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Abstract

This thesis studies the use of Lévy processes for option pricing and portfolio allocation

problem. First, a new Geometric Lévy model is proposed to capture the volatility smirk

exhibited by index options. To solve the new model, an efficient numerical algorithm is

adopted, which can be applied to any time-changed Lévy model. It is the first attempt to

model multi-scale volatility along with the leverage effect, based on pure jump processes.

Calibration results show that the proposed model exhibits excellent performance. Second,

the dynamic portfolio choice problem in a jump-diffusion model is considered, where an

investor may face constraints on her portfolio weights. With several examples, the impact

of no-short-selling and/or no-borrowing constraints on the performance of optimal port-

folio strategies is examined. Last, the portfolio allocation problem is reconsidered with

a new multi-variate jump-diffusion model, while the effect of asymmetric correlation is

taken into account Empirical results show that the new model fits asymmetric correlations

well. By allowing investment constraints, the economic loss of ignoring asymmetric de-

pendence is evaluated. An explanation for the under-diversification problem is provided,

concerning the risk caused by asymmetric correlations.

xiii



Chapter 1

General Introduction

Lévy processes have been popular in the world of mathematics and statistics for a very

long time, and are also playing an important role in many other fields of science, such

as physics. However, the history of using Lévy processes in mathematical finance is not

very long. Nowadays, the rapid development of financial engineering has encouraged both

academic researchers and market participants to borrow ideas from probability theory and

stochastic analysis. Lévy processes have been used to model financial returns for equities,

equity options, credit derivatives and so on. The applications of Lévy processes for finance

and financial engineering theory are still open and growing rapidly.

A Lévy process that is named after the French mathematician Paul Lévy, is a stochastic

process with independent and stationary increments. A Lévy process might be understood

as the continuous-time analog of a random walk. Although researchers focus on pure-

jump processes while dealing with Lévy processes, the most well known example of Lévy
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processes is Brownian motion. Brownian motion is the only process that has continuous

paths. The sum of any two Lévy processes is still a Lévy process. Indeed, Lévy processes

cover almost all the stochastic processes adopted for portfolio allocation problem and

derivative pricing problem.

In reality, since large movements of financial return can be observed from both the in-

ternational and domestic markets, diffusion models apparently fail to provide accurate

estimation of financial returns. For instance, in the original setting of Merton’s portfolio

problem, no jump is considered. Research has continued to extend the original framework

by allowing jumps, such as the compound Poisson jump. This is a simple case of Lévy

processes. The history of using jumps for derivative pricing dates back to an even earlier

time. Many Geometric Lévy models have been widely used for option pricing and credit

derivatives pricing.

In this thesis, three topics associated with portfolio allocation problem and option pricing

are discussed with the use of Lévy processes. The research work includes not only devel-

oping a new Geometric Lévy model but also using existing Lévy processes to solve some

existing problems of finance and economics.

In chapter 2, a multi-dimensional stochastic volatility model is developed, using time-

changed Lévy processes, in order to capture the implied volatility smirk exhibited by

index options. Substantial empirical literature has suggested that the index dynamics

should be free of diffusion components, which supports the important use of infinite-

activity jumps in modelling. The proposed model is of pure jumps only, and provides a

2



non-Gaussian innovation. This new model admits stochastic volatility by randomizing the

business time with a stochastic time-change. Due to the inexistence of explicit solution

of European option prices, an efficient numerical algorithm known as the COS expansion

is adopted. The numerical pricing framework can be applied to all time-changed Lévy

models, and the computation time is comparable to that of the traditional Carr-Madan

FFT method. It is the first attempt to model both long-run and short-run volatility

components with pure jump processes. It is also the first Lévy model that is of the

leverage effect. Calibration results based on real market data show that the proposed

model exhibits excellent performance, compared with several benchmark models, such as

the celebrated Heston model.

In chapter 3, the dynamic portfolio choice problem in a jump-diffusion model is considered,

where an investor may face constraints on her portfolio weights: for instance, no-short-

selling constraints. It is a daunting task to use standard numerical methods to solve a

constrained portfolio choice problem, especially when there is a large number of state

variables. By suitably embedding the constrained problem in an appropriate family of

unconstrained ones, we provide some equivalent optimality conditions for the indirect

value function and optimal portfolio weights. These results simplify and help to solve

the constrained optimal portfolio choice problem in jump-diffusion models. Finally, we

apply our theoretical results to several examples, to examine the impact of no-short-selling

and/or no-borrowing constraints on the performance of optimal portfolio strategies.

In chapter 4, the portfolio allocation problem is reconsidered while the effect of asymmetric

3



correlation is taken into account. In recent years, asymmetric correlation has been widely

reported and investigated in the literature, which is that correlations between asset returns

are significantly bigger during a bearish time. Great efforts have been made to measure

and explain this phenomenon. It is suggested that asymmetric dependence can reduce the

economic value of portfolio diversification, and underestimating asymmetry might cause

large biases in hedging practice. In this chapter, we develop a multi-dimensional jump-

diffusion framework with stochastic volatility which can capture asymmetry, even given

a large number of state variables. Based on several statistic measures for asymmetry, our

framework outperforms benchmark models, such as regime-switching models and copu-

la models, which are specially designed for capturing asymmetry. The asset allocation

problem is solved in this framework, allowing investment constraints i.e. no-short-selling

constraint. We quantify the economic loss for a suboptimal portfolio allocation if asym-

metric dependence is ignored and provide an explanation for under diversification, which

indicates how asymmetry affects investment decisions.

Chapter 5 concludes the thesis and discusses future research.
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Chapter 2

Option pricing and calibration with

time-changed Lévy processes

2.1 Introduction

Option pricing has been deeply investigated for more than forty years. Black and Scholes

(1973) have laid the foundation of using Brownian motion in option pricing theory. This

was the first time that market participants could convert their financial intuition into

actual prices in a quantitative sense. As spurred on market observations, Merton (1976)

brings the Compound Poisson jump into modelling, which provides more flexility for the

distribution of innovation. However, the Black-Scholes model and its succeeding extended

work only solve the pricing problem in a qualitative sense, and produce biases documented

by an extensive empirical literature. Nevertheless, the continuous-time model has also
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been criticised for its inflexibility, compared to discrete-time models which can easily be

embedded with different distributions. Only normals or mixtures of normals keep the

tractability for continuous-time models before the advent of Lévy models.

Stochastic volatility models boom the research on modelling derivatives, and these have

mainly been inspired by the stylized feature known as volatility smile or smirk. Many

models have been proposed, in order to enhance the performance of option pricing via

trying to capture this feature. Heston (1993) develops a decent model that employs

a CIR process to model the latent movement of volatility. It is a reliable model that

can be used to price equity options, index options and even currency and commodity

derivatives. It also admits the leverage effect, namely the fact that increasing stock prices

are accompanied by declining volatility and vice versa, by adopting a negative correlation

between stock return and its variance. The leverage effect is even more important when

pricing index options. This is because the leverage effect can produce negative skewness

in stock returns so as to generate the so-called volatility smirk.

Many literature has contributed to investigating the empirical performance of stochastic

volatility models (See Bates (2000), Duffie et al. (2000) and Huang and Wu (2004)). Al-

though it is suggested that stochastic volatility models can outperform the Black-Scholes

model, these models are still short of pricing accuracy. It has been recently revealed that

volatility has multi-scale components, that is the long-run and short-run components.

Engle and Lee (1999) and Heston and Nandi (2000), meanwhile, explore the possibility of

modelling volatility with a persistent long-run component and a volatile short-run com-
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ponent. Christoffersen et al. (2009) extend the original Heston model with an additional

mean-reverting variance dynamics, and use the extended Heston model to capture the

index option smirk. It is shown that the shape of the smile is largely independent of the

volatility level, and single-factor stochastic volatility models cannot capture this feature.

Fouque et al. (2011) discuss the fast and slow time-scale of volatility, and provide an

informative review of developing multi-scale stochastic volatility models. The multi-scale

stochastic volatility models can fit the market well; however, due to the complexity and

redundant size of parameter space, it has not been welcomed either by market participants

or academic researchers.

Jump is another aspect that plays an important role when trying to explain some styl-

ized market features. For example, only the existence of jumps can explain why the

skew is so steep for short term derivatives. Looking back on all the financial crises that

we have experienced, it is hard to resist the idea of introducing jumps into modelling.

Merton (1976) starts using jumps by introducing the Compound Poisson jump, in order

to capture rare and large movements of return series. A more general choice is using a

Lévy process. Lévy processes are related to Infinitely Divisible distribution, which can

provide a variety of non-Gaussian distributions. Nowadays, Lévy processes have become

a popular alternative to diffusion, especially in derivative pricing. Lévy processes have

drawn even more attentions with the occurrence of the credit crunch that took place in

2007. Jump risk that represents the sudden loss in the market cannot be modelled by

diffusion models. Imitating the Black-Scholes model, many Geometric Lévy models have

7



been proposed, such as the Variance Gamma (VG) model (see Madan et al. (1998)) and

the CGMY model (see Carr et al. (2002)). Lévy models can only capture the volatility

smile in the short term, so introducing stochastic volatility into Geometric Lévy models

is in demand.

Carr et al. (2003) investigate how to use the stochastic time-change technique and show

how to randomize the business time. Time-change stochastic models can exhibit stochastic

volatility. The idea is intuitive. If the business time does not run with a constant intensity,

the trading volumes will become non-constant as well. Stochastic volatility comes from

stochastic trading activities. Nevertheless, an important feature is still missing for those

time-changed models, that is the leverage effect. Unlike the Heston model, time-changed

Lévy models cannot easily incorporate dependence between return and variance, due to

discontinuity. This might be the main reason why existing time-change Lévy models

cannot perform as well as the Heston model. Existing time-changed Lévy models are

developed via using the pricing framework introducers in Carr et al. (2003); however it

only allows independent time-change, otherwise no explicit solution can be obtained.

A combination of diffusions and jumps has been considered to improve the performance of

the Heston model. The so-called SVJ models show good performance, which are stochastic

volatility models with jumps in the spot price only. For example, the Heston model with

jumps does enhance the pricing accuracy, despite the difficulty of hedging incurred. It

is straightforward to apply the same idea to the volatility process. Apparently investors

observe jumps in volatility market. However, Gatheral (2006) states that SVJ models can
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outperform SVJJ models which allow jumps in both spot price and volatility. Empirical

experiments show that SVJJ models are even worse than pure diffusion models. This is

really a puzzle. A possible explanation is that SVJJ models exhibit less leverage effect

than SVJ models. This sheds light on the importance of taking into account the leverage

effect, which also interprets the main contribution of this chapter.

Carr and Wu (2004) develop a brilliant idea to overcome the drawback and embed the

leverage effect into time-changed Lévy models. They use a complex measure change to

disentangle the connection between the time-change and the spot price. The explicit

form of the characteristic function of log prices can be obtained by solving some ODEs. A

simple example is that the Heston model can be derived via randomizing the business time

of the Black-Scholes model with a correlated CIR process. Nevertheless, the innovative

framework is not quite practical. This is because it depends on whether we can solve

some ODEs explicitly. And the answer is NO for most of the existing models. Carr and

Wu (2004) argue that the method can be implemented by numerically solving ODEs;

however, the numerical work is not affordable. The standard pricing procedure is using

the Carr-Madan formula with the Fast Fourier Transform (FFT) method. At least 4096

sampling points are required to provide accurate prices. Hence, each option price requires

solving 4096 ODEs simultaneously. It will require enormous computation to finish one

round of searching for the calibration procedure.

Tractability is a crucial criteria when developing new models. Although the Monte Carlo

simulation technique can be used to solve the pricing problem, it is too time-consuming.
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Daily Calibration requires the pricing work be done within a very short time. Carr and

Madan (1999) show how FFT can be used to speed up the calculation when pricing Euro-

pean derivatives. It has become a standard approach for solving affine models and Lévy

models. After this, many numerical approaches have been introduced to solve European

option prices, given explicit characteristic functions. Attari (2004) obtains an efficient

formula and uses direct integration method to solve option prices. Chourdakis (2004) de-

velops a fractional FFT algorithm to speed up the traditional FFT method and reduces

the number of sampling points. Lord et al. (2008) reformulate the well-known risk-neutral

valuation formula by using convolution, and achieve almost linear complexity based on

the FFT method. Fang and Oosterlee (2008) use the COS expansion method to recover

the characteristic function of log returns, and introduce a new pricing formula of Euro-

pean option. Haslip and Kaishev (2013) present an efficient and robust pricing method

based on the B-spline interpolation, aiming to price European-style derivatives.

A comprehensive framework is developed in this chapter in which the COS expansion

method is employed, combined with the Runge-Kutta scheme for solving ODEs. With

this framework, European option prices can be obtained by numerically solving the char-

acteristic functions of log returns. Experiments demonstrate that computation time is

comparable to that of the Carr-Madan method. This framework allows to incorporate

any kind of Lévy process time-changed by any Subordinator. Hence, for the purpose of

option pricing, it is possible to investigate and compare the performance of complicated

stochastic time-changed Lévy models.
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Finding an appropriate Lévy process is a basic, but difficult work. Since Lévy processes

provide us with a variety of choices concerning the innovation distribution, it is not clear

which process should be used for modelling. Different Lévy models have very different

behaviours. There is no universal process working under all circumstances. Carr and

Wu (2003) state that S&P 500 index option prices exhibit a different pattern against

other financial derivatives. For instance, we observe volatility smirk in index option

markets rather than volatility smile. Volatility smirk is a market phenomenon that implied

volatilities for in-the-money calls are much higher than those of out-of-the-money calls.

This emerges after the US market Crash of 1987. In this chapter, we focus on pricing

European index options and propose a model that is specifically designed to capture the

movements of stock indices.

The contributions of this chapter can be understood in three aspects. First, it provides a

numerical pricing framework to generate model prices in a very short time for any time-

changed Lévy model. Indeed, it serves to extends Carr and Wu (2003)’s work and demon-

strates that it is possible and practical to provide accurate option prices via the complex

leverage-measure-change method. Second, it inspires researchers to investigate potential

Lévy models by developing a new multi-scale stochastic volatility model equipped with

the time-change technique. In particular, the leverage effect is incorporated in this new

model as there is dependence imposed between the return and the variance. To the best

of our knowledge, this is the first pure-jump stochastic volatility model that admits the

leverage effect. Numerical results show that our model is capable of fitting the special pat-
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tern of index options well. Finally, the effect of considering both long-run and short-run

volatility components is discussed in this chapter. Based on numerical experiments, the

benefit of decomposing the volatility is verified by comparing the performance between

our model and six benchmark models.

The rest of this chapter is organized as follows. Section 2.2 describes the model proposed

in this chapter and shows how to derive the characteristic function of log returns. Section

2.3 shows how to solve time-changed Lévy models numerically with the leverage-measure

method introduced in Carr and Wu (2004). In section 2.4, the accuracy of option prices

generated by the numerical pricing framework is shown and compared with the traditional

FFT method. Daily calibration is implemented with real data of the S&P 500 index

options. To show the performance of our model, a comparison with benchmark models is

provided. Section 2.5 concludes this chapter and discusses future research.

2.2 A Geometric Stochastic Lévy Model

Lévy processes have been widely used to model financial returns. Lévy processes can

generate a variety of distributions at a fixed time horizon. The underlying Lévy process

used in this chapter is a special case of the α-processes, which has been introduced in

Carr and Wu (2003). It is known as the Finite Moment Log Stable process (FMLS). In

this chapter, we refer to it as the LS process. The LS process only admits negative jumps

with a positive drift.
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Considering a complete probability space (Ω,F ,P) endowed with a standard complete

filtration {Ft} satisfying the usual conditions, a one-dimensional real-valued stochastic

process {Lt}t≥0 with L0 = 0 is said to be a Lévy process if the following conditions are

satisfied.

• L0 = 0, a.s.

• Lt − Ls ⊥ Ls, for any t > s

• Lt − Ls is equal in distribution to Lt−s, for any t > s

The above three conditions can be concluded as the property of “independent stationary

increment”. If one more condition that Lt−s ∼ N(0, t − s) is imposed, {Lt}0≤t≤T will

be a Brownian motion. By the Lévy-Khintchine Theorem, if we define the characteristic

function of Lt as

Φ(u) = E
[
eiuLt

]
= e−tΨ(u), t ≥ 0 (2.1)

where Ψ(u) is called the characteristic exponent, then Ψ(u) has the form of

Ψ(u) = −iuμ+
1

2
u2σ2 +

∫
R\{0}

(1− eiux + iux1|x|<1)π(x)dx (2.2)

with
∫
R\{0}(x

2 ∧ 1)π(x)dx < ∞, where μ ∈ R is the constant drift, σ > 0 is the volatility

parameter, and π(x) is the Lévy measure which describes the arrival rate of jumps with

all sizes. The triplet (μ, σ, π) is known as the Lévy triplet, which can fully characterize

the Lévy process.
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Lévy processes are closely related to the Infinitely Divisible Distribution. For any arbitrary

distribution with infinite divisibility, a unique Lévy process can be defined corresponding-

ly. Hence, there are many available choices for modelling financial returns. Popular Lévy

processes include the Poisson process, Variance Gamma process, NIG process and so on.

The characteristic function defined in (2.1) usually has the support of R, but it can also

be extended to a complex domain.

Based on jump frequency, Lévy processes can be categorized into two types: jumps with

finite activity and jumps with infinite activity. A pure jump Lévy process is said to be of

finite activity if

∫
R\{0}

π(x)dx = λ <∞ (2.3)

where λ measures the mean arrival rate of jumps. A jump process that is of finite activity

can only generate a finite number of jumps within any finite time interval. When λ in

(2.3) is not finite, it is said to be of infinite activity. In any finite time interval, there are

infinitely many jumps if the jump process is of infinite activity. Infinite activity jumps

can capture frequent small movements, while finite activity jumps are suitable to model

infrequent large movements. It is believed that the diffusion component may not be

needed if an infinite activity jump process is employed.

Brownian motion and Compound Poisson jump are two popular cases of Lévy processes.

In this section, we choose a special case of α-stable processes. A stochastic process

{Lt, 0 ≤ t ≤ T} is said to be an α-stable process if its characteristic function has the form
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of

Φ(u) = exp
(
−iuθ + |σu|α

(
1− iβsgn(u) tan

πα

2

))
, u ∈ R (2.4)

where α ∈ (0, 1) ∪ (1, 2], θ ∈ R, σ > 0 and β ∈ [−1, 1]. The corresponding Lévy measure

is absolutely continuous with respect to the Lebesgue measure, with density

π(dx) =

⎧⎪⎪⎨⎪⎪⎩
c+x−α−1 if x > 0

c−(−x)−α−1 if x < 0

where c+ and c− are two nonnegative real constants. The process Lt is symmetric if

c+ = c−. We can also derive β = (c+ − c−)/(c+ − c−). Lt only has one-side jumps if

either c− or c+ is zero. In this chapter, we set c− = 0 and the process only has negative

jumps; this does not imply that it only generates negative returns. Indeed, when c− = 0

the process has a positive drift with negative jumps. This process is the FMLS process

mentioned in Carr and Wu (2003), where β is set to be −1.

Lévy processes can be used to model financial returns because of the property of “indepen-

dent stationary increment”. This coincides with the implication of the Efficient Market

Hypothesis (see Fama (1970)). Constructing a Lévy model is easy and straightforward.

Suppose that the log return follows a Log Stable (LS) process, the spot price is governed

as

St = S0 exp ((r − ξ)t+ σLt) , α ∈ (1, 2], t ∈ [0, T ] (2.5)

where r is the constant risk-free rate, σ is the volatility parameter and ξ is the martingale

correction. Actually, Lt can degenerate to Brownian motion by setting α = 2, which
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makes (2.5) equivalent to the Black-Scholes model. An arbitrary α-stable distribution of

Lt does not guarantee stationary option prices, because only the case of β = −1 provides

finite moments of all orders. A detailed discussion can be found in Carr and Wu (2003).

The model presented in (2.5) is proposed in Carr and Wu (2003) and exhibits excellent

performance on pricing index options, compared with the VG model and the Merton

Jump-diffusion (MJD) model. However, it does not admit stochastic volatility.

The time-change technique can be applied to Lévy processes to generate stochastic volatil-

ity. The intuition is that we can randomize the clock on which the stochastic process is

run. Hence, the number of transactions in a given time interval is also random. Since

a high number of transactions causes high return volatility, time-changed Lévy processes

can produce stochastic volatility. There are many choices for randomizing the business

time, such as the Ornstein-Uhlenbeck process and the CIR process. Lévy subordinators

are also good candidates.

Let t → Tt(t ≥ 0) be an increasing càdlàg process satisfying the usual conditions; a new

process can be generated by evaluating L at T :

Yt = LTt , t ≥ 0 (2.6)

As proved by Monroe (1978), every semimartingale can be represented by a time-change

Brownian motion. Hence, Yt is a very general specification for financial modelling. The

random time Tt must be a nondecreasing process, and can be represented by

Tt =

∫ t

0

vs−ds (2.7)
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where vt is the instantaneous activity rate. An important point is that we want to impose

dependence between the return innovations in Lt and the activity rate vt, which can

generate the leverage effect. Heston (1993) demonstrates how to incorporate stochastic

volatility while pricing options and bonds. The Heston model can also be represented

as a time-changed Black-Scholes model with a CIR activity rate process. Since we have

abandoned the diffusion component, there will be no dependence between Lt and vt if vt

follows a pure-diffusion process. Similarly, if vt is driven by another pure-jump process,

Lt and vt are still independent to each other.

The multi-scale effect of volatility is another aspect that can not be ignored. Gener-

ally speaking, the time-series of volatility exhibit different time scales. Usually, we can

decompose the one-dimensional volatility into a long-run component and a short-run com-

ponent. The long-run volatility is heavily correlated with return series while the short-run

volatility is more likely to be volatile. Hence, we can employ a randomness to drive both

the return and the long-run volatility, such that there exists dependence between the

two. The short-run volatility will have an independent innovation. The new Geometric

time-changed Lévy model is represented as

St = S0 exp
(
rt+ Lα1,−1

Tt
− ξTt

)
Tt = T 1

t + T 2
t =

∫ t

0

v1sds+

∫ t

0

v2sds

dv1t = κ1(a1 − v1t )dt+ β
1/α1

1 dLα1,1

T 1
t

dv2t = κ2(a2 − v2t )dt+ β
1/α2

2 dLα2,1

T 2
t

(2.8)

where r is the risk-free rate, and ξ is the martingale correction. Tt is the stochastic time
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that has two independent activity rates v1t and v2t . Lα1,1
t is a mirror image of Lα1,−1

t ,

which means that a negative jump happening in St will bring a positive jump in v1t at

the same time. vit seems to follow a non-Gaussian Ornstein-Uhlenbeck (OU) process with

mean-reverting speed κi and volatility of volatility βi; it is governed by a non-Gaussian

“square-root” process as the activity process vit is incorporated with time-change itself.

We can rewrite vit as

dvit = κi(ai − vit)dt+ (βvit)
1/αidLαi,1

t (2.9)

When αi = 2, (2.9) becomes a CIR process. As expected, the model (2.8) is of stochastic

volatility and multi-scale volatility components. We will also investigate how the depen-

dence between St and Tt can affect the pricing performance.

Carr and Wu (2004) have suggested the idea that can be seen as a simple version of model

(2.8) that only has one activity process. The idea of introducing an additional activity

process is simple but very powerful. The benefits of doing this are not only that variance

has both long-run and short-run effects but also that the leverage effect is obtained. This

comprehensive model shown in (2.8) is of infinite activity jumps, so it can capture both

small-but-frequent and large-but-rare movements. The dependence structure between the

return and the volatility is also stochastic, which results in stochastic correlations.

Unfortunately, there is no explicit solution to the characteristic function of log return for

this new model. As Tt is not independent of Lt, it is impossible to use the iteration rule

to work out the expectation E[exp(iuLTt)]. Although many time-changed Lévy models

have been introduced such as the VGSV model and the CGMYSV model (see Carr et al.
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(2002)), none of these models admits the leverage effect. The reason why existing time-

changed Lévy models do not admits the leverage effect is straightforward. This is because

explicit solutions exists only when Tt is independent of Lt. Carr and Wu (2004) firstly

solve this problem by introducing a Leverage-measure. The dependence of the time-

changed process can be disentangled under the new measure. Deriving the characteristic

function of log return is converted into how to solve the Laplace transform of the activity

rate processes.

2.3 Combining the Leverage-measure with the COS

expansion method

In this section, we present how to use the Leverage-measure method to solve the charac-

teristic function of log return numerically.

2.3.1 Leverage-measure change

Solving the present model defined in (2.8) is extremely hard, especially due to the de-

pendence between Lt and Tt. According to Theorem 1 in Carr and Wu (2004), under a

probability measure P a time-changed Lévy process Yt = LTt has a representation of the

characteristic function:

φY (u) = E
[
eiuYt

]
= EQ

[
e−TtΨ(u)

]
= LTt (Ψ(u)) (2.10)
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where E[·] and EQ[·] denote expectations under measures P andQ, Ψ(·) is the characteristic

exponent of Lt, and LTt(·) is the Laplace transform of Tt. The associated Radon−Nikodým

derivative is

dQ

dP

∣∣∣∣
t

=Mt(u) = exp (iuYt + TtΨ(u))

With (2.10), the characteristic function φY (u) is the composition of the characteristic

exponent Ψ(·) and the Laplace transform of Tt. In another word, the dependence has

been disentangled. For Lévy process, Ψ(·) always has explicit solutions. Deriving the

Laplace transform LTt(·) is a familiar course to researchers of fixed income derivatives.

With the activity rate vt, we have

LTt(u) = E

[
exp

(
−u
∫ t

0

vsds

)]
(2.11)

which can be seen as the bond price if uvs is regarded as the short rate. As Ψ(·) is known

explicitly, the pricing problem relies on whether (2.11) can be solved explicitly.

According to Filipović (2001) and Carr and Wu (2004), for any Feller process vt with the

infinitesimal generator

Af(x) =1

2
σ2xf ′′(x) + (a′ − κx)f ′(x)+∫

R

(f(x+ y)− f(x)− f ′(x)(1 ∧ y))(m(dy) + xμ(dy)), (2.12)

the Laplace transform of the random time Tt is exponentially affine with respect to the

initial rate v0, namely

LTt(u) = exp (−b(t)v0 − c(t)) (2.13)
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where the functions b(t) and c(t) are the solutions to the following ordinary differential

equations (ODEs):

b′(t) = u− κb(t)− 1

2
σ2b(t)2 +

∫
R\0

(1− exp(−yb(t))− b(t)(1 ∧ y))μ(dy)

c′(t) = ab(t) +

∫
R

(1− exp(−yb(t)))m(dy) (2.14)

with the boundary conditions: b(0) = 0 and c(0) = 0.

To construct a geometric martingale under the risk-neutral measure, the underlying pro-

cess Xt needs to satisfy

E[exp(Xt)] = 1 a.s.

For example, Xt =
t
2
−Wt. Suppose we have a Lévy process (Xt)t≥0 which has the Lévy

triplet (a, σ2, π). According to Lévy-Khintchine representation, we know

Φ(u) = E[exp(iuXt)] = exp

(
iuat− 1

2
σ2u2t+ t

∫
R\{0}

(
eiux − 1− iux1|x|<1

)
π(dx)

)
where Φ(u) is the corresponding characteristic function of Xt. Based on (Xt)t≥0, we want

to construct a ‘new’ process (Lt)t≥0 such that

E[exp(Lt)] = 1 a.s.

where Lt = Xt − ξt. It is easy to derive ξ = 1
t
log Φ(−i) = −Ψ(−i). Hence, L has the

Lévy triplet of (a+Ψ(−i), σ2, π). We then can apply time-change to Lt.

For the present model defined in (2.8), the infinitesimal generator of vit is

Af(x) = (a− (κ+ δ)x) f ′(x) + βx

∫
R\{0}

(f(x+ y)− f(x)− f ′(x)(1 ∧ y))π(dy) (2.15)
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with

b(t) = u− κb(t) + β

∫
R+

(1− exp(−b(t)x))μ(dx)

c(t) = ab(t) (2.16)

where π(dy) = c|y|−α−1dy, c = − sec πα
2Γ(−α) , and δ =

c
α−1

. Finally, the Laplace transform

of Tt is

LTt(u) = E[exp(−uTt)] = E[exp(−uT 1
t ) exp(−uT 2

t )] = LT 1
t
(u) ∗ LT 2

t
(u) (2.17)

Thus far, the pricing problem seems quite easy as far as we are able to solve (2.16).

However, unless α = 2 there is no explicit solution to (2.16). This turns out to be very

tricky. Only diffusion models can be solved explicitly with the leverage-measure method,

but it is not necessary to do so. While we need to solve (2.16) for an arbitrary Lévy

process, b(t) and c(t) cannot be solved explicitly. For this reason, we need to try to find

numerical solutions.

2.3.2 Solving ODEs: b(t) and c(t)

Using numerical methods, we focus on solving b(t) and c(t). Note that c(t) only relies

on b(t). b(t) and c(t) cannot be solved separately. Only first-order ODEs are considered

here. Given

y′(t) = f(t, y), y(t0) = y0,
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the aim is to solve y(T), starting from t0. The time interval is discretized as [t0 : h : T ],

where h = T−t0
n

given the step number n. A common fourth-order Runge-Kutta method

can be represented as:

y(n+ 1) = y(n) +
h

6
(k1 + 3k2 + 2k3 + k4) (2.18)

where

k1 = f(tn, y(n))

k2 = f(tn +
1

2
h, y(n) +

h

2
k1)

k3 = f(tn +
1

2
h, y(n) +

h

2
k2)

k4 = f(tn + h, y(n) + hk1)

and tn+1 = tn + h. It is straightforward to solve b(t) with (2.18). The fourth-order

Runge-Kutta method is an efficient method for numerically solving non-stiff initial value

problems. Solving c(t) requires the whole information of b(t), so the Simpson’s 3/8 rule

is adopted to compute the integral. Given

c′(t) = f(t), c(t0) = c0, (2.19)

we solve it as:

c(t1) = c(t0) +
h

2
(f(t0) + f(t1))

c(t2) = c(t0) +
h

3
(f(t0) + 4f(t1) + f(t2))

c(tn) = c(tn−3) +
3h

8
(f(tn−3) + 3f(tn−2) + 3f(tn−1) + f(tn)) , n ≥ 3 (2.20)
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We can simply apply (2.18) and (2.20) together to the following ODEs:

b′(t) = Ψ(u)− κb(t) + β

∫
R
+
0

(1− e−b(t)x)μu(dx)

= Ψ(u)− κb(t) + sec
πα

2
β [(b(t) + iu)α − (iu)α] (2.21)

c′(t) = ab(t) (2.22)

2.3.3 COS Expansion method

After the Carr-Madan formula has been proposed, many amended algorithms are intro-

duced in order to speed up the calculation and enhance efficiency and stability. For

example, Chourdakis (2004) uses the fractional FFT method to reduce the computa-

tion time by one-half, and Kilin (2011) shows how caching technique can accelerate the

calculation. Several new approaches have been developed, which do not depend on the

Carr-Madan formula. For example, Lord et al. (2008) use a Convolution method to price

not only European options but also early-exercise options, which is also based on the FFT

method. All the methods above require a large number of sampling points, which means

these methods are not suitable to be combined with the Runge-Kutta method. Fang and

Oosterlee (2008) introduce a COS expansion method which is based on the Fourier-cosine

expansion. This method is fast and only needs a very limited number of sampling points.

Another crucial advantage of the COS method is that it can price many options with dif-

ferent strikes simultaneously while only computing the characteristic function once. This

is very important, as our framework relies numerical solutions of characteristic functions.
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Hence, the COS method can dramatically reduce the pricing and calibration time.

This general idea of the COS method is very simple. Considering an arbitrary function

f(θ) supported on [0, π], the cosine expansion of f(θ) can be expressed as:

f(θ) =
∑′∞

k=0
Ak cos(kθ) with Ak =

2

π

∫ π

0

f(θ) cos(kθ)dθ (2.23)

where
∑′ represents a corrected summation in which the first term is weighted by one-

half. The support of f(θ) can be extended to any finite interval [a, b] ∈ R. For example,

we can define θ = x−a
b−a and x = b−a

π
θ + a, and have

f(x) =
∑′∞

k=0
Ak cos

(
x− a

b− a
kπ

)
(2.24)

with

Ak =
2

b− a

∫ b

a

f(x) cos

(
x− a

b− a
kπ

)
dx (2.25)

Based on the cosine expansion we want to use the corresponding characteristic function

to recover f(θ), because most commonly used financial models have explicit characteristic

functions while density functions are unknown. Firstly, we use a truncated function φ1(u)

to approximate the true characteristic function φ(u):

φ1(u) =

∫ b

a

eiuxf(x)dx � φ(u) (2.26)

If the truncation is chosen appropriately, the approximation (2.26) is numerically inter-

changeable with φ(u). Since Ak can be rewritten as:

Ak =
2

b− a
Re

{
φ1

(
kπ

b− a

)
exp

(
−i akπ
b− a

)}
(2.27)
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As with (2.26), we can have

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
exp

(
−i akπ
b− a

)}
, (2.28)

and we get Ak � Fk. The implication of this is that we can obtain an approximation of

f(x):

f1(x) =
∑′∞

k=0
Fk cos

(
x− a

b− a
kπ

)
(2.29)

Then, we truncate (2.29) and obtain

f2(x) =
∑′N−1

k=0
Fk cos

(
x− a

b− a
kπ

)
(2.30)

Apparently, (2.30) shows that the corresponding characteristic function can be used to

recover the whole information of f(x) approximately. Suppose there is a European option

with strike price K and spot price S0. Denote x = log(S0/K) and y = log(St/K). Let

the payoff function be g(y). The option price with the time to maturity t is

C(x, t) = E[e−rtg(y)]

� e−rt
∫ b

a

g(y)f(y|x)dy

= e−rt
∫ b

a

g(y)
∑′∞

k=0
Ak(x) cos

(
y − a

b− a
kπ

)
dy

=
b− a

2
e−rt

∑′∞
k=0

Ak(x)
2

b− a

∫ b

a

g(y) cos

(
y − a

b− a
kπ

)
dy

=
b− a

2
e−rt

∑′∞
k=0

Ak(x)Vk (2.31)

where f(y|x) is the conditional density function, [a, b] is the truncation boundary, and

Vk =
2
b−a
∫ b
a
g(y) cos

(
y−a
b−akπ

)
dy. Applying truncation to (2.31), we can have

C2(x, t) =
b− a

2
e−rt

∑′N−1

k=0
Ak(x)Vk (2.32)
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We can also replace Ak with Fk and have a further approximation:

C3(x, t) =
b− a

2
e−rt

∑′N−1

k=0
Fk(x)Vk

= e−rt
∑′N−1

k=0
Re

{
φ

(
kπ

b− a

)
exp

(
−i akπ
b− a

)}
Vk (2.33)

(2.33) is a very general representation for any model which has an explicitly characteristic

function of log-return. With finite number N , we can compute C3(x, t) given Vk. As it

turns out, Vk can be solved analytically for most of the cases. For European options,

Vk =
2

b− a
K (χk(0, b)− ψ(0, b)) (2.34)

where χk(·) and ψk(·) are simple functions defined as:

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a

b− a

)
dy

ψ(c, d) =

∫ d

c

cos

(
kπ
y − a

b− a

)
dy

where [c, d] ∈ [a, b]. The choice of truncation boundary [a, b] is also crucial to the precision.

There are several choices of truncating the domain. Cumulants are used in Fang and

Oosterlee (2008). In our experiment, we follow the same procedure.

2.4 Empirical Performance

In this section, we use the market data to test the empirical performance of the present

model. The data set chosen is a sample of S&P 500 index option prices. We also select

several benchmark models with particular reasons, including the Variance Gamma (VG)
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model (see Madan et al. (1998)) and the Heston model (see Heston (1993)). The VG model

is a pure-jump model that is of infinite activity and provides non-Gaussian innovation.

The Heston model is a celebrated stochastic volatility model. The selection of benchmark

models will cover most of aspects of derivative pricing. Details can be found in the next

subsection.

2.4.1 Benchmark models

To compare the performance, we select six benchmark models including the Heston mod-

el, the Double Heston model, the Variance Gamma(VG) model, the time-changed VG

(VGSV) model, the finite moment Log Stable (LS) model, the one-dimensional time-

changed LS (LSSV1) model. Our new model is named as the two-dimensional time-

changed LS (LSSV2) model. The first five benchmark models all have explicit solutions

of characteristic function of log returns, so it is straightforward to compute option prices

with the FFT method. The last two models need to be solved numerically, based on the

algorithm introduced in this chapter. The reasons why the six benchmark models are

chosen are various, since we want to test the benefits of adding up stochastic volatili-

ty, multi-scale volatility components and the leverage effect. These benchmark models

have different characteristics that we want to test with. The categorized information is

presented in Table 2.1.

Compared with benchmark models, we can investigate the benefits of introducing stochas-

tic multi-scale volatility and incorporating the leverage effect. The comparison will be

28



Table 2.1: The category table of benchmark models

Heston Double Heston VG VGSV LS LSSV1 LSSV2

Stochastic Volatility (SV) Yes Yes No Yes No Yes Yes

Multi-scale SV No Yes N/A No N/A No Yes

Leverage Effect Yes Yes N/A No N/A Yes Yes

Explicit Solution Yes Yes Yes Yes Yes No No

done based on the results of daily calibration. Before applying the pricing framework, we

need to show that the framework is reliable and able to provide good accuracy. More-

over, the computational time has to be relatively small, in order to keep the tractability.

Characteristic functions of all benchmark models are provided in Appendix A.1.

2.4.2 Comparison of pricing accuracy

The numerical framework is of approximation when solving ODEs, so it needs to be

proved that numerically generated prices are accurate and reliable. To demonstrate this,

we firstly use the Heston model as the only benchmark model in this subsection. The

Heston model has an explicit characteristic function and can also be obtained via using

the leverage-measure change. Hence, we can compare the results given by both methods.

Suppose we have a drifted Brownian motion

Xt =Wt − 1

2
t ,

and define a CIR process

dvt = (a− κvt)dt+ η
√
vtdZt
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where E[dWtdZt] = ρdt. Then, we can define a time-changed Lévy model as

St = S0 exp ((r − q)t+XTt)

Tt =

∫ t

0

vsds (2.35)

We can modify the Heston model and rewrite it as

St = S0 exp

(
(r − q)t+

∫ t

0

√
vsdWs − 1

2

∫ t

0

vsds

)
dvt = (a− κvt)dt+ η

√
vtdZt (2.36)

Apparently, (2.35) and (2.36) refer to the same model. Applying the numerical method

proposed in this chapter to (2.35), we can obtain numerical solutions to option prices.

We can then compare with semi-closed solutions based on (2.36) as explicit characteristic

functions are known. Details of solving (2.35) can be found in Appendix A.2.

We use the FFT method and the COS method to produce option prices one after another.

A comparison of results is provided in Table 2.2, Table 2.3 and Table 2.4. Given different

maturities and moneyness, we assess the accuracy of our numerical method. A little

surprisingly, we find that our numerical method is even faster than the FFT method, given

the same accuracy. For example, the COS method gets a good accuracy of 1.33E−06

with 15.735 milliseconds while the FFT method only achieves 5.46E−06 with 37.038

milliseconds, for pricing short-term ATM options. Similar situations can be observed

for both the ITM options and the OTM options. The advantage of the COS method

is less for long-term options. For the long-term ITM option shown in Table 2.3, the

COS method needs 47.124 milliseconds to get 1.04E−06. The FFT method costs only

30



18.613 milliseconds to have a similar accuracy. This is because the long-term options

need more steps to solve the corresponding ODEs, which results in more computational

time. On the whole, the COS method does not require more computational time, even it

involves numerically solving ODEs. This is not counter-intuitive. If only a medium level

of accuracy is required, the FFT method is faster as it can compute the characterization

function directly. If a very good level of accuracy is required, the COS method can provide

prices even faster than the FFT method.

The above experiment demonstrates the accuracy and fast speed of our pricing framework.

We also provide an additional test on how it performs with our new model. Unlike the

Heston model, neither the LSSV1 nor the LSSV2 model has an explicit solution. Hence,

it is hard to evaluate the accuracy of option prices. However, with the Heston case, it is

believed that our numerical method is able to provide accurate prices.

Despite the huge computation time, we can use Monte Carlo simulation to compute option

prices. The first thing that should be confirmed is how to sample a specific distribution.

The infinitely divisible distribution we have is the α-stable distribution. The sampling

algorithm is given in Appendix A.3. We simply use the Euler scheme in the simulation.

The simulation of the time-change can be easily done with the fact that Xt and t
1/αX1

have the same distribution. If α = 0.5, it becomes the familiar case of Brownian motion.

Table 2.5 shows the comparison of pricing results between the simulation method and the

COS method. LSSV1 and LSSV2 models are used in the comparison, as both of them

do not have explicit characteristic functions. It is suggested that the COS method can
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Table 2.2: The comparison of pricing accuracy of the Heston model (At-the-Money)

The upper panel presents the pricing errors of a short-term European call with the maturity T = 1.

The lower panel depicts the pricing errors of a long-term European call with the maturity T = 10.

Both options have the same spot price S0 = 100 and strike price K = 100. The reference option

values are 5.785155450 and 22.318945574, respectively. Reference values are obtained by using the

FFT method with N = 220. Computational times are presented in milliseconds (msec.). 20 steps are

used to solve ODEs for the COS method. Parameters of the Heston model are κ = 1.5768, a = 0.0628,

η = 0.5751, ρ = −0.5711 and v0 = 0.0175.

COS FFT

N error time(msec.) N error time(msec.)

64 0.001415 11.051 4096 0.001433 5.699

96 1.95E-05 13.281 8192 7.15E-05 10.634

128 3.87E-06 13.768 16384 3.36E-05 11.207

160 1.33E-06 15.735 32768 1.48E-05 19.285

192 1.32E-06 35.077 65536 5.46E-06 37.038

N error time(msec.) N error time(msec.)

64 0.0049 36.825 4096 3.25E-04 5.698

96 4.96E-04 40.675 8192 1.59E-05 10.248

128 1.66E-05 44.219 16384 7.39E-06 11.193

160 1.13E-07 32.141 32768 3.14E-06 18.402

192 1.13E-07 52.428 65536 1.02E-06 37.060

32



Table 2.3: The comparison of pricing accuracy of the Heston model (In-the-Money)

The upper panel presents the pricing errors of a short-term European call with the maturity T = 1.

The lower panel depicts the pricing errors of a long-term European call with the maturity T = 10.

Both options have the same spot price S0 = 100 and strike price K = 90. The reference option values

are 12.70953156 and 27.084936345, respectively. Reference values are obtained by using the FFT

method with N = 220. Computational times are presented in milliseconds (msec.). 20 steps are used

to solve ODEs for the COS method, expect for those with numbers shown in brackets. Parameters of

the Heston model are κ = 1.5768, a = 0.0628, η = 0.5751, ρ = −0.5711 and v0 = 0.0175.

COS FFT

N error time(msec.) N error time(msec.)

64 2.26E-04 10.518 4096 5.38E-04 0.527

96 3.67E-05 11.183 8192 1.20E-04 10.399

128 1.32E-06 13.175 16384 3.56E-05 12.321

160 2.99E-06 15.427 32768 4.91E-06 18.644

192(40) 5.31E-07 20.466 65536 1.99E-06 36.740

N error time(msec.) N error time(msec.)

64 0.012 35.016 4096 2.56E-04 5.569

96 7.43E-04 38.929 8192 5.74E-05 10.376

128 1.67E-05 43.377 16384 1.70E-05 10.211

160 1.04E-06 47.124 32768 2.35E-06 18.613

192 1.35E-07 55.703 65536 9.49E-07 38.553
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Table 2.4: The comparison of pricing accuracy of the Heston model (Out-of-the-Money)

The upper panel presents the pricing errors of a short-term European call with the maturity T = 1.

The lower panel depicts the pricing errors of a long-term European call with the maturity T = 10.

Both options have the same spot price S0 = 100 and strike price K = 110. The reference option

values are 1.787134785 and 18.243849718, respectively. Reference values are obtained by using the

FFT method with N = 220. Computational times are presented in milliseconds (msec.). 20 steps are

used to solve ODEs for the COS method, expect for those with numbers shown in brackets. Parameters

of the Heston model are κ = 1.5768, a = 0.0628, η = 0.5751, ρ = −0.5711 and v0 = 0.0175.

COS FFT

N error time(msec.) N error time(msec.)

64 4.18E-04 10.749 4096 3.59E-04 5.401

96 4.64E-05 11.729 8192 1.70E-04 10.716

128 4.36E-05 13.585 16384 7.37E-05 11.721

160(40) 1.73E-05 19.417 32768 2.55E-05 23.441

192(40) 1.72E-05 28.134 65536 1.28E-06 37.079

N error time(msec.) N error time(msec.)

64 0.0063 35.034 4096 8.10E-05 5.607

96 5.86E-04 38.839 8192 3.79E-05 10.361

128 1.24E-05 42.772 16384 1.64E-05 11.876

160 6.93E-07 46.478 32768 5.66E-06 18.425

192 4.52E-07 51.415 65536 2.84E-07 38.005
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provide accurate option prices across different moneyness.

Table 2.5: The comparison of the Monte Carlo method against the COS method: LSSV1

and LSSV2

The upper panel presents the European call prices of the LSSV1 model given by the MC method and

the COS method. The lower panel depicts the European call prices of the LSSV2 model. The spot

price is 10. The risk-free rate is 0.03, and the dividend rate is 0.04. The maturity is 2 years. The

strikes for ITM, ATM and OTM are 8, 10 and 12, respectively. Parameters of the LSSV1 model are

κ = 3.2523, a = 0.1415, α = 1.8323, β = 0.2252 and v0 = 0.0499. Parameters of the LSSV2 model

are κ1 = 3.2523, κ2 = 0.5326, a1 = 0.1115, a2 = 0.0235, α1 = 1.6323, α2 = 1.4382, β1 = 0.2252,

β2 = 0.5323, v10 = 0.0369 and v20 = 0.0445. The number of sample paths in each MC trial is 106

and the number of steps is 100. The COS method uses 128 points in all computation work.Numbers

reported in brackets are the corresponding standard errors.

LSSV1 MC COS

ITM 2.3218 (0.0023) 2.3226

ATM 1.1398 (0.0016) 1.1393

OTM 0.3923 (0.0008) 0.3942

LSSV2 MC COS

ITM 2.4268 (0.0054) 2.4332

ATM 1.2758 (0.0050) 1.2698

OTM 0.5625 (0.0049) 0.5638
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2.4.3 Comparison of daily calibration

Having demonstrated the good accuracy of the numerical pricing framework, we can now

focus on the calibration problem to show the empirical performance of our new model.

We employ a daily calibration procedure, as it has been widely used by many academic

research. To measure the distance between the model prices and market prices, we use

the weighted sum of squared pricing errors (WSSE). Data filtering is also important to

investigate the empirical performance. The idea of data filtering is that we want to

abandon prices which show too much noise.

For the empirical study we propose, European S&P 500 options data are collected from

1998 to 2003 from OptionMetrics. We use implied volatilities to backout the correspond-

ing option prices. Considering the trading volume, only out-of-the-money options are

selected, which means that either call options or put options are adopted according to

the moneyness. Each quoted option price was matched with the underlying index price

which has been adjusted for dividends and splits. The risk-free rates come from T-bill

rates and the whole term-structure is generated by interpolation. Data sets are selected

carefully from the original data as data filtering also has an impact on evaluating the

performance. Option prices with extreme small maturities and moneyness are abandoned

as well as those that violate the put-call parity.

Daily implied volatilities of the S&P 500 index options across a variety of strike prices and

maturities are chosen as the dataset used in this experiment. The sample period is from

January 7, 1998 to December 29, 2003. The corresponding interest rates are obtained from
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Bloomberg. The implied volatilities are computed based on standard European options

on the S&P 500 index (SPX) which is the most liquid European options traded.

Following Bakshi et al. (1997a) and Huang and Wu (2004), similar data-filtering rules

are applied to trim the raw implied volatility data. First, only Wednesday prices are

used to reduce the impact of the day-of-the-week effect. This is widely applied by many

empirical literature. Second, options with very short maturity, say seven business days,

are eliminated. Third, implied volatilities that are either larger than 70% or option prices

that are less than 0.05 dollar are all discarded. After trimming the raw data, there are 361

days of volatility surface data left and 81380 option quotes. Finally, only out-of-the-money

option prices are selected, because of the better liquidity.

A comparison of computation time used for different methods is shown in Table 2.6. The

reason why we compare the computation time in this subsection is because our framework

has a special advantage of accelerating the calibration procedure. The FFT method can

generate a series of prices with different strikes simultaneously, which is a quite useful

benefit for calibration. Our framework admits the same thing. By randomly selecting

one trading day in our dataset, we proceed the calibration with both the FFT method

and the COS method. We even “force” the FFT method to solve the LSSV1 model and

the LSSV2 model. Although the computational time will be extremely large, we just

provide it for illustrative purpose. With Table 2.6, the Heston model is said to be the

fastest model despite the method used. For the LSSV1 model, it causes about two times

more to produce option prices. The LSSV2 model requires 425 seconds to finish the
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calibration, which is about fifteen time larger than that of the Heston model. Since the

LSSV2 model has a large dimension of parameter space, it is not surprising to have more

computational time. For example, the LSSV2 model uses 525 times of search to find the

optimal parameter set while the Heston model only searches 373 times.

Table 2.6: A Comparison of computational time of daily calibration for the COS method

and the FFT method

The computational time is measured in seconds. The Number of search means how many times the

calibration costs to find the optimal parameter set. The FFT method uses 4096 sampling points, and

the COS method uses 128 sampling points.

Heston LSSV1 LSSV2

Time (sec.) Number of search Time (sec.) Number of search Time (sec.) Number of search

COS 2.765 373 8.909 320 43.235 525

FFT 2.331 374 8.33E4 321 6.36E5 532

A summary of the implied volatility data is provided in Table 2.7 and Table 2.8. According

to Table 2.7, the number of OTM put quotes is a little more than that of OTM call quotes.

The most active trades centralize at prices with maturity within (30, 90) and maturity

larger than 180 days. Table 2.8 shows the volatility smirk exhibited commonly in index

option markets.

The calibration procedure is implemented by minimizing the weighted sum of squared

pricing errors for each benchmark model. Let Θ denote the optimal parameter set, and
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Table 2.7: Numbers of implied volatilities categorized by moneyness and days to maturity

DTM< 30 30 <DTM< 90 90 <DTM< 180 DTM> 180 ALL

S/X < 0.975 4492 9601 5757 17139 36989

0.975 <S/X< 1 1100 1943 541 1551 5135

1 <S/X< 1.025 1049 1853 523 1481 4906

1.025 <S/X< 1.05 847 1482 482 1335 4146

1.05 <S/X< 1.075 598 1196 446 1319 3559

S/X > 1.075 2272 6925 4203 13245 26645

ALL 10358 23000 11952 36070 81380

Table 2.8: Average implied volatility categorized by moneyness and days to maturity

DTM< 30 30 <DTM< 90 90 <DTM< 180 DTM> 180 ALL

S/X < 0.975 0.3173 0.2290 0.2006 0.1908 0.2344

0.975 <S/X< 1 0.1959 0.1999 0.2089 0.2152 0.2050

1 <S/X< 1.025 0.2141 0.2109 0.2185 0.2215 0.2163

1.025 <S/X< 1.05 0.2363 0.2266 0.2259 0.2266 0.2289

1.05 <S/X< 1.075 0.2648 0.2415 0.2346 0.2308 0.2429

S/X > 1.075 0.5905 0.3647 0.3150 0.2774 0.3869

ALL 0.3032 0.2454 0.2339 0.2270 0.2524
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it should be implemented as

Θ = argmin

N∑
i=1

wmsei

where N is the number of maturities, wmsei is the weighted sum of squared pricing errors

given the i-th maturity. wmsei is computed as:

wmset = min
1

Ni

∑
i=1

ωije
2
ij

where Ni is the number of prices with the same maturity Ti, ωij is the weighting coefficient

of the j-th option data, and eij is the j-th pricing error. For each trading day, all trimmed

data of the current volatility surface are used for calibration. To minimize the weighted

sum of squared pricing errors, a global search algorithm is employed. The weighting matrix

is essential to calibration results. Most related literature chooses the identity matrix

in calibration. A concern should be raised, as with the identity matrix OTM options

take less weights in the calibration; however, OTM options should play an important

role because of the good liquidity. Weighting matrix can also balance the contributions

of different maturities. There are many possible choices on the weighting matrix. If

the pricing error is measured by implied volatility, an identity weighting matrix will

work; however, calculating implied volatilities is time-consuming. Some research focus on

deriving asymptotic implied volatility, which can be applied to enhance the calibration

performance. In this section, we use a weighting matrix obtained by using regression with

maturity and moneyness. The calibration procedure aims to find the equivalent measure

that best fits the current volatility surface. To speed up the calibration, the calibrated

parameters are used as the initial guess for the calibration of the successive trading day.
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Table 2.9 presents the calibration results of all models. For each calendar year, the sum of

WSS errors are reported for each model. Obviously, the Heston model and LSSV2 model

are the two candidates of the winner. It is surprised to see that the Double Heston model

does not provide a better performance. In principle, a model with more parameters should

outperform its simplification; however, the calibration procedure involves a numerical

search in the parameter space. For example, the Double Heston model has 10 parameters

while the Heston model only has 5 parameters. It is much harder to search in a 10-

dimensional space than in the 5-dimensional space. The Double Heston model might have

the potential to better fit the volatility surface. However it needs more care to implement

the calibration. In our experiment, we do not set up a particular search method for the

Double Heston model. The high pricing errors of the Double Heston might be due to that

the corresponding calibration stops with a local minimization. Our LSSV2 model should

suffer from the same problem.

Compared with the VG model and the VGSV model, it is suggested that introducing

stochastic volatility can significantly reduce the pricing errors. The average pricing errors

of the VGSV model is about 60% of those of the VG model. The LS model also exhibits

good performance, which coincides with the results in Carr and Wu (2003). With a

parsimonious model that only has two parameters, the pricing error is only about two

times that of the Heston model. The benefit of introducing stochastic volatility for the LS

model is not very large, as the improvements from LSSV1 and LS are only medium. This

might be explained by the restricted dependence imposed by the LSSV1 model. Although
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the LSSV1 model admits stochastic volatility, there is only one source of innovation.

Compared with the LSSV2 model, the enhancement is very impressive. Apparently,

introducing another dynamics is obviously useful as the LSSV2 model always significantly

outperforms the LSSV1 model.

Table 2.9: Daily calibration results of all models

Heston Double Heston VG VGSV LS LSSV1 LSSV2

1998 0.2652 0.8402 0.8545 0.4444 0.4554 0.3589 0.2572

1999 0.2865 0.6050 0.8188 0.4205 0.4831 0.3790 0.2983

2000 0.3489 0.7609 1.0065 0.4355 0.3789 0.4712 0.2622

2001 0.1563 0.7388 0.9115 0.5125 0.2901 0.2783 0.2097

2002 0.2959 0.2536 0.8369 0.4979 0.4242 0.3835 0.2274

2003 0.2798 0.4566 0.8749 0.5039 0.3820 0.3602 0.3047

Except for comparing the pricing error, the stability of calibrated parameter set is another

crucial criterion. In Table 2.10, we can compare the optimal parameter sets of all models.

Along with the optimal parameters reported, we also provide the corresponding standard

deviations in brackets. For example. the Heston model shows very good stability. Only

the long-run mean κ has a large standard deviation of 1.269. The Double Heston model

is derived in order to decompose the volatility and capture the multi-variate volatility

components. As expected, the mean-reverting speeds should be different. The effect of a

long-run and a short-run should imply that either κ1 or κ2 is large with a small counter-

part; however, we do not observe such an expectation from Table 2.10. For the LSSV2

model, the mean-reverting speed parameters κ1 and κ2 are 3.325 and 1.805. Observing

42



the average variance parameters, we have a1 = 0.067 and a2 = 0.002. This coincides

with our assumption of the large long-run volatility component and the small short-run

volatility component. In all, the weighted pricing errors of the Heston model is 0.2721,

which is slightly more than 0.2599 for the LSSV2 model. This does not suggest that

the new model can outperform the Heston model, as the pricing errors are in the same

level; the stability of LSSV2 is better according to Table 2.9. From the example of the

Double Heston model, the calibration result can be expected to improve because of its

large parameter space. If some ad-hoc calibration technique is used, the LSSV2 model

has the potential to achieve a better result.

The proposed model exhibits better potentials to explain an important stylized features

observed from the market. It is suggested by empirical studies that volatility has mul-

tiple components such as long-run and short-run effects. The evolution of volatility is a

composition of long-run stable process and a short-run volatile process. Many literature

have tried to propose multi-dimensional processes to capture such a feature. For example,

the double-Heston model employs two CIR processes and splits the multiple components

of volatility in a qualitative sense. Looking at the optimal parameter set of the LSSV2

model, it is believed that the intuition of the modelling has been realized by the model.

For example, the αs of v1t and v2t are very different. α1 is 1.812, which suggests that

the short-run volatility is more smooth and of less large movements; α2 is 1.183, which

indicates that the long-run volatility has more frequent jumps. As expected, the long-run

volatility has large mean-reverting speed, small volatility of volatility and the short-run
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volatility has small mean-reverting speed with large volatility of volatility. The Double

Heston model does not exhibit such a performance while it is hard to tell the difference

between the variance processes v1t and v2t .

2.5 Conclusion

In this chapter, we develop a sophisticated numerical pricing framework that can be

applied to any time-changed Lévy model. The random time process is allowed to be

dependent on the spot price process so that the leverage effect is incorporated. The

numerical framework provides accurate option prices within relatively short computational

time. With the numerical pricing framework, a time-change Lévy model is proposed

which is of multi-scale stochastic volatility and leverage effect. Based on real option

data, numerical experiments of calibration are implemented to show the outstanding

performance of the present model.
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Chapter 3

Dynamic optimal portfolio choice in

a jump-diffusion model with

investment constraints

3.1 Introduction

In this chapter, we solve the optimal dynamic portfolio choice problem in a jump-diffusion

model with some realistic constraints on portfolio weights, such as the no-short-selling con-

straint and the no-borrowing constraint. The dynamic portfolio choice problem without

portfolio constraints in pure-diffusion models is prompted by the seminal work of Merton

(1969, 1971) and Samuelson (1969), and is further developed by Karatzas et al. (1987),

46



Kim and Omberg (1996), Wachter (2002), Detemple et al. (2003) and Liu (2007), among

others. Wachter (2010) and Brandt (2009) are good references for portfolio choice prob-

lems. The constrained dynamic portfolio choice problem in pure-diffusion models is first

studied by Karatzas et al. (1991), He and Pearson (1991) and Xu and Shreve (1992). In

general, a market with portfolio constraints is incomplete. It is usually a daunting task

to solve such a portfolio choice problem in an incomplete market, either through the HJB

equation (due to limits on dimensionality) or the martingale-duality method (as there are

infinitely many martingale measures). To overcome the market incompleteness caused

by portfolio constraints, Cvitanic and Karatzas (1992) propose a general approach to

solve dynamic portfolio choice in the presence of various constraints on portfolio weights,

including no-short-selling constraints and no-borrowing constraints.

More precisely, by appropriately adjusting the risk-free rate and the drift terms of risky as-

set prices, Cvitanic and Karatzas (1992) convert the constrained portfolio choice problem

in the original incomplete market into an unconstrained one in a set of fictitious complete

markets. Hence, solving the optimal portfolio problem in the original incomplete market

reduces to the one in a set of new complete markets to which the standard martingale

method developed for complete pure-diffusion markets can be applied. Furthermore, it

has been shown that the optimal consumption and portfolio rule in the original market is

identical to those which are optimal in the worst of all the fictitious markets. However,

it is generally hard to find the worst fictitious market and the corresponding optimal

consumption and portfolio strategy in the presence of a large number of state variables.
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For this reason, Bick et al. (2013) have recently developed some efficient simulation-based

approximation algorithms to solve constrained consumption-investment problems in pure-

diffusion markets via the martingale-duality approach.

In those models mentioned above, it is standard to assume that asset prices follow pure-

diffusion processes, primarily due to their analytical tractability. However, much recent

research in finance has documented empirical evidence of jumps in stock returns. See,

for example, Bakshi et al. (1997b), Bates (2000) and Eraker et al. (2003). With jumps,

an asset return model can explicitly allow for sudden but infrequent market movements

of large magnitude, and thus capture the “skewed” and “fat-tailed” features of stock

return distributions. Many empirical and theoretical studies find that the jump risk has a

substantial impact on portfolio choice, risk management and option pricing. See Merton

(1976), Liu et al. (2003) and Duffie et al. (2000), for example. More specifically, recent

portfolio choice papers in jump-diffusion models demonstrate that optimal portfolios held

by an investor facing jump risks differ markedly from those in the absence of jumps, and

that the economic loss of ignoring jumps may be substantial. For more detailed analysis,

see Liu et al. (2003) and Das and Uppal (2004).

Given the substantial impact of jumps on an investor’s asset allocation decision, this

chapter solves the optimal portfolio choice problem in realistic settings involving jumps in

stock returns, portfolio constraints and potentially a large number of state variables. As

demonstrated by Bardhan and Chao (1996), once unpredictable jumps are incorporated,

a model with or without portfolio constraints is inherently incomplete, regardless of the
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number of traded stocks. This is in striking contrast to pure-diffusion models which

can be completed by including more stocks. Hence, unlike a pure-diffusion model with

portfolio constraints, the incompleteness caused by jumps in a jump-diffusion model can

not be removed through the “fictitious completion” techniques in Karatzas et al. (1991)

and Cvitanic and Karatzas (1992) and thus, the martingale duality approaches they used

do not directly apply to a jump-diffusion model. In this chapter, we solve the optimal

portfolio choice problem in a multi-asset jump-diffusion model with portfolio constraints.

To be more specific, we first establish equivalent optimality conditions similar to those in

Cvitanic and Karatzas (1992), which convert the constrained portfolio choice problem in

the original jump-diffusion model into an unconstrained one in a set of fictitious jump-

diffusion models. Then, we apply a portfolio weight decomposition approach recently

developed by Jin and Zhang (2012) to solve the portfolio choice problem in jump-diffusion

models.

This chapter is related to several papers in the literature on portfolio choice problems in

a jump-diffusion setting. Our model, however, differs from those in Liu et al. (2003) in

that they consider single-stock jump-diffusion models with no portfolio constraints while

we consider multi-asset jump-diffusion models with some realistic portfolio constraints.

In Das and Uppal (2004) and Ait-Sahalia et al. (2009), meanwhile, they solve the port-

folio selection problems in jump-diffusion models which can include a large number of

assets. However, in their models, there is only one type of jump, all of the coefficients in

stock return processes are constants and there are no portfolio constraints. In contrast,
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we consider the optimal portfolio strategies in a multi-asset jump-diffusion model which

includes a large number of assets, state variables and portfolio constraints.

This chapter is also related to Jin and Zhang (2012) on portfolio choice problems in a

jump-diffusion setting, in which the authors develop decomposition methods for portfolio

weights to obtain tractable solutions to optimal portfolio strategies in a jump-diffusion

model, which includes a large number of assets and state variables. But only one portfolio

constraint is considered. The constraint is that the number of traded risky assets is smaller

than the sum of the number of diffusions and jumps, which is the case of an incomplete

pure-diffusion market considered in Karatzas et al. (1991). In contract, we incorporate

more general constraints in a jump-diffusion model.

In short, our work contributes to the dynamic portfolio choice literature by extending

the pure-diffusion model in Cvitanic and Karatzas (1992) to a jump-diffusion model;

incorporating more general portfolio constraints in Jin and Zhang (2012). To the best

of our knowledge, our work is the first one to consider general and realistic constrained

portfolio choice problems in jump-diffusion models with a large number of assets and state

variables.

The remaining part of this chapter is organized as follows. In the next section, we lay out

the framework of the constrained dynamic portfolio choice problem in a jump-diffusion

model, construct an unconstrained dynamic portfolio choice problem in a set of fictitious

markets and then present our results of equivalent optimality conditions. Section 3.3 ap-

plies the theoretical results developed in Section 3.2 to no-short-selling and no-borrowing
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constraints respectively, and compares the method in the present chapter with the stan-

dard HJB equation method. Section 3.4 applies the theoretical results to several numerical

examples. Section 3.5 concludes the chapter. All proofs are provided in the appendix.

3.2 The portfolio choice problem

This section describes the investment problem for an investor in allocating her wealth

between a set of risky assets and one risk-less asset in a jump-diffusion model, with

investment constraints. The investor is seeking to maximize the expected utility from

intermediate consumption and terminal wealth.

3.2.1 The constrained portfolio choice problem

We fix a complete probability space (Ω,F ,P) and a filtration {Ft} satisfying the usu-

al conditions. In the economy assumed, we use a l-dimensional state variable Xt =

(X1,t, ..., Xl,t)
� to capture the stochastic variation in investment opportunities. Stochas-

tic volatility and interest rates are typical examples of state variables. Here we use � to

denote the transpose of a matrix or a vector. For analytical tractability, as illustrated in

Jin and Zhang (2012) that flexible functions of state variables can be used, we assume

that state variables Xt follow a pure diffusion process

dXt = bx(Xt)dt+ σx(Xt)dB
X
t
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where BX
t = (BX

1,t, ..., B
X
l,t)

� is an l-dimensional standard Brownian motion, bx(Xt) is an

l-dimensional vector function and σx(Xt) is an l × l matrix function of Xt.

An investor with a planning horizon [0, T ] seeks to allocate her wealth between one risk-

less asset and n risky securities with portfolio constraints described below. The risk-less

asset, called the bond, has a price S0,t which evolves according to the differential equation

dS0,t = S0,tr(Xt)dt

S0,0 = 1 (3.1)

The prices of risky assets follow the dynamics

dSi,t = Si,t−[bi(Xt)dt+ σbi (Xt)dB
S
t + σqi (Xt)(Y • dNt)] for i = 1, ..., n (3.2)

where BS
t = (BS

1,t, ..., B
S
d,t)

� is a d-dimensional standard Brownian motion correlated with

BX
t with a d× l correlation matrix ρt, and Nt = (N1,t, ..., Nn−d,t)� is a (n−d)-dimensional

multivariate Poisson process, with Nk,t denoting the number of type k jumps up to time

t. σbi (Xt) is the d-dimensional diffusion coefficient vector and σqi (Xt) is the (n − d)-

dimensional jump coefficient vector. Y = (Y1, ..., Yn−d)� is a (n − d)-dimensional vector

and Y • dNt denotes the component-wise multiplication of Y and dNt. More precisely,

Y • dNt = (Y1dN1,t, ..., Yn−ddNn−d,t)�, where Yk denotes the size of the type k jump. In

particular, the Brownian motions represent frequent small movements in stock prices,

while the jump processes represent infrequent large shocks to the market.

For illustrative purposes, we assume that Nk has finite activity with stochastic intensity

λk, and the size Yk of the type k jump has probability density Φk(t, dx).
1 For tractability,

1The results can be extended to a model with infinite activity by replacing λk(t)Φk(t, dx) with a Levy
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we assume λk = λk(Xt) is a non-negative function of state variables Xt, and represents

the rate of the jump process at time t, and Φk(t, dx) is Ft-predictable and denotes the

probability of getting a jump size x if there is a jump at time t. We use Ak to denote the

support of size of the k-th jump. In particular, we set Ak = (0,∞) for a positive jump,

Ak = (−1, 0) for a negative jump, and Ak = (−1,∞) for a mixed jump.

To set up the constrained portfolio choice problem, we follow the approach of Cvitanic

and Karatzas (1992) to model portfolio constraints. More precisely, we fix throughout

a non-empty, closed and convex set K in Rn to model the portfolio constraints. Let

πt = (π1,t, ..., πn,t) ∈ K denote a trading strategy, where πi,t is the proportion of wealth

invested in the i-th risky asset held at time t and Ft-predictable. Consider, for example, a

model where the short-selling of all stocks is prohibited. Then, the set K can be written as

K = {π = (π1, ..., πn} ∈ Rn; πi ≥ 0, i = 1, ..., n}. In the case of prohibition of borrowing,

the set K can be expressed as K = {π = (π1, ..., πn} ∈ Rn;
∑n

i=1 πi ≤ 1}.

We now consider an investor with utility function U(x) for both consumption and terminal

wealth and endowed with initial wealth W0, which is invested in the above-mentioned

n + 1 assets. For the given consumption rate ct and the portfolio policy πt ∈ K, the

corresponding wealth process Wt evolves as

dWt = rWtdt− ctdt+Wtπt(b− r1n)dt+WtπtΣbdB
S
t +Wt−πt−Σq(Y • dNt) (3.3)

where b = (b1(Xt), .., bn(Xt))
� and 1n is the n-dimensional vector of ones. Here Σb denotes

the n × d matrix with σbi (Xt) being its i-th row and Σq is the n × (n − d) matrix with

measure.
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σqi (Xt) being its i-th row.

A pair of consumption rate c and portfolio rule π ∈ K is admissible if the corresponding

wealth process satisfies Wt ≥ 0 almost surely. We use A(w0) to denote the set of all

admissible pairs of consumption rate and trading strategies. As in Bick et al. (2013), the

traditional Merton’s problem is to maximize

J(0,W0, X0) = max
(c,π)∈A(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT )

]
,

where the constant β > 0 is the subjective time preference rate, and α > 0 denotes

the weight of bequests relative to consumption. Applying the standard optimal control

method, we can derive the optimal portfolio weights, π, and the corresponding indirect

value function, J , of the investor’s problem following the HJB equation below (See Jin

and Zhang (2012)):

βJ = max
(c,π)∈A(w0)

{
U(c) + Jt +

1

2
W 2πΣbΣ

�
b π

�JWW + [W (π(b− r1n) + r)− c]JW + bxJX

+WπΣbρtσ
x�JWX +

1

2
Tr

(
σxσx�JXX� +

n−d∑
k=1

E [J(W +WπΣqkYk)− J(W )]

}
.

(3.4)

3.2.2 The fictitious unconstrained portfolio choice problem

In this section, by following Cvitanic and Karatzas (1992), we embed the original con-

strained portfolio choice problem introduced in the previous section in an appropriate

family of fictitious unconstrained ones.

Consider a market consisting of one riskless asset and m risky assets, the latter being
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driven by an n-dimensional Brownian motion. In such a market, incompleteness arises

when the risky assets cannot span the sources of uncertaintynamely, m < n. To overcome

this problem, Karatzas et al. (1991) perform a “fictitious completion” of the incomplete

market by introducing n − m additional stocks into the market and then demonstrate

that if the drift coefficients of the n − m fictitious stocks are chosen in an appropriate

manner, the optimal portfolio weight in the original market can be obtained by solving the

portfolio choice problem in the fictitious market via the martingale method. In Cvitanic

and Karatzas (1992), after the fictitious completion, the interest rate and the drift terms

of n stock prices are adjusted, and then, by applying the martingale method developed

for a complete market, the constrained portfolio choice problem is solved, with investment

being restricted to only the first m stocks. Jin and Zhang (2012) extend the method of

fictitious completion to a market with asset returns following jump-diffusion processes. As

the new market remains incomplete after fictitious completion due to unpredictable jumps,

the martingale method used in Cvitanic and Karatzas (1992) is not easily applicable.

First of all, we lay out some notation for an unconstrained portfolio choice problem. For

a constraint on portfolio weights given by a set K, the support function of the set K is

defined by

δ(x) = sup
π∈K

(
−

n∑
i=1

πixi

)
, ∀ x = (x1, ..., xn) ∈ Rn,

with its effective domain denoted by

K̃ = {x = (x1, ..., xn) ∈ Rn; δ(x) <∞}
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In particular, for the case of prohibition of short-selling, we can show that δ(x) can be

represented as

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x1 ≥ 0, ..., xn ≥ 0,

∞, otherwise.

Hence, K̃ = {x = (x1, ..., xn) ∈ Rn; x1 ≥ 0, ..., xn ≥ 0}.

Given a ν = (ν1, ..., νn) ∈ K̃, we now introduce a new fictitious financial market in which

there are no portfolio constraints, but the asst prices are adjusted in the same way as that

in Cvitanic and Karatzas (1992). More specifically, the bond price S
(ν)
0,t evolves according

to the differential equation

dS
(ν)
0,t =S

(ν)
0,t [r(Xt) + δ(ν)]dt,

S
(ν)
0,0 =1.

The prices of risky assets follow the linear stochastic differential equation

dS
(ν)
i,t =S

(ν)
i,t−
[
(bi(Xt) + νi + δ(ν))dt + σbi (Xt)dB

S
t + σqi (Xt)(Y • dNt)

]
with S

(ν)
i,0 = Si,0, i = 1, ..., n.

In order to understand how the fictitious-market approach works, we consider the case

of the no-short-selling constraint introduced above. Hence, the constrained consumption-

investment problem in the original market is converted into an unconstrained one in a

set of fictitious markets via the adjustment of interest rates and the drift terms of stock

prices. As illustrated in Proposition 3.1 below, the optimal consumption and portfolio

strategy in the original market with investment constraints can be obtained by optimally
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adjusting the interest rate and the stock price drifts in the fictitious markets, such that

the stocks are relatively attractive and hence the investor holds positive positions in all

stocks in the worst fictitious market. As a result, the optimal consumption and portfolio

strategy in the worst fictitious market is admissible in the original market, leading to an

optimal solution to the original portfolio choice problem.

For expository purposes, we will denote by M and Mv the original market and the

fictitious market, respectively, with ν ∈ K̃. Given a pair of consumption rate c and

portfolio rule π in the market Mv, the corresponding wealth process Wt(ν) satisfies

dWt(ν) = (r + δ(ν))Wt(ν)dt− ctdt+Wt(ν)πt(b+ ν − r1n)ds

+Wt(ν)πtΣbdB
S
t +Wt−(ν)πt−Σq(Y • dNt)

= rWt(ν)dt− ctdt+Wt(ν)πt(b− r1n)dt+Wt(ν)(δ(ν) + πsν)dt

+Wt(ν)πtΣbdB
S
t +Wt−(ν)πt−Σq(Y • dNt), (3.5)

with W0(ν) = W0. Analogously, we denote by Aν(w0) the set of pair of consumption rate

c and portfolio rule π for which Wt(ν) ≥ 0, ∀t ∈ [0, T ]. Then, the unconstrained portfolio

choice in the market Mv can be written as

J (ν)(0,W0, X0) = max
(c,π)∈Aν(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT (ν))

]
.

In contrast to the original market M, the investor solves an unconstrained optimal port-

folio choice problem in the fictitious market Mv given ν ∈ K̃. In other words, we convert

the constrained portfolio choice problem in the original market M into an unconstrained

one in a set of fictitious markets Mv with ν ∈ K̃. The proposition below presents an

57



equivalent optimality condition in the two problems.

Proposition 3.1. If there exists one ν∗ ∈ K̃ and optimal consumption-portfolio strategy

(c∗, π∗) in the market Mν∗ such that π∗ ∈ K̃ and δ(ν∗) + π∗ν∗ = 0, then (c∗, π∗) is a

pair of consumption and optimal portfolio strategy in the market M. And furthermore,

the variable ν∗ ∈ K̃ above solves the minimization problem below

min
ν∈K̃

J (ν)(0,W0, X0) = E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT (ν))

]
. (3.6)

Proof. See Appendix B.1.

Proposition 3.1 enables us to derive the constrained optimal portfolio weights in M by

solving the unconstrained optimal portfolio choice problem in the market Mν∗ provided

that we can find the vector ν∗ ∈ K̃. To better understand Proposition 3.1, we consider an

infinitesimal interval [t, t+ dt] and assume the consumption rate c and portfolio strategy

π are same in this interval for both markets M and Mν∗ . Then, given the same wealth

Wt at time t in both markets M and Mν∗ , the equations (3.3) and (3.5) suggest that

the wealth increment dWt(ν) in the fictitious markets is as least as high as the one

dWt in the original market since δ(ν) + πν ≥ 0. This may lead to higher terminal

wealth in the fictitious markets than in the original market, and thus higher expected

utility in the fictitious markets. In particular, the two quantities dWt(ν) and dWt are

identical when δ(ν) + πν = 0 and hence, the corresponding expected utilities are the

same. Consequently, as indicated by Proposition 3.1, the optimal consumption, portfolio

strategy and the corresponding indirect value function are identical to those which are
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optimal in the worst of all fictitious markets.

In Section 3.4, we illustrate how to use Proposition 3.1 to solve the optimal portfolio choice

problem in several examples. As mentioned earlier, the martingale approach developed

by Cvitanic and Karatzas (1992) does not directly apply in a jump-diffusion model, since

the fictitious markets remain incomplete. In the present chapter, we will not employ the

martingale method to solve the optimal portfolio choice in the jump-diffusion model. The

result in Proposition 3.1 presents a property of the optimal vector ν∗ ∈ K̃ and provides

an alternative method to solve the portfolio choice problem. In the examples given in

the next section, applying this result in combination with some results in Jin and Zhang

(2012), we will develop a procedure for evaluation of ν∗ ∈ K̃ and the corresponding

optimal portfolio strategy π∗ in the market Mv∗ .

In the meantime, the existence of such a vector ν∗ ∈ K̃ is guaranteed by Proposition

3.2 below if an optimal portfolio rule exists in the original market in which an investor

maximizes her expected utility from the terminal wealth only.

Proposition 3.2. If there exists an optimal portfolio strategy π∗ in the market M, then

there exists one ν∗ ∈ K̃ and an optimal portfolio strategy π∗ in the market Mν∗ such that

π∗ ∈ K̃ and δ(ν∗) + π∗ν∗ = 0 and furthermore, π∗ is an optimal portfolio strategy in the

market M.

Proof. See Appendix B.2.
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3.3 Power utility function and deterministic price co-

efficients

In this section, we apply the methods developed in the previous section to the case of the

power utility function and deterministic price coefficients. For illustrative purposes, we

do not consider intermediate consumption. Considering two realistic portfolio constraints

respectively, we illustrate how our methods simplify and facilitate solving the constrained

optimal portfolio as opposed to the standard HJB equation method. More specifically, we

now consider the case where the coefficients r(·), bi(·), σbi (·), σqi (·) and λk are deterministic

functions on [0, T ] for i = 1, ..., n, k = 1, ..., n− k, and the utility function is given by:

U(x) =

⎧⎪⎪⎨⎪⎪⎩
x1−γ

1−γ , ∀x > 0

−∞, ∀x ≤ 0

(3.7)

We use Σ to denote the n × n matrix [Σb,Σq] and assume Σ is invertible almost surely.

In the remainder of this chapter, for a portfolio π, we use π̃b = (π̃b1, ..., π̃bd) and π̃q =

(π̃q1, ..., π̃q(n−d)) to denote πΣb and πΣq, respectively. As can be seen from (3.3), given a

portfolio π, πΣb and πΣq are its jump and diffusion exposures, respectively. In particular,

π̃qk is the k-th jump exposure and π̃bi is the i-th diffusion exposure. Given ν ∈ K̃, we

define the relative risk premium as

θt(ν) =

(
θbt (ν)

θqt (ν)

)
= Σ−1[b+ ν − r1n+Σq(λ • α)] (3.8)

where θbt (ν) = (θb1,t(ν), ..., θ
b
d,t(ν))

�, λ = (λ1, ..., λn−d)�, θ
q
t (ν) = (θq1,t(ν), ..., θ

q
n−d,t(ν))

�,

α = (α1, ..., αn−d)� and λ•α = (λ1α1, ..., λn−dαn−d)� with αk =
∫
Ek
zΦk(dz), the expected
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size of the k-th jump, for k = 1, ..., n− d. We now rewrite

Σ−1 =

⎛⎜⎜⎝ Σ−1
1

Σ−1
2

⎞⎟⎟⎠ ,

where Σ−1
1 and Σ−1

2 are d× n and (n− d)× n matrices, respectively. Note that

Σ−1Σq =

⎛⎜⎜⎝ 0d×(n−d)

In−d

⎞⎟⎟⎠
since Σ−1[Σb,Σq] = In, where 0d×(n−d) is the d × (n − d) matrix of zeros and In is the

n× n identity matrix. Hence, θbt (ν) and θ
q
t (ν) can be rewritten as

θbt (ν) = Σ−1
1 (b+ ν − r1n) = θbt + Σ−1

1 ν, (3.9)

θqt (ν) = Σ−1
2 (b+ ν − r1n)+λ • α = θqt + Σ−1

2 ν+λ • α, (3.10)

with θqt = (θq1,t, ..., θ
q
n−d,t)

� = Σ−1
2 (b− r1n) and θ

b
t = (θb1,t, ..., θ

b
d,t)

� = Σ−1
1 (b− r1n). First

we present the main result of this section which will be used below for two portfolio con-

straints, respectively. For illustrative purposes, we assume γ > 1. Applying Proposition

3.2 to this model, we have

Proposition 3.3. Under assumptions above, the optimal ν∗ in Proposition 3.1 solves the

following optimization problem:

inf
ν∈K̃

sup
π̃qk∈Fk,k=1,...,n−d

f(ν, π̃q) =
1

2γ
||θbt (ν)||2 + δ(v) +

n−d∑
k=1

Dk(π̃qk),

where Dk(π̃qk) is defined in Appendix B.3 and Fk denotes the set of all π̃qk which satisfy

the no-bankruptcy condition: π̃qkz > −1, ∀z ∈ Ak.
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Proof. See Appendix B.3.

In the minimax problem stated above, the minimization problem is due to the minimiza-

tion problem (3.6) in Proposition 3.1, while the maximization problem is obtained from

the evaluation of optimal expected utility or indirect value function in each fictitious mar-

ket in (3.6). As can be seen from Lemma B.3.1 in Appendix B.3, maximizing expected

utility from the terminal wealth in each fictitious market is equivalent to maximizing the

exposures π̃qk to jumps. Moreover, the minimax problem can be converted to a com-

bination of a minimization problem with an equivalent Nonlinear Linear Programming

problem by embedding additional constraints of the objective function. Numerically, we

can adopt a sequential quadratic programming method to solve this problem (See Brayton

et al. (1979)).

3.3.1 Prohibition of borrowing

In this section, we assume the investor is prohibited from borrowing. As described in

Section 3.2, the portfolio constraint set K = {π = (π1, ..., πn} ∈ Rn;
∑n

i=1 πi ≤ 1}, and

the corresponding support function δ(x) can be represented as

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
−x1, x1 = ... = xn ≤ 0,

∞, otherwise,

implying K̃ = {x = (x1, ..., xn) ∈ Rn; x1 = ... = xn ≤ 0}. Let ab(t) = (ab1(t), ..., a
b
d(t))

� =

Σ−1
1 1n and aq(t) = (aq1(t), ..., a

q
n−d(t))

� = Σ−1
2 1n. We then have the following result.
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Proposition 3.4. Suppose the investor is prohibited from borrowing. Then, the optimal

vector ν∗ = (ν∗1 , ..., ν
∗
1) solves the following optimization problem:

inf
ν∈K̃

sup
π̃qk∈Fk,k=1,...,n−d

f(ν, π̃q) =
1

2γ

d∑
i=1

(θbi,t + abi(t)ν1)
2 − ν1 +

n−d∑
k=1

Dk(π̃qk), (3.11)

Proof. See Appendix B.4.

To compare our method with the standard HJB equation method, we consider a model

similar to the one in Das and Uppal (2004) where all coefficients are constants. In this

model, there are n risky assets driven by n − 1 diffusions and one jump with the jump

capturing the systemic risk. For illustrative purposes, we assume the jump size has support

A1 = (−1,∞), implying, by Appendix B.3, the feasible set for π̃q1 is F1 = [0, 1). As in

Das and Uppal (2004), by conjecturing J(t,W,X) = W 1−γ

1−γ (f(X, t))γ and taking the first

order condition with respect to π in HJB equation, we have

0 =b− r1n − γΣbΣ
�
b π

� + λ1

∫
A1

(1 + πΣq1z)
−γΣq1zΦ1(dz) + y1Σq1 + y21n,

where y1 is called the Lagrange Multiplier for the jump exposure constraint, πΣq1 ∈ F1,

satisfying the standard complimentary slackness conditions

πΣq1 > 0, y1 = 0 or πΣq1 = 0, y1 ≥ 0,

and similarly y2 is the Lagrange Multiplier for the borrowing constraint. As a result, to

use the HJB equation method to solve the portfolio choice problem in a market with n

risky assets, one has to solve n nonlinear equations with n + 2 variables, π1, ..., πn, y1

and y2, and with two constraints, which may be computationally intensive for a large n.

63



In contrast, by differentiating (3.11) in Proposition 3.4 with respect to π̃∗
q1, we have the

first-order conditions given by

θq1,t + aq1(t)ν1 + λ1

∫
A1

z
(
π̃∗
q1z + 1

)−γ
Φ1(dz) + y1 = 0,

where y1 is the Lagrange Multiplier for jump exposure constraint, π̃∗
q1 ∈ F1. And then,

by taking derivative with respect to v1, we have the first-order conditions given by

1

γ

n−1∑
i=1

abi(t)(θ
b
i,t + abi(t)v1)− 1 + π̃∗

q1a
q
1(t) + y2 = 0,

where y2 is the Lagrange Multiplier for the constraint: ν1 ≤ 0. Consequently, we only

need to solve two nonlinear equations with four variables ν1, π̃
∗
q1, y1 and y2 and with two

constraints, regardless of the number n. This is a significant reduction in computational

burden when the number n is large.

3.3.2 Prohibition of trading

In this section we consider the model where the investor is prohibited from trading m

(m < n) risky assets out of the n risky assets. For simplicity, we assume that the

investor is prohibited from trading assets n − m + 1 to n. In this case, as derived in

Cvitanic and Karatzas (1992), the portfolio constraint set K = {π = (π1, ..., πn} ∈ Rn;

πn−m+1 = ... = πn = 0}, and the corresponding support function δ(x) can be represented

as

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x1 = ... = xn−m = 0,

∞, otherwise,
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implying K̃ = {x = (x1, ..., xn) ∈ Rn; x1 = ... = xn−m = 0}. This model corresponds to

the incompleteness in a pure-diffusion market, where the number of traded risky assets is

less than the number of diffusions. Then, applying Proposition 3.3, we have the following

result.

Proposition 3.5. The optimal solution ν∗ = (0, ..., 0, ν∗n−m+1, .., ν
∗
n) ∈ K̃ in Proposition

3.1 solves the following minimax problem:

inf
ν∈K̃

sup
π̃qk∈Fk,k=1,...,n−d

f(ν, π̃q) =
1

2γ
||θbt (ν)||2 +

n−d∑
k=1

Dk(π̃qk),

with δ(ν) = 0.

Proof. The proof is similar to that of Proposition 3.4 and is omitted.

To better understand the algorithm in Proposition 3.5, we consider the model in Das and

Uppal (2004) where all coefficients are constants. In their model, there are n risky assets

driven by n diffusions and one jump with the jump capturing the systemic risk. We assume

the same jump size distribution as the one in the last section. As with the last section,

in their approach, solving the optimal portfolio weights reduces to solving n nonlinear

equations with n + 1 variables and with two constraints, which may be computationally

intensive for a large n. To apply Proposition 3.5 to this model, we adopt the “fictitious

completion” approach in Karatzas et al. (1991) by adding one fictitious stock with price

following equation

dSn+1,t = Sn+1,t−(bn+1dt+ Y1dN1,t),
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where the drift term bn+1 is determined below. We can then convert the original portfolio

choice problem to the one in a model where there are n+1 risky assets and the investor is

not allowed to trade the (n + 1)-st risky asset. In particular, the portfolio constraint set

K = {π = (π1, ..., πn+1} ∈ Rn+1; πn+1 = 0} and K̃ = {x = (x1, ..., xn+1) ∈ Rn; x1 = ... =

xn = 0} with the support function δ(x) given by δ(x) = 0 if x ∈ K̃; δ(x) = ∞ otherwise.

Given ν = (0, ..., 0.vn+1) ∈ K̃, the price of the fictitious stock is modified as

dS
(ν)
n+1,t = S

(ν)
n+1,t−((bn+1 + vn+1)dt+ Y1dN1,t),

while the prices of the original bond and n stocks remain unchanged since ν1 = ... = νn = 0

and δ(ν) = 0. And furthermore, bn+1+vn+1 can be solved by Proposition 3.5. In contrast,

as with the previous section, by applying the method in this chapter, we only need to solve

two nonlinear equations with four variables, and with two constraints, regardless of the

number n. As a result, this method may lead to a significant reduction in computational

burden for a large number n.

3.4 Numerical examples

In this section, we illustrate the applications of results obtained in the previous sections

with several numerical examples. We investigate the effects of the no-short-selling and/or

the no-borrowing constraints on the performance of the optimal portfolios in a four-stock

model. We further quantify the portfolio improvements for including derivatives with the

no-short-selling constraint.
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3.4.1 Example I: constrained investment in a multi-stock model

In this section, we use a jump-diffusion model in Chacko and Viceira (2003), and Jin and

Zhang (2012) to investigate the effects of no-short-selling and/or no-borrowing constraints

on the performance of the optimal portfolios. More specifically, we model the stock price

dynamics with asymmetric upward (positive) and downward (negative) jumps:

dSi(t)

Si(t)
=μidt + σzi1dz1t + σzi2dz2t + σzi3dz3t + σzi4dz4t

+ σqi1 [exp(Yu)− 1] dNu,t + σqi2 [exp(−Yd)− 1] dNd,t

where i = 1, 2, 3, 4. μi, σ
z
i1, σ

z
i2, σ

z
i3, σ

z
i4, σ

q
i1 and σqi2 are all constants with σqi1, σ

q
i2 ∈ [0, 1].

Yu and Yd are both positive random variables. The quantities [exp(Yu)− 1] dNu,t and

[exp(−Yd)− 1] dNd,t represent the common positive and negative jumps, respectively, with

intensities λu and λd. Yu has exponential distribution, with density

f(Yu) =

⎧⎪⎪⎨⎪⎪⎩
1
ηu

exp
(
−Yu
ηu

)
, ∀Yu > 0

0, ∀Yu ≤ 0

where ηu is a positive constant. Yd has an exponential distribution, with density

f(Yd) =

⎧⎪⎪⎨⎪⎪⎩
1
ηd
exp
(
−Yd
ηd

)
, ∀Yd > 0

0, ∀Yd ≤ 0

where ηd is a positive constant.

This model has 32 parameters in total, of which the four parameters ηu, ηd, λu and λd

describe the jump risk.
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Data and estimation

To implement and evaluate the model specified, we simply use the parameters estimated

by Jin and Zhang (2012) in which four equity indices are chosen from the global market

including S&P 500 index (SPX), FESE 100 (UKX), HSI-Hang Seng (HSI) and Mexico

IPC (MEX). The data of daily USD-valued index prices are collected from Bloomberg

for the period of 1/1/2005 to 10/9/2008. The estimation of parameters is obtained by

using the method of moments; details of the estimation procedure can be found in Jin

and Zhang (2012). Table 3.1 reports the estimation results of the four indices used in the

numerical experiment.

Effects of the no-short-selling constraint on portfolio performance

In this section, we measure the economic impact of the no-short-selling constraint on

the portfolio selection problem by adopting the measurement developed in Liu and Pan

(2003). We compute the certainty-equivalent wealth for the optimal portfolio allocations

in two markets with and without no-short-selling constraint and then use the difference of

return rates on the certainty-equivalent wealth as a measurement of the effect of the no-

short-selling constraint on portfolio performance. More precisely, the certainty-equivalent

wealth W∗ satisfies

(W∗)1−γ/(1− γ) = J(0,W0).
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Table 3.1: Parameter estimates for the jump-diffusion model

This table reports the parameter estimates using the method of moments, based on the unconditional

moments of the USD-valued historical returns of SPX, UKX, HSI and MEX from 1/1/2005 to 10/9/2008.

Jump density parameters are common to all countries. Standard deviations, based on the Jacobian

of the vector of moment conditions with respect to model parameters, are reported next to respective

parameter estimates.

SPX UKX HSI MEX

para stdev para stdev para stdev para stdev

μ 0.2683 0.0202 0.2956 0.0180 0.4661 0.0261 0.6317 0.0354

σz
1 0.0427 0.0361 0.0431 0.0336 0.1083 0.0258 0.0735 0.0318

σz
2 0.0626 0.0349 0.0380 0.0437 0.1249 0.0312 0.0850 0.0257

σz
3 0.1331 0.0463 0.0490 0.0412 0.1364 0.0276 0.0866 0.0435

σz
4 0.1304 0.0594 0.1317 0.0540 0.0571 0.0554 0.1084 0.0594

σq
1 0.5592 0.0471 0.9385 0.0970 0.5509 0.1333 0.6787 0.1773

σq
2 0.6893 0.0601 0.7668 0.0594 0.5677 0.1426 0.8168 0.2064

Common

para stdev

λu 0.5754 0.5435

λd 21.3366 1.5914

ηu 0.0516 0.0136

ηd 0.0302 0.0134
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First we consider an optimal portfolio allocation in the market without constraint. The

detailed procedure for solving the optimal portfolio and the corresponding indirect value

function is given in Appendix F. We use ν = (0, 0, 0, 0, ν5, ν6) ∈ K̃ to denote the optimal

solution in Proposition 3.5 and let ṽ = (ν5, ν6)
�. In particular, the certainty-equivalent

wealth can be obtained as

W∗ =W0 exp

(
T

2γ
(θb1)

�θb1 + rT + TD1(π̃q)

)

where W0 = 1 and

θb1 =
(
Σz)−1(μ− r14 − Σq(ṽ − r12)

)
D1(π̃q) =π̃q1(ν5 − r) +

λu
ηu(1− γ)

∫ ∞

0

[(1 + π̃q1z)
1−γ − 1](1 + z)−

1
ηu

−1dz

+ π̃q2(ν6 − r) +
λd

ηd(1− γ)

∫ 0

−1

[(1 + π̃q2z)
1−γ − 1](1 + z)

1
ηd

−1
dz

Similarly, with ν = (ν1, ν2, ν3, ν4, ν5, ν6) ∈ K̃ denoting the corresponding optimal solution,

we can derive that the certainty-equivalent wealth with the short-selling constraint is

W∗
no-short = W0 exp

(
T

2γ
(θb2)

�θb2 + rT + TD2(π̃q)

)

where

θb2 =
(
Σz)−1(μ+ ṽ1 − r14 − Σq(ṽ2 − r12)

)
D2(π̃q) =π̃q1(ν5 − r) +

λu
ηu(1− γ)

∫ ∞

0

[(1 + π̃q1z)
1−γ − 1](1 + z)−

1
ηu

−1dz

+ π̃q2(ν6 − r) +
λd

ηd(1− γ)

∫ 0

−1

[(1 + π̃q2z)
1−γ − 1](1 + z)

1
ηd

−1
dz,

where ṽ1 = (ν1, ν2, ν3, ν4)
� and ṽ2 = (ν5, ν6)

�.
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Finally, the measurement of the performance improvement is defined by

RW =
logW∗ − logW∗

no-short

T
(3.12)

Generally speaking, RW can be considered as an annual return rate, which indicates how

much better-off it can be by dropping off the no-short-selling constraint, which also gauges

the impact of the no-short-selling constraint on portfolio performance. It is evident that

the performance of an optimal portfolio allocation without the no-short-selling constraint

cannot be worse than that with the no-short-selling constraint.

Table 3.2 provides a quantitative analysis of the performance improvements based on a

variety of risk aversion levels, and we assume that the investment horizon is 1 year. Intu-

itively, the more risk averse the investor is, the less leveraged the optimal allocation will

be. According to Table 3.2, the performance improvement decreases dramatically while

the magnitude of risk aversion increases from a small value to a extremely large level.

For example, given γ = 14 the improvement rate is 2.69 and it decreases to 0.19 when

γ increases to 200. RW = 0.19 means that the return rate of an optimal portfolio allo-

cation without constraint is approximately 19% higher than that of an optimal portfolio

allocation with the no-short-selling constraint.

For low levels of risk aversion, the performance improvement is abnormally high. We can

also observe that the corresponding unconstrained portfolio weights are extremely large.

This is because an investor who has little fear of the potential risk is willing to have

large exposure to some risky assets with high expected returns. With a highly leveraged

portfolio allocation, abnormal return rates are attainable. As in Egloff et al. (2010), we
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choose a particular high level of risk aversion (γ = 200) to prevent the allocation from

being overly leveraged. We use the same value of γ as a common risk aversion level of

investors, and conclude that the no-short-selling constraint has a significant impact on

the portfolio performance.

When short-selling is prohibited, a very different situation occurs. No matter how less risk-

averse the investor is, a conservative allocation is always observed, which is no surprise.

Roughly speaking, an investor cannot increase the leverage too much without taking short

positions on risky assets. Hence, the expected returns are also very limited, compared

to those without constraint. In conclusion, the no-short-selling constraint can lower the

portfolio performance due to the prohibition of leverage. The more risk averse the investor

is, the less leveraged the optimal portfolio allocation will be and thus, the smaller impact

the no-short-selling constraint will behave.

A cautionary note is that the significant impact of the no-short-selling constraints on the

portfolio performance may be caused by imprecise estimates of moments of stock returns.

Financial econometricians seem to agree that it is feasible to obtain good estimates of vari-

ance parameters, but notoriously difficult to estimate expected returns (see Merton (1980)

for detailed discussions). In the present model, the optimal portfolio strategy is a my-

opic mean-variance portfolio, due to the constant investment opportunity set, and hence

the expected returns matter for the investor. As is well understood, the mean-variance

efficient portfolio constructed using sample moments often involves extreme weights in a

number of assets due to imprecise estimates of the true mean, variance and covariance
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matrix. Given the relatively short data set in this example, the estimates of model pa-

rameters reported in Table 3.1 are likely to be biased. In particular, asset 1 may be

underpriced while assets 2 and 4 may be overpriced. This leads to a huge excess demand

for asset 1 and huge supply of assets 2 and 4. This situation can not be an equilibrium.

Moreover, when a large data set becomes available, the estimates of parameters will be

improved and hence the significant improvement in portfolio performance may not be

observed.

Table 3.2: Performance comparison between no-short-selling constrained and uncon-

strained portfolios

This table reports the performance comparison between the optimal portfolios with and without the

no-short-selling constraint given different magnitudes of risk aversion. RW is the difference of portfolio

performances in terms of annualised, continuously compounded return rates. For i = 1, 2, 3, 4, ωi =

πi/
∑4

i=1 πi is the relative portfolio weight of i-th asset on risky assets. There are six different levels of

risk aversion including γ = {12, 14, 16, 18, 20, 200}. The risk-free rate is 1% and the investment horizon

T is 1. The numbers RW and ωi are in percentages.

Without Constraint With Constraint

γ RW ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

12 3.13 11.81 -6.84 1.85 -5.81 0 0 40.28% 59.72%

14 2.69 11.71 -6.73 1.80 -5.79 0 0 39.83% 60.17%

16 2.35 11.62 -6.61 1.76 -5.76 0 0 39.65% 60.35%

18 2.09 11.53 -6.51 1.72 -5.74 0 0 39.55% 60.45%

20 1.88 11.45 -6.41 1.68 -5.72 0 0 39.48% 60.52%

200 0.19 9.35 -3.89 0.70 -5.16 0 0 39.26% 60.74%
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Table 3.3: Performance comparison between no-short-selling constrained and uncon-

strained portfolios (unnormalized weights).

This table reports the performance comparison between the optimal portfolios with and without the

no-short-selling constraint given different magnitudes of risk aversion. RW is the difference of portfolio

performances in terms of annualised, continuously compounded return rates. For i = 1, 2, 3, 4, ωi =

πi/
∑4

i=1 πi is the relative portfolio weight of i-th asset on risky assets. There are six different levels of

risk aversion including γ = {12, 14, 16, 18, 20, 200}. The risk-free rate is 1% and the investment horizon

T is 1. The numbers RW and ωi are in percentages.

Without Constraint With Constraint

γ RW ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

12 7.25 16.53 -9.58 2.59 -8.13 0 0 0.48 0.72

14 6.99 18.15 -10.43 2.79 -8.97 0 0 0.52 0.78

16 6.83 16.85 -9.59 2.55 -8.35 0 0 0.50 0.75

18 6.72 16.49 -9.31 2.46 -8.21 0 0 0.44 0.66

20 6.61 17.29 -9.68 2.54 -8.64 0 0 0.41 0.64

200 0.56 1.87 -0.78 0.14 -1.03 0 0 0.09 0.14
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Effects of the no-borrowing constraint on portfolio performance

The no-short-selling constraint has a significant impact on portfolio performance, which

has been analyzed above. It is also interesting to quantify the economic effects if the

no-borrowing constraint is imposed. With the framework developed in this chapter, it is

easy to implement a constrained allocation problem which can be solved precisely and

quickly.

In Table 3.4, we give a quantitative analysis of the economic effects for a variety of relative

risk aversion coefficients. Since we allow short-selling here, the constrained optimal allo-

cations short the second and the fourth assets in all the cases. Surprisingly, the economic

loss of prohibiting borrowing is larger than that of the no-short-selling constraint. For

example, given a risk-aversion level of γ = 12, the economic loss of prohibiting short-

selling is 3.13 while the loss of no-borrowing is 7.25. This might be mainly due to the

inability to enhance the level of leverage, although an investor can achieve better benefit

by short-selling some risky assets.

The performance improvements are very significant, and decrease with the increasing of

the risk aversion level. Even with an extremely high level of γ = 200, the economic gain of

borrowing is 0.56. The intuitive explanation is similar to that in the no-short-selling case

as both constraints limit the ability of leveraging. Hence, the less risk averse the investor

is, the less impact the constraint has. It is intuitive to observe that economic difference

is small providing high risk averse level. This is because that an extreme conservative

investor will not consider too much about lifting the leverage level by extreme borrowing
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or undertaking high short positions.

The choice of the risk averse level follows the common choice of existing relevant literature.

Usually, the normal level is assumed to be 3 or 5. The medium level falls between 7 and

9. Here, we also test the extreme case of γ = 200. It is hard to backout the risk averse

level from the market in a way of calibration or estimation. Especially, our purpose is

to explain the market in a qualitative sense. For example, we would want to investigate

the impact of risk averse level on the portfolio choice problem rather than determine the

exact portfolio weights.

Table 3.4: Performance comparison between no-borrowing constrained and unconstrained

portfolios

This table reports the performance comparison between the optimal portfolios with and without the

no-borrowing constraint given different magnitudes of risk aversion. RW is the difference of portfolio

performances in terms of annualised, continuously compounded return rates. For i = 1, 2, 3, 4, ωi =

πi/
∑4

i=1 πi is the relative portfolio weight of i-th asset on risky assets. There are six different levels of

risk aversion including γ = {12, 14, 16, 18, 20, 200}. The risk-free rate is 1% and the investment horizon

T is 1. The numbers RW and ωi are in percentages.

Without Constraint With Constraint

γ RW ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

12 7.25 11.81 -6.84 1.85 -5.81 4.71 -2.29 0.35 -1.77

14 6.99 11.71 -6.73 1.80 -5.79 4.55 -2.19 0.31 -1.67

16 6.83 11.62 -6.61 1.76 -5.76 4.43 -2.08 0.27 -1.62

18 6.72 11.53 -6.51 1.72 -5.74 4.36 -1.99 0.23 -1.60

20 6.61 11.45 -6.41 1.68 -5.72 4.27 -1.91 0.20 -1.59

200 0.56 9.35 -3.89 0.70 -5.16 1.56 -0.98 0.09 -0.67
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Table 3.5: Performance comparison between no-borrowing constrained and unconstrained

portfolios (unnormalized weights).

This table reports the performance comparison between the optimal portfolios with and without the

no-borrowing constraint given different magnitudes of risk aversion. RW is the difference of portfolio

performances in terms of annualised, continuously compounded return rates. For i = 1, 2, 3, 4, ωi =

πi/
∑4

i=1 πi is the relative portfolio weight of i-th asset on risky assets. There are six different levels of

risk aversion including γ = {12, 14, 16, 18, 20, 200}. The risk-free rate is 1% and the investment horizon

T is 1. The numbers RW and ωi are in percentages.

Without Constraint With Constraint

γ RW ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

12 7.25 16.53 -9.58 2.59 -8.13 4.38 -2.13 0.33 -1.65

14 6.99 18.15 -10.43 2.79 -8.97 4.14 -2.00 0.28 -1.52

16 6.83 16.85 -9.59 2.55 -8.35 3.90 -1.83 0.24 -1.43

18 6.72 16.49 -9.31 2.46 -8.21 4.10 -1.87 0.22 -1.50

20 6.61 17.29 -9.68 2.54 -8.64 3.89 -1.74 0.18 -1.45

200 0.56 1.87 -0.78 0.14 -1.03 0.23 -0.15 0.01 -0.10
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3.4.2 Example II: constrained investment with derivatives

In this subsection, we solve the asset allocation problem given a jump-diffusion market

in which an investor can trade not only risky stocks but also derivatives. The market

actually takes into account three different risk factors, including the diffusive shock, the

jump risk and the volatility risk.

For tractability and comparison, we adopt the dynamics defined in Liu and Pan (2003) to

evaluate how valuable derivatives are in a setting that multiple risk factors play together.

The dynamics of the underlying asset is defined as:

dSt =(r + ησ2 + μ(λ− λQ)σ2)Stdt+ σStdBt + μSt−(dNt − λσ2dt) (3.13)

where r is the risk-free rate, σ is the constant volatility, and B is a standard Brownian

motion and N is a pure-jump process with stochastic arrival intensity λσ2 for a constant

λ > 0. The constant η captures the equity premium of the diffusion component and λQ

captures the equity premium of the jump. Denote Ot as the derivative price at time t

and f(·) as the payoff function. Let τ denote the time to maturity, and we can have

Ot =
1
πt
Et[πτf(Sτ )], for any t ≤ τ . Suppose {πt, 0 ≤ t ≤ T} is the pricing kernel which is

defined as

dπt = −πt (rdt+ ησdBt) +

(
λQ

λ
− 1

)
πt−(dNt − λσ2dt) (3.14)

where π0 = 0. Apparently, the ratio λQ/λ controls the risk premium from the jump N .

Consistent with the pricing kernel πt, we can obtain the dynamics of the derivative price:

dOt =rOtdt+ gsSt(ησ
2dt+ σdBt) + Δg

[
(λ− λQ)σ2dt+ dNt − λσ2dt

]
(3.15)
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where gs measures the sensitivity of the price of the derivative used to infinitesimal changes

in the stock price, and Δg measures the change in the price of the derivative for each jump

in the stock price. v0 is the constant variance. Details of the setting can be found in Liu

and Pan (2003). In this example, the investor can invest not only in risky stock but

also in European puts. We let φ and ψ denote the portfolio weights on the stock and

the derivative respectively. The corresponding wealth process then satisfies the following

self-financing condition

dWt =rWtdt+

[
φt(ησ

2 − μλQσ2) +
ψt(gsStησ

2 −ΔgλQσ2)

Ot

]
Wtdt

+

[
φtσ +

ψtgsStσ
2

Ot

]
WtdBt +

[
φtμ+

ψtΔg

Ot

]
Wt−dNt.

The objective of the investor is to maximize the expected utility of his terminal wealth

WT ,

max
φt≥0,ψt,0≤t≤T

E

[
W 1−γ
T

1− γ

]
,

where γ > 1. As with the example in Section 3.4.1, this problem can be solved by using

Proposition 3.3 but we omit the procedure to save the space.

We choose r = 5% as the constant risk-free rate, η = 8% as the diffusion premium and

σ = 15% as the constant volatility. We consider three different jump sizes: small jump

μ = −10% in every 10 years, medium jump μ = −25% in every 50 years and large jump

μ = −50% in every 200 years. We also let the jump-risk premium λQ/λ vary from 1

to 5, while λQ/λ = 1 indicates that there is no jump risk. In Table 3.6, we present

the optimal asset allocations with and without options, which are actually based on the
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same parameters in Liu and Pan (2003). However, the model in this chapter differs from

theirs in that the investor is not allowed to short-sell the stock but she is allowed to

either write or buy puts. As observed in Liu and Pan (2003), when the compensation

ratio λQ/λ increases to a high level, a risk averse investor might want to write puts and

short-sell the risky stock to earn the high premium associated with jump risk; however,

if the constraint prevents her from short-selling, the allocation of the stock is close to

zero. Hence, it would be interesting to see how the no-short-selling constraint affects the

performance of the optimal portfolio with put options available for investment.

We can find several negative positions of puts in the optimal allocations. Sometimes

the short positions are relatively large. The portfolio allocations are very sensitive to

the jump risk premium λQ/λ. If the ratio is large, the investor is willing to take large

short positions in puts. With the no-short-selling constraint, the holding of stocks can

not be negative. Therefore, if the jump risk premium increases to a high level, say 5,

the holding of the stock will be close to zero. It is because the investor wants to earn

premium associated with jump risk by short-selling stocks and writing puts; however, she

can only write puts because of the no-short-selling constraint on the stock. This also leads

to much smaller positions in puts. We can still observe the “switch” observed in Liu and

Pan (2003), which is a break-even point that the relative attractiveness of jump risks and

diffusive risks. In other words, the investor prefers writing puts to purchasing puts.

We quantify the portfolio improvements for including puts in portfolio allocations. The

difference RW between certainty-equivalent wealth which has been defined in (3.12) is used
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to measure the improvements. The portfolio improvements for including puts are reported

in terms of annualized, continuously compounding returns in Table 3.7. It can be easily

understood with the help of the related allocations reported in Table 3.6. In principle, the

portfolio improvement decreases with the increasing of the jump-risk premium because, as

argued by Liu and Pan (2003), the presence of jump risk suppresses the level of leveraged

positions. In Table 3.6, we find that the all the positions of stocks and puts decrease with

the increasing of jump risk premium, which explains why we also observe the improvement

decreases when the ratio λQ/λ increases. However, we do observe several cases of “switch”.

For instance, given γ = 0.5 the improvement is increased from 0.113% a year to 11.280%

a year while theλQ/λ increase from 2 to 5. As analyzed in Liu and Pan (2003), this

is because that the investor can use puts as a way to have positive exposure to jump

risk. When the risk-premium is large, she can write more puts to get higher returns.

As documented by Liu and Pan (2003) in their Table 2, when the relative risk aversion

coefficient γ and jump risk premium λQ/λ are high, including puts in the optimal portfolio

may lead to significant improvement of portfolio performance since the investor can write

puts and short sell stocks at the same time. In contrast, the improvements achieved in this

chapter are much smaller, primarily due to the no-short-selling constraint. For example,

with γ = 5 and λQ/λ = 5, the corresponding improvement is 5.12% a year in Liu and

Pan (2003) as opposed to 1.98% a year in our results. Moreover, the improvement is also

sensitive to jump risk. In Table 3.7, we can compare the third and fifth columns as they

represent the improvements given μ = −10% once every 10 years and μ = −50% once

every 200 years respectively. It is clear that the rarer and larger the jumps are, the more
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improvements can be obtained. If the jump risk premium is also large, an investor can

get even more by writing more puts, despite the jumps being frequent and small. The

benefits of leveraging positions are reduced by the no-short-selling constraint.

Table 3.6: Performance comparison between portfolios without and with options

This table reports the performance comparison between the optimal portfolios with and without deriva-

tives given different magnitudes of risk aversion. The options used are one-month 5% out-of-the-money

European puts. The volatility parameter is 15% per year. The ratios of λQ/λ is the jump-risk premium.

Jump cases μ = −10% every 10 years μ = −25% every 50 years μ = −50% every 200 years

stock only stock and put stock only stock and put stock only stock and put

γ λQ/λ φ φ∗ ψ∗ φ φ∗ ψ∗ φ φ∗ ψ∗

0.5 1 5.68 8.13 4.01% 4.05 8.25 2.12% 1.99 8.18 1.79%

2 5.68 6.87 -0.65% 4.05 7.47 1.37% 1.99 7.93 1.52%

5 5.68 2.20 -5.60% 4.05 5.44 0.95% 1.99 7.02 1.51%

3 1 1.08 1.59 0.72% 0.95 1.33 0.44% 0.97 1.57 0.31%

2 1.08 0.91 -0.62% 0.95 1.01 0.18% 0.97 1.41 0.23%

5 1.08 0.09 -1.40% 0.95 0.02 -0.22% 0.97 1.21 0.11%

5 1 0.81 0.97 0.41% 0.69 0.87 0.23% 0.67 0.88 0.18%

2 0.81 0.43 -0.51% 0.69 0.75 0.05% 0.67 0.79 0.11%

5 0.81 0.01 -0.98% 0.69 0.48 -0.27% 0.67 0.71 0.03%

10 1 0.33 0.45 0.21% 0.37 0.44 0.12% 0.35 0.43 0.09%

2 0.33 0.25 -0.20% 0.37 0.37 0.02% 0.35 0.37 0.07%

5 0.33 0.03 -0.43% 0.37 0.27 -0.17% 0.35 0.35 0.01%

82



Table 3.7: Portfolio improvements for including options

This table reports the performance improvements of the optimal portfolios for including derivatives given

different magnitudes of risk aversion. The parameter setting is given in Table 3.6.

Jump Cases μ = −10% every 10 years μ = −25% every 50 years μ = −50% every 200 years

γ λQ/λ Rw(%) Rw(%) Rw(%)

0.5 1 1.986 8.593 15.972

2 0.113 5.955 15.102

5 11.280 2.018 13.891

3 1 0.257 0.456 0.805

2 0.218 0.059 0.481

5 3.014 0.510 0.110

5 1 0.140 0.218 0.381

2 0.096 0.025 0.213

5 1.981 0.383 0.031

10 1 0.080 0.131 0.159

2 0.093 0.009 0.095

5 0.391 0.219 0.003
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3.5 Conclusion

In this chapter, we solved the constrained optimal portfolio choice problem in a jump-

diffusion model with a large number of assets and state variables. Specifically, by suitably

embedding the constrained problem in an appropriate family of unconstrained ones, we

established some equivalent optimality conditions for optimal portfolio weights and thus

convert the constrained portfolio choice problem into a set of unconstrained ones. These

results simplify and help to solve the constrained optimal portfolio choice problem in

the jump-diffusion model. We then applied our methods to several numerical examples

to show that the prohibition of short-selling and prohibition of borrowing have sizable

effects on portfolio performance.
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Chapter 4

Rare events, asymmetric correlation

and under-diversification

4.1 Introduction

The problem of optimal asset allocation is a core subject in asset pricing theory, while

rare events bring a new challenge for researchers as pure diffusion models are not able to

capture such a stylized feature. Market participants started observing large movements of

financial returns that could be either positive or negative, from the history of the credit

crunch. The existence of jumps is one of the main reasons that gaussian distribution

should be abandoned while modelling return series.

Asymmetry is not a brand new concept for financial modelling. Many non-Gaussian dis-

85



tributions have been proposed to introduce asymmetry, as non-zero skewness is observed

and confirmed in practice. In this chapter, we focus on the asymmetric dependence struc-

ture between returns of financial assets. It is well known that asset returns are correlated

with one another, but it is not clear how to model the dependence. Existing literature

has documented that the dependence structure between asset returns is not symmetric.

Usually, stronger dependence can be observed in bearish markets than in bullish markets.

Conditional correlations might vary significantly away from the unconditional correlation.

This suggests that dependence should not be modelled by a simple constant correlation

coefficient. It needs great care when constructing a portfolio or pricing some financial

derivatives that are sensitive to the dependence structure across financial assets.

The reason why people should pay attention to asymmetric correlation is twofold. First,

investors have an intuitive understanding that prices of financial assets tend to go down

together in bad times. In general, asymmetric correlations can be understood as assets

returns become more correlated in a bear market or a market with high volatility. Investors

who believe in diversification might suffer heavily in such two circumstances. According

to Ang and Chen (2002), a selected US equity portfolio and the US domestic market are,

on average, 11.6% more correlated than that implied by a bivariate normal distribution.

This partially reveals that the diversification value might be overrated if not considering

the possibility that correlations between asset returns are not constant and that asset

prices might jump downward together, despite the unconditional correlations.

Second, the hedging performance will be very sensitive to the dependence structure across
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asset returns. For example, suppose that an investor uses a hedging instrument that is

negatively correlated with her current holding position. When the investor is experiencing

a hard time, her hedging instrument might become positively correlated with her exposure.

Asymmetric correlation simply describes the phenomena that correlations between returns

might have very different scenarios during different market times. Apparently, failure

to take into account asymmetric correlations will cause severe problems to the hedging

performance.

Asymmetric correlations started drawing the attention of academia in the works of Ang

and Bekaert (2000) and Longin and Solnik (2001). Asymmetries in correlations, covari-

ances, volatilities and betas of returns have been widely documented. However, identi-

fying asymmetry requires extraordinary care. People might wrongly claim the existence

of asymmetry, due to the exceedance bias. Boyer et al. (1997) and Forbes and Rigobon

(2002) firstly indicate the conditioning bias of high or low returns. Not taking into account

this bias will lead to incorrectly reporting the finding of asymmetry. Ang and Chen (2002)

continue to use the exceedance correlation and firstly propose an H-statistic to quantify

the asymmetry. The H-statistic can be understood as a weighted differences of correla-

tions computed based on the model and the data, separately. Apparently, a model needs

to be proposed before using the H-statistic. This statistic is not suitable to test whether

a sample of data is of asymmetry. Hong et al. (2007) extend the H-statistic and propose

a J-statistic, which enables a new model-free test. The J-statistic computes the weighted

difference of positive and negative exceedance correlations based on the same exceedance
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levels. In practice, the J-statistic is a little too strong as many sample data that obviously

exhibit asymmetry cannot be rejected. Besides statistical tests, some graphic tools are

also useful in identifying and displaying the asymmetry, such as exceedance correlation

plot and frequency table.

Asymmetry exists across both domestic and international markets. Longin and Solnik

(2001) use extreme value theory to model multivariate distribution tails, and demonstrate

why great care is needed to claim the existence of asymmetries. They introduce the

exceedance correlation which has been widely used as a naive measurement of testing

asymmetric correlation. Ang and Chen (2002) are the first that provides a comprehensive

analysis of asymmetric correlations observed in US market, based on the Fama-French

dataset. They reject all existing standard models and claim that the regime-switching

GARCH model outperforms other candidates.

Modelling asymmetry takes even more effort than measuring it. Existing standard models

cannot provide sufficiently good performance on capturing asymmetries exhibited in real

data. Continuous-time diffusion models and compound Poisson jump-diffusion models

show poor performance on fitting asymmetric correlations. Regime-switching models

have been specially developed for modelling the asymmetry. Good examples include the

regime-switching GARCH model in Ang and Chen (2002) and the regime-switching jump-

diffusion model that has been recently developed. Although regime-switching models can

generate better results for fitting asymmetry, it is far from perfection. Regime-switching

models might be reasonable while trying to explain asymmetry, as the existence of multiple
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regimes and the transitions of regimes can be an intuitive reason. It is not so reasonable

to solve the portfolio allocation problem based on regime-switching models, since it is not

clear how to deal with the unpredictable transition of regimes.

The under-diversification problem describes a fact that investors tend to focus on few

individual stocks. This contradicts to the benefit of diversification. Portfolio theory sug-

gests that risk-averse investors should prefer a strategy with low volatility. A perfectly

diversified allocation should provide an expected return rate with the smallest risk; how-

ever, empirical studies have documented that many investors only hold a small amount

of individual stocks. Under-diversified portfolios cannot eliminate the idiosyncratic risk.

It is a puzzle why a rational investor does not want to diversify her exposure as much

as possible. A similar question can be raised that why a risk averse investor prefers a

under-diversified strategy to a perfectly diversified one. Recently, Goetzmann and Kumar

(2008) study the case that US individual investors hold under-diversified portfolios and

show that under-diversified allocation is costly to most investors except for someone who

has superior information. Anderson (2013) relates the under-diversification with trading

preference based the data of detailed trading records from the Swedish market.

For investors who have the access to international investment, the under-diversification

problem will appear in a different representation, which is the home bias puzzle. The

home bias puzzle reveals an empirical finding that investors tend to spend a large amount

of money on domestic assets without taking the benefits of international diversification.

Many literature has documented this puzzle. Home bias can be observed in both developed
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and emerging countries. (See French and Poterba (1991) and Tesar and Werner (1994)).

Ahearne et al. (2004) test whether information barriers cause the home bias and suggest

that information asymmetry plays an important role. Nieuwerburgh and Veldkamp (2005)

also try to explain the bias by asymmetric information. Guidolin and Timmermann

(2008) suggest that high-moment preference mainly causes the under-diversification by

using international market data. It is believed that the home bias is a result of combined

impacts from many aspects.

The first contribution of this chapter is to develop a multi-variate jump-diffusion model

equipped with stochastic volatility, in order to capture asymmetric correlation. With

parsimoniousity, the special pattern of asymmetry can be modelled correctly. We also

have stochastic correlation and volatility automatically for granted. Since no regime-

switching is assumed, there is no need to test the ‘artificial regimes’. Our framework can

be extended to support a large number of state variables, so the asymmetries can be driven

by different sources. Using statistical tests along with graphic tools, we demonstrate

how well our model can capture asymmetric correlations across both domestic markets

and international markets. Comparisons with benchmark models are presented, which

suggests that our model outperforms all benchmark models.

The second contribution is that the portfolio allocation problem is solved under the jump-

diffusion model. With numerical experiments, we investigate the impact of asymmetric

correlation on the portfolio allocation problem. The economic loss of ignoring asymme-

try is quantified via measuring the economics losses. We also conclude that asymmetry
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correlations might be driven by the asymmetric jump structure.

Aside from the modelling and estimation results, we also investigate the market impact

of asymmetry. Asymmetric correlations are directly related to the under-diversification

problem. In particular, we focus on solving the home bias puzzle that is a special case

of under-diversification. The proposed model can predict the under-diversified weights

which coincide with empirical research work.

The remaining part of this chapter is organized as follows. In the next section, we present

the framework of the multivariate jump-diffusion model as well as the solution to an

optimal portfolio allocation. Section 4.3 provides the estimation results of capturing the

asymmetry. Several statistical tests along with graphic tools are adopted to show that

our model can outperform existing benchmark models. Section 4.4 applies the theoretical

results to the US domestic market and discusses the impact of asymmetric correlations

on portfolio allocation. The economic value of ignoring the asymmetry is quantified.

Section 4.5 solves the international portfolio allocation problem and provides a reasonable

intuition of the home bias puzzle. Section 4.6 concludes the chapter and discusses potential

future research.

4.2 Modelling and the optimal portfolio problem

This section describes the jump-diffusion model proposed and how to solve the portfolio

choice problem between a set of risky assets and a risk-less asset.

91



4.2.1 Model

Fix a complete probability space (Ω,F ,P) with a filtration {Ft} satisfying the usual

conditions. Suppose there are n risky assets {Si,t}i=1,...,n and a riskless asset S0,t. The

price of the riskless asset follows the following stochastic differential equation:

dS0,t = S0,trdt

S0,0 = 1, (4.1)

where r is the constant interest rate. Let St = (S1,t, . . . , Sn,t)
� and assume that it follows

the differential equations:

dSi,t = Si,t−
[
(r+μi

√
Vi,t)dt+

√
Vi,t
∑N

j=1
σi,jdzj,t

+
√
Vi,t
(
σqi,1 (exp(Yu)− 1) dNu

t + σqi,2 (exp(−Yd)− 1)
)
dNd

t

]
dVi,t = κi(1− Vi,t)dt+ σv,i

√
Vi,t

(
ρidzi,t +

√
1− ρ2i dwt

)
, i = 1, . . . , n (4.2)

where μ = (μ1, . . . , μn)
� is the excess risk premium vector, zt = (z1,t, . . . , zn,t)

� is a n-

dimensional independent standard Brownian motion, and Nu
t and Nd

t are two independent

Poison processes with jump intensity of λu and λd, respectively. Yu and Yd are two

independent random variables which control the jump sizes. wt is a standard Brownian

motions being independent of zt. For each asset Si,t, the spot price and the variance has

a correlation parameter ρi which enables the leverage effect. The stochastic variance Vi,t

has an impact not only on the diffusion component but also on the common jumps Nu
t

and Nd
t . Vt can also be seen as the activity rate of variance, and is assumed to have a

unit long-run mean. This assumption does not restrict the performance of the proposed
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model as the vocality parameters σi,j can control the variance of diffusion components.

Similarly, the parameters σqi,1 and σqi,2 can control the jump sizes with the unit variance.

Since the model is equipped with common positive and negative jumps, asset prices

St = S1,t, . . . , Sn,t will jump simultaneously. However, the jumps sizes of each asset

are different and random as exp(Yu)− 1 and exp(−Yd)− 1 are independent of each other.

This is fairly intuitive, because jumps represent large and rare movements of returns. The

risk exposure on the common jumps can be understood as the systemic risk. The systemic

risk describes the potential risk caused by a single event that can trigger a collapse in a

certain economy. Different assets will react to sudden information at the same time, but

the effects of reactions are very different. To return to the model, this is why assets share

the same jumps while keeping the freedom of jump sizes. Particularly, we define Σ0
b and

Σ0
q as

Σ0
b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1,1 σ1,2 . . . σ1,n

σ2,1 σ2,2 . . . σ2,n

. . . . . . . . . . . .

σn,1 σn,2 . . . σn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Σ0

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σq1,1 σq1,2

σq2,1 σq2,2

. . . . . .

σqn,1 σqn,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)

Σ0
b is the n × n diffusion coefficient matrix and Σ0

q is the n × 2 jump coefficient matrix,

respectively. The jump sizes can be modelled by a variety of distributions. In this section,
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Yu and Yd are both assumed to be exponentially distributed, with the density

f(Yu) =

⎧⎪⎪⎨⎪⎪⎩
1
ηu

exp
(
−Yu
ηu

)
, ∀Yu > 0

0, ∀ Yu ≤ 0

and

f(Yd) =

⎧⎪⎪⎨⎪⎪⎩
1
ηd
exp
(
−Yd
ηd

)
, ∀Yd > 0

0, ∀ Yd ≤ 0

given constant scale parameters: ηu and ηd.

Basically, the present model is a multi-variate Heston model if the jumps are ignored. The

idea of the model comes from the Variance Gamma (VG) process proposed by Madan et al.

(1998). The VG process has several representations. For example, we can decompose the

process as the difference of two independent gamma processes. Suppose Xt is a VG

process, and we can have

Xt = Γ+
t − Γ−

t

where Γ+
t and Γ−

t are two independent gamma processes. Since gamma processes are

strictly positive processes, the VG process actually models the jump structure separately.

Intuitively, good news brings positive incentives to the market while bad news provides

a negative impact on the market. It is not a bad idea to assume that information comes

independently. The variance gamma distribution is an asymmetric distribution that pro-

duces non-zero skewness. We just borrow this idea and model the jump component

separately by decomposing the jump into two jumps: positive jump and negative jump.

In the model presented in (4.2), there are two common jumps representing the macro
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or common information. The price of each asset Si,t has different risk exposure to the

common information, which are controlled by σq.

The assumption of using common jump processes does not restrict the ability of the

proposed model as there are random variables that control the dependence structure.

This assumption has even more intuition related to systemic risk. The use of stochastic

volatility is to allow more flexility rather than generating asymmetric correlation. In fact,

a model without stochastic volatility has the potential to capture asymmetric correlations

well. The purpose of this chapter is to provide a good exhale of jump-diffusion model that

can fit asymmetric correlations and demonstrate the impact of asymmetry on portfolio

weights. This can be seen as a preliminary result of exploring this field and a more

sophisticated model can be proposed by employing stochastic volatility in future research.

4.2.2 The optimal portfolio problem

Consider an investor with the CRRA utility endowed with initial wealth W0 = ω0, and

there are n + 1 available assets mentioned above. To construct the constrained portfolio

choice problem, we follow the approach in Cvitanic and Karatzas (1992) to model portfolio

constraints. The unconstrained portfolio weights can easily be solved by setting a trivial

constraint. Fix a non-empty, closed and convex set K ∈ Rn to denote the constraints.

Let π(t) = (π1(t), . . . , πn(t)) ∈ K denote a trading strategy, where πi(t) is the normalized

portfolio weights of the i-th risky asset held at time t and Ft-predictable. The proportion

invested in the riskless asset is simply 1−∑n
i=1 πi. For an arbitral portfolio strategy π(t),
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we have the associated wealth process Wt as

Wt =W0 +

∫ t

0

rWsds+

∫ t

0

Wsπ(s)(μ
√
V ds

+

∫ t

0

Wsπ(s)Σbdzt +

∫ t

0

Ws−π(s−)ΣqYdN(s) (4.4)

where

Σb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
V1,tσ1,1

√
V1, tσ1,2 . . .

√
V1, tσ1,n√

V2,tσ2,1
√
V2,tσ2,2 . . .

√
V2,tσ2,n

. . . . . . . . . . . .√
Vn,tσn,1

√
Vn,tσn,2 . . .

√
Vn,tσn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Σq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
V1,tσ

q
1,1

√
V1,tσ

q
1,2√

V2,tσ
q
2,1

√
V2,tσ

q
2,2

. . . . . .√
Vn,tσ

q
n,1

√
Vn,tσ

q
n,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
As shown, πΣb and πΣq are the diffusion and jump exposures, respectively. A portfolio

strategy π(t) is said to be admissible if the associated wealth process Wt is non-negative

almost surely. Let A(ω0) denote the set of all admissible portfolio strategies, and the

traditional Merton’s problem is to maximize:

u(W0) = max
πi∈A(ω0)

J(W0, π) = E[U(WT )] (4.5)

where

U(x) =

⎧⎪⎪⎨⎪⎪⎩
x1−γ

1−γ

−∞
(4.6)

Following Merton (1971), the optimal portfolio problem can be solved by solving HJB

equation. The optimal portfolio weights π can be derived by solving

0 = max

{
Jt +

1

2
W 2πΣbΣ

�π�JWW +W

(
n∑
i=1

μi
√
Vi,s

)
JW

+E [J(W +WπΣq1Y1)− J(W )] + E [J(W +WπΣq2Y2)− J(W )]} (4.7)
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Following Proposition 1 in Jin and Zhang (2012), the optimal portfolio weights π(t)∗ =

(π1(t)
∗, . . . , πn(t)∗) is given by

π(t)∗ = (πb,1, . . . , πb,n)
� =

(Σ0
b)

−1(μ′ − Σ0
qν

′)

γ

with ⎛⎜⎜⎝ πq,1

πq,2

⎞⎟⎟⎠ = πb(Σ
0
b)

−1Σ0
q

where (πq,1, πq,2) solves the following equations:

max πq,1ν1 +
λu

1− γ

∫ ∞

0

[
(1 + πq,1z)

1−γ − 1
]
Φu(dz)

max πq,2ν2 +
λd

1− γ

∫ 0

−1

[
(1 + πq,2z)

1−γ − 1
]
Φd(dz)

and

Φu(dz) =
(1 + z)−

1
ηu

−1

ηu
dz

Φd(dz) =
(1 + z)

1
ηd

−1

ηd
dz

The constrained problem can be solved similarly. Details can be found in Jin and Zhang

(2012).

4.3 Capturing asymmetric correlation

In this section, much detailed analysis is provided to show how well the proposed model

can capture asymmetric correlations across both the US domestic market and the inter-

national market.

97



4.3.1 Exceedance correlation and H-statistic

To measure the existence of asymmetric correlations, many measurements and proxies

have been proposed. A simple but popular measurement is known as exceedance corre-

lation. Suppose there are two return series: x and y. First, we standardize return series

and have x̃ and ỹ. Then, the exceedance correlation is defined as

ρ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
corr(x̃, ỹ|x̃ > θ, ỹ > θ), if θ ≥ 0

corr(x̃, ỹ|x̃ < θ, ỹ < θ), if θ ≤ 0

where θ is the exceedance level. Usually, ρ(0) has two different values, namely ρ+ and ρ−.

If the market is of asymmetry, it is unlikely to observe ρ+ = ρ−. Exceedance correlation

can be understood as a type of conditional correlation. For example, if setting θ = 1,

ρ(1) represents the correlation where x̃ and ỹ are both less than one unit of standard

deviation or x and y are both less than one standard deviation. ρ(1) and ρ(−1) measure

the correlation of large positive and negative returns, respectively.

If we set up a series of exceedance levels, we will have a series of corresponding exceedance

correlations. Plotting exceedance correlations will provide an intuitive understanding on

asymmetric correlations. If the dependence structure of the market is symmetric, the ex-

ceedance correlation plot will also be symmetric. Apparently, we need more sophisticated

tools to identify and assess asymmetric correlation. Ang and Chen (2002) propose a statis-

tic test named as the H-statistic. Suppose we have a sample of data collected from the

market. First, we choose N exceedance levels θ = (θ1, ..., θN), and ρ(θ) = (ρ(θ1), ...ρ(θN )

is the corresponding exceedance correlations of the data. Then, we propose a model φ
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and estimate the model based on the sample data. We denote the exceedance correlations

implied by the model φ as ρ(θ, φ). If model φ is able to perfectly explain the degree

of asymmetric correlations in the data, we will have ρ(θ) = ρ(θ, φ). The H-statistic is

defined as the weighted sum of quadratic differences of exceedance correlations. More

precisely,

H =

[
N∑
i=1

ω(θi) · (ρ(θi)− ρ(θi, φ))
2

]1/2
where

∑N
i=1 ω(θi) = 1 and ω(θi) ≥ 0. The choice of weights is flexible. Ang and Chen

(2002) suggest that results are robust to different choices of weights. In this paper, we use

two different types of weights: weighted by the number of observations and equal weights.

4.3.2 Data

Most of the research work on asymmetric correlations focuses on the US market. For

example, Ang and Chen (2002) and Hong et al. (2007) adopt similar portfolios based on

the Fama-French dataset. In this section, we select portfolios grouped by size, book-to-

market ratio and momentum, respectively, following the same construction rules in Ang

and Chen (2002). The sample period is from July 1963 to December 2012. We only adopt

weekly returns that are calculated in excess of risk-free rate. This enables us to compare

the results with related literature. The risk-free rate is the one-month US Treasury bill

rate. In addition, international portfolios are chosen so as to test the ability to capture

asymmetry across global financial markets. Indices from both developed and emerging

countries are used, including the United States, the United Kingdom, the Europe ex UK,
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Japan and the Asia ex Japan. In all, we have used four data sets including both domestic

portfolios and international portfolios.

A summary of statistical description of all data used in this experiment is provided in

Table 4.1. The first three panels depict the statistical result of the US domestic portfolios,

while panel D describes that of the international portfolios. Exceedance correlations of all

portfolios are also reported in Table 4.1. ρ+ and ρ− represent both positive and negative

exceedance correlations with the exceedance level of 0, respectively. It turns out that all

the values of ρ− are larger than the corresponding values of ρ− except for the High Tech

portfolio. The differences of ρ+ and ρ− vary significantly. For example, the smallest size

portfolio has ρ− = 0.8198 which is 0.2 bigger than its counterpart ρ+. As the size of

portfolios is getting bigger, ρ+ and ρ− are becoming closer to each other. Every domestic

portfolio is actually a part of the market portfolio. Hence, it is not surprising to note that

the largest size portfolio has a correlation of 0.9895 with the market portfolio, as it plays

as a huge proportion of the market portfolio. The international portfolios are different

from the domestic portfolios. We investigate the relationships between the US portfolio

and other international portfolios. Hence, it is not likely that extremely large correlations

will be observed between the US market and other international markets. Among all

indices, the Japan index exhibits the least correlation with the US index; it also provides

the largest asymmetry as its ρ− is about 32% larger than its ρ+. The Japan index seems

to be the ‘outlier’ as all other three indices exhibit similar behaviours.

The plots of exceedance correlations based on Table 4.1 are given in Figure 4.1. Accord-
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Table 4.1: A statistical description for domestic portfolios and international portfolios

For the market portfolio and all other domestic portfolios, the number observations is 2583. For the international

portfolios, the number of observations is 608. All returns are annualized log-returns in excess of the annualized 1-month

T-bill rate. The sample period of the domestic portfolios is from July 1963 to December 2012. The international

portfolios are sampled from May 2001 to December 2012.

Mean Standard deviation Correlation ρ+ ρ−

Market portfolio 0.0504 0.1598

Panel A. Size portfolios (value-weighted)

1 Smallest 0.0641 0.1750 0.8317 0.6404 0.8198

2 0.0708 0.1812 0.8966 0.7597 0.8677

3 0.0701 0.1732 0.9349 0.8476 0.9079

4 0.0656 0.1696 0.9632 0.9147 0.9505

5 Largest 0.0445 0.1570 0.9895 0.9786 0.9805

Panel B. Book-to-market portfolios (value-weighted)

1 Growth 0.0436 0.1734 0.9658 0.9256 0.9375

2 0.0522 0.1572 0.9657 0.9353 0.9422

3 0.0559 0.1569 0.9379 0.8862 0.8996

4 0.0716 0.1530 0.9122 0.8409 0.8704

5 Value 0.0871 0.1694 0.8856 0.7525 0.8392

Panel C. Industry portfolios (value-weighted)

Consumer 0.0690 0.1600 0.8667 0.8392 0.8781

Manufacturing 0.0585 0.1576 0.9157 0.8529 0.8778

High Technology 0.0519 0.1920 0.8910 0.8190 0.7892

Health 0.0717 0.1786 0.7935 0.6793 0.6991

Other 0.0694 0.1926 0.8599 0.8606 0.8740

Panel D. International portfolios (MSCI)

US 0.0114 0.1918

Japan -0.0166 0.1982 0.4838 0.1744 0.4979

Europe 0.0308 0.2475 0.8275 0.7061 0.7773

UK 0.0291 0.2283 0.8129 0.7222 0.7570

Asia 0.0984 0.2368 0.7230 0.6270 0.7568

101



ing to Ang and Chen (2002), there are two typical patterns of asymmetry. First, the

exceedance correlations for negative exceedance levels are always greater than those for

the counter-parties. Second, the left tail of the exceedance correlation plot is either flat

or slightly increasing. Our results match with existing research findings. However, there

are two ‘outliers’ that contradict the two typical patterns. One is the B/M 4 portfolio

and the other one is the High Tech portfolio. The B/M 4 portfolio still has a larger ρ−

than ρ+, but its left tail decreases with the increase of the exceedance level. The High

Tech portfolio has a larger ρ+, which indicates that it is more correlated with the market

portfolio during a bullish time. Indeed, these two portfolios are not outliers. The patterns

found in Ang and Chen (2002) are not always observable in practice. In some period, the

dependence structure does show some symmetry. The patterns documented in Ang and

Chen (2002) are very common in the market, but sometimes ρ+ > ρ− can be observed. We

need to develop a model that captures asymmetric correlations exhibited in the market,

but not a model that only captures some documented patterns.

4.3.3 Empirical performance of fitting asymmetry

The estimation is implemented by using the method of moments. To simplify the frame-

work, we have assumed that the volatility process has a long-run mean of unit. This

assumption does not restrict the flexility of the framework, since there is volatility pa-

rameter σij that can control the variance of innovation. Hence, the estimation procedure

can be split into two. First we estimate the multi-variate jump-diffusion model with-
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Figure 4.1: Exceedance correlations of size, book-to-market, industry and international

portfolios
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out stochastic volatility. Then, we estimate the stochastic volatility process individually.

The estimation results of optimal parameters are given in Appendix C.1. We use the

two-sample Kolmogorov-Smirnov test to compare the real data and the simulation data

obtained based on estimates, in order to show the goodness of fit. Table 4.2 presents the

statistical results. No portfolio is rejected with the level of 5%. We also provide compar-

isons of moments in Appendix C.1 as an addition to the goodness of fitting. In all, the

estimation results show that our model is capable of fitting the market data well.

Table 4.2: Kolmogorov-Smirnov test of estimation results

P-value KS-stat

Size 1 0.1034 0.5064

Size 2 0.0897 0.5184

Size 3 0.2501 0.4241

Size 4 0.1598 0.4677

Size 5 0.4030 0.3714

Book-to-market 1 0.1494 0.4739

Book-to-market 2 0.4136 0.3683

Book-to-market 3 0.2504 0.4239

Book-to-market 4 0.0508 0.5638

Book-to-market 5 0.1225 0.4917

Industry 1 0.2259 0.4344

Industry 2 0.8529 0.2532

Industry 3 0.5668 0.3271

Industry 4 0.5104 0.3416

Industry 5 0.0642 0.5456

US 0.8108 0.2661

Japan 0.3209 0.3987

Europe 0.2328 0.4326

UK 0.0722 0.5378

Asia 0.2367 0.4309
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Empirical cdf plot is another useful tool to access the goodness of fit. Figure 4.2, 4.3,

4.4 and 4.5 provide the corresponding empirical cdf plots for Size portfolios, Book-to-

market portfolios, Industry portfolios and international portfolios. Apparently, our model

fits both the domestic portfolios and the international portfolios well. Especially, the

international portfolios demonstrate very good fitting results.
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Figure 4.2: CDF plots of empirical distribution against model distribution (Size portfo-

lios)

Apart from some general statistic tests, we also want to investigate if our model does

capture asymmetric correlations. The best choice is the H-statistic proposed by Ang and

Chen (2002).

We choose two weighting methods including the average weight and the weight based on

the number of observations. Table 4.3 depicts the statistic results for both domestic port-

folios and international portfolios. Under H2, namely the weights that are proportional to

the number of observations, none portfolio is rejected. Under the average weight H1, we

only have 4 portfolios rejected. The reason why we do not use the J-statistic developed
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Figure 4.3: CDF plots of empirical distribution against model distribution (Book-to–

market portfolios)
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Figure 4.4: CDF plots of empirical distribution against model distribution (Industry

portfolios)
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Figure 4.5: CDF plots of empirical distribution against model distribution (International

portfolios)

in Hong et al. (2007) is because it is too strong to be used to identify the existence of

asymmetry. For example, Hong et al. (2007) suggest that strong evidence of asymmetries

only exists for some size portfolios. In another word, 4 out of 30 portfolios are not rejected

for the null hypothesis of no asymmetry. The aim of the J-statistic is to test if the data is

of asymmetry. The meaning of the J-statistic is that a sample data that is of asymmetry

cannot be modelled by a symmetric distribution. In principle, the J-statistic computes

the difference of positive and negative exceedance correlations and uses a Chi-square test

to finish the hypothesis test. Indeed, it is similar to the procedure of the H-statistic.

The plots of exceedance correlation contain a large amount of information. We present

the exceedance plots of simulation data in Figure 4.6. Based on estimation results, we
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Table 4.3: A summary of H-statistic for domestic portfolios and international portfolios

This table reports the H-statistics for domestic and international portfolios under the null hypothesis.

H1 and H2 represent the values of the H-statistic computed with the average weights and the weights

based on the number of observations. Frequency of return data is weekly. * indicates that the test

was rejected at the level of 5%.

Size 1 Size 2 Size 3 Size 4 Size 5

H1 0.0763 0.0658 0.0112 0.0057 0.0513

H2 0.0409 0.0341 0.006 0.0028 0.0266

BE/ME 1 BE/ME 2 BE/ME 3 BE/ME 4 BE/ME 5

H1 0.0362 0.0164 0.0169 0.0466 0.0067

H2 0.0173 0.0084 0.0081 0.0221 0.0032

Consumer Manufacturing High Tech Health Other

H1 0.1377* 0.0285 0.0554 0.0501 0.1651*

H2 0.0664 0.0141 0.0271 0.0239 0.0786

Japan Europe ex UK UK Pacific ex Japan

H1 0.0551 0.1529* 0.0712 0.1874*

H2 0.0280 0.0723 0.0369 0.0873
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simulate 3000 samples which are similar to the real data set. With each group of portfolios,

we apply the exceedance plots and compare them with those presented in Figure 4.1.

Generally speaking, the exceedance plots based on simulation data are quite similar to

the corresponding plot based on real data except for the two “outliers”. For example,

our model does not recover the decreasing left tail of the B/E4 portfolio. For most of

portfolios, the simulation data exhibits dependence patterns that are quite close to those

of real data.

We do find situations where the estimation error is extremely small while the H-statistic

is significantly large. It is suggested that the H-statistic should be taken into account

while estimating the data. If an incorrect model is used, it might be the case that the

estimation error is not huge and acceptable. However, the dependence structure is very

wrong as indicated by the H-statistic. It is not easy to incorporate the H-statistic into

the estimation procedure as calculating H relies on the simulation technique for most of

the cases.

Apart from the H-statistic, we also use some graphic tools such as the contour plot to

investigate the difference of dependence structure between real data and the model. The

contour plot is a graphic tool that can show both linear dependence and non-linear depen-

dence. Hong et al. (2007) use this tool to show the goodness of fit for their copula model.

Figure 4.7 and Figure 4.8 present the contour plots for the real data and the simulation

data, respectively. The simulation data used is the same as used in the exceedance plots.

According to the contour plot, the model fits the empirical distribution very well. Al-
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Figure 4.6: Exceedance correlations of size, book-to-market, industry and international

portfolios (simulation data)
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though contour plot cannot provide a direct view on asymmetric dependence, it shows a

complete image on the bivariate distribution. Hence, no matter the dependence is asym-

metric or not, similar contour plots can confirm that two distributions are close to one

another. In our case, the contour plots of the simulation data are very close to those of

the real data. This can imply that the model can fully describe the empirical distribution

as well as the bivariate dependence structure.
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Figure 4.7: Contour plots of the international portfolios (real data)

4.4 Impacts of asymmetry on portfolio allocation

After demonstrating the ability to capture asymmetry, we provide examples of how asym-

metric correlations affect the portfolio allocation problem in this section. To compare the

difference between an optimal allocation and a suboptimal allocation, a benchmark model
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Figure 4.8: Contour plots of the international portfolios (simulation data)

that does not admit asymmetry is adopted.

4.4.1 Benchmark Model

To investigate the effect of taking into account asymmetric correlation, a benchmark

model that ignores this stylized feature has to be provided. Since we want to figure out to

what extent asymmetric correlations affect the portfolio allocation, the benchmark model

has to be a solid one that has been widely used. A single jump-diffusion mode is assumed,

which has the representation:

dSit
Sit

= μidt+ σidzt + (Ji − 1)dNt, i = 1, ..., N (4.8)

where Sit models the spot price of the ith asset. μ is a N -dimensional drift vector, and σi is

volatility parameter. Nt is a Poisson process with intensity λ. Ji− 1 controls the random
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jump amplitude for the ith asset. Assume that log(Ji) follows a normal distribution with

mean μi and variance vi. This model has been recommend by Das and Uppal (2004) and

used as a benchmark model in Ang and Chen (2002). (4.8) allows negative jumps so that

the correlations of downward moves could be very large. However, Ang and Chen (2002)

suggest that model (4.8) cannot generate enough asymmetry compared with real market

data.

This benchmark model can be easily estimated with the method of moments. The opti-

mal portfolio weights under the CRRA utility can be obtained by solving the following

equation:

0 = μ− γΣw + λE
[
Jt(1 + w′Jt)−γ

]
(4.9)

where μ = [μ1, ..., μn]
′, γ is the risk aversion, and Jt = [J1, ..., Jn]

′. The optimal weights

w = [w1, ..., wn] can only be solved by numerical method. Details can be found in Das

and Uppal (2004).

To avoid the impact of the home bias puzzle, only domestic assets are chosen in this

experiment. Following Ang and Chen (2002), a similar data set is used, that is the Size

portfolios with the sample period from July 1963 to December 2012 selected. This has

been used in section 4.3 to show the fit of asymmetries. Only the Size portfolios are used.

This is because the Size portfolios exhibit the greatest number of asymmetries compared

with other Fama-French portfolios, as suggested by Hong et al. (2007).
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4.4.2 Effects of asymmetric correlation and under-diversification

In the first example, we solve the unconstrained portfolio allocation with different levels

of risk aversion. The unconstrained portfolio weights are reported in Table 4.4 with γ

varying from 5 to 50. The left panel of Table 4.4 provides the actual weights of Size

portfolios, while the corresponding right panel presents the normalized weights.

To measure economic value of ignoring asymmetry, the certainty equivalent loss is reported

in annualized return rate, known as RW , as well. The certainty equivalent loss can provide

a direct view of how much compensation the investor needs to switch to a suboptimal

strategy. For a portfolio weight π = (π1, ..., πn), the expected utility J(π) of the terminal

wealth W π
T can be calculated as

J(π) =
W 1−γ

0

1− γ
E
{
exp
(
(1− γ)W̃ π

T

)}
where

W̃ π
T =

∫ T

0

[
r + πs(b− r1N)− 1

2
πsΣbΣ

�
b π

�
s

]
ds+

∫ T

0

πsΣbdB
S
s

+
2∑

k=1

∫ T

0

log(1 + πsΣqkYk)dNk,s

In our experiment, J(π) =
W 1−γ

0

1−γ exp (κ(π)T ), where

κ(π) = (1− γ)[π(b− r1N) + r]− 1

2
(1− γ)γπΣbΣ

�
b π

�

+ λu

∫ ∞

0

[(1 + π̃q1z)
1−γ − 1]

1

ηu

1

(1 + z)1+
1
ηu

dz

+ λd

∫ 0

−1

[(1 + π̃q2z)
1−γ − 1]

1

ηd

1

(1 + z)
1
ηd

−1
dz
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The certain equivalent simple return Rπ
cer for the portfolio π is defined as

[W0(1 +Rπ
cer)

T ]1−γ

1− γ
= J(π),

then equivalently,

Rπ
cer =

(
E
{
exp((1− γ)W̃ π

T )
}) 1

T (1−γ) − 1

If we want to compare the performance of two portfolios, we can use the certainty equiva-

lent loss rate RW = Rπ∗
cer−Rπ

cer where π
∗ is the optimal portfolio and π is the suboptimal

portfolio.

As shown in Table 4.4, the holdings of all assets shrink with the increase of risk aversion.

This is quite intuitive since risk averse investors become more conservative when they

are becoming more risk averse. For example, with a low risk aversion level, γ = 5, the

optimal strategy is quite aggressive. The absolute holdings of Size 4 and Size 5 are both

bigger than 10. Even the smallest holding is about 1, for Size 3. The holding of the

optimal strategy is mainly located on Size 4 and Size 5 but with different directions. Size

4 and Size 5 represent the largest two size portfolios, which means that these two have

the smallest average return and the largest variances. The optimal strategy also admits

a large negative position on Size 1 portfolio that can be seen as the most risky one. In

general, the investor tends to long Size 4 and short Size 5, in order to earn the less risky

premium for the purpose of hedging. She also tries to take a notable risk exposure by

short-selling Size 1. The exceedance correlation of Size portfolios is depicted in Figure

4.9. Apparently, asymmetries of Size 5 against the other four portfolios are very sizeable
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and follow the typical pattern. Size 4 and Size 5 exhibit the least asymmetry, which might

be the reason why this pair is chosen to hedge with each other. Size 1 and Size 5 show

the largest asymmetry, which implies the intuition that Size 1 portfolio is adopted for

speculation.

Table 4.4: Unconstrained optimal portfolio allocation with risk aversion

γ Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5

5 -6.29 5.25 1.09 10.10 -10.97 7.68 -6.41 -1.33 -12.33 13.40

7 -5.75 4.80 1.00 9.23 -10.03 7.68 -6.42 -1.33 -12.33 13.40

9 -5.06 4.23 0.88 8.12 -8.83 7.70 -6.43 -1.33 -12.36 13.42

11 -4.47 3.74 0.78 7.18 -7.80 7.69 -6.42 -1.33 -12.34 13.41

50 -1.66 1.39 0.29 2.65 -2.88 7.63 -6.39 -1.33 -12.20 13.28

To see what the optimal strategy will be under an extreme case, the optimal weights are

reported as well with a very high level of risk aversion, γ = 50. The holding of Size 3

decreases to 0.29, while other exposures come to a similar level. It turns out that the

optimal allocation goes to a pure diversified strategy when the investor is extremely risk

averse. The risk of asymmetries does not play an important role in this case. Our finding

implies that investors with low risk aversion should pay more attention to asymmetric

correlation.

With the right panel of Table 4.4, we also compare the actual weights with the normal-

ized weights. An interesting finding is that the optimal weights do not become more

diversified as the investor becomes more risk averse. This might be explained by the con-

cern of asymmetries, as a more risk averse investor should still consider the asymmetry
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Figure 4.9: The exceedance correlation plot of size portfolios

risk. Hence, the actual weights are very sensitive to the level of risk aversion, while the

normalized weights are stable with respect to γ.

Now, to derive the suboptimal portfolio, we solve the benchmark model and present the

portfolio weights in Table 4.5. To measure economic value of ignoring asymmetry, the

certainty equivalent loss is reported in Table 4.5 in annualized return rate, known as RW ,

as well. The certainty equivalent loss can provide a direct view of how much compensation

the investor needs to switch to a suboptimal strategy. Compared with Table 4.4, it is

suggested that the suboptimal weights exhibit more diversification. For example, the

exposure on Size 3 portfolio is 3.53 while ignoring asymmetry with γ = 5, which is about

times larger than that 1.09 suggested by the optimal strategy. The economic loss of

ignoring asymmetry is not very huge, according to the values of RW . The largest loss is

reported as 0.05 while γ = 5. This indicates that 5% more is required to compensate the

investor if the risk of asymmetric correlation is neglected. The loss increases as the investor
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becomes more risk averse. When the investor is extremely risk averse, the economic loss

is only 0.002 as the difference between the weights of the optimal allocation and the

suboptimal allocation is very small. Ang and Chen (2002) show that the jump-diffusion

model presented in (4.8) cannot capture asymmetric correlations. For instance, there are

28 portfolios used in the hypothesis tests and 11 portfolios are rejected. Based on our

example, it is suggested that the benchmark model can capture asymmetric correlations

to some extent, even it cannot exhibits enough asymmetries. The certain equivalent cost

can provide a direct view of how much compensation the investor needs to switch to a

suboptimal strategy.

Table 4.5: Unconstrained optimal portfolio allocation with risk aversion (benchmark

model)

γ RW Size 1 Size 2 Size 3 Size 4 Size 5

5 0.05 -8.32 6.15 3.53 9.32 -5.97

7 0.04 -7.84 5.92 3.10 8.53 -5.03

9 0.04 -6.45 5.63 2.89 7.62 -4.56

11 0.03 -5.32 5.26 2.22 6.92 -3.74

50 0.002 -1.57 1.39 0.49 3.12 -1.82

The extent of asymmetric correlation can be understood by measuring the risk exposure

to the negative jump. Hence, it is reasonable and informative to observe the variation

of optimal weights given different negative risk exposure. Let the value of λd, that is

that the intensity of the negative jump. The true estimate of λd is 13.3205, and we let

it vary from 12.2094 to 14.4316. Intuitively, larger λd generates higher asymmetry risk.
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Table 4.6 reports the unconstrained portfolio weights, given different additivity rates of

negative jumps. With the actual weights shown in the left panel, the optimal strategy

does not vary too much with the variation of λd. This is a simple case of the under-

diversification problem. If the market does not change too much, the investor tend not to

change her portfolio weights. In another word, the asymmetry has dominated the strategy

in some sense. The normalized weights in the right panel provides a different view as the

normalized weights are much more sensitive to the change of λd. Generally speaking,

it is not surprising to observe that all weights shrink as negative returns become more

frequent; however, the normalized weights reflect the change of the investor’s investment

preference.

Table 4.6: Unconstrained optimal portfolio allocation with risk exposure to negative jump

(γ = 5)

λd Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5

12.2094 -5.97 4.88 0.99 9.56 -10.00 11.20 -9.16 -1.86 -17.92 18.74

12.7650 -5.80 4.83 1.00 9.40 -10.02 9.84 -8.19 -1.69 -15.95 17.00

13.3205 -5.75 4.80 1.00 9.23 -10.03 7.68 -6.42 -1.33 -12.33 13.40

13.8760 -5.46 4.72 0.99 9.07 -10.76 3.80 -3.29 -0.69 -6.31 7.49

14.4316 -5.29 4.69 0.99 8.83 -10.42 4.39 -3.89 -0.82 -7.33 8.65

It is also interesting to investigate the effect of investment constrains with respect to

asymmetric correlations. In this example, we prevent from short-selling assets and solve

the optimal portfolio weights. Table 4.7 presents the constrained portfolio allocation with

different levels of risk aversion. The left and right panel of Table 4.7 provide the actual
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and normalized weights, respectively. As short-selling has been prohibited, the investor

allocates about 97% of her wealth to Size 4 with the rest on Size 3. More than half of

her wealth is invested on the riskless bond. This optimal allocation is provided based

on a low level of risk aversion, γ = 5. It can be easily concluded that the short-selling

constraint significantly reduces the leverage and limits the portfolio performance, even

for an aggressive investor. When γ = 50, the investor nearly invests nothing on the risky

assets, as only 4% of her wealth is spent on Size 4. A similar image is depicted in Table 4.8

to show the constrained portfolio weights given different jump risk. The market becomes

less volatile as λd decreases. In this case, the investor is likely to take a higher position

on risky assets. The actual portfolio weights drop quickly when the market becomes

more volatile. The portfolio weights exhibit severe under-diversification with the ban of

short-selling.

Table 4.7: Constrained optimal portfolio allocation with risk aversion

γ Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5

5 0.00 0.00 0.01 0.45 0.00 0.00 0.00 0.03 0.97 0.00

7 0.00 0.00 0.01 0.32 0.00 0.00 0.00 0.03 0.97 0.00

9 0.00 0.01 0.01 0.25 0.00 0.00 0.04 0.03 0.93 0.00

11 0.00 0.03 0.01 0.20 0.00 0.00 0.13 0.03 0.85 0.00

50 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.03 0.97 0.00
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Table 4.8: Constrained optimal portfolio allocation with risk exposure to negative jump

(γ = 5)

γ Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5

12.2094 0.00 0.00 0.13 0.50 0.00 0.00 0.00 0.21 0.79 0.00

12.7650 0.00 0.00 0.07 0.47 0.00 0.00 0.00 0.13 0.87 0.00

13.3205 0.00 0.00 0.01 0.45 0.00 0.00 0.00 0.03 0.97 0.00

13.8760 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 1.00 0.00

14.4316 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 1.00 0.00

4.5 Home bias with asymmetry

Home bias is a well-known puzzle that investors tend to spend a large amount of money

on domestic assets, which contradicts the diversification effect of international investment.

French and Poterba (1991) and Tesar and Werner (1994) are the first literature that doc-

umented this economic puzzle. For example, Thomas et al. (2004) show that US investors

only held 14% of portfolio allocation in foreign assets by the end of 2003. Home bias

can also be observed in other countries like the UK and Japan (See French and Poterba

(1991) and Tesar and Werner (1994)). Many possible explanations have been proposed

to solve this puzzle, including the investment barrier, truncation costs and information

asymmetry; however, there is no convincing solution that can be commonly accepted and

verified. In this section, we try to relate the home bias puzzle with asymmetric correlation

and explain the intuition of why asymmetry can affect investors’ preference.

Besides the potential explanations discussed above, Guidolin and Timmermann (2008)
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try to explain the puzzle with using a four-moment International CAPM model. They

suggest that high-moment preference with the presence of regimes leads to the home

bias. In this section we adopt the same market data used in Guidolin and Timmermann

(2008), which includes five international indices: the United States, Japan, the United

Kingdom, the Pacific region ex Japan, Europe ex UK. All index prices are denominated in

US dollars, and we calculate monthly excess log returns on Morgan Stanley Capital Inter-

national (MSCI) indices from January 1975 to December 2005. Returns are continuously

compounded, and dividends have been adjusted along with other non-cash payments.

A summary of statistics is presented in Table 4.9. All five international portfolio indices

are downloaded from Bloomberg. The risk-free rate is approximated by the 1-month US

T-Bill rate that can be found from French’s homepage1. In addition to the statistical

summary, a view of unconditional correlations of all indices is depicted in Table 4.10.

All average returns in Table 4.9 are positive, but the higher moments of returns are

different from each other. For example, UK and Japan exhibit positive skewness while

other indices are of negative skewness. The levels of kurtosis also vary. The Pacific ex

Japan index has the highest kurtosis. The summary of statistic we provide is a little

different to Table 1 in Guidolin and Timmermann (2008). This might be due to the

different sources of obtaining the MSCI index data. One index name sometimes represents

several price series as it might be differently adjusted or denominated. The US return

1We are grateful to Ken French for offering the data at

www.mba.tuck.dartmouth.edu/faculty/ken.french

122



Table 4.9: Statistic summary of excess returns of MSCI indices

This table provides the statistic summary of returns on five portfolio indices and US 1-month T-bills rate. Returns

are reported in monthly excess log returns, denominated in US dollars. Bloomberg ticker names for five indices are

‘GDDUUS’ (US), ‘GDDUJN’ (Japan), ‘GDDUPXJ’ (Pacific ex Japan), ‘GDDUE15X’ (Europe ex UK) and ‘GDDUUK’

(UK). Data are collected from Jan. 1975 to Dec. 2005. Normality of return data is verified by Jarque-Bera test.

Ljung-Box test is used to test the autocorrelation of returns and square returns.

* Denotes significance at 5% level.

** Denotes significance at 1% level.

Index Mean Standard Skewness Kurtosis Jarque-Bera Ljung-Box Ljung-Box

Deviation (squares)

MSCI US 0.5415 4.3548 -0.7083 5.9135 162.67** 1.81 2.52

MSCI Japan 0.3733 6.3965 0.0700 3.5044 4.25 7.09 11.75

MSCI Pacific ex JP 0.5413 6.6506 -1.9670 19.0911 4253.20** 3.59 0.29

MSCI Europe ex UK 0.5264 4.9138 -0.6361 4.7794 74.17** 3.59 9.11

MSCI UK 0.7503 6.1898 0.7586 10.3158 865.25** 4.23 19.96

1-month US T-bills 0.4906 0.2517 0.8319 3.9943 58.23** 1259.80 1092.50

Table 4.10: Unconditional correlations of international MSCI indices (from Jan. 1975

to Dec. 2005)

US JP Pacific ex JP Europe ex UK UK

US 1.0000 0.3139 0.5599 0.6111 0.5434

JP 0.3139 1.0000 0.3760 0.4858 0.3842

Pacific ex JP 0.5599 0.3760 1.0000 0.5550 0.5733

Europe ex UK 0.6111 0.4858 0.5550 1.0000 0.6479

UK 0.5434 0.3842 0.5733 0.6479 1.0000
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series admits the smallest volatility among the five indices, and the Japan return series

has the smallest mean and highest volatility. Ticker names are provided in Table 4.9 for

comparison.

A plot of exceedance correlations in Figure 4.10 provides an insight into the dependence

structure across indices. Exceedance correlations are computed based on monthly returns,

so the precision might be not good enough; however, it still depicts the trends. The largest

exceedance level is set to be 0.8 due to the lack of return data. It provides a typical view of

stylised pattern of asymmetric correlation except for the Japan index. Figure 4.10 exactly

shows the concerns we have when considering the diversification effect. For instance, an

investor holds positions on both the US index and the UK index. When the market

worsens, the correlation approaches to 0.75. When the market is good, the correlation

decreases to 0.3. The unconditional correlation between the US index and the UK index

is about 0.54. Apparently, diversification performs very differently given the complicated

dependence structure. We also find negative exceedance correlations for the pair of US

and Japan when θ > 0.6. The left tail of the Japan index decreases and is very close to

zero. In general, it is suggested that the Japan index does not have too much in common

with the US index. This means that an investor looking forward to using the Japan index

to hedge her position on the US index will be very disappointed in a bearish market.

More precisely, according to Figure 4.10, when the US index has a large positive jump,

the Japan index tends to decrease. When the US index has a large negative drop, Japan

index is unlikely to decrease. The data set is very typical as all main international markets
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are included. The Japan index even brings something special to the allocation problem.

It is a good example to show that the conditional correlations varies in different market

conditions.
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Figure 4.10: Exceedance correlations of MSCI indices

Now, suppose an investor can spend her total wealth freely on all five international indices

including US, Japan, Europe ex UK, Pacific ex Japan and UK, without any barrier or

transaction cost. She can either borrow money from banks or invest in 1 month US T-

bills. With the framework we developed in this chapter, optimal portfolio weights are

computed. Firstly, we set a range of values centred at the true estimate of λd, namely

the jump intensity rate of negative jumps. The investor is not allowed to short any index.

With different values of λd, we solve optimal portfolio weights with the risk aversion level
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γ = 4, and report the result in Table 4.11. In the left panel of Table 4.11, portfolio

weights are reported in actual value, while normalised weights are reported in the right

panel. Since we aim to investigate the home bias problem, we are more interested in

the right panel. Given all cases of artificial values of λd, the holding of the US index

is more than 70%. The line in bold represents the case of the true λd. The intensity

rate of λd describes the risk exposure on negative jumps. Across all the values of λd, the

holding position of the US index is very robust. According to Figure 4.11, it is suggested

that both the percentages and the actually holdings of the US index decrease with the

increase of λd. Intuitively, this is due to the fact that an investor is more keen to hedge

her portfolio when the jump risk is getting bigger. When the jump risk is relatively low

(λd = 18.4694), the investor is satisfied to hold more than 0.82% on the US index; when

the jump risk is relatively high (λd = 27.3583), the investor needs to hold more on the

UK index for the purpose of hedging or diversification. The home bias problem indeed

is a case of under-diversification problem exhibited in the international market. It is not

surprising to see that the diversification effect can be observed in international investment

problem, although the effect is very week.

Besides holding the US index, the investor prefers to take some positions on the UK

and the Pacific indices. The fact that the UK index has the highest average return and

the volatility is only medium explains the preference of the investor. The Pacific ex

Japan index has high volatility and the unconditional correlation between the Pacific and

the US indices is the smallest, so the investor might aim to benefit from holding some
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Pacific assets as diversification. The reason why we observe zero weights on Japan and

Europe indices is because our model does not admit hedging demand. If short-selling is

prohibited, negative positions will be turned to zero. A comparison can be found in Jin

and Zhang (2013). An interesting finding is that the investor does not like the Japan

index, while it is very similar to the Pacific ex Japan index. These two indices have a

similar average mean and standard deviation. Given Table 4.10 and Figure 4.10, the

exceedance correlations between the US and Japan indices vary in a very volatile way and

sometimes these two indices are even negatively correlated. It is not straightforward to

estimate the diversification effect with such a ‘volatile’ financial instrument. This might

explain why the Pacific ex Japan index wins from a risk averse investor’s point of view.

Table 4.11: Optimal portfolio weights of international portfolio given γ = 4
Actual Weights Normalised Weights

λd Japan UK US Euro Pacific Japan UK US Euro Pacific

18.4694 0.0000 0.1472 1.4351 0.0000 0.1623 0.0000 0.0844 0.8226 0.0000 0.0930

19.5805 0.0000 0.1874 1.3733 0.0000 0.1265 0.0000 0.1111 0.8140 0.0000 0.0750

20.6916 0.0000 0.2271 1.3124 0.0000 0.0911 0.0000 0.1393 0.8049 0.0000 0.0559

21.8028 0.0000 0.2661 1.2523 0.0000 0.0562 0.0000 0.1690 0.7953 0.0000 0.0357

22.9139 0.0000 0.3047 1.1930 0.0000 0.0218 0.0000 0.2005 0.7851 0.0000 0.0143

23.4694 0.0000 0.3238 1.1636 0.0000 0.0048 0.0000 0.2170 0.7798 0.0000 0.0032

24.0250 0.0000 0.3366 1.1338 0.0000 0.0000 0.0000 0.2289 0.7711 0.0000 0.0000

25.1361 0.0000 0.3573 1.0740 0.0000 0.0000 0.0000 0.2496 0.7504 0.0000 0.0000

26.2472 0.0000 0.3777 1.0147 0.0000 0.0000 0.0000 0.2713 0.7287 0.0000 0.0000

27.3583 0.0000 0.3980 0.9560 0.0000 0.0000 0.0000 0.2940 0.7060 0.0000 0.0000

It is also interesting to observe the variation of portfolio weights given different levels

of risk-aversion. Let γ vary from 4 to 24. We solve the optimal portfolio weights and

report them in Table 4.12. The normalised holding of the US index does not change too

much and is around 78%; the actual holding of the US index drop dramatically as the
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amplitude of risk aversion increases. This finding is a perfect complement to our results.

Compared with the left panel and the right panel in Table 4.12, it is suggested that the

actual weights shrink with the increasing of the levels of risk aversion. This is intuitive.

A more aggressive investor should have larger exposures, so it cannot be expected that

similar portfolio weights can be derived for different investors. Table 4.12 display exactly

the same situations. As different investor will have a similar percentage of holding on

the domestic index. Although risk-averse investors have different levels of risk-aversion,

the percentage holdings of domestic assets are approximately at the same level. Our

Table 4.12: Optimal weights of international portfolios under different risk aversion

levels
Actual weights normalised weights

γ Japan UK US Euro(UK) Pacific(Japan) Japan UK US Euro(UK) Pacific(Japan)

4 0.0000 0.2426 0.8731 0.0000 0.0038 0.0000 0.2167 0.7799 0.0000 0.0034

6 0.0000 0.1939 0.6987 0.0000 0.0031 0.0000 0.2165 0.7800 0.0000 0.0035

8 0.0000 0.1615 0.5823 0.0000 0.0027 0.0000 0.2164 0.7800 0.0000 0.0036

10 0.0000 0.1384 0.4992 0.0000 0.0023 0.0000 0.2163 0.7801 0.0000 0.0036

12 0.0000 0.1211 0.4368 0.0000 0.0021 0.0000 0.2162 0.7801 0.0000 0.0037

14 0.0000 0.1076 0.3883 0.0000 0.0019 0.0000 0.2162 0.7801 0.0000 0.0037

16 0.0000 0.0968 0.3495 0.0000 0.0017 0.0000 0.2161 0.7801 0.0000 0.0037

18 0.0000 0.0880 0.3177 0.0000 0.0015 0.0000 0.2161 0.7801 0.0000 0.0038

20 0.0000 0.0807 0.2913 0.0000 0.0014 0.0000 0.2161 0.7801 0.0000 0.0038

24 0.0000 0.0745 0.2689 0.0000 0.0013 0.0000 0.2161 0.7802 0.0000 0.0038

results demonstrate how asymmetry risk can be used to explain the home bias puzzle;

however, this does not imply that asymmetry risk can fully explain and drive the home

bias. Asymmetry of information and investment barriers can be expected to play crucial

roles in generating the bias. Nevertheless, our results related the home bias puzzle with

the under-diversification problem by embedding asymmetric correlations. It is suggested
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that the home bias puzzle observed in the global market can be seen as a special case

of the under-diversification problem. The reason why the extent of the home bias puzzle

is much higher might be due to the combined action of other driven forces, such as the

asymmetry of information and other constraints.

4.6 Conclusion

In this chapter, we adopt a multi-variate jump-diffusion model equipped with stochastic

volatility to capture asymmetric correlations. Plenty of statistical measures are used to

show the goodness of fit. It is believed that our model is capable of fitting asymmetries

across domestic markets and international markets. With numerical experiments, we

also demonstrate the huge impact of asymmetry on portfolio allocation. Asymmetric

correlation also brings a new idea to economic puzzles. In section 4.5, the home-bias

puzzle is analyzed and efforts have been made to solve this puzzle. It is believed that

asymmetry risk plays an important role in the allocation problem.

More empirical tests should be done in future, in order to test the robustness of our results.

For example, a large sample period can be selected, which might cover several main credit

crisis. The main purpose of investigating asymmetry is to evaluate the diversification

benefit under severe economic environment. It is a necessary work to test our model with

different market conditions. We plan to enhance the proposed model by incorporating

stochastic volatility and evaluate the model performance based on market data collected
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from not only domestic markets but also the international market.
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Chapter 5

General conclusions, contributions

and further research

In this thesis, three separate topics are presented and discussed. These topics are three

applications that how Lévy processes can used to solve problems in asset pricing.

The numerical pricing framework proposed in the first topic can be applied to any time-

changed Lévy model. Although a multi-scale Lévy model is proposed and solved with the

pricing framework, an obvious contribution is that the framework enable people to discover

the potential of time-changed Lévy models. It is a numerical application of the Leverage-

measure introduced in the brilliant work of Carr and Wu (2004). The new model also

suggests that multi-scale volatility can enhance the performance of calibration. According

to the calibration results, a long-run component with a short-run one can be observed.
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There are many aspects that can be improved to complete the related research. For

example, attentions should be drawn to developing more reliable lévy processes. Modelling

the dependence is a challenging work. The framework enable people to develop more

flexible models.

The second and third topics are two successive research work. In the chapter 3, we solve

a constrained portfolio and investigate the effects of imposing investment constraints. In

chapter 4, we revisit the optimal portfolio problem by taking into account asymmetry.

This phenomenon can be observed everywhere in the market. Failure to model it correctly

will lead to severe economic losses. Our findings concentrates on providing suggestions

on how to correctly measure the risk exposure.

Future research can be concluded in different fields. The most important one would

be how to hedge a portfolio that consists of asymmetric risk. Apparently, our research

focuses on how to find and measure the risk caused by the asymmetric dependence. It

has not been discussed how to deal with such a risk. Perhaps, purchasing options will be

a brilliant idea.
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Appendix A

A.1 Derivation of corresponding characteristic func-

tion

We have five benchmark models that have explicit solutions. The characteristic functions

of log returns are:

• Heston model: the model representation is

dSt
St

= (r − q)dt+
√
vtdWt

dvt = κ(η − vt)dt+ λ
√
vtdZt, v0 = σ2

0 > 0

cov[dWtdZt] = ρdt

and the characteristic function of log return is

Φ(u) = exp(iu(r − q)t) exp

(
ηκλ−2

(
(κ− iuρλ− d)t− 2 log

(
1− ge−dt

1− g

)))
exp

(
σ2
0λ

−2(κ− iuρλ− d)
1− e−dt

1− ge−dt

)
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where d =
√

(iuρλ− κ)2 − λ2(−iu − u2) and g = (κ− iuρλ− d)/(κ− iuρλ+ d).

• Double Heston model: the model representation is

dSt
St

= (r − q)dt+
√
v1t dW

1
t +
√
v2t dW

2
t

dv1t = κ1(η1 − v1t )dt+ λ1
√
v1t dZ

1
t , v10 = σ2

1,0 > 0

dv2t = κ2(η2 − v2t )dt+ λ2
√
v2t dZ

2
t , v20 = σ2

2,0 > 0

cov[dW i
t dZ

i
t ] = ρidt, i = 1, 2;

and the characteristic function of log return is

Φ(u) = 1;

• VG model: the model representation is

St = S0 exp ((r − q − ξ)t+Xt)

where ξ = −C log(GM/(GM + (M −G)− 1)) and Xt is a VG process governed by

the parameter triplet (C,G,M). The characteristic function of log return is

Φ(u) = exp(iu(r − q)t)

(
GM

GM + (M −G)iu+ u2

)Ct

• VGSV model: the model representation is

St = S0 exp ((r − q)t +XTt − ξTt)

Tt =

∫ t

0

vsdt

dvt = κ(η − vt)dt+ λ
√
vtdWt, v0 = σ2

0
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where ξ = −C log(GM/(GM + (M − G) − 1)) and Xt is a VG process governed

by the parameter triplet (C,G,M). The activity rate vt is governed by (κ, η, λ, σ2
0).

The characteristic function of log return is

Φ(u) = exp(iu(r − q)t)
φCIR(−iΨ(u))

φCIR(−iΨ(−i))

where Ψ(u) is the characteristic exponent of Xt, φCIR(u) is the characteristic func-

tion of CIR process and has the representation:

φCIR(u) = E

[
exp

(
iu

∫ t

0

vsds

)]
= A(t, u) exp (B(t, u)v0)

where

A(t, u) =
exp
(
κ2ηt
λ2

)
(
cosh

(
γt
2

)
+ κ

γ
sinh

(
γt
2

))2κη/λ2
B(t, u) =

2iu

κ+ γ coth(γt
2
)

γ =
√
κ2 − 2iuλ2

• LS models: the model representation is

St = S0 exp ((r − q − ξ)t+ σLTt)

where ξ = −σα sec(πα/2). The characteristic function of log return is

φ(u) = exp(iu(r − q − ξ)t− t(iuσ)α sec(πα/2))
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The LSSV1 model does not have an explicit solution, so it relies on the numerical frame-

work. It can be done simply by elimianing the activity rate process v2t .

A.2 Solving Heston model numerically

Given the time-changed representation of the Heston model, we can derive the correspond

ODEs as

b′(t) =
u2 + iu

2
− κQb(t)− η2b2(t)

2

c′(t) = ab(t) (A.2.1)

where

κQ = κ− iuηρ.

Fortunately, b(t) has an explicit solution with the initial condition b(0) = 0. c(t) can be

directly obtained by taking integral of b(t). Finally, we can have the solutions as:

b(t) =
u2(1− e−δt)

(δ + κQ) + (δ − κQ)e−δt

c(t) =
a

η2

[
2 log

(2δ − (δ − κQ)(1− e−δt))
2δ

+ (δ − κQ)t

]
(A.2.2)

where

δ = (κQ)2 + u2η2.

The solution (A.2.2) is the same to the well-known solution to the Heston model. It is

slightly different from that given in Heston (1993). This is because the original solution
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has a problem with the principal branch. The solution (A.2.2) is the correct and stable

one.

A.2.1 Derive characteristic function of LS

The Lévy triplet of FMLS process is (a, 0, π), where π(dx) = cx−α−1.

A.2.2 Derive b(t) and c(t)

b′(t) = Ψx(u)− κb(t) + β

∫
R
+
0

(1− e−b(t)x)μu(dx)

= Ψx(u)− κb(t) + sec
πα

2
β [(b(t) + iu)α − (iu)α]

due to∫
R
+
0

(1− e−b(t)x)μu(dx) =
∫
R
+
0

(1− e−b(t)x)e−iuxcx−α−1dx

= c

(∫
R
+
0

e−iuxx−α−1dx−
∫
R
+
0

e−(iu+b(t))xx−α−1dx

)

= c (−(iu)αΓ(−α, iux)|∞0 + (iu+ b(t))αΓ (−α, (iu+ b(t))x) |∞0 )

And

Γ(a,∞) = 0, Γ(a, 0) = Γ(a)

hence ∫
R+
0

(1− e−b(t)x)μu(dx) = cΓ(−α) [(iu)α − (iu+ b(t))α]
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A.3 Sampling FMLS distribution

Let Θ and W be two independent random variables. Θ ∼ U(−π
2
, π
2
) and W ∼ exp(1).

Define θ0 = arctan(β tan(πα/2))/α, then

Z =

⎧⎪⎪⎨⎪⎪⎩
sinα(θ0+Θ)

(cosαθ0 cosΘ)1/α

[
cos(αθ0+(α−1)Θ)

W

](1−α)/α
2
π

[(
π
2
+ βΘ

)
tanΘ− β log

(
π
2
W cosΘ
π
2
+βΘ

)] (A.3.1)
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Appendix B

B.1 Proof of Proposition 3.1

First we prove the first result in Proposition 3.1. Let W c,π
t and W c,π

t (ν) be the wealth

processes corresponding to a portfolio rule π in the market M and Mν , respectively. Like

A(w0) in the market M, we denote by Aυ(w0) the class of consumption rate process c

and portfolio strategies π in the market Mν for which W
π
t (ν) ≥ 0, 0 ≤ t ≤ T . For a fixed

pair of c and π, we now prove W c,π
t (ν) ≥W c,π

t . To this end, we let W̃t = W c,π
t (ν)−W c,π

t .

Then from (3.3) and (3.5), W̃t satisfies

W̃t =

∫ t

0

W̃s[πs(b− r1n) + r]ds+

∫ t

0

Ws(ν)(δ(ν) + πsν)ds+

∫ t

0

W̃sπsΣbdB
S
s

+

∫ t

0

W̃s−πs−Σq(Y • dNs). (B.1.1)
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We set

ξt =

∫ t

0

πsΣbdB
S
s − 1

2

∫ t

0

πsΣbΣ
�
b π

�
s ds+

∑n−d
k=1

∫ t

0

ln(1 + πsΣqkYk)dNk,s,

ηt = exp

{∫ t

0

[r + πs(b− r1n)]ds+ ξt

}
,

Vt = ηt

[∫ t

0

Ws(ν)(δ(ν) + πsν)

ηs
ds

]
.

Note that by a Itō’s lemma,

dηt =ηt{[δ(ν) + πtν + r + πt(b− r1n)]dt+ πtΣbdB
S
t }+ ηt−

∑n−d
k=1

∫ t

0

πtΣqkYkdNk,t.

Then, applying Itō’s lemma, we can verify that Vt solves the equation (B.1.1) and hence

that Vt = W̃t since (B.1.1) has an unique solution by Theorem 9.1 of Ikeda and Watanabe

(1981). As a result, W̃t = Vt ≥ 0 since δ(ν) + πsν ≥ 0 for π ∈ K and ηt ≥ 0, implying

E [U(W c,π
T (ν))] ≥ E [U(W c,π

T )]. Consequently,

J(0,W0, X0) = max
(c,π)∈A(w0)

E

[∫ t

0

e−βtU(ct)dt+ αe−βTU(WT )

]
≤ max

(c,π)∈Aν(w0)
E

[∫ t

0

e−βtU(ct)dt+ αe−βTU(W π
T (ν))

]
=J (ν)(0,W0, X0). (B.1.2)

On the other hand, by assumption, we know π∗ ∈ K and δ(ν∗)+π∗ν∗ = 0, and therefore,

J (ν∗)(0,W0, X0) ≤ J(0,W0, X0), indicating J (ν∗)(0,W0, X0) = J(0,W0, X0) by (B.1.2).

Thus, π∗ is an optimal portfolio strategy for the original market M, completing the proof

of the first result.

We now turn to the proof of the second conclusion. Let ν̃∗ be an optimal solution to the

optimization problem in Proposition 3.1. If we can show δ(ν̃∗) + π∗ν̃∗ = 0, then ν̃∗ is a
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desired vector in Proposition 3.1 by the proof of the result above. From the definition of

δ(ν̃∗), we have δ(ν̃∗) + π∗ν̃∗ ≥ 0 since π∗ ∈ K. We use ν∗ to denote the optimal vector

obtained in Proposition 3.1. From the proof of the sufficient condition of Proposition 3.1,

we have

J(0,W0, X0) = max
(c,π)A(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT )

]
= J (ν∗)(0,W0, X0)

≤ J (ν)(0,W0, X0)

= max
(c,π)∈Aν(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(W π
T (v))

]
,

for ν ∈ K̃. More specifically,

J(0,W0, X0)

= max
(c,π)∈A(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT )

]
= J (ν∗)(0,W0, X0)

= J (ν)(0,W0, X0) , if δ(υ) + π∗ν = 0;

and

J(0,W0, X0)

= max
(c,π)∈A(w0)

E

[∫ T

0

e−βtU(ct)dt+ αe−βTU(WT )

]
= J (ν∗)(0,W0, X0)

< J (ν)(0,W0, X0) , if δ(υ) + π∗ν > 0.
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As a result, ν∗ is an optimal solution to the optimization problem and δ(ν̃∗) + π∗ν̃∗ = 0

since, by assumption, ν̃∗ solves the optimization problem, completing the proof.

B.2 Proof of Proposition 3.2

We prove Proposition 3.2 by adapting the method in Appendix A of Cvitanic and Karatzas

(1992) to the jump-diffusion model. Unlike their proof, we do not use the exponential

martingale defined by (2.8) in Cvitanic and Karatzas (1992) as there are infinitely many

exponential martingales in the jump-diffusion model. For illustrative convenience, we

consider the case Ak = (−1, 0). Given the optimal portfolio π∗ in M, we consider the

martingale

Mt = E
[
W π∗
T U ′(W π∗

T )|Ft

]
(B.2.1)

In particular, MT = W π∗
T U ′(W π∗

T ). Applying the martingale representation theorem, we

have

Mt = y0 +

∫ t

0

ϕ(s)dBS
s +

∫ t

0

∫
ψ(s, z)dq(s, dz) (B.2.2)

for some predictable ϕ and ψ, where y0 = E[MT ], where

q(s, dz) = (q1(dt, dz), ..., qn−d(dt, dz))

and qk(dt, dz) = dNk,t − λkΦk(t, dz)dt is the compensated Poisson process. Taking an

arbitrary portfolio strategy π ∈ A(w0) and a number 0 < ε < 1, we define a perturbed
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strategy π
(ε)
t of π∗ as

π
(ε)
t =

⎧⎪⎪⎨⎪⎪⎩
(1− ε)π∗

t + επt � π̃
(ε)
t , 0 ≤ t ≤ τn

π∗
t , τn < t ≤ T

for every n ∈ N. Here τn is a stopping time to be defined below. The corresponding wealth

process W π(ε)

t satisfies the equation (3.3) in Section 3.2. Then, applying Itō’s Lemma to

the equation (3.3) and function ln[W π(ε)

t ], the wealth process W π(ε)

t can be rewritten as

W π(ε)

t =W0 exp

{∫ t

0

[
r + π(ε)

s (b− r1n)− 1

2
π(ε)
s ΣbΣ

�
b (π

(ε)
s )�

]
ds+

∫ t

0

π(ε)
s ΣbdB

S
s

+
∑n−d

k=1

∫ t

0

ln(1 + π(ε)
s ΣqkYk)dNk,s

}
=W π∗

t exp

{
ε

∫ t∧τn

0

[
(πs − π∗

s)(b− r1n − ΣbΣ
�
b π

∗
s
�)
]
ds+ ε

∫ t∧τn

0

(πs − π∗
s )ΣbdB

S
s

+
∑n−d

k=1

∫ t∧τn

0

ln

(
1 + π̃

(ε)
s ΣqkYk

1 + π∗
sΣqkYk

)
dNk,s

−1

2
ε2
∫ t∧τn

0

(πs − π∗
s)ΣbΣ

�
b (πs − π∗

s )
�ds
}

The stopping time τn above is defined as

τn � T ∧ inf{t ∈ [0, T ];

∣∣∣∣∫ t

0

[
(πs − π∗

s)(b− r1n − ΣbΣ
�
b π

∗
s
�)
]
ds

∣∣∣∣ ≥ n

or

∣∣∣∣∫ t

0

(πs − π∗
s)ΣbdB

S
s

∣∣∣∣ ≥ n, or N1,t ≥ n,

or π̃
(ε)
t Σq1 ≥ 1− 1

n
, or π∗

tΣq1 ≥ 1− 1

n
, ...,

or Nn−d,t ≥ n, or π̃
(ε)
t Σq(n−d) ≥ 1− 1

n
,

or π∗
tΣq(n−d) ≥ 1− 1

n
.

}
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Hence, by the same token as in (A.25), (A.26) and (A.27) of Cvitanic and Karatzas (1992),

we apply the Dominated Convergence Theorem to obtain

lim
ε↓0

1

ε
E

[
U(W π(ε)

T )− U(W π∗
T )
]
=E

{
lim
ε↓0

1

ε

[
U(W π(ε)

T )− U(W π∗
T )
]}

=E [U ′(WT )WTLτn ]

=E [MTLτn ] , (B.2.3)

where

Lt =

∫ t

0

[
(πs − π∗

s)(b− r1n − ΣbΣ
�
b π

∗
s
�)
]
ds+

∫ t

0

(πs − π∗
s)ΣbdB

S
s

+
∑n−d

k=1

∫ t

0

(πs − π∗
s)ΣqkYk

1 + π∗
sΣqkYk

dNk,s. (B.2.4)

Note that E [MTLτn ] = E [MτnLτn ] since Mt is a martingale and τn is a stopping time.

Hence, applying Itō’s Lemma to MtLt using (B.2.2) and (B.2.4), we have

E [MτnLτn ] =E

[∫ τn

0

Mt

[
(πt − π∗

t )(b− r1n − ΣbΣ
�
b π

∗
t
�)
]
dt

+
∑n−d

k=1

∫ τn

0

∫
Ak

Mt(πt − π∗
t )Σqkz

1 + π∗
tΣqkz

λkΦk(t, dz)dt+

∫ τn

0

(πt − π∗
t )Σbϕ

�(t)dt

+
∑n−d

k=1

∫ τn

0

∫
Ak

ψk(t, z)(πt − π∗
t )Σqkz

1 + π∗
tΣqkz

λkΦk(t, dz)dt

]
=E

∫ τn

0

(πt − π∗
t )MtΛtdt (B.2.5)

where

Λt = b− r1n − ΣbΣ
�
b π

∗
t
� + Σbϕ

�(t)/Mt +
∑n−d

k=1

∫
Ak

(1 + ψk(t, z)/Mt)Σqkz

1 + π∗
tΣqkz

λkΦk(t, dz)

On the other hand, as π∗ is an optimal portfolio strategy in M,

lim
ε↓0

1

ε
E

[
U(W π(ε)

T )− U(W π∗
T )
]
≤ 0
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implying

E

[∫ τn

0

(πt − π∗
t )MtΛtdt

]
≤ 0

due to (B.2.3) and (B.2.5). By the same argument as that in Cvitanic and Karatzas

(1992), it follows that

(πt − π∗
t )MtΛt ≤ 0,

and hence,

δ(−Λt) ≤ −π∗
t (−Λt),

implying δ(−Λt) = −π∗
t (−Λt). Let

Bδ(t) = exp

[∫ t

0

(r + δ(−Λs)) ds

]
.

Next we show that there exists a ν∗ = (ν∗1 , ..., ν
∗
n) ∈ K̃ and a positive local martingale ξt

such that

U ′(W π∗
T ) = B−1

δ (T )ξT (B.2.6)

B−1
δ (t)ξtW

π∗
t is a martingale (B.2.7)

and for any portfolio strategy π in Aυ∗(w0),

B−1
δ (t)ξtW

π
t (ν

∗) is a supermartingale (B.2.8)

Then from (B.2.6), (B.2.7) and (B.2.8) we have

W π∗
T = U ′−1(B−1

ν (T )ξT ),
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which yields

E[B−1
δ (T )ξTW

π∗
T ] = B−1

δ (0)ξ0W0 = ξ0W0,

and

E[B−1
δ (T )ξTW

π
T (ν

∗)] ≤ B−1
δ (0)ξ0W0 = ξ0W0,

for any π ∈ Aυ∗(w0). Note that from (4.6) in Karatzas et al. (1991),

U(U ′−1(y)) ≥ U(x) + y(U ′−1(y)− x), ∀x > 0, y > 0.

Hence it follows that for any arbitrary portfolio strategy π in Aυ∗(w0),

E[U(W π∗
T )] = E[U(U ′−1(B−1

δ (T )ξT ))]

≥ E[U(W π
T (ν

∗))] + E
{
B−1
δ (T )ξT · [U ′−1(B−1

δ (T )ξT )−W π
T (ν

∗)]
}

≥ E[U(W π
T (ν

∗))].

Therefore, π∗ is an optimal portfolio rule in Mν∗ , finishing the proof of the necessary

condition.

Proof of (B.2.6) and (B.2.7): Applying Itō’s Lemma to equation (3.3) of Section 3.2,

we have

d

(
1

B−1
δ (t)W π∗

t

)
=

1

B−1
δ (t)W π∗

t

{[
δ(−Λt)− π∗

t (b− r1n) + π∗
tΣbΣ

�
b π

∗
t
�] dt− π∗

tΣbdB
S
t

−
∑n−d

k=1

π∗
tΣqYk

1 + π∗
tΣqYk

dNk,t

}

Hence, based on (B.2.2) and the equation above, an application of the product rule to
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Mt

B−1
δ (t)Wπ∗

t

leads to the following equation

d

(
Mt

B−1
δ (t)W π∗

t

)
=

Mt

B−1
δ (t)W π∗

t

(
−π∗

tΣbdB
S
t +

ϕ(t)

Mt

dBS
t +

∑n−d
k=1

ψk(t, z)/Mt − π∗
tΣqkYk

1 + π∗
tΣqkYk

dqk(t)

)
+

Mt

B−1
δ (t)W π∗

t

[
δ(−Λt) + π∗

t

(−(b− r1n)ΣbΣ
�
b π

∗�
t − Σbϕ

�(t)/Mt

−
∑n−d

k=1

∫
Ak

(1 + ψk(t, z)/Mt)Σqkz

1 + π∗
tΣqkz

λkΦk(t, dz)dt

)]
=

Mt

B−1
δ (t)W π∗

t

(
−π∗

tΣbdB
S
t + ϕ(t)/MtdB

S
t +

∑n−d
k=1

ψk(t, z)/Mt − π∗
tΣqkYk

1 + π∗(t)ΣqkYk
dqk(t)

)
(B.2.9)

with the last equality following from that

− (b− r1n) + ΣbΣ
�
b π

∗
t
� − Σbϕ

�(t)/Mt −
∑n−d

k=1

∫
Ak

(1 + ψk(t, z)/Mt)Σqkz

1 + π∗
tΣqkz

λkΦk(t, dz)dt

= −Λt,

and δ(−Λt) = −π∗
t (−Λt). As a result, Mt

B−1
δ (t)Wπ∗

t

is a positive local martingale. Letting

ξt =
Mt

B−1
δ (t)Wπ∗

t
, we complete the proof of (B.2.6) since W π∗

T U ′(W π∗
T ) =MT due to (B.2.1).

In particular, B−1
δ (t)ξtW

π∗
t =Mt and is a martingale from (B.2.1), proving (B.2.7).

Proof of (B.2.8): From (3.5), for any portfolio strategy π in Aυ∗(w0), the corresponding

wealth process W π
t (ν

∗) satisfies the equation

W π
t (ν

∗) =W0 +

∫ t

0

(r + δ(−Λs))W
π
s (ν

∗)ds+
∫ t

0

W π
s (ν

∗)πs(̃b− r1n)ds

+

∫ t

0

W π
ν∗(s)πsΣbdB

S
s +

∫ t

0

W π
s−(ν

∗)πs−Σq(Y • dNs) (B.2.10)

where b̃ = (b1(Xt), ..., bn(Xt))
� − Λt. Applying Itō’s Lemma to the product of B−1

δ (t)ξt
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and W π
t (ν

∗) , we have

d[B−1
δ (t)ξtW

π
t (ν

∗)] = B−1
δ (t)ξtW

π
t (ν

∗)πt

([
b̃− r1n − ΣbΣ

�
b π

∗�
t +

Σbϕ
�(t)
Mt

]
+
∑n−d

k=1

∫
Ak

(1 + ψk(t, z)/Mt)Σqkz

1 + π∗(t)Σqk(t)z
λkΦk(t, dz)dt

)
+B−1

δ (t)ξtW
π
t (ν

∗)
(
−π∗

tΣbdB
S
t +

ϕ(t)

Mt

dBS
t + πtΣbdB

S
t

+
∑n−d

k=1

(∫
Ak

ψk(t, z)/Mt(1 + πΣqkYk)

1 + π∗(t)Σqk(t)Yk
+

(πΣqk − π∗
tΣqk)Yk

1 + π∗(t)Σqk(t)Yk
dqk(t)

))

Note that the drift term of the equation above is

e−rtξtW π
t π(t)(−Λt + Λt) = 0.

Hence, we have

d
[
B−1
δ (t)ξtW

π
t (ν

∗)
]

= B−1
δ (t)ξtW

π
t (ν

∗)(−π∗
tΣbdB

S
t +

ϕ(t)

Mt
dBS

t + πtΣbdB
S
t

+
∑n−d

k=1

(∫
Ak

ψk(t, z)/Mt(1 + πΣqkYk)

1 + π∗
tΣqkz

+
(πΣqk − π∗

tΣqk)Yk
1 + π∗

tΣqkz
dqk(t)

))

which is a positive local martingale and thus, a supermartingale, proving (B.2.8).

B.3 Proof of Proposition 3.3

Before proving Proposition 3.3, we first extend Propositions 1 and 2 in Jin and Zhang

(2012) to the proposed model by incorporating the intermediate consumption, but without

investment constraints.
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Lemma B.3.1. The optimal consumption c∗ and portfolio π∗

= (π∗
1 , ..., π

∗
n) are given by

c∗ = Wf(Xt, t)
−1

π∗ =
(
π̃∗
b1, ..., π̃

∗
bd, π̃

∗
q1, ..., π̃

∗
q(n−d)

)
Σ−1

where

(π̃∗
b1, ..., π̃i

∗
bd)

� =
θbt (ν)

γ
+ ρtσ

x�fX
f

and π̃∗
qk solves the following optimization problem:

sup
π̃qk∈Fk

Dk(π̃qk) =

[
π̃qk(θ

q
k(ν, t)− λkak +

1

1− γ
λk

∫
Ek

[(π̃qkz + 1)1−γ − 1]Φk(dz)

]
(B.3.1)

for k = 1, ..., n− d.

Proof : This can be proved in the same manner as proof of Proposition 1 in Jin and

Zhang (2012) since the consumption rate and portfolio strategy are independent variables

in the HJB equation (3.4). To save space, we omit the proof.

Lemma B.3.2. The optimal value function, J(t,Wt, Xt), is given by

J (ν)(t,Wt, Xt) =
W 1−γ
t

1− γ
f γ(Xt, t)

where

f(Xt, t) =

∫ T

t

g(t, s)ds+ αg(t, T ) (B.3.2)
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and

g(t, s) = Et

{
exp

[
1− γ

γ
(g1(Xt, s) + g2(Xt, s))

]}

with

g1(Xt, s) =

∫ s

t

θbs(ν)dB(s) +
1

2

∫ T

t

||θbs(ν)||2ds

g2(Xt, s) =
1

1− γ

∫ s

t

[(1− γ)(r + δ(ν) +D(π̃∗
q ))− β]ds

where D(π̃∗
q ) =

n−d∑
k=1

Dk(π̃
∗
qk).

Proof. We follow the proof of Propositions 2 and 3 of Jin and Zhang (2012). For

notational convenience, we consider the unconstrained portfolio choice problem, since the

results for the constrained one can be obtained by modifying the interest rate and the

drift terms of stock prices as in Section 3.2. Let 0d denote the d × 1 vector with each

element being zero, and let 1n−d denote the (n − d) × 1 vector with each element being

one. Note that

Σ−1Σq =

(
0d
1n−d

)

and

Σ−1(b− r1n) =Σ−1 [b− r1n + Σq(λ • a)]− Σ−1Σq(λ • a)

=

(
θb

θq

)
−
(

0d
1n−d

)
(λ • a)

=

(
θb

θq − λ • a
)
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Hence,

π(b− r1) = πΣΣ−1(b− r1n)

= (πΣb, πΣq)

(
θb

θq − λ • a
)

= πΣbθ
b + πΣq(θ

q − λ • a)

Plugging the equation above and WJW = (1− γ)J into (3.4) gives

βJ =max
c,π

{
c1−γ

1− γ
+ Jt +

1

2
W 2πΣbΣ

�
b π

�JWW +
[
W (πΣbθ

b + r)− c
]
JW + bxJX

+WπΣbρtσ
x�JWX +

1

2
Tr(σxσx�JXX�) +WπΣq (θ

q − λ • α)JW

+

n−d∑
k=1

λk

∫
Ak

[J(W +WπΣqkz)− J(W )]Φk(dz)

}

=max
c,π̃b

{
c1−γ

1− γ
+ Jt +

1

2
W 2π̃bπ̃

�
b JWW + [W (π̃bθ

b + r)− c]JW + bxJX

+Wπ̃bρtσ
x�JWX +

1

2
Tr(σxσx�JXX�)

+

[
(1− γ)

n−d∑
k=1

π̃∗
qk(θ

q
k − λkαk) + λk

∫
Ak

[(1 + π̃∗
qkz)

1−γ − 1]Φk(dz)

]
J

=max
c,π̃b

{
c1−γ

1− γ
+ Jt +

1

2
W 2π̃bπ̃

�
b JWW +

[
W (π̃bθ

b(ν) + r)− c
]
JW + bxJX

+Wπ̃bρtσ
x�JWX +

1

2
Tr(σxσx�JXX�) + (1− γ)D(π̃∗

q )J

}

This is the HJB equation of the indirect value function of the portfolio choice problem

with the expected utility function given by

E

[∫ T

0

e
∫ t
0 [(1−γ)D(π̃∗

q )−β]du c
1−γ
t

1− γ
dt+ α exp

{∫ T

0

[(1− γ)D(π̃∗
q )− β]dt

}
W 1−γ
T

1− γ

]
,

and stock prices given by Proposition 2 in Jin and Zhang (2012).
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We will use a result in Karatzas et al. (1987) in the proof. To this end, define the Radon-

Nikodym martingale Z as

Zt = exp

{
−
∫ t

0

θbdBS
s − 1

2

∫ t

0

||θb||2ds
}

As in Karatzas et al. (1987), we define a process ζ related to Z, which determines the

optimal wealth in the pure-diffusion economy. The process ζ is given by:

ζt = Zt exp

{
−
∫ t

0

[(1− γ)D(π̃∗
q )− β + r]ds

}
Let Zt,T = ZT/Zt and ζt,T = ζT/ζt. By Theorem 5.2 in Karatzas et al. (1987), given

t ∈ [0, T ], the optimal consumption and terminal wealth in the pure-diffusion economy

are

c∗t,s = y−
1
γ ζ

− 1
γ

t,s , W ∗
t,T = α

1
γ y−

1
γ ζ

− 1
γ

t,T

where s ∈ [t, T ] and y satisfies

Et

(∫ T

t

e−r(s−t)Zt,sc∗t,sds+ e−r(T−t)Zt,TW ∗
t,T

)
= Wt

From the equation above, we can obtain y as

y =W−γ
t

[
Et

(∫ T

t

e
1
γ

∫ s
t
[(1−γ)D(π̃∗

q )−β+(1−γ)r]duZ
1− 1

γ

t,s ds

+ α
1
γ e

1
γ

∫ T
t [(1−γ)D(π̃∗

q )−β+(1−γ)r]dsZ
1− 1

γ

t,T

)]γ
=W−γ

t f γ(t, Xt)

so the optimal consumption and terminal wealth can be rewritten as

c∗t,s = Wtζ
− 1

γ

t,s f(t, Xt)
−1, W ∗

t,T =Wtζ
− 1

γ

t,T f(t, Xt)
−1
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As a result, the optimal expected utility function can be evaluated as

J(t,Wt, Xt)

= Et

[∫ T

t

e
∫ s
t
[(1−γ)D(π̃∗

q )−β]du (c
∗
t,s)

1−γ

1− γ
ds

+α exp

{∫ T

t

[(1− γ)D(π̃∗
q)− β]ds

}
(W ∗

t,T )
1−γ

1− γ

]
=
W 1−γ
t

1− γ
f γ(t, Xt).

Therefore, (B.3.2) follows from the definition of Zt,T , completing the proof. �

We now turn to the proof of Propositions 3.3. In the current model, there is no interme-

diate consumption and no state variables Xt by assumption. According to Lemma B.3.2,

the indirect value function in the market Mv is given by

J (ν)(t,Wt) =
W 1−γ
t

1− γ

[
Et

(
exp

{
1

γ

∫ T

t

[(1− γ)(r + δ(v))

+ (1− γ)D(π̃q)− β]ds} exp
[
1− γ

γ
g1

])]γ
. (B.3.3)

Note that exp
[
1−γ
γ
g1

]
can be rewritten as

exp

[
1− γ

γ
g1

]
= exp

{
−
(
1− 1

γ

)∫ T

t

θbs(ν)dB
S
s − 1

2

(
1− 1

γ

)∫ T

t

||θbs(ν)||2ds
}

= exp

{
−
(
1− 1

γ

)∫ T

t

θbs(ν)dB
S
s − 1

2

(
1− 1

γ

)2 ∫ T

t

||θbs(ν)||2ds

− 1

2γ

(
1− 1

γ

)∫ T

t

||θbs(ν)||2ds
}
,

and

Et

[
exp

{
−
(
1− 1

γ

)∫ T

t

θbs(ν)dB
S
s − 1

2

(
1− 1

γ

)2 ∫ T

t

||θbs(ν)||2ds
}]

= 1.

162



Hence,

J (ν)(t,Wt) =
W 1−γ
t

1− γ
exp

{
−1

2

(
1− 1

γ

)∫ T

t

||θbs(ν)||2ds

+

∫ T

t

(1− γ)

[
(r + δ(v)) +

d∑
k=1

Dk(π̃
∗
qk)

]
ds− β(T − t)

}
.

since there are no state variables. According to Proposition 3.2, the optimal ν∗ solves the

following minimization problem

inf
ν∈K̃

J (ν)(t,Wt),

which is equivalent to

inf
ν∈K̃

[
1

2γ
||θbs(ν)||2 + δ(ν) +

d∑
k=1

Dk(π̃
∗
qk)

]
.

On the other hand, by Lemma B.3.1, in the market Mν , π̃
∗
qk solves the maximization

problem given below,

max
π̃qk∈Fk

Dk(π̃qk),

implying π̃∗
q = (π̃∗

q1, ..., π̃
∗
q(n−d)) maximizes

∑d
k=1Dk(π̃qk). As a result, we have

inf
ν∈K̃

[
1

2γ
||θbs(ν)||2 + δ(ν) +

d∑
k=1

Dk(π̃
∗
qk)

]

= inf
ν∈K̃

sup
π̃qk∈Fk,k=1,...,n−d

[
1

2γ
||θbs(ν)||2 + δ(ν) +

n−d∑
k=1

Dk(π̃qk)

]
.

completing the proof.
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B.4 Proof of Proposition 3.4

We now rewrite the relative risk premium defined in Section 3.3 as

θt(ν) =

⎛⎜⎜⎝ θbt (ν)

θqt (ν)

⎞⎟⎟⎠
= Σ−1[b− r1n+Σq(λ • a)] + Σ−11nν1

=

⎛⎜⎜⎝ θbt

θqt + λ • a

⎞⎟⎟⎠ +

⎛⎜⎜⎝ ab(t)

aq(t)

⎞⎟⎟⎠ ν1. (B.4.1)

Thus, (3.11) can be obtained by applying Proposition 3.3 with θbt (ν) and θ
q
t (ν) given by

(B.4.1), completing the proof.
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B.5 Solving the optimization problem

We apply Proposition 3.1 to solve the portfolio choice problems in the numerical example

in Section 3.4. For this, we define

μ = (μ1, μ2, μ3, μ4)
′

= (0.2683, 0.2956, 0.4661, 0.6317)

Σz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σz11 σz12 σz13 σz14

σz21 σz22 σz23 σz24

σz31 σz32 σz33 σz34

σz41 σz42 σz43 σz44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0427 0.0431 0.0336 0.0735

0.0626 0.0380 0.0437 0.0850

0.1331 0.0490 0.0412 0.0866

0.1304 0.1317 0.0540 0.1084

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Σq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σq11 σq12

σq21 σq22

σq31 σq32

σq41 σq42

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5592 0.6893

0.9385 0.7668

0.5509 0.5677

0.6787 0.8168

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The values of Σz, Σq and μ are given according to Table 3.1. We can also compute the

correlation matrix of all assets as

Σ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9884 0.0336 0.0735

0.9884 1.0000 0.0437 0.0850

0.8984 0.9389 0.0412 0.0866

0.9398 0.9281 0.0540 0.1084

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In fact, Table 3.1 provides all the 32 parameters used in the numerical example. We

introduce two fictitious stocks with prices driven by the positive and negative jumps
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respectively. Therefore, there are six risky assets in the new market while the investor

is prohibited to trade the two fictitious stocks. The coefficient matrix of diffusions and

jumps and its inverse can be written as

Σ =

⎛⎜⎜⎝ Σz Σq

04×2 I2×2

⎞⎟⎟⎠

Σ−1 =

⎛⎜⎜⎝ (Σz)−1 −(Σz)−1Σq

04×2 I2×2

⎞⎟⎟⎠
We let ν = (ν1, ..., ν6)

′ where ν̃1 = (ν1, ν2, ν3, ν4) ≥ 0 are the variables associated with the

short-selling constraints and ν̃2 = (ν5, ν6) are the variables associated with the no-trading

constraint of the two fictitious stocks. The optimal portfolio weight π = (π1, ..., π6)
′,

optimal diffusion exposure π̃b = (π̃b1, π̃
b
2, π̃

b
3, π̃

b
4)

′ and jump exposure π̃q = (π̃q1, π̃
q
2)

′ in the

market Mν are given by Lemma B.3.1 in Appendix B.3. In particular,

π̃b = (Σz)−1(μ+ ν̃1 − r14 − Σq(ν̃2 − r12))/γ (B.5.1)

(π1, π2, π3, π4) = π̃′
b(Σ

z)−1. (B.5.2)

In order to solve the optimal portfolio in the original market, we present some conditions.

First, the no-trading constraint π5 = π6 = 0 leads to the condition

π̃q = (π̃q1, π̃q2) = π̃′
b(Σ

z)−1Σq. (B.5.3)

Second, the condition δ(ν) + π′ν = 0 in Proposition 3.1 and (B.5.2) implies

π̃′
b(Σ

z)−1ṽ′1 = 0, (B.5.4)
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since δ(ν) = 0, π5 = π6 = 0. Third, we have the short-selling constraint

(π1, π2, π3, π4) = π̃′
b(Σ

z)−1 ≥ 0. (B.5.5)

Fourth, the optimization problem in Lemma B.3.1 of Appendix B.3 gives two first-order

conditions below

ν5 − r +
λu
ηu

∫ ∞

0

z(1 + π̃q1z)
−γ(1 + z)−

1
ηu

−1dz = 0. (B.5.6)

ν6 − r +
λ

ηd

∫ 0

−1

z(1 + π̃q2z)
−γ(1 + z)

1
ηd

−1
dz = 0. (B.5.7)

By setting ν̃1 = 0 in (B.5.1), the short-selling constraint is removed. It seems that we need

to use a numerical algorithm to solve the constrained optimization problem stated above;

however, conditions (B.5.3) to (B.5.7) together are equivalent to a system of equations.

More precisely, the i-th element of ν̃1 must be zero if the corresponding element of π̃′
b(Σ

z)−1

is non-zero. Hence, all the parameters including ν̃1 and π̃q can be seen as inexplicit

functions of λ, which are easily solvable in a numerical sense. For example, we use the

Trust-Region Dogleg Method and the detail of this algorithm can be found in Nocedal

and Wright (2006). When dealing with the case without the short-selling constraint, πq

can be solved by using (B.5.1) to (B.5.5) given ν̃1 = 0.
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Appendix C

C.1 Estimation method and the optimal estimates

Table 5.1: The optimal estimates of the Size portfolios

μ 0.2531 0.2547 0.2437 0.2394 0.1948

Σ0
b 0.0254 0.0664 0.0249 0.0669 0.1042

0.0392 0.0749 0.0555 0.0899 0.0676

0.0745 0.0786 0.0446 0.0632 0.0631

0.0588 0.0740 0.0788 0.0476 0.0546

0.0812 0.0154 0.0869 0.0396 0.0498

Σ0
q 0.6249 0.6674 0.6411 0.6893 0.6244

1.0460 1.0256 0.9686 0.9704 0.8350

η 0.0878 0.0210

λ 0.0540 8.8976
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Table 5.2: The optimal estimates of the Book-to-Market portfolios

μ 0.2363 0.2306 0.2455 0.2559 0.2858

Σ0
b 0.0662 0.0527 0.0286 0.0315 0.1059

0.0597 0.0478 0.0750 0.0397 0.0609

0.0420 0.0293 0.0574 0.0789 0.0496

0.0266 0.0751 0.0441 0.0643 0.0294

0.0865 0.0662 0.0231 0.0738 0.0066

Σ0
q 0.9437 0.8712 1.0042 1.0826 1.1040

1.1117 1.0286 1.1086 1.0921 1.1704

η 0.0366 0.0130

λ 0.6500 15.1344

Table 5.3: The optimal estimates of the Industry portfolios

μ 0.2344 0.2668 0.2630 0.2745 0.2478

Σ0
b 0.0186 0.0406 0.0826 0.0387 0.1057

0.0199 0.0333 0.0173 0.1119 0.0629

0.1136 0.0078 0.0947 0.0783 0.0383

0.0044 0.1109 0.0908 0.0677 0.0078

0.0868 0.1012 0.0275 0.0394 0.1104

Σ0
q 1.0369 0.9077 1.0675 0.9625 1.4203

1.4300 1.7977 1.8122 1.7398 1.5387

η 0.1207 0.0067

λ 0.0035 17.3857
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Table 5.4: The optimal estimates of the International portfolios

μ 0.2849 0.2242 0.3944 0.3860 0.4599

Σ0
b 0.0397 0.0575 0.0220 0.1323 0.0173

0.0129 0.0164 0.0712 0.0055 0.1536

0.1554 0.0455 0.0598 0.0759 0.0295

0.1060 0.1192 0.0298 0.0428 0.0110

0.0505 0.0677 0.1532 0.0339 0.0070

Σ0
q 0.5578 0.4160 0.6462 0.7672 0.7738

0.6068 0.5321 0.8042 0.7938 0.8054

η 0.1012 0.0317

λ 0.1057 15.0044

Table 5.5: Comparison of moments for the Size portfolios

data model data model

mean 0.0012 0.0012 kurtosis 9.1567 9.1853

0.0014 0.0014 8.4552 8.4310

0.0013 0.0014 7.9922 8.0219

0.0013 0.0013 9.3103 9.3036

0.0009 0.0009 7.8203 7.8258

data model

covariance (1e-3) 0.5891 0.5860 0.5391 0.5049 0.4017 0.5950 0.5802 0.5427 0.5070 0.4007

0.5860 0.6314 0.5890 0.5583 0.4565 0.5802 0.6365 0.5940 0.5557 0.4611

0.5391 0.5890 0.5766 0.5506 0.4615 0.5427 0.5940 0.5813 0.5487 0.4569

0.5049 0.5583 0.5506 0.5532 0.4733 0.5070 0.5557 0.5487 0.5587 0.4723

0.4017 0.4565 0.4615 0.4733 0.4743 0.4007 0.4611 0.4569 0.4723 0.4790
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Table 5.6: Comparison of moments for the Book-to-Market portfolios

data model data model

mean 0.0008 0.0008 kurtosis 6.8551 6.8034

0.0010 0.0010 6.9999 6.8986

0.0011 0.0011 10.1411 10.1178

0.0014 0.0014 12.2853 12.3028

0.0017 0.0017 9.8706 9.9028

data model

covariance (1e-3) 0.5784 0.4795 0.4452 0.4157 0.4451 0.5837 0.4814 0.4496 0.4196 0.4411

0.4795 0.4753 0.4439 0.4153 0.4452 0.4814 0.4773 0.4483 0.4194 0.4496

0.4452 0.4439 0.4733 0.4288 0.4551 0.4496 0.4483 0.4780 0.4331 0.4596

0.4157 0.4153 0.4288 0.4499 0.4602 0.4196 0.4194 0.4331 0.4540 0.4648

0.4451 0.4452 0.4551 0.4602 0.5519 0.4411 0.4496 0.4596 0.4648 0.5575

Table 5.7: Comparison of moments for the Industry portfolios

data model data model

mean 0.0013 0.0013 kurtosis 10.0408 10.0399

0.0011 0.0011 9.6528 9.6382

0.001 0.001 7.1687 7.1722

0.0014 0.0014 7.1045 7.1063

0.0013 0.0013 14.1856 14.187

data model

covariance 0.4926 0.3802 0.4426 0.4045 0.4954 0.4975 0.3765 0.4467 0.4005 0.4905

0.3802 0.4775 0.4229 0.3811 0.4435 0.3765 0.4728 0.4271 0.378 0.4391

0.4426 0.4229 0.7088 0.4234 0.516 0.4467 0.4271 0.7098 0.4193 0.5108

0.4045 0.3811 0.4234 0.6133 0.4459 0.4005 0.378 0.4193 0.6194 0.4415

0.4954 0.4435 0.516 0.4459 0.7137 0.4905 0.4391 0.5108 0.4415 0.7208
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Table 5.8: Comparison of moments for the International portfolios

data model data model

mean 0.0002 0.0002 kurtosis 10.2485 10.2345

-0.0003 -0.0003 5.3548 5.6195

0.0006 0.0006 10.0359 10.052

0.0006 0.0006 15.1055 15.0732

0.0019 0.0019 14.2540 14.1950

data model

covariance 0.0007 0.0004 0.0008 0.0007 0.0006 0.0007 0.0004 0.0007 0.0007 0.0006

0.0004 0.0008 0.0005 0.0005 0.0006 0.0004 0.0008 0.0005 0.0004 0.0006

0.0008 0.0005 0.0012 0.0011 0.0009 0.0007 0.0005 0.0012 0.0011 0.0009

0.0007 0.0005 0.0010 0.0011 0.0009 0.0007 0.0004 0.0010 0.0010 0.0009

0.0006 0.0006 0.0009 0.0009 0.0011 0.0006 0.0006 0.0009 0.0009 0.0011
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