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Abstract
In plane-wave density functional theory codes, defects and incommensurate structures are
usually represented in supercells. However, interpretation of E versus �k band structures is most
effective within the primitive cell, where comparison to ideal structures and spectroscopy
experiments are most natural. Popescu and Zunger recently described a method to derive
effective band structures (EBS) from supercell calculations in the context of random alloys. In
this paper, we present bs sc2pc, an implementation of this method in the CASTEP code, which
generates an EBS using the structural data of the supercell and the underlying primitive cell with
symmetry considerations handled automatically. We demonstrate the functionality of our
implementation in three test cases illustrating the efficacy of this scheme for capturing the effect
of vacancies, substitutions and lattice mismatch on effective primitive cell band structures.
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1. Introduction

E versus �k band structures and derived quantities such as
effective mass or group velocity are valuable concepts to
describe the electronic properties of crystalline materials.
The E(�k) dispersion is usually evaluated along certain
high-symmetry paths in the Brillouin zone (BZ) of a
few-atom primitive cell (pc). These small cells cannot
usually accommodate defects at experimentally relevant
concentrations, or represent composite structures with
significant lattice mismatch. In plane wave DFT [1, 2], which
requires periodicity, such structures are usually represented
in supercells (SC). This corresponds to a BZ with a fraction
of the size of that of the primitive cell and a multiple of the
number of bands. Dispersion relations within this reduced BZ
are cumbersome to interpret, promoting the use of integrated
constructs such as the density of states (DOS). Figure 1
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illustrates this problem: The bands of the 6×6 perfect supercell
of graphene overlap and obscure the underlying physics.
In calculations on defective or disordered supercells, one
often wishes to make meaningful connection to (for example)
band dispersions probed in angular-resolved photoemission
measurements [3] in terms of smearing or shifting of bands in
the primitive BZ.

There are several situations that require supercells:

• random alloys,
• interfaces between materials with different lattice

constants,
• defects.

In recent years, several methods to unfold supercell
bandstructures have been proposed to map energy eigenvalues
obtained from supercell calculations into an effective band
structure (EBS) in the BZ of the primitive cell [4–9]. Of
those, the scheme of Popescu and Zunger [6, 8] is particularly
attractive in the context of plane-wave pseudopotential
calculations. They described their method primarily in the
context of random alloys. In this paper, we demonstrate the
utility of this scheme for supercell calculations in general and
present an implementation within the popular plane wave DFT
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(a) primitive cell (b) 6 × 6 supercell

Figure 1. Band structure of the primitive (a) and the 6 × 6 supercell (b) of graphene along the standard �–M–K–� path of the primitive cell.
The band energies are calculated at 42 non-unique wave vectors along this path and are represented by red plus symbols. The solid lines
denote the ‘traditional’ representation of the (primitive cell) graphene band structure, which is obtained by connecting those band energies
that originate from the same orbitals. As the supercell BZ is smaller than the primitive cell BZ, the path through the special �–M–K–�
points of the SC is shorter. The SC path forms part of the pc path and is highlighted by a hatched background.

code CASTEP [10, 11]. We demonstrate the efficacy of this
approach for the study of band dispersion in defective, doped
and incommensurate structures. We will first summarize the
supercell EBS method (section 2). In section 3, we describe
our implementation called bs sc2pc. Section 4 contains three
representative examples using bs sc2pc to calculate effective
band structures.

2. The supercell EBS method

The effective bandstructure method uses band unfolding
techniques [4–9] to restore the E(�k) picture in the primitive
cell. It determines the spectral weight of the supercell
eigenvalues and constructs a spectral function A(�k, E)

continuous in energy E, which replaces the discrete eigenvalue
spectrum E(�k) of the primitive cell. The method evolves from
earlier techniques, such as the one by Wang et al [4], which was
used to determine band edge states in disordered alloys. Zhang
and Wang [7] use the generalised moment method to calculate
A(�k, E) for a narrow energy window at high-symmetry �k
points. By combining the spectral composition present in these
descriptions with a �k unfolding method, spectral functions
can be obtained for the same �k values and energy ranges
as in ‘traditional’ pc band structures, which allows a direct
comparison between the two.

The core of the EBS method is obtaining the spectral
weight of a SC energy eigenvalue E( �K) by projecting
the corresponding eigenstate on all pc Bloch states corres-
ponding to the equivalent �k (see supplementary information
(stacks.iop.org/JPhysCM/26/485501/mmedia) and [8] for
further details). This is a measure of the Bloch character
of the pc state preserved in the SC, or, conversely, at
which of several pc �ki that map to a single SC �K an
energy eigenvalue contributes. From this information, the
spectral function A(�k, E) can be derived, which can be
seen as a primitive cell representation of the supercell band
structure. It should be noted, that the original derivation

of Popescu and Zunger has to be modified for ultrasoft
pseudopotentials [12] that fulfil a generalized orthonormality
condition [13]. The necessary minor adjustments are described
in the supplementary information.

3. Implementation

The EBS method requires full eigenstate information, i.e.
both the eigenfunctions represented as plane wave coefficients
and the band energies as eigenvalues. For larger systems,
this is a considerable amount of data and to our knowledge
there is no portable standard to encode such information.
This makes it infeasible to implement the EBS method as
a generic postprocessing tool to be used with output from
various DFT codes. On the contrary, it is rather reasonable to
implement the EBS method within a band structure calculation,
so that the information can be drawn off at the source. As
the effort of implementing a band structure DFT code from
scratch is prohibitive, we instead modify the well-established
CASTEP [10, 11] package. In this way, our efforts could focus
on programming the calculation of spectral weights, using pre-
existing functionality wherever possible.

The bs sc2pc utility automatically generates the
supercell �K points from primitive cell �k point path, taking
the symmetry of pc and SC into account. From the SC
band energies E( �K) it then extracts A(�ki, E). Further
implementation details can be found in the supplementary
information (stacks.iop.org/JPhysCM/26/485501/mmedia) to
this article.

4. Examples

We demonstrate the functionality ofbs sc2pc in three systems
which each require large supercells to capture either structural
or substitutional defects or the combination of two mismatched
structures. The three examples illustrate the utility of our tool
for one-, two- and 3D systems.

2

http://stacks.iop.org/JPhysCM/26/485501/mmedia
http://stacks.iop.org/JPhysCM/26/485501/mmedia


J. Phys.: Condens. Matter 26 (2014) 485501 P Brommer and D Quigley

E
E

F
(e

V
)

F

(b)

-12

-10

-8

-6

-4

-2

0

2

4

L

(a)

X U,K 0 1 2

Figure 2. (a) Effective band structure of Bi substitutional defect in Si. Darker colors correspond to a higher spectral function value. The
band structure of silicon is shown as solid blue lines. The �k points at which both EBS and BS were evaluated are marked on the x axis. This
limits the �k resolution of the EBS. (b) Spectral intensity histogram at the X point. A value of one corresponds to a single non-degenerate
band per energy interval of 0.019 eV. About 0.2 of a band splits off and forms the new conduction band minimum at 0.55 eV above EF.

4.1. Bismuth substitution in crystalline silicon

The first system is a single bismuth substitutional defect in
bulk crystalline silicon. Bismuth-doped silicon is a promising
candidate material for quantum information applications due
to an anomalously strong hyperfine coupling [14–17]. A
large supercell is required to eliminate interactions between
periodic images of the defect and hence recover the electronic
structure of an isolated substitution [18]. Here, the supercell
is a perfect 3 × 3 × 3 multiple of the cubic Si unit cell with
eight atoms, which is in turn a four-fold supercell of the face-
centered cubic (fcc) primitive cell with two atoms. One of
the resulting 216 Si atoms was replaced by a Bismuth atom
and the atomic positions were optimized with CASTEP using
a variation of the BFGS method [19], while keeping the
cell dimensions fixed at the bulk Si value. This emulates
the embedding of a single defect in the bulk material. The
presence of the significantly larger Bi atom pushes the nearest
neighbor silicon atoms away by almost 0.2 Å. The calculations
used generalized gradient approximation (GGA) exchange-
correlation (XC) functionals in the PBE formulation [20]
and ultrasoft (US) pseudopotentials [12] created on the fly
using the standard pseudo-atom definitions distributed with
the academic release of CASTEP 6.1. We used a plane-wave
cutoff of (500 eV) and a 2 × 2 × 2 Monkhorst-Pack �k-point
grid [21]. At this level of representation atomic forces around
the unrelaxed defect were converged to within 0.02 eV Å−1

with respect to both K point density and plane-wave cutoff
energy. This compares to a geometry relaxation tolerance of
0.05 eV/atom. Forces on silicon atoms maximally distant from
the bismuth site were less than 0.03 eV/atom, demonstrating
system size convergence to a similar level.

The effective band structure of the final configuration
was then calculated along the L–�–X–U,K–� path in the pbz
using the same parameters. This band structure is shown in
figure 2. For comparison, the band structure of silicon in the

primitive cell calculated under the same condition is shown in
the background.

It should be noted that the experimental band gap of silicon
of 1.17 eV [22] is not reproduced in GGA calculations [23].
(While there are empirical or expensive methods to correct for
this deficiency [23], this is of no relevance to the functionality
of the bs sc2pc program.) This trend is confirmed by our pc
band structure, which shows an indirect band gap of 0.60 eV
between the valence band maximum at the � point and the
conduction band minimum along the �–X-azimuth. The
introduction of the bismuth atom in the supercell leaves most
of the band structure intact; the highest intensities in the EBS
coincide with the lines from the pc band structure.

There are subtle changes compared to the primitive cell:
First, there is a nonvanishing spectral intensity across wide
areas in the (E, �k) plane. These low but non-zero contributions
show oscillations with the underlying supercell periodicity.
They are most remarkable near the Fermi energy EF, where
they seem like echos projected over from SC-equivalent �K
points. Secondly, there is an additional low-energy band at
just below −12 eV. Most notable, however, is the change to
the band gap: The conduction band minimum is now at the X
point at a band gap of only 0.55 eV. The new conduction band
minimum is formed by a partial band (≈20% of a full band)
splitting off from the main silicon conduction band, which
remains at 0.72 eV. This information cannot be obtained in
this form from a DOS calculation.

These results could then be used as a starting point for
a further investigation into the electronic structure of a real
defective system with sufficiently diluted dopants (precluding
any interaction between them). In that case, the band structure
for comparison to experiment can be determined as a weighted
average of defective supercell band structures and that of the
dopant-free (perfect) primitive cell. In addition, the intuitive
representation of the electronic structure provided by the
bs sc2pc tool could serve to study the known limitations of
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(a) (b)

Figure 3. The structure of the buckled SW defect in a 6 × 6 supercell of graphene. (a) Top view. (b) side view. In (b), only the carbon
atoms belonging to either of the 5-rings are depicted as spheres. Visualisations generated with Jmol3.

-20

-15

-10

-5

0

5

10

M K

E
E

F
(e

V
)

-1.5

-1

-0.5

0

0.5

K-0.3 -0.2 -0.1 0.1 0.2 0.3

E
E

F
(e

V
)

Å 1

Figure 4. Effective band structure of Stone-Wales defect in the hexagonal 6 × 6 supercell of graphene. The band structure of graphene is
shown as solid lines in the background. The left figure shows the complete band structure along the conventional �–M–K–� path, while the
right figure provides a magnification around the Dirac point along the direction orthogonal to the �–K azimuth. Blue lines plot the spectral
intensity at a set of �k points along the specified path. The value of the spectral function (arbitrary units) is plotted analogous to figure 2(b)
for each sampled �k vector. Spectral intensities less than 10−5 of a complete band per energy interval (left: 0.019 eV; right: 0.0024 eV) are
not plotted for clarity.

basic exchange-correlation functionals and their mitigation by
more advanced descriptions. This information might be lost
in the folded supercell band structures.

4.2. Stone-Wales defect in graphene

Stone-Wales (SW) defects [24] are topological defects in sp2-
bonded carbon materials. The basic SW defect in graphene is
a point defect where one bond of the honeycomb net undergoes
a 90◦ in-plane rotation. This replaces four six-rings of carbon
by a pair of each five- and seven-rings. It has previously
been shown that the most favourable configuration of this
defect introduces an out-of-plane buckling of the graphene
sheet [25]. We reproduced these results quantitatively for a
basic SW defect in a hexagonal 6 × 6 supercell (72 atoms)
with a 28 Å out-of-plane vacuum gap, using the PW91 GGA
XC-functionals [26] with US pseudopotentials at a plane-
wave cutoff of 560 eV on a 2 × 2 × 1 MP grid. Typical
forces are then converged to within 5 meV Å−1 with respect

3 Jmol: an open-source java viewer for chemical structures in 3d
(http://www.jmol.org/).

to vacuum gap, cutoff and k point density. The defect is
however not converged with respect to the supercell size; our
simulations thus correspond to a periodic array of Stone-Wales
defects (see [25] for a comparison of different supercells). We
optimized the atomic positions using the LBFGS method [27].
In the final structure (shown in figure 3), the difference along
the z axis between the highest and the lowest carbon atom in the
supercell is 1.31 Å, in agreement with published results [25].

The key feature of the graphene band structure is the
relativistic (linear) dispersion of the bands near the Dirac
(K) point, where valence and conduction band meet to
make graphene a zero-gap semiconductor with extremely
high carrier mobility. These properties are captured almost
perfectly in band structure calculations in graphene, which
are shown as solid lines in the background of figure 4. The
EBS of the Stone-Wales shown in the same figure shows
distinct changes: Several band degeneracies are lifted by the
introduction of the topological defect (top valence band at �,
lowest two bands at K) and also introducing band splitting away
from the special points. In fact, from an EBS it is impossible
to distinguish between band splitting and lifting a degeneracy;
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Figure 5. Carbon nanotube filled with potassium iodide (K: large spheres, I: smaller spheres). Visualisation generated with Jmol4.

the information that allows assigning energy eigenvalues at
different �k-points to a single band and which is used to connect
these eigenvalues in ‘classical’ band structure plots, is lost in
the process of creating an EBS.

The magnification of the SW defect EBS in figure 4
shows the changes around the Dirac point: Here the valence
and conduction band both split into three to four branches of
different weights, with a significant share of the spectral weight
opening up a partial band gap of around 0.2 eV and showing a
band curvature. This could suggest that the presence of Stone-
Wales defects adversely affects the conduction properties of
graphene.

4.3. Potassium iodide in a carbon nanotube

The central cavity of carbon nanotubes (CNT) can be used
as a template for the controlled growth of 1D crystals of
binary halides [28, 29], such as potassium iodide [30]. The
constraints imposed by confinement and reduced coordination
are responsible for drastic structural changes in these crystals
compared to the bulk [31, 32]. We study a (10, 10) single-
walled CNT filled with cubes of KI, where the ions sit on
alternating corners, repeated along the CNT axis. As the
unit cell lengths along the axis of nanotube (2.47 Å) and the
KI nanowire (6.86 Å) are different, a DFT calculation with
periodic boundary conditions requires either an unrealisticly
high lattice mismatch strain, a vacuum gap in tube or filling
[33, 34], or a supercell. We used a structure consisting of
eleven units of (10, 10)-CNT and four units of KI (472
total atoms) with a mismatch strain of 1.06%, which is a
reasonable compromise between system size and mismatch
strain. This is a significant improvement over previous band
structure calculations by Yam et al [35], who determined the
band structure for a single unit of KI at a lattice mismatch
strain of 7.6%. The initial structure was optimized with the
DFT package QUANTUM ESPRESSO [36], using PBE XC
functionals [20] and CASTEP ultrasoft pseudopotentials [12]
at a cut-off energy of 600 eV with a 16 Å vacuum gap. At
these settings, forces are converged on a similar scale as in
the previous examples. The final unit cell has a length of
27.14 Å; large enough that a computationally less demanding
gamma-point-only calculation is sufficient for the preliminary
self-consistent calculation. A section of the final unit cell is
shown in figure 5.

4 See footnote 3.
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Figure 6. Effective band structure of a KI-filled carbon nanotube
along the axis of the CNT. The solid lines in the background
represent the band struture of a single unit of a (10, 10)-CNT. See
also caption of figure 4 (threshold: 10−5 bands per 0.038 eV).

We then used bs sc2pc with identical settings and
pseudopotentials to determine the effective band structure
of the filled nanotube (figure 6). For comparison, the
band structure of an empty (10, 10)-CNT is shown in the
background. To obtain this plot, the supercell periodicity was
exploited in order to dramatically reduce the computational
effort. The 23 �ki sampling points along the CNT axis in the
pbz fold into only three unique �Ki = {0, 1

4 , 1
2 } �Bz, where �Bz

is the SBZ reciprocal basis vector parallel to the CNT. The
EBS reproduces all bands of the empty CNT pc, including the
crossing bands at the Fermi energy which confirm the metallic
character expected of an empty (10, 10)-CNT [37] also for
the KI-filled version. There are a number of additional, almost
dispersion-free bands visible (e.g. at around −2 eV, −12 eV
and −14 eV), while there are no KI states near the Fermi
energy. Previous studies suggested that there is a transfer
of negative charge from the KI to the nanotube [33, 34, 38].
Our simulations quantitatively confirm the charge transfer from
published work [38], but this appears to have no significant
effect on the EBS of the system.

5. Conclusion

In this work, we demonstrated the bs sc2pc program to
determine effective band structures for supercells, based on
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the band structure unfolding method described by Popescu [8].
We demonstrated its functionality in three systems: a
substitutional point defect in a bulk material, a topological
defect in a 2D sheet and a mismatched supercell in a 1D
nanotube. In each case, bs sc2pc could provide an EBS that
offers insights into the electronic properties of these materials,
which would be difficult to obtain from standard band struture
calculations. The program is included in the current release of
the DFT package CASTEP.

In a broader context, it would be desirable to provide a
generic standalone supercell band structure unfolding utility
that could be used with various plane-wave DFT codes.
However, this would require access to the full wave function
information (coefficients for spin, k-point, band and plane
wave) in these codes, for which there currently exists no
common format or interface. In addition, the symmetry
analysis used to reduce the number of supercell k-points makes
extensive use of the facilities provided by the CASTEP code
and would need to be re-implemented for a standalone utility.
This would make creating a generic band structure unfolding
tool a challenging endeavor, but the instructive representation
of effective band structures could still justify this effort.
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