1 + sx+1)] is the �ipping rate of the spin sx at position x
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and Fx

[
~st1 = ~s′, ~st2 = ~s

]
is the probability that ~st1 = ~s′ and ~st2 = ~sx, where ~sx di�ers

from ~s only at x.

Therefore,

∂t2C2 (x1, t1;x2, t2)

= D
∑
x∈Z

∑
~s,~s′

{
−P

[
~st1 = ~s′, ~st2 = ~s

]
+ Fx

[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2

+
{
P
[
~st1 = ~s′, ~st2 = ~s

]
+ Fx

[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx (sx−1 + sx+1)] s

′
x1sx2(6.3)

Firstly consider the �rst term in (6.3),

D
∑
x∈Z

∑
~s,~s′

{
−P

[
~st1 = ~s′, ~st2 = ~s

]
+ Fx

[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 . (6.4)

For x ∈ {x2},∑
~s,~s′

{
−P

[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 =

∑
~s,~s′

{
Fx

[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 .

For x 6∈ {x2},∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 =

∑
~s,~s′

{
Fx

[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 .

Hence (6.4) is equal to

−2D
∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
s′x1sx2 . (6.5)

Now consider the second term in (6.3),

D
∑
x∈Z

∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]
+ Fx

[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx (sx−1 + sx+1)] s

′
x1sx2

(6.6)

For x ∈ {x2},

[−γsx2 (sx2−1 + sx2+1)] s
′
x1sx2 = [−γ (sx2−1 + sx2+1)] s

′
x1
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since s2x = 1 for all x and therefore the term is independent of x2 and hence∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx2 (sx2−1 + sx2+1)] s

′
x1sx2

=
∑
~s,~s′

{
Fx2

[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx2 (sx2−1 + sx2+1)] s

′
x1sx2 .

For x 6∈ {x2},∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx2 (sx2−1 + sx2+1)] s

′
x1sx2

=
∑
~s,~s′

{
−Fx

[
~st1 = ~s′, ~st2 = ~s

]}
[−γsx2 (sx2−1 + sx2+1)] s

′
x1sx2 .

Therefore, (6.6) is equal to

2D
∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
[γsx2 (sx2−1 + sx2+1)] s

′
x1sx2 . (6.7)

Summarising the results (6.5) and (6.7) we get (6.3) is equal to

−2D
∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
[1 + γsx2 (sx2−1 + sx2+1)] s

′
x1sx2

= −2D
∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
[sx2 + γ (sx2−1 + sx2+1)] s

′
x1

= −2D
∑
~s,~s′

{
P
[
~st1 = ~s′, ~st2 = ~s

]}
γ [−2sx2 + (sx2−1 + sx2+1)] s

′
x1

+
{
P
[
~st1 = ~s′, ~st2 = ~s

]}
(1 + 2γ) sx2s

′
x1

= [(−2γD) ∆2 + (−2D) (1 + 2γ)]C2 (x1, t1;x2, t2) .

So the lemma is proved.

Notice that when γ = −1
2 it becomes

∂t2C2 (x1, t1;x2, t2) = D∆2C2 (x1, t1;x2, t2) .

which is exactly the discrete heat equation.
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2n spins

We proceed to the case of general 2n spins in di�erent time slots. Assume that we have

already known that the multi-time spin correlation of 2n spins sx1 , . . . , sx2n at k times

satis�es the kinetic equation. To show that this is also true in the case of k + 1 times,

we proceed in two steps.

Firstly we will consider the case in which 2n − 1 spins sx1 , . . . , sx2n−1 are in k

times t1, . . . , tk and 1 spin sx2n at tk+1.

Lemma 47.

∂tk+1
C2n (x1, . . . , t1; . . . ;x2n, tk+1) = [(−2γD) ∆2n + (−2D) (1 + 2γ)]C2n (x1, . . . , t1; . . . ;x2n, tk+1) .

Proof Since

C2n (x1, . . . , t1; . . . ;x2n, tk+1) =
∑

~s(1),...,~s(k+1)

P
[
~st1 = ~s(1), . . . , ~stk+1

= ~s(k+1)
] (
s(1)x1 · · · s

(k+1)
x2n

)
,

we have

∂tk+1
C2n = D

∑
x∈Z

∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
+ [P + Fx]

[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
where C2n = C2n (x1, . . . , t1; . . . ;x2n, tk+1), P = P

[
~st1 = ~s(1), . . . , ~stk+1

= ~s(k+1)
]
and

Fx = P
[
~st1 = ~s(1), . . . , ~stk+1

= ~s
(k+1)
x

]
, where ~s

(k+1)
x di�ers from ~s(k+1) only at x.

Similar to the proof of the previous lemma, we have∑
x∈Z

∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
=

∑
~s(1),...,~s(k+1)

[−2P ]
(
s(1)x1 · · · s

(k+1)
x2n

)

and ∑
x∈Z

∑
~s(1),...,~s(k+1)

[P + Fx]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
=

∑
~s(1),...,~s(k+1)

[2P ]
[
−γs(k+1)

x2n

(
s
(k+1)
x2n−1 + s

(k+1)
x2n+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
.
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Therefore,

∂tk+1
C2n = −2D

∑
~s(1),...,~s(k+1)

[P ]
(
s(1)x1 · · · s

(k+1)
x2n

) [
1 + γs(k+1)

x2n

(
s
(k+1)
x2n−1 + s

(k+1)
x2n+1

)]
= [(−2γD) ∆2n + (−2D) (1 + 2γ)]C2n

Now we will consider the case in which 2n−m spins sx1 , . . . , sx2n−m are in k times

t1, . . . , tk and m spins sx2n−m+1 , . . . , sx2n at tk+1.

Lemma 48.

∂tk+1
C2n (x1, . . . , t1; . . . ;x2n−m+1, . . . , x2n, tk+1)

= [(−2γD) ∆2n−m+1,...,2n +m (−2D) (1 + 2γ)]C2n (x1, . . . , t1; . . . ;x2n−m+1, . . . , x2n, tk+1) .

Proof As befre, we have

∂tk+1
C2n = D

∑
x∈Z

∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
+ [P + Fx]

[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
where C2n = C2n (x1, . . . , t1; . . . ;x2n−m+1, . . . , x2n, tk+1), P = P

[
~st1 = ~s(1), . . . , ~stk+1

= ~s(k+1)
]

and Fx = P
[
~st1 = ~s(1), . . . , ~stk+1

= ~s
(k+1)
x

]
, where ~s

(k+1)
x di�ers from ~s(k+1) only at x.

Since for x ∈ {x2n−m+1, . . . , x2n},∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
=

∑
~s(1),...,~s(k+1)

[−2P ]
(
s(1)x1 · · · s

(k+1)
x2n

)

and for x 6∈ {x2n−m+1, . . . , x2n},∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
= 0,

so we have∑
x∈Z

∑
~s(1),...,~s(k+1)

[−P + Fx]
(
s(1)x1 · · · s

(k+1)
x2n

)
= m

∑
~s(1),...,~s(k+1)

[−2P ]
(
s(1)x1 · · · s

(k+1)
x2n

)
.
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Since for x ∈ {x2n−m+1, . . . , x2n},∑
~s(1),...,~s(k+1)

[P ]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
=

∑
~s(1),...,~s(k+1)

[Fx]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)

and for x 6∈ {x2n−m+1, . . . , x2n},∑
~s(1),...,~s(k+1)

[P ]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
=

∑
~s(1),...,~s(k+1)

[−Fx]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
,

so we have

D
∑
x∈Z

∑
~s(1),...,~s(k+1)

[P + Fx]
[
−γs(k+1)

x

(
s
(k+1)
x−1 + s

(k+1)
x+1

)](
s(1)x1 · · · s

(k+1)
x2n

)

= D

m∑
i=1

∑
~s(1),...,~s(k+1)

[2P ]
[
−γs(k+1)

x2n−m+i

(
s
(k+1)
x2n−m+i−1 + s

(k+1)
x2n−m+i+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
.

Combining the terms we have

−2D

m∑
i=1

∑
~s(1),...,~s(k+1)

[P ]
[
1 + γs(k+1)

x2n−m+i

(
s
(k+1)
x2n−m+i−1 + s

(k+1)
x2n−m+i+1

)](
s(1)x1 · · · s

(k+1)
x2n

)
= [(−2γD) ∆2n−m+1,...,2n +m (−2D) (1 + 2γ)]C2n.

Kinetic equation of the multi-time Pfa�an Pf
[
A
(
txi , xi; txj , xj

)]
Suppose there are m spins sx2n−m+1 , . . . , sx2n at time tk+1 and txi , xi; txj , xj is the multi-

time Pfa�an which will be de�ned below. We want to prove a generalisation of Lemma

16 to multi-time case.

Lemma 49. Suppose A is a 2n× 2n anti-symmetric matrix whose entries ci,j are func-

tions of positions xi, xj and the times txi , txj , i.e.

ai,j = (−1)χ(i<j) g
(
txi , xi; txj , xj

)
.
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Let there be k times slots t1 < t2 < · · · < tk−1 < t.

If

∂tai,j =
[
bi∂

2
i + bj∂

2
j + ci∂i + cj∂j + f̃ (xi) + f̃ (xj)

]
ai,j

=

[
2n∑
i=l

bl∂
2
l +

2n∑
m=1

cm∂m + f̃ (xi) + f̃ (xj)

]
ai,j

where

f̃ (xi) =

f (xi) if txi = t

0 otherwise
,

and ∂l = ∂
∂xl

, bl and cm are functions of xi and f (x) is a function of x1, . . . , x2n, then

∂tPf (A) =

[
2n∑
l=1

bl∂
2
l + cl∂l + f̃ (xl)

]
Pf (A) .

Proof By the de�nition of Pfa�an it can be expressed as

Pf (A) =
1

2nn!

∑
σ∈S2n

sgn (σ)

n∏
i=1

aσ(2i−1),σ(2i)

82



where σ is the symmetric group and sgn (σ) is the signature of σ. Therefore,

∂tPf (A) =
1

2nn!

∑
σ∈S2n

sgn (σ)

n−1∑
j=0

 j∏
i=1

aσ(2i−1),σ(2i)
(
∂taσ(2j−1),σ(2j)

) n∏
i=j+2

aσ(2i−1),σ(2i)


=

1

2nn!

∑
σ∈S2n

sgn (σ)

n−1∑
j=0

{
j∏
i=1

aσ(2i−1),σ(2i)

[bσ(2i−1)∂
2
σ(2i−1) + bσ(2i)∂

2
σ(2i) +

cσ(2i−1)∂σ(2i−1) + cσ(2i)∂σ(2i) + f̃
(
xσ(2j−1)

)
+ f̃

(
xσ(2j)

)
]aσ(2j−1),σ(2j)

n∏
i=j+2

aσ(2i−1),σ(2i)}

=
1

2nn!

∑
σ∈S2n

sgn (σ)

[
2n∑
l=1

bl∂
2
l + cl∂l + f̃ (xl)

](
n∏
i=1

aσ(2i−1),σ(2i)

)

=

[
2n∑
l=1

bl∂
2
l + cl∂l + f̃ (xl)

]
Pf (A)

This lemma will be used in the following sections to prove that the various Pfaf-

�ans that we will see later satisfy the same kinetic equation as the various correlations.

6.1.2 Single-time paired spin correlation

Although we have already proved the single-time spin correlation in Theorem 5, we only

did it for a speci�c ordering. Now suppose we have a paired spin correlation of this form

Et

 N∏
i=1

szisz+i

2m∏
j=1

syj

 .
We know it equals to the Pfa�an of the matrix stated in Theorem 5 for the ordering

z1 < z+1 ≤ z2 < · · · ≤ zN < z+N ≤ y1 ≤ · · · ≤ y2m. We want to expand our interest of

ordering to consider a speci�c set of orderings such that no spins syj will be between any
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pairs of spins szi and sz+i
and we still hold the constraints

y1 < y2 < · · · < y2m

and

z1 < z+1 < z2 < · · · < z2m < z+2m.

Our purpose is to �nd such a matrix that its Pfa�an is the paired spin correlation.

Firstly we prove that this Pfa�an satis�es the same kinetic equation as before.

Lemma 50.

∂tPf
[
K1
s

]
= [(−2γD) ∆1,...,2n+2m + (2n+ 2m) (−2D) (1 + 2γ)]Pf

[
K1
s

]
(6.8)

where ∆1,...,2n+2m =
∑m

j=1 ∂x2ij
is the discrete Laplace di�erential operator with respect to

the 2n+2m variables xi, ξi and yj. And K
1
s is the matrix corresponding to the single-time

paired spin correlation whose blocks are

K1
s (zi, ξi; zi, ξi) =

(
0 ct(zi, ξi)

−ct(zi, ξi) 0

)

which are on the diagonal of the �rst 2n× 2n rows and columns, and

K1
s (zi, ξi; zj , ξj) =

(
ct (zi, zj) ct1 (zi, ξj)

ct (ξi, zj) ct1 (ξi, ξj)

)

above the diagonal of the �rst 2n×2n rows and columns. The 2×1 blocks are in the �rst

2n rows and last 2m columns. They are:

K1
s (zi, ξi; yj) =

(
c̃t (zi, yj)

ct (ξi, yj)

)
.

where ct (x, y) is the single-time spin correlation which satis�es the kinetic equation

∂tct (x, y) = [(−2γD) ∆x,y + (−2D) (1 + 2γ)] ct (x, y)
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which is proved in Lemma 46 and has the boundary condition,

ct (x, y) =


Et (sxsy) if x < y

−Et (sxsy) if x > y

1 otherwise

,

and c̃t (x, y)is similar except that it has a di�erent boundary condition,

c̃t (x, y) =


Et (sxsy) if x < y

−Et (sxsy) if x > y

−1 otherwise

.

The 1× 1 blocks are in the last 2m rows and last 2m columns. They are:

K1
s (yi; yj) = ct (yi, yj) .

Proof Let −bl = 2γD for all l = 2n − m + 1, . . . , 2n, cm = 0 for all m and

f (x) = (−2D) (1 + 2γ). Both ct (x, y) and c̃t (x, y) satisfy the same kinetic equation

∂tct (x, y) =

[
2n∑
i=l

bl∂
2
l +

2n∑
m=1

cm∂m + f̃i,j (x)

]
ct (x, y) ,

therefore all the entries satisfy the same kinetic equation and thus by Lemma 16 the

theorem is proved.

Now we want to show that the Pfa�an satis�es the same boundary condition as

the paired spin correlation. The set of ordering of interest is that

y1 < y2 < · · · < y2m

and

z1 < ξ1 < z2 < · · · < z2m < ξ2m.

and no syj is between any pairs of spins szi and sξi . Since the Pfa�an we are considering

has entries of di�erent functions instead of only one function, we cannot directly use

Lemma 18. However, the boundary condition is still preserved. We will prove it in two

steps. Firstly we will prove that on the boundary the Pfa�an is reduced to a certain

form.
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Lemma 51. When yj = yj+1, zi = ξi, ξi = zi+1 or ξj = yi the Pfa�an Pf
[
K1
s

]
becomes

Pf

 0 1 B

−1 0 B

−BT −BT A


where B is a 1× (2n+ 2m− 2) row matrix and A is an anti-symmetric (2n+ 2m− 2)×
(2n+ 2m− 2) matrix obtained from A by removing the rows and columns corresponding

to the boundary conditions.

Proof There are 4 cases to consider:

1. yj = yj+1

2. zi = ξi

3. ξi = zi+1

4. ξj = yi.

For yj = yj+1 the columns corresponding to yj and yj+1 are

· · · c̃t (z1, yi) c̃t (z1, yi+1) · · ·
· · · ct (ξ1, yi) ct (ξ1, yi+1) · · ·

...
...

· · · c̃t (zn, yi) c̃t (zn, yi+1) · · ·
· · · ct (ξn, yi) ct (ξn, yi+1) · · ·
· · · ct (y1, yi) ct (y1, yi+1) · · ·

...
...

· · · ct (yi−1, yi) ct (yi−1, yi+1) · · ·
· · · 0 ct (yi,yi+1) · · ·
· · · −ct (yi,yi+1) 0 · · ·
· · · −ct (yi, yi+2) −ct (yi+1, yi+2) · · ·

...
...

· · · −ct (yi, y2m) −ct (yi+1, y2m) · · ·

.
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For zi = ξi the columns corresponding to zi and ξi are

· · · ct (z1, zi) ct (z1, ξi) · · ·
· · · ct (ξ1, zi) ct (ξ1, ξ1) · · ·

...
...

· · · 0 ct (zi, ξi) · · ·
· · · −ct (zi, ξi) 0 · · ·

...
...

· · · −ct (zi, zn) −ct (ξi, zn) · · ·
· · · −ct (zi, ξn) −ct (ξi, ξn) · · ·
· · · −c̃t (zi, y1) −ct (ξi, y1) · · ·

...
...

· · · −c̃t (zi, y2m) −ct (ξi, y2m) · · ·

.

For ξi = zi+1 the columns corresponding to ξi and zi+1 are

· · · ct (z1, ξi) ct (z1, zi+1) · · ·
· · · ct (ξi, ξi) ct (ξ1, zi+1) · · ·

...
...

· · · ct (zi, ξi) ct (zi, zi+1) · · ·
· · · 0 ct (ξi, zi+1) · · ·
· · · −ct (ξi, zi+1) 0 · · ·

...
...

· · · −ct (ξi, zn) −ct (zi+1, zn) · · ·
· · · −ct (ξi, ξn) −ct (zi+1, ξn) · · ·
· · · −ct (ξi, y1) −c̃t (zi+1, y1) · · ·

...
...

· · · −ct (ξi, y2m) −c̃t (zi+1, y2m) · · ·

.
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For ξj = yi the columns corresponding to ξi and yj are

· · · ct1 (z1, zj) · · · c̃t1 (z1, yi) · · ·
· · · ct1 (ξ1, zj) · · · ct1 (ξ1, yi) · · ·

...
...

· · · 0 · · · c̃t1 (zj,yi) · · ·
· · · −ct1 (zj , ξj) · · · ct1 (ξj , yi) · · ·

...
...

· · · −ct1 (zj , zn) · · · c̃t1 (zn, yi) · · ·
· · · −ct1 (zj , ξn) · · · ct1 (ξn, yi) · · ·
· · · −c̃t1 (zj , y1) · · · ct1 (y1, yi) · · ·

...
...

· · · −c̃t1 (zj,yi) · · · 0 · · ·
· · · −c̃t1 (zj , yi+1) · · · −ct1 (yi, yi+1) · · ·

...
...

· · · −c̃t1 (zj , y2m) · · · −ct1 (yi, y2m) · · ·

.

In all the �rst 3 cases, the two columns will be identical except for the entries in

bold font which will become
...

...

· · · 0 1 · · ·
· · · −1 0 · · ·

...
...

,

and in the last case ξj = yi the columns will become

· · · 0 · · · −1 · · ·
...

...

· · · 1 · · · 0 · · ·

.

The same goes for the corresponding rows. Therefore by even row and column

permutations we can obtain the matrix stated in the lemma.

Secondly we show that the Pfa�an of the matrix of the aforementioned form can

be reduced to a Pfa�an of less order.
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Lemma 52. The Pfa�an of an 2n× 2n anti-symmetric matrix of this form 0 1 B

−1 0 B

−BT −BT A


is equal to Pf [A], where B is a 1× (2n− 2) row matrix and A is a (2n− 2)× (2n− 2)

anti-symmetric matrix.

Proof By the Pfa�an identity

Pf (A) =
2n∑
i=2

(−1)i a1,iPf
(
A1̂,̂i

)
(6.9)

where A is a 2n×2n anti-symmetric matrix and A1̂,̂i is a (2n−2)×(2n−2) anti-symmetric

matrix obtained from A by removing the �rst and i-th row and column.

Then we have

Pf

 0 1 B

−1 0 B

−BT −BT A


= Pf (A) +

2n∑
i=3

(−1)i bi−2Pf

(
0 B

−BT A

)
ˆi−1

(6.10)

where

(
0 B

−BT A

)
ˆi−1

is the matrix obtained from

(
0 B

−BT A

)
ˆi−1

by removing the i−1-

th column and row.

Then we apply (6.9) to Pf

(
0 B

−BT A

)
ˆi−1

again and obtain

Pf

(
0 B

−BT A

)
ˆi−1

=
i−2∑
l=2

(−1)l bl−1Pf
(
A ˆl−1, ˆi−2

)
+

2n−1∑
k=i

(−1)k−1 bk−1Pf
(
A ˆk−1, ˆi−2

)
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Putting it back into (6.10) we have

Pf

 0 1 B

−1 0 B

−BT −BT A


= Pf (A) +

2n∑
i=3

i−2∑
l=2

(−1)i+l bi−2bl−1Pf
(
A ˆl−1, ˆi−2

)
+

2n∑
i=3

2n−1∑
k=i

(−1)i+k−1 bi−2bk−1Pf
(
A ˆk−1, ˆi−2

)
.

Let us de�ne bi−2bl−1Pf
(
A ˆl−1, ˆi−2

)
= di,l. Then the term

2n∑
i=3

i−2∑
l=2

(−1)i+l bi−2bl−1Pf
(
A ˆl−1, ˆi−2

)
+

2n∑
i=3

2n−1∑
k=i

(−1)i+k−1 bi−2bk−1Pf
(
A ˆk−1, ˆi−2

)
is actually equal to the sum of these entries:

0 −d1,2 d1,3 −d1,4 · · · −d1,2n−2
d2,1 0 −d2,3 d2,4 · · · d2,2n−2

−d3,1 d3,2 0 −d3,4 · · · −d3,2n−2
...

...
...

...
. . .

...

d2n−2,1 −d2n−2,2 d2n−2,3 · · · d2n−2,2n−3 0

.

Therefore it is zero and thus the lemma is proved.

Now we can prove that the single-time paired spin correlation is equal to the

aforementioned Pfa�an Pf
[
K1
s

]
.

Theorem 53.

Et

 N∏
i=1

szisξi

2m∏
j=1

syj

 = Pf
[
K1
s

]
Proof By Lemma 48 and Lemma 50, both sides satisfy the same kinetic equation

as single-time spin correlation is a special case of multi-time spin correlation.

By Lemma 51 and Lemma 52 and the property that s2 = 1, both side satisfy the

same boundary condition.

Therefore, under the maximum entrance law as the initial condition and by the

uniqueness Theorem 31 they are identical.
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If we let ξi = z+i for all i = 1, . . . , n then we have

Et

 N∏
i=1

szisz+i

2m∏
j=1

syj

 = Pf
[
K1
s

]
,

which is special case of Theorem 53.

6.2 Multi-time ARW-spin correlation

6.2.1 Single-time ARW-spin correlation

In this section we will investigate the single-time mixed ARW-spin correlation. Using

this as a steping stone we can see the natural generalisation of the result to multi-time

case.

Theorem 54. Under the maximal entrance law as initial condition,

E

 N∏
i=1

nzi

2m∏
j=1

syj

 =

(
−1

2

)N
Pf
[
K1
ARW−s (zi, zj)

]
where the i, j-th 2× 2 block over the diagonal is

K1
ARW−s (zi, zj) =

 ct (zi, zj) ct

(
zi, z

+
j

)
− ct (zi, zj)

ct
(
z+i , zj

)
− ct (zi, zj) 2ct (zi, zj)− ct

(
z+i , zj

)
− ct

(
zi, z

+
j

) ,

and on the diagonal the i-th 2× 2 block is

K1
ARW−s (zi, zi) =

(
0 ct

(
zi, z

+
i

)
− 1

1− ct
(
zi, z

+
i

)
0

)
,

where

ct (x, y) =


Et (sxsy) if x < y

−Et (sxsy) if x > y

1 otherwise

.

where x+ = x+ 1.
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The 2× 1 blocks are

K1
ARW−s (zi, yj) =

(
c̃t (zi, yj)

ct
(
z+i , yj

)
− ct (zi, yj)

)
,

where

c̃t (x, y) =


Et (sxsy) if x < y

−Et (sxsy) if x > y

−1 otherwise

.

The 1× 1 blocks are

K1
ARW−s (yi, yj) = ct2 (yi, yj) .

The blocks below the diagonal can be obtained by the identity (6.2)

Proof By de�ning the discrete derivative

∂ξisξi = sξ+i
− sξi

we have

nzi =
1− sz+i szi

2
=
−1

2
szi

(
sz+i
− szi

)
=

(
−1

2

)
szi (∂ξisξi |ξi=zi)

where ξi > zi.

Therefore,

E

 N∏
i=1

nzi

2m∏
j=1

syj

 =

(
−1

2

)N
E

 N∏
i=1

szi∂ξisξi

2m∏
j=1

syj

 |ξi=zi
=

(
−1

2

)N N∏
i=1

∂ξiE

 N∏
i=1

szisξi

2m∏
j=1

syj

 |ξi=zi
where z1 < ξ1 < z2 < · · · < zN . The second equality is due to the face that both E and

∂ξi are linear operators.

For this ordering z1 < ξ1 < z2 < · · · < zN < ξN < y1 < · · · < y2m we know

E
[∏N

i=1 szisξi
∏2m
j=1 syj

]
is a (2N + 2m) × (2N + 2m) anti-symmetric matrix described

in Theorem 5.
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By Theorem 53 we know that

E

 N∏
i=1

szisξi

2m∏
j=1

syj

 = Pf
[
K1
s

]
.

The 2 × 2 blocks above the diagonal are in the �rst 2n row and columns. The

i, j-th block is

K1
s (zi, ξi; zj , ξj) =

(
ct (zi, zj) ct (zi, ξj)

ct (ξi, zj) ct (ξi, ξj)

)
.

We can see the derivatives only apply to the second column and second row of

the 2 × 2 block and they are functions of ξi and ξj . So after di�erentiating by ∂ξi and

∂ξj we have

∂ξi∂ξjK
1
s (zi, ξi; zj , ξj) =

 c (zi, zj) c
(
zi, ξ

+
j

)
− c (zi, ξj)

c
(
ξ+i , zj

)
− c (ξi, zj) 2c (ξi, ξj)− c

(
ξ+i , ξj

)
− c

(
ξi, ξ

+
j

)
where we set c (ξi + 1, ξj + 1) = c (ξi, ξj) since the initial condition has translational

symmetry.

The i-th 2× 2 block on the diagonal is

K1
s (zi, ξi; zi, ξi) =

(
0 c (zi, ξi)

−c (zi, ξi) 0

)
.

and therefore only the derivative ∂ξi applies to the block and after di�erentiating by ∂ξi
we get

∂ξiK
1
s (zi, ξi; zi, ξi) =

(
0 c

(
zi, ξ

+
i

)
− c (zi, ξi)

−c
(
zi, ξ

+
i

)
− c (zi, ξi) 0

)
.

The 2× 1 blocks over the diagonal are in the �rst 2n rows last 2m columns:

K1
s (zi, ξi; yj) =

(
c̃t (zi, yj)

ct (ξi, yj)

)

and after di�erentiating it by ∂ξi we get

∂ξiK
1
s (zi, ξi; yj) =

(
c̃t (zi, yj)

ct
(
ξ+i , yj

)
− ct (ξi, yj)

)
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The 1× 1 blocks are independent of ξi for all i so they act as constants and they

are the same.

By setting ξi = zi for all i we have thus proved the theorem.

Theorem 22 is actually a special case of this theorem and we will generalise the

theorem to the case of multi-time to prove the extended Pfa�an property of ARW.

6.2.2 2-time ARW-spin as PPP

After proving Theorem 54 we can easily generalise the result to multi-time. We start

with two-time mixed correlation:

Theorem 55.

E

 N∏
i=1

nt1,zi

2m∏
j=1

st2,yj

 =

(
−1

2

)N
Pf
[
K2
ARW−s

]
where the i, j-th block 2× 2 blocks above the diagonal is

K2
ARW−s (t1, zi; t1, zj) =

 ct1 (zi, zj) ct1

(
zi, z

+
j

)
− ct1 (zi, zj)

ct1
(
z+i , zj

)
− ct1 (zi, zj) 2ct1 (zi, zj)− ct1

(
z+i , zj

)
− ct1

(
zi, z

+
j

)
where ct1 (x, y) is the single-time spin correlation at time t1.

The i-th block 2× 2 blocks on the diagonal is:

K2
ARW−s (t1, zi; t1, zi) =

(
0 ct1

(
zi, z

+
i

)
− 1

1− ct1
(
zi, z

+
i

)
0

)
.

The 2× 1 blocks over the diagonal are in the �rst 2n rows last 2m columns:

K2
ARW−s (t1, zi; t2, yj) =

(
c̃t1,t2 (zi, yj)

ct1,t2
(
z+i , yj

)
− ct1,t2 (zi, yj)

)

where ct1,t2 (x, y) is the two-time spin correlation which satis�es the kinetic equation in

Lemma 46 and has the initial condition when t1 = t2 that

ct1 (x, y) =


Et1 (sxsy) if x < y

−Et1 (sxsy) if x > y

1 otherwise

,
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and c̃t1,t2 (x, y)is similar except that it has a di�erent initial condition when t1 = t2

c̃t1 (x, y) =


Et1 (sxsy) if x < y

−Et1 (sxsy) if x > y

−1 otherwise

.

The 1× 1 blocks are

K2
ARW−s (t2, yi; t2, yj) = ct2 (yi, yj) .

Proof Since

nzi =
1− sz+i szi

2
,

the left hand side is just a linear combination of two-time paired spin correlation and

thus satisfy the kinetic equation in Lemma 48, which is clearly the same kinetic equation

satis�ed by the right hand side because the entries of Pf
[
k2ARW−s

]
are two-time spin

correlations ct1,t2(x,y) and c̃t1,t2(x,y) which satisfy the same kinetic equation for multi-time

spin correlation. Therefore by Lemma 49 both sides satisfy the same kinetic equation.

When st2,yj = st2,yj+1 , the left hand side will become a mixed correlation in-

dependent of st2,yj and st2,yj+1 because s2 = 1. For the right hand side, the columns

corresponding to st2,yj and st2,yj+1 are

· · · c̃t1,t2 (z1, yj) c̃t1,t2 (z1, yj+1) · · ·
· · · ct1,t2

(
z+1 , yj

)
− ct1,t2 (z1, yj) ct1,t2

(
z+1 , yj+1

)
− ct1,t2 (z1, yj+1) · · ·

...
...

· · · c̃t1,t2 (zn, yj) c̃t1,t2 (zn, yj+1) · · ·
· · · ct1,t2 (z+n , yj)− ct1,t2 (zn, yj) ct1,t2 (z+n , yj+1)− ct1,t2 (zn, yj+1) · · ·
· · · ct1,t2 (y1, yj) ct1,t2 (y1, yj+1) · · ·

...
...

· · · ct1,t2 (yj−1, yj) ct1,t2 (yj−1, yj+1) · · ·
· · · 0 ct1,t2 (yj,yj+1) · · ·
· · · −ct1,t2 (yj,yj+1) 0 · · ·
· · · −ct1,t2 (yj , yj+2) −ct1,t2 (yj+1, yj+2) · · ·

...
...

· · · −ct1,t2 (yj , y2m) −ct1,t2 (yj+1, y2m) · · ·

.
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When st2,yj = st2,yj+1 , the two rows will become identical except for the entries in bold

font and the same goes for the corresponding rows. The entries in bold font will become

...
...

· · · 0 1 · · ·
· · · −1 0 · · ·

...
...

.

and hence by Lemma 52 the Pfa�an Pf
[
K2
ARW−s

]
on the right hand side will be reduced

to a Pfa�an by removing j-th and j + 1-th column and row. So both sides satisfy the

same boundary condition

As before in Theorem 54 by the identity

nzi =

(
−1

2

)
szi (∂ξisξi |ξi=zi)

we have

E

 N∏
i=1

nt1,zi

2m∏
j=1

st2,yj

 =

(
−1

2

)N
E

 N∏
i=1

st1,zi∂ξist1,ξi

2m∏
j=1

st2,yj

 |ξi=zi
=

(
−1

2

)N N∏
i=1

∂ξiE

 N∏
i=1

st1,zist1,ξi

2m∏
j=1

st2,yj

 |ξi=zi
where z1 < ξ1 < z2 < · · · < zN .

From Theorem 53 we have

Et

 N∏
i=1

st1,zist1,ξi

2m∏
j=1

st1,yj

 = Pf
[
K1
s

]
.

Di�erentiating these blocks by
∏N
i=1 ∂ξi .

The i-th 2× 2 block on the diagonal of the �rst 2n× 2n rows and columns is

∂ξiK
1
s (zi, ξi; zi, ξi) =

(
0 c

(
zi, ξ

+
i

)
− c (zi, ξi)

−c
(
zi, ξ

+
i

)
− c (zi, ξi) 0

)
.

The i, j-th 2× 2 block above the diagonal of the �rst 2n× 2n rows and columns
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is

∂ξi∂ξjK
1
s (zi, ξi; zj , ξj) =

 c (zi, zj) c
(
zi, ξ

+
j

)
− c (zi, ξj)

c
(
ξ+i , zj

)
− c (ξi, zj) 2c (ξi, ξj)− c

(
ξ+i , ξj

)
− c

(
ξi, ξ

+
j

) .

The 2× 1 blocks are in the �rst 2n rows and last 2m columns. They are:

∂ξiK
1
s (zi, ξi; yj) =

(
c̃t (zi, yj)

ct
(
ξ+i , yj

)
− ct (ξi, yj)

)
.

The 1× 1 blocks are independent of ξi so we do not concern about them.

Setting ξi = zi for all i we have the blocks stated in the theorem and therefore

the theorem is proved.

Now we can proceed to investigate k time ARW-spin correlation function.

6.2.3 k-time ARW-spin correlation

Theorem 56. Suppose there are n ARW nti,zi existing in k − 1 time slots t1 < t2 <

· · · < tk−1 and 2m spins st,yj existing at time t > tk−1, then

E

 n∏
i=1

nti,zi

2m∏
j=1

st,yj

 =

(
−1

2

)n
Pf
[
Kk
ARW−s

]

where Kk
ARW−s is a (2n+2m)×(2n+2m) anti-symmetric matrix with blocks. The i, j-th

block 2× 2 blocks above the diagonal is

Kk
ARW−s

(
tzi , zi; tzj , zj

)
=

 ctzi ,tzj (zi, zj) ctzi ,tzj

(
zi, z

+
j

)
− ctzi ,tzj (zi, zj)

ctzi ,tzj
(
z+i , zj

)
− ctzi ,tzj (zi, zj) 2ctzi ,tzj (zi, zj)− ctzi ,tzj

(
z+i , zj

)
− ctzi ,tzj

(
zi, z

+
j

)
where ctx,ty (x, y) is the multi-time spin correlation at the time tx spin sx exists and the

time ty spin sy exists, which satis�es the kinetic equation in Lemma 46 and has the initial
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condition when tx = ty that

ctx (x, y) =


Etx (sxsy) if x < y

−Etx (sxsy) if x > y

1 otherwise

.

The i-th block 2× 2 blocks on the diagonal is:

Kk
ARW−s (tzi , zi; tzi , zi) =

(
0 ctzi

(
zi, z

+
i

)
− 1

1− ctzi
(
zi, z

+
i

)
0

)

where ct (x, y) is the single-time spin correlation function.

The 2× 1 blocks over the diagonal are in the �rst 2n rows last 2m columns:

Kk
ARW−s (tzi , zi; t, yj) =

(
c̃tzi ,t (zi, yj)

ctzi ,t
(
z+i , yj

)
− ctzi ,t (zi, yj)

)

where c̃tx,ty (x, y)is a function that satis�es the kinetic equation in Lemma 46 and has

the initial condition that when tx = ty

c̃tx (x, y) =


Etx (sxsy) if x < y

−Etx (sxsy) if x > y

−1 otherwise

.

The 1× 1 blocks are

Kk
ARW−s (t, yi; t, yj) = ct (yi, yj) .

Proof Since

nzi =
1− sz+i szi

2
,

the left hand side is just a linear combination of two-time paired spin correlation and

thus satisfy the kinetic equation in Lemma 48, which is clearly the same kinetic equation

satis�ed by the right hand side because the entries of Pf
[
k2ARW−s

]
all satisfy the same

kinetic equation. Therefore, both sides satisfy the same kinetic equation.

We will prove both sides satisfy the same initial condition and boundary condition

by induction. Suppose the theorem holds for k − 1 time slots t1 < t2 < · · · < tk−2 < t,

that is, both sides are identical when t = tk−2. Now we want to show that it also holds
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for k time slots t1 < t2 < · · · < tk−2 < t, that is, both sides are identical when t = tk−1.

When t = tk−1, the left hand side becomes a new mixed ARW-spin correlation.

There are ARW in the time slots t1, . . . , tk−2 and a mixture of spins and ARW at time

t = tk−1. This is an object of which the form has not been determined yet. The goal is

to show that it is represented by the Pfa�an Pf
[
Kk
ARW−s

]
at t = tk−1.

The strategy is to use the identity

nzi =

(
−1

2

)
szi (∂ξisξi |ξi=zi)

to cast the new mixed ARW-spin correlation to the old mixed correlation.

Before we proceed let's re-label the ARW. At each time ti, denote ni the number

of ARW at this time.

E

k−1∏
i=1

ni∏
i′=1

nti,zi′

2m∏
j=1

stk,yj


= E

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
l=1

ntk−1,zl

2m∏
j=1

st,yj


=

(
−1

2

)nk−1

E

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
l=1

(
stk−1,zl∂ξlstk−1,ξl

) 2m∏
j=1

st,yj

 |ξl=zl
=

(
−1

2

)nk−1
nk−1∏
l=1

∂ξiE

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
l=1

(
stk−1,zlstk−1,ξl

) 2m∏
j=1

st,yj

 |ξl=zl
where the ordering · · · < zi < ξi < zi+1 < . . . is imposted.

By induction assumption the k − 1-time mixed ARW-spin correlation

E

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
l=1

(st,zlst,ξl)
2m∏
j=1

st,yj


is almost given by the Pfa�an Pf

[
Kk−1
ARW−s

]
.

The only di�erence is that the single-time spin correlations in the last 2m columns
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and last 2nk−1 rows from 2(n− nk−1) + 1-th row to 2n-th row are of the form

...
...

· · · c̃t (zl, yj) c̃t (zl, yj+1) · · ·
· · · ct (ξl, yj) ct (ξl, yj+1) · · ·

...
...

because we stipulate that no spin st,yj is allowed between any pair of spins st,zl and st,ξl .

The 2 × 2 blocks in the �rst 2(n − nk) rows and columns of Kk−1
ARW−s, which

corresponds to the multi-time correlation between the ARW nti,zi′ in the �rst k− 2 time

slots, are the same as that of Kk
ARW−s when t = tk−1 and are independent of ξi for

all i. The 2 × 1 blocks in the last 2m columns and �rst 2(n − nk−1) rows of Kk−1
ARW−s,

which correspond to the multi-time correlation between spins st,yi and the ARW nti,zi′

in the �rst k− 2 time slots, are also the same as that of Kk
ARW−s when t = tk−1 and are

independent of ξi for all i. The 1×1 blocks in the last 2m columns and rows of Kk−1
ARW−s,

which correspond to the multi-time correlation between spins st,yi at t = tk−1, are also

the same as that of Kk
ARW−s when t = tk−1 and are independent of ξi for all i.

The next step is to prove the blocks in three regions are equal to that of Kk
ARW−s

when t = tk−1 after taking the derivatives
∏nk−1

l=1 ∂ξi and the limits ξl = zl for all

l = 1, . . . , nk−1.

The regions are:

1. from 2(n−nk−1) + 1-th column to 2n-th column and in the �rst 2(n−nk−1) rows;

2. from 2(n− nk−1) + 1-th column to 2n-th column and from 2(n− nk−1) + 1-th row

to 2n-th row;

3. from 2(n− nk−1) + 1-th row to 2n-th row and in the last 2m columns.

In the �rst region we want to show the two 2× 1 blocks will become a 2× 2 block

after taking the derivatives
∏nk−1

l=1 ∂ξi and the limits ξl = zl for all l = 1, . . . , nk−1.

Firstly consider the 2× 1 block corresponding to stk,zl and nti,zi , which is(
c̃ti,tk (zi, zl)

cti,tk
(
z+i , zl

)
− cti,tk (zi, zl)

)
.

As there is no dependence on ξl, taking the derivative ∂ξl and taking the limit ξl = zi

have no e�ect of the 2 × 1 block. In fact we can see this is exactly the �rst column of

the 2× 2 block of Kk
ARW−s when t = tk−1.
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Secondly consider the consider the 2 × 1 block corresponding to stk,ξl and nti,zi ,

which is (
c̃ti,tk (zi, ξl)

cti,tk
(
z+i , ξl

)
− cti,tk (zi, ξl)

)
.

After taking the derivative ∂ξl and taking the limit ξl = zi it becomes(
c̃ti,tk

(
zi, z

+
l

)
− c̃ti,tk (zi, zl)

2cti,tk (zi, zl)− cti,tk
(
z+i , zl

)
− cti,tk

(
zi, z

+
l

)) ,
which is exactly the second column of the 2× 2 block of Kk

ARW−s when t = tk−1.

Now consider the second region.

To recover the 2× 2 blocks on the diagonal, we just have to notice that

∂ξlctk (zl, ξl) |ξl=zl = ctk
(
zl, z

+
l

)
− 1

which is exactly the nonzero terms in the 2× 2 blocks on the diagonal of Kk
ARW−s when

t = tk−1.

To recover the 2× 2 blocks above the diagonal we observe that

∂ξi∂ξj

(
ctzi ,tzj (zi, zj) ctzi ,tzj (zi, ξj)

ctzi ,tzj (ξi, zj) ctzi ,tzj (ξi, ξj)

)
|ξi=zi;ξj=zj

=

 ctzi ,tzj (zi, zj) ctzi ,tzj

(
zi, z

+
j

)
− ctzi ,tzj (zi, zj)

ctzi ,tzj
(
z+i , zj

)
− ctzi ,tzj (zi, zj) 2ctzi ,tzj (zi, zj)− ctzi ,tzj

(
z+i , zj

)
− ctzi ,tzj

(
zi, z

+
j

) .

In the third region, observe that

∂ξi

(
c̃ti,t (zi, yl)

cti,t (ξi, yl)

)
|ξi=zi =

(
c̃tzi ,t (zi, yl)

ctzi ,t
(
z+i , yl

)
− ctzi ,t (zi, yl)

)

To prove both sides satisfy the same boundary condition by induction, we as-

sume the theorem holds for k − 1 time slots and then consider the case of k time slots.

Firstly we prove they satisfy the same reduction formula. When yj = yj+1, the columns
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corresponding to them are

· · · c̃tz1 ,t (z1, yj) c̃tz1 ,t (z1, yj+1) · · ·
· · · ctz1 ,t

(
z+1 , yj

)
− ctz1 ,t (z1, yj) ctz1 ,t

(
z+1 , yj+1

)
− ctz1 ,t (z1, yj+1) · · ·

...
...

· · · c̃tzn ,t (zn, yj) c̃tzn ,t (zn, yj+1) · · ·
· · · ctzn ,t (z+n , yj)− ctzn ,t (zn, yj) ctzn ,t (z+n , yj+1)− ctzn ,t (zn, yj+1) · · ·
· · · ct (y1, yj) ct (y1, yj+1) · · ·

...
...

· · · ct (yj−1, yj) ct (yj−1, yj+1) · · ·
· · · 0 ct (yj,yj+1) · · ·
· · · −ct (yj,yj+1) 0 · · ·
· · · −ct (yj , yj+2) −ct (yj+1, yj+2) · · ·

...
...

· · · −ct (yj , y2m) −ct (yj+1, y2m) · · ·

.

So when yj = yj+1 all the other entries are the same and the entries in bold font becomes

...
...

· · · 0 1 · · ·
· · · −1 0 · · ·

...
...

the same goes for the rows and hence by Lemma 52 we get the reduction formula we

want. The left hand side has the same reduction formula because s2 = 1.

Secondly we have to show that both sides reduce to the same formula when

2m = 0.

After re-labeling the ARW's as before, we decompose the n's at time k by the
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same technique we used before:

E

[
k−1∏
i=1

ni∏
i′=1

nti,zi′

]

= E

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
j=1

ntk−1,zj


=

(
−1

2

)nk−1

E

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
j=1

stk−1,zj∂ξjstk−1,ξj

 |ξj=zj
=

(
−1

2

)nk−1
nk−1∏
j=1

∂ξjE

k−2∏
i=1

ni∏
i′=1

nti,zi′

nk−1∏
j=1

stk−1,zjstk−1,ξj

 |ξj=zj .
By exactly the same procedures of taking derivatives and limits as before we can

prove that this is indeed equal to Kk−1
ARW−s

(
tzi , zi; tzj , zj

)
. Thus the theorem is proved

Now we are in position to prove the extended Pfa�an property of ARW.

Theorem 57.

ρARW (z1, tz1 ; . . . ; zn, tzn) =

(
−1

2

)
Pf
[
Kk
ARW

(
tzi , zi; tzj , zj

)]
where

Kk
ARW

(
tzi , zi; tzj , zj

)
=

 ctzi ,tzj (zi, zj) ctzi ,tzj

(
zi, z

+
j

)
− ctzi ,tzj (zi, zj)

ctzi ,tzj
(
z+i , zj

)
− ctzi ,tzj (zi, zj) 2ctzi ,tzj (zi, zj)− ctzi ,tzj

(
z+i , zj

)
− ctzi ,tzj

(
zi, z

+
j

)
over the diagonal and

Kk
ARW−s (tzi , zi; tzi , zi) =

(
0 ctzi

(
zi, z

+
i

)
− 1

1− ctzi
(
zi, z

+
i

)
0

)

on the diagonal and ctx,ty (x, y) and ctx (x, x+) are de�ned in Theorem 56.

Proof From Theorem 56 we can prove the theorem by letting 2m = 0.

Remark By the Markov property of Glauber model, the multi-time spin corre-

lation will also satisfy the kinetic equation (5.3). And since equation (5.3) is also of the
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form in Lemma 16, it can substitute in the proof and therefore the extended Pfa�an

property also holds for the most general position-dependent ARW with creation of pairs

of particles.

6.2.4 Alternative proof

We can prove Theorem 56 by another approach. Firstly we obtain the Pfa�an expression

of k-time paired spin correlation. Then we apply the derivatives ∂ξi and take the limit

ξi = zi to obtain the multi-time mixed ARW-spin correlation.

k-time paired spin correlation

The gaol is to prove

E

 n∏
i=1

stzi ,zistzi ,ξi

2m∏
j=1

st,yj

 = Pf
[
Kk
s

]
.

for a (2n+2m)×(2n+2m) anti-symmetric matrixK, where z1 < ξ1 < z2 < · · · < zn < ξn

and y1 < · · · < y2m and no spin st,yj at time t is allowed between any pairs of spins stzi ,zi
and stzi ,ξi . Let us de�ne the entries of the matrix here.

The 2× 2 blocks are in the �rst 2n× 2n rows and columns. On the diagonal they

are:

Kk
s (tzi , zi, ξi; tzi , zi, ξi) =

(
0 ctzi (zi, ξi)

−ctzi (zi, ξi) 0

)
,

while above the diagonal the blocks are

Kk
s

(
tzi , zi, ξi; tzj , zj , ξj

)
=

(
ctzi ,tzj (zi, zj) ctzi ,tzj (zi, ξj)

ctzi ,tzj (ξj , zj) ctzi ,tzj (ξi, ξj)

)
.

The 2× 1 blocks are in the �rst 2n rows and last 2m columns. They are:

Kk
s (tzi , zi, ξi; t, yj) =

(
c̃tzi ,t (zi, yj)

ctzi ,t (ξi, yj)

)
.

where ctx,ty (x, y) is the 2-time spin correlation which satis�es the kinetic equation

∂tyctx,ty (x, y) = [(−2γD) ∆y + (−2D) (1 + 2γ)] (x, y)
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which was proved in Lemma 46 and has the initial condition that when tx = ty,

ctx (x, y) =


Etx (sxsy) if x < y

−Etx (sxsy) if x > y

1 otherwise

,

and c̃tx,ty (x, y)is similar except that it has a di�erent initial condition that when tx = ty,

c̃tx (x, y) =


Etx (sxsy) if x < y

−Etx (sxsy) if x > y

−1 otherwise

.

The 1× 1 blocks are in the last 2m rows and last 2m columns. They are:

Kk
s (t, yi; t, yj) = ct (yi, yj) .

The blocks below the diagonal can be obtained by the identity (6.2).

All the steps are similar to those in the previous section. Firstly let us prove the

lemmae that will be used in proving the initial condition.

Lemma 58. When yi = zj or yi = ξj, where the spins stzj ,zj and stzj ,ξj are at time tk,

the matrix whose Pfa�an is the multi-time paired spin correlation can be cast into the

form at tk = t:  0 1 B

−1 0 B

−BT −BT A


where B is a 1× (2n+ 2m− 2) row matrix and A is an anti-symmetric (2n+ 2m− 2)×
(2n+ 2m− 2) matrix where independent of yi and zj or yi and ξj.

Proof There are two cases to consider:

1. zj = yi

2. ξj = yi

In the �rst case zj = yi we observe that the columns corresponding to zj and yi respec-
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tively are

· · · ctz1 ,tk (z1, zj) · · · c̃tz1 ,t (z1, yi) · · ·
· · · ctz1 ,tk (ξ1, zj) · · · ctz1 ,t (ξ1, yi) · · ·

...
...

· · · 0 · · · c̃tzj ,t (zj,yi) · · ·
· · · −ctk (zj , ξj) · · · ctzj ,t (ξj , yi) · · ·

...
...

· · · −ctzn ,tk (zj , zn) · · · c̃tzn ,t (zn, yi) · · ·
· · · −ctzn ,tk (zj , ξn) · · · ctzn ,t (ξn, yi) · · ·
· · · −c̃tk,t (zj , y1) · · · ct (y1, yi) · · ·

...
...

· · · −c̃tk,t (zj,yi) · · · 0 · · ·
· · · −c̃tk,t (zj , yi+1) · · · −ct (yi, yi+1) · · ·

...
...

· · · −c̃tk,t (zj , y2m) · · · −ct (yi, y2m) · · ·

.

When zj = yi and tk = t, the two columns will be identical except the entries in

bold font which will become
· · · 0 · · · −1 · · ·

...
...

· · · 1 · · · 0 · · ·

.

By even permutation of row and column we can obtain the form stated in the lemma.

In the second case ξj = yi we observe that the columns corresponding to ξj and
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yi respectively are

· · · ctz1 ,tk (z1, ξj) · · · c̃tz1 ,t (z1, yi) · · ·
· · · ctz1 ,tk (ξ1, ξj) · · · ctz1 ,t (ξ1, yi) · · ·

...
... · · ·

· · · ctk (zj , ξj) · · · c̃tk,t (zj , yi) · · ·
· · · 0 · · · ctk,t (ξj,yi) · · ·

...
... · · ·

· · · −ctzn ,tk (ξj , zn) · · · c̃tzn ,t (zn, yi) · · ·
· · · −ctzn ,tk (ξj , ξn) · · · ctzn ,t (ξn, yi) · · ·
· · · −ctk,t (ξj , y1) · · · ct (y1, yi) · · ·

...
... · · ·

· · · ctk,t (ξj,yi) · · · 0 · · ·
· · · −ctk,t (ξj , yi+1) · · · −ct (yi, yi+1) · · ·

...
... · · ·

· · · −ctk,t (ξj , y2m) · · · −ct (yi, y2m) · · ·

.

The two columns will be identical except the entries in bold font. The entries in

the bold font will become
· · · 0 · · · 1 · · ·

...
...

· · · −1 · · · 0 · · ·

.

By even permutation of rows and columns we can obtain the form stated in the lemma

again.

Next we prove the lemma we will use to prove the boundary condition.

Lemma 59. When yj = yj+1, Pf
[
Kk
s

]
becomes

Pf

 0 1 B

−1 0 B

−BT −BT A

 .

where A is a (2n + 2m − 2) × (2n + 2m − 2) anti-symmetric matrix independent of yj

and yj+1.

Proof We observe that the columns corresponding to yj and yj+1 respectively
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are
· · · c̃tz1 ,t (z1, yi) c̃tz1 ,t (z1, yi+1) · · ·
· · · ctz1 ,t (ξ1, yi) ctz1 ,t (ξ1, yi+1) · · ·

...
...

· · · c̃tzn ,t (zn, yi) c̃tzn ,t (zn, yi+1) · · ·
· · · ctzn ,t (ξn, yi) ctzn ,t (ξn, yi+1) · · ·
· · · ct (y1, yi) ct (y1, yi+1) · · ·

...
...

· · · ct (yi−1, yi) ct (yi−1, yi+1) · · ·
· · · 0 ct (yi,yi+1) · · ·
· · · −ct (yi,yi+1) 0 · · ·
· · · −ct (yi, yi+2) −ct (yi+1, yi+2) · · ·

...
...

· · · −ct (yi, y2m) −ct (yi+1, y2m) · · ·

.

When yj = yj+1, the two columns will be identical except for the entries in bold

font which will become
...

...

· · · 0 1 · · ·
· · · −1 0 · · ·

...
...

.

The same goes for the corresponding rows. Therefore by even row and column

permutations we can obtain the matrix stated in the lemma.

Theorem 60.

E

 n∏
i=1

st1,zist1,ξi

2m∏
j=1

st2,yj

 = Pf
[
Kk
s

]
.

Proof From Lemma 48 and Lemma 49 we can see that both sides satisfy the same

kinetic equation. And from Lemma 59 and Lemma 52 they satisfy the same boundary

condition. From Lemma 58 and Lemma 52 they satisfy the same initial condition. There-

fore by the uniqueness Theorem 31 they are identical.

By Theorem 60 we can then derive the multi-time mixed ARW-spin correlation
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by the procedures:

E

 n∏
i=1

nti,zi

2m∏
j=1

st,yj


=

(
−1

2

)n
E

 n∏
i=1

(sti,zi∂ξisti,ξi)
2m∏
j=1

st,yj

 |ξi=zi
=

(
−1

2

)n n∏
l=1

∂ξiE

 n∏
i=1

(sti,zisti,ξi)
2m∏
j=1

st,yj

 |ξi=zi
=

(
−1

2

)n
Pf
[
Kk
ARW−s

]
.

Therefore we can recover the result in Theorem 56.

6.2.5 Third proof

By using Lemma 1 we can also have a less general proof that E [
∏n
i=1 nti,zi ] has extended

Pfa�an property.

Observe that

E

[
n∏
i=1

nti,zi

]

=

(
1

2

)n
E

[
n∏
i=1

1− sti,zisti,z+i

]

=

(
1

2

)n
E

1−
n∑
i=1

sti,zisti,z+i
+
∑
i<j

sti,zisti,z+i
stj ,zjstj ,z+j

+ · · ·+ (−1)n
n∏
i=1

sti,zisti,z+i


By Theorem 60 we know that the paired spin correlations can be expressed as a Pfa�an

whose entries are the 2 × 2 blocks of Pf
[
Kk
s

]
. Denote the special case of Kk

s by K̃k
s So

we have

E

[
n∏
i=1

nti,zi

]

=

(
−1

2

)n
1−

∑
J2

Pf
(
K̃k
s |J2

)
+
∑
J4

Pf
(
K̃k
s |J4

)
+ · · ·+ (−1)n Pf

(
K̃k
s

)
= Pf

[
I − K̃k

s

]
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where I is a 2n× 2n block diagonal matrix with 2× 2 blocks

(
0 1

−1 0

)
on the diagonal

and the last equality comes from Lemma 1. The Pfa�an Pf
[
I − K̃k

s

]
obtained here is

equivalent to the one obtained by the previous two methods. This can be seen from the

remark in Section 4.1.1.

6.3 Multi-time correlation of CRW

Since CRW and ARW have similar correlation function we might expect CRW also has

extended Pfa�an property , at least in the case that there is no immigration of particles.

However, this is not true. Firstly we can show that the multi-time interval probability

satisfy the kinetic equation:

∂tP
(
Ωx1,y1:tx1

∩ · · · ∩ Ωxn,yn;txn ∩ Ωz1,ξ1;t ∩ Ωzm,ξm;t

)
= D∆̃P

(
Ωx1,y1:tx1

∩ · · · ∩ Ωxn,yn;txn ∩ Ωz1,ξ1;t ∩ Ωzm,ξm;t

)
where ∆̃ =

∑n
i=1

(
∆̃zi + ∆̃ξi

)
and

∆̃xif (xi) = 2pxif (xi + 1)− 2f (xi) + 2 (1− pxi) f (xi − 1) .

It satis�es exactly the same equation as that in Section 5.5.2 because of the

Markov property of the system. We can see that the kinetic equation is also equal to

that of multi-time spin correlation in Lemma 50 for zero temperature, which corresponds

to γ = −1
2 .

However, the multi-time CRW does not preserve extended Pfa�an property be-

cause the initial conditions do not match.

Consider the 4pt case which has 4 coordinates

(x1, t1), (y1, t1), (x2, t2) and (y2, t2)

with the condition

x1 < x2 < y1 < y2.

Although we can prove the multi-time empty interval probability and the multi-

time spin correlation satisfy the same kinetic equation, we can show that they do not

have the same initial condition and therefore are not identical functions. Consider the

initial condition t1 = t2.
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Now at time t1 = t2, on one hand the spin correlation is still a function dependent

on x2 and y1 while on the other hand the empty interval probability will be independent

of x2 and y1. Therefore they do not satisfy the same initial condition.

As the empty interval probability and the paired spin correlation are not identical,

we cannot imitate the construction of the ARW case in section 6.2 and therefore the

multi-time CRW is not likely to have extended Pfa�an property.
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