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In this paper, we develop an approach to achieve either frequency or amplitude modulation of an oscillator
merely through feedback control. We present and implement a unified theory of our approach for any finite-
dimensional continuous dynamical system that exhibits oscillatory behavior. The approach is illustrated not only
for the normal forms of dynamical systems but also for representative biological models, such as the isolated
and coupled FitzHugh-Nagumo model. We demonstrate the potential usefulness of our approach to uncover the
mechanisms of frequency and amplitude modulations experimentally observed in a wide range of real systems.
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I. INTRODUCTION

Oscillations are omnipresent in the real world, from me-
chanics to engineering, from optics to astro- and geophysics,
and from economics to social science. In the human body,
oscillators are particularly abundant and appear at many
different levels, e.g., the oscillatory NFκB signaling pathway
in the cell nucleus, the cell cycle, neural oscillations in
the central nervous system, and circadian rhythms [1]. The
advantages and functional roles of these oscillators have been
under active investigation.

In telecommunications, information is encoded and trans-
mitted in a carrier wave by varying the instantaneous frequency
or strength of the wave, known as frequency modulation (FM)
and amplitude modulation (AM), respectively [2]. Recent
investigations indicate that FM and AM are not restricted to
electronic applications but may be even essential mechanisms
of information transmission in a wide range of biological sys-
tems. In particular, the period of the cell cycle oscillator ranges
from about 10 min in rapidly dividing embryonic cells to tens
of hours in somatic cells, while a variation in the amplitude
of this oscillation seems neither necessary nor desirable [3].
This is a typical example of FM [4]. In the hippocampus or
inferior temporal cortex in the brain, the amplitude of the theta
waves (4–8 Hz) increases after learning, while the frequency
is approximated invariant. This is a typical example of AM
[5]. In spite of the increasing number of phenomenological
findings, the common or unique mechanisms that underlie FM
and AM in various systems including biological oscillators
have remained largely unknown. Initial computational studies
suggest that feedbacks play critical roles in generating FM. It
is the negative-plus-positive feedback loop that makes some
biological oscillators exhibit a widely tunable frequency with
a near-constant amplitude [6].

It has been shown recently, in both deterministic and
stochastic dynamical models, that feedbacks with or without
time delays commonly act as controllers to suppress periodic
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or chaotic oscillations to equilibria or periodic orbits or to
synchronize coupled oscillators to a common manifold [7].
However, to the best of our knowledge, few works aim at
designing appropriate feedback control to achieve FM and AM
in dynamical systems. In this paper, we develop an approach to
achieve FM and AM in generic finite-dimensional continuous
dynamical systems through feedback control.

II. FREQUENCY AND AMPLITUDE MODULATIONS IN
NORMAL FORMS

To begin with, we note that any finite-dimensional con-
tinuous dynamical system that exhibits oscillatory behavior
through the appearance of an Andronov-Hopf bifurcation
can be reduced to a two-dimensional system topologically
equivalent to

d

dt

[
x1

x2

]
=

[
α −β

β α

] [
x1

x2

]
− (

x2
1 + x2

2

) [
x1

x2

]
, (1)

where α and β are real constants [8]. We therefore first
investigate FM and AM and illustrate our approach in this
normal form. System (1) undergoes a supercritical Andronov-
Hopf bifurcation as α passes through zero, where a unique
stable periodic orbit bifurcates from the equilibrium x = 0.
The limit cycle has the amplitude r0 = √

α and the frequency
f0 = β/2π , respectively. We now introduce to system (1) a
linear feedback control as follows:[

x1 → x1 x2 → x1

x1 → x2 x2 → x2

]
=

[
F11 F12

F21 F22

] [
x1

x2

]
, (2)

where xi → xj denotes the feedback from xi to xj , and
i,j = 1,2, Fij , and i,j = 1,2, are the feedback gains. The goal
is to design an appropriate linear feedback control by which
the controlled system exhibits oscillatory behavior with a
modulated amplitude or frequency. This can be easily achieved
even if we require that the controlled system undergoes a
supercritical Andronov-Hopf bifurcation at the same bifur-
cation point α∗ = 0 as in the original system (1) and assume
that both self-feedbacks vanish, i.e., F11 = F22 = 0. Table I
summarizes the designed feedback patterns and the resulting
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TABLE I. Frequency and amplitude modulations in the normal
form of the Andronov-Hopf bifurcation.

FM AM

Feedback
[ 0 −c

c 0

] [ 0 cβ/(c + β)
c 0

]
Frequency f0 + c/2π f0

Amplitude r0 r0

√
2

1+(1+c/β)2

amplitude and frequency of the controlled system, where we
replace F21 by the parameter c for notational simplicity. The
frequency of the system can be modulated in the range from
zero to infinity with an invariant amplitude when a simple
antisymmetric feedback is imposed. A positive c increases the
frequency, while a negative c reduces it. The amplitude of the
system is less tunable when the autoregulation is constrained
at zero. The modulated amplitude is no larger than

√
2r0,

although the oscillation can be dramatically suppressed when
c is sufficiently large.

III. FEEDBACK CONTROL THEORY

To see how the feedback control in Table I is analytically
obtained, and, more generally, how FM and AM can be
achieved in generic continuous dynamical systems with the
constraint on self-feedbacks relaxed, we now present a sketch
of our feedback control theory. Full details on the theoretical
aspects of our approach are provided in the appendix.

We first note that the investigation of any finite-dimensional
and continuous system that undergoes an Andronov-Hopf
bifurcation can be reduced to the following generic two-
dimensional polynomial system by the center manifold theo-
rem [8] and a Taylor expansion at the equilibrium from which
the limit cycle bifurcates,

d

dt

[
x1

x2

]
=

[
G1(x1,x2; α)
G2(x1,x2; α)

]
+ O(‖x‖4), (3)

where Gν(x1,x2; α) = ∑
p+q�3,p,q�0 gν

pq(α)xp

1 x
q

2 ,ν = 1,2,
are polynomials with degrees no larger than 3, p and q are
integers, and α is a scalar parameter. We always, without
loss of generality, set the equilibrium at the origin by
a parameter-dependent coordinate transformation, which
indicates that the constants in Gν(x1,x2; α),ν = 1,2, vanish.
Now we analyze system (3) with the additional linear feedback
control (2). The system can then be rewritten as follows:

dx
dt

= A(α)x + G(x,α) + O(‖x‖4), (4)

where

A(α) =
[
g1

10 + F11 g1
01 + F12

g2
10 + F21 g2

01 + F22

]
(5)

is the Jacobian matrix of the controlled system at the
equilibrium x = 0, and G(x; α) summarizes all the quadratic
and cubic terms.

The key condition for the appearance of an Andronov-Hopf
bifurcation at the bifurcation point α∗ is the existence of a pair
of complex eigenvalues, λ± = μ(α) ± iω(α), on the imaginary

axis for the Jacobian matrix A(α) at α∗, which is equivalent to
	(α∗) < 0 and tr[A(α∗)] = 0, where 	(α) is the discriminant
for the polynomial det [λI − A(α)]. Once these two conditions
are satisfied along with the transversality and nondegeneracy
conditions, systems with and without linear feedback control
can be transformed into their “normal forms” via invertible
coordinate and parameter changes when the parameter α is
sufficiently close to the bifurcation point α∗ (see the appendix).
In the complex domain, the normal form can be written as
follows [8]:

dw

dt
= λw + ηw2w̄ + O(|w|4), (6)

where w is a complex variable, w̄ is the conjugate of w,
λ = λ(α) = μ(α) + iω(α), and η = η(α) := χ (α) + iκ(α). If
we further require that χ (α) < 0, system (4) undergoes a
supercritical Andronov-Hopf bifurcation at α = α∗, i.e., a
stable limit cycle bifurcates from the equilibrium when α

passes through α∗. The amplitude of the invariant curve is
approximately rF(α) = √−μ(α)/χ (α), and the frequency is
approximately fF(α) = [ω(α) + κr2

F]/2π . Both the ampli-
tude and the frequency are functions of α and depend on the
feedback gains.

As an example, system (1) with feedback control (2) can
be converted into the normal form (6), where

λ(α) = α + i

2

√−	, η(α) ≡ 1

2

[
−1 + F21 + β

F12 − β

]
< 0,

as long as 	(α) ≡ (F11 − F22)2 + 4(F12 − β)(F21 + β) < 0,
and tr[A(0)] = F11 + F22 = 0. The amplitude and frequency
of system (1) with feedback control (2) are therefore

√−α/η

and
√−	/4π , respectively.

Having obtained the normal forms, it is then straightforward
to impose further conditions on the amplitude or the frequency
to achieve FM or AM. Specifically, for FM, the amplitude of
the limit cycle is invariant with and without linear feedback
control. This leads to the following:

r0(α) = rF(α)|Fij =0,i,j=1,2 = rF(α). (7)

By varying the feedback gains Fij , i,j = 1,2, under condition
(7), the amplitude of the oscillator is near constant, while
the frequency is tunable. Analogously, for AM, an invariant
frequency is required, giving

f0(α) = fF(α)|Fij =0,i,j=1,2 = fF(α). (8)

Varying the feedback gains Fij , i,j = 1,2, under condition
(8), the frequency of the oscillator will remain approximately
invariant, while the amplitude can be modulated.

In real applications, optimal feedback control can be
searched analytically or numerically in the four-dimensional
space {Fij }i,j=1,2, which satisfies Eq. (7) or Eq. (8), while
maximizing a physically or biologically inspired index J with
certain regularizations on the feedback. For example, the index
may be designed as

J = argmaxF{fF/f0 − ρ‖F‖2}, (9)

where ρ is a regularization parameter and ‖ · ‖2 is the 2-norm of
a matrix. This index seeks a balance between maximizing the
modulated frequency and the expense of the feedback control.
Below we illustrate this approach in a representative biological
model.
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IV. APPLICATION TO THE ISOLATED
FITZHUGH-NAGUMO MODEL

Consider the well-known FitzHugh-Nagumo (FHN) model
[9],

dv

dt
= v(v − θ )(1 − v) − w + I := p(v)

(10)
dw

dt
= ε(v − γw),

where v mimics the membrane potential of an excitable
neuron, w is a recovery variable describing the activation of
an outward current, the parameter θ determines the shape
of the cubic parabola v(v − θ )(1 − v), ε and γ are non-
negative parameters that describe the dynamics of the recovery
variable w, and I is the injected current [9]. The FHN model
may exhibit a variety of dynamics and can be viewed as
a simplification of the Hodgkin-Huxley-type models. The
intersection of the v-nullcline p(v) = 0 and the w-nullcline
w = v/γ is the equilibrium of system (10), denoted as (v0,w0).
System (10) undergoes an Andronov-Hopf bifurcation at ε0 =
a0/γ if the parameters satisfy 0 < a0 < 1/γ or 1/γ < a0 < 0,
where a0 = p′(v0) = −3v2

0 + 2(1 + θ )v0 − θ . In addition, if
we ensure that

χ (ε0) = −1

4

(
3

2
− b2

0

1/γ − a0

)
< 0, (11)

where b0 = p′′(v0)/2 = −3v0 + 1 + θ , the bifurcation is su-
percritical, i.e., the limit cycle that appears when ε < ε0 is
stable (see the appendix).

We introduce to (10) a linear feedback control as follows:

[
v → v w → v

v → w w → w

]
=

[
F11 F12

F21 F22

] [
v − v0

w − w0

]
. (12)

Figure 1 shows feasible feedback gains that achieve FM in the
FHN model with an alteration of the amplitude no greater than
5%. Note that the frequency is widely tunable (approximately
20-fold). The color encodes the index defined in Eq. (9) with
ρ = 1/4, i.e., a warmer color indicates a larger modulated
frequency, penalized by the expense of the feedback control.
The time traces of the original and the modulated systems that
correspond to two sets of feedback gains are provided in the
upper panel. It can be clearly seen that the frequency of the
oscillator can either increase or decrease with a near-constant
amplitude.

In real-world systems, not all the dynamical equations are
accessible for manipulation. One advantage of our approach
is that any constraint on the feedback gains can be easily
imposed. For example, when the equation of the recovery
variable w in the FHN model is not accessible [10], F21 and
F22 can be fixed at zero, and the frequency of the system is still
widely tunable with an appropriate feedback on the equation
of the fast variable v only (see the bottom panel of Fig. 1).

Noise is omnipresent and inevitable in real world. To
demonstrate the robustness of our approach with respect to
noise perturbations, we consider the following FHN model

0 50 100 150 200
0.22

0.28

0.34

0.4

Time

v

0 200 400 600 800 1000
0.22

0.28

0.34

0.4

Time

0 50 100 150 200
0.22

0.28

0.34

0.4

Time

v

0 200 400 600 800 1000
0.22

0.28

0.34

0.4

Time

2

1

0

F11 F12

F21

FIG. 1. (Color online) Frequency modulation of the FitzHugh-
Nagumo model. The model parameters are selected as θ = 0.2,
γ = 2.5, and I = 0.1, which ensure that system (10) undergoes
a supercritical Andronov-Hopf bifurcation at ε0 = a0/γ . Feasible
feedback gains Fij , i,j = 1,2, to achieve FM with positive ε are
numerically searched in the interval [−1,1], with the alteration of
the amplitude no greater than 5%. The color encodes the index
defined in Eq. (9) with ρ = 1/4. The time traces of the original
and the modulated systems that correspond to representative points
on the surface are provided. The frequency of the system increases
with the feedback gains F11 = 1.000, F12 = −0.450, F21 = 0.375,
and F22 = 0.900 (upper left) and decreases with the feedback gains
F11 = −0.250, F12 = 0.950, F21 = −0.375, and F22 = 0.975 (upper
right). When the equation of the recovery variable w is not accessible
for manipulation, i.e., F21 and F22 are constrained at zero, the
frequency of the system can also be increased with feedback gains
F11 = 0.350 and F12 = −0.950 (bottom left) and decreased with
feedback gains F11 = −0.250 and F12 = −0.850 (bottom right).

with a white noise added to the fast variable v:

dv

dt
= v(v − θ )(1 − v) − w + I + σξ,

(13)
dw

dt
= ε(v − γw),

where σ is the standard deviation of the noise and ξ denotes
a white noise with zero mean and unit variance. The top and
middle panels of Fig. 2 show the time traces of the perturbed
variable v at two different noise levels (σ = 0.001 on the left,
and σ = 0.01 on the right). The model parameters and the
feedback control are the same as in the bottom panel of Fig. 1.
It can be seen that, in the presence of noise, the frequency of the
system is still well controlled with the designed feedback. The
bottom panels of Fig. 2 present the power spectrum density
estimates, with normalized frequencies, of the original and
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FIG. 2. (Color online) Frequency modulation of the noise per-
turbed FitzHugh-Nagumo model. The top and middle panels show
the time traces of the fast variable v at two noise levels, σ = 0.001
on the left and σ = 0.01 on the right. The bottom panels present the
power spectrum density estimates, with normalized frequencies, of
the original and controlled systems. The model parameters and the
feedback control are the same as in the bottom panel of Fig. 1.

controlled systems, which further confirm that the frequency
is widely tunable even under noise perturbations.

V. APPLICATION TO A COUPLED
FITZHUGH-NAGUMO MODEL

In addition to FM and AM in isolated models, feedback
control may play critical roles in networks with coupled
oscillators, where FM or AM and synchronization may even
be achieved simultaneously.

We illustrate this idea through a coupled FHN model.
Specifically, we denote x(t) = [v(t),w(t)]� and summarize
system (10) into dx/dt = H(x; ε), where the bifurcation
parameter ε is assigned a proper value to generate oscillatory
behavior. We now consider a complex dynamical network
described by the following model:

dx(i)

dt
= H(x(i); ε) + Q(i) X, (14)

where i = 1,2, . . . ,N is the node index, X(t)� =
[x(1)(t)�, . . . ,x(N)(t)�] comprises the states of the nodes, and
Q2N×2N is a coefficient matrix that covers any type of linear
feedback and coupling. Indeed, here we assume that it can be
more specifically decomposed as IN×N ⊗ F2×2 + CN×N ⊗
I2×2, where ⊗ denotes the Kronecker product, I2×2 is an
identity matrix, F2×2 incorporates feedback gains, and CN×N

is the coupling matrix satisfying each row sum to be 1. We note
that F and C are two independent matrices. F is the feedback
gain matrix applied to each two-dimensional system to achieve
FM or AM, while C is a matrix coupling the N oscillators
and can be appropriately selected to ensure synchronization in

v
(1

)
v

(i
)

-0.6                           -0.3                           0.0                           0.3                           0.6

FIG. 3. (Color online) The dynamics of N = 100 coupled
FitzHugh-Nagumo models with linear feedback control. The pa-
rameters are selected as θ = 0.2, γ = 2.5, and I = 0.112. ε is
chosen to ensure that each node exhibits oscillatory behavior. Upper
panel: The time trace of a single neuron in the network. Lower
panel: The dynamics of the 100 neurons in the network. Times
1–600: Q ≡ 0, i.e., each node is an independent FHN neuron
with randomly selected initial values. Times 601–900: When F11 =
0.5000, F12 = −2.2024, F21 = 0.1072, F22 = −0.5000, and C is
selected as a compound symmetric matrix in which all diagonal terms
are −0.1 and off-diagonal terms are 0.1/99, synchronization in the
network is achieved and the resulting synchronous oscillators have
an increased frequency. Times 901–1800: When F11 = −0.0400,
F12 = 0.1762, F21 = −0.0071, F22 = 0.0040, and C is selected as
above, synchronization in the network is achieved and the resulting
synchronous oscillators have an decreased frequency.

the network. Q(i) in Eq. (14) represents two rows of Q that
correspond to the i-th model.

To simultaneously achieve FM or AM and synchronization,
we note that the variational equation of the complex network
model on the synchronization manifold reads

dδ(i)

dt
= [DH|x(i) + F]δ(i) + νiδ

(i), (15)

where DH
∣∣

x(i) denotes the Jacobian matrix of H along the
orbit {x(i)(t)} and νi is the i-th eigenvalue of the coupling
matrix C. As each row sum of C equals 1, the matrix C is rank
deficient. We therefore assume without loss of generality that
ν1 = 0. The other νi’s are selected to ensure ‖δ(i)(n)‖ → 0, as
n → ∞, for every i. This can be validated via numerically cal-
culating the Lyapunov exponents of each variational equation
transversal to the synchronization manifold.

The upper panel of Fig. 3 shows the time trace of a single
neuron in the network, while the lower panel provides the
dynamics of all the 100 neurons. In the first 600 time points,
Q is set at zero, i.e., each node is an independent FHN
neuron whose dynamics is governed by the self-dynamics
function H . All the oscillators have the same amplitude and
frequency but different phases, since the initial values are
randomly selected, producing a seemingly stochastic pattern.
The next 300 time points show that when Q is appropriately
designed, synchronization in the network can be achieved
and the resulting synchronous oscillators have a dramatically
increased frequency but an almost invariant amplitude. During
the last 900 time points, Q is designed to decrease the
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frequency of the oscillators. This can be seen by noticing much
wider stripe patterns compared to the time interval 601–900.

VI. APPLICATION TO THREE-DIMENSIONAL SYSTEMS

Our proposed approach to achieve FM and AM is also
applicable to higher-dimensional systems, which resorts to the
computation of the center manifold, followed by our generic
feedback control theory in two-dimensional systems presented
above. As an illustrative example, we consider the following
three-dimensional dynamical system:

dx1

dt
= (η − 1)x1 − x2 + x1x3,

dx2

dt
= x1 + (η − 1)x2 + x2x3, (16)

dx3

dt
= ηx3 − (

x2
1 + x2

2 + x2
3

)
,

where η is a parameter. The system has an equilibrium at
(0,0,η), which can be set at the origin via the coordinate trans-
formation x1 = y1, x2 = y2, and x3 = y3 + η. The transformed
system takes the form

dy1

dt
= (2η − 1)y1 − y2 + y1y3,

dy2

dt
= y1 + (2η − 1)y2 + y2y3, (17)

dy3

dt
= −ηy3 − (

y2
1 + y2

2 + y2
3

)
,

and has the following Jacobian matrix A(η) evaluated at the
equilibrium:

A(η) =
⎡
⎣2η − 1 −1 0

1 2η − 1 0
0 0 −η

⎤
⎦ . (18)

The three eigenvalues of A(η) are λ1,2(η) = 2η − 1 ± i, and
λ3(η) = −η. In particular, when η = 1/2, the equilibrium is
not hyperbolic, and the two conjugate eigenvalues λ1,2 have
zero real part. By the center manifold theory [8], for each fixed
η with |η − 1/2| sufficiently small, there is a locally defined
smooth two-dimensional invariant center manifold Wc

η , which
is tangent at the origin to the generalized eigenspace of A(η)
corresponding to λ1,2(η). This center manifold Wc

η can be
locally represented as a graph of a smooth function,

Wc
η = {(y1,y2,y3) : y3 = h(y1,y2)}, (19)

and, due to the tangent property of Wc
η , we write y3 =

h(y1,y2) = h20y
2
1 + h11y1y2 + h02y

2
2 + o(‖ y‖2), where h20,

h11, and h02 are functions of η. By noticing the fact that

dy3

dt
= ∂h(y1,y2)

∂y1

dy1

dt
+ ∂h(y1,y2)

∂y2

dy2

dt
, (20)

we find h20 = h02 = 1/(2 − 5η) and h11 = 0 by expanding
both sides of Eq. (20) and comparing the coefficients of
quadratic terms. By the reduction principle [8], for sufficiently
small |η − 1/2|, system (17) is locally topologically equivalent

near the origin to the system,

dy1

dt
= (2η − 1)y1 − y2 − 1

5η − 2
y1

(
y2

1 + y2
2

)
,

dy2

dt
= y1 + (2η − 1)y2 − 1

5η − 2
y2

(
y2

1 + y2
2

)
, (21)

dy3

dt
= −ηy3.

Note that the equation for y3 is uncoupled with y1 and y2

and has an exponentially decaying solution when η is close
to 1/2. Therefore, the stability of system (21) is determined
by the equations for y1 and y2, i.e., the restriction of the
system to its center manifold. Having reduced the system
to two dimensions, the standard normal form theory of the
Andronov-Hopf bifurcation then follows. In particular, if we
introduce a complex variable z = y1 + iy2 and transform the
system to its polar form by using the representation z = ρeiφ ,
we obtain

dρ

dt
= (2η − 1)ρ − 1

5η − 2
ρ3 + o(ρ3)

(22)
dφ

dt
= 1.

Since 5η − 2 > 0 for sufficiently small |η − 1/2|, the system
undergoes a supercritical bifurcation at η = 1/2, and a stable
limit cycle bifurcates from the equilibrium when η > 1/2,
with a radius approximately

√
(2η − 1)(5η − 2) and a constant

frequency 1/2π . The upper panel of Fig. 4 shows an orbit
of system (16) with η = 1/2 + 10−3 and the initial values
(0.01,0.01,1.5). Consistent with the theory, x3 approaches the
center manifold quickly, on which the orbit converges to the
limit cycle.

Higher-dimensional systems offer many more possibilities
for the design of feedback control than two-dimensional
systems. Here we consider a simple case for illustration.
We introduce to the first two components of system (16) an
antisymmetric feedback as follows:[

x1 → x1 x2 → x1

x1 → x2 x2 → x2

]
=

[
0 −β

β 0

] [
x1

x2

]
, (23)

and to the third component a self-feedback,

x3 → x3 = γ (x3 − η), (24)

where β and γ are feedback gains. Repeating the computation
that gives Eq. (22), we get the normal form of the controlled
system restricted to the center manifold for proper values of β

and γ ,

dρ

dt
= (2η − 1)ρ − 1

5η − 2 − γ
ρ3 + o(ρ3)

(25)
dφ

dt
= 1 + β.

The controlled system then has the same bifurcation point
η = 1/2 as the original system and has a stable limit cycle
with a radius approximately

√
(2η − 1)(5η − 2 − γ ), and a

frequency (1 + β)/2π , when η is slightly off the critical point.
The middle and bottom panels of Fig. 4 show that the frequency
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x1
x2

x
3

x
1

x
1

FIG. 4. (Color online) Frequency and amplitude modulations of
an illustrative three-dimensional system. Upper panel: An or-
bit of system (16) with η = 1/2 + 10−3 and the initial values
(0.01,0.01,1.5). Middle panel: Amplitude modulation of system (16)
with the feedback specified in Eq. (24). When η = 1/2 + 10−3, the
amplitude of the original system (black) increases with γ = −12
(red) and decreases with γ = 0.48 (green). Bottom panel: Frequency
modulation of system (16) with the feedback specified in Eq. (23).
When η = 1/2 + 10−3, the frequency of the original system (black)
increases with β = 4 (red) and decreases with β = −0.8 (green).

and amplitude of system (16) can be dramatically modulated
when β and γ are appropriately selected.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we have presented an approach to design
feedback control and modulate the frequency or amplitude of
oscillators modeled by generic continuous dynamical systems.
In complex network models with coupled oscillators, FM or
AM and synchronization can even be achieved simultaneously.
The proposed method, when combined with the computation
of center manifold, is applicable to FM and AM in higher-
dimensional dynamical systems as well.

We note that the normal form theory is accurate when the
bifurcation parameter is sufficiently close to the critical point.
This somewhat indicates that the above-proposed approach is
only suitable for analyzing the behavior of the system near
the equilibrium or fixed point, whereas natural systems are
believed to operate far from steady states [11]. However,
we found that in many cases the feedback control designed
near the bifurcation point still can achieve AM and FM
when the bifurcation parameter varies in a wide region. For

example, unlike the dynamics presented in Figs. 1 and 2
where the bifurcation parameter is near the critical point
(ε = ε∗ − 10−3), in the FHN network model presented above,
ε is set at ε∗ − 0.1. The system exhibits a much richer
dynamics than a regular oscillation only, and the effects of FM
are still clearly observed. Hence, our strategies for achieving
FM or AM are applicable to oscillations even far from steady
states. Having said this, strategies based on global bifurcation
theory are also expected for rigorous analysis of the systems
not close to the equilibrium or fixed point.

The approach for FM and AM is not restricted to continuous
dynamical systems and can be easily applied to discrete
dynamical systems that exhibit oscillatory behavior via the
appearance of a Neimark-Sacker bifurcation, the counterpart
of the Andronov-Hopf bifurcation. Our approach may also be
extended to engineering oscillators with nonlinear feedbacks
or time delays. Our investigations may invite systematic
studies on oscillator control theory and contribute to a general
principle to engineer biological oscillators and has the potential
to provide a theoretical support to the mechanisms of FM and
AM postulated in the literature.
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APPENDIX

In this appendix, we provide details of the analytical
approach to achieve frequency and amplitude modulations in
generic continuous dynamical systems and expatiate on the
computational details when applying the theory to the normal
form of the Andronov-Hopf bifurcation and the FitzHugh-
Nagumo model.

1. Frequency and amplitude modulations in continuous
dynamical systems

We note that the investigation of any finite-dimensional
system that undergoes an Andronov-Hopf bifurcation can be
reduced to the following generic two-dimensional polynomial
system by the central manifold theorem [8] and a Taylor
expansion at the equilibrium from which the limit cycle
bifurcates,

d

dt

[
x1

x2

]
=

[
G1(x1,x2; γ )
G2(x1,x2; γ )

]
+ O(‖x‖4), (A1)

where Gν(x1,x2; γ ) = ∑
p+q�3,p,q�0 gν

pq(γ )xp

1 x
q

2 , ν = 1,2,
are polynomials with degrees no larger than 3, p and q are
integers, and γ is a scalar parameter. Suppose that the system
undergoes a supercritical Andronov-Hopf bifurcation. Then
the system has a unique equilibrium when the parameter γ is
sufficiently close to the bifurcation point. Therefore, we always
set the equilibrium at the origin by a parameter-dependent
coordinate transformation. This indicates that the constants in
Gν(x1,x2; γ ), ν = 1,2, vanish. Now we consider system (A1)

022909-6



ACHIEVING MODULATED OSCILLATIONS BY FEEDBACK . . . PHYSICAL REVIEW E 90, 022909 (2014)

with an additional linear feedback control,[
x1 → x1 x2 → x1

x1 → x1 x2 → x2

]
=

[
F11 F12

F21 F22

] [
x1

x2

]
,

where xi → xj denotes the feedback from xi to xj and i,j =
1,2, Fij , i,j = 1,2, are the feedback gains. The system can
then be reorganized as follows:

dx
dt

= A(γ )x + G(x,γ ) + O(‖x‖4), (A2)

where

A(γ ) =
[
g1

10 + F11 g1
01 + F12

g2
10 + F21 g2

01 + F22

]

is the Jacobian matrix of the controlled system at the
equilibrium x = 0,

G(x,γ ) = Gq(x,γ ) + Gc(x,γ ).

Here Gq denotes all the quadratic terms as follows:

Gq(x,γ ) =
[
g1

20x
2
1 + g1

11x1x2 + g1
02x

2
2

g2
20x

2
1 + g2

11x1x2 + g2
02x

2
2

]
,

Gc summarizes all the cubic terms,

Gc(x,γ ) =
[
g1

30x
3
1 + g1

21x
2
1x2 + g1

12x1x
2
2 + g1

03x
3
2

g2
30x

3
1 + g2

21x
2
1x2 + g2

12x1x
2
2 + g2

03x
3
2

]
,

and gν
pq = gν

pq(γ ), 1 � p + q � 3, p,q � 0, ν = 1,2, are all
smooth functions of γ .

The goal is to design an appropriate linear feedback control
by which the controlled system undergoes a supercritical
Andronov-Hopf bifurcation at the bifurcation point γ ∗ and
additionally exhibits oscillatory behavior with a desired
amplitude or frequency.

The key condition for the appearance of an Andronov-Hopf
bifurcation is the existence of a pair of complex eigenvalues
on the imaginary axis for the Jacobian matrix A(γ ) at the
bifurcation point γ = γ ∗, which is equivalent to 	(γ ∗) < 0
and tr[A(γ ∗)] = 0, where 	(γ ) is the discriminant for the
polynomial det [λI − A(γ )]. Therefore, we have

	(γ ∗) = [
g1

10(γ ∗) − g2
01(γ ∗) + F11 − F22

]2

+ 4
[
g1

01(γ ∗) + F12
] [

g2
10(γ ∗) + F21

]
< 0 (A3)

and

tr[A(γ ∗)] = g1
10(γ ∗) + g2

01(γ ∗) + F11 + F22 = 0. (A4)

Lemma 1. Suppose that gν
pq = gν

pq(γ ),1 � p + q �
3,p,q � 0,ν = 1,2, satisfy the transversality and
nondegeneracy conditions at γ = γ ∗. Furthermore, conditions
Eq. (A3) and Eq. (A4) hold. Then system (A2) undergoes an
Andronov-Hopf bifurcation at γ = γ ∗.

Suppose that the conditions in Lemma 1 hold. Then system
(A2) can be transformed into its normal form via invertible
coordinate and parameter changes. Specifically, Eq. (A3) and
Eq. (A4) ensure that, for all sufficiently small |γ − γ ∗|, the
Jacobian matrix A(γ ) has two eigenvalues as follows:

λ±(γ ) = μ(γ ) ± iω(γ ),

where μ(γ ) = 1
2 [g1

10(γ ) + g2
01(γ ) + F11 + F22] with μ(γ ∗) =

0 and ω(γ ) = 1
2

√−	(γ ). Hence, there exists an invertible
matrix P such that

A(γ ) = P J(γ )P−1,

where J(γ ) = [μ −ω

ω μ ] is the Jordan normal form of A(γ ). De-

note ξ = ξ (γ ) = 2[g1
01 + F12] and ζ = ζ (γ ) = g2

01 − g1
10 +

F22 − F11. P can then be selected as

P = 1

ξ

[
ξ 0
ζ −√−	

]
.

By a coordinate transformation y = P−1x, system (A2) can
be transformed into

d y
dt

= J(γ ) y + K ( y,γ ) + O(‖ y‖4), (A5)

where K ( y,γ ) = P−1G(P y,γ ) = K q( y,γ ) + K c( y,γ ), with
K q( y,γ ) and K c( y,γ ) denoting the quadratic and cubic terms
of K ( y,γ ), respectively. Note that this transformation leaves
the first component of the coordinate unchanged.

Taking into account the following facts:

x2
1 = y2

1 ,

x1x2 = y1

ξ
[ζy1 − √−	y2],

x2
2 = 1

ξ 2

[
ζ 2y2

1 − 	y2
2 − 2

√−	ζy1y2
]
,

and after intensive calculation, we obtain the coefficients in
K q( y,γ ) and K c( y,γ ),

K q( y,γ ) =
[
k1

20y
2
1 + k1

11y1y2 + k1
02y

2
2

k2
20y

2
1 + k2

11y1y2 + k2
02y

2
2

]
,

where kν
pq = kν

pq(γ ), p + q = 2, p,q � 0, ν = 1,2, are
smooth functions of γ ,

k1
20 = g1

20 + ζ

ξ
g1

11 + ζ 2

ξ 2
g1

02,

k1
11 = −

√−	

ξ

[
g1

11 + 2ζ

ξ
g1

02

]
, k1

02 = − 	

ξ 2
g1

02,

k2
20 = 1√−	

{
ζg1

20 − ξg2
20

}

+ 1√−	

{
ζ

ξ

[
ζg1

11 − ξg2
11

]+ζ 2

ξ 2

[
ζg1

02 − ξg2
02

]}
,

k2
11 = −1

ξ

{
ζg1

11 − ξg2
11 + 2ζ

ξ

[
ζg1

02 − ξg2
02

]}
,

k2
02 =

√−	

ξ 2

[
ζg1

02 − ξg2
02

]
. (A6)

K c( y,γ ) =
[
k1

30y
3
1 + k1

21y
2
1y2 + k1

12y1y
2
2 + k1

03y
3
2

k2
30y

3
1 + k2

21y
2
1y2 + k2

12y1y
2
2 + k2

03y
3
2

]
,
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where kν
pq = kν

pq(γ ), p + q = 3, p,q � 0, ν = 1,2, are
smooth functions of γ ,

k1
30 = g1

30 + ζ

ξ
g1

21 + ζ 2

ξ 2
g1

12 + ζ 3

ξ 3
g1

03,

k1
21 = −

√−	

ξ

[
g1

21 + 2ζ

ξ
g1

12 + 3ζ 2

ξ 2
g1

03

]
,

k1
12 = − 	

ξ 2

[
g1

12 + 3ζ

ξ
g1

03

]
, k1

03 = 	
√−	

ξ 3
g1

03,

k2
30 = 1√−	

{
ζg1

30 − ξg2
30 + ζ

ξ

[
ζg1

21 − ξg2
21

]}

+ 1√−	

{
ζ 2

ξ 2

[
ζg1

12 − ξg2
12

] + ζ 3

ξ 3

[
ζg1

03 − ξg2
03

]}
,

k2
21 = −1

ξ

{
ζg1

21 − ξg2
21

}

−1

ξ

{
2ζ

ξ

[
ζg1

12 − ξg2
12

] + 3ζ 2

ξ 2

[
ζg1

03 − ξg2
03

]}
,

k2
12 =

√−	

ξ 2

{
ζg1

12 − ξg2
12 + 3ζ

ξ

[
ζg1

03 − ξg2
03

]}
,

k2
03 = 	

ξ 3

[
ζg1

03 − ξg2
03

]
. (A7)

Since K ( y,γ ) satisfies that K (0,γ ) = 0 for all sufficiently
small |γ − γ ∗|, by introducing a complex variable z = y1 +
iy2, Eq. (A5) can be transformed into the following complex
form:

dz

dt
= λz + l20

2
z2 + l11zz̄ + l02

2
z̄2

+ l30

6
z3 + l21

2
z2z̄ + l12

2
zz̄2 + l03

6
z̄3 + O(|z|4),

where λ = λ(γ ) = μ(γ ) + iω(γ ), lpq = lpq(γ ), p + q = 2,3,
p,q � 0, are smooth functions of γ .

Specifically,

l20 = 1

2

[(
k1

20 + k2
11 − k1

02

) + i
(
k2

20 − k1
11 − k2

02

)]
,

l11 = 1

2

[(
k1

20 + k1
02

) + i
(
k2

20 + k2
02

)]
,

l02 = 1

2

[(
k1

20 − k2
11 − k1

02

) + i
(
k2

20 + k1
11 − k2

02

)]
,

l21 = 1

4

(
3k1

30 + k1
12 + k2

21 + 3k2
03

)
+ i

4

(
3k2

30 − k1
21 + k2

12 − 3k1
03

)
,

where kν
pq = kν

pq(γ ) are specified in Eq. (A6) and Eq. (A7).
Lemma 2. [8]. The equation

dz

dt
= λz + l20

2
z2 + l11zz̄ + l02

2
z̄2

+ l30

6
z3 + l21

2
z2z̄ + l12

2
zz̄2 + l03

6
z̄3, + O(|z|4),

where λ = λ(γ ) = μ(γ ) + iω(γ ), μ(γ ∗) = 0, ω(γ ∗) > 0, and
lpq = lpq(γ ) can be transformed by an invertible parameter-

dependent change of complex coordinate, which is smoothly
dependent on the parameter,

z = w + h20

2
w2 + h11ww̄ + h02

2
w̄2

+ h30

6
w3 + h21

2
w2w̄ + h12

2
ww̄2 + h03

6
w̄3,

for all sufficiently small |γ − γ ∗|, into a map with only one
cubic term (the resonant term),

dw

dt
= λw + ηw2w̄ + O(|w|4),

where

η = η(γ ) = l20l11(2λ + λ̄)

2|λ|2 + |l11|2
λ

+ |l02|2
2(2λ − λ̄)

+ l21

2
.

Let χ (γ ) = Re [η(γ )]. Then the coefficient χ (γ ∗) deter-
mines the stability of the invariant orbit in system (A2) which
undergoes an Andronov-Hopf bifurcation.

Having obtained the normal forms, the stability as well
as the amplitude and frequency of the invariant orbit can be
extracted, as summarized in the following lemma.

Lemma 3. Suppose that the conditions Eq. (A3), Eq. (A4),
and χ (γ ∗) < 0 are satisfied, along with the nondegenerate
condition �(γ ∗) �= 0 and the transversality condition μ′(γ ∗) �=
0. Then system (A2) undergoes a supercritical Andronov-
Hopf bifurcation at γ = γ ∗. A stable closed invariant orbit
bifurcates from the equilibrium when γ passes through γ ∗.
The direction of this bifurcation is determined by the sign of
μ′(γ ∗). Specifically, the invariant orbit appears for γ > γ ∗ if
μ′(γ ∗) > 0 and for γ < γ ∗ if μ′(γ ∗) < 0. The radius of the
invariant orbit is approximately rF(γ ) = √−μ(γ )/χ (γ ), and
the frequency is approximately fF(γ ) = ω(γ )/2π .

To modulate the frequency of the oscillator with an invariant
amplitude, all the conditions in Lemma 3 are required to ensure
the appearance of a supercritical Andronov-Hopf bifurcation.
Moreover, the amplitude of the stable closed invariant orbit that
bifurcates from the equilibrium is invariant with and without
linear feedback control. This leads to the following:

rF(γ )|Fij =0,i,j=1,2 = rF(γ ). (A8)

By varying the feedback gains Fij , i,j = 1,2, under Eq. (A8),
the amplitude of the stable closed invariant orbit is approxi-
mately invariant while the frequency is tunable.

Similarly, to modulate the amplitude of the oscillator with
an invariant frequency, it is required, in addition to all the
conditions in Lemma 3, that

fF(γ )|Fij =0,i,j=1,2 = fF(γ ). (A9)

By varying the feedback gains Fij , i,j = 1,2, under Eq. (A9),
the frequency of the stable closed invariant orbit remains
approximately invariant while the amplitude can be modulated.

In real applications, conditions (A8) and (A9) can either be
calculated analytically or validated numerically.

2. Computational details of the normal form

We consider the normal form of the Andronov-Hopf
bifurcation in Eq. (1), with the linear feedback control (2).
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Following the notations in the above section, the controlled
system can then be reorganized as

dx
dt

= A(α)x + G(x,α), (A10)

where

A(α) =
[
α + F11 −β + F12

β + F21 α + F22

]

and

G(x,α) = Gq(x,α) + Gc(x,α),

with g1
30 = g1

12 = g2
21 = g2

03 = −1, and all the other coeffi-
cients gν

pq = gν
pq(γ ), p + q = 2,3, p,q � 0, ν = 1,2, vanish.

To ensure the existence of an Andronov-Hopf bifurcation at
the same bifurcation point as the original system, it is required
that the Jacobi matrix A(α) has a pair of complex eigenvalues
on the imaginary axis at the critical point α∗ = 0, giving

	(α) = 	(α∗) ≡ (F11 − F22)2 + 4(F12 − β)(F21 + β) < 0

and

tr[A(α∗)] ≡ F11 + F22 = 0.

Suppose that the above two conditions are satisfied, and |α| is
sufficiently close to zero. Then A(α) has two eigenvalues,

λ±(α) = μ(α) ± iω(α),

where μ(α) = α and ω(α) = 1
2

√−	(α). Let ξ = 2(F12 − β),
ζ = F22 − F11, and

P = 1

ξ

[
ξ 0
ζ −√−	

]
.

By a coordinate transformation y = P−1x, system (A10) can
be transformed into

d y
dt

= J(α) y + K ( y,α), (A11)

where J(α) = [α −ω

ω α ], K ( y,α) = P−1G(P y,α) =
K q( y,α) + K c( y,α), with

k1
20 = k1

11 = k1
02 = k2

20 = k2
11 = k2

02 = 0

and

k1
30 = −1 − ζ 2

ξ 2
, k1

21 = 2ζ
√−	

ξ 2
, k1

12 = 	

ξ 2
, k1

03 = 0,

k2
30 = 0, k2

21 = −1 − ζ 2

ξ 2
, k2

12 = 2ζ
√−	

ξ 2
, k2

03 = 	

ξ 2
.

By introducing a complex variable z = y1 + iy2, system (A11)
can be transformed into the following complex form:

dz

dt
= λz + l20

2
z2 + l11zz̄ + l02

2
z̄2

+ l30

6
z3 + l21

2
z2z̄ + l12

2
zz̄2 + l03

6
z̄2, (A12)

where λ = λ(α) = α + iω(α),

l20 = l11 = l02 = 0, l21 = −1 − ζ 2

ξ 2
+ 	

ξ 2
< 0.

Finally, system (A12) can be transformed by an invertible
parameter-dependent change of complex coordinate, which
is smoothly dependent on the parameter, for sufficiently small
|α|, into its normal form with only one cubic term (the resonant
term),

dw

dt
= λw + ηw2w̄,

where

η = η(α) = l21

2
≡ 1

2

[
−1 + F21 + β

F12 − β

]
< 0.

Since χ (α) = Re[η(α)] = η(α) < 0, the controlled system
(A10) undergoes a supercritical Andronov-Hopf bifurcation
at α∗ = 0. The radius of the limit cycle is

rF(α) =
√

−α

η
,

and the frequency of the invariant orbit is

ω

2π
= 1

4π

√−	

= 1

4π

√
−(F11 − F22)2 − 4(F12 − β)(F21 + β).

Suppose that both self-feedbacks vanish, i.e., F11 = F22 =
0. To modulate the frequency of the oscillator with an invariant
amplitude, we require that

√
α = r0 = rF(α)|Fij =0,i,j=1,2 = rF(α) =

√
−α

η
,

giving F12 = −F21. That is, any feedback control that takes
the form [0 −c

c 0 ] can achieve FM, with a modulated frequency

fF = (β + c)/2π = f0 + c/2π.

To modulate the amplitude of the oscillator with an invariant
frequency, we require that

β

2π
= f0 = fF(α)|Fij =0,i,j=1,2 = fF(α)

= 1

4π

√−	 = 1

2π

√
(β − F12)(β + F21),

giving F12 = βF21/(β + F21). That is, any feedback control
that takes the form [0 cβ/(c + β)

c 0 ] can achieve AM, with a
modulated amplitude

rF =
√

2α

1 + (1 + c/β)2
= r0

√
2

1 + (1 + c/β)2
.

3. Computational details of the FitzHugh-Nagumo model

Consider the FHN model described by the continuous
dynamical system (10). The Jacobi matrix of system (10) at
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the equilibrium (v0,w0) is

A0 =
[
a0 −1
ε −γ ε

]
,

where a0 = p′(v0) = −3v2
0 + 2(1 + θ )v0 − θ . The eigenval-

ues of A0 are

λ± = μ(ε) ± iω(ε) = a0 − γ ε

2

±
√(

a0−γ ε

2

)2

+2
a0−γ ε

2

(
1

γ
− a0

)
− a0

(
1

γ
− a0

)
.

Therefore, the FitzHugh-Nagumo model undergoes an
Andronov-Hopf bifurcation at ε0 = a0/γ , if the parameters
satisfy 0 < a0 < 1/γ or 1/γ < a0 < 0. At the bifurcation
point, the Jacobi matrix A0 has a pair of complex eigenvalues,
±i

√
a0(1/γ − a0), on the imaginary axis. Following the

procedures described above, system (10) can be transformed
into the following complex form:

dz

dt
= λz + b0

4

(
1 + i

μ − a0

ω

)
(z + z̄)2

− 1

8

(
1 + i

μ − a0

ω

)
(z + z̄)3,

where λ = λ(ε) = μ(ε) + iω(ε), b0 = p′′(v0)/2 = −3v0 +
1 + θ , and it can finally be converted into its normal form,

dw

dt
= λw + ηw2w̄,

where

η(ε) = b2
0

8

{
1

μ2 + ω2

[
5μ − 2(μ − a0) − μ

(
μ − a0

ω

)2
]}

+ b2
0

8

{
μ

μ2 + 9ω2

[
1 +

(
μ − a0

ω

)2
]}

− 3

8

− i
b2

0

8
ω

{
1

μ2 + ω2

[
1 − 6

μ

ω

μ − a0

ω
+

(
μ − a0

ω

)2
]}

− i
b2

0

8
ω

{
3

μ2+9ω2

[
1+

(
μ − a0

ω

)2
]}

− i
3

8

μ − a0

ω
,

and, in particular,

Re[η(ε0)] = −1

4

(
3

2
− b2

0

1/γ − a0

)
.

Therefore, if we ensure that χ (ε0) = Re[η(ε0)] < 0, the
Andronov-Hopf bifurcation of the FitzHugh-Nagumo model
is supercritical, i.e., the limit cycle that appears when ε < ε0

is stable.
We now introduce to (10) the linear feedback control (12).

Let x = [v − v0,w − w0]�. The controlled FHN model can
be reorganized as follows:

dx
dt

= A(ε)x + G(x,ε),

where

A(ε) =
[
a0 + F11 −1 + F12

ε + F21 −γ ε + F22

]
and

G(x,ε) = Gq(x,ε) + Gc(x,ε),

with g1
20 = b0, g1

30 = −1, and all the other coefficients gν
pq =

gν
pq(γ ), p + q = 2,3, p,q � 0, ν = 1,2, vanish. Therefore, we

have obtained all the coefficients gν
pq = gν

pq(γ ), 1 � p + q �
3, p,q � 0, ν = 1,2, for this polynomial system. We can verify
all the conditions required for FM and AM following the results
established in this Appendix.
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