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A. Recap: The supercell EBS method

A.1. Supercell definition and notation

The notation used here is analogous to the one used by Popescu and Zunger [1]. Quantities
referring to the primitive cell or pc (supercell or SC) are denoted in small (capital) symbols.
The basis vectors d (A) of the pc (SC) are related by A =M - d, or

A'izzmijaj, mi €Z, i,j=123, (A.1)
j

where the transformation or supercell matrix M is nonsingular with integer components,
which implies that the SC is commensurate to the pc. The determinant of M is the multiplicity
N of the SC, i.e. the ratio of the respective volumes Vsc/vpe. The hexagonal pc and
orthorhombic SC of the two-dimensional honeycomb net is depicted in figure A.la.

In reciprocal space, there are consequently two distinct Brillouin zones (see figure A.1b):
the primitive cell Brillouin zone (pbz) and the smaller supercell Brillouin zone (SBZ). Their
respective basis vectors b; (B;) are again connected by the supercell matrix M:

B=M""b. (A2)

It should be noted, that the components (™! )ij of M ~! can be written as an integer divided
by the determinant of the transformation matrix detM:

1

—1 * * .o
(m )ij:@mij, mj; €Z, 1i,j=1,2,3. (A.3)
The pbz (SBZ) basis vectors span the infinite set of reciprocal lattice vectors {gi } ({Gi}):
g =Y pibi pics, i=1.23, (A.4)
i
Gy =Y PB;, PeZ, i=1,.273, (A.5)
i

where obviously {g;} C {ék} i.e. every lattice vector of the pbz is also one of the SBZ, see
figure A.1b.
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(a) real space (b) reciprocal space

Figure A.1: Real (a) and reciprocal (b) representation of the honeycomb net. (a) Primitive
cell (pc, solid lines) and orthorhombic supercell (SC, dashed lines) of the honeycomb net
with their respective basis vectors. (b) The pbz of the hexagonal unit cell and the SBZ of the
orthorhombic supercell from (a). I', M, and K are special points in the pbz. Bi (Ei) are the pc
(SC) reciprocal basis vectors spanning the set of reciprocal lattice vectors g (G) represented
by black circles (red squares). The wave vector k (%c) is folded to K (I?c) by the folding
vector 50 (éc,o — not shown). While the pc wave vectors ¥ and %c are related by a symmetry
operation C of the pbz, this is not necessarily true for the corresponding SC wave vectors.

A.2. Folding and unfolding

The band structure of a periodic solid has the same periodicity as the Brillouin zone. Wave
vectors outside the BZ are folded into the Brillouin zone (this corresponds to going from the
extended-zone scheme to the reduced-zone scheme for electron dispersion [2]). For each wave
vector k in the pbz, there exists a unique reciprocal lattice vector Gy such that

K=k+ éo, where K € SBZ, (A.6)

as shown in figure A.1b. On the other hand, a SBZ wave vector K unfolds to N distinct
ki € pbz according to

k=K-G;, i=1,...,N, (A7)

where N = detM is the multiplicity of the supercell. In the 2D model cell of figure A.1, N =2
and K unfolds into 751 =K (@1 = 6) and 752 =k (él = éo).

The Schrodinger equation of the electronic system can be solved both in pc and SC
representation, obtaining the eigenvectors |kn) and |Km), where n and m are band indices.
The objective of the unfolding method of Popescu and Zunger [1] is to recover the E(7c')
picture from the much less insightful SC E(K) (cf. figure 1). By projecting |[Km) on all pc

eigenstates |7c',n> of a fixed k;, one obtains the spectral weight

Pe, (k) =Y | (Kmlkin) |7, (A8)
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which provides a measure of the amount of Bloch character k; still present in the SC |I?m>
From the Py, (k;), a spectral function (SF) is derived as

A(ki,E) ):P —-E), (A.9)

which is now continuous in energy E and replaces the discrete E (%) For a perfect SC, the
SF corresponds to sequence of d functions of integer amplitude at each band energy E, (75)
and thus perfectly recovers the original band structure [1] . Any deviation of the supercell
from a perfect structure (defect, disorder, lattice mismatch), will change this picture: The
spectral function now has finite width in both kand E, and yields the effective band structure
if sampled for a path through reciprocal space.

For a plane wave basis set, Popescu and Zunger [1] provide a detailed recipe on how to
calculate the spectral weights from (A.8). The eigenfunctions of the SC in this basis are of
the form

k' R c SBZ, (A.10)

S

where the sum runs over the SC reciprocal lattice vectors given by (A.5). The spectral weight
is then given by

Z|CKm Z| Km a (A.11)

where the sum now runs over the reciprocal lattice vectors of the primitive cell. As those
are a subset of the {Gy}, all coefficients are well-defined. This process is akin to a Fourier
filtering of the plane wave coefficients: Only every Nth coefficient (with the appropriate
offset) contributes to the spectral function.

For ultrasoft pseudopotentials (USPP) [3], (A.11) needs to take the relaxed orthonomality
of wave functions into account. The right hand side of this equation can be understood as
a norm (¢;|¢;) of the fourier-filtered wave functions ¢;. For non-normconserving PP this
expression has to be replaced by (¢;|S|¢;), where S is the overlap operator [4].

In general, the pc and the SC will not have the same symmetry. Typically, the symmetry
of the supercell is reduced either by the choice of supercell (compare figure A.1b, where k
and k¢ are related by a rotation C3, which is a symmetry operator of the hexagonal grid, but
not of the orthorhombic grid) or by the decoration; defects may break certain symmetries. As
a consequence, k vectors equivalent in the pbz may not map to symmetry equivalent vectors
in the SBZ. So if for a specified k; point there exist nc wave vectors %c in the pbz belonging to
the same symmetry class C(k (_’) the resulting spectral function at k is obtained as the average:

A(ki,E) = Y A (ki E). (A.12)

1
C 3 cctiy
Depending on the nature of the system, more than a single supercell may be required to

capture the EBS properly. For example, for an EBS of point defects at constant concentration
but random distribution, the cost of simulating a huge cell to account for the disorder may be
prohibitively large due to the asymptotic cubic scaling of plane wave DFT. However several
smaller systems that sample a number of different arrangements may still be within the scope
of the available computing power. In that case, the symmetry-averaged A(k;,E) need to be
statistically averaged to obtain the final EBS.
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B. Implementation details

B.1. CASTEP — plane wave DFT code

There are several reasons for choosing CASTEP as a basis to implement the EBS method. It
can cope with the large system sizes of supercells by exploiting MPI parallelisation over
k points, reciprocal lattice (g) vectors and bands (the latter is not used in band structure
calculations) and scales well up to thousands of atoms and thousands of processors.

Also, CASTEP contains a wealth of powerful features such as automatic determination
of cell symmetry operations. As the code is modular Fortran 90, this existing functionality
can be accessed with ease.

We note that CASTEP in its unmodified form already implements calculation of band
structures, but without any means to project these onto a primitive cell of interest. Starting
from a converged, self-consistent electron density, the Schrodinger equation is solved non-
selfconsistently at a number of k points in the BZ of the current cell, which may or may not
be a supercell.

Our implementation of the EBS method is a separate executable named bs_sc2pc
compiled from a CASTEP main program file that is stripped down to only perform a band
structure calculation, but using all the functionality provided by different modules (from
handling MPI communications to reading input files to performing the actual calculation).
EBS-specific computational tasks were then added during setup and output phases. Details of
the implementation are described in the following section.

B.2. Constructing an EBS with bs_sc2pc

B.2.1. Required data. To determine an EBS, one requires the following input data, readily
generated using the existing software:

e Atomic positions, symmetry operations and lattice vectors for the supercell.

e Symmetry operations and lattice vectors of the primitive cell. Alternatively, atomic
positions for the primitive cell can be used to determine primitive cell symmetry at
runtime.

e FElectronic structure of the supercell computed on a standard k-point mesh. In practice
this is read from the restart file generated by a typical DFT calculation. This file
contains the converged wave function of the supercell, which is used to initialize the
electron density for the band structure calculation. While in principle it would be
possible to determine the self-consistent electron density during a run, the computational
requirements of a self-consistent energy calculation and a band structure calculation are
typically very different for many-atom supercells (the former uses few k-points, the latter
may use many), which makes it difficult to choose a parallelisation strategy that works
efficiently for both.

ok points at which to perform the EBS calculation.

e Optionally, range and sampling interval of the spectral function.

All other quantities required for an EBS (such as the supercell matrix M, cf. (A.1)) are
determined by the code at runtime. Note that the electronic structure of the primitive cell
is not required; the sum over primitive cell eigenstates in (A.8) is not performed explicitly. In
the following sections we describe the main modifications to CASTEP during setup (section
B.2.2) and output (section B.2.3).
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B.2.2. Setup: transformation matrix, symmetries, and folding vectors. After startup, the
primitive cell is read; this includes the n; pbz k at which the band energies are to be
evaluated. With this information, the supercell matrix M can be determined. If no matrix with
integer components can be found, the program aborts. This implies that for supercells whose
geometry deviates from the ideal case, the primitive cell needs to be adjusted accordingly,
usually by deforming the primitive cell in such a way, that the supercell is again an integer
multiple. As any modifications to the primitive cell geometry may have consequences for
underlying pc band structure, the EBS of the supercell needs to be interpreted accordingly;
any deviations from the primitive cell band structure may be introduced either by the strained
primitive cell or by the supercell. Also, any distortion can reduce the primitive cell symmetry.
To account for this, it may become necessary to average an EBS over multiple differently
oriented paths in the strained pc which are equivalent in the original high-symmetry cell.
While pc and SC basis vectors need not be collinear (see figure A.la), it is required that pc
and SC have the same orientation.

Some consideration must be given to the n; pbz symmetry operations either specified in
the pc cell file or determined on the fly, and if/how these map to SC symmetry operations. In
the primitive cell, duplicate points generated from the same initial point are eliminated (e.g.
barring any translational symmetry, the I" point is mapped to itself under any operation, but
it is retalned only once). This locates the wave vectors kc belonging to the same symmetry
class C( ) as k (compare (A.12)). At the end of this process, there is a list of n¢ kc points with
ng <nc< ngny.

The resulting full k point list is then mapped to the SBZ and the folding vector éo7i,i =
1,...,nc (A.6) for each of them is stored. The folding process might cause several K toresultin
identical K (or at a set of K that are equivalent under a symmetry operation of the SBZ), albeit
with different G. Eigenvalue calculations at each K are independent of this construction, and
hence careful consideration of symmetry can be used to significantly reduce computational
load requirements by eliminating redundant K points. To this end, it is checked whether
any two of the n¢ K points, irrespective of their original k, are identical under any of the
Ns symmetry operations (including the identity operation) of the SBZ, which is again read
from the supercell file or determined on the fly. The band structure calculation is then carried
out on the remaining Ny unique unique K points only, with 1T < Ng unique < ne. This K point
elimination and consequent reduction in computational cost can be deliberately exploited by
adjusting the density of k points along a path: If the supercell dimension and the k sampling
are in register, most points will actually be redundant (see also section 4.3 for an example
calculation).

A standard CASTEP band structure calculation is then performed using the set of unique
K points remaining. This ensures that our tool can remain agnostic to any further DFT
implementation choices like exchange-correlation functionals or pseudopotentials, as this is
all accounted for in the underlying band structure code.

B.2.3. Evaluation: spectral weights and spectral function. After the band energies are
calculated at the N, SBZ points, the spectral weights ((A.8) and (A.11)) and with those

the spectral function (A.9) can be calculated. For each of the nc symmetrized pbz ke points,
first the mapped unique K is identified. For each band of that K, we loop over the plane waves
contributing to the eigenstates of this band m. We then check, whether the plane wave at G
should be included in the sum over g in (A.11). If this is the case, we keep this coefficient and
reject it otherwise. At the end, we calculate the spectral weight P | (76',) as the S-norm of the

filtered wave function with coefficients Cg m(é).
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The SF is realized as a histogram. The number of bins and their width are either user-
specified or calculated from minimal and maximal eigenvalue and a default number of bins.
Once all plane waves of a certain band |E ,m) have been evaluated, the appropriate spectral
function bin value is increased by Py (% ;) multiplied by the weighting factor nc(k;)~!. This

whole procedure is then repeated for all pbz symmetry-equivalent k¢ retained for a certain
k;, and we obtain the symmetry- averaged spectral function A(E, ki ), which is written to file.
These steps are duplicated for all k of the pc (and, in case of a spin-polarized calculation, for
the second spin channel as well).

B.2.4. Postprocessing: averaging and graphical output over several supercell realisations.
Averaging over independent band structure calculations is performed in post-processing. In
this way it is possible to account for occupational disorder beyond a single supercell or to
average over multiple paths in the pbz whose equivalence is broken by a strained primitive
cell.

The resulting spectral function A(E ,E) is then a energy histogram of spectral intensities
at a sequence of %—points. An intuitive graphical representation of this dataset is obtained by
plotting the individual histograms as lines vertically next to each other along the %-point path
(cf. figure 2 of Ref. 1, and figures 4 and 6 in the main article). There, the individual histogram
lines are only plotted for values where the spectral intensity is non-zero. Alternatively,
A(E ,7&,-) can be represented in a contour plot, as demonstrated in figure 2(a).
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