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a buckling half-wave length, mm 

A   cross-section  area, mm
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flangesA   area of flanges in a section, mm
2
 

webA   area of the web in a section, mm
2
 

vA   shear area, mm
2
 

   modification factor for a closed-form equation 

c  correction factor for the calculation of torsional constant 

rt  weighting factor for rtQ   

δ  weighting factor for δQ   

LT   imperfection factor 

mb   mean of correction factor for test results 

1b   distance from the flange outstand to the middle vertical axis of the web 

in a channel section, mm 



xxi 

 

fb   breadth of a cros-section, mm  

   target reliability factor 

s   shear coefficient 
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1C   factor to account for the type of moment distribution and support 

condition 

2C  factor to account for the vertical position of the load with respect to the 

shear centre 

bC   moment modification factor for non-uniform moment distribution for 

laterally unsupported span when both ends of the beam are braced 

LT   reduction factor 
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cD  diameter of the largest inscribed circle, mm 
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flexural rigidities for the orthotropic plate, kN.mm 

 

,  x    initial minor out-of-straightness along beam’s length, mm 

e  
vertical deflection in column test, mm 
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elongation on the tensile load direction of test specimen, mm 

i  error term 

max  maximum initial minor out-of-straightness of a beam, mm 

   logarithm of the error term  [ ln( )]i i     
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cr   difference between critical LTB loads 

cr,FEA  difference between critical buckling loads  

Limit  difference between limiting buckling loads 

Limit,FEA  difference between limiting buckling loads from FEA 

se   distance from the vertical centre line of the web plate to the shear 

centre in a channel section, mm 

s1e  distance from the outer surface of web to the shear centre in a channel 

section, mm 

ye
  

load eccentricity, mm 

E   modulus of elasticity, kN/mm
2 
(GPa) 
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LE   longitudinal modulus of elasticity, kN/mm
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L,mE  mean longitudinal of elasticity, kN/mm
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(GPa) 

L f(E )   longitudinal modulus of elasticity of the flange, kN/mm
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(GPa) 

L w(E )  longitudinal modulus of elasticity of the web, kN/mm
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(GPa) 

TE   transverse modulus of elasticity, kN/mm
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(GPa) 

yEI   flexural rigidity about major axis, kN.mm
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zEI   flexural rigidity about minor axis, kN.mm
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‘90’as the angle between the strain gauges and the tensile load 
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three plane strains of orthotropic material with 1-1 taken along fibre 

direction 

L   longitudinal strain 

LTB,max   maximum strain in the LTB testing 

T   transverse strain 

LT   generalized imperfection factor 

yf   yield strength, MPa 

ymf   mean value for yield strength, MPa 
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( )rtg X   resistance function of the basic variables X used as the design model 

G   shear modulus, kN/mm
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(GPa) 
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  three shear moduli in orthotropic material, kN/mm
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LTmG  mean in-plane shear modulus, kN/mm
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LTG  in-plane shear modulus, kN/mm
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tGI   torsional rigidity, kN.mm
2
 

max   maximum shear strain in LTB testing 

M   partial safety factor for lateral-torsional buckling mode of failure 

h   depth of a cross-section, mm 

wh  depth of web panel (distance from mid-depth of top flange to mid-

depth of bottom flange), mm 

H   height of column, mm 

tI   torsional rigidity, mm
4
 

wI  warping rigidity, mm
6
 

yI   second moment of area for flexure about the beam’s major axis, mm
4
 

zI   second moment of area for flexure about the beam’s minor axis, mm
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k   restraint factor for lateral flexural bending at end supports; 0.5 for full 

restraint to 1.0 for fully unrestrained 

d,nk   design fractile factor for the case “ XV  unknown” 

d,k    design fractile factor of d,nk for n 

nk   characteristic fractile factor for the case XV  unknown 

wk   restrain factor for warping at end supports 

I-flangek   spring constant for flange of I section 

I-webk   spring constant for web of I section 

k   value of nk  for n  

tK   transverse sensitivity factor of the strain gauges 

F   flexural stiffness, kN.mm
2
 

S   shear stiffness, kN 

L   major axis flexural span of beam, mm 

bL   lateral unrestrained span of beam, mm 

cL  critical length, mm 

pL  limiting laterally unrestrained span for limit state of yielding, mm 

rL  limiting laterally unrestrained span for limit state of inelastic lateral-

torsional buckling, mm 
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OverallL  overall span of beam including the overhang lengths, mm 

   time effect factor 

LT  non-dimensional slenderness or generalised slenderness 

LT,0  plateau length 

b,RdM  design buckling resistance moment of a laterally unrestrained beam, 

kN.mm 

crM   elastic critical buckling moment of resistance, kN.m 

eM   latetal-torsional buckling moment from LTB testing, kN.m 

pl,yM   plastic moment of resistance, kN.m 

yM   moment resistance at first yield, kN.m 

EdM  design value of moment, kN.m 

LocM  local buckling moment, kN.m 

LTB,maxM  maximum moment in the LTB testing, kN.m 

nM
  

nominal flexural strength of member, kN.m 

uM
  

required flexural due to factored loads of member, kN.m 

n   number of experiment results 

cr,zN   elastic critical Euler buckling load, kN 
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   Poission’s ratio for steel 

0   Poission’s ratio of the material on which the gauge factor was 
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  three Poission’s ratios in orthotropic material 

LT   major Poission’s ratio  

P   central point load, kN 

3P  point load applied at 3 mm lateral eccentricity from the shear centre 
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vertical plane, kN 

15P  point load applied at -15 mm lateral eccentricity from the shear centre 
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crP  elastic critical lateral torsional buckling load, kN 

cr1P  elastic critical buckling load obtained using geometric properties that 

ignored the fillet radius areas, kN 

cr2P  elastic critical buckling load obtained using geometric properties that 

accounted for the fillet radius areas, kN 

cr,eP  elastic critical lateral torsional buckling load from experiment, kN 

cr,FEAP  elastic critical lateral torsional buckling load from finite element 

analysis, kN 

cr,FEA,1P  elastic critical lateral torsional buckling load from finite element 

analysis for case 1 of load position, kN 

cr,FEA,2P  elastic critical lateral torsional buckling load from finite element 

analysis for case 2 of load position, kN 

cr,FEA,baseP  a base value for critical buckling load from finite element analysis, kN 

cr,TFP  elastic critical buckling load obtained for Top Flange loading, kN 

cr,SCP  elastic critical buckling load obtained for Shear Centre loading, kN 

cr,BFP  elastic critical buckling load obtained for Bottom Flange loading, kN 
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uP  ultimate failure load in column local buckling test, kN 

Limit,eP  limiting buckling load from experiment, kN 

Limit,FEAP  limiting buckling load from finite element analysis, kN 

Loc,FEAP  local buckling load of a concentric loaded column obtained using finite 

element analysis, kN 

LTB, maxP  maximum LTB loads in testing, kN 

0   initial twist imperfection, rad 

   rotation at mid-span, degree 

b   resistance factor in structural design 

   warping function, mm
2
 

max   maximum of warping function, mm
2
 

LT   value to determine the reduction factor LT   

r   resistance value, kN.mm 

cr   radius of the fillet corner in a section, mm 

dr  design value of the resistance, kN.mm 

er  experimental resistance value, kN.mm 

kr  characteristic value of the resistance, kN.mm 
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tr  theoretical resistance value, kN.mm 

s estimated value of the standard deviation   

s   estimated value of    

δs   estimated value of δ   
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three plane stresses of orthotropic material with 1-1 taken along fibre 

direction, MPa 
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compression stress at ultimate failure in the local buckling test, MPa  
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Three plane stresses with x-x taken along the tensile load direction and 

y-y perpendicular to x-x, MPa 

L,t   longitudinal tensile strength, MPa 

Loc   local buckling stress, MPa 

Locm   mean value of local buckling stress, MPa 

Loc,a   local buckling stress obtained from analytical solution, MPa 

Loc,e   local buckling stress obtained from experiment, MPa 

Loc,flange   local buckling stress of flange, MPa 

Loc,web   local buckling stress of web, MPa 

Loc,FEA   local buckling stress obtained from finite element analysis, MPa 
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ft   flange thickness, mm 

pt   thickness of the panel, mm 

wt   web  thickness, mm 

max   maximum shear stress in LTB testing, MPa 

u  shear strength, MPa 

   angle between the tensile loading direction and fibre direction, Degree 

1  angle between the loading axis x with strain gauge SG#1, Degree 

2  angle between the loading axis x strain gauge SG#3, Degree 

3  angle between the loading axis x with strain gauge SG#2, Degree 

xU   displacement in X-direction, mm 

yU  displacement in Y-direction, mm 

zU  displacement in Z-direction, mm 

xUR   rotation about X-direction, Degree 

yUR  rotation about Y-direction, Degree 

zUR  rotation about Z-direction, Degree 

0v   initial minor axis out-of-straightness imperfection, mm 

fyV   coefficient of variation of yf   



xxxii 
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rtV   coefficient of variation of tr    

ELV   coefficient of variation of LE   
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XV  coefficient of variation of X   

XiV  coefficients of variation of the basic variables iX   

δV   estimator for the coefficient of variation of the error term    

σLocV   coefficient of variation of Loc   
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zW  elastic section modulus about the minor axis, mm
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wW  elastic warping section modulus, mm
3
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ABSTRACT 

 

The currently lack of design guidance for pultruded fibre-reinforced polymer member 

requires more study on their structural behaviours in order to provide structural designer 

with confidence when applying this material into civil engineering. Elastic lateral-

torsional buckling is an important global instability mode of failure for flexure about the 

major axis of open sections which is characterised by a coupled elastic deformation of 

lateral deflection and twist about beam’s longitudinal axis. 

The key elements of this study are laboratory testing, finite element analysis and 

development of design guidance that is compatible with Eurocode 3 design procedure.  

94 tests have been carried out on tensile coupons to characterise the four key material 

properties for longitudinal, transverse, shear moduli of elasticity and major Poission’s 

ratio that are required for the prediction of the buckling resistance using closed-form 

equations and by finite element analysis. 114 tests on the elastic lateral-torsional 

buckling of I and channel beams under various loading and displacement boundary 

conditions have been carried out to determine the buckling resistance. Finite element 

modelling methodology has been developed and both linear and nonlinear numerical 

analyses have been performed to show that the methodology is suitable. Further 

sensitivity analysis has been conducted to demonstrate that the buckling resistance is 

highly influenced by the combination of material, geometric and loading imperfection. 

A calibration has been implemented, based on the new test results, following the 

Eurocode 0’s approach to establish the material partial factor for the investigated 

instability mode of failure 
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  CHAPTER 1

 

INTRODUCTION 

 

Produced by the continuous composite material process known as ‘pultrusion’, the 

Pultruded Fibre-Reinforced Polymers (PFRP) shapes consist of thin walls of glass or 

carbon fibre reinforcement embedded in a thermoset resin based matrix. This process is 

cost-effective and can be employed to produce a wide range of uniform cross-section 

from the conventional shapes as shown in Figure 1.1(a) that can substitute steel beams 

and columns in frame construction, to a more complex one in Figure 1.1(b) that serves 

as bridge decking. The applications of PFRP shapes and systems in construction are 

growing because of their distinct advantages such as: lightweight, high fatigue 

resistance, corrosion resistance and electromagnetic transparency (Bank, 2006). 

 
 (a)            (b) 

Figure 1.1 PFRP shapes: (a) conventional shape; (b) bespoke shape 
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Figure 1.2 PFRP frame structure (http://www.strongwell.com/markets/building-and-

construction/)  

 

 

Figure 1.3 Multistorey building (http://www.fiberline.com/structures/case-stories-other-

structures/-eyecatcher-building/eyecatcher-building) 

http://www.strongwell.com/markets/building-and-construction/
http://www.strongwell.com/markets/building-and-construction/
http://www.fiberline.com/structures/case-stories-other-structures/-eyecatcher-building/eyecatcher-building
http://www.fiberline.com/structures/case-stories-other-structures/-eyecatcher-building/eyecatcher-building
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Figure 1.4 Startlink test house (Zafari, 2012) 

 

The first application of PFRP shape (Figure 1.2) into the field of building system is a 

single-story frame using for computer and electronic laboratories (Bank, 2006). As this 

type of building requires electromagnetic transparency to avoid the interference between 

the building materials (above the ground level) and the computer or electronic systems, 

PFRP shape is shown to be one of the best solutions. Fiberline composites A/S built a 

five-storey frame building (Figure 1.3) with height of 15 metres in 1999 to show the 

potential application of this new material in building. 

A two-storey residential trial house was built in Lincolnshire in 2012 with an aim to 

bring energy efficient and low cost living space to future housing in the UK. It is certain 

that application of this newly emerged material into commercial and residential 

constructions will grow quickly in the future.  
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Figure 1.5 Railway pedestrian bridge (www.apatech.ru/chertanovo_eng.html) 

 

 

Figure 1.6 Road bridge over highway (http://www.fiberline.com) 

 

http://www.apatech.ru/chertanovo_eng.html
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Applications were also found in bridge engineering. Hundreds of short span light-truss 

pedestrian bridges have been constructed worldwide since 1970s (Bank, 2006). Figure 

1.5 is a picture of the Russian first ever PFRP bridge during installation. The bridge has 

span of 41.4 metres and wide of 3 metres. It was constructed by three parts with centre 

part is 13 metres and the two others are each 15 metres. The installation took only one 

hour. Figure 1.6 presents a composite-steel hybrid bridge with span of 27 metres and 

width of 5 metres. The bridge comprises of two steel I beams above which a bespoke 

PFRP deckling was adhesively bounded. These two examples have shown that 

advantages of light-weight and noncorrosive properties made PFRP bridge become the 

first choice for places where short construction time and low maintenance cost are 

required.   

Having the shape that can be similar to structural steel, the mechanical properties of 

PFRP are not the same. Although the direct strength (tension or compression) in the 

direction of pultrusion of PFRP shape can be between 200 MPa to 400 MPa, which is 

comparable to structural graded steel, their modulus of elasticity is significant lower. 

The modulus in the longitudinal direction LE is between 20 GPa and 30 GPa which is 

only 1/7 to 1/10 of steel. Because of the low stiffness-to-strength ratio, design of PFRP 

member (in frame construction) is normally controlled by elastic deflections and/or 

elastic buckling instabilities and rarely by strength (Clarke, 1996, Chambers, 1997). 

Research into the buckling behaviour becomes particularly important for PFRP material.  

When a thin-walled open shaped beam is laterally unrestrained along the span a key 

ultimate mode of failure is that of Lateral-Torsional Buckling (LTB). This instability 

failure is for flexure about the major axis of open sections, and is characterised by a 

coupled elastic deformation of lateral deflection and twist about the beam’s longitudinal 
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centroidal axis. The studies of the LTB behaviour of PFRP beams, especially by way of 

physical testing, are limited (Nguyen et al., 2014). 

This Ph.D. further the understanding of LTB response of PFRP I and channel beams 

under various loading and displacement boundary conditions by way of Finite Element 

Analysis (FEA) and physical testing as a step towards the development of a future 

Eurocode  for PFRP material. All the sections adopted in this research were provided by 

Fiberline A/S, Denmark. They were pultruded with E-glass fibres and fire-retardant 

vinylester matrix. The fibre reinforcements are of the three main types for unidirectional 

rovings, woven and complex mats. The mass fraction of glass content in a PFRP shape 

is approximately 60% (Anon., 2014a). The detail architectures of the fibres were not 

given by the pultruder. 

This thesis consists of seven chapters in which Chapter 2 provides a general review of 

the relevant literature covering mainly the testing from previous researchers.  

Chapter 3 covers 94 tensile tests on longitudinal coupons, transverse coupons and 10-

degree off-axis coupons of four different sections to determine their key material 

properties of PFRP. 

Chapter 4 reports results from 114 LTB tests on four sections at five or four span 

lengths, two displacement boundary conditions and three vertical load positions. Test 

arrangement, procedure and comparison with closed-form predictions are described.  

Chapter 5 presents the linear and nonlinear finite element analyses of PFRP beams. The 

modelling methodologies for material, element type, mesh size, geometric and boundary 

conditions are reported. The models are verified by the test results and sensitivity 

analyses are carried out. 
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Chapter 6 provides a preliminary study to develop a design method for beam in bending 

using 114 test data in Chapter 4 and following the calibration procedure given in 

Eurocode 0 (BSI, 2002a). 

Chapter 7 summarizes the key findings and conclusions drawn from this thesis and the 

recommendation for further work. 
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  CHAPTER 2

 

LITERATURE REVIEW 

 

2.1. Introduction 

This chapter provides background information to the lateral-torsional buckling 

instability of thin-walled members and a general review of the previous experimental 

researches on this buckling behaviour of PFRP beams to show the need for further 

research on this particular topic with the pultruded profiles. 

 

2.2. Lateral-torsional buckling failure 

To commence the review of background information the author will introduce the 

elastic failure mode of Lateral-Torsional Buckling (LTB) and explain how a beam’s 

resistance for this mode is dependent on a number of parameters.  

When a laterally unrestrained beam is subjected to flexure about its major axis (Figure 

2.1) it may fail by a coupled combination of lateral deflection ( )v
 and twist rotation ( )  

along the length, at a load that is lower than the strength of the beam. This elastic 

instability behaviour of beam has been referred as “Lateral-Torsional Buckling” 

(Timoshenko and Gere, 1961). LTB resistance is influenced by the displacement 
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Boundary Condition (BC), the loading condition and the beam’s geometrical and 

mechanical properties.  

 

Figure 2.1 LTB of simply supported I-beam under pure bending 

 

 

Figure 2.2 Standard structural shapes 

 

Amongst the open cross-section as shown in Figures 2.2(a)-(c), the narrow-flange shape 

is most susceptible to the LTB due to its low lateral flexural rigidity z( )EI  and torsional 

rigidity t( )GI . The closed-section such as square tube in Figure 2.2(d) is rarely failed by 
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LTB thanks to its high zEI  and
 tGI  compared to the vertical flexural rigidity y( )EI . In 

terms of the displacement BC, the more restraints applied at ends, the higher is the LTB 

resistance. There are two main types of BC: (1) simply supported and (2) cantilever.  

The instability theory (Timoshenko and Gere, 1961, Trahair, 1993) defines the simply 

supported (about major axis) condition as “beam to be fully restrained for translational 

displacement about major and minor axis and twist along the length, but is free to rotate 

about major and minor axis ( 1)k 
 and to warp w( 1)k  ”.  Here, k  refers to the factor 

of effective length for restraint against lateral bending, while wk  is the equivalent factor 

for end warping. By changing the lateral flexural bending conditions (changing of k ) or 

warping condition (changing of wk ) from free w(  or 1.0)k k   to fixed w(  or 0.5)k k 

three other simply supported BCs are achieved. They are w1 and 0.5k k  ; 

w0.5 and 1k k  and w0.5 and 0.5k k  . 

 

Figure 2.3 LTB of cantilever I beam under point load at free end 
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In the cantilever beam, one end is fully clamped whist other end is free. Figure 2.3 

shows a cantilever I beam with dashed outline for undeformed and with LTB failure 

with a point load at the “free” end.  

When a beam is subjected to a point load, LTB resistance is influenced by the vertical 

distances from the point of application g( )z
 
to the Shear Centre (SC) due to an 

additional torque about the longitudinal (centroidal) axis that is generated from the 

lateral movement of the vertical point load when instability happens (Trahair, 1993). 

Because the torque acts in the opposite sense to the LTB twist rotation when the load is 

applied below the SC (e.g. on Bottom Flange (BF)), the buckling resistance will 

increase. Likewise, when load acts above (e.g. on Top Flange (TF)), the torque applies 

to the same direction with the twisting of beam, buckling resistance will, therefore, 

decreases. 

 

Figure 2.4 Flexural static equilibrium and LTB instability deformation (not to scale) 
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Theoretical investigations on this elastic buckling behaviour have been a subject of 

research for nearly a century (Timoshenko, 1936, Flint, 1948, Clark and Hill, 1960, 

Trahair, 1993, Bureau, 2006). These works have resulted in a general closed-form 

expression for the critical elastic LTB moment cr( )M of an isotropic beam that is 

symmetrical about the major axis. This expression allows for different bending moment 

distributions, for changing end and warping restraints and for different height levels at 

which the loading is applied. 

The expression can be written as (Clark and Hill, 1960, BSI, 1992, Bureau, 2006): 

 
 

 
222

2tz w
cr 1 2 g 2 g

2 2
w z z

π
+ + - 

( ) π

kL GIEI k I
M C C z C z

kL k I EI

 
      

 

 (2.1) 

In Eq. (2.1) L is the simply supported span. 1C  is the equivalent uniform moment factor 

that accounts for the shape of the bending moment distribution. 2C  is the factor to 

account for the vertical load height with respect to the SC. gz  is the height of the load 

from the SC. It is zero at the SC and positive when the load is located above (towards 

TF) and negative when placed below (towards BF). z w t,  and I I I  is second moment of 

area for flexure about the beam’s minor axis, warping rigidity and torsional rigidity, 

respectively. 

This equation can be adopted in Eurocode 3 (BSI, 2005a) for the checking of LTB 

failure. The American standard for structural steel in buidings AISC 360-10 (AISC, 

2010) adopts the same expression with w 1k k  . There is no consideration in this 

design standard for k being different from wk . It is noted that Eq. (2.1) neglects the 

contribution  of shear deformation whose presence decreases the buckling resistance of 

1-5% for PFRP I shape (Roberts, 2002).   
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It is well-known that the solution giving Eq. (2.1) is based upon three sets of 

relationships for: equilibrium equations; strain-displacement relationship; force-strain 

relationship (Trahair, 1993). The difference between isotropic and orthotropic material 

property modelling is in the terms for the force-strain relationships (Kollár and Springer, 

2003). By exchanging the isotropic stiffnesses in the relationships with the orthotropic 

equivalents (Allen and Bulson, 1980) and, when required, accounting for the influence 

of shear deformation, a solution for the orthotropic beam is obtained. The solution with 

shear deformation included gives slightly lower (<5%) critical LTB load than that using 

Eq. (2.1) for the narrow-flange beam (e.g. f / 2b h ). This is mainly due to the presence 

of shear deformation is neglected in Eq. (2.1). Because it is also well-known that a 

PFRP beam can be treated as being consisted of orthotropic panels (Kollár and Springer, 

2003), it is acceptable (Mottram, 1992a, Razzaq et al., 1996, Trumpf, 2006) for Eq. (2.1) 

to be adopted on substituting the isotropic modulus of elasticity E  and G with 

longitudinal elastic modulus LE and in-plane shear modulus LTG for the FRP material.     

For the case of a cantilever beam, there are several solutions for the prediction of critical 

buckling load crP . One solution is the following formula developed by Timoshenko and 

Gere (1961): 

 
t

cr
2

w2

t

4.013 zEI GI
P

L EI
L

GI


 

  
 

 (2.2) 

crP can also be determined by adopting Eq. (2.1) with w 1k k  and g 0z  . By 

replacing 1C with , the expression is:  

 
2 2

z tw
cr

3 2
z z

EI I L GI
P

L I EI





    (2.3) 
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The formula to calculate is given in Nethercot and Rockey (1973) Eqs. (2.1)-(2.3) 

were adopted in previous studies (Mottram, 1992a, Brooks and Turvey, 1995, Turvey, 

1996, Trumpf, 2006) to predict the LTB resistance of PFRP beam. Reported herein is a 

general review of the key studies that informed the author’s Ph.D. work. 

 

2.3. Lateral-torsional buckling of simply supported beam 

The first experimental attempt is credited to Mottram (1992a), who conducted 35 tests 

on a single I beam having dimension of 101.6×50.8×6.4 mm (4×2×¼ in.) at a single 

span of 1500 mm. The simply supported beam (for major and minor axis flexure) was 

subjected to three-point bending with a ‘test machine’ compressive load, as seen in 

Figure 2.5, applied above the Top Flange (TF) through a steel fixture with freedom to 

displace laterally. The onset of instability failure was signalled when the base plate of 

the fixture had displaced sideways 2 mm from its zero-load position.  

 

Figure 2.5 Test configuration in Mottram (1992a) 

 

Displacement

transducer

I section

Base plate

Flexural equilibrium LTB failure



15 

 

Mottram (1992a) attempted to create a bifurcation failure whereby the beam fails 

suddenly without any prior twist (and coupled lateral deflection). He observed a large 

range in the LTB resistance with crP   2.8 kN to 5.75 kN. He argued that the presence of 

imperfections could be accounted for by taking the test results when the set-up allowed 

the beam to deform in the third mode, and later buckle suddenly with the first mode. It 

was observed that with this beam response the maximum buckling resistance was 

realized. 

 In the same year, Mottram (1992b) presented the solution to the governing differential 

equation for the LTB problem of PFRP beam. Comparing the numerical results obtained 

with predictions by Eq. (2.1), he showed that the differences were within 3% when the 

load was applied at SC. The difference between the predictions and the experimental 

measurements was found to be less than 30%. By plotting 2
cr L z LT t/ (4 )P L E I G I  

against 2
LT L w/ ( )tL G I E I  , Mottram was able to illustrate the influence of load height and 

warping rigidity on the buckling resistance. It is found that due to the relative high ratio 

of L LT/E G , the contribution of warping to the torsional stiffness for a PFRP beam 

2
LT L w/ ( )tL G I E I  is less than half of that for the identical steel I beam. This implies that 

the influence of warping rigidity is to be higher in PFRP beam. He also observed from 

that for a low value of 2
LT L w/ ( )tL G I E I  the buckling curves tend to diverge and that 

divergence is less obvious with steel. This indicates that the influence of load height is 

also more important for the PFRP beam.  

The next study with simply supported PFRP beams was by Razzaq et al.(1996). They 

used the research to propose a Load and Resistance Factor Design (LRFD) approach to 

design for LTB strength based on a combined theoretical and experimental study using 

PFRP channel sections. Tests were conducted on four different cross-sections at spans 

ranging from 1524 mm to 2743 mm (5 ft. to 9 ft.). Beams were tested under four points 
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bending. Onset of failure was reported to be either when the instability suddenly 

happened or when lateral deflection (and integral rotation) increased without any 

increase in vertical load. 

 

Figure 2.6 Loading configuration in Razzaq et al. (1996) 

 

 

Figure 2.7 Arrangement of LVDTs at mid-span in Davalos et al. (1997) 
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One of the weaknesses of the test arrangement illustrated in Figure 2.6 is that where 

there is no “bifurcation” failure, the loading plate will not keep the line of action of P

through the same application point (e.g. shear centre or beam centroid). This is because 

the point of load application changed as the beam started to twist and move sideways. 

This arrangement did not strictly satisfy the requirement in the fundamental theory of 

LTB (Timoshenko and Gere, 1961, Trahair, 1993) that the ‘point’ of concentrated load 

remain unchanged relative to the deforming cross-sections, and that their lines of action 

move parallel to their initial undeformed positions.  

Davalos et al. (1997) reported two tests on two wide-flange I beams at span 4.42L  m 

(or 14.5 ft). The PFRP sections had the same dimensions but different fiber 

architectures. The beams were subjected to three-point flexure with the load applied on 

TF through a hydraulic ram which was fixed to the supporting frame. It was admitted by 

Davalos et al. (1997) that their test arrangement would provide a restraining force to 

ultimately increase the apparent LTB load. A series of LVDTs (Figure 2.7) were 

arranged at mid-span to measure the rotation. Strain gauges were placed on top flange to 

measure the strain at failure. A comparison was made between an analytical solution, 

FEA and test results. The analytical solution gave similar results to the FEA and both 

were 25% higher than the established from testing. 

Trumpf (2006) carried out 16 tests on four narrow-flange I sections, size of 120×60×6 

mm, 160×80×8 mm, 200×100×10 mm, and 240×120×12 mm at spans L = 613 mm to 

2400 mm.  The sections were manufactured by Fiberline A/S, Dermark. As shown in 

Figure 2.8(a) the vertical point load was applied at a height of 62 mm above the top 

flange (i.e. g / 2 62z h   mm) using a hydraulic jack. He recommended a partial safety 
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factor of M 1.5   for a LTB curve for the tested PFRP beams. This recommendation 

was based on the calibrated M  from 1.37 to 1.43 for 16 tests.   

 
 (a) (b) 

 

Figure 2.8 LTB testing on I beam: (a) in Trumpf (2006); (b) in Correia et al. (2011) 

 

Recently, Correia et al. (2011) conducted lateral testing on a single I beam, size of 

200×100×10 mm, produced by Topglass firm, Italy. Figure 2.8(b) shows their test 

arrangement. It is observed that in both studies the TF is not free to move laterally and 

this additional restraint, which is not assumed in the formulation of Eq. (2.1), must have 

an influence on the LTB resistance. In addition, as the jack was rigidly fixed in one 

position, the load cannot follow the beam’s deformation when it starts to buckle. 

Correia et al. (2011) found that when LTB failure happens the maximum direct stress is 

considerably below the direct tensile strength of PFRP material. This observation agrees 

with what observed by Mottram (1992b) who found  the direct stress at LTB failure to 

be 30% of the material strength. 
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2.4. Lateral-torsional buckling of cantilever beam 

 

Figure 2.9 Measurement set-up in Brooks and Turvey (1995) 

 

Brooks and Turvey (1995) conducted 10 tests on cantilever I beams size of 102×51×6.4 

mm with a four-bar fixture attached at mid-depth of the free end from which the load 

bar was hanged. This loading fixture seen in Figure 2.9 also allows transducers #1 and 

#2 to measure the vertical and horizontal displacement for the beam specimen. They 

compared the crP results with three prediction methods. The first method was by Eq. (2.3) 

and the second from Eq. (2.2). Their third prediction is eigenvalue FEA using the 

commercial coding ABAQUS
®
. Experimental crsP  were found to be 30% lower than 

predictions. It is argued that the difference was because the shear modulus at 1.37 GPa 

in the three predictions must be considerably below the actual modulus. The comparison 

showed that the Eq. (2.2) is most suitable for cantilever beams failing by LTB. 

Pin joints Pin joints
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Turvey (1996) later studied the effects of changing the height of loading with cantilever 

I-beams having spans from 500 mm to 1500 mm. The concentrated end point load was 

applied above, at, and below the shear centre using the same test arrangement as in 

Brooks and Turvey (1995). The new experimental results were also compared with the 

three numerical predictions. The differences of 25-55% were obtained when the in-

plane shear modulus was taken as 0.7 GPa. This study suggested the influence of 

geometric imperfection and pre-buckling should not be neglected. Qiao et al. (2003) and 

Shan and Qiao (2005) added new test data on cantilever I and channel beams, 

respectively. 

 

2.5. Aims and objectives  

The review of previous experimental researches shows that there are limited numbers of 

test result for simply supported PFRP beam. The loading arrangement applied was often 

on or above the top flange. Response and resistance changes for vertical loading applied 

on TF, at SC, on BF have not been investigated. Load has been applied using a 

hydraulic jack and this introduces unwanted restraint to LTB. As a result, the chosen 

loading arrangement did not satisfy the theoretical assumption for LTB failure. The 

review has highlighted that there is lack of investigations on how resistance changes 

with changing displacement boundary conditions (e.g. free to rotate or fully restrained 

about minor axis). A comprehensive understanding of LTB failure by way of testing 

that simulates the closed-form resistance formulae (like Eq. 2.1) is essential to be able 

to provide structural designers with verified design guidance for members in bending. 

This research project aims to investigate the LTB response of PFRP beams using both 

FEA and experimental studies leading to the construction of a design curve with 
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universal application. To meet this goal, new tests with I- and channel sections were 

conducted at different span lengths, and with changing vertical load heights and 

changing displacement boundary conditions. To overcome any restraint from loading, 

the central load was applied by dead weights. This was not practical when the load 

exceeded 2 kN and the fixture chosen minimised the restraint against free lateral and 

twisting deformations. 

A large number of material tests have been carried out to characterize the material 

properties required to make numerical and analytical predictions. FEA of the beams 

with the BCs and from the test series was carried out to develop a modelling 

methodology that can be used to determine the LTB resistant of other beam section 

sizes that cannot be characterized by laboratory testing. 
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  CHAPTER 3

 

MATERIAL CHARACTERIZATION 

 

3.1. Introduction 

Application of PFRP material in structural engineering requires knowledge of elastic 

constants. The two properties of elasticity modulus E  and shear modulus G  are crucial 

when the closed-form equation (Eq. 2.1) is applied to predict the Lateral-Torsional 

Buckling (LTB) resistance. These elastic constants can be those of the full-section (e.g. 

E  and G  approximates from three-point bending test on section) or the longitudinal 

(tension or compression) modulus LE  and in-plane shear modulus LTG  obtaining from 

coupon tests. To analyse the buckling behaviour of PFRP beams by FEA (Nguyen et al., 

2013), two more elastic constants are required. They are TE  and LT , where TE  is the 

transverse elastic modulus and LT  is the major Poisson’s ratio. 

This chapter presents the test methods employed to characterize the abovementioned 

four elastic constants and experimental results for the four sections involves in the LTB 

tests (one I-section and three channel sections). The experimental programme includes 

the following three series of tensile coupon tests: 54 longitudinal tests for LE  and LT , 

20 transverse tests for TE  and 20 ten-degree (10
o
) off-axis tests for LTG . The coupons 

for the longitudinal tensile tests cut from flanges and web have different widths 
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depending on the size of the section. Those for transverse tensile tests and 10
o 

off-axis 

tests could only be extracted from the webs since the width of flanges in the four 

sections are not wide enough. Local buckling tests with short columns are also reported 

in this chapter. The purpose of these tests is to determine the local buckling stress Loc  

as it is required in the non-dimensional slenderness ratio LT  used in Chapters 4 and 6. 

Prior to the coupon tests, the full-section properties are determined by analysing the 

LTB experimental data (to be presented in Chapter 4) to approximate the full-section 

properties E  and G . 

 

3.2. Full-section properties 

The full-section properties can be obtained by following method A in Annex G of the 

European standard EN 13706-2 (BSI, 2002b). It requires a number of three-point 

bending tests to be conducted on several span lengths. The data will then be plotted for 

each span as either /w PL vs. 2L or 3/w PL vs. 21/ L . The slopes of the two plots give 

approximations to the flexural and shear stiffnesses, respectively. From these stiffnesses, 

the full-section moduli E  and G  can be determined. The two plots are constructed 

upon rearranging the central deflection equation from Timoshenko beam theory: 
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Rearranging Eq. (3.1) gives the following relationship: 
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Where v sA A  is the shear area whose approximation is associated with the shear 

coefficient s  in the Timoshenko beam theory. When an I or channel beam is under 

bending about its major axis, the shear stress is intensively distributed over the web area. 

Therefore, the shear area vA  can be simply calculated as to be f w( 2 )h t t   . A more 

rigorous expression to approximate the vA  can be found in Bank (1987) and Omidvar 

(1998). Since the difference between the simple approximation and the rigorous 

expression is found to be insignificant (e.g. For I-section, vA  is 694 mm
2
 when using 

Omidvar’s expression and 684 mm
2
 by the simple method), the former is adopted. 

It is theoretically apparent that the gradient of 2L vs. /w PL matches the intercept of 

3/w PL vs. 21/ L and in reverse the intercept of /w PL vs. 2L will be identical to the 

gradient of 3/w PL vs. 21/ L . Therefore, each plot can be used to estimate both flexural 

and shear stiffness. This graphical technique requires two beams to be tested at a 

minimum of five different span lengths and the range of spans should cover short to 

long lengths (i.e. smaller and larger than the estimated critical length cL ). The critical 

length is established at which the contribution of shear deformation is about 12% of the 

deflection under flexure. From Eq. (3.1), the contribution of shear deformation is

LT v/ (4G )PL A , where the deflection from flexure is 3
L y/ (48 )PL E I . Once the 

contribution of shear deformation is 12%, we have: 

 

c
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    

 c L y LT v F S100 / ( ) 10 /L E I G A      (3.4) 

where F is the flexural stiffness (i.e. F L yE I  ) and S is shear stiffness (i.e.

S LT vG A  ).  
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The main LTB tests reported in Chapter 4 have been carried out using three-point 

bending configuration that is equivalent to what is required by this graphical method. 

Although the main test series are for beams failing by LTB, there will be stable flexural 

deformation during the first several load increments. Hence, it is feasible to utilize the 

data from these tests with the graphical technique. Buckling tests were conducted at four 

or five span lengths of 1828, 2438, 2844, 3454 and 4064 mm, depending on the 

section’s cross-sectional dimensions.  

All sections have a 6 mm nominal thickness for the web and the flange outstands. The I-

beam is nominally 120 mm deep by 60 mm wide. The three channel sections have 

labels C1 to C3. Section C1 has a depth of 120 mm and flanges of breadth 50 mm (or 

120×50 mm). C2 and C3 shapes have sizes with dimensions of 100×50 mm and 100×30 

mm, respectively. The Fiberline Design Manual (2014a) gives in Tables 2.5 and 2.7 the 

property information for I and C1 sections, respectively. The nominal elastic constants 

(for design purpose) of these two shapes are given as 23E  GPa and 3G  GPa. These 

properties for sections C2 and C3 are not tabulated in the design manual, they are 

available from the pultruder’s website at http://www.fiberline.com. These two C-

sections have the same elastic constants ( E andG ) as sections I and C1.  

Table 3.1 Geometric properties and critical span lengths of the test sections 

Section 

name 
Nominal dimensions (mm) yI  (mm

4
) vA  (mm

2
) cL  (mm)

(1) (2) (3) (4) (5) 

I 120 60 6    62.97 10  684 1830 

C1 120 50 6   62.58 10  684 1700 

C2 100 50 6   61.66 10  564 1500 

C3 100 30 6   61.14 10  564 1250 

Applying these elastic constants into Eq. (3.4) the critical length of each section is listed 

in column (5) of Table 3.1. This table has in columns (1-4) the section name, the 

nominal dimensions, the nominal second moment of area about major axis y( )I
 
and the 

http://www.fiberline.com/
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shear area v( )A . It can be seen that the span lengths in the buckling tests do not strictly 

satisfy the requirement of EN 13706-2 that is to have span at length longer and shorter 

than cL . In fact all sections are tested with the smallest span on the high side of cL .  

Table 3.2 /w PL  data to obtain the full elastic constants 

Span (mm) 1828  2438 2844 3454 4064 

 w/PL (1/N) 

(1) (2) (3) (4) (5) (6) 

I 78.01 10  61.33 10  61.80 10  62.60 10  63.60 10  

C1 79.37 10  61.60 10  61.99 10  63.02 10  64.21 10  

C2 61.25 10  62.42 10  63.40 10  64.76 10  66.35 10  

C3 62.21 10  63.40 10  64.60 10  67.10 10  - 

 

Table 3.2 summarizes the /w PL  values taken from the main buckling tests when the 

beams are under in-plane bending with very small ( o0.5  ) or no twist rotation. 

Column (1) gives the section name and columns (2-6) present the /w PL  data with span 

length from the shortest ( 1828 mm)L 
 to the longest ( 4064 mm)L  . There is no data 

for section C3 at the longest span as no buckling test was conducted at span of 4064 mm.  

  
(a)           (b) 

Figure 3.1 w/PL vs.  L
2
 for: (a) I beams; (b) C1 beams  
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(a)          (b) 

Figure 3.2 w/PL vs.  L
2
 for: (a) C2 beams; (b) C3 beams 

 

Using the data in Table 3.2, four plots of /w PLvs. 2L  are presented in Figures 3.1(a) 

and 3.1(b) for sections I and C1 and Figures 3.2(a) and 3.2(b) for sections C2 and C3. 

The R-squared values on the figures in range from 0.993 to 0.999 shows a good fit 

between the data point and the least-squares linear trend line. 

Table 3.3 presents the section moduli for I and three channel sections, with columns (1-

3) giving the name of section, the gradient and the intercept of the straight line of the 

plots presented in Figures 3.1 and 3.2. Columns (4) and (5) give the predicted E andG .  

Table 3.3 Prediction of section moduli of I- and channel sections 

Section Gradient 
y

1

48EI
  (1/N.mm

2
) Intercept 

LT v

1

4G A
  (1/N) E (GPa) G (GPa) 

(1) (2) (3) (4) (5) 

I 132.13 10  87.60 10  33.0 4.8 

C1 132.48 10  88.04 10  32.6 4.5 

C2 133.84 10  71.18 10  32.5 3.8 

C3 135.74 10  71.26 10  31.9 3.5 
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It can be seen that E  is in range of 31.9 GPa to 33.0 GPa, and this is significantly 

higher (39-44%) than the nominal value 23 GPa in the Fiberline Design Manual (2014a). 

The shear moduli are in range of 3.5 GPa to 4.8 GPa and this shows a significant 

variation. This observation is well-known (Roberts and Al-Ubaidi, 2002) since the 

intercept in this graphical method is very sensitive to the change in the gradient. A 

minor change in the gradient will significantly alter the intercept of the line.  

 

3.3. Longitudinal elastic modulus  

3.3.1. Tensile test method 

To determine LE , tensile coupon testing was adopted that followed the British Standards 

for the determination of tensile properties of plastics BS EN 527-1 (BSI, 2012a) and BS 

EN 52-4 (BSI, 1997). This test method can give the tensile strength L,t  too. Another 

standard test method that is equivalent to the BSs is ASTM D638 (ASTM, 2010). 

However, this standard requires a dog bone shaped coupon, which is not appropriate 

with PFRP material because of the undesirably loss of continuous fibres along the 

specimens. This loss creates stress concentration in the wasted regions that potentially 

leads to a premature failure. Further American test method is ASTM D3039 (ASTM, 

2008) that is for the determination of tensile properties of polymer matrix composite 

materials. This standard is popular amongst American researchers when characterizing 

the tensile properties of PFRP. This study will follow the procedure and requirements in 

the BS EN standard. The elastic constants LE  and LT  will be determined using both 

BS EN 527 and ASTM D3039-08 to highlight the differences obtained. 
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3.3.2. Test specimens 

Rectangular coupons were prepared by cutting the flange and web panels as shown in 

Figure 3.3. With the I-section there are four coupons from four outstand flanges and two 

from the web, making a total of six coupons. Specimens were given labels name I-1 to 

I-6, where I-1 and I-2 are from top flange, I-3 and I-4 are from bottom flange and I-5 

and I-6 taken from the web. It is noted that the definition of ‘top’ or ‘bottom’ flange 

here only imply opposite flanges. For each of the three channels, two coupons were 

taken from the flanges and two were extracted from the web, giving a total of four 

coupons per section. These coupons have labels consisting of section name (e.g. C1, C2 

and C3) and their position in the section (1 for top flange, 2 for bottom flange, 3 and 4 

for web). For example C1-1 is the coupon from section C1 and top flange. The names 

and positions where coupons were extracted from are illustrated in Figure 3.3. 

 

Figure 3.3 Positions where longitudinal coupons were extracted and their widths in millimetres 

 

Outstand flanges are expected to have the same fibre architecture, while the web might 

have a higher amount of mat reinforcement to resist shearing force. Interestingly, 

I1 I2 C1(1)
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15

4
0

30

4
0 30

3
5

15

3
0

I section C1 section C2 section C3 section
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Stoddard (1997) found that the tensile elastic moduli of the flanges from a PFRP I-

section size of 101.6 50.8 6.35 mm   from Strongwell (American) are actually not the 

same. The moduli on the same side (i.e. from top and bottom flanges) are relatively 

close together with a difference of 5-10%. The difference is nearly 20% when 

comparing these pair of moduli with the pair from the other side of the web. No further 

explanation was made on why such a significant deviation in LE was measured. 

Following what was observed by Stoddard (1997), flange I-1 and I-3; flange I-2 and I-4; 

and web I-5 and I-6 are assumed to have the same material properties. For the channels, 

the two flanges and web are treated as two different materials. BS EN 527-4 suggests 

there should be a minimum of five specimens per batch (for each test direction). There 

are six specimens per patch in this investigation. The I-section has a total of 18 

specimens separated into three groups of material (I-1 and I-3 in group 1; I-2 and I-4 in 

group 2; and I-5 and I-6 in group 3). Each position (e.g. I-1) will have three coupons for 

the longitudinal direction. Each channel has 12 specimens, separated into two groups 

for the flange and web material. 

Coupon length is 290 mm and at both ends aluminium tabs were bonded to prevent 

local failure from stresses generated by gripping. It is to expect that failure would occur 

in the gauging length. The aluminium tabs have length of 70 mm and thicknesses of 2 

mm. Tabs width are same as widths of the specimen. Coupons from I-section have the 

width of 15 mm from flange and 40 mm from the web. For C1, C2 and C3, the widths 

are 30 mm, 30 mm and 15 mm for flange material and for the web material, they are 40 

mm, 35 mm and 30 mm respectively. These dimensions are shown in Figure 3.3.  
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Figure 3.4 Dimension of longitudinal coupons and tabbing lengths 

 

Figure 3.4 presents the four coupon sizes and their plan dimensions. It also shows where 

strain gauging was located. Two strain gauges were placed back-to-back at the centre at 

both sides to eliminate potential influence of undesirable flexure during the test. The 

actual tensile strain is taken by averaging the two readings.  

Two types of strain gauge were used, with 36 coupons having unidirectional single-

element foil strain gauges and other 18 coupons having bi-directional (two-element 

cross), stacked type foil strain gauges. The reason for using the bi-directional gauges 

was to determine LT . By measuring strain in the longitudinal L( )  and transverse 

T( ) directions, LT  is obtained from the ratio T L/  . Before conducting tensile tests, 

the width and thickness of all specimens were measured using a digital calliper with 

repeatability to 0.01 mm.  
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Table 3.4 Measurements of specimen dimensions of I- and C1-sections 

Specimen 

name 

Mean width 

(mm) 

Mean thickness 

(mm) 

 Specimen 

name 

Mean width 

(mm) 

Mean thickness 

(mm) 

I-1-1 14.98 6.10 C1-1-1 29.93 6.14 

I-1-2 15.03 6.04 C1-1-2 30.05 6.02 

I-1-3 15.05 5.99 C1-1-3 29.95 6.13 

I-2-1 15.01 6.08 C1-2-1 30.05 6.09 

I-2-2 14.98 6.15 C1-2-2 29.94 6.10 

I-2-3 14.98 6.02 C1-2-3 30.02 6.08 

I-3-1 14.99 5.99 C1-3-1 40.04 5.96 

I-3-2 15.03 6.11 C1-3-2 39.83 5.89 

I-3-3 15.00 6.05 C1-3-3 39.85 6.01 

I-4-1 15.07 6.01 C1-4-1 39.95 5.89 

I-4-2 15.05 6.03 C1-4-2 40.21 5.98 

I-4-3 14.83 5.89 C1-4-3 39.96 5.91 

I-5-1 40.02 6.07 Mean of panel thickness 6.02 

I-5-2 40.00 6.03 Standard Deviation 0.09 

I-5-3 39.94 6.09 Coefficient of Variation 1.5% 

I-6-1 39.95 6.04  

I-6-2 39.93 6.02 

I-6-3 39.65 6.05 

Mean of panel thickness 6.04 

Standard Deviation  0.55 

Coefficient of Variation 0.9% 

 

Table 3.5 Measurements of specimen dimensions of C2- and C3-sections 

Specimen 

name 

Mean width 

(mm) 

Mean thickness 

(mm) 

 

Specimen 

name 

Mean width 

(mm) 

Mean thickness 

(mm) 

C2-1-1 29.99 6.00 C3-1-1 15.06 5.95 

C2-1-2 29.96 6.07 C3-1-2 15.01 5.93 

C2-1-3 29.95 5.96 C3-1-3 14.99 6.01 

C2-2-1 29.80 6.03 C3-2-1 15.04 5.99 

C2-2-2 29.79 6.03 C3-2-2 15.02 5.89 

C2-2-3 29.89 6.01 C3-2-3 14.97 5.95 

C2-3-1 35.01 5.97 C3-3-1 35.14 5.96 

C2-3-2 34.92 5.97 C3-3-2 34.98 5.97 

C2-3-3 35.05 6.04 C3-3-3 35.03 5.92 

C2-4-1 34.95 6.04 C3-4-1 35.09 5.96 

C2-4-2 34.96 5.92 C3-4-2 34.94 5.94 

C2-4-3 35.30 6.16 C3-4-3 35.05 6.01 

Mean of panel thickness 6.02 Mean of panel thickness 5.96 

Standard Deviation 0.06 Standard Deviation 0.03 

Coefficient of Variation 1.0% Coefficient of Variation 0.6% 

 

The measurements were taken at three different places (i.e. two ends and middle) for 

each dimension. Their mean values are summarized in Table 3.4 for I and C1 and in 
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Table 3.5 for C2 and C3. It is noted that name of the specimen has been modified by 

adding a digit number (i.e. 1, 2 and 3). This is to show the order of testing. For example, 

specimen I-1-1 is the 1
st
 coupon, extracted from I-section at the “1” position for top left 

flange (see Figure 3.3). Specimens have a label ending in ‘1’ are those with bi-

directional strain gauges. All those ending with ‘2’ or ‘3’ only had unidirectional strain 

gauges. Tables 3.4 and 3.5 also present the mean thicknesses of all panels for each 

section. It is found that they are 6.04, 6.02, 6.02 and 5.96 mm for I, C1, C2 and C3 

respectively. The Coefficient of Variations (CV) are from 0.6% to 1.5% which is 

insignificant. 

 

3.3.3. Test procedure and results 

In a typical test, the coupon was placed in the grips of a 100 kN Testometric screw-

threaded test machine as shown in Figure 3.5(a). The machine operates in stroke control 

and the rate was set to 1 mm/minute. Load and strain gauge readings were recorded 

using a Orion data logger and the stroke displacement determined by the test machine 

software. Tensile force was applied until the specimen started to emit acoustic emission, 

followed soon afterwards by ultimate failure, generally in the central region. Figure 3.5 

(b) shows the typical rupture failure when the axial strain is over 1%. In ten tests it was 

found that the aluminium tabs debonded before rupture. This generally leads to the 

premature failure at one end in Figure 3.5(c) or no failure. The testing had to be 

terminated as the applied tension started to reduce quickly. This uncommon outcome 

did not affect the determination of LE  and LT but L,t with eight specimens was not 

obtained. 
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(a) (b) (c) 

Figure 3.5 A typical tensile test: (a) during testing; (b) a rupture; (c) a premature end failure  

 

BS EN 527-1 recommends when determining LE  to take the strain readings in the range 

of 0.05% to 0.25%. This can be done via either the chord modulus between the start 

point (i.e. L 0.05%  ) and end point (i.e. L 0.25%  ) or the slope of the linear least-

squares (best fit) line within the strain interval. The latter was adopted. This standard is 

for unreinforced plastics and not for PFRP. Such a low range of strain (e.g. 0.05% to 

0.25%) was chosen because a nonlinear response might occur. With PFRP material the 

tensile response in the longitudinal direction is known to be virtually linear up until 

failure (Stoddard, 1997). This study will examine if there is any significant difference 

when choosing different range of strains. To do so, the two ranges of strain are 0.05% to 

0.25% and 0.1% to 0.5%. The latter range was chosen because it is believed to cover the 

maximum surface direct strain experienced in LTB testing. Evidence for this is 

presented in Table 3.6, where the maximum strain LTB,max  (on flanges) has been 

estimated using: 

Premature 

end failure Typical rupture 

failure 

Strain gauge 

Gripped end 
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LTB,max

LTB,max

L y

2

h
M

E I




  (3.5)  

This approximation is based on the maximum bending moment LTB,maxM  at mid-span of 

each section from the test results reported in Chapter 4. LE used to estimate the 

maximum strain is assumed to be 28 GPa. This is a valid assumption as it will be found 

that the actual LE of the sections are higher than this value. It is shown in Table 3.6 that 

the maximum strain in the LTB tests is 0.48%. 

Table 3.6 Approximation of maximum stress and strain of beam experiences LTB failure 

Section I1 C1 C2 C3 

(1) (2) (3) (4) (5) 

yI (mm
4
) 2.97×10

6 2.58×10
6 1.66×10

6 1.14×10
6 

Maximum bending moment  

LTB,maxM (kN.mm) 
4200 5800 3350 1700 

Maximum strain (estimated) (%) 0.30% 0.48% 0.43% 0.3% 

 

ASTM D3039 provides a method to determine the tensile chord (secant) modulus of 

elasticity with a start strain of 0.1% and an end strain of 0.3%. It stated that other 

methods may be defined by the user. This study will only follow the recommended 

method in the ASTM standard.   

BS EN 527-1 recommends that Poisson’s ratio should be determined at a range between 

0.3% and y (strain at yield). Brittle failure of PFRP means that y should be taken as the 

ultimate failure strain which is normally >1%. It was decided to adopt the strain range 

from 0.3% to 0.5%. ASTM D3039 presents the chord method for obtaining Poisson’s 

ratio with the difference between the start and end strain of 0.1%, 0.2% or 0.5%. This 

study adopted the range of 0.1% to 0.3% (difference is 0.2%). 
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Figure 3.6 Longitudinal stress-strain curve of I-1-1 specimen 

 

 

Figure 3.7 Major Poisson's ratio LT vs. longitudinal strain L of  I-1-1 specimen 
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Figure 3.6 shows a stress-strain curve of a typical tensile test with coupon I-1-1. Figures 

of all 54 specimens can be found in Appendix A.1. It is as expected that the L L   

relationship is virtually linear up until ultimate failure. Failure occurs suddenly and 

there is considerable audible acoustic emission from breaking fibres. In this particular 

test, the specimens failed at L 1.2%  . Dividing the recorded maximum tension force 

by the measured cross-sectional area, the tensile strength is 399MPa.  

Figure 3.7 shows the relationship between L and LT for the same specimen of I-1-1. 

The ratio decreases as L increases. Mechanical properties of the PFRP material depend 

on the interaction of both E-glass fibres and the polyester resin matrix, and the 

contribution of each constituent to the material strength. The contribution of the matrix 

in the transverse direction is obviously more significant than that in the longitudinal 

direction and while the L L  relationship of the fibres is linear, that of matrix is 

nonlinear (Stoddard, 1997).  Because of this reason as the load increases, the transverse 

strain T increases at a lower rate than the longitudinal strain L so that LT  decreases. 

Micro cracking that could develop during the loading might also contribute to the 

reduction in LT too but there is no physical observation to prove this.   

Tables 3.7 - 3.10 summarize the test result in the rows. Labels for the specimens are 

used for the column headers. Tabulated are the mean values, Standard Deviation (SD), 

Coefficient of Variation (CV) for tensile LE and LT using methods in both standards 

(BS EN and ASTM). The maximum tensile stress when the coupon ruptured is reported 

in the last row. For determining LE , two different ranges of strain (0.05% to 0.25% and 
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0.1% to 0.5%) were adopted. By comparing the results obtained using the first range,

LE  is always higher, yet the difference is only 1% to 4%. This change can be 

considered to be insignificant. The LE  obtained using the higher strain range will be 

used when predicting the LTB resistance in subsequent Chapters. The modulus 

determined to ASTM is always higher than when using the higher BS EN strain range. 

The differences are again small, lying in the range of 1% to 3%. LT  was determined 

using the same test methods. This elastic constant is found to be between 0.21 and 0.25 

to BS EN and in range of 0.21 and 0.26 to ASTM. It can also be seen that the 

differences are minuscule. It is noted that LT  for coupon I5-1-1 was determined with 

having L  from 0.4% to 0.6%. The reason why the approximation for this specimen 

couldnot follow the chosen ranges is because the strain data presented significant noise 

when L  was smaller than 0.4%. There is no explanation for this abnormal data. Given 

that the noise did not occur again, the comparison shows for the PFRP material that: (1) 

The two test standards are able to give relatively similar results; (2) the use of a higher 

range of strain than recommended in the standards when calculating the elastic modulus 

will not significantly affect the results; (3) it is acceptable if one applies the strain range 

in the BS EN 527-1 when determining elastic constants for any type of investigation 

(e.g. Euler column buckling, local buckling, etc.). 

Subsequence comments are for elastic constants established from the strain range of 

0.1-0.5%. It is believed that the flanges and web in the I-section have different fiber 

architectures. The specimens in group 1 (flange outstand I1 and I3) have an average LE  

of 34.5 GPa while those in group 2 (flange outstand I2 and I4) and group 3 (web I5 and 
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I6) gave 30.5 GPa and 26.3 GPa, respectively. It is found that not only are the moduli of 

flange and web materials different, those of flanges on either side of the web are 

different too; the measured variation is 13%. Such a significant change in LE has to be 

due to the pultrusion processing. The possibility of the differences being due to the tests 

themselves can be eliminated as the LE  from three tests of a flange material is 

relatively close, with the CV ranging from 1% to 3%. The differences, although less 

significant are also found between flange and web with three channel sections, despite 

the fact that their flanges and web of channels are believed to have the same fibre 

architectures. The most profound difference of 10% is with C1. For C2 and C3, they are 

lower at 8% and 2%, respectively. The elastic modulus of flange (34.2 GPa) is higher 

than in the web (31.6 GPa) in C2-section while it is smaller for the case of C1 (30.1 

GPa vs. 33.1 GPa) and C3 (28.9 GPa vs. 29.5 GPa). It is worth noting that the variation 

in LE  will have an effect on the response of beams because the actual shear centre will 

not coincide with the nominal geometry location. Load acting through the nominal shear 

centre that is known will therefore create a load eccentric that cannot easily be 

accounted for in LTB testing. 
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 Table 3.7 Elastic modulus of I-section (120 60 6 mm)    

 

I1 I3 I2 I4 I5 I6 

1
st
 

test 

2
nd

 

test 

3
rd

 

test 

1
st
 

test 

2
nd

  

test 

3
rd

 

test 

1
st
 

test 

2
nd

 

test 

3
rd

 

test 

1
st
 

test 

2
nd

 

test 

3
rd

 

test 

1
st
 

test 

2
nd

 

test 

3
rd

 

test 

1
st
 

test 

2
nd

 

test 

3
rd

 

test 

LE (GPa) 

 BS EN 527-1  

(0.05%-0.25%) 

35.0 35.9 34.9 37.5 35.0 35.3 29.7 30.1 31.2 32.8 31.0 32.7 27.2 27.3 26.7 27.4 26.6 27.0 

Mean 35.6 31.3 27.0 

SD 1.1 1.3 0.3 

CV (%) 3.1 4.1 1.2 

LE (GPa) 

BS EN 527-1 

(0.1%-0.5%) 

34.1 35.1 34.0 35.3 33.6 34.6 29.3 29.4 30.5 31.5 30.3 31.7 26.6 26.4 26.0 26.5 25.7 26.5 

Mean (GPa) 34.5 30.5 26.3 

SD (GPa) 0.7 1.0 0.4 

CV (%) 1.9 3.3 1.3 

LE (GPa) 

ASTM D3039 

 (0.1%-0.3%) 

34.6 35.7 34.7 36.7 34.6 34.8 29.9 29.9 31.3 32.4 30.9 32.2 27.0 27.3 26.5 27.1 26.3 26.8 

Mean 35.2 31.1 26.8 

SD(GPa) 0.9 1.1 0.4 

CV (%) 2.4 3.5 1.4 

LT  

 BS EN  527-1 
0.227 0.240 0.248 0.212 0.215 0.230 

LT  

ASTM D3039 
0.235 0.257 0.251 0.221 0.212 0.247 

Tensile strength 

(MPa) 
399 N/A 327 339 347 N/A 326 348 371 352 312 376 331 340 339 352 321 380 
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Table 3.8 Elastic modulus of C1-section (120 50 6 mm)   

 
C1-1 C1-2 C1-3 C1-4 

1
st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 

LE (GPa) 

 BS EN 527-1 

(0.05%-0.25%) 

31.0 30.9 31.0 31.2 31.5 31.8 34.5 36.2 35.3 33.0 31.7 32.7 

Mean 31.2 33.9 

SD 0.4 1.7 

CV (%) 1.1 5.1 

LE (GPa) 

BS EN 527-1 

(0.1%-0.5%) 

28.9 30.2 29.9 30.4 30.5 30.7 34.0 35.1 34.2 32.4 30.9 31.9 

Mean (GPa) 30.1 33.1 

SD (GPa) 0.6 1.6 

CV (%) 2.2 4.8 

LE (GPa) 

ASTM D3039 

(0.1%-0.3%) 

30.6 30.7 30.5 31.0 31.2 31.4 34.1 35.8 34.8 32.8 31.4 32.3 

Mean 30.9 33.5 

SD(GPa) 0.4 1.7 

CV (%) 1.2 4.9 

LT   

BS EN 527-1 
0.210 0.224 0.247 0.233 

LT  
ASTM D3039  

0.231 0.234 0.253 0.240 

Tensile strength (MPa) N/A 329 307 296 339 314 299 313 282 314 331 328 
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Table 3.9 Elastic modulus of C2-section (100 50 6 mm)   

 
C2-1 C2-2 C2-3 C2-4 

1
st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 

LE (GPa) 

BS EN 527-1 

(0.05%-0.25%) 

35.1 34.1 35.4 35.2 36.2 35.2 33.4 32.4 31.8 32.5 33.2 31.6 

Mean 35.2 32.5 

SD 0.7 0.7 

CV (%) 1.9 2.2 

LE (GPa) 

BS EN 527-1 

(0.1%-0.5%) 

34.2 33.4 34.5 34.1 35.0 34.1 32.3 31.5 31.0 31.5 32.5 30.7 

Mean (GPa) 34.2 31.6 

SD (GPa) 0.5 0.7 

CV (%) 1.5 2.2 

LE (GPa) 

ASTM 3039 

(0.1%-0.3%) 

34.7 33.8 35.1 35.1 35.7 34.7 33.0 32.0 31.6 32.2 32.9 31.3 

Mean 34.9 32.2 

SD(GPa) 0.6 0.7 

CV (%) 1.8 2.1 

LT   

BS EN 527-1  
0.221 0.232 0.225 0.220 

LT  

ASTM D3039 
0.231 0.239 0.238 0.230 

Tensile strength (MPa) N/A 362 427 353 410 437 368 341 425 405 391 368 
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Table 3.10 Elastic modulus of C3-section (100 30 6 mm)   

 
C3-1 C3-2 C3-3 C3-4 

1
st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 1

st
 test 2

nd
 test 3

rd
 test 

LE (GPa) 

BS EN 527-1   

(0.05%-0.25%) 

29.6 31.7 30.3 27.0 28.6 28.6 29.6 29.0 30.0 31.0 31.0 29.9 

Mean 29.3 30.1 

SD 1.6 0.8 

CV (%) 5.5 2.6 

LE (GPa) 

BS EN 527-1 

(0.1%-0.5%) 

29.2 31.2 29.7 27.0 28.1 28.3 29.0 28.5 29.2 30.2 30.4 29.3 

Mean (GPa) 28.9 29.4 

SD (GPa) 1.5 0.7 

CV (%) 5.0 2.5 

LE (GPa) 

ASTM D3039 

(0.1%-0.3%) 

29.4 31.7 30 27.3 28.2 28.7 29.8 28.9 29.8 30.7 30.8 29.6 

Mean 29.2 29.9 

SD(GPa) 1.5 0.7 

CV (%) 5.3 2.4 

LT   

BS EN 527-1 
0.244 0.238 0.241 0.224 

LT  

ASTM D3039 
0.248 0.248 0.251 0.235 

Tensile strength (MPa) N/A 370 307 N/A 369 333 312 348 N/A N/A 368 290 
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3.4. Transverse elastic modulus 

3.4.1. Specimens and test procedure 

Tensile coupon testing followed the requirements in BS EN 527-1 to determine the 

transverse elastic modulus TE . Coupons were only cut from the web because the widths 

of the flanges were too short for gripping and for an adequate gauge length. There is 

still concern that the web coupons are of sufficient length that the clamping effect can 

be neglected. Gosling and Saribiyik (2003) studied the influence of geometric factors 

(i.e. coupon length, thickness, and tabbing length) on measuring tensile modulus by 

conducting finite element simulations and experiments on both short and long (standard) 

coupons. Their short coupons had dimensions of 50×10×3.1 mm giving a slenderness 

ratio (length/width) of 5. They concluded from the research that the short coupon size is 

capable of establishing TE  but cannot be employed for LE characterization. In this study 

the coupons are of 15 mm in width and 100 mm in length to give a slenderness ratio of 

6.7 which is higher than that used by Gosling and Saribiyik (2003). Five coupons were 

prepared for each section giving a total of 20 specimens. Table 3.11 summarizes in 

columns (1-4) the specimen name, the length, the width and the thickness. Each has a 

reference code consisting of a character string. Letter ‘T’ is for ‘Transverse’, followed 

by the section type (i.e. I, C1, C2 or C3). The last character is for the specimen number 

(i.e. 1 to 5). Unidirectional 6 mm foil strain gauges were positioned on both sides of the 

coupons at their middle. Test machine and procedure is the same as described in sub-

section 3.3.3. 
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Table 3.11 Measurements and tests results for transverse (web) coupons of I, C1, C2 and C3 

Specimen 

name 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Transverse modulus Transverse 

strength 

(MPa) 
TE  

(GPa) 

Mean 

(GPa) 

SD 

(GPa) 

CV 

(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

T-I-1 102.71 15.10 6.00 11.3 

10.8 0.3 3.0 

74.4 

T-I-2 102.76 15.06 6.04 10.5 68.3 

T-I-3 102.22 15.02 6.01 10.6 75.7 

T-I-4 102.66 15.13 6.07 10.9 79.3 

T-I-5 102.67 15.05 6.00 10.6 77.4 

T-C1-1 102.12 14.91 5.84 11.2 

11.7 0.7 5.5 

61.9 

T-C1-2 102.31 15.14 5.92 11.7 54.5 

T-C1-3 102.34 15.13 5.88 12.7 56.2 

T-C1-4 102.35 15.08 5.90 12.0 56.5 

T-C1-5 102.14 15.06 5.87 11.1 51.7 

T-C2-1 100.04 15.12 6.11 10.5 

11.7 0.8 7.1 

78.0 

T-C2-2 99.96 14.99 6.01 12.6 87.7 

T-C2-3 99.89 14.99 6.06 12.3 76.9 

T-C2-4 99.98 14.93 6.05 11.7 80.2 

T-C2-5 99.95 15.00 6.12 11.3 70.9 

T-C3-1 99.97 15.13 5.89 9.4 

10.5 1.2 11.6 

63.6 

T-C3-2 100.04 15.24 5.93 11.5 59.0 

T-C3-3 100.03 15.18 5.92 9.0 61.1 

T-C3-4 100.04 15.02 5.96 11.0 66.1 

T-C3-5 100.05 15.06 5.92 11.6 67.4 

 

3.4.2. Test results 

Figure 3.8 shows a photo of a typical tensile test with the specimen loaded in the 

transverse direction. A strain gauged coupon was placed between the two grips and had 

the tensile force applied under stroke control (Figure 3.8(a)). The coupon deformed and 

failed with the mode transverse through-thickness cracking (Figure 3.8(b)). 

Figure 3.9(a) shows the direct stress-direct strain curve for T-I-2. It is observed from the 

relationship that, as the strain increases above 0.4%, strain suddenly increases with a 

slight reduction in stress. Both stress and strain then increase with TE  seen to be 

virtually constant (if there is a decrease in TE , it is insignificant). The relationship after 
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the first softener region is parallel to the initial behaviour. This response is observed 

more than one time during loading to failure.  

 
(a) (b) 

Figure 3.8 A typical transverse coupon test: (a) testing; (b) rupture 

 

 
           (a)     (b) 

Figure 3.9 (a): T vs. T curve for T-I-2; (b): P vs. e for T-I-2 

Failure of the 

coupon 

Strain gauges 

at both sides 

1st softener region 

2nd softener region 
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From load vs. elongation curve in Figure 3.9(b), it is shown that the response in Figure 

3.9(a) is not because the specimen has slipped in the grips. The curve of e vs. P   

remains linear up to rupture at about 6 kN. For the transverse material, the E-glass fibres 

act as stress concentrators in the more flexible matrix. As a result, the transverse tensile 

strength of an Unidirectional (UD) fibre FRP material is lowered below that of the bulk 

matrix material. In other words, fibres ‘aligned’ with the transverse direction from the 

Continuous Filament Mat (CFM) reinforcement layers mainly contribute to the 

transverse strength. During a test internal fracture starts to progress within the thickness 

of UD reinforcement layers only. This cracking gradually reduces the transverse 

stiffness of the specimen and allows elongation to occur in the direction of extension. 

This explains the strain relieving regions on the stress-strain curve. It is also observed 

that there are two degradation stages prior to ultimate failure. Data of stress vs. strain 

for the all 20 tests are presented in Appendix A.2. 

Previous discussion in sub-section 3.3.1 showed that the maximum L  in a LTB test 

should not exceed 0.5%. Giving that LT  is smaller than 0.25, T will be < 0.13%. 

Based on this observation, it is reasonable to determine TE  based on the recommended 

strain range from 0.05% to 0.25% in BS EN 527-1. Column (5) in Table 3.11 gives TE

for the 20 specimens. Batches mean, Standard Deviation (SD) and Coefficient of 

Variation (CV) are given in columns (6-8), respectively. The transverse strengths are 

listed in column (9). Between the four sections, it is found that TE  differs slightly, with 

a maximum difference of 9%. The batch CVs range from 3% to 12%. Giving that the 

LE  of section C1 at 33.1 GPa and C2 at 31.6 GPa are higher than that of I at 26.3 GPa 

and C2 at 29.5 GPa, the TE  of C1 and C2 are also higher than of I and C3. Figure 3.10 
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gives the mean LE and TE  in the four sections. All the numbers on the right side of the 

arrow pointing downwards are for TE . 

 

Figure 3.10 Mean ELand ET (GPa) of flange and web panels for four sections 

 

3.5. In-plane shear modulus  

Of the four elastic constants, the in-plane shear modulus LT( )G  is the most difficult to 

determine. To be able to measure LTG , it is essential that a sufficient volume of material 

is subjected to pure shearing, and this is where current standard test methods are often 

not found to be satisfactory. Popular test methods include: Iosipescu ASTM D5379 

(ASTM, 2012b); V-notched rail shear test ASTM D7078 (ASTM, 2012c); plate twist 

method BS EN 15310 (BSI, 2005b) and ten-degree off-axis tensile test. 

The Iosopescu test method was originally developed for isotropic material by Nicholi 

Iosipescu and in 1993 became an ASTM standard for composite (FRP) materials 
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(Hodgkinson, 2000). It is one of the most commonly used tests with composite material 

because it allows both LTG  and shear strength u( )  to be determined. It is applicable to 

a wide range of materials (both isotropic and orthotropic) and the failure mechanism is 

that for pure shearing. Its weaknesses are as follows: (1) it  requires complicated coupon 

shape to be accurately machined; (2) it requires a specific loading fixture with very tight 

dimensional tolerances; (3) load is applied by concentrated point that potentially leads 

to side edge-crushing (this might disturb the uniform stress state on the gauge area also); 

(4) the specimen size of 76 mm × 20 mm (with gauge length of 12 mm) is small, 

especially in terms of the volume of material subjected to pure shearing.  

The V-notched rail shear test has overcome two weaknesses with the Iosipescu method. 

Its fixture reduces preparation time and potential stress concentrations. The gauge 

length of 31 mm is nearly 3 times larger than in the Iosipescu (gauge length of only 12 

mm). Similar to the Iosipescu method, the V-notched rail does require a complicated 

coupon and a special loading fixture. An acceptable connection between test machine 

grips and the specimens, using either bolting or adhesive bonding is known to be 

difficult (Hodgkinson, 2000). 

In the plate twist method BS EN 15310 (BSI, 2005b) a rectangular specimen is 

supported at two opposite corners and the load is applied on the two remaining corners. 

The LTG  is determined through the recorded loads and the displacement at the loading 

points. This test method allows a large area to be subjected to pure shearing which 

means the results would be more representative. It recommends a standard specimen of 

150 150 mm and if a non-standard specimen to be adopted, the length-to-thickness 

ratio should be 35 . The PFRP shapes in this study have the highest length-to-

thickness ratio of 120 / 6 20  which cannot satisfy the requirement of this test method.  
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The ten-degree o(10 ) off-axis method has been employed (Chamis and Sinclair, 1977, 

Hodgkinson, 2000) to obtain LTG  and u  for FRP material having continuous aligned 

UD fibres. This method requires straightforward and economical specimen preparation 

and only needs a standard tensile testing machine with no special loading fixture. The 

weakness with this shear test is the complexity of the data reduction to determine LTG . 

With the help of computational software this weakness is readily resolved. Because the 

test data can be sensitive to the angle between the principal axis of the UD fibres and 

the tensile loading axis special care is given to the machining of the rectangular coupons. 

This method is adopted next to characterize LTG  for the four sections because of its 

simplicity and advantage in shearing a relatively much larger volume of non-

homogeneous PFRP material. 

 

3.5.1. 10
o
 off-axis tensile test method 

With the load direction not coinciding with either the longitudinal or the transverse 

direction, a biaxial stress state is induced that consist of three in-plane stresses (Figure 

3.11) of longitudinal direction 11 , transverse direction 22  and shear stress 12 . These 

stresses can be expressed as a function of the three stresses xx , yy
 
and xy

 
for the 

Cartesian coordinate system that has xx axis aligned with the tensile load direction. The 

transformation relationships are (Chamis and Sinclair, 1977): 

 

2 2
11

2 2
22

2 2
12

cos ( ) sin ( ) 2cos( )sin( )
sin ( ) cos ( ) 2cos( )sin( )

cos( )sin( ) cos( )sin( ) cos ( ) sin ( )

xx

yy

xy

    
     
      

    
      
          

 (3.6) 
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where   is the angle between the loading axis and the UD fibres direction.  

 For the tension load case o(with 10 )  , it is obvious that 0,yy xy    and so Eq. 

(3.6) gives: 

 2
11 cos ( ) 0.97xx xx      (3.7) 

 2
22 sin ( ) 0.03xx xx      (3.8) 

 12 cos( )sin( ) 0.17xx xx        (3.9) 

 

 

Figure 3.11 Schematic of specimen with the biaxial stress field, after Chamis and Sinclair (1977) 
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Figure 3.12 Variation of three normalized stresses with off-axis angle    

 

For a specimen to fail in shear, the shear stress 12  must be the principal stress that 

attains its strength value first. From the Fiberline Design Manual (Anon., 2014a), the 

shear strength is u 25 MPa  , the longitudinal tensile strength is L,t 240 MPa   and 

transverse tensile strength is T,t 50 MPa  . Now we define the normalized stress to be 

the ratio of the current principal stress and its strength (e.g. for shear it is 12 u/  ). The 

normalized stress will be 1.0 when that stress reaches its strength. Figure 3.12 presents a 

plot of the normalized stress vs. the off-axis angle   when the applied stress is taken to 

be a reference value of 150 MPa. It is observed from this figure that, when   is o10 , the 

normalized shear stress is 1.0 while that for longitudinal and transverse stresses are only 

0.6 and 0.09. This finding implies that the specimen should fail first in shear, and partly 

explains why o10   has been chosen for the off-axis shear test method. 
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Converting the transformation equations for strains we have: 

 

2 2
11

2 2
22

2 2

12

cos ( ) sin ( ) 2cos( )sin( )
sin ( ) cos ( ) 2cos( )sin( )

1 1cos( )sin( ) cos( )sin( ) cos ( ) sin ( )

2 2

xx

yy

xy

    
     

     
 

  
    
      
         

   

 (3.10) 

Substituting for o10   in Eq. (3.10) gives for the principal shear strain the relationship: 

 12 0.340( ) 0.940xx yy xy        (3.11) 

 

 

Figure 3.13 Stacked rosette strain gauge on test specimen 

 

Stacked rectangular “rosette” strain gauge can be used to measure the three strain 

components of xx , yy  and xy . Figure 3.13 shows the rosette in testing with three 

gauges oriented at o o o0 ,45  and 90 with the tensile loading direction. The schematic set-

up is illustrated in Figure 3.11 where strain gauge SG#1 (for 0 ) aligned 0
o
 with the 

loading direction, gauge SG#2 placed perpendicular for 90  and SG#3 located at a 45
o
 

direction to measure 45 .  

5 mm stacked rosette strain 

gauge 
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The strain transformations between 0 90 45( , , )    and 
1

( , , )
2

xx yy xy   are:   

 

2 2
1 1 1 10

2 2
90 2 2 2 2

2 2
45 3 3 3 3

cos ( ) sin ( ) 2cos( )sin( )
cos ( ) sin ( ) 2cos( )sin( )

1cos ( ) sin ( ) 2cos( )sin( )

2

xx

yy

xy

    
     
    



 
   
    
        
 

 (3.12) 

Where 1  , 2  and 3  are the angles between the loading axis x with the strain gauges 

measuring 0 , 90 and 45 . Substituting in Eq. (3.12) for o
1 0  , o

2 90   and o
3 45  , 

the three rows give expressions: 

 0 xx    

 90 yy   

 45

1 1 1

2 2 2
xx yy xy        

Combining the above expressions we have:  

 45 45 90 02 2xy xx yy             (3.13) 

Substituing Eq. (3.13) into Eq. (3.11) the required shear strain in terms of the measured 

strains is given by: 

 12 45 0 901.88 1.28 0.60       (3.14) 

We can now write down the expression for the in-plane shear modulus as: 

 
12

12

12 45 0 90

Eq. (3.9) 0.17

Eq. (3.14) 1.88 1.28 0.60

xx
G

 

   
  

 
 (3.15) 

The 10
o
 off-axis method does not possess an ISO or ASTM standard. There is no 

standard information for the coupon dimensions; specimen preparation; test procedure 

or the strain ranges when establishing LTG . One option is to follow the basic 
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requirements in Part 5 of the BSI (2012b) that provides the ‘test conditions for the 

determination of tensile properties of unidirectional FRPs’. This standard requires the 

specimen to have dimensions of 25 mm (width) × 250 mm (length) and a thickness of 2 

mm. Specimens in this study have a nominal size of 30 mm (width) × 300 mm (length) 

and the section thickness of 6 mm. A high aspect ratio (i.e. length/width =10) is 

employed to reduce, as much as possible, any end constraint effect.  

Table 3.12 Approximation of maximum average shear strain found in LTB testing 

(1) Section name I1 C1 C2 C3 

(2) Maximum load LTB,maxP (kN) 9.2 12.7 7.32 3.72 

(3) Maximum shear force maxV (kN) 4.6 6.4 3.7 1.9 

(4) Shear area vA  (mm
2
) 684 684 564 564 

(5) 
Maximum(average) shear stress 

max
max

v

V

A
   (N/mm

2
) 6.7 9.3 6.5 3.3 

(6) Maximum (average) shear strain 

(assuming GLT=3 GPa) 
max

max

LTG


   (%) 

0.2 0.3 0.2 0.1 

(7) Maximum (average) shear strain 

(assuming GLT=5 GPa) 
max

max

LTG


   (%) 

0.1 0.2 0.1 0.1 

 

In term of strain range, Table 3.12 presents an approximation to the maximum shear 

strain experienced by the four sections in their LTB tests. The maximum LTB loads 

LTB,max( )P presented in Chapter 4 will give the maximum shear forces from

max LTB,max / 2V P . The maximum average shear stress can be approximated by

max max v/V A  , where the shear area vA , as stated in section 3.2, is assumed to be

f w( 2 )h t t   . The maximum shear strain can be found from max max LT/ G  . 

Mottram (2004b) has shown that LTG for standard PFRP material is in range of 3-5 GPa. 
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Listed in rows (6) and (7) of Table 3.12 are the maxs  obtained when LTG  is taken to be 

the lower bound and upper bound respectively. It can be seen that the shear strain is 

going to be below 0.3% when LT 3 GPa,G  and lowers still, at 0.2% when 

LT 5 GPaG  . Using the max  values in Table 3.12 and considering guidance in BS EN 

527-5 (BSI, 2012b), it was decided to take a strain range from 0.05% to 0.25% when 

determining LTG  for each of the four sections. 

 

3.5.2. Test procedure and results 

Five specimens were prepared from the web panel in sections I, C1, C2 and C3. The 20 

coupons were given a reference code to indicate type of test, section and test number. 

For example, specimen labelled S-I-1 is the ‘1
st
’coupon for the ‘Shear test’ of ‘I’ section 

material. Specimens were machined so that the UD fibre reinforcement was oriented at 

10 degree with the tensile loading direction. It can be shown using Eq.(3.9) that an 

increase of 1
o
 (i.e. o11  ) has the potential to increase the shear stress by 10% whilst a 

decrease of 1
o
 (i.e. o9  ) lowers this stress by 11 %. It can be expected that there will 

be a potential uncertainty in LTG because the tolerance on   is likely to be ±0.5
o
. The 5 

mm foil rosette strain gauge was placed at midpoint with the gauges oriented as shown 

in Figure 3.13. One 6 mm unidirectional foil strain gauge was placed on the opposite 

side to the rosette gauge to allow the influence of flexure to be monitored. This 

arrangement is shown in Figures 3.14 and 3.15. The difference will then be utilized to 

eliminate flexure effect in other strain gauges (Pindera and Herakovich, 1986).  
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Figure 3.14 10
o
 off-axis tensile test arrangement 

 

Another correction that might need to be accounted for is the error owning to the 

transverse sensitivity of strain gauges. This is a measurement error that exists in a 

biaxial strain field. For the rosette gauge, the three correction equations (Measurements 

Group Inc, 1983) can be expressed as: 
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 (3.18) 

In Eqs. (3.16)-(3.18) strains 0,r , 90,r  and 45,r  are the recorded strains and other three 

strain gauges 0 , 90 and 45  are the corrected strains. tK  is the transverse sensitivity 

factor of the strain gauges which is -0.1% for the rosette gauges. 0 is the Poisson’s ratio 

of the material on which the gauge factor was measured by the gauge manufacturer. It 

Rosette strain gauge 

The grip 

Specimen 

Unidirectional strain gauge 

The grip 
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normally takes the value of 0.285. Given that 0.1%tK   , it can be seen that the effect 

of transverse sensitivity on the apparent strain is very small with a correction of lesser 

than 0.5%. This correction will not be applied. The corrected strains were transformed 

to the material principal coordinate system with 12 and 12 to be calculated accordingly. 

Details of the transformation have been presented in sub-section 3.5.1. 

 
(a)  (b) 

Figure 3.15 10
o
 off-axis test: (a) during loading; (b) after failure. 

 

Figure 3.15 presents images for, (a) before failure, and, (b) afterwards. It can be seen 

that, as expected, a shear failure occurred along the 10 degree plane. This demonstrates 

that the shear stress was the first principal stress to reach its strength u( )  value. When 

the shear failure happened, the longitudinal and transverse stresses were much lower 

than their strengths. 

Plane of shear failure 
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Figure 3.16 12 vs. 12 for S-I-1: (a) full response; (b) 12 from 0% to 0.4% 

 

Figure 3.16(a) shows the full response of 12  against 12  for specimen S-I-1. The shear 

strength of this specimen is found at 31 MPa, which is 24% higher than the nominal 

value given in the Fiberline Design Manual (Anon., 2014a). This typical curve has 

relatively linear behaviour to about 0.2%, after which a nonlinear response grows until 

there is shear failure at 1.35%. Figure 3.16(b) is the plot for the same specimen with 12

from 0 to 0.4% and a least-squares (best fit) straight line using the strain range of 0.05 

to 0.25%. The 2R  on this line is 0.9983 and its gradient predicts LTG  to be 4.4 GPa. 

Plots for all 20 shear modulus tests are presented in Appendix A.3. 

Presented in columns (1-3) of Table 3.13 are the name, width and thickness of the shear 

test specimens. Columns (4-7) report for the batches of five the Mean LTG , the Standard 

Deviation (SD) and the Coefficient of Variation (CV). Similarly, columns (8-11) give 

u , Mean u , SDs and its CVs. LTG  seen to be in the range of 4.15 GPa to 4.8 GPa, 

with the CVs between 3% to 9%. The range of CVs is reasonable giving that the 
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measurement of LTG  is very sensitive to the precision of the cutting and specimen 

positioning to maintain during testing the 10
o
 off-axis angle. The differences between 

the shear moduli of the four sections can be related to their LE  value (Mottram, 2004b). 

From Figure 3.10 the averages of LE  for I, C1, C2 and C3 are 27.1 GPa, 33.1 GPa, 31.6 

GPa and 29.5 GPa. Sections C2 and C3 have higher LE and also have the highest LTG . 

For shear strength, the CVs are in range of 2% to 11% and u  is from 27.2 MPa to 32.5 

MPa. This shear strength measurement shows that the nominal shear strength value of 

25 MPa provided in Fiberline Design Manual (2014a) is appropriate. 

 Table 3.13 Measurements and tests results for 10
o 
off-axis specimens of I, C1, C2 and C3 

Specimen 

name 

Width 

(mm) 

Thickness 

(mm) 

shear modulus LTG  (GPa) Shear strength u  (MPa) 

LTG
 

(GPa) 

Mean 

(GPa) 

SD 

(GPa) 

CV 

(%) 
u  

(MPa)
 

Mean 

(MPa) 

SD 

(MPa) 

CV 

(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

S-I-1 30.59 6.06 4.40 

4.15 0.34 8 

31.0 

32.5 3.7 11 

S-I-2 29.81 6.10 3.82 37.6 

S-I-3 30.26 6.05 4.42 29.1 

S-I-4 30.55 6.04 4.45 28.6 

S-I-5 30.15 6.10 3.66 36.0 

S-C1-1 30.14 5.86 4.74 

4.74 0.14 3 

28.2 

27.2 1.2 5 

S-C1-2 30.28 5.85 4.52 27.1 

S-C1-3 30.15 5.90 4.69 28.5 

S-C1-4 30.10 5.83 4.95 27.1 

S-C1-5 30.03 5.92 4.83 25.0 

S-C2-1 30.31 5.96 4.57 

4.76 0.20 4 

32.0 

30.4 1.0 3 

S-C2-2 30.20 5.98 5.10 30.5 

S-C2-3 30.05 5.93 4.83 29.9 

S-C2-4 30.28 5.97 4.55 29.1 

S-C2-5 30.16 5.97 4.73 30.6 

S-C3-1 30.05 5.98 4.39 

4.18 0.36 9 

31.4 

30.4 0.6 2 

S-C3-2 30.19 5.94 4.16 29.9 

S-C3-3 30.07 5.94 3.66 30.3 

S-C3-4 30.22 6.01 4.73 30.4 

S-C3-5 30.21 6.03 3.96 29.8 
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3.6. Discussion 

The elastic constants of L T LT LT, ,  and E E G  have been characterized. These 

mechanical properties are necessary as input data for the Finite Element Analysis (FEA) 

or the closed-form equations (Eq. 2.1) that predict the LTB resistance of PFRP beams. 

Three tensile coupon test series have been conducted in the longitudinal direction, 

transverse direction and 10
o
 off-axis to determine: (1) L LT and E   (Tables 3.7-3.10); (2) 

TE (Table 3.11); and (3) LTG (Table 3.13). 

Table 3.14 Elastic constants of all sections 

Section 

Mean 

longitudinal 

modulus 

 L (GPa)E   

Mean 

in-plane 

shear 

modulus  

LT (GPa)G   

Mean 

transverse 

modulus 

T (GPa)E   

Mean 

major 

Poisson’s 

ratio LT   

Minor 

Poisson’s 

ratio TL   

Full-

section 

elastic 

modulus  

(GPa)E   

Full-

section 

shear 

modulus  

(GPa)G  

(1) (2) (3) (4) (5) (6) (7) (8) 

I 30.6 4.2 10.8 0.229 0.081 33.0 4.8 

C1 31.7 4.8 11.7 0.229 0.085 32.6 4.5 

C2 32.9 4.8 11.7 0.225 0.080 32.5 3.8 

C3 29.2 4.2 10.5 0.237 0.085 31.9 3.5 

 

The closed-form equation for LTB resistance requires only the two elastic constants of 

E  and G . As illustrated in Figure 3.10 the coupon testing has given us a range of LsE  

for flange and web. Means for LE  and LTG  for a PFRP section will be assigned to be 

the required E  and G  in the close-form equations. For the I shape, the mean will be 

obtained using results from three groups (Group 1 for I1 and I3; Group 2 for I2 and I4 

and Group 3 for I5 and I6). The mean for a channel will be determined using test results 

from flange and web. The same method is used to achieve means for the major 

Poisson’s ratio. Listed in Table 3.14 are the mean elastic constants with column (1) 

giving the section type. Columns (2-5) are used to report the four average elastic 
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constants. Also given in columns (7) and (8) are the full-section moduli E and G  

determined from the graphical technique detailed in section 3.2.  

In terms of the shear modulus given in columns (3) and (8) the values obtained by two 

methods are inconsistent. This is a foreseeable finding since the reliability of the 

magnitude of the intercept is a key weakness in the graphical method. The major 

Poisson’s ratios LT  is from 0.225 to 0.237, being fairly close to 0.23 in Fiberline 

Design Manual (2014a). The minor Poisson’s ratio TL determined by TL LT T L/E E   

is from 0.080 to 0.085, which is close to 0.09 in Fiberline Design manual also. These 

values are given in column (6). 

Table 3.15 collates measurements of those moduli from previous studies. Listed in 

columns (1-3) is the name of the authors or pultruder and section type. Columns (4), (6) 

and (8) list the range of values for L(or )E E , TE  and LT(or )E G  taken from the sixteen 

sources introduced in column (1). Columns (5), (7) and (9) state the method that was 

used to obtain these data given in columns (4), (6) and (8). The stiffness property 

information presented in Table 3.15 clearly shows there to be a wide range of elastic 

and shear moduli. For pultruded standard structural section the modulus of elasticity is 

from 16.8 to 35.6 GPa. The measured data are mainly between 20 and 30 GPa. For the 

shear modulus the range is from 1.2 to 5.7 GPa with most measured values between 3 

and 5 GPa. 
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Table 3.15  Elastic modulus L T, ,E E E  and shear modulus LT,G G from design manuals and previous reseaches 

Author(s) or 

pultruder’s 

Design 

Manual 

Pultruder 
Section 

shape 

E or EL 

(GPa) 

E or EL test 

method 
ET (GPa) ET test method G or GLT (GPa) G or GLT test method 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Fiberline 

(Anon., 

2014a) 

Fiberline A/S, 

Denmark 
All ranges 23-28 - 8.5 - 3.0 - 

Creative 

Pultrusions 

Anon. (2004) 

Creative 

Pultrusions Inc., 

USA. 

All ranges 17.2-20.7 
Tensile coupon 

test 
5.5-6.9 

Tensile coupon 

test 
2.9 Three points bending 

Strongwell 

(Anon., 

2014b) 

Strongwell, USA. All ranges 17.2-17.9 
Tensile coupon 

test 
5.5 

Tensile coupon 

test 
2.9 Three points bending 

Bank (1990) 

Creative 

Pultrusions Inc., 

USA. 

I - - - - 2.4-2.8 Iosipescu 

Mottram 

(1992a) 

Morrison Molded 

Fiber Glass 

Company 

(MMFG) 

I 22.3-22.8 
Three points 

bending 
- - 1.2-1.3 Three points bending 

Brooks and 

Turvey 

(1995) 

Morrison Molded 

Fiber Glass 

Company 

(MMFG) 

I 19.8-22.4 
Three points 

bending 
- - 1.4 Three points bending 

Sonti and 

Barbero 

(1996) 

Creative 

Pultrusions Inc., 

USA 

I 
20.2 (flange) 

18.1 (flange) 

Tensile coupon 

test 

11.4 

(flange) 

10.9 (web) 

Tensile coupon 

test 

3.3-3.8 (flange) 

3.9-4.5 (web) 
Iosipescu and Torsion 

Zureick and 

Scott (1997) 
Strongwell, USA. 

I 16.8-21.9 Tensile coupon 

test 

- - 4.1-4.8 
Iosipescu 

Box 26.8-30.7 - - 3.9-5.7 
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Stephen 

(1998) 
Strongwell, USA. Leg angle 19.7-23.7 

Compression 

coupon test 
- - 3.5-4.5 

Modified (Iosipescu) 

V-notched beam 

Turvey 

(1998) 
Strongwell, USA. 

GRP 

sheet 
17.3-17.9 

Tensile coupon 

test 
- - 3.0-3.6 Torsion 

Roberts and 

Al-Ubaidi 

(2002) 

Fiberforce 

Composites 

(Now Exel 

Composites, UK) 

I 18.9-32.3 
Three point 

bending 
- - 4.4-4.9 Torsion 

Lane (2002) 

Creative 

Pultrusions Inc, 

USA. 

I 

26 (flange) 

19 (web) 

 

Micromechani

cal modelling 
11 

Micromechanical 

modelling 

3.2 (web) 

3.7 (flange) 

Micromechanical 

modelling 

Afifi (2007) 

Creative 

Pultrusions Inc, 

USA. 

I 22.8(web) 
Tensile coupon 

test 
8.9 (web) 

Tensile coupon 

test 
3.4 (web) Iosipescu 

Barros da S. 

Santos Neto 

and Lebre La 

Rovere 

(2007) 

CSE Composites, 

Brazil 
I 

32.9 
Three points 

bending 
- - 2.7 Three points bending 

35.6 
Tensile coupon 

test (D3039) 
- - - - 

(Correia et 

al. (2011)) 

Topglass firm, 

Italy  
I 32.8 

Tensile coupon 

test 
7.4 

Tensile coupon 

test 
3.6 Three points bending 

Author 

(2013) 

Fiberline A/S, 

Denmark 

I and 

Channels  

31.9-33.0 
Three points 

bending 
- - 3.5-4.8 Three points bending 

29.2-32.9 
Tensile coupon 

test 
10.5-11.7 

Tensile coupon 

test 
4.2-4.8 

10
o
 off-axis tensile 

test 

 



65 

 

From this summary, it is appropriate to treat PFRP material as having moduli with an 

upper and lower bound, especially for the in-plane shear modulus. The lower bound can 

be of 3 GPa as given in Fiberline Design Manual and the upper bounds are those 

determined by the 10
o 
off-axis testing which is 4.2 GPa for I and C3 and 4.8 GPa for C1 

and C2. The moduli and Poisson ratio in the numerical work to predict LTB resistances 

are those given in Table 3.14 and Figure 3.10. It is to be noted that 1,u , 2,u  and u  

were also measured, and their usefulness is not essential to the work reported in this 

Ph.D. thesis. The data is, of course, beneficial to those who need to have knowledge of 

material strengths of these sections. 

 

3.7. Local buckling stress 

This section presents the axial compression test on PFRP stub columns to determine the 

local buckling stress Loc that is required for calculating the non-dimensional 

slenderness LT y Loc cr/W M  . It can be argued that the local buckling resistance 

should be obtained from a flexural test because LTB failure is for beam flexure. 

However, it is going to be difficult to establish Loc by subjecting a length of a PFRP 

section to bending. A more straightforward test approach is to apply concentric 

compression to a short column of the section. The main difference between the two 

approaches is that in the flexure beam there is a stress gradient effect in the height 

direction and along the length (if not pure moment) and only the compressive flange can 

buckle, whilst in the stub column both flanges can buckle simultaneously (Bank, 2006). 

The flanges may buckle before or after the web depending on the dimensions of the 
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thin-walled I- or C-section. In either case, the torsional restraint on the flanges of 

column is less than that in a beam. The local buckling stress from column testing can be 

expected to be lower and this suggests it will be acceptable to use when constructing a 

conservative design curve for beams in bending. 

This section presents predictions for Loc  obtained using theoretical formulae, FEA and 

physical testing. The dimensions for the half-wave lengths for local flange buckling 

were estimated from FEA. In testing the channels were placed back-to-back to form a 

doubly symmetrical I-shaped to minimize any load eccentricity. A specimen height was 

chosen to give four half-wave lengths. There was one test for each of I, C1 and C2 

sections Dimensions were measured and with the load-deformation and stress-strain test 

results reported in what follows. 

 

3.7.1. Analytical and numerical predictions 

The elastic critical buckling stress for instability of a panel in a section is depended on 

the displacement boundary conditions along the longitudinal edges. The flange 

outstands in I and channel shapes (Figure 3.17) have one free edge, whilst the other is 

restrained at the web-flange junction. The web in these shapes is restrained along both 

sides. In wide-flange I and channel shapes where fh b , local flange buckling normally 

occurs prior to web buckling (Bank, 2006). This might not be the case if the shape is of 

the narrow-flange type f( 2 )h b .   

A closed-form expression for the prediction of the local flange stress for I shape can be 

given as (Kollár, 2003, Bank, 2006): 
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b
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
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   

   

  (3.19) 

 

Figure 3.17 Illustration for I and channel shapes 

 

By replacing f / 2b  in Eq. (3.19) with fb , the local flange stress for the channel shape is 

obtained. In Eq. (3.19) fb  is the breadth of the section and a is the buckling half-wave 

length. 

For the web, the local buckling stress can be approximated by: 

  
2

Loc,web L T LT s
2

w w

2
2D D D D

t b


     (3.20) 

where L T LT, ,D D D  and sD  are the flexural rigidities for the orthotropic plate. From 

Bank (2006) they are: 
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3

LT p
s

12

G t
D    (3.24) 

In Eqs. (3.21)-(3.24)  pt  
is the thickness of the panel (either ft or wt ).  

If Loc,flange L f Loc,web L w/ ( ) / ( )E E   , the flange buckles first.  

Research by Kollár (2003) has lead to closed-form expressions for local buckling stress 

that account for the torsional stiffness along the panel junctions. The buckling tress for 

I-flange is approximated by (Kollár, 2003, Bank, 2006):  

 
 

L T
Loc,a s2

I-flangef f

1
7 12

1 4.12/ 2

D D
D

b t




 
    

 (3.25) 

where 
 

 

T f
I-flange

I-flange f / 2

D

k b
   (3.26) 

and  
   

 

T flange Lw w
I-flange

w web L f

1
D E

k
d E





 
  

  

 (3.27) 

In Eqs.(3.26) and (3.27) I-flangek
 
is a spring constant for the torsional restraint along the 

flange-web junction and w f( )h h t   is the depth of the web panel. 

For a channel, f / 2b  is replaced by fb  in Eqs. (3.25) and (3.26) and I-flangek  is double 

that in Eq. (3.27) as the web is retrained by only one flange outstands and not two as in 

the I-section (Bank, 2006). 

If Loc,flange L f Loc,web L w/ ( ) / ( )E E  , the web buckles prior to the flange. The 

expression for buckling stress is (Kollár, 2003, Bank, 2006): 

     
2

2
Loc,a L T I-web LT s I-web2

w w

2 1 4.14 2 2 0.62D D D D
h t


       

 
  (3.28) 
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where 
 

I-web

I-web T I-web ww

1 1

1 10 1 10 /D k d



 

    

  (3.29) 

The torsional spring restraint for this case I-webk  is given as: 

 
   

 

T Loc,web Lf f
I-web

f Loc,flange L w

4
1

D E
k

b E





 
  

  

  (3.30) 

Because Eq. (3.19) requires the half-wave length a, FEA was carried out by ABAQUS
®

 

to find an approximate value for each section. One reason why the computed value is 

approximated is that imperfections were ignored and the solution was an eigenvalue 

analysis. The local buckling load Loc,FEAP  is also predicted. The columns analysed have 

heights from 600 mm to 800 mm.  

 

 

Figure 3.18 FE Cartesian coordinate and clamp-ended boundary condition 

 

Rigid plate 

Reference point 
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In the FEA,  it is suitable to model the flange and web panels of the PFRP section as a 

single layer of transverse isotropic material using 8-node thick shell elements S8R 

(Nguyen et al., 2013). The input of the material properties requires three moduli of 

elasticity L T LT, ,E E G  and the major Poisson’s ratio LT . They are taken from Figure 

3.10 for L T,E E , Table 3.12 for LTG  and Tables 3.7 to 3.10 for LT .  

To simulate a clamp-ended condition two rigid plates were fixed to both ends of the 

column as seen in Figure 3.18. The movement of each plate is controlled by a reference 

point located on that plate. By using Multi-Point Constraints (MPCs) to tie the reference 

node (acting as a ‘master’ point) and the edges of the section (acting as ‘slave’ points), 

the movement of all ‘slave’ points on the edges were numerically controlled by the 

‘master’. By imposing the six displacements degree of freedom at one reference node to 

be 0y z Rx Ry RzU U U U U      and 0x y z Rx Ry RzU U U U U U       at the other 

node, the required BCs were specified.  

The compression load was applied to the reference node having 0xU  . Linear 

(bifurcation) analysis was carried to obtain the eigenvalue (critical load factor) and the 

buckling mode shape for local buckling failure. A more detail of the modelling 

methodology will be presented in Chapter 5. 

For the I-section (120×60×6 mm), Figure 3.19 shows the local buckling mode shapes 

for stub columns having lengths of 600 mm,700 mm and 800 mm. It is observed that at 

the height of 700 mmH   there are four half-wave lengths. It has been recommended 

by Mottram (2004a) that to eliminate the effect of end boundary conditions on the local 

buckling stress the height in testing should not be shorter than four half-wave lengths.  
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(a) (b) (c) 

Figure 3.19 Local buckling shape of I column, heights of: (a) 600 mmH  ; (b) 700 mmH  ; 

(c) 800 mmH   (not to scale). 

 

The height of the I-column was chosen to be 700 mm. FE Simulation were carried out 

with the C1- and C2-sections to establish that H  for four half-waves is 750 mmH   

for C1 and 700 mmH   for C2. The local buckling load from the eigenvalue analysis 

Loc,FEAP  is 251 kN, 154 kN and 172 kN for the I-, C1- and C2-sections, respectively. 

The approximated half-wave length a  is 160 mm for the I- and C2-sections and 180 for 

C1.  



72 

 

Table 3.16 Properties to predict Loc,a   

I shape  C1 shape  C2 shape 

Geometrical properties Geometrical properties Geometrical properties 

wt   6 mm wt   6 mm wt   6 mm 

ft  6 mm ft  6 mm ft  6 mm 

wh   114 mm wh   114 mm wh   94 mm 

fb   60 mm fb   50 mm fb   50 mm 

Flange elastic constants Flange elastic constants Flange elastic constants 

LE   29.7 kN/mm
2
 LE   29.7 kN/mm

2
 LE   

34.0 kN/mm
2
 

TE   10.8 kN/mm
2
 TE   11.7 kN/mm

2
 TE   11.7 kN/mm

2
 

Lv   0.250 Lv   0.210 Lv   0.230 

Tv  0.09 Tv  0.09 Tv  0.009 

Web elastic constants Web elastic constants Web elastic constants 

LE   26.6 kN/mm
2
 LE   33.1 kN/mm

2
 LE   31.6 kN/mm

2
 

TE   10.8 kN/mm
2
 TE   11.7 kN/mm

2
 TE   11.7 kN/mm

2
 

Lv   0.23 Lv   0.24 Lv   0.23 

Tv  0.09 Tv  0.009 Tv  0.009 

 

Table 3.16 summarizes the required input data in for Eqs. (3.19)-(3.30) for sections I, 

C1, C2. The parameters include the nominal geometrical properties and the flange and 

web elastic constants. The measured material properties were taken from Figure 3.10 

and Table 3.13. 

Table 3.17 presents the calculations for Loc,a  to show that for the I-section the web 

buckles prior to the flanges. From the Kollár (2003) equations the failure stress is 151 

MPa. The buckling first happens in the flanges of the C1- and C2-sections with a 

uniform stress of 100 MPa and 129 MPa.  

Using Loc,FEAsP  obtained from FEA, the local buckling stress for I column can be 

calculated as: 

 
Loc,FEA L,web

Loc,FEA

L,flanges flanges L,web web

163 MPa
P E

E A E A



 

  
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Those for C1 and C2 column are:  

Loc,FEA L,flange
Loc,FEA

L,flanges flanges L,web web

118 MPa
P E

E A E A



 

  
 and 157 MPa, respectively.  

It is observed that the FEA gives relatively similar local buckling stress with those by 

analytical prediction with difference at 8%, 18% and 22% for I, C1 and C2 respectively.       

Table 3.17 Approximation of Loc,a  
for I, C1 and C2 shapes 

I shape 

Flange properties Web properties Buckling calculation  

Symbol Value  Symbol Value  Symbol Value  

LD   545900 N.mm LD   482370 N.mm I-webk   3335 N 

TD  216890 N.mm TD  216890 N.mm I-web   0.1492 

LTD  49131 N.mm LTD  43413 N.mm Loc,a  151 N/mm
2
 

sD  75600 N.mm sD  75600 N.mm 

 
flange  =  203.1 N/mm2                               web  = 137.8 N/mm

2
 

flange web

L f L w

3 36.84 10 5.26 10
( ) ( )E E

       web buckles first 

C1 shape 

Flange properties Web properties Buckling calculation 

Symbol Value  Symbol Value  Symbol Value  

LD   544900 N.mm LD   608950 N.mm I-flangek   705 N 

TD  214700 N.mm TD  315250 N.mm I-flange   6.082 

LTD  49040 N.mm LTD  54800 N.mm Loc,a  100 N/mm
2
 

sD  86400 N.mm sD  86400 N.mm 

 
flange  = 104.1 N/mm2                               web = 142.7 N/mm

2
 

flange web

L f L w

3 33.51 10 4.31 10
( ) ( )E E

       flange buckles first
 

C2 shape 

Flange properties Web properties Buckling calculation 

Symbol Value  Symbol Value  Symbol Value  

LD   624900 N.mm LD   580800 N.mm I-flangek   2480 N 

TD  215000 N.mm TD  215000 N.mm I-flange   1.734 

LTD  56200 N.mm LTD  52300 N.mm Loc,a  129 N/mm
2
 

sD  86400 N.mm sD  86400 N.mm 

 
flange  =  109.3 N/mm

2 
                              web  =221.8 N/mm

2
 

flange web

L f L w

3 33.21 10 7.02 10
( ) ( )E E

       flange buckles first
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3.7.2. Test specimens 

For the three test specimens Figure 3.20 has a line drawing and a photo showing the 

actual cross-sections. The nominal section dimensions are also given on the drawings. 

The back-to-back channels were attached by M12 bolts at three positions along the 

columns’ height. Two bolts were located 50 mm from the ends whilst the third one was 

bolted at mid-height of column. After connecting the two lengths together the end 

surfaces were squared to ensure that the compression load can be uniformly applied 

over the cross-section.  

 

 

 

Figure 3.20 Drawing (top) and photo (bottom) for specimen: (a) I; (b) C1; (c) C2. 
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Table 3.18 Mean measured dimensions for I, C1 and C2 

(1) Specimen I C1 C2 

(2) Height ( )H : mm 700 750 700 

(3) Depth ( )h : mm 120.1 120.1 100.1 

(4) Breadth ( )b : mm 60.05 100.9 100.8 

(5) Web thickness w( )t : mm 6.02 12.80 12.85 

(6) Flange thickness f( )t : mm 5.90 5.98 6.03 

(7) Cross-section area ( )A : mm
2
  1410 2630 2360 

 

The section dimensions were measured with a digital calliper with repeatability to 0.01 

mm. The thicknesses
 
of the top and bottom flange f( )t  are assumed to be the same, and 

were determined on taking the mean average of the four outstand measurements. The 

web thickness w( )t  was determined as the mean thickness measurement at three heights 

(but not including the end of the web when the fillet radii increase thickness). Table 

3.18 summarizes the geometric properties. Rows (1-2) are used to give beam identifier 

and column height H . Rows (3-6) list, in millimetres, the section’s depth ( )h , breadth

( )b , web thickness w( )t  and flange thickness f( )t . The maximum difference between 

the measured values and the nominal values for h , b , wt , and ft  is 0.9%, 0.9%, 7.1% 

and 1.7%.  

 

3.7.3. Test arrangements and results 

General test arrangement is depicted in Figures 3.21(a) and (b). The concentric 

compression force was applied by a AMSLER testing machine with a full loading 

capacity of 40 Tonne. The machine only operates in load control. Load was recorded by 

a 50 Tonne load cell placed at the bottom of a specimen. Figure 3.21 shows that the 
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vertical deflection was measured by having a 50 mm strain gauge displacement 

transducer in contact with the bottom surface the moving cross-head of the AMSLER. 

 
       (a) Schematic set-up                                                (b) Experimental set-up 

 

Figure 3.21 Colum test set-up with I-section: (a) schematics; (b) experiment 

 

Lateral deflection in the minor axis direction was measured by having a transducer 

positioned at mid-depth on the web and at the mid-height of the column. Because it was 

placed behind the test column, it cannot be seen in Figure 3.21.  Six 6 mm foil strain 

gauges were used to measure longitudinal strain. They were attached symmetrically 

about the section’s minor axis (the web axis). Two strain gauges were affixed to the 

flanges at mid-height. Four others were placed at a distance of 80 mm (for I- and C2-

Strain gauges 

at mid-height 

Safety arrangement Displacement 

transducer 

50 tonne  

load cell 

SW1, SW2 
SF1, SF2 

SF3, SF4 
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section) or 90 mm (for C1-section) from the mid-height on flanges and web. The flange 

strain gauges (SF1 to SF4) were placed 5 mm from the flange tip, whilst the web strain 

gauges (SW1 and SW2) were located at mid-depth.  This arrangement of gauging was 

based on the FEA results with the intention of capturing the maximum strain from the 

amplitude of the half wave-length ( )a . In Figure 3.21(a) the three positions for the six 

strain gauges can be seen. To prevent lateral slippage at the column ends there was a 

steel meccano frame that, as seen in Figure 3.21, had four threaded bars to form a safety 

fixture enclosing the specimen. 

 

 
(a) (b) 

 

Figure 3.22 Local bucking test on I specimen: (a) under compression; (b) local buckling failure 

 

Material rupture 



78 

 

 
(a) (b) 

Figure 3.23 Local bucking test on C1 specimen: (a) under compression; (b) local buckling 

failure 

 

Figure 3.24 Local bucking test on C2 specimen: (a) under compression; (b) local buckling 

failure 

“Tearing” failure at  

Web - flange junction 

Local “bearing” failure  
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Figures 3.22(a) and (b) shows the I-section before and after there has been local 

buckling failure. From Figure 3.22(b) three half wave-lengths and material rupture close 

to mid-height can be seen. A fourth half wave-length was visually observed near the top 

of the column (not shown in the photo). This deformation disappeared immediately as 

the load was released when FRP material fractured.   

Figures 3.23 and 3.24 similarly show C1 and C2 back-to-back sections during testing. It 

is observed that whilst the first mode was compression bearing failure, the C1 specimen 

failed by local buckling, the C2-section did not. At the bottom and afterwards, there was 

“tearing” failure along part of web-flange junction. This failure of the C2 column cannot 

be characterized as a local buckling instability. 

 

Figure 3.25 Load vs. vertical deflection curves for three tests 
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Figure 3.26 Web stress vs. web axial strain from I specimen 

 

Figure 3.25 shows the load-vertical deflection relationships. The solid line is for the I-

section, the dashed line is for the C1-section and dash-dot line is for the C2-section. The 

ultimate failure load u( )P  is given above the specimen’s curve. uP  is for the specimen 

when failure had progressed into the post-buckling region. Once the specimen starts to 

take compression, it can be seen that P and c maintain a linear relationship up to 

ultimate failure. It was observed at uP  that local buckling waves were visible (and 

obvious) with the I- and C1-sections and that there were signs of material rupture on the 

web or fracturing along the web-flange junctions. uP  is expected to be a higher load 

then when local buckling was initiated. The local buckling instability was not observed 

during the test with the column of section C2. 
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Figure 3.26 shows the two curves for web stress vs. axial strain on both sides of the web. 

It is observed that when w 0.4%   , the two strains start to diverge. The strain of one 

side of the web increases whilst the other decreases. This is interpreted being caused by 

local flexural from the onset of local (web) buckling. The three horizontal dashed-lines 

in Figure 3.26 are for the stress at ultimate failure at u,e 185 MPa  , the buckling stress 

from FEA Loc,FEA( 163 MPa)   and the stress at which the buckling initiated

Loc,e( 134 MPa)  . It is noted that the theoretical buckling stress obtained from Eqs. 

(3.25) to (3.30)  is Loc,a 151 MPa   , is not given in the figure. The author believes that 

Loc,e  can be assumed to represent the local buckling stress for the 120 60 6 mm  I-

section. This strength will be used in Chapter 6 when calculating LT  for a LTB design 

curve corresponding to the design procedure for steel section in Eurocode 3.  

 

Figure 3.27 Web stress vs. web axial strain for C1 back-to-back specimen 
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Figure 3.28 Web stress vs. web strain for C2 back-to-back specimen 

 

Figures 3.27 and 3.28 give the equivalent plots using test results from the for C1 and C2 

back-to-back specimen. It is observed that for C1-section, the analytical prediction 

using Eqs. (3.25) to (3.30) gives the lowest value buckling stress with Loc,a 100 MPa  . 

At this compression stress it is found that the strains on both sides of web have started 

to diverge. This change in response indicates that a local buckling mode of failure has 

initiated. The author believes it will be safe to adopt Loc,a 100 MPa  as the local 

buckling stress for section C1.  

It is from the results reported in Figure 3.28 that a local buckling instability was not 

captured by the measurements. It is observed that when the strain exceeded 0.1% the 

flexure starts to contribute to the w . It is believe that the local buckling stress for 

section C2 could be higher than that at ultimate failure u,e 117 MPa  . This is shown 
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in Figure 3.28 is lower than those from analytical prediction Loc,FEA( 157 MPa)   and 

FEA Loc,a( 129 MPa)  . Therefore, for the use of the local buckling stress in Chapter 6, 

it will be safe to adopt u,e 117 MPa   (the lowest) as the local buckling stress for 

section C2. 

The characterization by testing of the local buckling stress for PFRP section is difficult. 

The limited number of test result in this study is one difficulty. More importantly, its 

determination is influenced by many factors such as: geometrical properties, material 

properties, loading distribution, column height and the rotational stiffness along the 

web-flange junction.  It is noted that the local buckling stress using in this Ph.D. project 

is just for the definition of non-dimensional slenderness in Chapters 4 and 6. It will not 

affect the key findings and conclusions drawn from this research.  

 

3.8. Concluding remarks 

The study reported in this chapter has shown that: 

 The actual LE  and LTG  is significantly higher (27% to 43% for LE ; 40% to 60% 

for LTG ) than those given in the pultruder’s design manual (Anon., 2014a). 

 The graphical method might be suitable to predict the elastic modulus but more 

consideration is needed when determining the shear modulus. The current 

technique could not guarantee a reliable value for this elastic constant.  

 Both BS EN and ASTM standards for coupon testing give relatively similar 

results when determining LE and the LT . In terms of strain range for calculating 

the modulus, both 0.05% to 0.25% and 0.1% to 0.5% have been found to give EL 

with minimal difference. It is appropriate to use the former range which is that  
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recommended in BS EN to establish elastic constants for any type of structural 

engineering investigation (Euler buckling, local buckling, etc.) 

 It is observed that for the I-section, LE  in opposite flange of the outstands differ 

significantly, with one side (mean) 13.3% higher than the other. This finding 

was not due to the testing itself because there were three coupons per outstand 

and the difference in a batch of specimens was no more than 3%. This might be 

commonly happening in PFRP material due to the manufacturing process as a 

more significant deviation of 20%  was found in Stoddard (1997) with a 

narrow flange I-section of size 101.6×50.8×6.4 mm from the Strongwell range 

of pultruded sections. 

 The major Poisson’s ratio LT  was measured to be from 0.225 to 0.237 and the 

mean agrees closely with 0.23 listed in the Fiberline Design Manual (Anon., 

2014a). It is worth noting that LT  from Fiberline is significantly lower than the 

0.35 from Creative Pultrusion (Anon., 2004) and 0.33 from Strongwell (Anon., 

2014b) for their standard pultruded materials. 

 The 10
o
 off-axis tensile coupon test has been used to determine LTG  and the 

results obtained appear to be relatively consistent. Furthermore, the specimens 

are easy to be produced and there is no particular technically difficult 

requirement in terms of testing machine and loading fixture. The author 

recommends this test method for characterizing the in-plane shear modulus of 

PFRP material. 

 It is difficult to determine the local buckling stress Loc  from limited axial 

compression test on PFRP stub columns due to reasons discussed in sub-section 

3.7.3. They are Loc 134 MPa, 100 MPa and 117 MPa  for I-, C1- and C2- 

section respectively. 
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  CHAPTER 4

 

LATERAL-TORSIONAL BUCKLING TESTS 
 

 

4.1. Introduction 

The review in Chapter 2 has shown that there is currently a lack of experimental data for 

PFRP members failing with Lateral-Torsional Buckling (LTB). Still to be fully 

investigated are their responses under various loading conditions (e.g. load applied on 

top flange, at shear centre, and on bottom flange) and changing displacement boundary 

conditions (e.g. free to rotate or fully restrained about minor axis). A comprehensive 

understanding of LTB failure by way of testing is essential to be able to provide 

structural designers with verified design guidance for members in bending. To allow 

design to be routine and similar to that with steel shapes the design provision has to be 

founded on one or more closed-form equations for resistance, which are shown to be 

reliable and relevant. To meet this goal the LTB tests were conducted on I and channel 

beams subjected to three-point bending configuration with three vertical load heights at 

mid-span and two displacement boundary conditions. This chapter will fully report the 

test methodology and experimental results. The comparison between test results and 

theoretical predictions will also be presented. The experimental study was carried out in 

the Structures Laboratory at the School of Engineering, University of Warwick. Part of 

this chapter has been presented in Nguyen et al. (2014). 
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4.2. Test rig design 

A good experiment is the one that can simulate either the assumptions in the 

fundamental theory that lead to the closed-form solution or those found in practice. The 

practical situation is complicated to characterize and those unknown influencing factors 

(e.g. displacement conditions, loading conditions, etc.) can either increase or decrease 

the ‘apparent’ buckling loads. Their level of influence is not easy to quantify also. 

Furthermore, the aim of this Ph.D. is to verify and calibrate a theoretical formula to 

predict LTB resistances such that it can be validated and/or modified for design 

purposes. The test rig was designed to satisfy in a ‘practical sense’ the theoretical 

assumptions for LTB failure. 

The rig comprises of two fixtures for loading and end displacement support. The 

loading fixture is the system that simulates the vertical point load at mid-span and allow 

for different vertical and possible lateral load eccentricities. The end fixture is required 

to provide the simply support for major axis flexure. Reported next are the designs for 

the two fixtures. 

 

4.2.1. Loading fixture 

The fundamental instability theory (Clark and Hill, 1960, Timoshenko and Gere, 1961, 

Trahair, 1993) assumes that: (1) the point of loading remains unchanged relative to the 

deformed cross-sections, and (2) the line of action keeps parallel with its initial position. 

These requirements are illustrated in Figure 4.1, in which two states are shown for an I 

beam subjected to a point load at shear centre progressing into LTB failure. In cases 

where the vertical load is acting above, or below, the shear centre the same two 
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assumptions remain valid. To meet these requirements the loading fixture was, with a 

slight modification, detailed in accordance with the design used by Flint (1948) for his 

Ph.D. work.  

 

Figure 4.1 Schematic of LTB theoretical loading requirements  

 

 

Figure 4.2 Schematic set-up of the loading fixture 
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Figure 4.2 shows a schematic set-up of the loading fixture during static testing and after 

LTB failure. It consists of a steel disc and a pulley system. The disc has a groove into 

which a high strength steel cable, diameter of 6 mm, is fitted so that a pulley can 

transfer the vertical downward load. A ball bearing is fitted inside the pulley to allow 

LTB deformations to coexist with the loading remaining vertical. When the beam bends 

laterally and twists for LTB failure, the load is free to move with its effective loading 

point staying at the disc’s centre. By fixing the disc to the flanges of the specimen in 

such a way that its centre coincides with the beam’s shear centre, it is practical to have 

the vertical point load acting through the shear centre as shown in Figure 4.2. Similarly, 

by aligning the disc position vertically until its horizontal centre line coincides with the 

top or bottom flange level, the loading at a height for top or bottom flange can be 

obtained. This can be done by moving the two pairs (for both sides of the disc) of 

clamping plates up or down. The shape of the disc fixture was not symmetric about 

either its horizontal or vertical axes. This is to accommodate for different beam depths 

(i.e. h is 120 mm or 100 mm) and to allow for the centre of the load to coincide with the 

shear centre of a Channel section beam.   

 

Figure 4.3 Detail dimensions in millimetres of three main parts of loading fixture: Loading disc, 

clamping plate and pulley 
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Figure 4.3 gives, in millimetres, the dimension of the disc, clamping plate and pulley. 

Their thicknesses, which are not shown in the figure, are 12 mm, 10 mm and 20 mm, 

respectively. 

 

Figure 4.4 Three vertical load positions for: (a) Top flange; (b) Shear centre; (c) Bottom flange  

 

Figures 4.4(a) to (c) show the schematics for the three vertical load positions of top 

flange (a), shear centre (b) and bottom flange (c) loading when the beam is I-shaped. 

The beam is positioned between two clamping plates (Figure 4.4(a)) that can move 

(a)

(b)

(c)

Disc centre line levelled with top flange

       Vertical load apply on top flange

Clamping plates

Adjustable screws

Positioning holes

Disc centre line levelled with shear centre

       Vertical load apply at shear centre

Disc centre line levelled with bottom flange

       Vertical load apply on bottom flange
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vertically in the loading disc, using a series of positioning holes (Figure 4.4(c)). After 

adjusting the vertical centre line of the loading disc to coincide with the beam’s vertical 

shear centre line and the required horizontal level, the beam was secured to the disc 

using a series of four adjustable screws (Figure 4.4(b)).   

 

Figure 4.5  I- and channel sections 

 

In terms of the shear centre position, the I-section is doubly symmetric and the nominal 

shear centre coincides with the section centroidal centre (Figure 4.5(a)). Channels C1, 

C2 and C3 are only symmetric about their major axis with their nominal shear centre 

lying outside of the sections area as shown in Figure 4.5(b). The distance from the 

reference point (vertical centre line of the web panel) to position of the shear centre can 

be approximated by (Pilkey, 2005) : 
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In Eq. (4.1) 1b  is the distance from the flange outstand to the middle vertical axis of the 

web and wh  is the distance from mid-depth of top flange to mid-depth of bottom flange.  
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Given that the web and flange thickness ( wt  and ft ) are nominally the same, the 

position of shear centre, for convenience, is redefined to be the distance between shear 

centre and the outer surface of web. This distance is s1 s w / 2e e t   . On substitution, 

Eq. (4.1) becomes: 

 
2

w1
s1

2
w1

3

6 2

b t
e

b h
 


 (4.2)  

For sections C1, C2 and C3, es1 is 13.7 mm, 14.6 mm and 5.5 mm, respectively. 

To have the point load acting through the vertical plane of shear centre, the section is 

positioned such that a distance of s1e  is obtained between the centre of the disc and the 

outer surface of the web of the channel.  

 

4.2.2. End fixture 

For simply upported Boundary Condition (BC), the end fixture must allow for free 

rotation about major axis, for ‘free’ or fully fixed restraint to warping and minor axis 

rotation, and always fully restraint to twisting along the beam’s length. In terms of axial 

restraint, one end of the beam must allow for free movement. The change in warping 

restraint or minor axis rotation restraint from fully free to fully restrained would give 

four different simply supported BCs. The two types of displacement BCs considered in 

this study are with ‘free’ warping and with or without restrained minor axis rotation. For 

free rotation about the minor axis, this end boundary condition is given the label EC1. 

When lateral rotation is fully fixed, the labelling is EC2. 
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Figure 4.6 Schematic arrangement of end condition EC1  

 

 

Figure 4.7 Schematic arrangement of end condition EC2 

 

Figures 4.6 and 4.7 give schematic illustrations for EC1 and EC2. EC1 is implemented 

by having one pair of steel vertical rods, diameter of 20 mm, arranged in contact with 

the beam flanges on both side. This arrangement will allow the beam to rotate about its 

minor axis while restraining any twisting displacement. By adding a second pair of the 

steel rods, the support condition enforces ‘full’ fixity to lateral flexure. The longitudinal 

distance between the two pair of steel rods is 102 mm which is the distance between two 

holes in the meccano. To simulate a roller end for free horizontal movement, a 20 mm 

Plan view

Major axis flexural span L

Front view

P

PFRP I-beam

Lateral unrestrained span Lb

steel hemisphere bar steel circular bar

Major axis flexural span L

Lateral unrestrained span Lb

Plan view

Front view

P

PFRP I-beam



93 

 

diameter steel cylinder is placed underneath the bottom flange. A hemispherical shape 

of 40 mm diameter is located at the other end to restrain the axial movement. Also 

defined in the two figures are the major axis flexural span L and the lateral unrestrained 

span bL . For EC1, these two spans are the same whilst for EC2 bL  is 204 mm shorter 

than L  due to the arrangement of the supports at the bottom. 

`  

(a) (b) 

Figure 4.8 Top views of: (a) EC1 end support; (b) EC2 end support 

 

Figures 4.8(a) and (b) are photographs showing a top view of the actual EC1 and EC2 

conditions, respectively. To be able to apply the end conditions with different section 

widths (i.e. 60 mm for I, 50 mm for C1 and C2 and 30 mm for C3), one end of a 

threaded bar was screwed into the circular shaped steel rod and the other end is 

connected by nuts to a meccano channel. This test rig feature is shown in Figure 4.9. By 

adjusting the length of the threaded bars the change of section widths from 30 mm to 60 

mm can be accommodated.  

One pair of steel rods to give 

free rotation about minor axis 

Two pairs of steel rods to fix 

rotation about minor axis 

5 mm 
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Figure 4.9 Side view of the end support 

 

It is worth noting that the four or eight vertical steel rods and two horizontal supporting 

‘cylinders’ will partially restrain the beam flanges from warping. To create a ‘free 

warping’, the end supports cannot be in contact with flanges. With the requirement for 

the beam to have unrestrained rotation about both major and minor axes the overall set 

of displacement boundary conditions is impractical to achieve.  

 

4.2.3. Load application method 

Two load application methods were adopted. The ideal approach that satisfy the 

theoretical assumptions for loading is gravity loading by dead weights (Flint, 1948). 

However, for reason of Health and Safety the maximum limit of dead weight was taken 

to be 200 kg. Beams with higher LTB resistance had to be loaded via a hydraulic 
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tension jack. The tension jack is mounted and can rotate around the fixing point on the 

strong floor when the beam twists and moves laterally progressing into LTB failure.  

 
(a) (b) 

Figure 4.10 Two load application methods: (a) Dead weight; (b) Tension jack 

 

Figures 4.10(a) and (b) show the arrangement of the two load application methods for (a) 

the dead weight and (b) the tension jack. In a test with hydraulic jack, the lateral and 

twist deformations inherently develops ‘stretching’ in the jacking system. An additional 

horizontal force, whose magnitude depends on the system’s length and the amount of 

the lateral deflection at mid-span, will be created. With a system length > 1000 mm and 

a maximum mid-span twist < 10 degree (or 175 mrad) the maximum amount of 

‘stretching’ at 0.15 mm is believed to be neglectable. The results obtained will show 

Load cell 

Iron weight increment 

(10kg each) 

Tension jack 
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that this assumption is appropriate. In this study, dead weights were used when beam 

span L is 3454 mm and 4064 mm with all four sections and when L is 2438 , 2844 and 

3454 mm for section C3. For all other beams the tension jack loading method was 

employed. 

 

4.3. Test specimens and geometric properties 

Chosen from Fiberline Composites A/S sectional range of standard pultruded shapes are 

the four cross-sections shown in Figure 4.11. They were chosen for the LTB tests 

because their buckling resistances are within the bearing capacity of the in-house testing 

rig and fixtures. The three sections (I, C1 and C2) in Figure 4.11 were tested at five 

spans (L) of 1828, 2438, 2844, 3454 and 4064 mm. Section C3 was not tested at the 

longest span of 4064 mm because the LTB load for these spans will be too low to 

measure.   

 

Figure 4.11 Nominal section sizes for the I- and channel sections 
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It is worth mentioning that the actual beam lengths are 1900, 2500, 3000, 3500 and 

4100 mm, as they were cut to longer lengths than the test spans, to provide a short 

overhang of 18 mm to 78 mm at both ends.  

Table 4.1 Measured geometric properties of the test beams 

Specimen 

 

Span L  (mm) 

 

 

Depth h  (mm) 

 

Breadth fb  (mm) 

 

Web 

Thickness 

wt  (mm) 

 

Flange 

thickness 

ft  (mm) 

(1) (2) (3) (4) (5) (6) 

I-4064 4064 120.14 59.95 6.03 5.97 

I-3454 3454 120.05 60.10 6.07 6.00 

I-2844 2844 120.10 59.89 6.04 6.06 

I-2438 2438 120.04 59.88 5.96 6.02 

I-1828 1828 120.12 59.91 6.03 6.03 

Mean (mm) 120.09 59.95 6.03 6.02 

SD (mm) 0.04 0.07 0.03 0.03 

CV (%) 0.03 0.12 0.55 0.46 

C1-4064 4064 119.89 49.91 6.03 6.03 

C1-3454 3454 120.03 49.99 6.03 5.94 

C1-2844 2844 120.16 49.87 5.99 6.13 

C1-2438 2438 120.03 49.81 6.03 5.97 

C1-1828 1828 120.03 50.12 6.03 6.10 

Mean (mm) 120.03 49.94 6.02 6.03 

SD (mm) 0.09 0.11 0.02 0.07 

CV (%) 0.07 0.21 0.27 1.21 

C2-4064 4064 100.05 50.02 5.98 5.95 

C2-3454 3454 99.97 49.97 5.98 5.94 

C2-2844 2844 99.92 50.10 5.96 5.99 

C2-2438 2438 99.97 50.06 5.98 5.97 

C2-1828 1828 100.10 50.01 6.02 6.00 

Mean (mm) 100.00 50.03 5.98 5.97 

SD (mm) 0.06 0.04 0.02 0.02 

CV (%) 0.06 0.09 0.33 0.38 

C3-3454 3454 100.03 30.06 5.98 6.02 

C3-2844 2844 99.97 30.05 6.03 6.02 

C3-2438 2438 99.99 30.00 5.96 6.00 

C3-1828 1828 100.01 30.04 6.02 5.98 

Mean (mm) 100 30.04 6.00 6.01 

SD (mm) 0.02 0.02 0.03 0.02 

CV (%) 0.02 0.08 0.48 0.28 
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The depth ( )h , breadth f( )b  and thickness of web w( )t  and flanges f( )t  of the four 

PFRP sections were measured using a digital calliper with a repeatability to 0.01 mm. 

The thicknesses of the top and bottom flanges are assumed to be constant and its value 

was determined on taking the average of four ft  outstand measurements. Wall thickness 

w( )t  was determined as the average measurement at three web heights. Table 4.1 

reports the geometric properties of the sections. Columns (1-2) are used to give beam 

labelling and spans L . Columns (3-6) present, in millimetres, the measured geometry 

parameters of h , fb , wt and ft . The Mean value, Standard Deviation (SD) and Coefficient 

of Variation (CV) for each section are also reported. The maximum CVs for h , fb , wt , 

and ft  are found to be small at 0.07%, 0.21%, 0.55% and 1.21%, and so the average 

values can be used to establish geometric properties.  

 

4.4. Initial geometric imperfection 

Structural PFRP shapes are manufactured with initial geometric imperfections such as: 

out-of-straightness, twist, flatness, angularity, etc. To apply nonlinear FEA to predict 

the buckling loads of real beams, these imperfections must be measured and 

characterized. An acceptable approach in FEA to account for these geometric 

imperfections is by considering only the dominant type of imperfections with high 

magnitudes (Nguyen et al., 2013). Two geometric imperfections that would have a 

dominant influence on the LTB capacity of a beam are minor axis out-of-straightness 

and twist rotation because they link to the two governing deformations in LTB failure. 

As it is impractical to measure the initial twist imperfection of the beam, only 
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measurement of minor axis out-of-straightness imperfections were carried out and later 

introduced into the FE model.  

 

Figure 4.12 Arrangement to measure the minor axis out-of-straightness imperfection 

 

To measure the minor axis out-of-straightness ( ) , a beam was placed on a levelled 

platform of steel meccano. A displacement transducer was mounted on a track runner 

with its pointer contacting the beam at mid-depth. Two short tracks having length of 

1800 mm were connected together to give a longer track of 3600 mm and were aligned 

by using the theodolite as seen in Figure 4.12. To ensure the transducer was 

perpendicular to the specimen’s axis, a spirit level was placed on top of the transducer’s 

fixture that is seen in Figure 4.13. 

Theodolite 

Steel meccano 

platform 

Track 

runner 

Displacement 

transducer 

PFRP beam 
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Figure 4.13 Method to level the displacement transducer to record the out-of-straightness 

 

 
1

st
 reading 2

nd
 reading 3

rd
 reading 

Figure 4.14 Illustration of how to measure the out-of-straightness 

 

The displacement reading was set to zero at one end of the beam and lateral 

displacement measurements were taken along the track every 100 mm. Figure 4.14 

illustrates how the readings were taken. After recording the first reading at one end, the 

transducer was moved to the next position to take the second reading. The third reading 

was taken at 100 mm away from the second, and so on, until the other end of the beam 

was reached. The measurements were then corrected by taking a straight line between 

the two ends as reference. 

Spirit level 

Displacement 

Transducer 

Web mid-depth 
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This geometric imperfection was measured on both sides of the web and because the 

length of the track runner was 3600 mm, the mearusements were only taken on 16 out 

of the 19 beams. The imperfections of specimens with span of 4064 mm were not 

measured.  

 

Figure 4.15 A typical plot of out-of-straightness along the length for I-2438 

 

Figure 4.15 shows a typical plot of out-of-straightness along the length for I-2438. The 

horizontal axis gives the beam length with the ends at 0 mm and 2500 mm. The vertical 

axis gives, in millimetres, the out-of-straightness   related to position along the beam 

span. The dashed curve is for one side (A) and the dot-dashed curve is for opposite side 

(B). The plots for all 16 beams are given in appendix B1.  It was found from the plots 

for 16 beams that the maximum of imperfection max  is normally located at mid-span. 

The measurements (such as shown in Figure 4.15) would allow for the recreation of the 

actual minor axis imperfection, but it is not needed in the FE modelling. Instead, it 
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would be reasonable to assume that the out-of-straightness imperfection have a shape of 

a half sine wave length with amplitude max  at mid-span. As this assumed shape is 

considered to be the worst case for simply supported beam in bending, this adoption 

remains valid (Nguyen et al., 2013). Figure 4.15 shows the solid curve for the half sine 

wave of max sin( / )y x L  . It is observed that this curve has a similar shape with 

those measured on either side A and B.  

Table 4.2 Initial out-of-straightness imperfections of test beams 

Beam 

specimen 

Maximum minor 

axis imperfection 

max (mm)   

Maximum allowance of out-

of-straightness imperfection 

D (mm) - BS-EN 13706-2 

Maximum allowance of out-

of-straightness imperfection 

D (mm) - ASTM D3917 

(1) (2) (3) (4) 

I-4064 - 8.26 16.93 

I-3454 2.72 5.97 14.39 

I-2844 1.95 4.04 11.85 

I-2438 2.86 2.97 10.16 

I-1828 0.78 1.67 7.62 

C1-4064 - 8.26 16.93 

C1-3454 1.72 5.97 14.39 

C1-2844 1.55 4.04 11.85 

C1-2438 0.80 2.97 10.16 

C1-1828 0.27 1.67 7.62 

C2-4064 - 8.26 16.93 

C2-3454 0.62 5.97 14.39 

C2-2844 1.78 4.04 11.85 

C2-2438 0.90 2.97 10.16 

C2-1828 0.21 1.67 7.62 

C3-3454 8.31 5.97 14.39 

C3-2844 4.78 4.04 11.85 

C3-2438 5.79 2.97 10.16 

C3-1828 2.26 1.67 7.62 

 

Table 4.2 summarizes in columns (1-2) the specimen name and the measured maximum 

minor axis out-of-straightness max . It is shown that the specimens of C3 possess max  

of 2.26 mm to 8.31 mm which are relatively larger compared to those of other three 

sections. The maximum imperfections are 0.78 mm to 2.86 mm, 0.27 mm to 1.72 mm 
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and 0.21 mm to 1.78 mm for I, C1 and C2 sections, respectively. Column (3) is the 

maximum allowable (e.g. manufacturing tolerance) for the out-of-straightness 

imperfection ( )D , taken from the BS EN 13706-2 (BSI, 2002b). This European standard 

specifies out-of-straightnes tolerances for reinforced plastic pultruded sections with 

20.0005D L  (D and span length L  in metres). Column (4) provides the allowable of 

out-of-straightness taken from American standard for dimensional tolerances ASTM 

3917 (ASTM, 2012a). It requires that the deviation from straightness / 240D L  (with 

both D and L in millimetres). IT is obvious that the allowables of the two standards are 

different with a same beam span.  By comparing the maximum allowables from the two 

standards in columns (3) and (4), it is seen that those given by BS EN standard are 

significantly higher than those allowed by the ASTM standard. 

Comparing data in Columns (2) and (3), it is found that all specimens of C3 possess 

max  that are higher than D permitted by the BS EN 13706-2. Specimens of I, C1 and 

C2 sections have max  that are lower than the limit. Comparing results in Columns (2) 

and (4) it is found that all 16 beams satisfy the manufacturing requirement for the out-

of-straightness limit in accordance with ASTM 3917.  

 

4.5. Test instruments and procedure 

Instruments were calibrated and connected to an Orion data logger. The load P  was 

measured using a load cell having one end connected to the pulley system and other end 

attached to the load hanger or the tension jack. Two load cells with measurement 

capacities of 2000 lbs (or 9 kN) and 2250 kg (or 22 kN) were used. They both have a 
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resolution to ±0.001 kN. Two 50 mm strain gauge displacement transducers were placed 

at mid-span to measure the lateral and vertical deflections of the shear centre. The 

lateral displacement transducer was located at mid-depth of the section while the 

vertical displacement transducer has its pointer touches the top flange. The mid-span 

rotation in the vertical plane ( )
 was measured using an Accustar® inclinometer 

mounted at mid-depth of the web. Rotation was recorded to a resolution of 0.02 mrad 

(linear to 1% over a 10
o 
range). It is to be noted that when a beam moves laterally and 

twists, as the two displacement transducers cannot go with the deformed section, their 

readings cannot give the exact movement of the shear centre.  

There are techniques (Brooks and Turvey, 1995, Davalos et al., 1997) that could help to 

give the actual deflections which were deemed to be too complicated for this test 

programme. More importantly, the readings of   and the applied load P  together are 

able to signal the onset of LTB failure. The readings recorded by the data logger were 

transferred to the computer into a text file. The text files were given a name for the 

section (i.e. I, C1, C2 or C3), span length (i.e. 1828, 2438 2844, 3454 or 4064 mm), 

type of end boundary conditions (i.e. EC1 or EC2) and type of vertical load height (i.e. 

TF for top flange, SC for shear centre and BF for bottom flange loading). As an 

example, the file named I-4064_EC1_TF has the test measurements for the 120×60×60 

mm I-shape of length (L) 4064 mm with ‘free’ end lateral flexure (EC1) and Top Flange 

(TF) loading.  The test results to be reported in this chapter also followed this labelling 

scheme.  
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Figure 4.16 General arrangement of LTB test with dead weight system 

 

A specimen can be expected to fail elastically (Mottram, 1992a, Correia et al., 2011) 

and so it will recover to its original cross-sectional shape when unloaded. It has been 

shown in Chapter 3 that when a beam fails with LTB, the maximum longitudinal strain 

will be ≤ 0.5%. It is known that the PFRP material will fail at strains higher than 1% 

and that material response is virtually linear elastic up until failure. This means that a 

beam can be reutilized many times without the previous test influencing the test results 

from the next one. Each beam was tested six times for three different vertical load 

heights and at two different end boundary conditions. There was no test repetition in the 

programme. For those LTB tests that were carried out using dead weights one increment 

Dead weight 

increments 

Pulley & 

roller bearing 

Load cell 

Roller end 
Pinned end PFRP beam 

Loading disc 
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was a 10 kg (or 98 kN) of slotted iron plate. Lighter plates of 5 kg (or 49 kN) or 2.5 kg 

(or 24.5 kN) were employed when the applied load were tending towards the critical 

buckling value. The set-up of the LTB test with dead weight system is shown in Figure 

4.16. During the test there was a ten seconds delay time between two load increments to 

keep the load rate constant and for any transient disturbance in the loading system (e.g. 

when placing the  mass on the hanger) to disappear.  

 
(a) (b) 

Figure 4.17 Deformation during testing: (a) in flexure; (b) after LTB failure 

 

To stop the specimen from movement after LTB instability has occurred, two leg-angle 

meccano sections of steel were placed on either side of the beam. Testing was 

terminated when one of the two top flange outstands made contact with its limiter. This 

feature can be seen in Figure 4.17. This figure also shows two states from testing in 

Figure 4.17(a) to after failure in Figure 4.17(b). 

Steel angle 
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Figure 4.18 General arrangement of LTB test with tension jack system 

 

The tension jack system controlled the stroke and not the magnitude of load at each 

increment. The jack could accommodate a downward stroke of 150 mm. There is a five 

seconds delay between two consecutive stroke applications. Figure 4.18 shows the 

testing arrangement with the tension jack system. 

There were five of the 114 tests for: I-1828_EC2_TF, I-1828_EC2_BF, C1-

3454_EC2_BF, C2-1828_EC2_SC and C2-1828_EC2_BF when the PFRP beam 

continued to undergo in-plane deformation without any sign of LTB failure (e.g. lateral 

deflection and twisting). These tests had to be terminated when the vertical load attained 

10 kN for the tension jack and 2 kN for the dead weights. Test results for these tests will 

not be reported in the thesis. 

Hydraulic 

pump 

Tension jack 
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4.6. Onset of buckling and data reduction method 

Theoretically, the beam fails instantaneously when the vertical load reaches a critical 

value. There would be no lateral movement or twist rotation prior to the failure. This 

type of failure is characterized as ‘bifurcation buckling’ (Timoshenko and Gere, 1961, 

Trahair, 1993) which only occurs under three specific conditions of: (1) beam is 

perfectly straight, (2) beam material is homogeneous and (3) load acting exactly through 

the shear centre. In reality or even under controlled laboratory setting this type of failure 

is rarely observed. 

It is obvious that as initial geometric imperfections always exist, a beam cannot be 

absolutely straight. The PFRP material is not homogeneous. Applying the load 

accurately through the section’s shear centre is impractical due to the degree of 

uncertainty on whether the nominal shear centre coincides with the actual one. The 

more commonly observed in testing is that of ‘progressive failure’, where a beam starts 

to twist and move laterally from the beginning of the load increments. As the beam fails 

‘progressively’, this type of LTB failure gives no critical buckling point. 

In the author’s series of tests both types of LTB failure were observed. These two 

different behaviours are demonstrated by the load vs. mid-span rotation curves in Figure 

4.19. The solid-lined curve for C2-3454_EC1_SC shows a ‘bifurcation-like’ type of 

failure with the beam having virtually no rotation up to 1.22 kN and suddenly became 

unstable afterwards. For those tests experiencing this ‘bifurcation-like’ failure, the LTB 

load cr,e( )P  is the peak load. The subscript ‘e’ is for experimental obtained.  
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Figure 4.19 Two typical LTB failures 

 

In contrast, the dashed-lined curve for C2-4064_EC2_SC shows the progressive failure 

where the specimen starts twisting from beginning of the loading. Because its P   

curve does not give a distinct buckling load, cr,eP was established using the Southwell 

plots method. This plotting technique was originally proposed by Southwell (1932) to 

predict the critical buckling load of column by plotting /v P  against lateral deflection v . 

The inverse slope of the straight line given by this plot is the critical load, while the 

intercept on abscissa axis is for the initial lateral geometric imperfection. One may 

argue that the situation is more complicated as LTB failure involves twist rotation and 

lateral deflection at the same time whilst an axially loaded column only undergoes 

lateral deflection. 
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 It is generally accepted (Dumont and Hill, 1940, Cheng and Yura, 1988, Attard, 1983, 

Mandal and Calladine, 2002) that a simple plot of either /v P  vs. v  or / P
 vs.   can 

accurately predict the critical load for LTB failure. For this investigation, the 

determination approach with / P
 vs.   is adopted.  

 

Figure 4.20  Southwell plot with test data from C2_4064_EC2_SC 

 

Figure 4.20 shows the Southwell plot generated in Matlab
®

 (Mathworks Inc, 2013) 

using the test results from C2-4064_EC2_SC. The data points give a virtually straight 

line fit with 2R equal to 0.998. An estimation for the elastic critical buckling load at 

1.12 kN is given by the gradient to the straight line fit It is worth mentioning cr,eP  on 

Figure 4.20 is on the lower side because it does not include, at 0.12 kN, the self-weight 

of the loading disc system. Load cell only measures the applied load P  discounting the 

 
e
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self-weight of the loading system which is already applied on the specimens. Plots for 

all LTB tests are presented in Appendix B2. 

 

4.7. Theoretical predictions 

From the literature review in Chapter 2 a closed-form equation (Eq. (2.1)) is found to 

has been widely adopted in structural steel design for the LTB mode of failure. The 

review was further used to show that such an isotropic expression can, with suitable 

choice substitute choice of moduli of elasticity, be used with orthotropic PFRP beams. 

A comparison between the test cr,eP  and Eq. (2.1) is presented in Nguyen et al. (2014). 

The input moduli of elasticity of L 23 GPaE   and LT 3 GPaG   are the design values 

in the Fiberline Design Manual (Anon., 2014a). It is found from Figures 14 and 15 in 

Nguyen et al. (2014) that the test results are all significantly higher. This is important to 

know as it strongly suggests that by choosing the pultruder’s tabulated values for LE and

LTG  a closed-form formula is likely to give a LTB design resistance that is on the safe 

side. Presented herein is the same comparison with actual moduli of elasticity reported 

in Chapter 3.  

To adopt Eq. (2.1) to determine LTB resistances the two factors 1C  and 2C , whose 

value depends on the displacement boundary conditions, are needed. For the study in 

this chapter the two displacement boundary conditions are defined by w 1.0k k   for 

EC1, and 0.5k  and w 1.0k   for EC2. It is found that three references (Clark and Hill, 

1960, BSI, 1992, Bureau, 2006) give slightly different 1C  and 2C  values for steel. For 

isotropic beam with EC1 they are 1.365 and 0.553 from Clark and Hill (1960) and DD 

ENV 1993-1-1 (BSI, 1992). In a Non-Contradictary Complementary Information 
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(NCCI) sheet from Access Steel (Bureau, 2006) they are 1.348 and 0.630. These 

differences are due to developments in computational analysis that generated these 

numerical factors in the 1960s and later in the 1990s. The factors obtained most recently 

( 1 1.348C   and 2 0.630C  ) will be used for EC1 as they are expected to be more 

reliable. For the EC2 case only the older factors are found in the public domain (BSI, 

1992) and they are 1 1.07C   and 2 0.432C  . Both sources Clark and Hill (1960) and 

Bureau (2006) do not provide the C  factors for the EC2.  

For EC1, the critical elastic LTB load cr( )P  is to be given by:  

 
2 2

L z w LT t 2
cr g g

3 2
z L z

5.39π
+ +0.40 - 0.63
π

E I I L G I
P z z

L I E I

 
  

 
 

 (4.3) 

For EC2 , crP can be determined as: 
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3 2
z L z

8.56π
= + +0.75 - 0.86

π

E I I L G I
P z z

L I E I

 
 
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 

 (4.4) 

Because the measured dimensions of test specimens presented in Table 4.1 of Section 

4.3 do not differ significant from the nominal values the latter were used to calculate the 

geometric properties of z t w, ,I I I  and gz
 
in Eqs. (4.3) and (4.4).  

Given that the web and flange thickness is the same  f wt t t  , zI can be calculated 

from: 

  3 3
f

1 1
2

6 12
zI tb h t t    (4.5)  
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To calculate zI  for a C-section, the horizontal position of the section centroid needs to 

be determined. The horizontal distance to the centroid from the outer surface on the web 

is determined from: 

 
 

 

2 2
f

0

f

2 / 2

2 2

b t h t t
X

b t h t t

 


 
 (4.6)  

zI  can be expressed as: 

   
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f 0 0f

1 1
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b t
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 (4.7)  

wI  for  an I-section is given by (Young and Budynas, 2002, Pilkey, 2005): 

 3 2
w wf

1

24
I b h t   (4.8) 

For C-section it is (Young and Budynas, 2002, Pilkey, 2005):  
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1 w w 1
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 (4.9)  ` 

where wh h t 
 
and 1 f

2

t
b b 

 
as shown in Figure 4.5 for both I- and channel sections. 

tI  for I-section can be simply approximated without accounting for the fillet radius 

areas between web-flange junction by (Young and Budynas, 2002, Pilkey, 2005): 

    
3 3

t f w f2 2
3 3

t t
I b h b h t       (4.10) 

For C-section (Young and Budynas, 2002, Pilkey, 2005) it is: 

    
3 3

t 1 w f2 2 2
3 3

t t
I b h b h t      (4.11) 



114 

 

Eqs. (4.5)-(4.11) are broadly employed in structural design because of their simplicity 

and the lower values (compared to those account for fillet radius areas) obtained provide 

design that is on the safe side. Table 4.3 presents in columns (2-4) z t w,  and I I I   

calculated by these simplified expressions. Values are given to three significant figures. 

Table 4.3 Section properties for I- and C-sections, ignored the fillet radius areas 

Section 

name zI  (mm
4
) tI  (mm

4
) wI  (mm

6
) 

(1) (2) (3) (4) 

I 2.18×10
5
 1.68×10

4
 7.02×10

8
 

C1 2.78×10
5
 1.50×10

4
 6.29 ×10

8
 

C2 2.63×10
5
 1.35×10

4
 4.01×10

8
 

C3 5.94×10
4
 1.07×10

4
 9.14×10

7
 

 

When the fillet radius areas are taken into account when calculating the section 

propreties, only tI  will change significantly.Young and Budynas (2002) and Pilkey 

(2005) provide different expressions to determine the new tI . For I-section, Young and 

Budynas (2002) suggests that: 

 
3 4

4 4
t f

4
f

2 2 0.420 1 2
3 12

t t
I b h t t D
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

 
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 
 (4.12) 

where:  
c

c 0.15 0.1
r

t
    (4.13) 
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


 (4.14) 

cD  is the diameter of the largest inscribed circle and cr is the fillet radius.  

  For a C-section tI  is (Young and Budynas, 2002): 
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where: 
c

c 0.07 0.076
r

t
    (4.16) 

  c c c2 2 3 2 2D t r r t    
 

 (4.17) 

Pilkey (2005) gives the same expression for both I- and C-section. It is: 

   
3

4 4
t c2 2 0.420 2

3

t
I b h t t D      (4.18) 

where cD  is calculated as in Eq. (4.14) for I-section and as in Eq. (4.17) for C-section. 

The correction factor c  in Eq. (4.18) for I-section is (Pilkey, 2005) : 

2 3
c c c

c 0.1180 0.0087 0.1029 0.0533
r r r

t t t

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 (4.19)  

For C-section c is calculated by: 

2 3
c c c

c 0.0789 0.0510 0.0263 0.0191
r r r

t t t


     
        

     
 (4.20) 

The difference on how c  is approximated in Young and Budynas (2002) and Pilkey 

(2005) give tI  that differs significantly for the I-section. To show the effectiveness of 

those expressions, advanced section calculator software ShapeDesigner was employed 

(MechaTools Technologies Inc, 2013). This software allows a section’s z w t,  and I I I  to 

be calculated using advanced FE approach without any assumptions or restrictions. The 

software can be found at http://www.mechatools.com/en/shapedesigner.html. 

 

http://www.mechatools.com/en/shapedesigner.html
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Table 4.4 Section properties for I- and C-sections, accounted for the fillet radius areas 

Section 

name zI  (mm
4
) wI  (mm

6
)
 

tI  (mm
4
)
 

ShapeDesigner 

(2013) 

Young and 

Budynas (2002) 
Pilkey (2005) 

(1) (2) (3) (4) (5) (6) 

I 2.19×10
5
 6.83×10

8
 2.15×10

4
 2.47×10

4
 2.10×10

4
 

C1 2.79×10
5
 6.35×10

8
 1.72×10

4
 1.73×10

4
 1.71×10

4
 

C2 2.63×10
5
 4.08×10

8
 1.45×10

4
 1.43×10

4
 1.43×10

4
 

C3 5.94×10
4
 9.27×10

7
 1.16×10

4
 1.14×10

4
 1.14×10

4
 

 

Table 4.4 summarizes in columns (2-4) z w t,  and I I I obtained by ShapeDesigner 

software. Columns (5) and (6) give the calculation of tI  using expressions by Young 

and Budynas (2002) and formulae by Pilkey (2005), respectively. It is found that the 

calculations from ShapeDesigner (MechaTools Technologies Inc, 2013) and Pilkey 

(2005) gave relatively similar tI  for all four sections. For the I-section, tI  using the 

Young and Budynas (2002) expression is 15% higher. By comparing data in columns 

(2-4) of Table 4.3 with equivalents in Table 4.4 it can be seen that the contribution of 

the fillet radius areas to zI  and wI  are insignificant. It is only  <0.2% for zI  and  < 2.7% 

for wI . For tI  this contribution is significant at 7.4% to 28.0%. 

By substituting the values from columns (2-4) in Tables 4.3 and 4.4 into Eqs. (4.3) and 

(4.4), the LTB resistances for both sets of geometric properties can be determined.  

Those predictions obtained using data in Table 4.3 are denoted as cr,1P  and those with 

Table 4.4 data are cr,2P . The plots for cr,2 cr,1/P P  vs. beam span L  presented in Figures 

4.21(a) to (d) show the sensitivity of changing in geometric parameters. In the figures, 

the predictions for EC1 are presented by circular symbol whilst those for EC2 are 

illustrated by rectangular shape. 
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Figure 4.21 Sensitivity of crP with tI for: (a) I; (b) C1; (c) C2; (d) C3 

 

It is found that the predicted resistances increase significantly for I and C1 when the 

fillet radius areas are accounted for. The increase with I-section is 4-14% for EC1 and 

3-15% for EC2. For C1, they are 3-8% and 2-9%. With C2 and C3, the differences are 

lower, at 2-4% and 1-4% for C2 and 1-5% and 1-5% for C3.  In the following sections 

z t w,  and I I I  given in columns (2-4) of Table 4.4, obtained by ShapdeDesigner software, 

is adopted when determine the LTB resistance by closed-form equations.  
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4.8. Test results and discussion 

Presented in Table 4.5 are the results from 57 specimens with displacement boundary 

conditions EC1, whilst Table 4.6 collated those 57 tested with EC2. Each buckling 

resistance cr,e( )P  was determined either from the ‘peak’ load or Southwell plot method. 

A peak load result is acknowledged by adding the identifier ‘(B)’ (for Bifurcation) on 

the right-side of the test result.  Column (1) gives the labels for the 19 beam 

configurations whose geometries are given in Table 4.1. The results for this group of 19 

specimens having the same end and load height conditions are reported in the same 

columns. It is column (2) for TF loading and columns (5) and (8) for SC and BF 

loadings. 

The theoretical LTB resistances cr( )P  are predicted using Eqs. (4.3) and (4.4) with input 

geometric properties, that accounted for the fillet radius areas, taken from columns (2-4) 

of Table 4.4. The measured elastic constants LE  and LTG  used in the predictions are 

taken from Table 3.14. For the group with load applied on TF they are presented in 

columns (2-4), for SC loading they are in columns (5-7) and for BF loading, columns 

(8-10) are used. Columns (3), (6) and (9) present the theoretical crP . The ratio of 

cr,e cr/P P  are reported in columns (4), (7) and (10), respectively.  

 

4.8.1. I beam test results 

From the buckling loads for the I-section with EC1 reported in rows (1-5) of Table 4.5, 

it is found that cr,esP  are all higher than crsP , with cr,e cr/P P  from 1.07 to 1.21 for TF,  

1.06 to 1.19 for SC and 1.02 to 1.17 for BF. The equivalent results presented in Table 

4.6 for EC2 the ranges are 1.00 to 1.18, 0.94 to 1.01 and 0.79 to 0.89 for TF, SC and BF 

loading, respectively.  
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Table 4.5 Buckling results for beams with EC1 and vertical load applied at Top Flange (TF), Shear Centre (SC) and Bottom Flange (BF) 

 

Beam 

specimen 

Load applied on top flange (EC1_TF) Load applied at shear centre (EC1_SC) Load applied on bottom flange (EC1_BF) 

 

Experimental 

buckling load 

cr,e  (kN)P   

 

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.3)) 

 

 

cr,e

cr

P

P
 

 

 

Experimental 

buckling load 

cr,e  (kN)P   

 

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.3)) 

 

 

cr,e

cr

P

P
 

 

 

 

 

Experimental 

buckling load 

cr,e  (kN)P   

 

 

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.3)) 

 

 

cr,e

cr

P

P
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 I-4064 0.72 0.67 1.07 0.90 0.85 1.06 1.11 1.08 1.03 

I-3454 1.08 0.92 1.17 1.29 1.21 1.07 1.61 1.58 1.02 

I-2844 1.64 1.35 1.21 2.09 1.85 1.13 2.59 2.53 1.02 

I-2438 2.07 1.84 1.13 2.90 2.61 1.11 3.94 3.71 1.06 

I-1828 3.79 (B) 3.37 1.12 6.12 (B) 5.13 1.19 9.12 (B) 7.80 1.17 

C1-4064 0.65 (B) 0.71 0.92 0.8 (B) 0.94 0.85 1.11 1.24 0.90 

C1-3454 1.12 0.97 1.15 1.49 (B) 1.33 1.12 1.76 (B) 1.83 0.96 

C1-2844 1.45 1.40 1.04 1.96 2.03 0.97 2.65 2.95 0.90 

C1-2438 1.82 1.91 0.95 3.03 2.88 1.05 4.23 4.35 0.97 

C1-1828 3.31 3.47 0.95 5.54 5.67 0.98 7.57 9.27 0.82 

C2-4064 0.64 0.65 0.98 0.81 (B) 0.84 0.96 1.1 1.08 1.02 

C2-3454 0.97 0.89 1.09 1.34 (B) 1.19 1.13 1.59 (B) 1.59 1.00 

C2-2844 1.29 1.28 1.01 1.6 1.81 0.88 2.67 2.54 1.05 

C2-2438 1.87 1.73 1.08 2.66 2.54 1.05 4.12 3.73 1.10 

C2-1828 4.03 3.10 1.30 5.85 (B) 4.93 1.19 7.32 7.85 0.93 

C3-3454 0.38 0.36 1.06 0.44 0.42 1.05 0.47 0.50 0.94 

C3-2844 0.60 (B) 0.52 1.15 0.62 0.63 0.98 0.94 (B) 0.77 1.22 

C3-2438 0.78 0.69 1.13 0.88 0.87 1.01 1.07 1.09 0.98 

C3-1828 1.12 1.18 0.95 1.47 1.59 0.92 1.92 2.14 0.90 
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Table 4.6 Buckling results for beams with EC2 and vertical load applied at Top Flange (TF), Shear Centre (SC) and Bottom Flange (BF) 

Beam 

specimen 

Load applied on Top flange (EC2_TF) Load applied at shear centre ((EC2_SC) Load applied on bottom flange (EC2_BF) 

 

Experimental 

buckling load 

cr,e  (kN)P   

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.4)) 

 

cr,e

cr

P

P
 

 

Experimental 

buckling load 

cr,e  (kN)P   

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.4)) 

 

cr,e

cr

P

P
 

 

Experimental 

buckling load 

cr,e  (kN)P   

 

Theoretical 

buckling load 

cr  (kN)P   

(Eq. (4.4)) 

 

 

cr,e

cr

P

P
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 I-4064 1.03 1.03 1.00 1.34 1.43 0.94 1.68 2.00 0.84 

I-3454 1.47 1.40 1.05 2.01 2.06 0.98 2.63 3.02 0.87 

I-2844 2.1  2.06 1.02 3.24 3.22 1.01 4.48 5.03 0.89 

I-2438 3.33 2.82 1.18 4.53 4.65 0.97 6.04 7.66 0.79 

I-1828 6.29 (B) 5.31 1.18 NO LTB 9.65  - NO LTB 17.5  - 

C1-4064 1.01 (B) 1.06 0.95 1.26 1.58 0.80 1.59 (B) 2.34 0.68 

C1-3454 1.46 (B) 1.44 1.01 2.01 (B) 2.26 0.89 NO LTB 3.56  - 

C1-2844 1.87 2.10 0.89 3.49 (B) 3.54 0.99 4.29 5.99 0.72 

C1-2438 3.28 (B) 2.86 1.15 4.92 5.13 0.96 7.32 9.20 0.80 

C1-1828 5.02 5.34 0.94 8.44 10.7 0.79 12.7 21.4 0.59 

C2-4064 0.8 (B) 0.94 0.85 1.24 1.37 0.91 1.68 1.98 0.85 

C2-3454 1.22 1.28 0.95 1.91 (B) 1.96 0.97 2.37 (B) 3.00 0.79 

C2-2844 1.81 1.84 0.98 2.37 3.04 0.78 3.71 5.03 0.74 

C2-2438 2.62 2.50 1.05 3.83 4.38 0.87 4.95(B) 7.68 0.64 

C2-1828 5.47 4.59 1.19 NO LTB 9.00  - NO LTB 17.7  - 

C3-3454 0.52 0.56 0.93 0.66 0.71 0.93 0.8 0.91 0.88 

C3-2844 0.8 (B) 0.81 0.99 1.02 1.08 0.94 1.35 (B) 1.45 0.93 

C3-2438 1.12 1.08 1.04 1.38 (B) 1.51  0.91 2.22 (B) 2.12 1.05 

C3-1828 1.9 1.87 1.02 2.66 2.89 0.92 3.72 4.49 0.83 
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Test results and closed-form predictions were plotted with the abscissa axis takes the 

non-dimensional buckling load cr b L z LT t/y P L L E I G I  and the ordinate axis uses the 

non-dimensional beam parameter 2 2
L w LT t b/ ( )x E I G I L . Variables y and x will be 

used for a curve fitting evaluation.  It is noted that the non-dimensional form in the 

plotting (i.e. y vs. x) for a theoretical prediction by Eqs. (4.3) and (4.4) is independent of 

the beam’s L LT and E G .  

The analytical predictions are plotted as continuous curves. The solid line curve is for 

TF loading, whilst the dashed line and dash-dot line curves are for SC and BF loading, 

respectively. The measured cr,esP  are plotted with an open circle; open rectangular; 

open triangle symbols for TF, SC and BF loading cases.  

 

Figure 4.22 Plots for I-section with EC1 at three load heights for TF, SC and BF 

 



122 

 

 

Figure 4.23 Plots for I-section with EC2 at three load heights for TF, SC and BF 

 

Figures 4.22 and 4.23 present the curves for EC1 and EC2, respectively. Linear fitting 

was implemented on theoretical and experimental results for BF and SC loading and 

with EC1 and EC2. The linear expressions and best-fit lines are presented in the figures. 

In the expressions, the subscript ‘e’ is for ‘experimental’ and ‘t’ is for ‘theoretical’. 

It is found 2R  is >0.99 for all theoretical cases to indicate that the theoretical trends 

over the tested span range offer a linear relationship. Because 2R  for the test results lie 

in the range of 0.92 to 0.98 they also show the linear trend. This finding strongly 

advocates that the I beams testing was properly conducted, and that the form of the 

closed-form expressions Eqs. (4.3) and (4.4) is suitable for PFRP material. 

It is well-known (Allen and Bulson, 1980) that for a simply supported ( w 1k k  ) thin-

walled member whose warping rigidity w( )I  is negligible, such as in narrow 
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rectangular sections, the LTB resistance can be approximated by cr L z LT t
2

16.9
P E I G I

L
 . 

This form of expression can be obtained directly from Eqs. (4.3) or (4.4) by ignoring the 

term for wI  (i.e. assuming that w 0I  ) and load height gz
 
(i.e. g 0z  ). By neglecting 

wI , the predicted curve for EC1 in Figure 4.22 would become a constant line for

16.9y   and the curve for EC2 in Figure 4.23 becomes 26.7y  . This implies that the 

gradient m is mainly capturing the resistance contribution from warping rigidity. It can 

be seen that the gradients m of 8.7 and 15.6 for SC_EC1; 23.4 and 34.7 for BF_EC1; 

14.7 and 16.7 for SC_EC2; 31.0 and 49.2 for BF_EC2 are different. This indicates that 

the warping contribution to the LTB resistance is different in how the beams were tested 

and in how the analytical predictions have been obtained.  

Trumpf (2006) discovered that warping in his test series were either fully ( w 1k  ) or 

partly restrained ( w0.5 1k  ) and could not be ‘free’ w( 1)k  , as assumed in 

theoretical treatment. Lindner (1996) found that ‘free’ warping with steel could not be 

achieved in practice since it is partly restrained by the end plates in a beam-column 

connection. The level of restraint depends mainly on the thickness of the end plate.He 

took into account this influence by modifying the warping restraint factor kw to be a 

function of span length L  and a warping spring wc . The expression is:  

 w
w

w

0.5
1

2
1

k
EI

c L

 



  (4.21) 

In Eq. (4.21) w
3 ( ) / 3c Gt b h t   with b  and h  is the width and depth of the end plate. 

Eq. (4.21) shows that the influence of warping restraint will be more significant at 

shorter span. This is observed in Figure 4.22 where the differences between test results 

and predicted values are higher for x  tending towards 0.8.  
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Figure 4.24  Effect of vertical load height for I beams with EC1 

 

 

Figure 4.25 Effect of vertical load height for I beams with EC2 
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By examining Pcr,e in columns (2, 5 and 8) of in Tables 4.5 and 4.6, the influence of 

changing vertical load height g( )z
 
is observed. For an example, beam I-4064 from 

Table 4.5 (for EC1) has cr,esP  of 0.72 kN, 0.90 kN and 1.11 kN for TF, SC and BF 

loading, respectively. As known from theory (Clark and Hill, 1960, Trahair, 1993), LTB 

resistance increases when load position moves downwards from top to bottom flange.  

To further show the performance of test rig with the change in gz , the ratio of

cr,TF cr,SC/P P  and cr,BF cr,SC/P P  was plotted against the beam span L  in Figure 4.24 for 

EC1 and Figure 4.25 for EC2. The notation cr,TF cr,SC cr,BF,   and P P P  is for LTB load 

(obtained from either Eqs. (4.3) and (4.4) or testing) for TF, SC and BE loading, 

respectively. In the figures, the test results for TF use the circular symbol whilst those 

for BF adopt the rectangular symbol. The TF curve generated from Eq. (4.3) or Eq. (4.4) 

is presented with dash-dot line and BF curve is shown by solid line. Each group of five 

(or four) data points was fitted to a second degree polynomial curve.  

It is found from Figure 4.24 that 2R  for TF curves is 1.000 for Eq. (4.3) and 0.958 from 

test results. For BF the curves they are 1.000 and 0.976. This indicates that the quadratic 

function can be employed to fit either theoretical or experimental data results. For EC2 

in Figure 4.25, the 2
nd

 degree polynomial equation is found not fit to the test results as 

2 0.620R   and 0.852 for TF and BF, respectively. It is discovered that the test data 

points (especially with BF loading) are now closer to the straight line 1y 
 than by the 

predicted curves. This means the effect of load height, with BF_EC2 in testing, is less 

significant. This may be due to the effectiveness of EC2 to prevent minor axis rotation 

(i.e. 0.5k  ) that is believed to be reducing as the load height changes from top to 

bottom flange. A plausible explanation for this observation is that, as more load is 
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applied, the four steel rods become increasingly less effective in preventing the 

development of minor axis rotation.  

As illustrated in Figures 4.6 and 4.8 of sub-section 4.2.2, two vertical steel rods at the 

beam’s ends allow free lateral deflection. The positions of these rods were adjusted such 

that the beam fitted precisely between them. During this set-up process, it was likely 

that there were horizontal forces, pushing on both sides, of the beam. Such contact will 

create frictional forces that might have provided a degree of restraint against ‘free’ 

minor axis rotation. If rotation were, indeed, partly restrained, the ‘apparent’ buckling 

load cr,eP  would have increased. This is one possible explanation why the two TF test 

results of I-2844 and I-3454 (and others) are significantly higher than the predicted 

values. 

The comparison does show that tests with the I-section were properly conducted and the 

form of Eq. (2.1) is also suitable to predict the LTB resistance for PFRP beam. The 

loading fixture was able to execute different vertical loading positions. The testing has 

been found to represent the two displacement boundary conditions EC1 and EC2.  

However, the level of end restraint is found to be somewhere between fully ‘free’ and 

fully restrained. The warping effect at both ends is also found to have a significant 

effect. The form of end fixture employed could not provide the desired fully-free 

warping condition. There is always a degree of warping restraint that comes to light 

when comparing the linear trends using the predicted and test buckling loads. 
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4.8.2. Channel beam test results 

 

Figure 4.26 Plots for C1-section with EC1 at three load heights for TF, SC and BF 

 

Figure 4.27 Plots for C1-section with EC2 at three load heights for TF, SC and BF 
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Figure 4.28 Plots for C2-section with EC1 at three load heights for TF, SC and BF 

 

Figure 4.29 Plots for C2-section with EC2 at three load heights for TF, SC and BF 



129 

 

 

 

Figure 4.30 Plots for C3-section with EC1 at three load heights for TF, SC and BF 

 

Figure 4.31 Plots for C3-section with EC2 at three load heights for TF, SC and BF 
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Presented in Figures 4.26 to 4.31 are six plots for C1, C2 and C3 for end conditions 

EC1 and EC2. These plots are constructed in the same way as are the plots in Figures 

4.22 and 4.23 for the I-section. It is found that the channel beam test results show a 

more significant degree of inconsistency. It is believe that the lower variation with the I-

beam is because its shear centre nearly coincident with the geometrical centre of the 

symmetric cross-section. This desirable geometric feature makes setting-up of the 

loading disc (Figure 4.4) more straightforward, with less likelihood for introducing a 

load eccentricity, which adversely influences flexural response. 

Addition to the reasons that have been presented in sub-section 4.8.1 for why there are 

factors that could contribute to differences between theory and practice, the shear centre 

of a C-section is seen in Figure 4.32 to lie outside the centre of the end supports. This 

extra test variable can be considered as a form of load eccentricity. When combined 

with the inherent lateral load eccentricity and beam’s initial geometric imperfections 

there is to be a downward or upward change in the buckling resistance that cannot be 

easily quatified.  

 

 

Figure 4.32 Top view of channel test beam 

 

End support centre line

Shear centre line e y

X

Y
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Figure 4.33 Effect of load height for C1 beams with EC1 

 

 

Figure 4.34 Effect of load height for C1 beams with EC2 
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Figure 4.35 Effect of load height for C2 beams with EC1 

 

 

Figure 4.36 Effect of load height for C2 beams with EC2 

 

3
3
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Figure 4.37 Effect of load height for C3 beams with EC1 

 

 

Figure 4.38 Effect of load height for C3 beams with EC2 
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Figures 4.33 to 4.38 give the plots to show the effect of load height for C1, C2 and C3 

sections with EC1 and EC2. It is found that for C1and C2 with EC2, the effect of load 

height for bottom flange loading a significantly lower than predicted by theory. This is 

not the case for EC1. This observation supports the point making in sub-section 4.8.1 

about the effectiveness in the EC2 end condition of the four steel rods in restraining the 

minor axis rotation as load increases. This behaviour was not found for C3 beam 

because they were failed at much lower loads compared to those of other section and at 

a lower load, the ‘four steel rods’ system was able to give a better (higher) restraint 

about the minor axis rotation. 

 

4.9. Concluding remarks  

Presented in this chapter is a test methodology to determine LTB resistance of simply 

supported PFRP beams under to three-point bending. The test rig and fixtures were 

designed to provide loading and displacement boundary conditions that are assumed in 

theoretical treatment for LTB problem. 114 individual tests were conducted on 19 

beams with two displacement end conditions for EC1 and EC2 and at three load heights 

for TF, SC and BF. The experimental buckling load cr,eP  was established with ‘peak’ 

load or Southwell plot methods, depending on the load vs. mid-span rotation response. 

It is shown that the test configuration is adequately, but not exactly, satisfying the 

theoretical boundary conditions for buckling failure in the LTB mode. 

By taking the two moduli of elasticity in a closed-form equation to be the design values 

reported in the pultruder’s design manual it is found (Nguyen et al., 2014) that the test 
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results are all significantly higher than predicted. One of the main reasons for this 

finding is that the elastic constants for design are lower than actual. This is important to 

know because it shows that by choosing the pultruder’s tabulated values for the moduli 

of elasticity the closed-formed equations will give a LTB design resistance that is safe.  

By making a comparison between test results and predictions for the I-section using 

measured moduli of elasticity, it is shown that the test rig is performing properly and is 

able to give resistance measurement at different load height positions. Furthermore, the 

comparison is used to show that the relevant closed-form equation for the elastic critical 

buckling load is applicable. The differences between testing and theory are due to the 

displacement boundary conditions in the testing not fully satisfying those assumed in 

the theoretical treatment. The level of influence of experimental restraint above the 

desired ‘free’ warping restraint remains unknown. The combination of material, 

geometric and loading imperfection might have a significant effect on the LTB 

resistance. This feature will be investigated numerically in Chapter 5. For the three C-

sections, the comparisons reported in Tables 4.5 and 4.6 and Figures 4.26 and 4.31 have 

shown a significant scatter for reasons discussed.  

Figure 4.39 presents all the data points in a form of non-dimensional moments 

e Loc/M M  vs. generalised slenderness LT Loc cr/M M  . The testing buckling 

moment e( )M  is calculation for a simply supported condition by e cr,e / 4M P L . The 

local buckling moment Loc( )M is calculated as Loc Loc,e / ( / 2)yM I h . The local 

buckling stress for the I-section Loc,e( 134 MPa)   is taken from Section 3.7 of 

Chapter 3. The equivalent plotting in Figure 4.40 for steel section is taken from Trahair 

et al. (2007). The two figures show that a one-to-one correlation cannot be expected 

between the closed-form predictions and experimental results for either PFRP or steel 
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and thus a calibration is crucial to provide designers with a procedure suitable for a code 

of practice that is safe and relevant. The calibration process to be presented in Chapter 5 

will followed the Eurocode 0 approach to establish the material partial factor for the 

LTB (ultimate) mode of failure.  

 

Figure 4.39 Moment resistance of beams from author’s test results 

 

Figure 4.40 Moment resistance of beams in near-uniform bending, from Trahair et al. (2007)  
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  CHAPTER 5

 

NUMERICAL INVESTIGATION 

 

 

5.1. Introduction 

This chapter presents the Finite Element Analysis (FEA) investigation by ABAQUS
®

  

to simulate the LTB response of the PFRP beams in testing. The end displacement 

Boundary Conditions (BCs) were either EC1 or EC2 as defined in Chapter 4. Three 

vertical load positions for Top Flange (TF), Shear Centre (SC), and Bottom Flange (BF) 

loading were investigated. Numerical simulations were implemented for linear 

eigenvalue and geometric nonlinear analyses. For nonlinear analyses, measured initial 

out-of-straightness geometric imperfections were introduced into the beam’s FE mesh 

as a form of a half sine wave shape with the maximum value max  located at mid-span. 

The modelling technique and results for I- and C1-sections will be presented. The 

material properties for inputting into the Finite Element (FE) models were the mean 

values experimentally determined in Chapter 3. Sensitivity analyses were carried out on 

the influence of torsional constant, changes in modulus of elasticity, lateral load position, 

geometric imperfection and overhang length to evaluate their influences on the LTB 

resistances. The purpose of this chapter is to simulate the actual response of the tested 

beams under the laboratory set-up. Part of this chapter has been reported in Nguyen et al. 

(2013).   
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5.2. Modelling methodology 

The degree of accuracy of the FEA is affected by the decision made on the choice of 

modelling technique, element type and meshing density. Plate materials of PFRP shape 

are made of ‘matrix’ and ‘fibre reinforcement’. Reinforcement materials are layers of 

unidirectional E-glass fibres and continuous mats. ABAQUS


 (Dassault Systèmes 

Simulia Corp, 2013b) offers three approaches to model the plate materials: (1) 

‘microscopic’ approach, where matrix and reinforcement materials are modelled 

separately; (2) ‘macroscopic’ approach where plate materials are modelled as a single 

layer of orthotropic material. This technique is suitable for the modelling of overall 

structural behaviour of composite member. It requires the knowledge of

L T LT LT, ,  and E E G  which have been experimentally characterized in Chapter 3; (3) 

‘mixed’ approach where the panels are modelled to have a number of discrete 

‘macroscopic’ orthotropic layers. Of the three techniques, the second one is appropriate 

for this Ph.D. work. The two others require further knowledge of fibre architectures and 

mechanical properties of matrix and reinforcement which were not evaluated for this 

study. In terms of modelling and computational efficiency, the chosen method is the 

most reliable. 

Element type, meshing density is chosen based upon the performances of several 

popular elements that are evaluated by conducting an eigenvalue analysis on orthotropic 

beam buckling problem and compare the results for each elements type against the 

closed-form solution. Geometrical modelling to take into account the influence of the 

fillet areas, the modelling of EC1 and EC2 and method of simulating the point load for 

C-sections are also presented. 
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5.2.1. Input of material properties 

As shown in Chapter 3, LTB failure of a PFRP beam will normally happen when the 

longitudinal strains are within the elastic range. Experimental studies have also 

confirmed this observation (Correia et al., 2011, Nguyen et al., 2014). Linear elastic 

material model is chosen for the FE modelling.  

FRP materials can be considered as either orthotropic or transversely isotropic (Hyer 

and White, 1998, Tuttle, 2012). Orthotropic material has three mutually orthogonal axes 

on which the mechanical properties are different. Transversely isotropic material is a 

special case of orthotropic. It has a transverse plane with material properties the same 

(isotropic) in all directions. By denoting ‘1’ for the unidirectional (longitudinal) fibres 

direction; ‘2’ for the transverse (perpendicular to the fibres) direction; and ‘3’ for the 

through-thickness direction, the definition of orthotropic material involves nine 

independent elastic constants namely: three moduli 1 2 3( , , )E E E , three shear moduli 

12 13 23( , , )G G G  and three Poisson’s ratios 12 13 23( , , )   . If the distribution of fibres in the 

2- and 3- directions is the same, the material can be assumed to be transversely isotropic 

(Tuttle, 2012). PFRP materials comprise of layers of unidirectional fibres and layers of 

fibres that can be assumed to be randomly and uniformly distributed. It is acceptable to 

assume these materials as transversely isotropic. The input for transversely isotropic 

material requires five independent properties for 1 2 12 23, , ,E E    and 12G . It is to be 

noted that 1 2 12 12,E , ,E G   are for L T LT LT, , ,E E G  , respectively. The simplest way to 

define a transversely isotropic material in ABQUS
®
 is by specifying the nine 

engineering constants. They are 1 2 3, ,E E E  12 13 23, ,    12 13 23,G G G   

with  
 

2
23

23

.
2 1

E
G





  (5.1) 
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It is worth noting that under plane stress conditions, as in shell finite elements, only 

material properties on the 1-2 plane for 1 2 12, ,E E G  and 12  are needed (Tuttle, 2012). 

13G  and 23G  are only important for the modelling of transverse shear deformation 

(Dassault Systèmes Simulia Corp, 2013c). For PFRP material, 23  is a matrix dominant 

elastic constant and is known to be higher than 0.35 (Tuttle, 2012). By letting 

23 0.35   for all panels in a PFRP shape 23G  can be obtained using Eq. (5.1). The 

modelling values of I and C1 shapes are given in Table 5.1. 

Table 5.1 Material properties for flange and web panels of I- and C1-sections 

Shape Flange I1 Flange I2 Flange I3 Flange I4 
Web 

I5  

Web 

I6 

 

(1) (2) (3) (4) (5) (6) 

1E (GPa) 34.4 29.7 34.5 31.2 26.3 26.2 

2E (GPa) 10.8 10.8 10.8 10.8 10.8 10.8 

12G  (GPa) 4.2 4.2 4.2 4.2 4.2 4.2 

23G (GPa) 4.0 4.0 4.0 4.0 4.0 4.0 

12  0.23 0.25 0.24 0.21 0.22 0.23 

 

Flange C1-1 Flange C1-2 
Web 

C1-3 

Web 

C1-4 

1E (GPa) 29.7 30.5 34.4 31.7 

2E (GPa) 11.7 11.7 11.7 11.7 

12G  (GPa) 4.8 4.8 4.8 4.8 

23G (GPa) 4.3 4.3 4.3 4.3 

12  0.21 0.22 0.25 0.22 

I section

I1
I2

I5

I6

I3
I4

C1 section

C1-1

C1-2

C1-3

C1-4
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It has been shown in Chapter 3 that the four flanges and web in the I-section possess 

different values of the longitudinal modulus of elasticity LE . The transverse modulus of 

elasticity TE  was only determined for the web material and this is not important 

because the influence of changing TE  on the LTB resistance is insignificant. A change 

in 30% of TE  reduces or increases the LTB resistance only by < 1% (Stoddard, 1997). 

The major Poisson’s ratio LTv  was determined for all flanges and web materials. The in-

plane shear modulus was determined for the web only. It is acceptable to assume that 

the flanges have the same TE  and LTG  as does the web. These values are collected from 

Figure 3.10 and Table 3.14 and summarized in Table 5.1 for I and C1. 

 

5.2.2. Element types and mesh sizes 

The choice of element is between solid and shell. Shell elements are popular for thin-

walled structure problems in which the change of analysed character in the direction of 

thickness (i.e. through-thickness shear stress) can be neglected. Compared with solid 

elements, modelling with shell elements is generally simpler and the mesh specification 

is more straightforward to achieve. In terms of computational proficiency, shell 

elements can be time saving too, since they allow the modelling of thin properties with 

much fewer elements than that of solid elements. The shell element is adopted for this 

FE work. The three shell elements of S4R, S4R5 and S8R are commonly adopted for 

buckling analyses of PFRP structural members (Brooks and Turvey, 1995, Turvey, 

1996, Qiao et al., 2003, Shan and Qiao, 2005, Trumpf, 2006). Four-node general 

purpose linear shell elements S4R and S4R5 apply linear shape functions to interpolate 

deformation between nodes and are suitable for modelling both thin and thick shell 
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elements (Dassault Systèmes Simulia Corp, 2013c). The ‘5’ in S4R5 means that each 

node has 5 degrees of freedom. The removed degree of freedom is for rotation about the 

axis normal to the element mid-surface. This element formulation improves the 

computational efficiency. Thick shell element S8R employs quadratic shape functions 

by having eight nodes per element. The formulation for the element stiffness matrix 

adopts the Mindlin plate theory for first-order shear deformation. This element has 

displacement compatibility that avoids there being any discontinuities between element 

sides. This modelling attribute is known to give a more accurate shell element in a 

coarser mesh (Mottram and Shaw, 1996). The ‘R’ in S4R and S8R denotes that the 

number of Gaussian integration points is reduced to improve computational efficiency 

and to avoid shear locking (Dassault Systèmes Simulia Corp, 2013c).  

Eigenvalue analyses were carried out on a transversely isotropic simply supported 

w( 1)k k   I beam, dimension of 120×60×6 mm with span of 1500 mm, subjected to a 

point load at mid-span, at the shear centre, to compare the performances of the three 

shell elements S4R, S4R5 and S8R against a closed-form solution for LTB given by 

Kollár and Springer (2003). This solution which has been mentioned in Section 2.2 of 

Chapter 2, is for the LTB for othotropic material. It is given by exchanging the force-

strain relationships for isotropic by orthotropic material. It accounts for the reduction of 

LTB resistance due to influence of shear deformation. This reduction is higher for wide-

flange beam (e.g. breadth equal to depth) and/or for materials that have ratio for 

L LT/E G  relatively high (i.e. this ratio can be in range from 20 to 30 when fibres are of 

carbon). For narrow-flange beam, the reduction is within 5%. The difference between 

this solution and Eq. (2.1) is also insignificant. Details of the solution can be found in 

Sapkás and Kollár (2002). 
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Taking the moduli of elasticity as LE   30.7 GPa and LTG   4.2 GPa, the closed-form 

equation by Kollár and Springer (2003)  gives the buckling load to be 7.6 kN.  The input 

elastic constants for the elastic eigenvalue FEA are 1 L(or ) = 30.7 GPaE E ,

2 T(or ) = 10.8 GPaE E , 12 LT 13(or ) 4.2 GPaG G G  , 12 LT(or ) 0.23   , 23G  4 GPa. 

Mesh specification has the shell elements with an aspect ratio close to one to eliminate 

any loss in numerical reliability due to computation for the inclusion of shear flexibility. 

To create the beam mesh the shell elements are placed at the mid-planes of the two 

flanges and web panels. The performance of each shell element was evaluated by 

changing the aspect ratios of the mesh. For the flanges, the sizes are 5×5 mm, 10×10 

mm, 15×15 mm and 30×30 mm. In the web, the sizes chosen are 5.2×5 mm, 9.5×10 mm, 

14.25×15 mm and 28.5×30 mm. 

Table 5.2 Elastic LTB loads for different shell elements with mesh refinements 

Shell element side 

lengths (mm) 

Number of 

elements per metre 
cr,FEAP  (kN) 

S4R5 element 

cr,FEAP (kN)  

S4R element 

cr,FEAP (kN) 

 S8R element 

(1) (2) (3) (4) (5) 

30 267 6.15 6.15 7.48 

15 1067 7.16 7.15 7.45 

10 2400 7.34 7.32 7.45 

5 9200 7.42 7.41 7.44 

 

Table 5.2 reports in columns (3-5) the elastic buckling load cr,FEAP  for three shell 

elements as the mesh size is refined. Number of elements per metre is given in column 

(2) with the length of an element along the beam given in column (1). It can be seen that 

there is insignificant ( 3% ) change in cr,FEAP  when the element side length for S4R5 

and S4R is < 15 mm (in bottom two rows of table). On doubling the side length to 30 

mm the calculated bifurcation load is reduced by 16%. S8R gives more reliable results 
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with differences less than 1% for all mesh sizes. Because of its superior numerical 

performance, this double-curved thick shell element, with side lengths of 15 mm or less, 

is adopted in the mesh specification for the FE modelling presented next.  

 

5.2.3. Geometrical modelling 

Flange and web panels in a PFRP section are modelled as shell plates where the fillet 

areas between flange and web junction will be ignored. The typical shape for an I-

section is shown in Figure 5.1(a). This geometrical modelling can be acceptable if the 

fillet areas are relatively small and/or when the torsional constant tI  is not important for 

the problem to be analysed. For a LTB analysis tI  plays a significant role as it 

represents the torsion term in the lateral-torsional deformation. The calculation of TI  

for the I-section in Chapter 4 has shown that the fillet radius regions cannot be ignored 

in LTB analysis. The inclusion of these areas increase tI  by 28%, results in an 

increasing of up to 15% in the buckling resistance calculated by the closed-form 

equation (2.1). For C1, the increase in tI  is 15% and this gives an increase in LTB 

resistance of 9%. Therefore, to model the I- and C-sections in the series of test, the 

presence of the filler radius areas must be allowed for. A feasible way (Schleich et al., 

1998, Trumpf, 2006) to compensate for the ‘loss’ of these areas in the shell model is to 

assign the shell plates with difference thicknesses along the width. This change to the 

mesh specification is shown in Figure 5.1(b). 
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           (a)         (b) 

Figure 5.1 Modelling of an I-section: (a) ignoring fillet areas; (b) accounting for fillet areas 

 

 

Figure 5.2 Change in thicknesses at web-flange junction for I and C1 to account for fillet radius 

areas 

 

Figure 5.2 shows the modification to flange and web thicknesses to develop junction 

areas in I- and C1-sections.The original thickness of 6 mm is increased to 7.5 mm along 

a length of 21 mm for flanges and for a length of 10.5 mm for the web in the I-section. 

The new geometrical model gives the same tI  of 2.15×10
4
 mm

4
 with reported in Table 

19.5 21 19.5
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4.4. This model, however, increases the warping constant w( )I  by 3% and second 

moment of area about the minor axis z( )I  by 0.4%. These changes to geometrical 

properties do not have a significant effect on changing the LTB resistance. For the C1-

section, the new thickness for the junction areas is 7 mm and the length in both panels is 

11 mm. This modelling gives the same 4 4
t 1.72 10 mmI     as reported in Table 4.4 and 

increases wI  by 2.7% and zI  by 0.7%. 

The investigation of the effect of vertical load height requires the load to be applied on 

Top Flange (TF), at Shear Centre (SC) or on Bottom Flange (BF). The structural 

members modelled by shell elements will, by default, use the shells middle surface as 

the reference surface where the element’s nodes exist. The top or bottom flange load, in 

FE analyses, will be located at a distance of f / 2t  below or above the top or bottom 

flange surfaces. ABAQUS
® 

(Dassault Systèmes Simulia Corp, 2013b) has an option to 

define a distance from a reference surface, where the nodes are located, to the shell 

middle surface. In the FE modelling, the reference surface for top flange will be set on 

top of the shell plane and that for the bottom flange will be below the shell plane. This 

technique enables the vertical load to be applied at g / 2z h   and g / 2z h  , 

respectively. 

 

5.2.4. Simulation of displacement boundary conditions 

FE analyses are carried out with end conditions EC1 and EC2. These are BCs that have 

been implemented in the physical test programme of Chapter 4. EC1 allows for ‘free’ 

warping and ‘free’ minor axis rotation at both ends. This is the Simply Supported (SS) 
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condition with buckling resistance expected to have a lowest value compared to any 

other SS boundary condition and thus is most conservative for design purpose. EC2 

allows for ‘free’ warping but ‘fixed’ against minor axis rotation (i.e. clamped ends for 

lateral flexure of the beam). Figure 5.3 shows the Cartesian coordinate system for the 

FE modelling and defines the three translational ( , , )x y zU U U  and three rotational 

displacements ( , , )x y zUR UR UR . 

 

Figure 5.3 FE Cartesian coordinate system 

 

  
    (a) (b) 

Figure 5.4 Arrangement of EC1 for I-section: (a) in testing; (b) in FEA 

X

Y

U x

U y

URx

U
Ry

Z

U z

U Rz

U y = 0U y = 0

U y= 0U y = 0

U z = 0 for one end

U z = U x = 0 for the other
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EC1 as shown in Figure 5.4(a) was realised by having one pair of vertical steel rods 

arranged in contact with both side of the section at the beam’s ends. For the I-section 

this arrangement is simulated by restraining four nodes, one on each outstanding flange 

from horizontal movement as given in Figure 5.4(b). These are the contacting points 

between the section and the steel rods. The roller end is modelled by imposing the 

restraint for vertical movement zU  over the contacting areaq. For both I and C1, this 

area has a length of 40 mm. At the other end where the beam is stopped from moving 

along it axis, both zU  and xU  are restrained. 

 
 

  (a) (b) 

Figure 5.5 Arrangement of EC1 for C-section: (a) in tests; (b) in FEA 

 

The modelling of EC1 for C1-section is slightly different. One of the steel rods is in 

contact with the whole depth of the section. This area is fully restrained from having a 

deflection 0yU  . Figure 5.5(a) is a photo for the end boundary set-up. Figure 5.5(b) 

illustrates how EC1 is modelled in FEA.  

The only difference between EC2 and EC1 is that two pairs of steel rods are required 

with the former. For the I-section, it can be modelled by having eight nodes (two on 

U z = 0 for one end

U z = U x = 0 for the other

U y = 0

U y = 0

U y = 0
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each side of the outstand flanges), where the steel rods make contact with the beam end, 

with 0yU  . In the C-section, the restraint 0yU   is imposed at four nodes, two on 

each outstand flange. The web areas in contact are also restrained by specifying 0yU   

there. The modelling for vertical support restraints on bottom flanges are the same as in 

EC1. The modelling of EC2 for C-section is illustrated in Figure 5.6. 

 

 

Figure 5.6 FE modelling for steel rods in EC2  

 

5.2.5. Modelling of vertical load for channel section 

Because the I-section is doubly symmetric, its shear centre can be assumed to coincide 

with the section’s centroid (at mid-depth of the web). The vertical load for I-section is 

modelled simply by applying the concentrated point load on the middle surface of web 

panel. To introduce another modelling feature, a channel section has the shear centre 

located outside of the section area and this is illustrated in Figure 5.7. 

 

U y = 0
U y = 0

U y = 0
U y = 0

U y = 0
U y = 0

U z = 0
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Figure 5.7 Load at shear centre of C-section in FEA 

 

A feasible way to model the vertical load is by defining a reference point located at the 

shear centre as shown in Figure 5.7. This point is connected to the node at the mid-point 

of the web panel using ‘RIGID BODY’ type of constraint with ‘TIE NODES’. The two 

points are linked together by a rigid bar (massless) that allows for both translational and 

rotational degree of freedom. By applying the load at this reference point, the shear 

centre loading for a C-section is modelled. 

 

5.2.6. Analysis methods 

Both linear eigenvalue and nonlinear analyses are carried out on I and C1 beams for 

LTB failure. Linear eigenvalue buckling analysis predicts the elastic critical buckling 

load cr,FEA( )P  of a linear elastic beam where the change in beam geometry is neglected 

on increasing loading, up to the bifurcation failure. By applying perturbations to the 

mesh geometry of the unloaded beam, and looking for local and global deflections that 

could promote the onset of instability due to second-order effects, the FEA gives load 

factors (the eigenvalues) for buckling failures. The inputted load in the FE model is 

multiplied by the outputted load factor to obtain the elastic critical buckling load. The 

associated eigenvector to each eigenvalue establishes the corresponding mode shape. 

Rigid body

Reference point

(Shear centre)

mid-plane surface

es

https://wiki.csiberkeley.com/display/kb/P-Delta
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The buckling mode shape is defined by a normalized vector for nodal displacements 

with maximum displacement component set to 1.0 (Dassault Systèmes Simulia Corp, 

2013a). The mode shape can only show how the structure buckles, but gives no 

information to the actual load-deflection response. ABAQUS
®
 provides the two 

approaches of Lanczos and Subspace iteration to extract eigenvalue. The latter method 

is the default solver (Dassault Systèmes Simulia Corp, 2013b). Subspace iteration is 

effective for calculating a small number of eigenmodes, whilst the Lanczos method is 

expected to be more computational efficiency when a larger number of eigenmodes are 

required for a structural system that has many degrees of freedom (Dassault Systèmes 

Simulia Corp, 2013a). The Subspace iteration method is chosen for this FE work. 

Nonlinear analysis predicts the actual load-deflection response by applying the load in 

small increments and calculating the current (static equilibrium) deformation state at 

each increment. The load follows the deformation of the linear elastic beam until 

instability occurs, and this corresponds to what will happen in practice. There is no 

material nonlinearity to be modelled as it is correct to assume that the PFRP material 

behaves perfectly linear elastic. This modelling assumption remains acceptable, 

providing loading (to failure) is short-term and deformations from material 

viscoelasticity remain small. ABAQUS solves the problem of a geometric nonlinear 

structural by employing a modified Riks method. This commonly used nonlinear 

numerical method, also known as the arc-length method, was originally derived by Riks 

(1979) and was improved for computational efficiency by Crisfield (1981). As the post-

buckling response is not the main topic under consideration, the nonlinear analysis will 

be terminated a few increments after the beam has become unstable and its deformation 

is found to be progressing into the post-buckling region.  
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The initial minor axis out-of-straightness imperfection is introduced into the FE model 

to investigate the influence of this imperfection on the response of PFRP beams. The 

initial minor axis out-of-straightness imperfection ( )x  along a beam of span length L is 

assumed to follow the sinusoidal wave with the maximum imperfection max( )  at mid-

span. The imperfection is expressed by: 

 max sin .x

x

L


    (5.2) 

In Eq. (5.2) x is the distance along the beam from one end to the other. 

 

Figure 5.8 Minor axis out-of-straightness imperfect shape in FEA (exaggerated) 

 

This imperfection is introduced into the beam’s mesh by modifying the nodal 

coordinates through the adoption of a vector field. The modified shapes are obtained by 

scaling the first eigenvalue buckling mode shape for Euler buckling of a perfectly 

straight concentrically loaded column. The deformed shape (exaggerated) from the 

Eigenvalue analysis is shown in Figure 5.8. 

 Table 5.3 Maximum out-of-straightness imperfection for I and C1 beams 

Overall Span (mm) 
I-section C1-section 

max  (mm) max/L    max  (mm) max/L    

1900 0.78 2440 0.27 7040 

2500 2.86 870 0.80 3130 

3000 1.95 1540 1.55 1930 

3500 2.72 1290 1.72 2030 

Average 1540 Average 3530 

4100 2.66 4100 /1540   1540 1.16 4100 / 3530   3530 
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As the imperfection for the longest beam span of 4100 mm would not be measured, it 

was assumed to have an average value based on the measured max  at four spans 

between 1900 mm and 3500 mm. This average value is approximated by expressing the 

measured max  as a function of L  (e.g. for I-1900 it is 0.78 / 2440L ). For the I-

section the average max  is /1540L  and for C1-section it is / 3530L when the span is 

4100 mm. Reported in Table 5.3 are results for max . 

 

Figure 5.9 Two ways of introducing imperfect shapes 

 

Figure 5.9 shows two possible directions for the imperfection. If the section has material 

properties that are symmetrical about both major and minor axes, the presence of either 

imperfect shape will give the same LTB response. However, as the sections have shown 

in Chapter 3 to have non-symmetrical elastic constant, their response will be different. 

As result of this finding both imperfect shapes will be numerically investigated. 

Nonlinear FEA will also be conducted on beams without this geometric imperfection 

( max 0  ), since LTB failure will occur because of the changes in elastic constants. 

Imperfect shape 1

Imperfect shape 2

Original perfect shape
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5.3. Test results vs. eigenvalue analyses 

Followed the FE modelling methodology, presented simulation was carried out for 

tested beam configurations (i.e. span lengths, material properties, vertical load 

positions). Configurations involved the five spans ( )L
 of 1828, 2438, 2844, 3454 and 

4064 mm. The overall section length, with overhangs, are 1900, 2500, 3000, 3500 and 

4100 mm, giving an overhang length of 36, 31, 78, 23 and 18 mm at both ends. This test 

feature was also modelled. It will be shown in a sensitivity analysis in sub-section 5.5.6 

that the overhang length does change the LTB resistance.  

Each beam was tested with Shear Centre (SC) loading, followed by Top Flange (TF) 

loading after adjusting the loading disc to the required loading position. Bottom Flange 

(BF) loading was carried out, for convenience, by inverting the section, without 

changing the loading disc set-up, and in so doing the vertical load is applied to the 

bottom flange. The FE modelling follows this test procedure to simulate the different 

vertical load heights.  

Let’s now consider the I-section because the elastic constants were not the same in the 

four outstand flanges, the resistance for the load applied into the I1-I2 flanges (e.g. for 

TF loading) might be different to the case of TF loading into the I3-I4 flanges. Figure 

5.10(a) shows the first loading case and Figure 5.10(b) presents the other when the 

section inverted. The FE results will be reported as case 1 for load positions 

 (1),(2),(6)  in Figure 5.10 and as case 2 for load positions  (4),(5),(3) . This 

represents the test procedure for the three vertical load positions of TF, SC and BF. 
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(a)    (b) 

Figure 5.10 Two cases for beam in testing: (a) beam ‘upright’; (b) beam ‘inverted’ 

 

Table 5.4 FE results for I-section with EC1 

Span L  

(mm) 

cr,FEA,1P   (kN) for load 

positions: (1), (2), (6) in 

Figure 5.10 

cr,FEA,2P  (kN) for load 

positions: (4), (5), (3) 

in Figure 5.10 

cr,FEA,1

cr,FEA,2

P

P
  

TF SC BF TF SC BF TF SC BF 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1828 3.86 5.38 8.24 3.92 5.46 8.14 1.02 1.01 0.99 

2438 2.06 2.8 4.03 2.08 2.84 3.98 1.01 1.01 0.99 

2844 1.54 2.05 2.84 1.56 2.07 2.82 1.01 1.01 0.99 

3454 1.02 1.32 1.77 1.03 1.34 1.75 1.01 1.02 0.99 

4064 0.75 0.95 1.22 0.75 0.95 1.21 1.00 1.00 0.99 

 

Table 5.4 summarizes the eigenvalue buckling loads for case 1 in columns (2-4) for TF, 

SC and BF loading having spans given in column (1). Results for case 2 are given in 

columns (5-7). Comparing the buckling loads for a load position for case 1 with that 

equivalent for case 2 (e.g. column (2) vs. column (5)), it is found that the differences are 

0% to 2% for TF, 0% to 2% for SC and are 1% for BF. It is concluded from the 

eigenvalue analysis that the change is insignificant. From this point forward, only 

numerical results for case 1 will be used when comparing FE results with the physical 

test results in Chapter 4.  

I1 I2

I3 I4

I5

I6

Top flange loading (1)

Shear centre loading (2)

Bottom flange loading (3)

I3 I4

I1 I2

I5

I6

Top flange loading (4)

Shear centre loading (5)

Bottom flange loading (6)
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Table 5.5 FE and test results for EC1 and EC2 with I- and C1-sections 

I 

beam 

span 

(mm)
 

EC1 EC2 

cr,FEAP  (kN) cr,eP (kN) cr,FEAP  (kN) cr,eP (kN) 

TF SC BF TF SC BF TF SC BF TF SC BF 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1828 3.86 5.38 8.24 3.79 6.12 9.12 9.49 12.6 18.8 6.29 
NO 

LTB 

NO 

LTB 

2438 2.06 2.8 4.03 2.07 2.9 3.94 4.46 6.00 8.52 3.33 4.53 6.04 

2844 1.54 2.05 2.84 1.64 2.09 2.59 3.03 4.06 5.61 2.10 3.24 4.48 

3454 1.02 1.32 1.77 1.08 1.29 1.61 1.89 2.49 3.35 1.47 2.01 2.63 

4064 0.75 0.95 1.22 0.72 0.9 1.11 1.3 1.68 2.19 1.03 1.34 1.68 

 

C1 

beam 

span 

(mm)
 

EC1 EC2 

cr,FEAP  (kN) cr,eP (kN) cr,FEAP  (kN) cr,eP (kN) 

TF SC BF TF SC BF TF SC BF TF SC BF 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1828 4.01 5.95 9.56 3.31 5.54 7.57 9.88 14.1 22.1 5.02 8.44 12.7 

2438 2.17 3.11 4.68 1.82 3.03 4.23 4.76 6.81 10.3 3.28 4.92 7.32 

2844 1.61 2.26 3.28 1.45 1.96 2.65 3.14 4.52 6.66 1.87 3.49 4.29 

3454 1.0 1.46 2.03 1.00 1.49 1.76 2.02 2.83 4.03 1.46 2.01 
NO 

LTB 

4064 0.77 1.02 1.38 0.65 0.80 1.11 1.37 1.81 2.61 1.01 1.26 1.59 

 

 

Figure 5.11 Plots for cr vs. span L for I beams with EC1   and EC2     
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Figure 5.12  Plots for cr vs. span L for C1 beams with EC1   and EC2    

 

Table 5.5 summarizes the FE and test results for EC1 and EC2 for I- and C1-sections. 

Column (1) is used to give span L . FE predictions are given in columns (2-4) for EC1 

and (8-10) for EC2. Test results from Tables 4.5 and 4.6 in Chapter 4 are listed in 

columns (5-7) for EC1 and (11-13) for EC2. The differences between FE and test results 

are given by cr cr,e cr,FEA( / 1) 100%P P    . This percentage ratio is plotted against span

L in Figure 5.11 for the I beams and in Figure 5.12 for the C1 beams. It is seen from 

Figure 5.11 that for EC1 the FEA was able to give relatively good agreement with the 

test results; the difference is in range of -9% to 14%. Numerical results with EC2 are in 

the cr  range of -34% to 19%. Figure 5.12 shows cr  for the C1 beams are in range of 

-22% to 2% for EC1 and -49% to -26% for EC2. 

One reason for the differences is due to the uncertainty of the inputting data in the FE 

model. LTG  has been assumed to be constant at 4.2 GPa. The summary of previous 
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studies in Table 3.15 has shown that this modulus of elasticity can be in the range of 3-5 

GPa. From five coupon tests with material cut from the I-section, LTG  was determined 

to be from 3.66 GPa to 4.45 GPa in five material tests. The difference between the 

highest and the lowest measurement is 21.6%. It will be shown in sub-section 5.5.2 that 

a change of 20% in LTG  can increase or decrease the buckling resistance by over 10%. 

For C1-section, LTG  was measured to be between 4.52 GPa and 4.95 GPa for a 9.5% 

difference. It is worth mentioning here that Trumpf (2006) reported and used the lower 

LTG  of 3.1 GPa for his study with the same I-section. Other differences between FE 

simulation and test results are, of course, due to the inherent imperfections in the test 

set-up and test procedure that cannot readily be quantified. 

 

5.4. Test results vs. nonlinear analyses for I-section 

Only initial minor axis out-of-straightness imperfection was introduced into the FE 

model for the nonlinear analysis. Three nonlinear analyses were carried out for each of 

the three loading cases to involve the two imperfect shapes shown in Figure 5.9. The 

third analysis is without the geometric imperfection (i.e. max 0  ).  

The influence of imperfection can be found by examinating Figure 5.13 for the load P  

vs. vertical deflection w . It can be shown for a specific beam configuration that the 

higher the imperfection is, the lower will be P at a same w . It is, however, not 

straightforward to quantify the level of influence of the imperfection on the LTB 

resistance.  
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Figure 5.13 Definitions of limiting buckling load in Lee (2001) and Nguyen et al. (2013) 

 

Because the FE model includes the main geometrical imperfection, there is a progresive 

loss of stiffness when the beam starts to twist and bend laterally from the beginning of 

loading. As seen in Figure 5.13 the FE buckling load is now not a critical load cr,FEA( )P  

but a limiting value Limit,FEA( )P . 

It is necessary to define what Limit,FEAP  is. Singer et al. (1999) explain that there are a 

number of data reduction methods that can be employed to obtain an estimation.  Lee 

(2001), in his Ph.D. work on the flexural-torsional buckling of T-sections, suggested 

that buckling load for his testing Limit,eP  (Figure 5.13) can be estimated by the 

intersection point of extrapolating the two ‘linear’ lines for the ‘pre-’ and ‘post-buckling’ 

parts to the P w  response. In his LTB experiments with I-beams, Stoddard (1997) 

choose to define the limiting buckling load to be the load when the mid-span rotation 

(twist) of the top flange attained 5 degrees.  

L
o

ad
, 

P

Vertical deflection, w

P
Limit,e

 (Lee, 2001)

P
Limit,FEA

 (Nguyen et al., 2013)

Reduction of 'Stiffness' P/w by 50%
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To determine the LTB resistance of an end-loaded cantilever beam. Brooks and Turvey 

(1995) recorded their buckling load as the load at which the end-rotation started to grow 

rapidly. They, however, did not quantify what the rate of growth need to be. Mottram et 

al. (2003) and Afifi (2007) obtained critical buckling loads for their tested columns by 

applying the Southwell plot method (Southwell, 1932). Afifi also applied this method in 

her nonlinear FEA by commercial FEA software package ANSYS
®
. It is well-known 

that Southwell plot method cannot be adopted to evaluate the influence of initial 

geometric imperfection as it is only able to predict the critical buckling load crP .  

To define Limit,FEAP , Nguyen et al. (2013) have proposed a ‘stiffness reduction method’ 

which is illustrated in Figure 5.13. The definition comes from the observation that, in 

nonlinear analyses, the beam stiffness by /P w  is similar during pre-buckling for 

different sizes of imperfection. The limiting buckling load is defined as the P  at which 

the secant stiffness has been reduced by 50%. To apply this method with testing 

requires readings for vertical deflection. This condition was not satisfied because, as 

mentioned in Section 4.5 of Chapter 4, when a beam fails the readings from the two 

displacement transducers attached at mid-span cannot give the exact movement of the 

shear centre. To also have limiting buckling loads from testing, the method adopted in 

this thesis was similar to that of Stoddard (1997) who used load-rotation measurement 

and a limiting angular of rotation. 
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Figure 5.14 P vs.  of beam EC1_3500_SC for FEA (with different max ) and test result 

 

Figure 5.14 shows typical plots of load P vs. mid-span rotation 
 for beam 

EC1_3500_SC. The plots with circular, square and rectangular symbols are from FEA 

having different max . Plotting for test data is given by the asterisk markers. It is 

observed for testing that at a rotation of o5   as by Stoddard (1997), the beam has 

been deformed significantly into the post-buckling region. At this   the FE curves are 

seen to have converged together. It is decided, for this evaluation method, to use a 

Limit,FEAP  at o3  . 

It can be seen from Figure 5.14 that with max 0   the beam has the same ‘progressive 

failure’ as predicted when max 2.72   . Furthermore, with the same imperfection 

magnitude but in the opposite direction (e.g. max 2.72   and max 2.72  ) the P   
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responses are different because the I beam has varying elastic constants in the five 

panels. The two beam models twist in different direction. 

 

Figure 5.15 P vs.  of beam EC1_1900_TF for FEA (with different max ) and test result 

 

Figure 5.15 presents the same plots as in Figure 5.14 for beam EC1_1900_TF. It is 

observed that beam model with max 0.78 mm    had the highest resistance compared to 

other two models.  This indicates that combined imperfections of geometry and material 

could create a condition where beam has a better response under loading than when 

there is no geometrical imperfection (i.e. max 0  ).  

It is found from Figure 5.15 that the two beam models with max 0.78 mm    and

max 0.78 mm  failed to the same direction. This behaviour is different with that of 

beam EC1_3500_SC presented in Figure 5.14.  
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Table 5.6 Limiting buckling loads for FEA (with different max ) and tests for EC1 

Span 

(mm) 

TF
 

SC BF 

Limit,FEAP
 

(kN)
 

Limit,eP

(kN)
 

 

Limit,FEAP
 

(kN)
 

Limit,eP

(kN)
 

 

Limit,FEAP
 

(kN)
 

Limit,eP

(kN)
 

 

-δmax 0  δmax -δmax 0  δmax -δmax 0  δmax 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1828 3.38 3.61 3.86 3.48 4.62 4.97 5.36 5.96 6.91 7.50 8.10 8.64 

2438 1.56 1.93 1.81 2.10 2.05 2.58 2.44 2.50 2.80 3.52 3.39 3.83 

2844 1.27 1.45 1.48 1.55 1.66 1.92 1.97 2.00 2.25 2.62 2.74 2.60 

3454 0.81 0.95 0.92 0.96 1.00 1.20 1.17 1.04 1.28 1.53 1.51 1.33 

4064 0.62 0.72 0.70 0.57 0.76 0.90 0.88 0.72 0.96 1.15 1.13 0.83 

 

Table 5.7 Limiting buckling loads for FEA (with different max ) and tests for EC2 

Span 

 (mm) 

TF
 

SC BF 

Limit,FEAP
 

(kN)
 

PL 

(kN)
 

 

Limit,FEAP
 

(kN)
 

Limit,eP

(kN)
 

 

Limit,FEAP
 

(kN)
 

Limit,eP

(kN)
 

 

-δmax 0  δmax -δmax 0  δmax -δmax 0  δmax 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1828 8.20 8.69 9.22 6.28 10.7 11.4 12.1 - 15.9 16.8 17.9 - 

2438 3.34 4.10 3.89 3.28 4.40 5.44 5.22 3.53 6.17 7.67 7.47 5.71 

2844 2.46 2.79 2.87 2.13 3.23 3.69 3.83 2.68 4.44 5.08 5.53 3.97 

3454 1.47 1.75 1.70 1.32 1.89 2.28 2.22 1.49 2.52 3.04 3.00 2.06 

4064 1.04 1.23 1.19 0.81 1.31 1.56 1.52 1.06 1.69 2.02 2.00 1.14 

 

The limiting buckling loads from FEA Limit,FEA( )P  and experiment Limit,e( )P  for I beams 

with end boundary conditions EC1 and EC2 are presented in Tables 5.6 and 5.7. In the 

two tables, column (1) is used to give span L  whilst FEA and test results are given in 

columns (2-5) for TF loading, (6-9) for SC loading and (10-13) for BF loading. For each 

group of loading case, the first three columns present Limit,FEAP  for beams with three 
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different out-of-straightness imperfections expressed by the maximum imperfection 

max max( ,0 or )  . The fourth column in each group gives Limit,eP .    

By comparing Limit,FEAP  for a loading case, it can be seen that the size of max  has a 

significant influence. Difference between the highest and lowest (in terms of lowest) 

Limit,FEAP  for TF_EC1 is between 7-24%. It is 8-26% and 8-22% for SC_EC1 and 

BF_EC1 respectively. It is also found that beams with max 0   do not always give the 

highest Limit,FEAP . This is illustrated in Figure 5.15 for the  vs. P 
 for EC1_1900_TF. 

This response reflects the outcome from combination of geometric and material 

imperfections on a beam. The differences when the end displacement boundary 

conditions are EC2 are seem to give a similar range from the three loading cases. They 

are 6-23%, 6-24% and 6-25% for TF, SC and BF, respectively. 

    

 

Figure 5.16 Plots of Limit vs. span L for TF_EC1 
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Figure 5.17 Plots of Limit vs. span L for SC_EC1 

 

 

Figure 5.18 Plots of Limit vs. span L for BF_EC1 
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Figure 5.19 Plots of Limit vs. span L for TF_EC2 

 

 

Figure 5.20 Plots of Limit vs. span L for SC_EC2 
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Figure 5.21 Plots of Limit vs. span L for BF_EC2 

 

To compare Limit,FEAP  with Limit,eP  their difference is expressed, in percentage, by

Limit Limit,e Limit,FEA( / 1) 100%P P    . Plotted in Figures 5.16 to 5.18 is Limit  vs. L for 

loading case of TF, SC and BF and with EC1 end condition applied.   

If it is assumed that a difference of 10%  is for a good agreement, there are points (for 

each loading case) in the three figures that are within these limits. Equivalent plots with 

EC2 are presented in Figures 5.19 to 5.21. It is observed that the data point for EC2 

cannot all lies within the good agreement limits. 

Nonlinear analyses have shown that the LTB response is very sensitive to the magnitude 

of the initial geometric imperfection in the form of a minor axis half sine wave. Further 

investigations towards understanding the sensitivity of LTB resistance to changes in key 

parameters are presented in section 5.5. 
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5.5. Sensitivity analyses 

These were carried out with a number of parameters to see how either cr,FEAP  or 

Limit,FEAP  changes. The parameters investigated are: 5.5.1 geometric shape of the section; 

5.5.2 elastic constant; 5.5.3 geometric imperfection; 5.5.4 lateral load position; 5.5.5 

vertical load height; 5.5.6 the overhang length.  

 

5.5.1. Sensitivity of cr,FEAP  with the geometrical modelling 

It has been shown in Chapter 4 and Sub-section 5.2.3 that by modifying the mesh 

specification it is feasible to reliably compensate for the loss in torsional constant t( )I  

when adopting the conventional constant thickness shell modelling. To investigate the 

sensitivity of cr,FEAP  to the way a section is modelled, FE eigenvalue simulations have 

been carried out using the geometrical properties of the tested I-section.  

 

Figure 5.22 Sensitivity with geometrical modelling for EC1 
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Figure 5.23 Sensitivity with geometrical modelling for EC2 

 

In the first model adopted by Brooks and Turvey (1995), Turvey (1996), Qiao et al. 

(2003) and Shan and Qiao (2005) a section is formed from where the I-beams were built 

by three flat (constant thickness) panels. cr,FEA,1P  is obtained from eigenvalue analysis 

with this model. In the second model that takes into account the fillet radius areas 

(Schleich et al., 1998, Trumpf, 2006), the wall thickness local to the fillet regions is 

increased. This method is illustrated in Figure 5.1 and discussed in Sub-section 5.2.3. 

Critical buckling load from this improved model is given by cr,FEA,2P  which is expected 

to be higher than cr,FEA,1P   since the second model accounts for the additional resistance 

contribution from having fillet areas. The percentage difference between the two models 

is given by cr,FEA cr,FEA,2 cr,FEA,1( ) 100%/ 1P P    , and they are plotted in Figures 5.22 

and 5.23 against the lateral unrestrained span bL . For EC1 b ( )L L  are 1828, 2438, 

2844, 3454 and 4064 mm and with EC2 they b( 204)L L   are 1624, 2234, 2640, 
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3250 and 3860 mm. From the results in the figures, it is seen that the increase in cr,FEA  

is higher at longer spans. For changes to the vertical load height, the influence becomes 

more significant as the load moves from bottom flange to top flange. The effect of 

having EC1 is found to be higher than on having end conditions EC2. Differences for 

EC1 are from 6% to 15% while they are for EC2 between 4% and 11%. 

This investigation shows that the way flange and web panels are modelled can have a 

significant effect on the prediction of LTB resistance. The second model is 

recommended should FEA be required to be validated by experimental results. When 

buckling resistances are generated for the purpose of design validation, it is proposed 

that the first modelling method be adopted, as it will give a lower numerical prediction, 

which will be conservative. The calculation of the three geometrical properties z w,I I  

and tI  in the closed-form equation (Eq. 2.1) is usually done with fillet areas ignored. 

 

5.5.2. Sensitivity of cr,FEAP  with elastic constant 

The determination of LTG  is difficult for reasons discussed in Chapter 3. Values from 

16 sources collated in Table 3.15 show its value can mostly lie in the range from 3 to 5 

GPa. This sensitivity analysis focuses on changing LTG  with the assumption that other 

three in-plane elastic constants L T LT( ,  and )E E   remain unchanged and take the values 

given in Table 5.1. By changing LTG  in increments of 0.2 GPa, 11 cr,FEAsP  were 

obtained at each span. By changing the vertical load heights from BF to TF further 

cr,FEAsP  were generated.  
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Figure 5.24 Change in cr,FEAP vs. LTG for TF loading at two span lengths 

 

 

Figure 5.25  Change in cr,FEAP vs. LTG for SC loading at two span lengths 
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Figure 5.26 Change in cr,FEAP vs. LTG for BF loading at two span lengths 

 

To show the change with LTG  the percentage increases/decreases in cr,FEAP  from 

cr,FEA cr,FEA,base( / 1) 100%P P    are plotted against the percentage change in LTG  from

LT LT,base( / 1) 100%G G   . The base value for LT,baseG  is 4.2 GPa which is the mean 

measured, and with this shear modulus the eigenvalue analysis gave cr,FEA,baseP . Figure 

5.24 shows the plots for TF loading at the two spans of 1828 mm and 4064 mm. Figures 

5.25 and 5.26 give the equivalent plots for SC and BF loading, respectively. Irrespective 

of the loading case it is found that the change in LTG has a higher effect on LTB 

resistance at the shorter span. For TF loading, the change is -10 % to 7% at 1828 mm 

and is -17% to 10% at 4064 mm. Changing under loading case SC is -9% to 5% (1828 

mm) and -14% to 8% (4064 mm). For BF it is -6% to 4% (1828 mm) and 12% to 7% 

(4064 mm). The change in cr,FEAP  is also more significant as the load position moves 

from BF to TF. This parametric study shows that cr,FEAP  is significantly influenced by 
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the choice of LTG . Varying LTG  from 3 GPa to 5 GPa, it is revealed that the critical 

buckling load will increase by up to 17 % at L 1828 mm and by up to 27% at the 

longer span. To validate FE predictions with test results, it is important to characterize 

the in-plane shear modulus properly.  

 

5.5.3. Sensitivity of Limit,FEAP  with geometric imperfection 

To investigate the sensitivity of cr,FEAP with a change in the initial geometric 

imperfection, nonlinear analyses have been conducted with beam I-2500 having a point 

load applied at the shear centre. The max  is considered to be varying from 0 mm to 10 

mm (or 0 to / 250L ).  This imperfection was introduced into the FE’s mesh with lateral 

initial deformation that would give the highest effect on LTB failure (i.e. the direction 

for max   as shown in section 5.4).   

 

Figure 5.27 Load vs. mid-span rotation curves for I-2500_EC1_SC with max  changing 
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Figure 5.28 Load vs. mid-span rotation curves for I-2500_EC2_SC with max changing 

 

 

Figure 5.29 Limiting buckling loads of I-3500_SC for EC1 and EC2 with max changing  
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Figures 5.27 and 5.28 show 11 curves for  vs. P 
 with end conditions EC1 and EC2. 

Moving from one curve to the next is for a 1 mm change in max . The outer two curves 

for max 0  mm and -10 mm are highlighted using a bolder line. To establish what 

Limit,FEAP  is, the author takes P  when the mid-span rotation attains 3 degrees. This limit 

for   is given by a vertical dashed line in Figures 5.27 and 5.28. Figure 5.29 presents 

value of Limit,FEAP vs. max  for EC1 and EC2. Curve for EC1 uses a circular symbol 

whilst that for EC2 has a rectangular shape. The Limit,FEAP  is compared using the 

max 0 mm   prediction and the percentage difference is written above the data point. 

 It is seen in Figures 5.27 and 5.28 that the beam’s response will change significantly 

with an increase in max , the variation is most stark at the lower loads. For example, P

for the same mid-span rotation of 20 mrad (over 1 degree) with max 0 mm   is found to 

be three times to that with max 10    mm. When   is 60 mrad the change in P  is 

double. As P  increases, the curves are seen to be convergent. 

 The maximum initial out-of-straightness imperfection allowed by ASTM D3917 

(ASTM, 2012a) is / 240D L  which is 10.4 mm for I-2500. This allowance ( )D  is 

slightly higher than the highest imperfection numerically investigated.  It is found from 

Figure 5.29 that should a member in possesses this magnitude of geometric 

imperfection its LTB capacity decrease 50% compared to that without imperfection 

which is significant. 

BS EN 13706-2 (BSI, 2002b) gives the allowance of 20.0005D L ( D and span length 

L in metres) for this imperfection. Letting L  be 2500 mm this standard allows max  is 

3.1 mm. It can be seen from Figure 5.29 that if a member possesses this imperfection, 

the LTB resistance would decrease 15% and this seems to be more appropriate as an 
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upper limit to this geometric imperfection. It is found from Figure 5.29 that the 

influence of the geometric imperfection is almost independent from the change for 

displacement boundary conditions for lateral flexure. It can be drawn from this 

investigation that the influence of max  must be taken into account when analysing the 

LTB problem of PFRP beam. 

 

5.5.4. Sensitivity of Limit,FEAP  with change of lateral load position  

When a beam is subjected to a point load that is offset laterally from the plane of the 

shear centre its response will be influenced by the introduction of an additional torque. 

This influence is evaluated by conducting nonlinear analyses with beam I-3000 having 

EC1 or EC2, and load applied on TF. The initial out-of-straightness geometric 

imperfection is for the Euler buckling shape with max 1.95 mm    taken from Table 

5.3 for the worst case. 

Figure 5.30 shows numerical results from the nine lateral load positions on top flange. 

In this figure, the load applied on the vertical plane of Shear Centre (SC) is denoted as

0P . The other eight positions are offset by 3mm, 5 mm, 10 mm and 15 mm from 0P in 

both directions and are labelled 3 5 10 15, 3 5 10,  ,  ,   ,  ,  P P P P P P P   and 15P . The subscript 

defines the distance in millimeters from the SC plane. The figure also shows the 

positive directions for axis rotation xUR  and vertical and lateral deflections zU  and yU . 

Labels for each flange outstand of I1-I4 are also presented. These flange outstands have 

the different value of longitudinal modulus of elasticity LE  listed in Table 5.1. 
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Figure 5.30 Lateral load positions on top flange for I-section (not to scale) 

 

 

Figure 5.31  vs. P  for I-3000-TF_EC1 with different lateral load positions 

SC

P0 P5 P10 P15P-5P-10P-15

5 mm 5 mm 5 mm 5 mm

I1 I2

I3 I4

URx (+)

Uy (+)

Uz (+)

3 mm2 mm

P-3 P3

3 mm 2 mm
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Figure 5.32  vs. P  for I-3000-TF_EC2 with different lateral load positions 

 

Figures 5.31 and 5.32 present the P   curves for the nine loading positions with end 

conditions EC1 and EC2, respectively. The load label (e.g. 0P ) is given with an arrow 

pointing toward its P   curve. It is seen in both figures that for load position 0P  the 

beam twists to the left-side positive direction for   (i.e. 0xUR  ) because the elastic 

constants are unsymmetrical in the flange outstands and the imperfection was 

introduced to the left-side. Beams with loads applied eccentrically on the right-side for 

15 10 5,  and P P P  deformed to the right (  is negative). This shows that the effect of load 

eccentricity for these three loading cases outweighs the combined effect of geometric 

and material imperfections. At load eccentricity of 3 mm to the ‘right’ (i.e. 3P ) beam 

started to fail to the ‘left’. This indicates that the effect of lateral load eccentricity is 

now lesser than the combined geometric-material imperfections. From this loading point 
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towards the left beam will, of course, fail to the left. This is shown on the figure that 

beams with 3 5 10 15, ,  and P P P P     failed in the same direction with that for 0P .  

It is observed that at the load eccentricity 3P , the beam has a response and resistance 

that is the higest. Such a combination of imperfections, which can exist in reality, have 

put the beam into a ‘perfect’ state where beam will fail at a significantly higher load 

than expected or not go unstable. This finding explains what Mottram (1992a) has found 

from 35 repeated LTB tests, on a single span PFRP I-beam, that they can have 

significantly different buckling resistances with the highest nearly doubles the lowest. 

This investigation could also (partly) explains there were five ‘NO LTB’ failure beam 

configuration in Chapter 4. The presence of some test results that shown to be 

significantly higher than the predictions might also due to this reason. 

 

Figure 5.33 Influence of lateral load eccentricity on Limit,FEAP for I-3000-TF 
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The Limit,FEAsP  obtained at o3   are plotted against the lateral load eccentricities yse in 

Figure 5.33. Curve for EC1 has the circular symbol points and that for EC2 has the 

rectangular shape. Using Limit,FEAP  for when y 0e   as reference, the Limit,FEAsP  can be 

given a difference value besides their symbol. It is found that the Limit,FEAP  for load 

eccentricity 3P is highest amongst nine loading cases. For the same magnitude of ye , say 

3  mm the beam has a different Limit,FEAP . While the limiting buckling load for 3P  is 19% 

higher than 0P , that for 3P  is 15% lower. The shape of the two curves shows that 

change in Figure 5.33 show Limit,FEAP  is not influenced by having end conditions of EC1 

or EC2.  

 

5.5.5. Sensitivity of Limit,FEAP  with change of vertical load height  

LTB resistance is influenced by the vertical distances of load g(z )
 
from the shear centre 

due to the additional torque about the longitudinal centroidal axis that is generated from 

the lateral movement of the vertical point load when instability happens. The 

investigation has been conducted using eigenvalue analysis (Nguyen et al., 2013). This 

particular parametric study has showed that a change in load height had a more 

significant effect on resistance when a beam is of PFRP than if of structural grade steel. 

This sub-section further the investigation by performing a nonlinear analysis with beam 

I-3500-EC1 having the point load moved from TF to BF in 12 equal increments. Figure 

5.34 shows the P   relationships with EC1 and EC2 end boundary conditions. Curves 

for TF to BF with EC1 are plotted between the two curves labelled BF_EC1 (bottom 

flange loading for EC1) and TF_EC1, having thicker line width. Curves for TF to BF 

with EC2 are similarly presented. 
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Figure 5.34 Load vs. mid-span rotation for I-3500 with EC1 and EC2 

 



182 

 

 

Figure 5.35 Limiting buckling load vs. vertical load height for I-3500 with EC1 and EC2 

 

It is found that a load height change affects the deformation significantly. To investigate 

the influence of load height on the limiting buckling load, Limit,FEAP  was obtained using 

the same data analysis method of Section 5.4 and is why there is a vertical dashed line at 

o3   in Figure 5.34. Figure 5.35 reports Limit,FEAP
 
plotted against the vertical load 

height gz . The percentage differences relative to the SC load height are given above the 

data points. Limit,FEAP  is found to reduce by 20% when load moves from SC to TF and 

increase by 30% when moving down from SC to BF. The curves in Figure 5.35 also 

show that the influence of load height does not seem to be affected by the change in end 

boundary conditions. 
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5.5.6. Sensitivity of cr,FEAP  with overhang length 

LTB resistance is influenced by the overhang length (Figure 5.36) that extends beyond 

the end supports. This change in response is due to an increase in the effective warping 

restraint as the overhang length grows (Stoddard, 1997). To investigate this influence 

eigenvalue analyses were conducted with the measured I section properties at a fixed 

span ( )L
 of 1500 mm and with EC1 end conditions. The overhang length parameter 

ranged from 0 mm to 1250 mm, increasing in increments of 50 mm. This analysis gives 

26 FE models having overall length OverallL  from 1500 mm to 4000 mm.  

 

Figure 5.36 Illustration for test beam with overhang length 

 

 

Figure 5.37 Sensitivity of cr,FEAP  
with the overhang length 

LOverall

Overhang length L Overhang length
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This parametric study was implemented with the three vertical load heights of TF, SC 

and BF. Resistances were normalized using the ratio of cr,FEA cr,base/P P  where cr,baseP  is 

the FE resistance for beam configuration without an overhang length (i.e. overallL L 

1500 mm). cr,FEAP
 
is LTB resistance calculated by an FE model.  

In Figure 5.37 this ratio is plotted against the non-dimensional length term Overall /L L .  

The three curves are for the three loading positions, each having 26 numerical 

predictions. The plots show that the influence of overhang length is significant, with an 

increase of up to 33% for TF, 28% for SC and 26% for BF. It is found that the greatest 

increase in resistance is for the longest OverallL . When Overall / 2L L    this rate of increase 

is found to reduce significantly and almost disappears for Overall / 2.5L L  . In the plots 

this is shown by cr,FEA cr,base/P P  tending to a constant as the overall span increases. This 

observation gives evidence that the overhang is developing a restraint to warping 

beyond the end supports. The longer the overhang length the greater ‘fixity’ imposed 

until, at the end supports, warping is fully fixed. This numerical finding shows that the 

test results are, more or less, influenced by the overhang length. This finding is also 

important to know for design, since the overall length of a beam Overall( )L  is normally 

assumed to be the beam span and thus any increasing due to there being overhangs is 

ignored. This FE investigation has shown that what in standard practice is conservative 

and valid. 

 

5.6. Concluding remarks 

Details of the FE modelling methodology with ABAQUS
®
 for LTB instability on PFRP 

beams have been presented. The plates were treated as single layered transverse 
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isotropic materials. The 8-noded thick shell element (S8R) with side lengths of 15 mm 

or less was adopted. The fillet areas at flange-web junction were taken into account by 

assigning ‘over-thickness’ elements in these regions. As adopted in physical testing, the 

displacement boundary conditions were EC1 and EC2. Loading for C-sections was 

simulated by using a ‘RIGID BODY’ constraint. Linear eigenvalue and nonlinear 

analyses were conducted on I and C1 beams to gain knowledge and understanding of 

their LTB resistances. 

Comparison between FE eigenvalue simulations and test results has shown a good 

agreement for EC1. The difference is in range of -9% to 14% for I and -22% to 2% for 

C1 beams. The FEA does not seem to give a good correlation with test results for EC2. 

It gives results that are all higher to significant higher with differences from -34% to -19% 

for I and -49% to -26% for C1 beams.   

Nonlinear analyses were carried out considering the influence of initial out-of-

straightness geometric imperfection. This imperfection was introduced into the FE 

model as a half sine wave shape with the maximum magnitude of max  located at mid-

span. Other initial geometric imperfections were not included because they are believed 

to have a much lower influence on a beam’s buckling resistance as there are no 

measured values for these imperfections. Comparison between FE nonlinear analyses 

and test results were made using a limiting buckling load, which is defined as the load 

when mid-span rotation reached 3 degrees. This approach was needed because the load-

displacement responses do not show a clear buckling bifurcation due to the introduction 

of imperfections. Results are used to demonstrate a better correlation especially for EC1.  

It is found that the combination influence of geometric and material imperfection could 
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create a condition where beam has a better response under loading than when there is no 

geometrical imperfection (i.e. max 0  ). 

Sensitivity analyses were implemented using six parameters to show how the LTB 

resistance is changing. These investigations showed the following:  

(1) The modelling method that takes into account the fillet radius areas gives 

significantly (6-15% for EC1 and 4-11% for EC2) higher LTB resistance 

compared with the modelling option of constant thickness panels in the PFRP 

sections. The author finds that it is necessary to use this modelling feature when 

analysing the LTB phenomenon.  

(2) The change in in-plane shear modulus LTG  from 3 GPa to 5 GPa increases 

LTB resistance by 17% for short span (e.g. 1828 mmL  ) and up to 27% at a 

long span (e.g. 4064 mmL  ). The characterization of LTG is highly important 

for the LTB problem. 

(3) A beam’s LTB response is sensitive with the change in geometric 

imperfection. It is found that when the minor axis out-of-straightness 

imperfection increases from 0 mm to 10 mm, value of Limit,FEAP  reduces more 

than 50%. The author makes the case that the allowance for this imperfection

( )D  in ASTM D3917 of / 240L is too high, and not appropriate. Although 

pultruders are likely to produce shapes that do not possess such a high out-of-

straightness the author suggests that code writers ensure that the LTB mode of 

ultimate failure will occur after a SLS (Serviceability Limit State) has been 

attained. The author has found that equivalent allowance in (BSI, 2002b) of

20.0005D L  is a more suitable practical limit for this tolerance in the 

pultrusion process. 
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(4) A beam’s behaviour is significantly influenced by the lateral position of the 

vertical loading. In practice, a PFRP beam cannot always be subjected to gravity 

loading acting on the vertical plane of the shear centre. The most common case 

would be to have the loading applied with a lateral eccentrically. It is believed 

that an eccentricity up to 3 mm could have existed in the author’s series of 

physical tests. The FE investigation has shown that for an eccentricity of 3 mm, 

the value of Limit,FEAP  reduced by up to 17% or increased by up to 19%  

(5) The influence of vertical load height is more significant in PFRP than in steel. 

Using nonlinear FE analyses and the limiting buckling load when mid-span 

rotation attained 3 degrees, it has been shown that, when compared to the shear 

centre situation, Limit,FEAP  decreases by 20% for top flange loading and increases 

by 30% for bottom flange loading.  

(6) As the overhang length increases the LTB resistance also increases from 

warping restraint  

It is to be noted that the influence of geometric imperfection, vertical load height, and 

lateral load eccentricity have been evaluated using a limiting buckling load which value 

is highly influenced by how it is defined. The adoption of another buckling load 

definition will change the numerical results but will not alter the findings.  

The FE model by the author can be further improved to give a more realistic prediction 

of the actual behaviour of beam in testing. The improvement could be carried out on the 

modelling of the loading disc with its pulley system rather than a simplified method as 

in this study. The modelling for end displacement boundary conditions EC1 and EC2 

can also be improved by considering the frictional contact between the steel rods and 

the flange outstands. 
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  CHAPTER 6

 

DESIGN PROPOSAL FOR BEAM IN BENDING 

 

 

6.1. Introduction to design proposal 

This chapter presents the preliminary investigation into the development of an approach 

for instability design check of PFRP beams in bending for inclusion in a future 

Eurocode. The calibration method adopts the general case ‘strength’ function in 

Eurocode 3 (BSI, 2005a) and follows the standard procedure in Eurocode 0 (BSI, 2002a) 

when calibrating the ‘design model’ to determine the partial factor M  for the LTB 

mode of failure. The design expression for resistance is given by dividing the strength 

function by M . The starting point of the calibration process is the observation that the 

isotropic closed-form formula (Eq. 2.1) generally used to predict crM  for steel can be 

used with PFRP. A number of items of information that have not been determined in the 

Ph.D. work are adopted either from Eurocode 3 (EC3) for steel or from previous 

research. A brief introduction to the LTB design methods that have been popular in steel 

structural design will be given prior to the calibration procedure. The calibration for 

PFRP beams is carried out with I- and C1-sections that have had their properties 

characterized in Chapters 3 and 4. 
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6.2. Lateral buckling checking methods in standards 

Laterally unrestrained beams subjected to flexure about their major axis are required to 

have LTB failure checked in design. Each design standard had its own method to 

determine whether a structural member is acceptable. Briefed herein are the LTB check 

methods in the two design standards of Eurocode 3 (EN 1993-1-1:2005) and AISC 360-

10 (AISC, 2010) 

 

6.2.1. Procedure in American Standard AISC 360-10 

The LTB check for steel beam in accordance with the specification for Structural Steel 

Buildings (AISC, 2010), hereafter referred to AISC, follows the Load and Resistance 

Factor Design (LRFD) approach is expressed by: 

 u b nM M  (6.1) 

In Eq.(6.1) uM is the required design moment calculated using LRFD load combinations,

nM is the resistance moment and b 0.9   is the resistance factor for flexure. The 

resistance factor b  can be said to be equivalent to the Eurocode partial factor for 

resistance M( ) , and so from how Equation (6.1) is applied, M 1.11   for steel.  

The nominal flexural strength is determined based on the lateral unsupported length bL

(Figure 6.1). If b pL L
 
(determined by Eq. F2-5 in AISC), no LTB check is required.  

When p b rL L L 
 
(determined by Eq. F2-6 in AISC), the LTB check must take the 

inelastic behaviour of steel into account. 
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Figure 6.1 Lateral unsupported length for LTB check with American standard 

 

When b rL L  the nominal flexural strength n crM M . The critical elastic buckling 

moment crM  can be determined from Eq. F2-4. This expression is identical with Eq. 

(2.1) (for EC3) when the lateral bending factor k  and warping factor wk  have the same 

value. There is no consideration in AISC for the possibility of k  being different from 

wk ; there is in EC3. 

The LRFD function in the Pre-standard for LRFD of Pultruded FRP structures (ASCE, 

2010) is somewhat different to that in AISC. It is expressed as:   

 u nM M  (6.2) 

Where   is the time effect factor that is to account for when the design loading is 

applied long-term (to account for the creep in FRP materials), and for reduction in 

mechanical properties due to durability effects, such as occurs from long-term exposure 

to aggressive environments.   is specified in Table 2.3-1 in the Pre-standard. The 

resistance factor   is now taken to be 0.7 to reflect the greater uncertainty in 

Lateral unsupported length,         
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quantifying the ‘true’ behaviour and a higher target reliability factor ( )  than if the 

material is steel. This resistance factor can be assumed to be equivalent to having

M 1.43  .   

 

6.2.2. Procedure in Eurocode BS EN 1993-1-1:2005 

EC3 provides three methods for checking the LTB resistance of laterally unrestrained 

steel beams subjected to flexure about their major axis. Procedures are detailed in clause 

6.3.2 of the standard EN 1993-1-1:2005. The primary method adopts the LTB curves for 

two cases, the general case in clause 6.3.2.2 and special case in clause 6.3.2.3 for rolled 

sections and equivalent welded sections.  

 

Figure 6.2 Buckling curves in Eurocode 3 

 

For a beam to pass the LTB check, the design buckling resistance moment of the beam

b,RdM  must be higher than the design value of the moment EdM . 
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b,RdM  is taken as (BSI, 2005a): 

 
y

b,Rd LT y

M

f
M W


  (6.3)  

The reduction factor LT  is the solution to the Ayrton-Perry Formula (APF) based LTB 

curve (Szalai and Papp, 2010). For the general case it is determined as: 

 LT
2 2

LT LT LT

1




   

 (6.4) 

where     2
LT LT LT LT,0 LT0.5 1              

     
   (6.5) 

In Eq. (6.5) LT,0  is the plateau length in Figure 6.2. 

LT  can also be expressed in a form of a generalized imperfection factor LT  as (Szalai 

and Papp, 2010): 

   2
LT LT LT0.5 1       (6.6) 

The non-dimensional slenderness LT  is given by: 

 
y y

LT

cr

W f

M
   (6.7) 

The imperfection factor LT  can take the value of 0.21; 0.34; 0.49 and 0.76 for different 

cross-sectional class of standard steel section. 

 As shown in Eq. (6.7) the determination of the non-dimensional LTB slenderness LT  

requires the knowledge of the elastic critical buckling moment crM . Eurocode 3 (EC3) 

provides no expression or guidance on how crM  should be calculated. Its calculation 

was considered by the code writers to be standard textbook material. Eurocode 3 only 
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mentions that this value should be determined based on gross cross-sectional properties 

and accounted for the loading conditions, the moment distribution and the lateral 

restraints (clause 6.3.2.2(2)). Discussion on the determination of crM  has been given by 

the author in Chapter 2 and so will not be repeated here.   

The LTB design check using EC3 procedure is straightforward, starting with the 

determination of crM  for the calculation via Eq. (6.7) of the non-dimensional 

slenderness LT of the member. The imperfection factor LT is selected based on cross-

section type and the beam’s /h b ratio. This follows with the calculation of the 

reduction factor LT  using Eq. (6.4). The next step is to calculate b,RdM  by Eq. (6.3). 

The last step in the general case procedure is to compare this value with the given EdM . 

The member is safe against LTB failure if the latter is smaller than the former. 

 

6.3. Design proposal and the Eurocode 3 approach 

To generate a LTB curve in accordance with EC3 for PFRP beams, four factors need to 

be characterized. These are developed in the sub-sections 6.3.1 for the plateau length

LT,0 , 6.3.2 for the imperfection factor LT , and 6.3.3 for the safety partial factor M . 

 

6.3.1. Plateau length     

The plateau length LT,0  is the value of the non-dimensional slenderness for LTB below 

which no failure occurs. For beams with slendernesses LT LT,0   only cross sectional 

resistance check is required. For LT LT,0  , LTB governs the design with partial safety 
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factor M . EC3 for structural steel gives LT,0 0.2  for general case and LT,0 0.4   

(maximum) for rolled sections and equivalent welded sections. It is worth noting that 

LT,0  is influenced by how the cross-section ultimate mode of failure is defined. For 

steel it depends of section classification and is either the moment resistance at first yield

yM  or the plastic moment of resistance pl,yM . Having high relative strength-to-stiffness 

ratio, it is argued that the ‘cross-section’ mode of failure for PFRP beams is to be local 

buckling rather than materrial rupture. It can be seen that the cross-section ultimate 

mode of failure for steel sections (e.g. yielding strength) is well-defined. In PFRP the 

moment for local buckling failure will depend on the cross-section geometry, load 

application and end boundary conditions. Because it also depends of the rotational 

stiffness along the junctions between panels in the thin-walled section, its determination 

by either a closed-form equation or physical testing is not straightforward.  

Trumpf (2006) proposed a plateau length of LT,0 0.5   for PFRP beam sections (from 

Fiberline Composites A/S), based on his Ph.D. work combining testing and numerical 

investigations. The author adopts Trumpf’s value for the calibration in this chapter. It is 

noted that M is not sensitive to the value of LT,0 .   

Taking local buckling to be the cross-section ultimate mode of failure the non-

dimensional slenderness LT  is defined as: 

 
y Loc

LT

cr

W

M


     (6.8) 

In Eq. (6.8) Loc  is the local buckling stress and yW
 
is the elastic section modulus. The 

elastic critical LTB moment crM  can be determined using Eq. (2.1) . 
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In this study Loc  is obtained by the author from a concentrically compression test on 

short column and is reported in sub-section 3.7. It is 134 MPa for I and is 100 MPa for 

C1. It is assumed that Loc  is constant over a flange outstand in a beam and so the 

calibration procedure neglects the presence of a stress gradient through the depth of the 

section.    

 

6.3.2. Imperfection factor 

In the APF based solution to account for member geometric imperfections the 

generalized imperfection factor LT  is expressed by an expression using the mid-span 

minor axis out-of-straightness imperfection 0( )v  and initial twist rotation 0( ) . LT  is 

defined by (Szalai and Papp, 2010): 

 
y y yt

LT 0 0 0

w z cr w

W W WGI

W W M W
        (6.9) 

For the beam, yW , zW  and wW  are the elastic major axis, elastic minor axis and warping 

sectional moduli. 

The warping sectional modulus can be expressed in a form of warping function as: 

 
w

w

max

I
W 


   (6.10) 

where max is the maximum of the warping function. This value is calculated using 

software ShapeBuilder (IES  Inc, 2013). For the I-section in this study, it is 31.79 10

mm
2
 and for C1, it is 31.91 10 mm

2
. 
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The two imperfections of 0v  and 0  are assumed to satisfy the deformed shape for the 

first LTB mode, that is: 

    
0 cr

0 cr,z

v M

N
        (6.11) 

In Eq. (6.11) cr,zN  is the Euler buckling load. By taking the measured initial minor axis 

out-of-straightness imperfection max  in Section 4.4 to be 0v  the initial twist 

imperfection 0   can be determined using Eq. (6.11). Substituting these two geometric 

imperfections into Eq. (6.9) the generalized imperfection factor for the PFRP section is 

determined. 

Table 6.1 gives in columns (1-7) the relevant data for the calculation of LT  that is 

presented in column (8). It is found that for the I-section the factor has a range of values 

from 0.18 to 0.51 and for the C1-section the range is from 0.05 to 0.18. 

From Eqs. (6.5) and (6.6) we have: 

   y Loc
LT LT LT LT,0 LT

cr

0.5
W

M


    

 
     

 
 (6.12) 

 

Table 6.1 Calculation of generalized imperfection factor LT   

 Beam 0v

(mm) 

0

(rad) 

yW  

(mm
3
) 

wW  

(mm
4
) 

zW  

(mm
3
) 

crM   

(kN.m) 

LT   LT  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

I-1828 0.78 0.013 

44.65 10  
53.92 10

 

33.63 10
 

61.62 10   0.18 0.11 

I-2438 2.86 0.036 61.08 10  0.51 0.26 

I-2844 1.95 0.021 58.87 10  0.31 0.14 

I-3454 2.72 0.024 56.98 10  0.36 0.14 

C1-1828 0.27 0.006 

44.30 10  
53.30 10

 

34.63 10
 

61.37 10  0.05 0.04 

C1-2438 0.80 0.013 61.02 10  0.11 0.07 

C1-2844 1.55 0.021 58.78 10  0.18 0.11 

C1-3454 1.72 0.019 57.23 10  0.16 0.08 
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To obtain estimations for LT  we substitute yW , crM  and LT  from columns (4), (7) 

and (8), taking Loc = 134 MPa for the I-section and Loc  = 100 MPa for the C1-section 

into Eq. (6.12). Loc  is given in sub-section 3.7.3 of Chapter 3. The value of LT  at 

each beam span is reported in column (9) of Table 6.1. It is found that the maximum

LT  for the I-section is 0.26 and is 0.11 for the C1-section. These imperfection factors 

are relatively lower when compared to those in EC3. For the author’s calibration study 

LT 0.34   is chosen for both sections. The reason for this choice is that it would be 

most convenient for structural engineering designers if the imperfection factor for LTB 

design with PFRP was one of the four recommended in EC3. The imperfection factor 

equal to 0.34 is for curve b in EN 1993-1-1:2005.   

 

 

6.3.3. Partial factor for lateral-torsional buckling  

Presented next is the standard procedure to generate the partial safety factor M . The 

calibration is conducted with the I-section and C1-section as two separate sets of data. 

Each set of data includes results from 30 physical tests reported in Chapter 4. The 

calibration procedure follows the steps for the Standard Procedure in D8.2.2. of 

Eurocode 0 (BSI, 2002a). These are now presented and explained. 

 

Step 1: Establish a ‘design model’ 

The ‘design model’ is the theoretical prediction of the resistance tr . The chosen strength 

function is Eq. (6.5) with LT  defined for PFRP to be Eq. (6.8). The expression that 

involves all the basic variables is:  

     t rt LT t w y L LT Loc Loc y Loc, , , , , ,r g X I I I E G M W      (6.13) 
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This ‘design model’ includes seven basic variables of  t w y L LT y, , , , ,I I I E G W  and Loc . 

It is a requirement that all the parameters to be measured for each individual test. 

Amongst the seven variables, t w y, ,I I I  and yW  are the section geometrical properties 

calculated using the measured geometric dimensions reported in Table 4.1. Calculations 

do not account for the contribution of the fillet areas; they are ignored in EC3 too. This 

is an appropriate approach as the theoretical prediction for LTB resistance will be lower 

compared to that when the fillet areas are included. Mechanical properties L LT,E G and 

Loc were not measured for each test specimen. The characteristic value of LE or LTG  is 

assumed to be constant, and is taken from Table 3.14. Their Standard Deviation (SD) 

and Coefficient of Variation (CV) are computed based on data in Table 3.7 for LE and 

Table 3.13 for LTG . It is worth noting that EC3 does not consider any of these material 

properties as a variable. This may due to the modulus of elasticity E  of structural steels 

being well-defined, and consistent for the different steel grades (e.g. S235 to S335). The 

situation is, however, different with PFRP material as mechanical properties are more 

difficult to characterize. Trumpf (2006) combined LE with zI  (for flexural rigidity) and

LTG with tI  (for shear  rigidity) when establishing the CV of zI  and tI . There is no 

evident in his Ph.D. thesis to show that the material properties were determined for each 

test specimen.  

Loc  is 134 MPa and 100 MPa for the I- and C1-sections. In the calibration process 

these strength values are assumed to be both the nominal and characteristic values. This 

approach is similar to EC3, in which only a nominal value (also assumed to be the 

characteristic value) for the yield stress yf  
is given. The coefficient of variation for yf  is 

fy 7%V  (Sedlacek et al., 1989). The mean value ym( )f of yf is taken as the 2.3% fractile 

value from: 
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  
1

ym y fy fyexp 1.64 0.5f f V V


      (6.14) 

By assuming that the mean value of Loc  can also be taken as the 2.3% fractile value, 

Eq. (6.14) can also be adopted for a PFRP material. It is assumed that the CV of Loc  is

σLoc 10%V  , which is higher than fy 7%V   for steel. This assumption is appropriate 

because as yield stress of steel is better defined than Loc , it variability should be 

smaller. By applying Eq. (6.14) the mean local buckling stress is Locm 166  MPa for 

the I-section and Locm 124   MPa for the C1-section. 

Assuming that Eq. (6.14) can also be adopted for LE and LTG we have: 

  
1

Lm Lm EL ELexp 1.64 0.5E E V V


     (6.15) 

and  
1

LTm LTm GLT GLTexp 1.64 0.5G G V V


  
.
 (6.16) 

Table 6.2 Basic variables and their CVs 

Specimen 

 

 tI  

(mm
4
) 

 

wI  

(mm
6
) 

zI  

(mm
4
) 

 

yW  

(mm
3
) 

 

LE  

(N/mm
2
) 

LTG  

(N/mm
2
) 

Loc  

(N/mm
2
) 

(1) (2) (3) (4) (5) (6) (7) (8) 

I-1828 1.71×10
4  7.03×10

8  2.18×10
5  4.95×10

4 

30600 4200 134 

I-2438 1.68×10
4 7.00×10

8 2.17×10
5 4.97×10

4 

I-2844 1.73×10
4 7.05×10

8 2.19×10
5 4.99×10

4 

I-3454 1.72×10
4 7.06×10

8 2.19×10
5 4.95×10

4 

I-4064 1.68×10
4 6.99×10

8 2.16×10
5 4.97×10

4 

Mean  1.70×10
4 7.03×10

8   2.18×10
5  4.97×10

4 32000 5000 166 

SD  210  3.21×10
6   1.14×10

3  180 700 340 13.4 

CV (%) 1.2 0.46 0.53 0.36 2.17 8.09 10 

C1-1828 1.52×10
4 6.46×10

8 2.83×10
5 4.43×10

4 

31600 4800 100 

C1-2438 1.52×10
4 6.36×10

8 2.74×10
5 4.27×10

4 

C1-2844 1.49×10
4 6.34×10

8 2.78×10
5 4.38×10

4 

C1-3454 1.52×10
4 6.43×10

8 2.76×10
5 4.27×10

4 

C1-4064 1.52×10
4 6.37×10

8 2.77×10
5 4.31×10

4 

Mean  1.51×10
4 6.39×10

8 2.78×10
5 4.32×10

4 34060 5100 124 

SD  140 4.48×10
6 3.58×10

3 530 1100 140 10.0 

CV (%) 0.91 0.76 1.29 1.24 3.50 2.91 10 
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Table 6.2 reports the data for the variables in Eq. (6.13). Column (1) is used to give 

beam labelling in a form of section’s name (i.e. I or C1) and span L  (e.g. 1828 mm). 

Columns (2-5) list the measured geometric parameters of t w z, ,I I I and yW . By 

substituting values of LE  and LTG from Table 6.2 into Eqs. (6.15) and (6.16), their 

means can be determined. Given in columns (6-7) are the characteristic values for LE

and LTG . Their SDs and CVs are presented below the mean. It is observed that the CVs 

of geometrical properties for the I-section are in range of 0.36% to 1.2% and for the C1 

section they are between 0.76% and 1.29%. For I-section Trumpf (2006) presents, CVs 

for geometrical properties from 0.79% to 1.81%. EC3 (Sedlacek et al., 1989) reports 3% 

for the four properties in columns (2-5) in Table 6.2.  

The CVs for the mechanical properties in Table 6.2 at 2.17% to 8.09% for the I-section 

and at 2.91% to 3.50 % for the C1-section are significantly higher.  

 

Step 2: Compare test results and theoretical predictions 

The theoretical moment resistances tr  (i = 1 to n, where n is number of test) are 

obtained by substituting the variable data listed in columns (2-8) in Table 6.2 with the 

loading height and end displacement boundary conditions into the resistance function 

Eq. (6.13). The experimental moment resistances, for er , are acquired using: 

 
cr,e

e
4

P L
r


  (6.17) 

In Eq. (6.17) cr,eP  is the experimental buckling load reported in Tables 4.5 and 4.6 for 

the five spans, two displacement boundary conditions of EC1 and EC2 and three load 

heights. 
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Table 6.3 er  and tr  for the I-section 

Beam 
TF  (Top Flange) SC (Shear Centre)  BF (Bottom Flange) 

er  (kN.m) tr  (kN.m) er  (kN.m) tr  (kN.m) er  (kN.m) tr  (kN.m) 

(1) (2) (3) (5) (6) (7) (8) 

I-1828_EC1 1.73 1.23 2.80 1.85 4.17 2.71 

I-2438_EC1 1.26 0.89 1.77 1.27 2.40 1.79 

I-2844_EC1 1.17 0.78 1.49 1.07 1.84 1.46 

I-3454_EC1 0.93 0.65 1.11 0.85 1.39 1.12 

I-4064_EC1 0.73 0.55 0.91 0.70 1.13 0.89 

I-1828_EC2 2.87 1.87 - 3.18 - 4.82 

I-2438_EC2 2.03 1.32 2.76 2.14 3.68 3.34 

I-2844_EC2 1.49 1.15 2.30 1.78 3.19 2.71 

I-3454_EC2 1.27 0.95 1.74 1.40 2.27 2.04 

I-4064_EC2 1.05 0.81 1.36 1.14 1.71 1.60 

 

Table 6.4 er  and tr  for the C1-section 

Beam 
TF (Top Flange) SC (Shear Centre) BF (Bottom Flange) 

er  (kN.m) tr  (kN.m)
 er  (kN.m) tr  (kN.m)

 er  (kN.m) tr  (kN.m)
 

(1) (2) (3) (5) (6) (7) (8) 

C1-1828_EC1 1.51 1.27 2.53 1.96 3.46 2.84 

C1-2438_EC1 1.11 0.94 1.85 1.37 2.58 1.97 

C1-2844_EC1 1.03 0.81 1.39 1.16 1.88 1.63 

C1-3454_EC1 0.86 0.69 1.29 0.93 1.52 1.26 

C1-4064_EC1 0.66 0.60 0.81 0.79 1.13 1.03 

C1-1828_EC2 2.29 1.84 3.86 3.06 5.80 3.99 

C1-2438_EC2 2.00 1.34 3.00 2.21 4.46 3.23 

C1-2844_EC2 1.33 1.16 2.48 1.88 3.05 2.82 

C1-3454_EC2 1.26 0.99 1.74 1.50 - 2.21 

C1-4064_EC2 1.03 0.87 1.28 1.26 1.62 1.80 

 

Table 6.3 presents in column (1) the I-section labelling and in columns (2-3) er  and tr

for TF loading height for the ten test listed in rows (1-10). Results for SC and BF 

loading cases are given in columns (5-6) and (7-8).  The equivalent er  and tr  values for 

the C1 beams are reported in Table 6.4. 
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Figure 6.3 Plot of er  vs. tr  for I-section 

 

Figure 6.4 Plot of er  vs. tr  for C1-section 



203 

 

Figures 6.3 and 6.4 are plots of er  vs. tr using the data presented in Tables 6.3 and 6.4. 

In the figures the data points for EC1 are given by the circular shaped symbol and those 

for EC2 have a rectangular symbol. A linear line for e tr r  is plotted to show that, if the 

‘design model’ is exact, and complete, all the data points would lie on this line.  As is 

normal found in practice there is some scatter and er  (measured) is generally higher 

than tr  (theoretical).  

 

Step 3: Calculate the mean correction factor mb   

The mean correction factor bm can be estimated using: 

 
e t

m
2

t

r r
b

r




 (6.18) 

 

Figure 6.5 e t/r r   vs. non-dimensional slenderness LT  for I-section 



204 

 

 

Figure 6.6 e t/r r  vs. non-dimensional slenderness LT  for C1-section 

 

The test results given in Tables 6.3 and 6.4 give the mean correction factor m 1.29b  for 

I-section and m 1.27b   for C1-section. Figures 6.5 and 6.6 are for plots of e t/r r with 

LT  for the I-section and C1-section. It is seen that only for I beams does all the data 

points locate above the line e t/ 1r r  , which means the expression for tr  gives ‘safe’ 

results. Test results using the C1-section give a higher scatter, especially with the EC2 

displacement boundary conditions. The EC2 data points in Figures 6.5 and 6.6 are 

highlighted by having a rectangular symbol.  

 

Step 4: Determine of the coefficient of variation for the error terms 

The error term i  ( 1i n  ) for each test results eir  is calculated from: 
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 ei

m ti

i

r

b r
   (6.19) 

Estimation for the coefficient of variation for the error δV  can be obtained by: 

  2
δ exp 1V s   (6.20) 

where   
2

2

1

1

1

n

i

i

s
n





  

  (6.21) 

In Eq. (6.21) , ln( )i i  and 
1

1 n

i

in 

           

Reported in Tables 6.5 and 6.6  are i  and i  for the two beam sections, calculated 

using Eqs. (6.19) and (6.20). The error terms and i are presented in columns (2-3) for 

TF, (4-5) for SC and (6-7) for BF loading. δV  is obtained by substituting these tabulated 

parameters into Eqs. (6.21) and (6.20). δV
 
is 0.101 for the I-section and 0.112 for the 

C1- section. It has been shown that the coefficient of variation for the error terms is 

close to 10%.  

Table 6.5 i  and i for I-section 

Beam 
TF (Top Flange) SC (Shear centre) BF (Bottom Flange) 

i   i   i   i   i   i   
(1) (2) (3) (4) (5) (6) (7) 

I-1828_EC1 1.08 -0.081 1.17 -0.157 1.19 -0.172 

I-2438_EC1 1.09 -0.089 1.08 -0.074 1.04 -0.036 

I-2844_EC1 1.16 -0.148 1.08 -0.072 0.97 0.026 

I-3454_EC1 1.12 -0.111 1.01 -0.011 0.96 0.042 

I-4064_EC1 1.03 -0.031 1.01 -0.009 0.98 0.025 

I-1828_EC2 1.19 -0.170 - - - - 

I-2438_EC2 1.19 -0.171 1.00 0.004 0.85 0.160 

I-2844_EC1 1.01 -0.005 1.00 0.001 0.91 0.094 

I-3454_EC2  1.03 -0.030 0.96 0.044 0.86 0.150 

I-4064_EC2 1.00 0.004 0.92 0.083 0.82 0.193 
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Table 6.6 i and i for C1-section 

Beam 
TF (Top Flange) SC (Shear centre) BF (Bottom Flange) 

i   i   i   i   i   i   
(1) (2) (3) (4) (5) (6) (7) 

C1-1828_EC1 0.94 0.065 1.01 -0.013 0.96 0.045 

C1-2438_EC1 0.93 0.070 1.06 -0.055 1.03 -0.029 

C1-2844_EC1 1.00 -0.001 0.95 0.056 0.91 0.098 

C1-3454_EC1 0.99 0.010 1.08 -0.080 0.95 0.054 

C1-4064_EC1 0.87 0.140 0.81 0.206 0.86 0.148 

C1-1828_EC2 0.98 0.022 0.99 0.010 1.14 -0.133 

C1-2438_EC2 1.17 -0.157 1.06 -0.063 1.09 -0.082 

C1-2844_EC2 0.90 0.106 1.04 -0.039 0.85 0.162 

C1-3454_EC2 1.00 -0.002 0.91 0.098 - - 

C1-4064_EC2 0.93 0.072 0.80 0.226 0.70 0.350 

 

Step 5: Examine the compatibility    

The purpose of this step is to examine the compatibility of the test results with the 

assumptions in the ‘design model’. It is suggested that if the scatter of the e t( , )r r pairs is 

too high, it can be lowered by either adjusting the design model to accounts for the 

ignored variables or to separate the test results into sub groups, in which the 

contribution of those additional variables can be considered constant. In this 

investigation, all the influencing factors have been considered. It is found that the data 

points of the I-section spread evenly and the scatter is not too high. There are data 

points of the C1-section that show a larger scatter. Because of the preliminary nature of 

the study to calibrate M  it was decided not to alter the design model.  

 

Step 6: Calculate the coefficients of variation for the basic parameters 

The coefficient of variation XiV  for the seven basic parameters in the resistance function 

have been determined and presented in Table 6.2. 
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Step 7: Determine the characteristic value of the resistance kr  

To determine this value, it is required that the coefficient of variation for rV  be 

calculated using: 

 2 2
r rtδV V V  . (6.22) 

rtV  should be calculated using: 

 
 

2
rt

rt
2

mrt 1

1 j

i

ii

g
V

g X X




 
   

 
   (6.23) 

where j  is the number of basic parameters and mX is the mean of the basic parameters, 

as given in Table 6.2.  

Eq. (6.23) is computed using Matlab (Mathworks Inc, 2013). The rtsV  resented in 

column 2 of Tables 6.7 and 6.8 are for the two sections. It is seen that these CVs are 

very small having a maximum value of 0.003 for the I-section and 0.003 for the C1-

section. When substituting δV  and rtV  into Eq. (6.22) to determine rV , the contribution 

of rtV  can be ignored for the I-section since: 

2 2 2 2
r δrtδ 0.101 0.003 0.10105 0.101V V V V       . 

Similarly, for the C1-section we have: 

2 2 2 2
r δrtδ 0.112 0.007 0.1122 0.112V V V V        

It is acceptable in the calibration procedure to treat r δV V . A similar observation is 

given in Trumpf (2006), who found that when calibrating the design model for LTB the 

contribution of rtV  to rV  is small enough to be ignored. 
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Table 6.7 Calculation of safety partial factor M  
for I-section 

Specimen         

(1) (2) (3) (4) (5) (6) (7) 

I-1828_TF_EC1 0.0010 

0.101 

0.0095 1.41 1.22 1.156 

I-1828_SC_EC1 0.0007 0.0066 2.08 1.81 1.149 

I-1828_BF_EC1 0.0006 0.0057 3.05 2.64 1.155 

I-2438_TF_EC1 0.0012 0.0121 1.04 0.90 1.156 

I-2438_SC_EC1 0.0008 0.0080 1.45 1.26 1.151 

I-2438_BF_EC1 0.0006 0.0056 2.02 1.75 1.154 

I-2844_TF_EC1 0.0014 0.0140 0.89 0.77 1.156 

I-2844_SC_EC1 0.0009 0.0093 1.21 1.05 1.152 

I-2844_BF_EC1 0.0006 0.0063 1.63 1.41 1.156 

I-3454_TF_EC1 0.0015 0.0153 0.74 0.64 1.156 

I-3454_SC_EC1 0.0011 0.0105 0.96 0.84 1.143 

I-3454_BF_EC1 0.0007 0.0071 1.26 1.09 1.156 

I-4064_TF_EC1 0.0016 0.0156 0.65 0.55 1.182 

I-4064_SC_EC1 0.0011 0.0110 0.81 0.70 1.157 

I-4064_BF_EC1 0.0008 0.0076 1.02 0.88 1.159 

I-1828_TF_EC2 0.0009 0.0091 2.15 1.85 1.162 

I-1828_SC_EC2 0.0008 0.0075 3.63 3.14 1.156 

I-1828_BF_EC2 0.0026 0.0259 5.64 4.88 1.156 

I-2438_TF_EC2 0.0013 0.0125 1.54 1.33 1.158 

I-2438_SC_EC2 0.0008 0.0075 2.46 2.13 1.155 

I-2438_BF_EC2 0.0007 0.0074 3.81 3.30 1.155 

I-2844_TF_EC2 0.0015 0.0149 1.32 1.14 1.158 

I-2844_SC_EC2 0.0009 0.0088 2.02 1.75 1.154 

I-2844_BF_EC2 0.0006 0.0061 3.03 2.63 1.152 

I-3454_TF_EC2 0.0017 0.0166 1.10 0.95 1.158 

I-3454_SC_EC2 0.0010 0.0101 1.60 1.38 1.159 

I-3454_BF_EC2 0.0006 0.0062 2.29 1.98 1.157 

I-4064_TF_EC2 0.0017 0.0170 0.95 0.83 1.145 

I-4064_SC_EC2 0.0011 0.0107 1.32 1.14 1.158 

I-4064_BF_EC2 0.0007 0.0066 1.82 1.58 1.152 

 

 

rt rtQ V δQ Q rt kr dr M
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Table 6.8 Calculation of safety partial factor M  for C1-section 

Specimen         

(1) (2) (3) (4) (5) (6) (7) 

C1-1828_TF_EC1 0.0006 

0.112 

0.0055 1.35 1.16 1.164 

C1-1828_SC_EC1 0.0008 0.0074 2.11 1.81 1.166 

C1-1828_BF_EC1 0.0023 0.0206 3.13 2.68 1.168 

C1-2438_TF_EC1 0.0006 0.0049 1.01 0.86 1.174 

C1-2438_SC_EC1 0.0007 0.0060 1.49 1.28 1.164 

C1-2438_BF_EC1 0.0009 0.0082 2.17 1.86 1.167 

C1-2844_TF_EC1 0.0005 0.0048 0.87 0.75 1.160 

C1-2844_SC_EC1 0.0006 0.0058 1.25 1.07 1.168 

C1-2844_BF_EC1 0.0009 0.0076 1.77 1.51 1.172 

C1-3454_TF_EC1 0.0005 0.0048 0.73 0.63 1.159 

C1-3454_SC_EC1 0.0006 0.0055 1.00 0.86 1.163 

C1-3454_BF_EC1 0.0008 0.0069 1.37 1.17 1.171 

C1-4064_TF_EC1 0.0005 0.0048 0.64 0.54 1.185 

C1-4064_SC_EC1 0.0006 0.0053 0.84 0.72 1.167 

C1-4064_BF_EC1 0.0007 0.0065 1.11 0.95 1.168 

C1-1828_TF_EC2 0.0007 0.0060 1.98 1.69 1.172 

C1-1828_SC_EC2 0.0034 0.0303 3.41 2.91 1.172 

C1-1828_BF_EC2 0.0069 0.0615 4.67 3.99 1.170 

C1-2438_TF_EC2 0.0006 0.0050 1.45 1.24 1.169 

C1-2438_SC_EC2 0.0009 0.0078 2.45 2.09 1.172 

C1-2438_BF_EC2 0.0047 0.0421 3.72 3.18 1.170 

C1-2844_TF_EC2 0.0005 0.0048 1.26 1.07 1.178 

C1-2844_SC_EC2 0.0007 0.0064 2.04 1.74 1.172 

C1-2844_BF_EC2 0.0021 0.0190 3.13 2.68 1.168 

C1-3454_TF_EC2 0.0005 0.0049 1.06 0.91 1.165 

C1-3454_SC_EC2 0.0006 0.0058 1.63 1.39 1.173 

C1-3454_BF_EC2 0.0010 0.0090 2.44 2.09 1.167 

C1-4064_TF_EC2 0.0005 0.0048 0.93 0.79 1.177 

C1-4064_SC_EC2 0.0006 0.0055 1.36 1.16 1.172 

C1-4064_BF_EC2 0.0008 0.0075 1.96 1.68 1.167 

 

 

rt rtQ V δQ Q rt kr dr M
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It is required that if the number of individual tests is limited ( 100n  ) the characteristic 

resistance kr  should be determined by: 

 2
k m rt m rt rt n δ δ( )exp( Q 0.5 )r b g X k k Q Q      (6.24) 

with: 2
rt ln(rt) rtrtln( 1)Q V V          (6.25) 

 2
δ ln(δ) δln( 1)Q V    (6.26) 

 2
ln(r) r δln( 1)Q V Q     (6.27) 

 rt
rt

Q

Q
   (6.28) 

  δ
δ 1

Q

Q
    (6.29) 

In Eq. (6.25) nk  is the characteristic fractile factor from Table D1 on page 108 of BS 

EN 1990:2002 for “ XV unknown”. For this calibration with n = 30, nk  is 1.73; k  is the 

value of nk when n, it is 1.64. 

Listed in Table 6.7 for the I-section and Table 6.8 for the C-section are parameters 

rt δ rt,  ,  Q Q Q   and kr  in columns (2-5).   

Steps 1 to 7 are explicitly found in BS EN 1990:2002, whilst the following Steps 8 and 

9 of the calibration procedure for M  are not numbered.  

 

Step 8: Obtain the design value of the resistance dr   

The design value dr  for the the test polulation that has less than 100 tests should be 

calculated by: 
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 2
d m rt m d, rt rt d,n δ δ( )exp( 0.5 )r b g X k Q k Q Q      (6.30) 

In Eq. (6.31) d,nk  is the design fractile factor from Table D2 on page 108 in Eurocode 0 

(BSI, 2002a) for “VX unknown”. In this study, kd,n  is equal to 3.13.  is the value of 

 for  and is 3.04 from Table D2.  

 

Step 9: Determine the safety partial factor M   

The partial safety factor for resistance M  accounts for material property and for model 

uncertainties and dimensional variations. It can be determined by: 

 
k

M

d

r

r
   (6.31) 

Given in columns (6-7) of Tables 6.7 and 6.8 are dr  and M . To three significant figures 

it is found that M is in range of 1.14 to 1.18 for the I-section and 1.16 to 1.19 for the C1 

section. Taking into account the degree of uncertainties for the seven variables and to 

provide for a safer design, the author suggests, for PFRP members in bending, the 

partial factor is 1.3 for the LTB mode of ultimate limit state failure.   

 

6.4. The lateral-torsional buckling curves 

Plotted in Figures 6.7 and 6.8 are the LTB curves for the two sections having 

LT 0.34  and M 1.3  . In the figures the solid line is the unfactored LTB curve for 

LT LT vs.   .  

d,k 

d.nk n
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Figure 6.7 LTB curve for I-section with LT 0.34   and M 1.3     

 

 

Figure 6.8 LTB curve for C1-section with LT 0.34   and M 1.3     
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To show the effect of the partial factor M( )  the solid curve is scaled down by a factor 

of 1.3 and is presented in the figures by the dashed line curve. The ordinate axis scale 

for this factored curve is given on the right side. It is noted that should such a plot be 

given in a design standard, this dashed line would not exist. It is seen in Figures 6.7 and 

6.8 that all the test data points lie above the factored curve. This means design is safe 

and reliable. The results presented in these two figures provide strong evidence that 

LT 0.34   and M  =1.3 would be appropriate for the two sections. 

To take a step further, the author incorporates all the data from the test programme in 

Chapter 4 into one LTB curve to find out if the proposed curve would be okay. By 

assuming Loc 134 MPa   is for the ‘second’ ultimate failure stress (to define =1.0), 

the non-dimensional slenderness LT and reduction factor LT  for the tested beams of I, 

C1, C2 and C3 sections can be constructed. This universal curve is plotted in Figure 6.9. 

The results in this figure give further evidence that the proposed LTB curve would be 

reliable when calibrated against all 114 test results in this study.  

LT
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Figure 6.9 LTB curves for PFRP beams 
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6.5. Concluding remarks 

A brief introduction to the two popular approaches for a LTB resistance check in 

Europe (Eurocode) and American (AISC) has been presented. A design proposal in 

accordance with the Eurocode 3 approach is developed. For the LTB curve a plateau 

length of LT,0 0.5   is assumed, after Trumpf (2006) proposed this value based on 

physical testing and numerical simulations. Based on measured section geometries and 

the Ayrton-Perry Formula solution for LTB strength an imperfection factor of 

LT 0.34   is found to be acceptable. The calibration procedure for M  followed the 

steps in Annex D in BS EN 1990:2002. It is conducted using data for the I- and C1- 

sections in the test programme of Chapter 4. Each calibration involves one section with 

30 tests, for five span lengths, three vertical load positions and two displacement 

boundary conditions. A number of justified assumptions had to be made during the 

calibration process, in terms of obtaining the nominal and mean values to the seven 

basic variables. These are the same assumptions that had to be made when M  was 

calibrated for steel in BS EN 1993-1-1:2005. A fair assumption was also made that the 

coefficient of variation for the local flange buckling stress was 10%. 

From the calibration process it is found that M  for the I-section is in range of 1.14 to 

1.18 and for the C-section the range is from 1.16 to 1.19. To take into account the level 

of uncertainty in the geometrical dimensions and the LTB test results, and emanating 

from the assumptions made, the author is recommending a M  of 1.3 for PFRP beams. 

It can also be recommended that there might be a need to adopt a higher imperfection 

factor to cover the possible practical range of initial geometry imperfections with 

pultruded beam sections. This is not scoped in this Ph.D. thesis.  
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For a comparison with another  design factor for PFRP beams, it is noteworthy that in 

the ASCE pre-standard (2010) the resistance factor ( )
 for LTB failure is 0.7, which is 

equivalent to having M 1.43  . The fact that 1.43 is higher than the proposed 1.3 shows 

that the test results and calibration assumption presented in this thesis are more reliable 

than those available when   was determined. 

The study in this chapter to establish a partial factor of resistance for the LTB mode of 

failure has shown that the Eurocode calibration approach is suitable when the material is 

PFRP. 
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  CHAPTER 7

 

CONCLUSIONS AND FURTHER WORKS 
 

 

7.1. Research summary 

Before conclusions, in the form of a number of findings from the Ph.D. work are given, 

there is a summary of the research contributions presented in Chapters 2 to 6. The 

author has combined computational simulations using the Finite Element (FE) code 

ABAQUS
®
 with physical testing to investigate the Lateral-Torsional Buckling (LTB) 

behaviour of pultruded FRP beams. 94 coupon tests were carried out to determine the 

material properties of four sections (one I and three channels) in the series of physical 

tests. Elastic constants for the orthotropic material were needed for the predictions of 

resistance by a closed-form formula and by Finite Element Analysis (FEA). In the 114 

tests a beam was subjected to a mid-span point load and the vertical height of the 

loading was one of:  Top Flange (TF); Shear Centre (SC); Bottom Flange (BF). At the 

ends of the simply supported beam (for major-axis bending) the lateral flexure was free 

(EC1) or fixed (EC2), whilst warping is always free (both EC1 and EC2). To 

demonstrate the sensitivity of LTB resistance to changing a number of the several key 

design parameters the FEA work was essential. A good agreement with difference in 

range of -22% to 14% between test measurements and FEA elastic buckling loads was 

established when the end displacement boundary conditions were EC1. The agreement 
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was poorer for the EC2 conditions, and the physical reasons for this divergence are 

presented. A design curve has been constructed for PFRP beams in bending in 

accordance with the approach adopted in the Eurocode suite of standards for design of 

civil engineering works. 

A brief introduction to the contents of the research is presented in Chapter 1. Examples 

of PFRP structures are given along with reasons for why there should be a future 

Eurocode for the newer structural material of FRP. 

Provided in Chapter 2 is the general review that is used to inform the research reported 

in the thesis. The review mainly focuses on the testing by previous researchers. Because 

of the low number of previous individual tests and weaknesses in the boundary 

conditions the authors found that there is need for more test results that can be used in 

the procedure to calibrate design equations; for a factor towards ensuring safety. There 

is a discussion on the closed-form formulae that have been formulated to predict the 

resistance of structural steel and information to show how they can be simply modified 

to be suitable for beams of Pultruded FRP (PFRP) material.  

Chapter 3 presents 54 coupon tests (with specimens cut from flange and web panels) to 

determine the longitudinal modulus of elasticity L( )E and the Major Poisson’s ratio. 20 

coupon tests (cut from web panels) are used to characterize the transverse modulus of 

elasticity TE  and 20 coupons (from web panels) for 10
o
 off-axis tests are evaluated to 

establish the in-plane shear modulus LT(G ) . To have numerical predictions for LTB 

resistances these elastic constants are needed in both the closed-form formulae and FEA 

work. This chapter has a section on the testing of short columns to determine the local 

buckling load. The resistances for this different thin-walled buckling mode are used to 

define the non-dimensional slenderness for PFRP beams in Chapters 4 and 6. 
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Chapter 4 is used to report the results of 114 LTB tests using four sections at five span 

lengths (i.e. 1828, 2438, 2844, 3454 and 4064 mm), three vertical load positions (i.e. TF, 

SC and BF) and two end displacement boundary conditions (EC1 and EC2). To 

minimize any restraint against LTB deformation occurring as assumed in the theoretical 

formulation the loading fixture was specifically made in accordance with a disc system  

designed and commissioned by Flint (1948), for his Ph.D. research with thin gauged 

steel sections. The loading system adopted dead weights when failing slender beams 

and a tension jack was required when the beam configuration was too stockier for dead 

weights.  

Each LTB resistance was determined either from the ‘peak load’ method (when the load 

vs. mid-span rotation curve gives the ‘bifurcation-like’ failure) or by the Southwell plot 

method, when the load-lateral displacement curve gave the ‘displacement-amplification-

like’ response. By having the elastic constants from the coupon testing presented in 

Chapter 3 the new test results were compared against theoretical predictions using a 

closed-form formula that could be included in a future Eurocode design standard for 

FRP materials (to be equivalent to BS EN 1993-1-1:2005 for structural steel). 

Chapter 5 covers the computational simulations by modelling and solving with the FEA 

code ABAQUS
®

. Both linear and nonlinear buckling analyses were conducted on the I- 

and C1-sections. An imperfection shape was successfully introduced into the FE 

modelling in form of an Euler buckling shape. The maximum initial minor axis out-of-

straightness imperfection is located at mid-span and takes the measured value for the 

section reported in Chapter 4. Sensitivity analyses were carried out to study the 

influence of geometric imperfections, lateral load eccentricities, loading height and 

overhang lengths on failure by LTB. When appropriate to do so comparisons are made 

between simulation outputs and measured test results. Another new contribution is that 
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a modelling technique to accounts for the contribution of the radius fillet areas is 

developed and proposed as being suitable for the most effective numerical predictions. 

Chapter 6 offers a preliminary study towards the development of a robust design 

method for PFRP beam in bending. The calibration procedure to generate a partial 

safety factor for resistance is carried out following the standard procedure given in EN 

1990:2002.     

 

7.2. Conclusions 

The following bullet points describe the main findings: 

(1)  Material properties 

 Because elastic constants in PFRP materials are influenced by fibre architectures 

and layer distributions in the thin-walled panels it is a challenge to obtain, for 

numerical analysis, the characteristic values for the moduli of elasticity, 

especially the in-plane shear modulus LT( )G . It would be expected that the four 

outstand flanges in an I-section shape would possess the same stiffnesses. By 

way of coupon testing it is found that the longitudinal modulus of elasticity 

L( )E in opposite flanges differs by 13.3%. This finding implies that the flexural 

response under loading is going to be influenced by this material imperfection. 

 The measured L(29.2 31.6 GPa)E  and LT(4.2 4.8 GPa)G   are 30% to 60% 

higher than those tabulated, for the purpose of engineering design, in the 

Fiberline Composites Design Manual.  This implies that it will be safe, if not too 
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conservative should the designer adopt the mechanical properties for PFRP 

beam members recommended by the pultruder.  

 Using the 10
o
 off-axis tensile coupon test method for the determination of LTG , 

for each of the four pultruded sections, gave consistent results. Because this 

shear test approach has advantages, such as size of a relatively high volume in 

pure shearing, and a simpler specimen preparation and loading procedure, the 

author recommends that the 10
o
 off-axis tensile test method be adopted for the 

characterization of in-plane shear properties. 

(2) Local buckling 

 The determination by testing of the uniform stress for the onset of local buckling 

is difficult. One of the reasons would be due to the limited number of tests. More 

importantly, the buckling load is influenced by many factors, such as cross-

section geometry, loading distribution, end conditions, rotational stiffness along 

the web-flange junction. The thesis adopted the lowest value amongst testing, 

FEA and theoretical prediction. It would be expected that this choice is safe for 

design. Furthermore, the role of that value in this Ph.D. as a reference for the 

definition of the non-dimensional slenderness has no effect on the key findings 

and conclusions drawn from this study. 

 (3) LTB resistance by testing 

 The test rig designed in accordance with the principles developed by Flint (1948) 

worked successfully and the disc system applying the mid-span loading enabled 

the influence of load height on LTB resistance to be realized. The test 

programme showed that the dead weight loading approach is the best for 
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establishing LTB resistance. Although the tensile jack loading approach 

introduced a horizontal restraining force it is shown to be effective also. 

 The LTB failure in the 114 beam configurations was mostly of the 

‘displacement-amplification like’ form, rather than the ‘bifurcation like’ form. 

The former dominated the beams’ deformation because it is influenced by a 

complex combination of the imperfections, emanating from geometric, loading, 

material and test set-up. On occasions the combination created a ‘perfect 

condition’ when the beam did not failed with LTB instability mode. As expected 

there is not a one-to-one correlation between the closed-form predictions (using 

measured moduli) and LTB test data; this finding is the same for LTB 

resistances with ‘off-the-shelve’ steel sections. As a result it is essential to 

perform a calibration procedure to be able to have design guidelines that can be 

demonstrated to be safe, reliable and relevant. 

(4) Numerical simulations 

 A finite element modelling methodology that additionally accounts for the fillet 

radii present in I- and C-sections is shown to be appropriate when predicting the 

LTB response of PFRP beams. Its inclusion is found to be essential if FEA is to 

be used to establish relevant buckling resistances for the beam configurations 

that had been tested. The simpler modelling assumption of using geometric 

properties that ignore the fillet radii area is applicable should the FE output be 

used for calibration of a design resistance formula. The justification of this 

guidance is that a lower numerical LTB resistance is obtained, and this is for a 

safer design. 
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 It is observed that the influence of LTG  (ranging from 3-5 GPa) on LTB 

resistance is 17-27%. This finding highlights the importance for us to have a test 

method that can reliably characterize this key elastic constant. 

 FEA simulations are used to show that the LTB response of PFRP beams is 

going to be sensitive to changes in the geometric imperfections. It is shown that 

the allowance ( / 240L ) in ASTM D3917 for the minor axis out-of-straightness 

geometric imperfection is too high and not appropriate. The allowance ( 20.005L ) 

in BS EN 13706-2 is more suitable, and based on geometrical measurements of 

the tested sections is practically accepted. 

 It is shown numerically that resistance is highly influenced by the lateral 

position of the vertical loading. To represent what could exist in practice it can 

be assumed that loading is applied at the top flange height with a lateral offset 

for a load eccentricity. If this eccentricity is taken to be 3 mm, it is found that the 

limiting LTB buckling load can reduce by 17% or increased by 19%. 

(5) Proposal for a design procedure  

 By making a number of justified assumptions the author successfully applied the 

Eurocode 0 approach to establish the partial factor for the modified Eurocode 

equation (it is Eq. (6.56) in BS EN 1993-1-1:2005) for LTB resistance by the 

general curve method.  It is established that a LTB curve for the safe and reliable 

design for PFRP beam, having the imperfection factor LT 0.34   (this is 

equivalent to curve b in Table 6.3 of BS EN 1993-1-1:2005), requires a partial 

safety factor for resistance M( )  of 1.3. This major new contribution was 

verified using all 114 results from the author’s series of physical tests. The 

higher equivalent value of M  is 1.43 (inverse of a calibrated LRFD resistance 
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factor of 0.7) from the ASCE pre-standard of 2010 indicates that the LTB test 

data information presented in this thesis is more relevant than was available in 

2010.  

 There might be a need to adopt a higher imperfection factor to cover the possible 

practical range of initial geometry imperfections found in PFRP beam sections.  

To make it easy for steel designers to design with PFRP the adopted LT will 

match a Eurocode 3 value, such as 0.49 for curve c or 0.76 for curve d. 

 

7.3. Further work 

The work reported in this thesis makes an important contribution to the design of PFRP 

beams in bending that can eventually be given in a future Eurocode. To obtain more 

knowledge that can be analysed to provide designers with guidance that will be the most 

reliable, economical and relevant, there are particular areas that require further work. 

They are listed in what follows: 

 To be confident in the predictions of LTB resistance, there is a need to 

ensure appropriateness and reliability of test methods to determine the 

mechanical properties of the PFRP material. Particular attention should be 

given to the measurement of the in-plane shear modulus. There is currently 

no consensus towards a standard test method. The author recommends that 

the o10 off-axis test method be properly characterized by undertaking test 

series with different specimen sizes and PFRP materials.  

 The stress for the onset of local flange buckling, which is required in the 

expression for the non-dimensional slenderness ( LT ) of a beam member, is 
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not well-defined. The author suggests that more compression (stub column) 

tests with a range of PFRP sections and specimen heights (relative to the 

buckling half-wave length) should be conducted to establish the local 

buckling stresses. It is recommended that further consideration be given to 

what constitutes a robust expression for LT .      

 Physical testing with the EC1 end displacement boundary conditions gave 

buckling loads in good agreement with the theoretical predictions; the 

agreement being better for an I-section than for a C-section. It is 

recommended that when carrying out further LTB test with C-section that 

the position of the vertical point-load is gradually moved laterally so that 

shear centre loading can be obtained.  

 For the buckling loads test results and numerical predictions are not in a 

good agreement when the beam configurations had the EC2 end 

displacement boundary conditions. An investigation is required to 

understand exactly what EC2 condition was in the test series. A new 

approach to impose the EC2 condition in testing is to be recommended. It is 

worth noting that prior to the author’s work there had been no previous LTB 

testing with EC2. Testing and FE work for PFRP beam configurations 

having other displacement boundary conditions found in practice is needed 

for a comprehensive understanding of the LTB mode of failure. 

 To obtain more reliable test results, and to minimise uncertainty in 

measurement due to the test set-up conditions, repetitive tests on every beam 

configuration is highly recommended. 

 Further improvements in the FE modelling methodology are feasible through 

the actual modelling of the geometry and boundary conditions.  
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 Mode interaction between local and global (LTB) buckling can occur at 

intermediate spans at a buckling load that is either lower than both distinct 

mode. It is important to take the influence of mode interaction into 

consideration in a future research. 

 The static loading considered is for short term only. The creep effect on the 

LTB response was not considered. The LTB behaviour under changing 

temperatures was not scoped also. It is recommended that these effects can 

be investigated in a future work.   
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  APPENDIX A

 

PLOTS FOR COUPON TESTS 

 

This appendix presents the plots for the coupon tests whose results are presented in 

Chapter 3. It has the plots from three test series for: (A1) Longitudinal tensile coupon 

tests; (A2) Transverse tensile coupon tests and (A3) 10-degree off-axis coupon tests. 

Appendix A1 has 54 plots for the relationship of longitudinal stress L with longitudinal 

train L . Figures A.1 to A.9 have six plots per page and they are numbered parts (a) to 

(f). The figure caption defines the coupon specimen for each plot in the group of six. 

Each plot presents the best least-squares straight line fits over the strain range of 0.1% 

to 0.5%, which is the range adopted to determine the longitudinal tension modulus of 

elasticity LE . Both R
2
 and LE are given with the plot. Appendix A2 presents 20 plots in 

Figures A.10 to A.14 at five per page the relationship of Transverse stress T with 

Longitudinal train T . There are five plots per section type (e.g. I, C1, C2 and C3). The 

best least-squares straight line fit over the strain ranges of 0.05% to 0.25% is presented. 

Both R
2
 and TE are given with the plot.  40 plots for the 10-degree off-axis coupons are 

presented in pairs in Figures A.11 to A.21 in Appendix A3. One plot (part (a), (c) or (e)) 

shows the principal shear tress 12 vs. principal shear strain 12  throughout the test to 

material failure, and second plot (part (b), (d) or (f)) is for the same test results over the 

narrower strain range of 0% to 0.4%.  The second plot had best least-squares straight 

line fit used to determine a value for LTG .   
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A. 1 Plots for longitudinal tensile coupon tests 

 

 

 

Figure A.1 L vs. L for (a) I1-1-1; (b) I1-1-2; (c) I1-1-3; (d) I1-2-1; (e) I1-2-2;  (f) I1-2-3 
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Figure A.2 L  vs. L  for (a) I1-3-1; (b) I1-3-2; (c) I1-3-3; (d) I1-4-1; (e) I1-4-2;  (f) I1-4-3 
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Figure A.3 L  vs. L  for (a) I1-5-1; (b) I1-5-2; (c) I1-5-3; (d) I1-6-1; (e) I1-6-2;  (f) I1-6-3 



240 

 

 

 

 

Figure A.4 L vs. L for (a) C1-1-1; (b) C1-1-2; (c) C1-1-3; (d) C1-2-1; (e) C1-2-2;  (f) C1-2-3 
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Figure A.5 L vs. L for (a) C1-3-1; (b) C1-3-2; (c) C1-3-3; (d) C1-4-1; (e) C1-4-2;  (f) C1-4-3 
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Figure A.6 L vs. L for (a) C2-1-1; (b) C2-1-2; (c) C2-1-3; (d) C2-2-1; (e) C2-2-2;  (f) C2-2-3 
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Figure A.7 L vs. L for (a) C2-3-1; (b) C2-3-2; (c) C2-3-3; (d) C2-4-1; (e) C2-4-2;  (f) C2-4-3 

 



244 

 

 

 

 

Figure A.8 L vs. L for (a) C3-1-1; (b) C3-1-2; (c) C3-1-3; (d) C3-2-1; (e) C3-2-2;  (f) C3-2-3 
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Figure A.9 L vs. L for (a) C3-3-1; (b) C3-3-2; (c) C3-3-3; (d) C3-3-1; (e) C3-3-2;  (f) C3-3-3 
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A. 2 Plots for transverse tensile coupon tests 

 

 

 

Figure A.10 T vs. T  for (a) T-I-1; (b) T-I-2; (c) T-I-3; (d) T-I-4; (e) T-I-5   
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Figure A.11 T vs. T  for (a) T-C1-1; (b) T-C1-2; (c) T-C1-3; (d) T-C1-4; (e) T-C1-5   
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Figure A.12 T vs. T  for (a) T-C2-1; (b) T-C2-2; (c) T-C2-3; (d) T-C2-3; (e) T-C2-5   
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Figure A.13 T vs. T  for (a) T-C3-1; (b) T-C3-2; (c) T-C3-3; (d) T-C3-3; (e) T-C3-5   
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A. 3 Plots for 10
o
 off-axis tensile coupon tests 

 

 

 

Figure A.14 12 vs. 12  for:  (a), (b) S-I-1-1;  (c), (d) S-I-2;  (e), (f) S-I-3 
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Figure A.15 12 vs. 12  for (a), (b) S-I-4; (c), (d) S-I-5 
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Figure A.16 12 vs. 12  for:  (a), (b) S-C1-1;  (c), (d) S-C1-2;  (e), (f) S-C1-3 
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Figure A.17 12 vs. 12  for (a), (b) S-C1-4; (c), (d) S-C1-5 
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Figure A.18 12 vs. 12  for:  (a), (b) S-C2-1;  (c), (d) S-C2-2;  (e), (f) S-C2-3 
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Figure A.19 12 vs. 12  for (a), (b) S-C2-4; (c), (d) S-C2-5 
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Figure A.20 12 vs. 12  for:  (a), (b) S-C3-1;  (c), (d) S-C3-2;  (e), (f) S-C3-3 
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Figure A.21 12 vs. 12  for:  (a), (b) S-C3-4;  (c), (d) S-C3-5 
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  APPENDIX B

 

PLOTS FOR LATERAL BUCKLING TESTS  

 

This appendix B includes two categories for: (B1) plots for the measurement of initial 

out-of-straightness imperfection and (B2) plots for the LTB tests. Appendix B1 presents 

16 plots in Figures B.1 to B.4 at four per page. Each page is the the measurement of 

initial minor axis out-of-straightness imperfection vs. beam length for each section of I, 

C1, C2, C3 at span of 1828mm, 2438mm, 2844mm and 3454 mm. Each plot presents 

two curves for the measurement on two sides of a beam. The maximum of imperfection 

max  of each side are given with the plot. 

Plots for the LTB tests are presented in Figures B.5 to B.17 in Appendix B2. Each 

figure generally has 6 plots for part (a) to (f). Each plot in Figures B.5 to B.11 presents 

three curves for Load P  vs. mid-span rotation   for tests on a same span with different 

vertical load positions. The solid curve is for loading on Top Flange (TF). The dashed 

curve and dot-dashed curve is for Shear Centre (SC) and Bottom Flange (BF) loading, 

respectively. For LTB test where beam was failed by “bifurcation-like” failure, the 

buckling load was marked as the ‘peak’ load in testing and this value is given above the 

curve. There will be no Southwell plot for these tests.  Each plot in Figures B.12 to B.17 

presents the Southwell plot of / P  vs.   to determine the critical buckling load crP .  

The polyfit line for each test was presented with the same type of line that represents TF, 
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SC and BF loading in Figures B.5 to B.11. On these lines, the data point was also shown 

with circular symbol for TF, rectangular shape for SC and triangle marker for BF 

loading. The fitting equation for y ax b 
 and the critical buckling load that is 

determined by 1/crP a  was also given on the figure.    

 

B. 1 Measurements of out-of-straightness initial imperfection 

 

 

Figure B.1 Out-of-straightness along the length of beams: (a) I-1828; (a) I-2438; (a) I-2844; (a) 

I-3454 
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Figure B.2 Out-of-straightness along the length of beams: (a) C1-1828; (a) C1-2438; (a) C1-

2844; (a) C1-3454 
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Figure B.3 Out-of-straightness along the length of beams: (a) C2-1828; (a) C2-2438; (a) C2-

2844; (a) C2-3454 
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Figure B.4 Out-of-straightness along the length of beams: (a) C3-1828; (a) C3-2438; (a) C3-

2844; (a) C3-3454 
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B. 2 Lateral-torsional buckling tests 

 

 

 

Figure B.5 P vs.  for (a) I-1828-EC1; (b) I-1828-EC2; (c) I-2438-EC1; (d) I-2438-EC2; (e) I-

2844-EC1; (f) I-2844-EC2 
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Figure B.6 P vs.  for (a) I-3454-EC1; (b) I-3454-EC2; (c) I-4064-EC1; (d) I-4064-EC2; (e) 

C1-1828-EC1; (f)C1-1828-EC2 
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Figure B.7 P vs.  for (a) C1-2438-EC1; (b) C1-2438-EC2; (c) C1-2844-EC1; (d) C1-2844-

EC2; (e) C1-3454-EC1; (f) C1-3454-EC2 
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Figure B.8 P vs.  for (a) C1-4064-EC1; (b) C1-4064-EC2; (c) C2-1828-EC1; (d) C2-1828-

EC2; (e) C2-2438-EC1; (f) C2-2438-EC2 
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Figure B.9 P vs.  for (a) C2-2844-EC1; (b) C2-2844-EC2; (c) C2-3454-EC1; (d) C2-3454-

EC2; (e) C2-4064-EC1; (f) C2-4064-EC2 
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Figure B.10 P vs.   (a) C3-1828-EC1; (b) C3-1828-EC2; (c) C3-2438-EC1; (d) C3-2438-EC2; 

(e) C3-2844-EC1; (f) C3-2844-EC2 
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Figure B.11 P vs.  for (a) C3-3454-EC1; (b) C3-3454-EC2 
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Figure B.12 Southwell plot with test results from (a) I-2438-EC1; (b) I-2438-EC2; (c) I-2844-

EC1; (d) I-2844-EC2; (e) I-3454-EC1; (f) I-3454-EC2. 
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Figure B.13 Southwell plot with test results from (a) I-4064-EC1; (b) I-4064-EC2; (c) C1-1828-

EC1; (d) C1-1828-EC2; (e) C1-2438-EC1; (f) C1-2438-EC2 
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Figure B.14 Southwell plot with test results from (a) C1-2844-EC1; (b) C1-2844-EC2; (c) C1-

3454-EC1; (d) C1-4064-EC1; (e) C1-4064-EC2; (f) C2-1828-EC1 
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Figure B.15 Southwell plot with test results from (a) C2-1828-EC2; (b) C2-2438-EC1; (c) C2-

2438-EC2; (d) C2-2844-EC1; (e) C2-2844-EC2; (f) C2-3454-EC1 
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Figure B.16 Southwell plot with test results from (a) C2-3454-EC2; (b) C2-4064-EC1; (c) C2-

4064-EC2; (d) C3-1828-EC1; (e) C3-1828-EC2; (f) C3-2438-EC1 
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Figure B.17 Southwell plot with test results from (a) C3-2438-EC2; (b) C3-2844-EC1; (c) C3-

2844-EC2; (d) C3-3454-EC1; (e) C3-3454-EC2 
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